Sample records for normal cellular physiology

  1. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  2. Activation of cellular death programs associated with immunosenescence-like phenotype in TPPII knockout mice

    PubMed Central

    Huai, Jisen; Firat, Elke; Nil, Ahmed; Million, Daniele; Gaedicke, Simone; Kanzler, Benoit; Freudenberg, Marina; van Endert, Peter; Kohler, Gabriele; Pahl, Heike L.; Aichele, Peter; Eichmann, Klaus; Niedermann, Gabriele

    2008-01-01

    The giant cytosolic protease tripeptidyl peptidase II (TPPII) has been implicated in the regulation of proliferation and survival of malignant cells, particularly lymphoma cells. To address its functions in normal cellular and systemic physiology we have generated TPPII-deficient mice. TPPII deficiency activates cell type-specific death programs, including proliferative apoptosis in several T lineage subsets and premature cellular senescence in fibroblasts and CD8+ T cells. This coincides with up-regulation of p53 and dysregulation of NF-κB. Prominent degenerative alterations at the organismic level were a decreased lifespan and symptoms characteristic of immunohematopoietic senescence. These symptoms include accelerated thymic involution, lymphopenia, impaired proliferative T cell responses, extramedullary hematopoiesis, and inflammation. Thus, TPPII is important for maintaining normal cellular and systemic physiology, which may be relevant for potential therapeutic applications of TPPII inhibitors. PMID:18362329

  3. Murine Electrophysiological Models of Cardiac Arrhythmogenesis

    PubMed Central

    2016-01-01

    Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias. PMID:27974512

  4. Mannan oligosaccharide requires functional ETC and TLR for biological radiation protection to normal cells.

    PubMed

    Sanguri, Sweta; Gupta, Damodar

    2018-06-27

    Low LET Ionizing radiation is known to alter intracellular redox balance by inducing free radical generation, which may cause oxidative modification of various cellular biomolecules. The extent of biomolecule-modifications/ damages and changes in vital processes (viz. cellular homeostasis, inter-/intra-cellular signaling, mitochondrial physiology/dynamics antioxidant defence systems) are crucial which in turn determine fate of cells. In the present study, we expended TLR expressing (normal/ transformed) and TLR null cells; and we have shown that mannan pretreatment in TLR expressing normal cells offers survival advantage against lethal doses of ionizing radiation. On the contrary, mannan pretreatment does not offer any protection against radiation to TLR null cells, NKE ρ° cells and transformed cells. In normal cells, abrupt decrease in mitochondrial membrane potential and endogenous ROS levels occurs following treatment with mannan. We intend to irradiate mannan-pretreated cells at a specific stage of perturbed mitochondrial functioning and ROS levels to comprehend if mannan pretreatment offers any survival advantage against radiation exposure to cells. Interestingly, pre-irradiation treatment of cells with mannan activates NFκB, p38 and JNK, alters mitochondrial physiology, increases expression of Cu/ZnSOD and MnSOD, minimizes oxidation of mitochondrial phospholipids and offers survival advantage in comparison to irradiated group, in TLR expressing normal cells. The study demonstrates that TLR and mitochondrial ETC functions are inevitable in radio-protective efficacy exhibited by mannan.

  5. Ecological comparison of cellular stress responses among populations - normalizing RT-qPCR values to investigate differential environmental adaptations.

    PubMed

    Koenigstein, Stefan; Pöhlmann, Kevin; Held, Christoph; Abele, Doris

    2013-05-16

    Rising temperatures and other environmental factors influenced by global climate change can cause increased physiological stress for many species and lead to range shifts or regional population extinctions. To advance the understanding of species' response to change and establish links between individual and ecosystem adaptations, physiological reactions have to be compared between populations living in different environments. Although changes in expression of stress genes are relatively easy to quantify, methods for reliable comparison of the data remain a contentious issue. Using normalization algorithms and further methodological considerations, we compare cellular stress response gene expression levels measured by RT-qPCR after air exposure experiments among different subpopulations of three species of the intertidal limpet Nacella. Reference gene assessment algorithms reveal that stable reference genes can differ among investigated populations and / or treatment groups. Normalized expression values point to differential defense strategies to air exposure in the investigated populations, which either employ a pronounced cellular stress response in the inducible Hsp70 forms, or exhibit a comparatively high constitutive expression of Hsps (heat shock proteins) while showing only little response in terms of Hsp induction. This study serves as a case study to explore the methodological prerequisites of physiological stress response comparisons among ecologically and phylogenetically different organisms. To improve the reliability of gene expression data and compare the stress responses of subpopulations under potential genetic divergence, reference gene stability algorithms are valuable and necessary tools. As the Hsp70 isoforms have been shown to play different roles in the acute stress responses and increased constitutive defenses of populations in their different habitats, these comparative studies can yield insight into physiological strategies of adaptation to environmental stress and provide hints for the prudent use of the cellular stress response as a biomarker to study environmental stress and stress adaptation of populations under changing environmental conditions.

  6. Ecological comparison of cellular stress responses among populations – normalizing RT-qPCR values to investigate differential environmental adaptations

    PubMed Central

    2013-01-01

    Background Rising temperatures and other environmental factors influenced by global climate change can cause increased physiological stress for many species and lead to range shifts or regional population extinctions. To advance the understanding of species’ response to change and establish links between individual and ecosystem adaptations, physiological reactions have to be compared between populations living in different environments. Although changes in expression of stress genes are relatively easy to quantify, methods for reliable comparison of the data remain a contentious issue. Using normalization algorithms and further methodological considerations, we compare cellular stress response gene expression levels measured by RT-qPCR after air exposure experiments among different subpopulations of three species of the intertidal limpet Nacella. Results Reference gene assessment algorithms reveal that stable reference genes can differ among investigated populations and / or treatment groups. Normalized expression values point to differential defense strategies to air exposure in the investigated populations, which either employ a pronounced cellular stress response in the inducible Hsp70 forms, or exhibit a comparatively high constitutive expression of Hsps (heat shock proteins) while showing only little response in terms of Hsp induction. Conclusions This study serves as a case study to explore the methodological prerequisites of physiological stress response comparisons among ecologically and phylogenetically different organisms. To improve the reliability of gene expression data and compare the stress responses of subpopulations under potential genetic divergence, reference gene stability algorithms are valuable and necessary tools. As the Hsp70 isoforms have been shown to play different roles in the acute stress responses and increased constitutive defenses of populations in their different habitats, these comparative studies can yield insight into physiological strategies of adaptation to environmental stress and provide hints for the prudent use of the cellular stress response as a biomarker to study environmental stress and stress adaptation of populations under changing environmental conditions. PMID:23680017

  7. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease

    PubMed Central

    Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.

    2016-01-01

    Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  8. Multiple functions of BCL-2 family proteins.

    PubMed

    Hardwick, J Marie; Soane, Lucian

    2013-02-01

    BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.

  9. Cellular senescence and organismal aging.

    PubMed

    Jeyapalan, Jessie C; Sedivy, John M

    2008-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.

  10. Cellular senescence and organismal aging

    PubMed Central

    Jeyapalan, Jessie C.; Sedivy, John M.

    2012-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging. PMID:18502472

  11. Discovery of a New Cellular Motion and Its Relevance to Breast Cancer and Involution

    DTIC Science & Technology

    2014-02-01

    motion (CAMo), live cell imaging , confocal microscopy Overall Project Summary: During this first year of funding we have concentrated our work to...cell types in 3D cultures and in vivo. Subtask 1.1a: Real time live cell imaging using confocal microscopy will be used to image cellular movement...exciting as they are important steps in understanding behavior of normal myoepithelial cells using live cell imaging in physiologically

  12. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.

    PubMed

    Epstein, Tamir; Xu, Liping; Gillies, Robert J; Gatenby, Robert A

    2014-01-01

    Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but slow-responding aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism, which is inefficient but can rapidly increase adenosine triphosphate (ATP) production, to meet short-timescale energy demands, mainly from membrane transport activities. In this model, the origin of the Warburg effect in cancer cells and aerobic glycolysis in general represents a normal physiological function due to enhanced energy demand for membrane transporters activity required for cell division, growth, and migration.

  13. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    PubMed Central

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID:23502354

  14. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking.

    PubMed

    Bridges, Robert J; Bradbury, Neil A

    2018-01-01

    The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.

  15. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease.

    PubMed

    Serrano-Puebla, Ana; Boya, Patricia

    2016-05-01

    Recent studies have demonstrated that, in addition to their central role in cellular catabolic reactions, lysosomes are implicated in many cellular processes, including metabolism, membrane repair, and cell death. Lysosomal membrane permeabilization (LMP) has emerged as a pathway by which cell demise is regulated under physiological conditions and contributes to cell death in many pathological situations. Here, we review the latest evidence on LMP-mediated cell death, the upstream and downstream signals involved, and the role of LMP in the normal physiology of organisms. We also discuss the contributions of lysosomal damage and LMP to the pathogenic features of several disease states, such as lysosomal storage disorders and other neurodegenerative conditions. © 2015 New York Academy of Sciences.

  16. Physiology and pathophysiology of potassium homeostasis.

    PubMed

    Palmer, Biff F; Clegg, Deborah J

    2016-12-01

    Total body potassium content and proper distribution of potassium across the cell membrane is of critical importance for normal cellular function. Potassium homeostasis is maintained by several different methods. In the kidney, total body potassium content is achieved by alterations in renal excretion of potassium in response to variations in intake. Insulin and beta-adrenergic tone play critical roles in maintaining the internal distribution of potassium under normal conditions. Despite homeostatic pathways designed to maintain potassium levels within the normal range, disorders of altered potassium homeostasis are common. The clinical approach to designing effective treatments relies on understanding the pathophysiology and regulatory influences which govern the internal distribution and external balance of potassium. Here we provide an overview of the key regulatory aspects of normal potassium physiology. This review is designed to provide an overview of potassium homeostasis as well as provide references of seminal papers to guide the reader into a more in depth discussion of the importance of potassium balance. This review is designed to be a resource for educators and well-informed clinicians who are teaching trainees about the importance of potassium balance. Copyright © 2016 the American Physiological Society.

  17. Research in Biological and Medical Sciences Including Biochemistry, Communicable Disease and Immunology, Internal Medicine, Nuclear Medicine, Physiology, Psychiatry, Surgery, and Veterinary Medicine. Volume 2

    DTIC Science & Technology

    1974-06-30

    Sprinz and Formal 1968). Fat seen in colonic epithelial cells of monkeys infected by Shigella flexneri occurred before penetration of...cellular or non-cellular components of the peripheral blood such as fat , fibrin, denatured protein, red blood cells, intact neutrophils or other...in vitro, and imply their embolic character when infused into the recipient’s vasculature. Corclusion Storage of whole blood under normal blood bank

  18. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases.

    PubMed

    Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya

    2017-10-18

    Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.

  19. Homeostasis 5: nurses as external agents of control in breast cancer.

    PubMed

    Clancy, John; McVicar, Andrew

    Breast cancer is caused by a homeostatic imbalance of cell division. Healthcare practitioners need to understand cellular activities to appreciate the physiological basis of health (homeostasis), the pathophysiological basis of illness and the physiological rationale of healthcare. Cells are the 'basic unit of life' (Clancy and McVicar, 2011a). This article describes normal cell division and the anatomy and physiology of the breast and, using a case study, will show how breast cancer is a homeostatic imbalance of cell division. There are analogies between the components of homeostasis and the components of the nursing (healthcare) process (Clancy and McVicar, 2011b) in the condition of breast cancer. After reading this article, nurses should be able to: understand that breast cancer is a cellular hence chemical imbalance that causes uncontrollable mitotic division of breast cells; understand how the cell cycle of cancer cells differs from that of normal cells; identify nature-nurture interactions involved in the aetiology of breast cancer; understand that when caring for people with breast cancer, health professionals including oncology nurses are acting as external agents of homeostatic control as the patient 'recovers' from breast cancer, and also to some extent when reducing signs and symptoms, hence quality of life, by providing palliative care.

  20. Metabolic Adaptation to Muscle Ischemia

    NASA Technical Reports Server (NTRS)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  1. Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design.

    PubMed

    Selden, Clare; Fuller, Barry

    2018-04-24

    Micro and small bioreactors are well described for use in bioprocess development in pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use of bioreactors to understand normal and pathophysiology by definition must be very different, and the constraints of the physiological environment influence such bioreactor design. This review considers the key elements necessary to enable bioreactors to address three main areas associated with biological systems. All entail recreation of the in vivo cell niche as faithfully as possible, so that they may be used to study molecular and cellular changes in normal physiology, with a view to creating tissue-engineered grafts for clinical use; understanding the pathophysiology of disease at the molecular level; defining possible therapeutic targets; and enabling appropriate pharmaceutical testing on a truly representative organoid, thus enabling better drug design, and simultaneously creating the potential to reduce the numbers of animals in research. The premise explored is that not only cellular signalling cues, but also mechano-transduction from mechanical cues, play an important role.

  2. Seasonal differences in the physiology of Carcinus maenas (Crustacea: Decapoda) from estuaries with varying levels of anthropogenic contamination

    NASA Astrophysics Data System (ADS)

    Dissanayake, Awantha; Galloway, Tamara S.; Jones, Malcolm B.

    2011-07-01

    This study reports the seasonal variability in aspects of the physiology of the shore crab Carcinus maenas from three estuaries in South-west England, each with varying anthropogenic inputs: Avon Estuary ('relatively low' impact), Yealm Estuary ('intermediate' impact) and Plym Estuary ('relatively high' impact). Crabs collected over 12 months from the Avon had a significantly 'lower' physiological condition in winter and spring compared to summer and autumn; in particular, haemocyte phagocytic capability (a general indicator of immune function) was significantly higher in winter and spring compared to summer and autumn, and total haemolymph antioxidant status (an indicator of oxidative stress) was significantly lower in winter compared to the remainder of the year. Potentially, shore crabs may be more susceptible to the effects of contaminant exposure, such as increased immunotoxicity (thus, reduction of immune function) and/or oxyradicals (or reactive oxygen species) exposure) especially in seasons of increased susceptibility i.e. summer/autumn (lower phagocytic capability) and winter (lowest antioxidant function). As the Avon was taken to represent the 'reference' site, this pattern is considered to reflect the 'normal' seasonal variability in shore crab physiology. Shore crab physiological condition from the 'relatively high' impact estuary (Plym) revealed increased cellular viability and antioxidant status in autumn and winter compared with that of the 'standard' pattern (Avon) However, crabs from the intermediate impact estuary (Yealm) only demonstrated significant physiological differences in summer as shown by a lower cellular viability. All crabs had been exposed to PAHs (confirmed by the presence of PAH metabolites in their urine) which may account for the observed differences in shore crab physiology. In conclusion, to aid understanding of the potential contaminant impacts on biota it is imperative that the 'normal' seasonal variability of physiological condition be established. Biological effects-based monitoring studies should therefore be employed seasonally to potentially highlight 'windows of sensitivity' to contaminant impact.

  3. Improved intra-array and interarray normalization of peptide microarray phosphorylation for phosphorylome and kinome profiling by rational selection of relevant spots

    PubMed Central

    Scholma, Jetse; Fuhler, Gwenny M.; Joore, Jos; Hulsman, Marc; Schivo, Stefano; List, Alan F.; Reinders, Marcel J. T.; Peppelenbosch, Maikel P.; Post, Janine N.

    2016-01-01

    Massive parallel analysis using array technology has become the mainstay for analysis of genomes and transcriptomes. Analogously, the predominance of phosphorylation as a regulator of cellular metabolism has fostered the development of peptide arrays of kinase consensus substrates that allow the charting of cellular phosphorylation events (often called kinome profiling). However, whereas the bioinformatical framework for expression array analysis is well-developed, no advanced analysis tools are yet available for kinome profiling. Especially intra-array and interarray normalization of peptide array phosphorylation remain problematic, due to the absence of “housekeeping” kinases and the obvious fallacy of the assumption that different experimental conditions should exhibit equal amounts of kinase activity. Here we describe the development of analysis tools that reliably quantify phosphorylation of peptide arrays and that allow normalization of the signals obtained. We provide a method for intraslide gradient correction and spot quality control. We describe a novel interarray normalization procedure, named repetitive signal enhancement, RSE, which provides a mathematical approach to limit the false negative results occuring with the use of other normalization procedures. Using in silico and biological experiments we show that employing such protocols yields superior insight into cellular physiology as compared to classical analysis tools for kinome profiling. PMID:27225531

  4. Calcium-sensing receptor 20 years later

    PubMed Central

    Alfadda, Tariq I.; Saleh, Ahmad M. A.; Houillier, Pascal

    2014-01-01

    The calcium-sensing receptor (CaSR) has played an important role as a target in the treatment of a variety of disease states over the past 20 plus years. In this review, we give an overview of the receptor at the cellular level and then provide details as to how this receptor has been targeted to modulate cellular ion transport mechanisms. As a member of the G protein-coupled receptor (GPCR) family, it has a high degree of homology with a variety of other members in this class, which could explain why this receptor has been identified in so many different tissues throughout the body. This diversity of locations sets it apart from other members of the family and may explain how the receptor interacts with so many different organ systems in the body to modulate the physiology and pathophysiology. The receptor is unique in that it has two large exofacial lobes that sit in the extracellular environment and sense changes in a wide variety of environmental cues including salinity, pH, amino acid concentration, and polyamines to name just a few. It is for this reason that there has been a great deal of research associated with normal receptor physiology over the past 20 years. With the ongoing research, in more recent years a focus on the pathophysiology has emerged and the effects of receptor mutations on cellular and organ physiology have been identified. We hope that this review will enhance and update the knowledge about the importance of this receptor and stimulate future potential investigations focused around this receptor in cellular, organ, and systemic physiology and pathophysiology. PMID:24871857

  5. Physiological functions of MTA family of proteins.

    PubMed

    Sen, Nirmalya; Gui, Bin; Kumar, Rakesh

    2014-12-01

    Although the functional significance of the metastasic tumor antigen (MTA) family of chromatin remodeling proteins in the pathobiology of cancer is fairly well recognized, the physiological role of MTA proteins continues to be an understudied research area and is just beginning to be recognized. Similar to cancer cells, MTA1 also modulates the expression of target genes in normal cells either by acting as a corepressor or coactivator. In addition, physiological functions of MTA proteins are likely to be influenced by its differential expression, subcellular localization, and regulation by upstream modulators and extracellular signals. This review summarizes our current understanding of the physiological functions of the MTA proteins in model systems. In particular, we highlight recent advances of the role MTA proteins play in the brain, eye, circadian rhythm, mammary gland biology, spermatogenesis, liver, immunomodulation and inflammation, cellular radio-sensitivity, and hematopoiesis and differentiation. Based on the growth of knowledge regarding the exciting new facets of the MTA family of proteins in biology and medicine, we speculate that the next burst of findings in this field may reveal further molecular regulatory insights of non-redundant functions of MTA coregulators in the normal physiology as well as in pathological conditions outside cancer.

  6. Physiological effects in bovine lymphocytes of inhibiting polyamine synthesis with ethylglyoxal bis(guanylhydrazone).

    PubMed

    Igarashi, K; Morris, D R

    1984-11-01

    Previous results have suggested that ethylglyoxal bis(guanylhydrazone) is a more specific inhibitor of polyamine biosynthesis than the widely used methylglyoxal bis(guanylhydrazone). The physiological effects on mitogenically activated lymphocytes of polyamine depletion with ethylglyoxal bis(guanylhydrazone) were examined. In the presence of ethylglyoxal bis(guanylhydrazone) and the ornithine decarboxylase inhibitor alpha-difluoromethylornithine, the cellular contents of putrescine, spermidine, and spermine were decreased by 75 to 90, 65 to 80, and 40 to 60%, respectively, compared with control cultures. Inhibition of DNA synthesis in these polyamine-deficient cells was always greater than that of protein synthesis. Upon addition of spermidine to the deficient cells, the cellular spermidine content was restored within 4 hr, but the complete recovery of macromolecular synthesis took 10 to 20 hr. Thymidine kinase and DNA polymerase alpha activities in polyamine-deficient cells were lower than those in normal cells, whereas RNA polymerase II and leucyl transfer RNA synthase activities were nearly equal to those in normal cells. These results and studies with 2-dimensional gel electrophoresis raise the possibility that polyamines may regulate the synthesis of specific proteins. Decreased synthesis of replication proteins in polyamine-deficient cells may be one reason for the reduced synthesis of DNA.

  7. The Vitamin Nicotinamide: Translating Nutrition into Clinical Care

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2009-01-01

    Nicotinamide, the amide form of vitamin B3 (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyl-transferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs. PMID:19783937

  8. Neural control of renal tubular solute and water transport.

    PubMed

    DiBona, G F

    1989-01-01

    The neural control of renal tubular solute and water transport is recognized as an important physiological mechanism in the overall regulation of solute and water homeostasis by the mammalian organism. Recent studies have expanded the understanding of this mechanism concerning the transport of diverse solutes with beginning insight into the precise nature of the cellular transport processes involved. The modulatory roles of both circulating and intrarenal hormonal systems on the responses to alterations in the magnitude of efferent renal sympathetic nerve activity are being understood from the nerve terminal release of neurotransmitter to influences on cellular transport processes which determine the overall effect. When dietary sodium intake is normal or only modestly reduced, intact renal innervation is not essential for normal renal sodium conservation. However, when dietary sodium intake is severely restricted, there is maximum engagement of all mechanisms known to participate in renal sodium conservation and, under these conditions, intact renal innervation is essential for normal renal sodium conservation.

  9. Preface: cardiac control pathways: signaling and transport phenomena.

    PubMed

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  10. Review of the gastrointestinal tract: from macro to micro.

    PubMed

    Reed, Kathleen K; Wickham, Rita

    2009-02-01

    To review the normal anatomy and physiology of the gastrointestinal (GI) tract, the malignant transformations in GI cancers, and the rationale for targeted therapy for these cancers. Published articles, book chapters and web sources. Oncology nurses require an understanding of normal GI anatomy and physiology, along with an understanding of malignant transformations at the cellular and molecular level, to effectively educate and care for the patient with a diagnosis of a GI cancer. Challenges for the oncology nurse include continuing education related to GI cancer, the development of effective patient education skills, ensuring safe administration of oral agents and remaining current regarding GI clinical trial opportunities. Education of nursing colleagues, development of an area of expertise through specialization, and development of leadership skills are opportunities associated with practicing in the dynamic environment of oncology nursing.

  11. Human physiology in space

    NASA Technical Reports Server (NTRS)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  12. Pathway profiles based on gene-set enrichment analysis in the honey bee Apis mellifera under brood rearing-suppressed conditions.

    PubMed

    Kim, Kyungmun; Kim, Ju Hyeon; Kim, Young Ho; Hong, Seong-Eui; Lee, Si Hyeock

    2018-01-01

    Perturbation of normal behaviors in honey bee colonies by any external factor can immediately reduce the colony's capacity for brood rearing, which can eventually lead to colony collapse. To investigate the effects of brood-rearing suppression on the biology of honey bee workers, gene-set enrichment analysis of the transcriptomes of worker bees with or without suppressed brood rearing was performed. When brood rearing was suppressed, pathways associated with both protein degradation and synthesis were simultaneously over-represented in both nurses and foragers, and their overall pathway representation profiles resembled those of normal foragers and nurses, respectively. Thus, obstruction of normal labor induced over-representation in pathways related with reshaping of worker bee physiology, suggesting that transition of labor is physiologically reversible. In addition, some genes associated with the regulation of neuronal excitability, cellular and nutritional stress and aggressiveness were over-expressed under brood rearing suppression perhaps to manage in-hive stress under unfavorable conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Catch-up Growth: Cellular and Molecular Mechanisms

    PubMed Central

    Finkielstain, GP; Lui, JC; Baron, J

    2012-01-01

    In mammals, after a period of growth inhibition, body growth often does not just return to a normal rate but actually exceeds the normal rate, resulting in catch-up growth. Recent evidence suggests that catch-up growth occurs because growth-inhibiting conditions delay progression of the physiological mechanisms that normally cause body growth to slow and cease with age. As a result, following the period of growth inhibition, tissues retain a greater proliferative capacity than normal, and therefore grow more rapidly than normal for age. There is evidence that this mechanism contributes both to catch-up growth in terms of body length, which involves proliferation in the growth plate, and to catch-up growth in terms of organ mass, which involves proliferation in multiple non-skeletal tissues. PMID:23428687

  14. Cellular metabolism and disease: what do metabolic outliers teach us?

    PubMed Central

    DeBerardinis, Ralph J.; Thompson, Craig B.

    2012-01-01

    An understanding of metabolic pathways based solely on biochemistry textbooks would underestimate the pervasive role of metabolism in essentially every aspect of biology. It is evident from recent work that many human diseases involve abnormal metabolic states – often genetically programmed – that perturb normal physiology and lead to severe tissue dysfunction. Understanding these metabolic outliers is now a crucial frontier in disease-oriented research. This review discusses the broad impact of metabolism in cellular function, how modern concepts of metabolism can inform our understanding of common diseases like cancer, and considers the prospects of developing new metabolic approaches to disease treatment. PMID:22424225

  15. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases

    PubMed Central

    Kim, Min-Hyun; Kim, Hyeyoung

    2017-01-01

    Glutamine, the most abundant free amino acid in the human body, is a major substrate utilized by intestinal cells. The roles of glutamine in intestinal physiology and management of multiple intestinal diseases have been reported. In gut physiology, glutamine promotes enterocyte proliferation, regulates tight junction proteins, suppresses pro-inflammatory signaling pathways, and protects cells against apoptosis and cellular stresses during normal and pathologic conditions. As glutamine stores are depleted during severe metabolic stress including trauma, sepsis, and inflammatory bowel diseases, glutamine supplementation has been examined in patients to improve their clinical outcomes. In this review, we discuss the physiological roles of glutamine for intestinal health and its underlying mechanisms. In addition, we discuss the current evidence for the efficacy of glutamine supplementation in intestinal diseases. PMID:28498331

  16. Bmi-1: At the crossroads of physiological and pathological biology

    PubMed Central

    Bhattacharya, Resham; Mustafi, Soumyajit Banerjee; Street, Mark; Dey, Anindya; Dwivedi, Shailendra Kumar Dhar

    2015-01-01

    Bmi-1 is a member of the Polycomb Repressor Complex1 that mediates gene silencing by regulating chromatin structure and is indispensable for self-renewal of both normal and cancer stem cells. Despite three decades of research that have elucidated the transcriptional regulation, post-translational modifications and functions of Bmi-1 in regulating the DNA damage response, cellular bioenergetics, and pathologies, the entire potential of a protein with such varied function remains to be realized. This review attempts to synthesize the current knowledge on Bmi-1 with an emphasis on its role in both normal physiology and cancer. Additionally, since cancer stem cells are emerging as a new paradigm for therapy resistance, the role of Bmi-1 in this perspective is also highlighted. The wide spectrum of malignancies that implicate Bmi-1 as a signature for stemness and oncogenesis also make it a suitable candidate for therapy. Nonetheless new approaches are vitally needed to further characterize physiological roles of Bmi-1 with the long-term goal of using Bmi-1 as a prognostic marker and a therapeutic target. PMID:26448339

  17. Functions of autophagy in normal and diseased liver

    PubMed Central

    Czaja, Mark J.; Ding, Wen-Xing; Donohue, Terrence M.; Friedman, Scott L.; Kim, Jae-Sung; Komatsu, Masaaki; Lemasters, John J.; Lemoine, Antoinette; Lin, Jiandie D.; Ou, Jing-hsiung James; Perlmutter, David H.; Randall, Glenn; Ray, Ratna B.; Tsung, Allan; Yin, Xiao-Ming

    2013-01-01

    Autophagy has emerged as a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components such as organelles and proteins. Investigations specifically employing the liver or hepatocytes as experimental models have contributed significantly to our current knowledge of autophagic regulation and function. The diverse cellular functions of autophagy, along with unique features of the liver and its principal cell type the hepatocyte, suggest that the liver is highly dependent on autophagy for both normal function and to prevent the development of disease states. However, instances have also been identified in which autophagy promotes pathological changes such as the development of hepatic fibrosis. Considerable evidence has accumulated that alterations in autophagy are an underlying mechanism of a number of common hepatic diseases including toxin-, drug- and ischemia/reperfusion-induced liver injury, fatty liver, viral hepatitis and hepatocellular carcinoma. This review summarizes recent advances in understanding the roles that autophagy plays in normal hepatic physiology and pathophysiology with the intent of furthering the development of autophagy-based therapies for human liver diseases. PMID:23774882

  18. Molecular and physiological manifestations and measurement of aging in humans.

    PubMed

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Endoreplication and polyploidy: insights into development and disease

    PubMed Central

    Fox, Donald T.; Duronio, Robert J.

    2013-01-01

    Polyploid cells have genomes that contain multiples of the typical diploid chromosome number and are found in many different organisms. Studies in a variety of animal and plant developmental systems have revealed evolutionarily conserved mechanisms that control the generation of polyploidy and have recently begun to provide clues to its physiological function. These studies demonstrate that cellular polyploidy plays important roles during normal development and also contributes to human disease, particularly cancer. PMID:23222436

  20. The neurology of mTOR.

    PubMed

    Lipton, Jonathan O; Sahin, Mustafa

    2014-10-22

    The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.

  1. The study and application of four kinds of organic ion-selective microsensors

    NASA Astrophysics Data System (ADS)

    Yu, Bi; Zheng, Xiao; Feng, Chu; Hong, Wen-Bing; Liu, Jun-Tao; Wang, Ru-Jiang

    1991-09-01

    Four kinds of organic ion-selective microelectrodes (two barrels, tip diameter 0.1-0.5 micron) have been developed for the measurement of acetylcholine, histamine, serotonin, and bile acid. Physiological and pathological models on the cellular or sub-cellular level have been established for the purpose of basic and clinical pharmacological research, treatment or diagnosis of certain diseases. The acetylcholine sensitive microelectrode has been applied to the study of acetylcholine activity in single erythrocytes of normal human subjects and patients suffering from manic depressive disorders. The bile acid selective microelectrode has been used for the direct measurement of intracellular bile acid activities both in colorectal cancer and colorectal mucosa in living condition.

  2. From the Cover: Disease-Induced Disparities in Formation of the Nanoparticle-Biocorona and the Toxicological Consequences

    PubMed Central

    Shannahan, Jonathan H.; Fritz, Kristofer S.; Raghavendra, Achyut J.; Podila, Ramakrishna; Persaud, Indushekar; Brown, Jared M.

    2016-01-01

    Nanoparticle (NP) association with macromolecules in a physiological environment forms a biocorona (BC), which alters NP distribution, activity, and toxicity. While BC formation is dependent on NP physicochemical properties, little information exists on the influence of the physiological environment. Obese individuals and those with cardiovascular disease exist with altered serum chemistry, which is expected to influence BC formation and NP toxicity. We hypothesize that a BC formed on NPs following incubation in hyperlipidemic serum will result in altered NP–BC protein content, cellular association, and toxicity compared to normal serum conditions. We utilized Fe3O4 NPs, which are being developed as MRI contrast and tumor targeting agents to test our hypothesis. We used rat aortic endothelial cells (RAECs) within a dynamic flow in vitro exposure system to more accurately depict the in vivo environment. A BC was formed on 20nm PVP-suspended Fe3O4 NPs following incubation in water, 10% normal or hyperlipidemic rat serum. Addition of BCs resulted in increased hydrodynamic size and decreased surface charge. More cholesterol associated with Fe3O4 NPs after incubation in hyperlipidemic as compared with normal serum. Using quantitative proteomics, we identified unique differences in BC protein components between the 2 serum types. Under flow conditions, formation of a BC from both serum types reduced RAECs association of Fe3O4 NPs. Addition of BCs was found to exacerbate RAECs inflammatory gene responses to Fe3O4 NPs (Fe3O4-hyperlipidemic > Fe3O4-normal > Fe3O4) including increased expression of IL-6, TNF-α, Cxcl-2, VCAM-1, and ICAM-1. Overall, these findings demonstrate that disease-induced variations in physiological environments have a significant impact NP-BC formation, cellular association, and cell response. PMID:27255384

  3. Cytoplasmic RNA Granules in Somatic Maintenance.

    PubMed

    Moujaber, Ossama; Stochaj, Ursula

    2018-05-30

    Cytoplasmic RNA granules represent subcellular compartments that are enriched in protein-bound RNA species. RNA granules are produced by evolutionary divergent eukaryotes, including yeast, mammals, and plants. The functions of cytoplasmic RNA granules differ widely. They are dictated by the cell type and physiological state, which in turn is determined by intrinsic cell properties and environmental factors. RNA granules provide diverse cellular functions. However, all of the granules contribute to aspects of RNA metabolism. This is exemplified by transcription, RNA storage, silencing, and degradation, as well as mRNP remodeling and regulated translation. Several forms of cytoplasmic mRNA granules are linked to normal physiological processes. For instance, they may coordinate protein synthesis and thereby serve as posttranscriptional "operons". RNA granules also participate in cytoplasmic mRNA trafficking, a process particularly well understood for neurons. Many forms of RNA granules support the preservation of somatic cell performance under normal and stress conditions. On the other hand, severe insults or disease can cause the formation and persistence of RNA granules that contribute to cellular dysfunction, especially in the nervous system. Neurodegeneration and many other diseases linked to RNA granules are associated with aging. Nevertheless, information related to the impact of aging on the various types of RNA granules is presently very limited. This review concentrates on cytoplasmic RNA granules and their role in somatic cell maintenance. We summarize the current knowledge on different types of RNA granules in the cytoplasm, their assembly and function under normal, stress, or disease conditions. Specifically, we discuss processing bodies, neuronal granules, stress granules, and other less characterized cytoplasmic RNA granules. Our focus is primarily on mammalian and yeast models, because they have been critical to unravel the physiological role of various RNA granules. RNA granules in plants and pathogens are briefly described. We conclude our viewpoint by summarizing the emerging concepts for RNA granule biology and the open questions that need to be addressed in future studies. © 2018 S. Karger AG, Basel.

  4. Exosomes and their role in the micro-/macro-environment: a comprehensive review

    PubMed Central

    Javeed, Naureen; Mukhopadhyay, Debabrata

    2017-01-01

    The importance of extracellular vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Compelling evidence supports the role of EVs in the horizontal transfer of cellular material which has the potential to influence normal cellular physiology and promote various disease states. Of the different types of EVs, exosomes have garnered much attention in the past decade due to their abundance in various biological fluids and ability to affect multiple organ systems. The main focus of this review will be on cancer and how cancer-derived exosomes are important mediators of metastasis, angiogenesis, immune modulation, and the tumor macro-/microenvironment. We will also discuss exosomes as potential biomarkers for cancers due to their abundance in biological fluids, ease of uptake, and cellular content. Exosome use in diagnosis, prognosis, and in establishing treatment regimens has enormous potential to revolutionize patient care. PMID:28290182

  5. Exosomes and their role in the micro-/macro-environment: a comprehensive review.

    PubMed

    Javeed, Naureen; Mukhopadhyay, Debabrata

    2017-09-26

    The importance of extracellular vesicles (EVs) in cell-cell communication has long been recognized due to their ability to transfer important cellular cargoes such as DNA, mRNA, miRNAs, and proteins to target cells. Compelling evidence supports the role of EVs in the horizontal transfer of cellular material which has the potential to influence normal cellular physiology and promote various disease states. Of the different types of EVs, exosomes have garnered much attention in the past decade due to their abundance in various biological fluids and ability to affect multiple organ systems. The main focus of this review will be on cancer and how cancer-derived exosomes are important mediators of metastasis, angiogenesis, immune modulation, and the tumor macro-/microenvironment. We will also discuss exosomes as potential biomarkers for cancers due to their abundance in biological fluids, ease of uptake, and cellular content. Exosome use in diagnosis, prognosis, and in establishing treatment regimens has enormous potential to revolutionize patient care.

  6. A Rapid and Specific Microplate Assay for the Determination of Intra- and Extracellular Ascorbate in Cultured Cells

    PubMed Central

    Lane, Darius J. R.; Lawen, Alfons

    2014-01-01

    Vitamin C (ascorbate) plays numerous important roles in cellular metabolism, many of which have only come to light in recent years. For instance, within the brain, ascorbate acts in a neuroprotective and neuromodulatory manner that involves ascorbate cycling between neurons and vicinal astrocytes - a relationship that appears to be crucial for brain ascorbate homeostasis. Additionally, emerging evidence strongly suggests that ascorbate has a greatly expanded role in regulating cellular and systemic iron metabolism than is classically recognized. The increasing recognition of the integral role of ascorbate in normal and deregulated cellular and organismal physiology demands a range of medium-throughput and high-sensitivity analytic techniques that can be executed without the need for highly expensive specialist equipment. Here we provide explicit instructions for a medium-throughput, specific and relatively inexpensive microplate assay for the determination of both intra- and extracellular ascorbate in cell culture. PMID:24747535

  7. Nuclear Mechanics in Disease

    PubMed Central

    Zwerger, Monika; Ho, Chin Yee; Lammerding, Jan

    2015-01-01

    Over the past two decades, the biomechanical properties of cells have emerged as key players in a broad range of cellular functions, including migration, proliferation, and differentiation. Although much of the attention has focused on the cytoskeletal networks and the cell’s microenvironment, relatively little is known about the contribution of the cell nucleus. Here, we present an overview of the structural elements that determine the physical properties of the nucleus and discuss how changes in the expression of nuclear components or mutations in nuclear proteins can affect not only nuclear mechanics but also modulate cytoskeletal organization and diverse cellular functions. These findings illustrate that the nucleus is tightly integrated into the surrounding cellular structure. Consequently, changes in nuclear structure and composition are highly relevant to normal development and physiology and can contribute to many human diseases, such as muscular dystrophy, dilated cardiomyopathy, (premature) aging, and cancer. PMID:21756143

  8. Synthetic biology meets tissue engineering

    PubMed Central

    Davies, Jamie A.; Cachat, Elise

    2016-01-01

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the ‘embryological cycle’ of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  9. Mammary Gland Involution Provides a Unique Model to Study the TGF-β Cancer Paradox

    PubMed Central

    Guo, Qiuchen; Betts, Courtney; Pennock, Nathan; Mitchell, Elizabeth; Schedin, Pepper

    2017-01-01

    Transforming Growth Factor-β (TGF-β) signaling in cancer has been termed the “TGF-β paradox”, acting as both a tumor suppresser and promoter. The complexity of TGF-β signaling within the tumor is context dependent, and greatly impacted by cellular crosstalk between TGF-β responsive cells in the microenvironment including adjacent epithelial, endothelial, mesenchymal, and hematopoietic cells. Here we utilize normal, weaning-induced mammary gland involution as a tissue microenvironment model to study the complexity of TGF-β function. This article reviews facets of mammary gland involution that are TGF-β regulated, namely mammary epithelial cell death, immune activation, and extracellular matrix remodeling. We outline how distinct cellular responses and crosstalk between cell types during physiologically normal mammary gland involution contribute to simultaneous tumor suppressive and promotional microenvironments. We also highlight alternatives to direct TGF-β blocking anti-cancer therapies with an emphasis on eliciting concerted microenvironmental-mediated tumor suppression. PMID:28098775

  10. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress.

    PubMed

    Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A

    2018-02-01

    Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

  11. A Wireless Emergency Telemedicine System for Patients Monitoring and Diagnosis

    PubMed Central

    Abo-Zahhad, M.; Ahmed, Sabah M.; Elnahas, O.

    2014-01-01

    Recently, remote healthcare systems have received increasing attention in the last decade, explaining why intelligent systems with physiology signal monitoring for e-health care are an emerging area of development. Therefore, this study adopts a system which includes continuous collection and evaluation of multiple vital signs, long-term healthcare, and a cellular connection to a medical center in emergency case and it transfers all acquired raw data by the internet in normal case. The proposed system can continuously acquire four different physiological signs, for example, ECG, SpO2, temperature, and blood pressure and further relayed them to an intelligent data analysis scheme to diagnose abnormal pulses for exploring potential chronic diseases. The proposed system also has a friendly web-based interface for medical staff to observe immediate pulse signals for remote treatment. Once abnormal event happened or the request to real-time display vital signs is confirmed, all physiological signs will be immediately transmitted to remote medical server through both cellular networks and internet. Also data can be transmitted to a family member's mobile phone or doctor's phone through GPRS. A prototype of such system has been successfully developed and implemented, which will offer high standard of healthcare with a major reduction in cost for our society. PMID:24883059

  12. Two different mechanisms associated with ripple-like oscillations (100-250 Hz) in the human epileptic subiculum in vitro

    PubMed Central

    Alvarado-Rojas, C; Huberfeld, G; Baulac, M; Clemenceau, S; Charpier, S; Miles, R; Menendez de la Prida, L; Le Van Quyen, M

    2015-01-01

    Transient high-frequency oscillations (150-600 Hz) in local field potential generated by human hippocampal and parahippocampal areas have been related to both physiological and pathological processes. The cellular basis and effects of normal and abnormal forms of high-frequency oscillations (HFO) has been controversial. Here, we searched for HFOs in slices of the subiculum prepared from human hippocampal tissue resected for treatment of pharmacoresistant epilepsy. HFOs occurred spontaneously in extracellular field potentials during interictal discharges (IID) and also during pharmacologically induced preictal discharges (PID) preceding ictal-like events. While most of these events might be considered pathological since they invaded the fast ripple band (>250 Hz), others were spectrally similar to physiological ripples (150-250 Hz). Do similar cellular mechanisms underly IID-ripples and PID-ripples? Are ripple-like oscillations a valid proxy of epileptogenesis in human TLE? With combined intra- or juxta-cellular and extracellular recordings, we showed that, despite overlapping spectral components, ripple-like IID and PID oscillations were associated with different cellular and synaptic mechanisms. IID-ripples were associated with rhythmic GABAergic and glutamatergic synaptic potentials with moderate neuronal firing. In contrast, PID-ripples were associated with depolarizing synaptic inputs frequently reaching the threshold for bursting in most cells. Thus ripple-like oscillations (100-250 Hz) in the human epileptic hippocampus are associated with different mechanisms for synchrony reflecting distinct dynamic changes in inhibition and excitation during interictal and pre-ictal states. PMID:25448920

  13. Beneficial effects of leptin treatment in a setting of cardiac dysfunction induced by transverse aortic constriction in mouse.

    PubMed

    Gómez-Hurtado, Nieves; Domínguez-Rodríguez, Alejandro; Mateo, Philippe; Fernández-Velasco, María; Val-Blasco, Almudena; Aizpún, Rafael; Sabourin, Jessica; Gómez, Ana María; Benitah, Jean-Pierre; Delgado, Carmen

    2017-07-01

    Leptin, is a 16 kDa pleiotropic peptide not only primarily secreted by adipocytes, but also produced by other tissues, including the heart. Controversy exists regarding the adverse and beneficial effects of leptin on the heart We analysed the effect of a non-hypertensive dose of leptin on cardiac function, [Ca 2+ ] i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction. We find that leptin activates mechanisms that contribute to cardiac dysfunction under physiological conditions. However, after the establishment of pressure overload, an increase in leptin levels has protective cardiac effects with respect to rescuing the cellular heart failure phenotype. These beneficial effects of leptin involve restoration of action potential duration via normalization of transient outward potassium current and sarcoplasmic reticulum Ca 2+ content via rescue of control sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase levels and ryanodine receptor function modulation, leading to normalization of Ca 2+ handling parameters. Leptin, is a 16 kDa pleiotropic peptide not only primary secreted by adipocytes, but also produced by other tissues, including the heart. Evidence indicates that leptin may have either adverse or beneficial effects on the heart. To obtain further insights, in the present study, we analysed the effect of leptin treatment on cardiac function, [Ca 2+ ] i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction (TAC). Three weeks after surgery, animals received either leptin (0.36 mg kg -1  day -1 ) or vehicle via osmotic minipumps for 3 weeks. Echocardiographic measurements showed that, although leptin treatment was deleterious on cardiac function in sham, leptin had a cardioprotective effect following TAC. [Ca 2+ ] i transient in cardiomyocytes followed similar pattern. Patch clamp experiments showed prolongation of action potential duration (APD) in TAC and leptin-treated sham animals, whereas, following TAC, leptin reduced the APD towards control values. APD variations were associated with decreased transient outward potassium current and Kv4.2 and KChIP2 protein expression. TAC myocytes showed a higher incidence of triggered activities and spontaneous Ca 2+ waves. These proarrhythmic manifestations, related to Ca 2+ /calmodulin-dependent protein kinase II and ryanodine receptor phosphorylation, were reduced by leptin. The results of the present study demonstrate that, although leptin treatment was deleterious on cardiac function in control animals, leptin had a cardioprotective effect following TAC, normalizing cardiac function and reducing arrhythmogeneity at the cellular level. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  14. Neonatal pulmonary physiology.

    PubMed

    Davis, Ryan P; Mychaliska, George B

    2013-11-01

    Managing pulmonary issues faced by both term and preterm infants remains a challenge to the practicing pediatric surgeon. An understanding of normal fetal and neonatal pulmonary development and physiology is the cornerstone for understanding the pathophysiology and treatment of many congenital and acquired problems in the neonate. Progression through the phases of lung development and the transition to postnatal life requires a symphony of complex and overlapping events to work in concert for smooth and successful transition to occur. Pulmonary physiology and oxygen transport in the neonate are similar to older children; however, there are critical differences that are important to take into consideration when treating the youngest of patients. Our understanding of fetal and neonatal pulmonary physiology continues to evolve as the molecular and cellular events governing these processes are better understood. This deeper understanding has helped to facilitate groundbreaking research, leading to improved technology and treatment of term and preterm infants. As therapeutics and research continue to advance, a review of neonatal pulmonary physiology is essential to assist the clinician with his/her management of the wide variety of challenging congenital and acquired pulmonary disease. © 2013 Published by Elsevier Inc.

  15. Towards molecular medicine: a case for a biological periodic table.

    PubMed

    Gawad, Charles

    2005-01-01

    The recently amplified pace of development in the technologies to study both normal and aberrant cellular physiology has allowed for a transition from the traditional reductionist approaches to global interrogations of human biology. This transformation has created the anticipation that we will soon more effectively treat or contain most types of diseases through a 'systems-based' approach to understanding and correcting the underlying etiology of these processes. However, to accomplish these goals, we must first have a more comprehensive understanding of all the elements involved in human cellular physiology, as well as why and how they interact. With the vast number of biological components that have and are being discovered, creating methods with modern computational techniques to better organize biological elements is the next requisite step in this process. This article aims to articulate the importance of the organization of chemical elements into a periodic table had on the conversion of chemistry into a quantitative, translatable science, as well as how we can apply the lessons learned in that transition to the current transformation taking place in biology.

  16. The epithelial-mesenchymal interactions: insights into physiological and pathological aspects of oral tissues.

    PubMed

    Santosh, Arvind Babu Rajendra; Jones, Thaon Jon

    2014-03-17

    In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.

  17. Khat a drug of abuse: roles of free radicals and antioxidants.

    PubMed

    Aleryani, Samir L; Aleryani, Rowaida A; Al-Akwa, Ahmed A

    2011-09-01

    Many articles have reviewed the health impact of Khat consumption; however the role of free radicals in the pathogenesis associated with short- and long-term consumption of Khat is absent in the literature. As free radicals and antioxidants converge across various mechanisms in normal physiological function and in disease, this review attempts to uncover the role of endogenous free radicals and the mechanism of cellular injury associated with Khat consumption. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Role of cholesterol and lipid organization in disease

    NASA Astrophysics Data System (ADS)

    Maxfield, Frederick R.; Tabas, Ira

    2005-12-01

    Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann-Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.

  19. Quantitative biology of single neurons

    PubMed Central

    Eberwine, James; Lovatt, Ditte; Buckley, Peter; Dueck, Hannah; Francis, Chantal; Kim, Tae Kyung; Lee, Jaehee; Lee, Miler; Miyashiro, Kevin; Morris, Jacqueline; Peritz, Tiina; Schochet, Terri; Spaethling, Jennifer; Sul, Jai-Yoon; Kim, Junhyong

    2012-01-01

    The building blocks of complex biological systems are single cells. Fundamental insights gained from single-cell analysis promise to provide the framework for understanding normal biological systems development as well as the limits on systems/cellular ability to respond to disease. The interplay of cells to create functional systems is not well understood. Until recently, the study of single cells has concentrated primarily on morphological and physiological characterization. With the application of new highly sensitive molecular and genomic technologies, the quantitative biochemistry of single cells is now accessible. PMID:22915636

  20. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression.

    PubMed

    Lamontagne, Jason; Mell, Joshua C; Bouchard, Michael J

    2016-02-01

    Globally, a chronic hepatitis B virus (HBV) infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.

  1. Endogenous Pyrogen Physiology.

    ERIC Educational Resources Information Center

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  2. A Futile Redox Cycle Involving Neuroglobin Observed at Physiological Temperature.

    PubMed

    Liu, Anyang; Brittain, Thomas

    2015-08-24

    Previous studies identifying the potential anti-apoptotic role of neuroglobin raise the question as to how cells might employ neuroglobin to avoid the apoptotic impact of acute hypoxia whilst also avoiding chronic enhancement of tumour formation. We show that under likely physiological conditions neuroglobin can take part in a futile redox cycle. Determination of the rate constants for each of the steps in the cycle allows us to mathematically model the steady state concentration of the active anti-apoptotic ferrous form of neuroglobin under various conditions. Under likely normal physiological conditions neuroglobin is shown to be present in the ferrous state at approximately 30% of its total cellular concentration. Under hypoxic conditions this rapidly rises to approximately 80%. Temporal analysis of this model indicates that the transition from low concentrations to high concentration of ferrous neuroglobin occurs on the seconds time scale. These findings indicate a potential control model for the anti-apoptotic activity of neuroglobin, under likely physiological conditions, whereby, in normoxic conditions, the anti-apoptotic activity of neuroglobin is maintained at a low level, whilst immediately a transition occurs to a hypoxic situation, as might arise during stroke, the anti-apoptotic activity is drastically increased. In this way the cell avoids unwanted increased oncogenic potential under normal conditions, but the rapid activation of neuroglobin provides anti-apoptotic protection in times of acute hypoxia.

  3. Cellular and Physiological Effects of Anthrax Exotoxin and Its Relevance to Disease

    PubMed Central

    Lowe, David E.; Glomski, Ian J.

    2012-01-01

    Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host. PMID:22919667

  4. Elementary Mode Analysis: A Useful Metabolic Pathway Analysis Tool for Characterizing Cellular Metabolism

    PubMed Central

    Trinh, Cong T.; Wlaschin, Aaron; Srienc, Friedrich

    2010-01-01

    Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering. PMID:19015845

  5. Exogenous antioxidants—Double-edged swords in cellular redox state

    PubMed Central

    Bohn, Torsten

    2010-01-01

    The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects. PMID:20972369

  6. Free radicals, reactive oxygen species, oxidative stress and its classification.

    PubMed

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Innate Immune Activation in Obesity

    PubMed Central

    Lumeng, Carey N.

    2014-01-01

    The innate immune system is a prewired set of cellular and humoral components that has developed to sense perturbations in normal physiology and trigger responses to restore the system back to baseline. It is now understood that many of these components can also sense the physiologic changes that occur with obesity and be activated. While the exact reasons for this chronic immune response to obesity are unclear, there is strong evidence to suggest that innate inflammatory systems link obesity and disease. Based on this, anti-inflammatory therapies for diseases like type 2 diabetes and metabolic syndrome may form the core of future treatment plans. This review will highlight the components involved in the innate immune response and discuss the evidence that they contribute to the pathogenesis of obesity-associated diseases. PMID:23068074

  8. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  9. NAD+ cellular redox and SIRT1 regulate the diurnal rhythms of tyrosine hydroxylase and conditioned cocaine reward.

    PubMed

    Logan, Ryan W; Parekh, Puja K; Kaplan, Gabrielle N; Becker-Krail, Darius D; Williams, Wilbur P; Yamaguchi, Shintaro; Yoshino, Jun; Shelton, Micah A; Zhu, Xiyu; Zhang, Hui; Waplinger, Spencer; Fitzgerald, Ethan; Oliver-Smith, Jeffrey; Sundarvelu, Poornima; Enwright, John F; Huang, Yanhua H; McClung, Colleen A

    2018-05-04

    The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.

  10. The ins and outs of intracellular ion homeostasis: NHX-type cation/H(+) transporters.

    PubMed

    Bassil, Elias; Blumwald, Eduardo

    2014-12-01

    The biochemical characterization of cation/H(+) exchange has been known since 1985 [1], yet only recently have we begun to understand the contribution of individual exchangers to ion homeostasis in plants. One particularly important class of exchangers is the NHX-type that is associated with Na(+) transport and therefore salinity tolerance. New evidence suggests that under normal growth conditions NHXs are critical regulators of K(+) and pH homeostasis and have important roles, depending on their cellular localization, in the generation of turgor as well as in vesicular trafficking. Recent advances highlight novel and exciting functions of intracellular NHXs in growth and development, stress adaptation and osmotic adjustment. Here, we elaborate on new and emerging cellular and physiological functions of this group of H(+)-coupled cation exchangers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    PubMed

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Future Targets for Female Sexual Dysfunction.

    PubMed

    Farmer, Melissa; Yoon, Hana; Goldstein, Irwin

    2016-08-01

    Female sexual function reflects a dynamic interplay of central and peripheral nervous, vascular, and endocrine systems. The primary challenge in the development of novel treatments for female sexual dysfunction is the identification and targeted modulation of excitatory sexual circuits using pharmacologic treatments that facilitate the synthesis, release, and/or receptor binding of neurochemicals, peptides, and hormones that promote female sexual function. To develop an evidence-based state-of-the-art consensus report that critically integrates current knowledge of the therapeutic potential for known molecular and cellular targets to facilitate the physiologic processes underlying female sexual function. State-of-the-art review representing the opinions of international experts developed in a consensus process during a 1-year period. Expert opinion was established by grading the evidence-based medical literature, intensive internal committee discussion, public presentation, and debate. Scientific investigation is urgently needed to expand knowledge and foster development of future treatments that maintain genital tissue integrity, enhance genital physiologic responsiveness, and optimize positive subjective appraisal of internal and external sexual cues. This article critically condenses the current knowledge of therapeutic manipulation of molecular and cellular targets within biological systems responsible for female sexual physiologic function. Future treatment targets include pharmacologic modulation of emotional learning circuits, restoration of normal tactile sensation, growth factor therapy, gene therapy, stem cell-based therapies, and regenerative medicine. Concurrent use of centrally and peripherally acting therapies could optimize treatment response. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  13. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts

    NASA Astrophysics Data System (ADS)

    Hoadley, Kenneth D.; Pettay, Daniel. T.; Dodge, Danielle; Warner, Mark E.

    2016-06-01

    Given concerns surrounding coral bleaching and ocean acidification, there is renewed interest in characterizing the physiological differences across the multiple host-algal symbiont combinations commonly found on coral reefs. Elevated temperature and CO2 were used to compare physiological responses within the scleractinian corals Montipora hirsuta ( Symbiodinium C15) and Pocillopora damicornis ( Symbiodinium D1), as well as the corallimorph (a non-calcifying anthozoan closely related to scleractinians) Discosoma nummiforme ( Symbiodinium C3). Several physiological proxies were affected more by temperature than CO2, including photochemistry, algal number and cellular chlorophyll a. Marked differences in symbiont number, chlorophyll and volume contributed to distinctive patterns of chlorophyll absorption among these animals. In contrast, carbon fixation either did not change or increased under elevated temperature. Also, the rate of photosynthetically fixed carbon translocated to each host did not change, and the percent of carbon translocated to the host increased in the corallimorph. Comparing all data revealed a significant negative correlation between photosynthetic rate and symbiont density that corroborates previous hypotheses about carbon limitation in these symbioses. The ratio of symbiont-normalized photosynthetic rate relative to the rate of symbiont-normalized carbon translocation (P:T) was compared in these organisms as well as the anemone, Exaiptasia pallida hosting Symbiodinium minutum, and revealed a P:T close to unity ( D. nummiforme) to a range of 2.0-4.5, with the lowest carbon translocation in the sea anemone. Major differences in the thermal responses across these organisms provide further evidence of a range of acclimation potential and physiological plasticity that highlights the need for continued study of these symbioses across a larger group of host taxa.

  14. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development.

    PubMed

    Schaer, Dominik J; Vinchi, Francesca; Ingoglia, Giada; Tolosano, Emanuela; Buehler, Paul W

    2014-01-01

    Hemolysis, which occurs in many disease states, can trigger a diverse pathophysiologic cascade that is related to the specific biochemical activities of free Hb and its porphyrin component heme. Normal erythropoiesis and concomitant removal of senescent red blood cells (RBC) from the circulation occurs at rates of approximately 2 × 10(6) RBCs/second. Within this physiologic range of RBC turnover, a small fraction of hemoglobin (Hb) is released into plasma as free extracellular Hb. In humans, there is an efficient multicomponent system of Hb sequestration, oxidative neutralization and clearance. Haptoglobin (Hp) is the primary Hb-binding protein in human plasma, which attenuates the adverse biochemical and physiologic effects of extracellular Hb. The cellular receptor target of Hp is the monocyte/macrophage scavenger receptor, CD163. Following Hb-Hp binding to CD163, cellular internalization of the complex leads to globin and heme metabolism, which is followed by adaptive changes in antioxidant and iron metabolism pathways and macrophage phenotype polarization. When Hb is released from RBCs within the physiologic range of Hp, the potential deleterious effects of Hb are prevented. However, during hyper-hemolytic conditions or with chronic hemolysis, Hp is depleted and Hb readily distributes to tissues where it might be exposed to oxidative conditions. In such conditions, heme can be released from ferric Hb. The free heme can then accelerate tissue damage by promoting peroxidative reactions and activation of inflammatory cascades. Hemopexin (Hx) is another plasma glycoprotein able to bind heme with high affinity. Hx sequesters heme in an inert, non-toxic form and transports it to the liver for catabolism and excretion. In the present review we discuss the components of physiologic Hb/heme detoxification and their potential therapeutic application in a wide range of hemolytic conditions.

  15. AP-1 subunits: quarrel and harmony among siblings.

    PubMed

    Hess, Jochen; Angel, Peter; Schorpp-Kistner, Marina

    2004-12-01

    The AP-1 transcription factor is mainly composed of Jun, Fos and ATF protein dimers. It mediates gene regulation in response to a plethora of physiological and pathological stimuli, including cytokines, growth factors, stress signals, bacterial and viral infections, as well as oncogenic stimuli. Studies in genetically modified mice and cells have highlighted a crucial role for AP-1 in a variety of cellular events involved in normal development or neoplastic transformation causing cancer. However, emerging evidence indicates that the contribution of AP-1 to determination of cell fates critically depends on the relative abundance of AP-1 subunits, the composition of AP-1 dimers, the quality of stimulus, the cell type and the cellular environment. Therefore, AP-1-mediated regulation of processes such as proliferation, differentiation, apoptosis and transformation should be considered within the context of a complex dynamic network of signalling pathways and other nuclear factors that respond simultaneously.

  16. Arginine dependence of tumor cells: targeting a chink in cancer’s armor

    PubMed Central

    Patil, MD; Bhaumik, J; Babykutty, S; Banerjee, UC; Fukumura, D

    2017-01-01

    Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities. PMID:27109103

  17. Rational Design of Cancer-Targeted Benzoselenadiazole by RGD Peptide Functionalization for Cancer Theranostics.

    PubMed

    Yang, Liye; Li, Wenying; Huang, Yanyu; Zhou, Yangliang; Chen, Tianfeng

    2015-09-01

    A cancer-targeted conjugate of the selenadiazole derivative BSeC (benzo[1,2,5] selenadiazole-5-carboxylic acid) with RGD peptide as targeting molecule and PEI (polyethylenimine) as a linker is rationally designed and synthesized in the present study. The results show that RGD-PEI-BSeC forms nanoparticles in aqueous solution with a core-shell nanostructure and high stability under physiological conditions. This rational design effectively enhances the selective cellular uptake and cellular retention of BSeC in human glioma cells, and increases its selectivity between cancer and normal cells. The nanoparticles enter the cells through receptor-mediated endocytosis via clathrin-mediated and nystatin-dependent lipid raft-mediated pathways. Internalized nanoparticles trigger glioma cell apoptosis by activation of ROS-mediated p53 phosphorylation. Therefore, this study provides a strategy for the rational design of selenium-containing cancer-targeted theranostics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterizing motility dynamics in human RPE cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Miller, Donald T.

    2017-02-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method - organelle motility - by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

  19. Calcitonin gene related family peptides: importance in normal placental and fetal development.

    PubMed

    Yallampalli, Chandra; Chauhan, Madhu; Endsley, Janice; Sathishkumar, Kunju

    2014-01-01

    Synchronized molecular and cellular events occur between the uterus and the implanting embryo to facilitate successful pregnancy outcome. Nevertheless, the molecular signaling network that coordinates strategies for successful decidualization, placentation and fetal growth are not well understood. The discovery of calcitonin/calcitonin gene-related peptides (CT/CGRP) highlighted new signaling mediators in various physiological processes, including reproduction. It is known that CGRP family peptides including CGRP, adrenomedulin and intermedin play regulatory functions during implantation, trophoblast proliferation and invasion, and fetal organogenesis. In addition, all the CGRP family peptides and their receptor components are found to be expressed in decidual, placental and fetal tissues. Additionally, plasma levels of peptides of the CGRP family were found to fluctuate during normal gestation and to induce placental cellular differentiation, proliferation, and critical hormone signaling. Moreover, aberrant signaling of these CGRP family peptides during gestation has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the CGRP family peptides in these critical processes is explored and discussed.

  20. Endoplasmic Reticulum Stress in the Diabetic Kidney, the Good, the Bad and the Ugly.

    PubMed

    Cunard, Robyn

    2015-04-20

    Diabetic kidney disease is the leading worldwide cause of end stage kidney disease and a growing public health challenge. The diabetic kidney is exposed to many environmental stressors and each cell type has developed intricate signaling systems designed to restore optimal cellular function. The unfolded protein response (UPR) is a homeostatic pathway that regulates endoplasmic reticulum (ER) membrane structure and secretory function. Studies suggest that the UPR is activated in the diabetic kidney to restore normal ER function and viability. However, when the cell is continuously stressed in an environment that lies outside of its normal physiological range, then the UPR is known as the ER stress response. The UPR reduces protein synthesis, augments the ER folding capacity and downregulates mRNA expression of genes by multiple pathways. Aberrant activation of ER stress can also induce inflammation and cellular apoptosis, and modify signaling of protective processes such as autophagy and mTORC activation. The following review will discuss our current understanding of ER stress in the diabetic kidney and explore novel means of modulating ER stress and its interacting signaling cascades with the overall goal of identifying therapeutic strategies that will improve outcomes in diabetic nephropathy.

  1. CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*

    PubMed Central

    Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen

    2013-01-01

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033

  2. Plasma and cellular fibronectin: distinct and independent functions during tissue repair

    PubMed Central

    2011-01-01

    Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes. PMID:21923916

  3. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment

    PubMed Central

    Jonker, S S; Louey, S

    2015-01-01

    Immature contractile cardiomyocytes proliferate to rapidly increase cell number, establishing cardiomyocyte endowment in the perinatal period. Developmental changes in cellular maturation, size and attrition further contribute to cardiac anatomy. These physiological processes occur concomitant with a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. There are complex interactions between endocrine, hemodynamic and nutritional regulators of cardiac development. Birth has been long assumed to be the trigger for major differences between the fetal and postnatal cardiomyocyte growth patterns, but investigations in normally growing sheep and rodents suggest this may not be entirely true; in sheep, these differences are initiated before birth, while in rodents they occur after birth. The aim of this review is to draw together our understanding of the temporal regulation of these signals and cardiomyocyte responses relative to birth. Further, we consider how these dynamics are altered in stressed and suboptimal intrauterine environments. PMID:26432905

  4. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells.

    PubMed

    Hartwell, Kimberly A; Miller, Peter G; Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R

    2013-12-01

    Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.

  5. Niche-based screening identifies small-molecule inhibitors of leukemia stem cells

    PubMed Central

    Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R

    2014-01-01

    Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone-marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on-target, via inhibition of HMGCoA reductase. These results illustrate the power of merging physiologically-relevant models with high-throughput screening. PMID:24161946

  6. Effects of Hypogravity on Osteoblast Differentiation

    NASA Technical Reports Server (NTRS)

    Globus, Ruth; Doty, Steven

    1997-01-01

    Weightbearing is essential for normal skeletal function. Without weightbearing, the rate of bone formation by osteoblasts decreases in the growing rat. Defective formation may account for the decrease in the maturation, strength and mass of bone that is caused by spaceflight. These skeletal defects may be mediated by a combination of physiologic changes triggered by spaceflight, including skeletal unloading, fluid shifts, and stress-induced endocrine factors. The fundamental question of whether the defects in osteoblast function due to weightlessness are mediated by localized skeletal unloading or by systemic physiologic adaptations such as fluid shifts has not been answered. Furthermore, bone-forming activity of osteoblasts during unloading may be affected by paracrine signals from vascular, monocytic, and neural cells that also reside in skeletal tissue. Therefore we proposed to examine whether exposure of cultured rat osteoblasts to spaceflight inhibits cellular differentiation and impairs mineralization when isolated from the influence of both systemic factors and other skeletal cells.

  7. Lacosamide and Levetiracetam Have No Effect on Sharp-Wave Ripple Rate.

    PubMed

    Kudlacek, Jan; Chvojka, Jan; Posusta, Antonin; Kovacova, Lubica; Hong, Seung Bong; Weiss, Shennan; Volna, Kamila; Marusic, Petr; Otahal, Jakub; Jiruska, Premysl

    2017-01-01

    Pathological high-frequency oscillations are a novel marker used to improve the delineation of epileptogenic tissue and, hence, the outcome of epilepsy surgery. Their practical clinical utilization is curtailed by the inability to discriminate them from physiological oscillations due to frequency overlap. Although it is well documented that pathological HFOs are suppressed by antiepileptic drugs (AEDs), the effect of AEDs on normal HFOs is not well known. In this experimental study, we have explored whether physiological HFOs (sharp-wave ripples) of hippocampal origin respond to AED treatment. The results show that application of a single dose of levetiracetam or lacosamide does not reduce the rate of sharp-wave ripples. In addition, it seems that these new generation drugs do not negatively affect the cellular and network mechanisms involved in sharp-wave ripple generation, which may provide a plausible explanation for the absence of significant negative effects on cognitive functions of these drugs, particularly on memory.

  8. Estrogen Biology: New Insights into GPER Function and Clinical Opportunities

    PubMed Central

    Prossnitz, Eric R.; Barton, Matthias

    2014-01-01

    Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen’s rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and certain drugs such as SERMs and SERDs in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine. PMID:24530924

  9. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy.

    PubMed

    Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham

    2007-10-01

    Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.

  10. Big-conductance Ca2+-activated K+ channels in physiological and pathophysiological urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.; Zheng, Yun-Min; Levin, Robert; Wang, Yong-Xiao

    2016-01-01

    ABSTRACT Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions. PMID:27101440

  11. Piezo1 regulates mechanotransductive release of ATP from human RBCs.

    PubMed

    Cinar, Eyup; Zhou, Sitong; DeCourcey, James; Wang, Yixuan; Waugh, Richard E; Wan, Jiandi

    2015-09-22

    Piezo proteins (Piezo1 and Piezo2) are recently identified mechanically activated cation channels in eukaryotic cells and associated with physiological responses to touch, pressure, and stretch. In particular, human RBCs express Piezo1 on their membranes, and mutations of Piezo1 have been linked to hereditary xerocytosis. To date, however, physiological functions of Piezo1 on normal RBCs remain poorly understood. Here, we show that Piezo1 regulates mechanotransductive release of ATP from human RBCs by controlling the shear-induced calcium (Ca(2+)) influx. We find that, in human RBCs treated with Piezo1 inhibitors or having mutant Piezo1 channels, the amounts of shear-induced ATP release and Ca(2+) influx decrease significantly. Remarkably, a critical extracellular Ca(2+) concentration is required to trigger significant ATP release, but membrane-associated ATP pools in RBCs also contribute to the release of ATP. Our results show how Piezo1 channels are likely to function in normal RBCs and suggest a previously unidentified mechanotransductive pathway in ATP release. Thus, we anticipate that the study will impact broadly on the research of red cells, cellular mechanosensing, and clinical studies related to red cell disorders and vascular disease.

  12. Intestinal absorption of water-soluble vitamins in health and disease.

    PubMed

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. © The Authors Journal compilation © 2011 Biochemical Society

  13. Intestinal absorption of water-soluble vitamins in health and disease

    PubMed Central

    Said, Hamid M.

    2014-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. PMID:21749321

  14. Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links

    PubMed Central

    Nawaz, Muhammad; Fatima, Farah

    2017-01-01

    The process of intercellular communication seems to have been a highly conserved evolutionary process. Higher eukaryotes use several means of intercellular communication to address both the changing physiological demands of the body and to fight against diseases. In recent years, there has been an increasing interest in understanding how cell-derived nanovesicles, known as extracellular vesicles (EVs), can function as normal paracrine mediators of intercellular communication, but can also elicit disease progression and may be used for innovative therapies. Over the last decade, a large body of evidence has accumulated to show that cells use cytoplasmic extensions comprising open-ended channels called tunneling nanotubes (TNTs) to connect cells at a long distance and facilitate the exchange of cytoplasmic material. TNTs are a different means of communication to classical gap junctions or cell fusions; since they are characterized by long distance bridging that transfers cytoplasmic organelles and intracellular vesicles between cells and represent the process of heteroplasmy. The role of EVs in cell communication is relatively well-understood, but how TNTs fit into this process is just emerging. The aim of this review is to describe the relationship between TNTs and EVs, and to discuss the synergies between these two crucial processes in the context of normal cellular cross-talk, physiological roles, modulation of immune responses, development of diseases, and their combinatory effects in tissue repair. At the present time this review appears to be the first summary of the implications of the overlapping roles of TNTs and EVs. We believe that a better appreciation of these parallel processes will improve our understanding on how these nanoscale conduits can be utilized as novel tools for targeted therapies. PMID:28770210

  15. Homeostasis, inflammation, and disease susceptibility.

    PubMed

    Kotas, Maya E; Medzhitov, Ruslan

    2015-02-26

    While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension, and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue, and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Proline Precursors and Collagen Synthesis: Biochemical Challenges of Nutrient Supplementation and Wound Healing.

    PubMed

    Albaugh, Vance L; Mukherjee, Kaushik; Barbul, Adrian

    2017-11-01

    Wound healing is a complex process marked by highly coordinated immune fluxes into an area of tissue injury; these are required for re-establishment of normal tissue integrity. Along with this cascade of cellular players, wound healing also requires coordinated flux through a number of biochemical pathways, leading to synthesis of collagen and recycling or removal of damaged tissues. The availability of nutrients, especially amino acids, is critical for wound healing, and enteral supplementation has been intensely studied as a potential mechanism to augment wound healing-either by increasing tensile strength, decreasing healing time, or both. From a practical standpoint, although enteral nutrient supplementation may seem like a reasonable strategy to augment healing, a number of biochemical and physiologic barriers exist that limit this strategy. In this critical review, the physiology of enteral amino acid metabolism and supplementation and challenges therein are discussed in the context of splanchnic physiology and biochemistry. Additionally, a review of studies examining various methods of amino acid supplementation and the associated effects on wound outcomes are discussed. © 2017 American Society for Nutrition.

  17. Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication.

    PubMed

    Alonzo, Luis F; Moya, Monica L; Shirure, Venktesh S; George, Steven C

    2015-09-07

    Tissue engineering can potentially recreate in vivo cellular microenvironments in vitro for an array of applications such as biological inquiry and drug discovery. However, the majority of current in vitro systems still neglect many biological, chemical, and mechanical cues that are known to impact cellular functions such as proliferation, migration, and differentiation. To address this gap, we have developed a novel microfluidic device that precisely controls the spatial and temporal interactions between adjacent three-dimensional cellular environments. The device consists of four interconnected microtissue compartments (~0.1 mm(3)) arranged in a square. The top and bottom pairs of compartments can be sequentially loaded with discrete cellularized hydrogels creating the opportunity to investigate homotypic (left to right or x-direction) and heterotypic (top to bottom or y-direction) cell-cell communication. A controlled hydrostatic pressure difference across the tissue compartments in both x and y direction induces interstitial flow and modulates communication via soluble factors. To validate the biological significance of this novel platform, we examined the role of stromal cells in the process of vasculogenesis. Our device confirms previous observations that soluble mediators derived from normal human lung fibroblasts (NHLFs) are necessary to form a vascular network derived from endothelial colony forming cell-derived endothelial cells (ECFC-ECs). We conclude that this platform could be used to study important physiological and pathological processes that rely on homotypic and heterotypic cell-cell communication.

  18. Targeting pH regulating proteins for cancer therapy-Progress and limitations.

    PubMed

    Parks, Scott K; Pouysségur, Jacques

    2017-04-01

    Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pH i ) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pH i regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pH i in the continued presence of external acidification (pH e ). Considerable experimentation has revealed targets that successfully disrupt tumour pH i regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na + /H + exchangers (NHEs), carbonic anhydrases (CAs), Na + /HCO 3 - co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pH i when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mechanics of the Nucleus

    PubMed Central

    Lammerding, Jan

    2015-01-01

    The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203

  20. What are the origins and relevance of spontaneous bladder contractions? ICI-RS 2017.

    PubMed

    Drake, Marcus J; Fry, Christopher H; Hashitani, Hikaru; Kirschner-Hermanns, Ruth; Rahnama'i, Mohammad S; Speich, John E; Tomoe, Hikaru; Kanai, Anthony J; McCloskey, Karen D

    2018-01-23

    Storage phase bladder activity is a counter-intuitive observation of spontaneous contractions. They are potentially an intrinsic feature of the smooth muscle, but interstitial cells in the mucosa and the detrusor itself, as well as other muscular elements in the mucosa may substantially influence them. They are identified in several models explaining lower urinary tract dysfunction. A consensus meeting at the International Consultation on Incontinence Research Society (ICI-RS) 2017 congress considered the origins and relevance of spontaneous bladder contractions by debating which cell type(s) modulate bladder spontaneous activity, whether the methodologies are sufficiently robust, and implications for healthy and abnormal lower urinary tract function. The identified research priorities reflect a wide range of unknown aspects. Cellular contributions to spontaneous contractions in detrusor smooth muscle are still uncertain. Accordingly, insight into the cellular physiology of the bladder wall, particularly smooth muscle cells, interstitial cells, and urothelium, remains important. Upstream influences, such as innervation, endocrine, and paracrine factors, are particularly important. The cellular interactions represent the key understanding to derive the integrative physiology of organ function, notably the nature of signalling between mucosa and detrusor layers. Indeed, it is still not clear to what extent spontaneous contractions generated in isolated preparations mirror their normal and pathological counterparts in the intact bladder. Improved models of how spontaneous contractions influence pressure generation and sensory nerve function are also needed. Deriving approaches to robust evaluation of spontaneous contractions and their influences for experimental and clinical use could yield considerable progress in functional urology. © 2018 Wiley Periodicals, Inc.

  1. Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells.

    PubMed

    Lay, Sui; Sanislav, Oana; Annesley, Sarah J; Fisher, Paul R

    2016-01-01

    Mitochondria not only play a critical and central role in providing metabolic energy to the cell but are also integral to the other cellular processes such as modulation of various signaling pathways. These pathways affect many aspects of cell physiology, including cell movement, growth, division, differentiation, and death. Mitochondrial dysfunction which affects mitochondrial bioenergetics and causes oxidative phosphorylation defects can thus lead to altered cellular physiology and manifest in disease. The assessment of the mitochondrial bioenergetics can thus provide valuable insights into the physiological state, and the alterations to the state of the cells. Here, we describe a method to successfully use the Seahorse XF(e)24 Extracellular Flux Analyzer to assess the mitochondrial respirometry of the cellular slime mold Dictyostelium discoideum.

  2. Life is determined by its environment

    NASA Astrophysics Data System (ADS)

    Torday, John S.; Miller, William B.

    2016-10-01

    A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges.

  3. Life is determined by its environment

    PubMed Central

    Torday, John S.; Miller, William B.

    2016-01-01

    A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges. PMID:27708547

  4. CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop.

    PubMed

    Wei, Zhao; Guo, Haiyang; Liu, Zhaojian; Zhang, Xiyu; Liu, Qiao; Qian, Yanyan; Gong, Yaoqin; Shao, Changshun

    2015-02-01

    Tumor suppressor p53 is known to regulate the level of intracellular reactive oxygen species (ROS). It can either alleviate oxidative stress under physiological and mildly stressed conditions or exacerbate oxidative stress under highly stressed conditions. We here report that a p53-ROS positive feedback loop drives a senescence program in normal human fibroblasts (NHFs) and this senescence-driving loop is negatively regulated by CUL4B. CUL4B, which can assemble various ubiquitin E3 ligases, was found to be downregulated in stress-induced senescent cells, but not in replicative senescent cells. We observed that p53-dependent ROS production was significantly augmented and stress-induced senescence was greatly enhanced when CUL4B was absent or depleted. Ectopic expression of CUL4B, on the other hand, blunted p53 activation, reduced ROS production, and attenuated cellular senescence in cells treated with H2O2. CUL4B was shown to promote p53 ubiquitination and proteosomal degradation in NHFs exposed to oxidative stress, thus dampening the p53-dependent cellular senescence. Together, our results established a critical role of CUL4B in negatively regulating the p53-ROS positive feedback loop that drives cellular senescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Examination of the Specificity of Tumor Cell Derived Exosomes with Tumor Cells In Vitro

    PubMed Central

    Smyth, Tyson J.; Redzic, Jasmina S.; Graner, Michael W.; Anchordoquy, Thomas J.

    2016-01-01

    Small endogenous vesicles called exosomes are beginning to be explored as drug delivery vehicles. The in vivo targets of exosomes are poorly understood; however, they are believed to be important in cell-to-cell communication and may play a prominent role in cancer metastasis. We aimed to elucidate whether cancer derived exosomes can be used as drug delivery vehicles that innately target tumors over normal tissue. Our in vitro results suggest that while there is some specificity towards cancer cells over “immortalized” cells, it is unclear if the difference is sufficient to achieve precise in vivo targeting. Additionally, we found that exosomes associate with their cellular targets to a significantly greater extent (> 10-fold) than liposomes of a similar size. Studies on the association of liposomes mimicking the unique lipid content of exosomes revealed that the lipid composition contributes significantly to cellular adherence/internalization. Cleavage of exosome surface proteins yielded exosomes exhibiting reduced association with their cellular targets, demonstrating the importance of proteins in binding/internalization. Furthermore, although acidic conditions are known to augment the metastatic potential of tumors, we found that cells cultured at low pH released exosomes with significantly less potential for cellular association than cells cultured at physiological pH. PMID:25102470

  6. Cellular Response to Reagent-Free Electron-Irradiated Gelatin Hydrogels.

    PubMed

    Wisotzki, Emilia I; Friedrich, Ralf P; Weidt, Astrid; Alexiou, Christoph; Mayr, Stefan G; Zink, Mareike

    2016-06-01

    As a biomaterial, it is well established that gelatin exhibits low cytotoxicity and can promote cellular growth. However, to circumvent the potential toxicity of chemical crosslinkers, reagent-free crosslinking methods such as electron irradiation are highly desirable. While high energy irradiation has been shown to exhibit precise control over the degree of crosslinking, these hydrogels have not been thoroughly investigated for biocompatibility and degradability. Here, NIH 3T3 murine fibroblasts are seeded onto irradiated gelatin hydrogels to examine the hydrogel's influence on cellular viability and morphology. The average projected area of cells seeded onto the hydrogels increases with irradiation dose, which correlates with an increase in the hydrogel's shear modulus up to 10 kPa. Cells on these hydrogels are highly viable and exhibits normal cell cycles, particularly when compared to those grown on glutaraldehyde crosslinked gelatin hydrogels. However, proliferation is reduced on both types of crosslinked samples. To mimic the response of the hydrogels in physiological conditions, degradability is monitored in simulated body fluid to reveal strongly dose-dependent degradation times. Overall, given the low cytotoxicity, influence on cellular morphology and variability in degradation times of the electron irradiated gelatin hydrogels, there is significant potential for application in areas ranging from regenerative medicine to mechanobiology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Stretching the boundaries of extracellular matrix research.

    PubMed

    Hynes, Richard O

    2014-12-01

    Extracellular matrix (ECM) proteins constitute >1% of the proteome and interact with many modifiers and growth factors to affect most aspects of cellular behaviour during development and normal physiology, as well as in diseases such as fibroses, cancer and many genetic disorders. In addition to biochemical signals provided to cells by ECM proteins, important cell–ECM interactions involve bidirectional mechanotransduction influences, which are dependent on the physical structure and organization of the ECM. These are beginning to be understood using twenty-first-century approaches, including biophysics, nanotechnology, biological engineering and modern microscopy. Articles in this issue of Nature Reviews Molecular Cell Biology review progress in our understanding of the ECM.

  8. Modulating Cell Fate as a Therapeutic Strategy.

    PubMed

    Lin, Brian; Srikanth, Priya; Castle, Alison C; Nigwekar, Sagar; Malhotra, Rajeev; Galloway, Jenna L; Sykes, David B; Rajagopal, Jayaraj

    2018-05-23

    In injured tissues, regeneration is often associated with cell fate plasticity, in that cells deviate from their normal lineage paths. It is becoming increasingly clear that this plasticity often creates alternative strategies to restore damaged or lost cells. Alternatively, cell fate plasticity is also part and parcel of pathologic tissue transformations that accompany disease. In this Perspective, we summarize a few illustrative examples of physiologic and aberrant cellular plasticity. Then, we speculate on how one could enhance endogenous plasticity to promote regeneration and reverse pathologic plasticity, perhaps inspiring interest in a new class of therapies targeting cell fate modulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Pathophysiology of chronic pancreatitis.

    PubMed

    Behrman, Stephen W; Fowler, Eric S

    2007-12-01

    Although the most common causes of chronic pancreatitis have not changed, it has become clear that a host of modifying biochemical, inflammatory, neural, and genetic deviations allows the disease to progress. Alterations in biochemical composition allow calcific stone formation, whereas various toxins, cytokines, and neuropeptides contribute to the progression of fibrosis and pain production. The basic cellular structure contributing to fibrosis of the pancreas has been elucidated and factors responsible for its activation delineated. Of most importance is the recent recognition of a set of genetic mutations that results in several aberrations of normal pancreatic physiology, which, in conjunction with other inciting insults or by themselves, allow the disease to begin and progress.

  10. Manipulation of immune system via immortal bone marrow stem cells.

    PubMed

    Ruedl, Christiane; Khameneh, Hanif Javanmard; Karjalainen, Klaus

    2008-09-01

    Extensive amplification of hematopoietic stem cells (HSCs) and their multipotent primitive progenitors (MPPs) in culture would greatly benefit not only clinical transplantation but also provide a potential tool to manipulate all cellular lineages derived from these cells for gene therapy and experimental purposes. Here, we demonstrate that mouse bone marrow cultures containing cells engineered to over-express NUP98-HOXB4 fusion protein support self-renewal of physiologically normal HSC and MPP for several weeks leading practically to their unlimited expansion. This allows time consuming and cumulative in vitro experimental manipulations without sacrificing their ability to differentiate in vivo or in vitro to any hematopoietic lineage.

  11. Endocannabinoid signalling and the deteriorating brain

    PubMed Central

    Di Marzo, Vincenzo; Stella, Nephi; Zimmer, Andreas

    2015-01-01

    Ageing is characterized by the progressive impairment of physiological functions and increased risk of developing debilitating disorders, including chronic inflammation and neurodegenerative diseases. These disorders have common molecular mechanisms that can be targeted therapeutically. In the wake of the approval of the first cannabinoid-based drug for the symptomatic treatment of multiple sclerosis, we examine how endocannabinoid (eCB) signalling controls — and is affected by — normal ageing and neuroinflammatory and neurodegenerative disorders. We propose a conceptual framework linking eCB signalling to the control of the cellular and molecular hallmarks of these processes, and categorize the key components of endocannabinoid signalling that may serve as targets for novel therapeutics. PMID:25524120

  12. Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model for Persistent Varicell-Zoster Virus Infection and Platform to Study Viral Infectivity and Oxidative Stress and Damage

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpesvirus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex threedimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6].

  13. CEREBROSPINAL FLUID STASIS AND ITS CLINICAL SIGNIFICANCE

    PubMed Central

    Whedon, James M.; Glassey, Donald

    2010-01-01

    We hypothesize that stasis of the cerebrospinal fluid (CSF) occurs commonly and is detrimental to health. Physiologic factors affecting the normal circulation of CSF include cardiovascular, respiratory, and vasomotor influences. The CSF maintains the electrolytic environment of the central nervous system (CNS), influences systemic acid-base balance, serves as a medium for the supply of nutrients to neuronal and glial cells, functions as a lymphatic system for the CNS by removing the waste products of cellular metabolism, and transports hormones, neurotransmitters, releasing factors, and other neuropeptides throughout the CNS. Physiologic impedance or cessation of CSF flow may occur commonly in the absence of degenerative changes or pathology and may compromise the normal physiologic functions of the CSF. CSF appears to be particularly prone to stasis within the spinal canal. CSF stasis may be associated with adverse mechanical cord tension, vertebral subluxation syndrome, reduced cranial rhythmic impulse, and restricted respiratory function. Increased sympathetic tone, facilitated spinal segments, dural tension, and decreased CSF flow have been described as closely related aspects of an overall pattern of structural and energetic dysfunction in the axial skeleton and CNS. Therapies directed at affecting CSF flow include osteopathic care (especially cranial manipulation), craniosacral therapy, chiropractic adjustment of the spine and cranium, Network Care (formerly Network Chiropractic), massage therapy (including lymphatic drainage techniques), yoga, therapeutic breathwork, and cerebrospinal fluid technique. Further investigation into the nature and causation of CSF stasis, its potential effects upon human health, and effective therapies for its correction is warranted. PMID:19472865

  14. Extracellular calcium controls the expression of two different forms of ripple-like hippocampal oscillations.

    PubMed

    Aivar, Paloma; Valero, Manuel; Bellistri, Elisa; Menendez de la Prida, Liset

    2014-02-19

    Hippocampal high-frequency oscillations (HFOs) are prominent in physiological and pathological conditions. During physiological ripples (100-200 Hz), few pyramidal cells fire together coordinated by rhythmic inhibitory potentials. In the epileptic hippocampus, fast ripples (>200 Hz) reflect population spikes (PSs) from clusters of bursting cells, but HFOs in the ripple and the fast ripple range are vastly intermixed. What is the meaning of this frequency range? What determines the expression of different HFOs? Here, we used different concentrations of Ca(2+) in a physiological range (1-3 mM) to record local field potentials and single cells in hippocampal slices from normal rats. Surprisingly, we found that this sole manipulation results in the emergence of two forms of HFOs reminiscent of ripples and fast ripples recorded in vivo from normal and epileptic rats, respectively. We scrutinized the cellular correlates and mechanisms underlying the emergence of these two forms of HFOs by combining multisite, single-cell and paired-cell recordings in slices prepared from a rat reporter line that facilitates identification of GABAergic cells. We found a major effect of extracellular Ca(2+) in modulating intrinsic excitability and disynaptic inhibition, two critical factors shaping network dynamics. Moreover, locally modulating the extracellular Ca(2+) concentration in an in vivo environment had a similar effect on disynaptic inhibition, pyramidal cell excitability, and ripple dynamics. Therefore, the HFO frequency band reflects a range of firing dynamics of hippocampal networks.

  15. Three-Dimensional Normal Human Neutral Progenitor Tissue-Like Assemblies: A Model for Persistent Varicella-Zoster Virus Infection and Platform to Study Oxidate Stress and Damage in Multiple Hit Scenarios

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpes virus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex three-dimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6]. By combining the RFs of microgravity, radiation, and viral infection we will demonstrate that living in the space environment leads to significant physiological consequences for the peripheral and subsequently the central nervous system (PNS, CNS) associated with OSaD generation and consequentially endangers long-duration and exploration-class missions.

  16. Histomorphometric analysis of nuclear and cellular volumetric alterations in oral lichen planus, lichenoid lesions and normal oral mucosa using image analysis software.

    PubMed

    Venkatesiah, Sowmya S; Kale, Alka D; Hallikeremath, Seema R; Kotrashetti, Vijayalakshmi S

    2013-01-01

    Lichen planus is a chronic inflammatory mucocutaneous disease that clinically and histologically resembles lichenoid lesions, although the latter has a different etiology. Though criteria have been suggested for differentiating oral lichen planus from lichenoid lesions, confusion still prevails. To study the cellular and nuclear volumetric features in the epithelium of normal mucosa, lichen planus, and lichenoid lesions to determine variations if any. A retrospective study was done on 25 histologically diagnosed cases each of oral lichen planus, oral lichenoid lesions, and normal oral mucosa. Cellular and nuclear morphometric measurements were assessed on hematoxylin and eosin sections using image analysis software. Analysis of variance test (ANOVA) and Tukey's post-hoc test. The basal cells of oral lichen planus showed a significant increase in the mean nuclear and cellular areas, and in nuclear volume; there was a significant decrease in the nuclear-cytoplasmic ratio as compared to normal mucosa. The suprabasal cells showed a significant increase in nuclear and cellular areas, nuclear diameter, and nuclear and cellular volumes as compared to normal mucosa. The basal cells of oral lichenoid lesions showed significant difference in the mean cellular area and the mean nuclear-cytoplasmic ratio as compared to normal mucosa, whereas the suprabasal cells differed significantly from normal mucosa in the mean nuclear area and the nuclear and cellular volumes. Morphometry can differentiate lesions of oral lichen planus and oral lichenoid lesions from normal oral mucosa. Thus, morphometry may serve to discriminate between normal and premalignant lichen planus and lichenoid lesions. These lesions might have a high risk for malignant transformation and may behave in a similar manner with respect to malignant transformation.

  17. Cellular Responses to Mechanical Stress Selected Contribution: A Three-Dimensional Model for Assessment of in Vitro Toxicity in Balaena Mysticetus Renal Tissue

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.

    2000-01-01

    This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.

  18. Physiological Role of Gap-Junctional Hemichannels

    PubMed Central

    Quist, Arjan Pieter; Rhee, Seung Keun; Lin, Hai; Lal, Ratneshwar

    2000-01-01

    Hemichannels in the overlapping regions of apposing cells plasma membranes join to form gap junctions and provide an intercellular communication pathway. Hemichannels are also present in the nonjunctional regions of individual cells and their activity is gated by several agents, including calcium. However, their physiological roles are unknown. Using techniques of atomic force microscopy (AFM), fluorescent dye uptake assay, and laser confocal immunofluorescence imaging, we have examined the extracellular calcium-dependent modulation of cell volume. In response to a change in the extracellular physiological calcium concentration (1.8 to ≤1.6 mM) in an otherwise isosmotic condition, real-time AFM imaging revealed a significant and reversible increase in the volume of cells expressing gap-junctional proteins (connexins). Volume change did not occur in cells that were not expressing connexins. However, after the transient or stable transfection of connexin43, volume change did occur. The volume increase was accompanied by cytochalasin D-sensitive higher cell stiffness, which helped maintain cell integrity. These cellular physical changes were prevented by gap-junctional blockers, oleamide and β-glycyrrhetinic acid, or were reversed by returning extracellular calcium to the normal level. We conclude that nongap-junctional hemichannels regulate cell volume in response to the change in extracellular physiological calcium in an otherwise isosmotic situation. PMID:10704454

  19. Production of cattle lacking prion protein

    PubMed Central

    Richt, Jürgen A; Kasinathan, Poothappillai; Hamir, Amir N; Castilla, Joaquin; Sathiyaseelan, Thillai; Vargas, Francisco; Sathiyaseelan, Janaki; Wu, Hua; Matsushita, Hiroaki; Koster, Julie; Kato, Shinichiro; Ishida, Isao; Soto, Claudio; Robl, James M; Kuroiwa, Yoshimi

    2010-01-01

    Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrPC, such as PrPBSE in bovine spongiform encephalopathy (BSE) in cattle and PrPCJD in Creutzfeldt-Jakob disease (CJD) in humans1. Disruption of PrPC expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities2–5. However, the impact of ablating PrPC function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrPC-deficient cattle produced by a sequential gene-targeting system6. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification7. PrPC-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins. PMID:17195841

  20. Disorders of erythrocyte hydration.

    PubMed

    Gallagher, Patrick G

    2017-12-21

    The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte. © 2017 by The American Society of Hematology.

  1. Enhancing Learning Objectives by Use of Simple Virtual Microscopic Slides in Cellular Physiology and Histology: Impact and Attitudes

    ERIC Educational Resources Information Center

    Anyanwu, Godson Emeka; Agu, Augustine Uchechukwu; Anyaehie, Ugochukwu Bond

    2012-01-01

    The impact and perception of students on the use of a simple, low technology-driven version of a virtual microscope in teaching and assessments in cellular physiology and histology were studied. Its impact on the time and resources of the faculty were also assessed. Simple virtual slides and conventional microscopes were used to conduct the same…

  2. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells.

    PubMed

    Das, Debanjan; Shiladitya, Kumar; Biswas, Karabi; Dutta, Pranab Kumar; Parekh, Aditya; Mandal, Mahitosh; Das, Soumen

    2015-12-01

    The paper presents a study to differentiate normal and cancerous cells using label-free bioimpedance signal measured by electric cell-substrate impedance sensing. The real-time-measured bioimpedance data of human breast cancer cells and human epithelial normal cells employs fluctuations of impedance value due to cellular micromotions resulting from dynamic structural rearrangement of membrane protrusions under nonagitated condition. Here, a wavelet-based multiscale quantitative analysis technique has been applied to analyze the fluctuations in bioimpedance. The study demonstrates a method to classify cancerous and normal cells from the signature of their impedance fluctuations. The fluctuations associated with cellular micromotion are quantified in terms of cellular energy, cellular power dissipation, and cellular moments. The cellular energy and power dissipation are found higher for cancerous cells associated with higher micromotions in cancer cells. The initial study suggests that proposed wavelet-based quantitative technique promises to be an effective method to analyze real-time bioimpedance signal for distinguishing cancer and normal cells.

  3. Focus on the emerging new fields of network physiology and network medicine

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch; Liu, Kang K. L.; Bartsch, Ronny P.

    2016-10-01

    Despite the vast progress and achievements in systems biology and integrative physiology in the last decades, there is still a significant gap in understanding the mechanisms through which (i) genomic, proteomic and metabolic factors and signaling pathways impact vertical processes across cells, tissues and organs leading to the expression of different disease phenotypes and influence the functional and clinical associations between diseases, and (ii) how diverse physiological systems and organs coordinate their functions over a broad range of space and time scales and horizontally integrate to generate distinct physiologic states at the organism level. Two emerging fields, network medicine and network physiology, aim to address these fundamental questions. Novel concepts and approaches derived from recent advances in network theory, coupled dynamical systems, statistical and computational physics show promise to provide new insights into the complexity of physiological structure and function in health and disease, bridging the genetic and sub-cellular level with inter-cellular interactions and communications among integrated organ systems and sub-systems. These advances form first building blocks in the methodological formalism and theoretical framework necessary to address fundamental problems and challenges in physiology and medicine. This ‘focus on’ issue contains 26 articles representing state-of-the-art contributions covering diverse systems from the sub-cellular to the organism level where physicists have key role in laying the foundations of these new fields.

  4. Perturbational Profiling of Metabolites in Patient Fibroblasts Implicates α-Aminoadipate as a Potential Biomarker for Bipolar Disorder

    PubMed Central

    Huang, Joanne H.; Berkovitch, Shaunna S.; Iaconelli, Jonathan; Watmuff, Bradley; Park, Hyoungjun; Chattopadhyay, Shrikanta; McPhie, Donna; Öngür, Dost; Cohen, Bruce M.; Clish, Clary B.; Karmacharya, Rakesh

    2016-01-01

    Many studies suggest the presence of aberrations in cellular metabolism in bipolar disorder. We studied the metabolome in bipolar disorder to gain insight into cellular pathways that may be dysregulated in bipolar disorder and to discover evidence of novel biomarkers. We measured polar and nonpolar metabolites in fibroblasts from subjects with bipolar I disorder and matched healthy control subjects, under normal conditions and with two physiologic perturbations: low-glucose media and exposure to the stress-mediating hormone dexamethasone. Metabolites that were significantly different between bipolar and control subjects showed distinct separation by principal components analysis methods. The most statistically significant findings were observed in the perturbation experiments. The metabolite with the lowest p value in both the low-glucose and dexamethasone experiments was α-aminoadipate, whose intracellular level was consistently lower in bipolar subjects. Our study implicates α-aminoadipate as a possible biomarker in bipolar disorder that manifests under cellular stress. This is an intriguing finding given the known role of α-aminoadipate in the modulation of kynurenic acid in the brain, especially as abnormal kynurenic acid levels have been implicated in bipolar disorder. PMID:27606323

  5. Phosphate toxicity: new insights into an old problem

    PubMed Central

    RAZZAQUE, M. Shawkat

    2011-01-01

    Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23–klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review. PMID:20958267

  6. Phosphate toxicity: new insights into an old problem.

    PubMed

    Razzaque, M Shawkat

    2011-02-01

    Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.

  7. Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus.

    PubMed

    Smith, Peter L; Myers, Jay T; Rogers, Clare E; Zhou, Lan; Petryniak, Bronia; Becker, Daniel J; Homeister, Jonathon W; Lowe, John B

    2002-08-19

    Glycoprotein fucosylation enables fringe-dependent modulation of signal transduction by Notch transmembrane receptors, contributes to selectin-dependent leukocyte trafficking, and is faulty in leukocyte adhesion deficiency (LAD) type II, also known as congenital disorder of glycosylation (CDG)-IIc, a rare human disorder characterized by psychomotor defects, developmental abnormalities, and leukocyte adhesion defects. We report here that mice with an induced null mutation in the FX locus, which encodes an enzyme in the de novo pathway for GDP-fucose synthesis, exhibit a virtually complete deficiency of cellular fucosylation, and variable frequency of intrauterine demise determined by parental FX genotype. Live-born FX(-/-) mice exhibit postnatal failure to thrive that is suppressed with a fucose-supplemented diet. FX(-/-) adults suffer from an extreme neutrophilia, myeloproliferation, and absence of leukocyte selectin ligand expression reminiscent of LAD-II/CDG-IIc. Contingent restoration of leukocyte and endothelial selectin ligand expression, general cellular fucosylation, and normal postnatal physiology is achieved by modulating dietary fucose to supply a salvage pathway for GDP-fucose synthesis. Conditional control of fucosylation in FX(-/-) mice identifies cellular fucosylation events as essential concomitants to fertility, early growth and development, and leukocyte adhesion.

  8. Estrogen biology: new insights into GPER function and clinical opportunities.

    PubMed

    Prossnitz, Eric R; Barton, Matthias

    2014-05-25

    Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen's rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and the activity of clinically used drugs, such as SERMs and SERDs, in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium

    PubMed Central

    Niu, Lijuan; Liao, Weibiao

    2016-01-01

    Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca2+) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca2+ in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca2+ signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca2+ signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO, and Ca2+ signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses. PMID:26973673

  10. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression.

    PubMed

    Jeong, Ho-Chang; Gil, Na-Yeon; Lee, Ho-Soo; Cho, Seung-Ju; Kim, Kyungtae; Chun, Kwang-Hoon; Cho, Hyeseong; Cha, Hyuk-Jin

    2015-08-01

    Wip1 belongs to the protein phosphatase C (PP2C) family, of which expression is up-regulated by a number of external stresses, and serves as a stress modulator in normal physiological conditions. When overexpressed, premature dephosphorylation of stress-mediators by Wip1 results in abrogation of tumor surveillance, thus Wip1 acts as an oncogene. Previously, the functional regulation of Wip1 in cell-cycle progression by counteracting cellular G1 and G2/M checkpoint activity in response to DNA damage was reported. However, other than in stress conditions, the function and regulatory mechanism of Wip1 has not been fully determined. Herein, we demonstrated that protein regulation of Wip1 occurs in a cell cycle-dependent manner, which is directly governed by APC/C(Cdh1) at the end of mitosis. In particular, we also showed evidence that Wip1 phosphatase activity is closely associated with its own protein stability, suggesting that reduced phosphatase activity of Wip1 during mitosis could trigger its degradation. Furthermore, to verify the physiological role of its phosphatase activity during mitosis, we established doxycycline-inducible cell models, including a Wip1 wild type (WT) and phosphatase dead mutant (Wip1 DA). When ectopically expressing Wip1 WT, we observed a delay in the transition from metaphase to anaphase. In conclusion, these studies show that mitotic degradation of Wip1 by APC/C(Cdh1) is important for normal mitotic progression. © 2015 Wiley Periodicals, Inc.

  11. Monitoring ATP dynamics in electrically active white matter tracts

    PubMed Central

    Trevisiol, Andrea; Saab, Aiman S; Winkler, Ulrike; Marx, Grit; Imamura, Hiromi; Möbius, Wiebke; Kusch, Kathrin; Nave, Klaus-Armin; Hirrlinger, Johannes

    2017-01-01

    In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders. DOI: http://dx.doi.org/10.7554/eLife.24241.001 PMID:28414271

  12. DUSP11 – An RNA phosphatase that regulates host and viral non-coding RNAs in mammalian cells

    PubMed Central

    Burke, James M.; Sullivan, Christopher S.

    2017-01-01

    ABSTRACT Dual-specificity phosphatase 11 (DUSP11) is a conserved protein tyrosine phosphatase (PTP) in metazoans. The cellular substrates and physiologic activities of DUSP11 remain largely unknown. In nematodes, DUSP11 is required for normal development and RNA interference against endogenous RNAs (endo-RNAi) via molecular mechanisms that are not well understood. However, mammals lack analogous endo-RNAi pathways and consequently, a role for DUSP11 in mammalian RNA silencing was unanticipated. Recent work from our laboratory demonstrated that DUSP11 activity alters the silencing potential of noncanonical viral miRNAs in mammalian cells. Our studies further uncovered direct cellular substrates of DUSP11 and suggest that DUSP11 is part of regulatory pathway that controls the abundance of select triphosphorylated noncoding RNAs. Here, we highlight recent findings and present new data that advance understanding of mammalian DUSP11 during gene silencing and discuss the emerging biological activities of DUSP11 in mammalian cells. PMID:28296624

  13. Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis

    PubMed Central

    Foster, Jamie S.; Khodadad, Christina L. M.; Ahrendt, Steven R.; Parrish, Mirina L.

    2013-01-01

    The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome. PMID:23439280

  14. Cellular Immunosenescence in Adult Male Crickets, Gryllus assimilis

    USDA-ARS?s Scientific Manuscript database

    Ecological immunity studies in invertebrates, particularly insects, have generated new insights into trade-offs between immune functions and other physiological parameters. These studies document physiologically-directed reallocations of immune costs to other high-cost areas of physiology. Immunos...

  15. Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures – linking genome-wide transcriptional changes to cellular physiology

    PubMed Central

    Pócsi, István; Miskei, Márton; Karányi, Zsolt; Emri, Tamás; Ayoubi, Patricia; Pusztahelyi, Tünde; Balla, György; Prade, Rolf A

    2005-01-01

    Background In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O22-), superoxide (O2•-) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. Results Genome-wide transcriptional changes triggered by diamide, H2O2 and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H2O2 were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O22-, O2•- concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H2O2 and menadione treatments and gene groups influenced by GSH/GSSG, O22- and O2•- were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development and sporulation was ROS responsive. Conclusion The existence of separate O22-, O2•- and GSH/GSSG responsive gene groups in a eukaryotic genome has been demonstrated. Oxidant-triggered, genome-wide transcriptional changes should be analyzed considering changes in oxidative stress-responsive physiological conditions and not correlating them directly to the chemistry and concentrations of the oxidative stress-inducing agent. PMID:16368011

  16. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells.

    PubMed

    Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia

    2015-01-01

    Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.

  17. Animal models to study microRNA function

    PubMed Central

    Pal, Arpita S.; Kasinski, Andrea L.

    2018-01-01

    The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research towards identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely towards uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster and D. rerio do not develop cancers, but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating pre-clinical efficacy of microRNA-based cancer therapeutics. PMID:28882225

  18. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  19. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility

    PubMed Central

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F.; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L.; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B.; Murray, Brion W.

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; K i<0.5 nM; cellular IC50 2–6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment. Collectively, this study raises a concern that single agent therapies inhibiting Mps1 will not be well-tolerated clinically but may be when combined with a selective CDK4/6 drug. PMID:26398286

  20. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility.

    PubMed

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B; Murray, Brion W

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; Ki<0.5 nM; cellular IC50 2-6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment. Collectively, this study raises a concern that single agent therapies inhibiting Mps1 will not be well-tolerated clinically but may be when combined with a selective CDK4/6 drug.

  1. Physiological neuronal decline in healthy aging human brain - An in vivo study with MRI and short echo-time whole-brain (1)H MR spectroscopic imaging.

    PubMed

    Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich

    2016-08-15

    Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective

    PubMed Central

    Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein

    2018-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells. PMID:29670635

  3. A novel mitochondria-targeted two-photon fluorescent probe for dynamic and reversible detection of the redox cycles between peroxynitrite and glutathione.

    PubMed

    Sun, Chunlong; Du, Wen; Wang, Peng; Wu, Yang; Wang, Baoqin; Wang, Jun; Xie, Wenjun

    2017-12-16

    Redox homeostasis is important for maintenance of normal physiological functions within cells. Redox state of cells is primarily a consequence of precise balance between levels of reducing equivalents and reactive oxygen species. Redox homeostasis between peroxynitrite (ONOO - ) and glutathione (GSH) is closely associated with physiological and pathological processes, such as prolonged relaxation in vascular tissues and smooth muscle preparations, attenuation of hepatic necrosis, and activation of matrix metalloproteinase-2. We report a two-photon fluorescent probe (TP-Se) based on water-soluble carbazole-based compound, which integrates with organic selenium, to monitor changes in ONOO - /GSH levels in cells. This probe can reversibly respond to ONOO - and GSH and exhibits high selectivity, sensitivity, and mitochondrial targeting. The probe was successfully applied to visualize changes in redox cycles during ONOO - outbreak and antioxidant GSH repair in cells. The probe will lead to significant development on redox events involved in cellular redox regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of Exopolysaccharide Production on Liquid Vegetative Growth, Stress Survival and Stationary Phase Recovery in Myxococcus xanthus

    PubMed Central

    Hu, Wei; Wang, Jing; McHardy, Ian; Lux, Renate; Yang, Zhe; Li, Yuezhong; Shi, Wenyuan

    2013-01-01

    Exopolysaccharide (EPS) of Myxococcus xanthus is a well-regulated cell surface component. In addition to its known functions for social motility and fruiting body formation on solid surfaces, EPS has also been proposed to play a role in multi-cellular clumping in liquid medium, though this phenomenon has not been well studied. In this report, we confirmed that M. xanthus clumps formed in liquid were correlated with EPS levels and demonstrated that the EPS encased cell clumps exhibited biofilm-like structures. The clumps protected the cells at physiologically relevant EPS concentrations, while cells lacking EPS exhibited significant reduction in long-term viability and resistance to stressful conditions. However, excess EPS production was counterproductive to vegetative growth and viable cell recovery declined in extended late stationary phase as cells became trapped in the matrix of clumps. Therefore, optimal EPS production by M. xanthus is important for normal physiological functions in liquid. PMID:22538652

  5. Selected contribution: a three-dimensional model for assessment of in vitro toxicity in balaena mysticetus renal tissue

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.

    2000-01-01

    This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.

  6. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection.

    PubMed

    Harris, Nicola L; Loke, P'ng

    2017-12-19

    Type-2-cell-mediated immune responses play a critical role in mediating both host-resistance and disease-tolerance mechanisms during helminth infections. Recently, type 2 cell responses have emerged as major regulators of tissue repair and metabolic homeostasis even under steady-state conditions. In this review, we consider how studies of helminth infection have contributed toward our expanding cellular and molecular understanding of type-2-cell-mediated immunity, as well as new areas such as the microbiome. By studying how these successful parasites form chronic infections without overt pathology, we are gaining additional insights into allergic and inflammatory diseases, as well as normal physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The Genetics and Epigenetics of Kidney Development

    PubMed Central

    Patel, Sanjeevkumar R.; Dressler, Gregory R.

    2013-01-01

    The development of the mammalian kidney has been studied at the genetic, biochemical, and cell biological level for more than 40 years. As such, detailed mechanisms governing early patterning, cell lineages, and inductive interactions are well described. How genes interact to specify the renal epithelial cells of the nephrons and how this specification is relevant to maintaining normal renal function is discussed. Implicit in the development of the kidney are epigenetic mechanisms that mark renal cell types and connect certain developmental regulatory factors to chromatin modifications that control gene expression patterns and cellular physiology. In adults, such regulatory factors and their epigenetic pathways may function in regeneration and may be disturbed in disease processes. PMID:24011574

  8. Motion compensation using a suctioning stabilizer for intravital microscopy

    PubMed Central

    Vinegoni, Claudio; Lee, Sungon; Gorbatov, Rostic; Weissleder, Ralph

    2013-01-01

    Motion artifacts continue to present a major challenge to single cell imaging in cardiothoracic organs such as the beating heart, blood vessels, or lung. In this study, we present a new water-immersion suctioning stabilizer that enables minimally invasive intravital fluorescence microscopy using water-based stick objectives. The stabilizer works by reducing major motion excursions and can be used in conjunction with both prospective or retrospective gating approaches. We show that the new approach offers cellular resolution in the beating murine heart without perturbing normal physiology. In addition, because this technique allows multiple areas to be easily probed, it offers the opportunity for wide area coverage at high resolution. PMID:24086796

  9. Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications

    PubMed Central

    Tan, Xiaojun; Lambert, Paul F.; Rapraeger, Alan C.; Anderson, Richard A.

    2016-01-01

    Epidermal growth factor receptor (EGFR) has fundamental roles in normal physiology and in cancer, making it a rational target for cancer therapy. Surprisingly, however, inhibitors that target canonical, ligand-stimulated EGFR signaling have proven to be largely ineffective in treating many EGFR-dependent cancers. Recent evidence indicates that both intrinsic and therapy-induced cellular stress triggers robust, non-canonical pathways of ligand-independent EGFR trafficking and signaling, which provides cancer cells with a survival advantage and resistance to therapeutics. Here we review the mechanistic regulation of non-canonical EGFR trafficking and signaling, the pathological and therapeutic stresses that activate it, and discuss the implications of this pathway in clinical treatment of EGFR-overexpressing cancers. PMID:26827089

  10. Autophagy in the eye: implications for ocular cell health.

    PubMed

    Frost, Laura S; Mitchell, Claire H; Boesze-Battaglia, Kathleen

    2014-07-01

    Autophagy, a catabolic process by which a cell "eats" itself, turning over its own cellular constituents, plays a key role in cellular homeostasis. In an effort to maintain normal cellular function, autophagy is often up-regulated in response to environmental stresses and excessive organelle damage to facilitate aggregated protein removal. In the eye, virtually all cell types from those comprising the cornea in the front of the eye to the retinal pigment epithelium (RPE) providing a protective barrier for the retina at the back of the eye, rely on one or more aspects of autophagy to maintain structure and/or normal physiological function. In the lens autophagy plays a critical role in lens fiber cell maturation and the formation of the organelle free zone. Numerous studies delineating the role of Atg5, Vsp34 as well as FYCO1 in maintenance of lens transparency are discussed. Corneal endothelial dystrophies are also characterized as having elevated levels of autophagic proteins. Therefore, novel modulators of autophagy such as lithium and melatonin are proposed as new therapeutic strategies for this group of dystrophies. In addition, we summarize how corneal Herpes Simplex Virus (HSV-1) infection subverts the cornea's response to infection by inhibiting the normal autophagic response. Using glaucoma models we analyze the relative contribution of autophagy to cell death and cell survival. The cytoprotective role of autophagy is further discussed in an analysis of photoreceptor cell heath and function. We focus our analysis on the current understanding of autophagy in photoreceptor and RPE health, specifically on the diverse role of autophagy in rods and cones as well as its protective role in light induced degeneration. Lastly, in the RPE we highlight hybrid phagocytosis-autophagy pathways. This comprehensive review allows us to speculate on how alterations in various stages of autophagy contribute to glaucoma and retinal degenerations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Integrating Cellular Metabolism into a Multiscale Whole-Body Model

    PubMed Central

    Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars

    2012-01-01

    Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351

  12. Mouse Models for Investigating the Developmental Bases of Human Birth Defects

    PubMed Central

    MOON, ANNE M.

    2006-01-01

    Clinicians and basic scientists share an interest in discovering how genetic or environmental factors interact to perturb normal development and cause birth defects and human disease. Given the complexity of such interactions, it is not surprising that 4% of human infants are born with a congenital malformation, and cardiovascular defects occur in nearly 1%. Our research is based on the fundamental hypothesis that an understanding of normal and abnormal development will permit us to generate effective strategies for both prevention and treatment of human birth defects. Animal models are invaluable in these efforts because they allow one to interrogate the genetic, molecular and cellular events that distinguish normal from abnormal development. Several features of the mouse make it a particularly powerful experimental model: it is a mammalian system with similar embryology, anatomy and physiology to humans; genes, proteins and regulatory programs are largely conserved between human and mouse; and finally, gene targeting in murine embryonic stem cells has made the mouse genome amenable to sophisticated genetic manipulation currently unavailable in any other model organism. PMID:16641221

  13. Diggin’ on U(biquitin): A Novel Method for the Identification of Physiological E3 Ubiquitin Ligase Substrates

    PubMed Central

    Rubel, Carrie E.; Schisler, Jonathan C.; Hamlett, Eric D.; DeKroon, Robert M.; Gautel, Mathias; Alzate, Oscar; Patterson, Cam

    2013-01-01

    The ubiquitin-proteasome system (UPS) plays a central role in maintaining protein homeostasis, emphasized by a myriad of diseases that are associated with altered UPS function such as cancer, muscle-wasting, and neurodegeneration. Protein ubiquitination plays a central role in both the promotion of proteasomal degradation as well as cellular signaling through regulation of the stability of transcription factors and other signaling molecules. Substrate specificity is a critical regulatory step of ubiquitination and is mediated by ubiquitin ligases. Recent studies implicate ubiquitin ligases in multiple models of cardiac diseases such as cardiac hypertrophy, atrophy, and ischemia/reperfusion injury, both in a cardioprotective and maladaptive role. Therefore, identifying physiological substrates of cardiac ubiquitin ligases provides both mechanistic insights into heart disease as well as possible therapeutic targets. Current methods identifying substrates for ubiquitin ligases rely heavily upon non-physiologic in vitro methods, impeding the unbiased discovery of physiological substrates in relevant model systems. Here we describe a novel method for identifying ubiquitin ligase substrates utilizing Tandem Ubiquitin Binding Entities (TUBE) technology, two-dimensional differential in gel electrophoresis (2-D DIGE), and mass spectrometry, validated by the identification of both known and novel physiological substrates of the ubiquitin ligase MuRF1 in primary cardiomyocytes. This method can be applied to any ubiquitin ligase, both in normal and disease model systems, in order to identify relevant physiological substrates under various biological conditions, opening the door to a clearer mechanistic understanding of ubiquitin ligase function and broadening their potential as therapeutic targets. PMID:23695782

  14. Protein accounting in the cellular economy.

    PubMed

    Vázquez-Laslop, Nora; Mankin, Alexander S

    2014-04-24

    Knowing the copy number of cellular proteins is critical for understanding cell physiology. By being able to measure the absolute synthesis rates of the majority of cellular proteins, Li et al. gain insights into key aspects of translation regulation and fundamental principles of cellular strategies to adjust protein synthesis according to the functional needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Dynamic analysis of Lactobacillus delbrueckii subsp. bulgaricus CFL1 physiological characteristics during fermentation.

    PubMed

    Rault, Aline; Bouix, Marielle; Béal, Catherine

    2008-12-01

    This study aimed at examining and comparing the relevance of various methods in order to discriminate different cellular states of Lactobacillus bulgaricus CFL1 and to improve knowledge on the dynamics of the cellular physiological state during growth and acidification. By using four fluorescent probes combined with multiparametric flow cytometry, membrane integrity, intracellular esterase activity, cellular vitality, membrane depolarization, and intracellular pH were quantified throughout fermentations. Results were compared and correlated with measurements of cultivability, acidification activity (Cinac system), and cellular ability to recover growth in fresh medium (Bioscreen system). The Cinac system and flow cytometry were relevant to distinguish different physiological states throughout growth. Lb. bulgaricus cells maintained their high viability, energetic state, membrane potential, and pH gradient in the late stationary phase, despite the gradual decrease of both cultivability and acidification activity. Viability and membrane integrity were maintained during acidification, at the expense of their cultivability and acidification activity. Finally, this study demonstrated that the physiological state during fermentation was strongly affected by intracellular pH and the pH gradient. The critical pHi of Lb. bulgaricus CFL1 was found to be equal to pH 5.8. Through linear relationships between dpH and cultivability and pHi and acidification activity, pHi and dpH well described the time course of metabolic activity, cultivability, and viability in a single analysis.

  16. A scientific role for Space Station Freedom: Research at the cellular level

    NASA Technical Reports Server (NTRS)

    Johnson, Terry C.; Brady, John N.

    1993-01-01

    The scientific importance of Space Station Freedom is discussed in light of the valuable information that can be gained in cellular and developmental biology with regard to the microgravity environment on the cellular cytoskeleton, cellular responses to extracellular signal molecules, morphology, events associated with cell division, and cellular physiology. Examples of studies in basic cell biology, as well as their potential importance to concerns for future enabling strategies, are presented.

  17. Thermal Stress

    DTIC Science & Technology

    2011-01-01

    can have a significant impact on normal physiological functioning if precipitous increases in core temperature are not adequately controlled with...anterior hypothalamusIntroduction Thermal stress can have a significant impact on normal physiological functioning if precipitous increases in core...fat and skin). The regulation of a relatively constant internal temperature is critical for normal physiological functioning of tissues and cells, as

  18. Influences of thermal acclimation and acute temperature change on the motility of epithelial wound-healing cells (keratocytes) of tropical, temperate and Antarctic fish.

    PubMed

    Ream, Rachael A; Theriot, Julie A; Somero, George N

    2003-12-01

    The ability to heal superficial wounds is an important element in an organism's repertoire of adaptive responses to environmental stress. In fish, motile cells termed keratocytes are thought to play important roles in the wound-healing process. Keratocyte motility, like other physiological rate processes, is likely to be dependent on temperature and to show adaptive variation among differently thermally adapted species. We have quantified the effects of acute temperature change and thermal acclimation on actin-based keratocyte movement in primary cultures of keratocytes from four species of teleost fish adapted to widely different thermal conditions: two eurythermal species, the longjaw mudsucker Gillichthys mirabilis (environmental temperature range of approximately 10-37 degrees C) and a desert pupfish, Cyprinodon salinus (10-40 degrees C), and two species from stable thermal environments, an Antarctic notothenioid, Trematomus bernacchii (-1.86 degrees C), and a tropical clownfish, Amphiprion percula (26-30 degrees C). For all species, keratocyte speed increased with increasing temperature. G. mirabilis and C. salinus keratocytes reached maximal speeds at 25 degrees C and 35 degrees C, respectively, temperatures within the species' normal thermal ranges. Keratocytes of the stenothermal species continued to increase in speed as temperature increased above the species' normal temperature ranges. The thermal limits of keratocyte motility appear to exceed those of whole-organism thermal tolerance, notably in the case of T. bernacchii. Keratocytes of T. bernacchii survived supercooling to -6 degrees C and retained motility at temperatures as high as 20 degrees C. Mean keratocyte speed was conserved at physiological temperatures for the three temperate and tropical species, which suggests that a certain rate of motility is advantageous for wound healing. However, there was no temperature compensation in speed of movement for keratocytes of the Antarctic fish, which have extremely slow rates of movement at physiological temperatures. Keratocytes from all species moved in a persistent, unidirectional manner at low temperatures but at higher temperatures began to take more circular or less-persistent paths. Thermal acclimation affected the persistence and turning magnitude of keratocytes, with warmer acclimations generally yielding more persistent cells that followed straighter paths. However, acclimation did not alter the effect of experimental temperature on cellular speed. These findings suggest that more than one temperature-sensitive mechanism may govern cell motility: the rate-limiting process(es) responsible for speed is distinct from the mechanism(s) underlying directionality and persistence. Keratocytes represent a useful study system for evaluating the effects of temperature at the cellular level and for studying adaptive variation in actin-based cellular movement and capacity for wound healing.

  19. Ribosome Synthesis and MAPK Activity Modulate Ionizing Radiation-Induced Germ Cell Apoptosis in Caenorhabditis elegans

    PubMed Central

    Eberhard, Ralf; Stergiou, Lilli; Hofmann, E. Randal; Hofmann, Jen; Haenni, Simon; Teo, Youjin; Furger, André; Hengartner, Michael O.

    2013-01-01

    Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment. PMID:24278030

  20. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics

    PubMed Central

    Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B.; Janmey, Paul A.; Wells, Rebecca G.

    2016-01-01

    Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954

  1. Physiological Ranges of Matrix Rigidity Modulate Primary Mouse Hepatocyte Function In Part Through Hepatocyte Nuclear Factor 4 Alpha

    PubMed Central

    Desai, Seema S.; Tung, Jason C.; Zhou, Vivian X.; Grenert, James P.; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M.; Chang, Tammy T.

    2016-01-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of hepatic-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150Pa and increased to 1–6kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α) whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase (FAK). In addition, blockade of the Rho/Rho-associated protein kinase (ROCK) pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Conclusion Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/ROCK pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. PMID:26755329

  2. An optimized two-photon method for in vivo lung imaging reveals intimate cell collaborations during infection

    NASA Astrophysics Data System (ADS)

    Fiole, Daniel; Deman, Pierre; Trescos, Yannick; Douady, Julien; Tournier, Jean-Nicolas

    2013-02-01

    Lung tissue motion arising from breathing and heart beating has been described as the largest annoyance of in vivo imaging. Consequently, infected lung tissue has never been imaged in vivo thus far, and little is known concerning the kinetics of the mucosal immune system at the cellular level. We have developed an optimized post-processing strategy to overcome tissue motion, based upon two-photon and second harmonic generation (SHG) microscopy. In contrast to previously published data, we have freed the lung parenchyma from any strain and depression in order to maintain the lungs under optimal physiological parameters. Excitation beams swept the sample throughout normal breathing and heart movements, allowing the collection of many images. Given that tissue motion is unpredictably, it was essential to sort images of interest. This step was enhanced by using SHG signal from collagen as a reference for sampling and realignment phases. A normalized cross-correlation criterion was used between a manually chosen reference image and rigid transformations of all others. Using CX3CR1+/gfp mice this process allowed the collection of high resolution images of pulmonary dendritic cells (DCs) interacting with Bacillus anthracis spores, a Gram-positive bacteria responsible for anthrax disease. We imaged lung tissue for up to one hour, without interrupting normal lung physiology. Interestingly, our data revealed unexpected interactions between DCs and macrophages, two specialized phagocytes. These contacts may participate in a better coordinate immune response. Our results not only demonstrate the phagocytizing task of lung DCs but also infer a cooperative role of alveolar macrophages and DCs.

  3. Role of microtubules in the contractile dysfunction of hypertrophied myocardium

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Koide, M.; Sato, H.; Ishiguro, Y.; Conrad, C. H.; Buckley, J. M.; Morgan, J. P.; Cooper, G. 4th

    1999-01-01

    OBJECTIVES: We sought to determine whether the ameliorative effects of microtubule depolymerization on cellular contractile dysfunction in pressure overload cardiac hypertrophy apply at the tissue level. BACKGROUND: A selective and persistent increase in microtubule density causes decreased contractile function of cardiocytes from cats with hypertrophy produced by chronic right ventricular (RV) pressure overloading. Microtubule depolymerization by colchicine normalizes contractility in these isolated cardiocytes. However, whether these changes in cellular function might contribute to changes in function at the more highly integrated and complex cardiac tissue level was unknown. METHODS: Accordingly, RV papillary muscles were isolated from 25 cats with RV pressure overload hypertrophy induced by pulmonary artery banding (PAB) for 4 weeks and 25 control cats. Contractile state was measured using physiologically sequenced contractions before and 90 min after treatment with 10(-5) mol/liter colchicine. RESULTS: The PAB significantly increased RV systolic pressure and the RV weight/body weight ratio in PAB; it significantly decreased developed tension from 59+/-3 mN/mm2 in control to 25+/-4 mN/mm2 in PAB, shortening extent from 0.21+/-0.01 muscle lengths (ML) in control to 0.12+/-0.01 ML in PAB, and shortening rate from 1.12+/-0.07 ML/s in control to 0.55+/-0.03 ML/s in PAB. Indirect immunofluorescence confocal microscopy showed that PAB muscles had a selective increase in microtubule density and that colchicine caused complete microtubule depolymerization in both control and PAB papillary muscles. Microtubule depolymerization normalized myocardial contractility in papillary muscles of PAB cats but did not alter contractility in control muscles. CONCLUSIONS: Excess microtubule density, therefore, is equally important to both cellular and to myocardial contractile dysfunction caused by chronic, severe pressure-overload cardiac hypertrophy.

  4. Surfactant-assisted dispersion of carbon nanotubes: mechanism of stabilization and biocompatibility of the surfactant

    NASA Astrophysics Data System (ADS)

    Singh, Raman Preet; Jain, Sanyog; Ramarao, Poduri

    2013-10-01

    Nanoparticles (NPs) are thermodynamically unstable system and tend to aggregate to reduce free energy. The aggregation property of NPs results in inhomogeneous exposure of cells to NPs resulting in variable cellular responses. Several types of surfactants are used to stabilize NP dispersions and obtain homogenous dispersions. However, the effects of these surfactants, per se, on cellular responses are not completely known. The present study investigated the application of Pluronic F68 (PF68) for obtaining stable dispersion of NPs using carbon nanotubes as model NPs. PF68-stabilized NP suspensions are stable for long durations and do not show signs of aggregation or settling during storage or after autoclaving. The polyethylene oxide blocks in PF68 provide steric hindrance between adjacent NPs leading to stable NP dispersions. Further, PF68 is biocompatible in nature and does not affect integrity of mitochondria, lysosomes, DNA, and nuclei. Also, PF68 neither induce free radical or cytokine production nor does it interfere with cellular uptake mechanisms. The results of the present study suggest that PF68-assisted dispersion of NPs produced suspensions, which are stable after autoclaving. Further, PF68 does not interfere with normal physiological functions suggesting its application in nanomedicine and nanotoxicity evaluation.

  5. Cellular and Animal Studies: Insights into Pathophysiology and Therapy of PCOS.

    PubMed

    Indran, Inthrani Raja; Lee, Bao Hui; Yong, Eu-Leong

    2016-11-01

    Basic science studies have advanced our understanding of the role of key enzymes in the steroidogenesis pathway and those that affect the pathophysiology of PCOS. Studies with ovarian theca cells taken from women with PCOS have demonstrated increased androgen production due to increased CYP17A1 and HSD3B2 enzyme activities. Furthermore, overexpression of DENND1A variant 2 in normal theca cells resulted in a PCOS phenotype with increased androgen production. Notably, cellular steroidogenesis models have facilitated the understanding of the mechanistic effects of pharmacotherapies, including insulin sensitizers (e.g., pioglitazone and metformin) used for the treatment of insulin resistance in PCOS, on androgen production. In addition, animal models of PCOS have provided a critical platform to study the effects of therapeutic agents in a manner closer to the physiological state. Indeed, recent breakthroughs have demonstrated that natural derivatives such as the dietary medium-chain fatty acid decanoic acid (DA) can restore estrous cyclicity and lower androgen levels in an animal model of PCOS, thus laying the platform for novel therapeutic developments in PCOS. This chapter reviews the current understanding on the pathways modulating androgen biosynthesis, and the cellular and animal models that form the basis for preclinical research in PCOS, and sets the stage for clinical research. Copyright © 2016. Published by Elsevier Ltd.

  6. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    PubMed

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  7. IGFBP-4 and PAPP-A in normal physiology and disease.

    PubMed

    Hjortebjerg, Rikke

    2018-05-30

    Insulin-like growth factor (IGF) binding protein-4 (IGFBP-4) is a modulator of the IGF system, exerting both inhibitory and stimulatory effects on IGF-induced cellular growth. IGFBP-4 is the principal substrate for the enzyme pregnancy-associated plasma protein-A (PAPP-A). Through IGF-dependent cleavage of IGFBP-4 in the vicinity of the IGF receptor, PAPP-A is able to increase IGF bioavailability and stimulate IGF-mediated growth. Recently, the stanniocalcins (STCs) were identified as novel inhibitors of PAPP-A proteolytic activity, hereby adding additional members to the seemingly endless list of proteins belonging to the IGF family. Our understanding of these proteins has advanced throughout recent years, and there is evidence to suggest that the role of IGFBP-4 and PAPP-A in defining the relationship between total IGF and IGF bioactivity can be linked to a number of pathological conditions. This review provides an overview of the experimental and clinical findings on the IGFBP-4/PAPP-A/STC axis as a regulator of IGF activity and examines the conundrum surrounding extrapolation of circulating concentrations to tissue action of these proteins. The primary focus will be on the biological significance of IGFBP-4 and PAPP-A in normal physiology and in pathophysiology with emphasis on metabolic disorders, cardiovascular diseases, and cancer. Finally, the review assesses current new trajectories of IGFBP-4 and PAPP-A research. Copyright © 2018. Published by Elsevier Ltd.

  8. Hypoxia decreases creatine uptake in cardiomyocytes, while creatine supplementation enhances HIF activation.

    PubMed

    Santacruz, Lucia; Arciniegas, Antonio Jose Luis; Darrabie, Marcus; Mantilla, Jose G; Baron, Rebecca M; Bowles, Dawn E; Mishra, Rajashree; Jacobs, Danny O

    2017-08-01

    Creatine (Cr), phosphocreatine (PCr), and creatine kinases (CK) comprise an energy shuttle linking ATP production in mitochondria with cellular consumption sites. Myocytes cannot synthesize Cr: these cells depend on uptake across the cell membrane by a specialized creatine transporter (CrT) to maintain intracellular Cr levels. Hypoxia interferes with energy metabolism, including the activity of the creatine energy shuttle, and therefore affects intracellular ATP and PCr levels. Here, we report that exposing cultured cardiomyocytes to low oxygen levels rapidly diminishes Cr transport by decreasing V max and K m Pharmacological activation of AMP-activated kinase (AMPK) abrogated the reduction in Cr transport caused by hypoxia. Cr supplementation increases ATP and PCr content in cardiomyocytes subjected to hypoxia, while also significantly augmenting the cellular adaptive response to hypoxia mediated by HIF-1 activation. Our results indicate that: (1) hypoxia reduces Cr transport in cardiomyocytes in culture, (2) the cytoprotective effects of Cr supplementation are related to enhanced adaptive physiological responses to hypoxia mediated by HIF-1, and (3) Cr supplementation increases the cellular ATP and PCr content in RNCMs exposed to hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Things Don’t Just Go Back to Normal: The Implications of Antenatal and Postpartum Physiology and Morphology for the Resumption of Fitness Testing

    DTIC Science & Technology

    2015-04-08

    September 2014 - April 2015 Things Don’t Just Go Back to Normal: The Implications of Antenatal and Postpartum Physiology and Morphology for the...physiology; morphology Unclassified Unclassified Unclassified UU 56 Marine Corps University/Command a (703) 784-3330 (Admin Office) United States Marine...MASTER OF MILITARY STUDIES Things Don’t Just Go Back to Normal: The Implications of Antenatal and Postpartum Physiology and Morphology for the

  10. Determination of in vivo RNA kinetics using RATE-seq.

    PubMed

    Neymotin, Benjamin; Athanasiadou, Rodoniki; Gresham, David

    2014-10-01

    The abundance of a transcript is determined by its rate of synthesis and its rate of degradation; however, global methods for quantifying RNA abundance cannot distinguish variation in these two processes. Here, we introduce RNA approach to equilibrium sequencing (RATE-seq), which uses in vivo metabolic labeling of RNA and approach to equilibrium kinetics, to determine absolute RNA degradation and synthesis rates. RATE-seq does not disturb cellular physiology, uses straightforward normalization with exogenous spike-ins, and can be readily adapted for studies in most organisms. We demonstrate the use of RATE-seq to estimate genome-wide kinetic parameters for coding and noncoding transcripts in Saccharomyces cerevisiae. © 2014 Neymotin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. The Many Facets of Metzincins and Their Endogenous Inhibitors: Perspectives on Ovarian Cancer Progression

    PubMed Central

    Escalona, Ruth M.; Chan, Emily; Kannourakis, George; Findlay, Jock K.; Ahmed, Nuzhat

    2018-01-01

    Approximately sixty per cent of ovarian cancer patients die within the first five years of diagnosis due to recurrence associated with chemoresistance. The metzincin family of metalloproteinases is enzymes involved in matrix remodeling in response to normal physiological changes and diseased states. Recently, there has been a mounting awareness of these proteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), as superb modulators of cellular communication and signaling regulating key biological processes in cancer progression. This review investigates the role of metzincins and their inhibitors in ovarian cancer. We propose that understanding the metzincins and TIMP biology in ovarian cancer may provide valuable insights in combating ovarian cancer progression and chemoresistance-mediated recurrence in patients. PMID:29393911

  12. Targeting polyamine metabolism for cancer therapy and prevention

    PubMed Central

    Murray-Stewart, Tracy R.; Woster, Patrick M.; Casero, Robert A.

    2017-01-01

    The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention. PMID:27679855

  13. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    PubMed Central

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  14. A meta-analysis to evaluate the cellular processes regulated by the interactome of endogenous and over-expressed estrogen receptor alpha.

    PubMed

    Simões, Joana; Amado, Francisco M; Vitorino, Rui; Helguero, Luisa A

    2015-01-01

    The nature of the proteins complexes that regulate ERα subcellular localization and activity is still an open question in breast cancer biology. Identification of such complexes will help understand development of endocrine resistance in ER+ breast cancer. Mass spectrometry (MS) has allowed comprehensive analysis of the ERα interactome. We have compared six published works analyzing the ERα interactome of MCF-7 and HeLa cells in order to identify a shared or different pathway-related fingerprint. Overall, 806 ERα interacting proteins were identified. The cellular processes were differentially represented according to the ERα purification methodology, indicating that the methodologies used are complementary. While in MCF-7 cells, the interactome of endogenous and over-expressed ERα essentially represents the same biological processes and cellular components, the proteins identified were not over-lapping; thus, suggesting that the biological response may differ as the regulatory/participating proteins in these complexes are different. Interestingly, biological processes uniquely associated to ERα over-expressed in HeLa cell line included L-serine biosynthetic process, cellular amino acid biosynthetic process and cell redox homeostasis. In summary, all the approaches analyzed in this meta-analysis are valid and complementary; in particular, for those cases where the processes occur at low frequency with normal ERα levels, and can be identified when the receptor is over-expressed. However special effort should be put into validating these findings in cells expressing physiological ERα levels.

  15. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay.

    PubMed

    De Cecco, Marco; Jeyapalan, Jessie; Zhao, Xiaoai; Tamamori-Adachi, Mimi; Sedivy, John M

    2011-10-01

    Replicative cellular senescence was discovered some 50 years ago. The phenotypes of senescent cells have been investigated extensively in cell culture, and found to affect essentially all aspects of cellular physiology. The relevance of cellular senescence in the context of age-associated pathologies as well as normal aging is a topic of active and ongoing interest. Considerable effort has been devoted to biomarker discovery to enable the microscopic detection of single senescent cells in tissues. One characteristic of senescent cells documented very early in cell culture studies was an increase in cell size and total protein content, but whether this occurs in vivo is not known. A limiting factor for studies of protein content and localization has been the lack of suitable fluorescence microscopy tools. We have developed an easy and flexible method, based on the merocyanine dye known as NanoOrange, to visualize and quantitatively measure total protein levels by high resolution fluorescence microscopy. NanoOrange staining can be combined with antibody-based immunofluorescence, thus providing both specific target and total protein information in the same specimen. These methods are optimally combined with automated image analysis platforms for high throughput analysis. We document here increasing protein content and density in nuclei of senescent human and mouse fibroblasts in vitro, and in liver nuclei of aged mice in vivo. Additionally, in aged liver nuclei NanoOrange revealed protein-dense foci that colocalize with centromeric heterochromatin.

  16. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay

    PubMed Central

    De Cecco, Marco; Jeyapalan, Jessie; Zhao, Xiaoai; Tamamori-Adachi, Mimi; Sedivy, John M.

    2011-01-01

    Replicative cellular senescence was discovered some 50 years ago. The phenotypes of senescent cells have been investigated extensively in cell culture, and found to affect essentially all aspects of cellular physiology. The relevance of cellular senescence in the context of age-associated pathologies as well as normal aging is a topic of active and ongoing interest. Considerable effort has been devoted to biomarker discovery to enable the microscopic detection of single senescent cells in tissues. One characteristic of senescent cells documented very early in cell culture studies was an increase in cell size and total protein content, but whether this occurs in vivo is not known. A limiting factor for studies of protein content and localization has been the lack of suitable fluorescence microscopy tools. We have developed an easy and flexible method, based on the merocyanine dye known as NanoOrange, to visualize and quantitatively measure total protein levels by high resolution fluorescence microscopy. NanoOrange staining can be combined with antibody-based immunofluorescence, thus providing both specific target and total protein information in the same specimen. These methods are optimally combined with automated image analysis platforms for high throughput analysis. We document here increasing protein content and density in nuclei of senescent human and mouse fibroblasts in vitro, and in liver nuclei of aged mice in vivo. Additionally, in aged liver nuclei NanoOrange revealed protein-dense foci that colocalize with centromeric heterochromatin. PMID:22006542

  17. The cell biology of aging.

    PubMed

    Hayflick, L

    1985-02-01

    It is only within the past ten years that biogerontology has become attractive to a sufficient number of biologists so that the field can be regarded as a seriously studied discipline. Cytogerontology, or the study of aging at the cellular level, had its genesis about 20 years ago when the dogma that maintained that cultured normal cells could replicate forever was overturned. Normal human and animal cells have a finite capacity to replicate and function whether they are cultured in vitro or transplanted as grafts in vivo. This phenomenon has been interpreted to be aging at the cellular level. Only abnormal somatic cells are capable of immortality. In recent years it has been found that the number of population doublings of which cultured normal cells are capable is inversely proportional to donor age. There is also good evidence that the number of population doublings of cultured normal fibroblasts is directly proportional to the maximum lifespan of ten species that have been studied. Cultures prepared from patients with accelerated aging syndromes (progeria and Werner's syndrome) undergo far fewer doublings than do those of age-matched controls. The normal human fibroblast cell strain WI-38 was established in 1962 from fetal lung, and several hundred ampules of these cells were frozen in liquid nitrogen at that time. These ampules have been reconstituted periodically and shown to be capable of replication. This represents the longest period of time that a normal human cell has ever been frozen. Normal human fetal cell strains such as WI-38 have the capacity to double only about 50 times. If cultures are frozen at various population doublings, the number of doublings remaining after reconstitution is equal to 50 minus the number of doublings that occurred prior to freezing. The memory of the cells has been found to be accurate after 23 years of preservation in liquid nitrogen. Normal human cells incur many physiologic decrements that herald the approach of their failure to divide. Many of these functional decrements are identical to decrements found in humans as they age. Thus it is likely that these decrements are also the precursors of age changes in vivo. The finite replicative capacity of normal cells is never seen to occur in vivo because aging and death of the individual occurs well before the doubling limit is reached.

  18. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal insult within 24h. Copyright © 2014. Published by Elsevier Ltd.

  19. Internalization of subcellular-scale microfabricated chips by healthy and cancer cells

    PubMed Central

    Wong, H.-S. Philip

    2018-01-01

    Continuous monitoring of physiological parameters inside a living cell will lead to major advances in our understanding of biology and complex diseases, such as cancer. It also enables the development of new medical diagnostics and therapeutics. Progress in nanofabrication and wireless communication has opened up the potential of making a wireless chip small enough that it can be wholly inserted into a living cell. To investigate how such chips could be internalized into various types of living single cells and how this process might affect cells’ physiology, we designed and fabricated a series of multilayered micron-scale tag structures with different sizes as potential RFID (Radio Frequency IDentification) cell trackers. While the present structures are test structures that do not resonate, the tags that do resonate have similar structure from device fabrication, material properties, and device size point of view. The structures are in four different sizes, the largest with the lateral dimension of 9 μm × 21 μm. The thickness for these structures is kept constant at 1.5 μm. We demonstrate successful delivery of our fabricated chips into various types of living cells, such as melanoma skin cancer, breast cancer, colon cancer and healthy/normal fibroblast skin cells. To our surprise, we observed a remarkable internalization rate difference between each cell type; the uptake rate was faster for more aggressive cancer cells than the normal/healthy cells. Cell viability before and after tag cellular internalization and persistence of the internalized tags have also been recorded over the course of five days of incubation. These results establish the foundations of the possibility of long term, wireless, intracellular physiological signal monitoring. PMID:29601607

  20. Antioxidant enzymes as redox-based biomarkers: a brief review.

    PubMed

    Yang, Hee-Young; Lee, Tae-Hoon

    2015-04-01

    The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease.

  1. Retrovirus-mediated siRNA targeting TRPM7 gene induces apoptosis in RBL-2H3 cells.

    PubMed

    Ng, N-M; Jiang, S-P; Lv, Z-Q

    2012-09-01

    Calcium signaling is important for both normal physiologic processes and pathology of various diseases. Transient receptor potential melastatin 7 (TRPM7) gene has been reported to be a potential candidate for calcium influx. The present study aimed to investigate the possible role of TRPM7 channels in apoptosis in rat basophilic leukemia mast cell line (RBL-2H3), which is widely used in mast cell-associated studies. A recombinant retrovirus vector siRNA targeting rat TRPM7 gene was constructed and identified. Cellular survival was assessed by MTT. Cell apoptosis was evaluated by flow cytometry and TUNEL-FITC/Hoechst 33258 staining. The transfection efficiency by retrovirus vector was about 60%-70%. Transfection with TRPM7 siRNA significantly reduced TRPM7 expression both at mRNA and protein levels. Suppression of TRPM7 expression by siRNA led to significantly decreased cellular survival rates and increased apoptosis rates in RBL-2H3 cells. This study indicates that TRPM7 is involved in the apoptosis process in RBL-2H3 cells.

  2. STAT3 Target Genes Relevant to Human Cancers

    PubMed Central

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers. PMID:24743777

  3. The Function of V-ATPases in Cancer

    PubMed Central

    Stransky, Laura; Cotter, Kristina

    2016-01-01

    The vacuolar ATPases (V-ATPases) are a family of proton pumps that couple ATP hydrolysis to proton transport into intracellular compartments and across the plasma membrane. They function in a wide array of normal cellular processes, including membrane traffic, protein processing and degradation, and the coupled transport of small molecules, as well as such physiological processes as urinary acidification and bone resorption. The V-ATPases have also been implicated in a number of disease processes, including viral infection, renal disease, and bone resorption defects. This review is focused on the growing evidence for the important role of V-ATPases in cancer. This includes functions in cellular signaling (particularly Wnt, Notch, and mTOR signaling), cancer cell survival in the highly acidic environment of tumors, aiding the development of drug resistance, as well as crucial roles in tumor cell invasion, migration, and metastasis. Of greatest excitement is evidence that at least some tumors express isoforms of V-ATPase subunits whose disruption is not lethal, leading to the possibility of developing anti-cancer therapeutics that selectively target V-ATPases that function in cancer cells. PMID:27335445

  4. A Highly Toxic Cellular Prion Protein Induces a Novel, Nonapoptotic Form of Neuronal Death

    PubMed Central

    Christensen, Heather M.; Dikranian, Krikor; Li, Aimin; Baysac, Kathleen C.; Walls, Ken C.; Olney, John W.; Roth, Kevin A.; Harris, David A.

    2010-01-01

    Several different deletions within the N-terminal tail of the prion protein (PrP) induce massive neuronal death when expressed in transgenic mice. This toxicity is dose-dependently suppressed by coexpression of full-length PrP, suggesting that it results from subversion of a normal physiological activity of cellular PrP. We performed a combined biochemical and morphological analysis of Tg(ΔCR) mice, which express PrP carrying a 21-aa deletion (residues 105-125) within a highly conserved region of the protein. Death of cerebellar granule neurons in Tg(ΔCR) mice is not accompanied by activation of either caspase-3 or caspase-8 or by increased levels of the autophagy marker, LC3-II. In electron micrographs, degenerating granule neurons displayed a unique morphology characterized by heterogeneous condensation of the nuclear matrix without formation of discrete chromatin masses typical of neuronal apoptosis. Our data demonstrate that perturbations in PrP functional activity induce a novel, nonapoptotic, nonautophagic form of neuronal death whose morphological features are reminiscent of those associated with excitotoxic stress. PMID:20472884

  5. Airway epithelial repair in health and disease: Orchestrator or simply a player?

    PubMed

    Iosifidis, Thomas; Garratt, Luke W; Coombe, Deirdre R; Knight, Darryl A; Stick, Stephen M; Kicic, Anthony

    2016-04-01

    Epithelial cells represent the most important surface of contact in the body and form the first line of defence of the body to external environment. Consequently, epithelia have numerous roles in order to maintain a homeostatic defence barrier. Although the epithelium has been extensively studied over several decades, it remains the focus of new research, indicating a lack of understanding that continues to exist around these cells in specific disease settings. Importantly, evidence is emerging that airway epithelial cells in particular have varied complex functions rather than simple passive roles. One area of current interest is its role following injury. In particular, the epithelial-specific cellular mechanisms regulating their migration during wound repair remain poorly understood and remain an area that requires much needed investigation. A better understanding of the physiological, cellular and molecular wound repair mechanisms could assist in elucidating pathological processes that contribute to airway epithelial pathology. This review attempts to highlight migration-specific and cell-extracellular matrix (ECM) aspects of repair used by epithelial cells under normal and disease settings, in the context of human airways. © 2016 Asian Pacific Society of Respirology.

  6. AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System.

    PubMed

    Salt, Ian P; Hardie, D Grahame

    2017-05-26

    The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. © 2017 American Heart Association, Inc.

  7. Molecular cell biology and physiology of solute transport

    PubMed Central

    Caplan, Michael J.; Seo-Mayer, Patricia; Zhang, Li

    2010-01-01

    Purpose of review An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell–cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. Recent findings Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories, suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. Summary Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications. PMID:18695392

  8. The sigma-1 receptor chaperone as an inter-organelle signaling modulator

    PubMed Central

    Su, Tsung-Ping; Hayashi, Teruo; Maurice, Tangui; Buch, Shilpa; Ruoho, Arnold E.

    2010-01-01

    Inter-organelle signaling plays important roles in many physiological functions. Endoplasmic reticulum (ER)-mitochondrion signaling affects intra-mitochondrial calcium (Ca2+) homeostasis and cellular bioenergetics. ER-nucleus signaling attenuates ER stress. ER-plasma membrane signaling regulates cytosolic Ca2+ homeostasis, and ER-mitochondrion-plasma membrane signaling regulates hippocampal dendritic spine formation. Here we propose that the sigma-1 receptor (Sig-1R), an ER chaperone protein, acts as an inter-organelle signaling modulator. Sig-1Rs normally reside at the ER-mitochondrion contact called the MAM (mitochondrion-associated ER membrane), where Sig-1Rs regulate ER-mitochondrion signaling and the ER-nucleus cross-talk. When cells are stimulated by ligands or undergo prolonged stress, Sig-1Rs translocate from the MAM to the ER reticular network and plasmalemma/plasma membrane to regulate a variety of functional proteins, including ion channels, receptors, and kinases. Thus, the Sig-1R serves as an inter-organelle signaling modulator locally at the MAM and remotely at the plasmalemma/plasma membrane. Many pharmacological/physiological effects of Sig-1Rs may relate to this unique action of Sig-1Rs. PMID:20869780

  9. Testing the 'free radical theory of aging' hypothesis: physiological differences in long-lived and short-lived colubrid snakes.

    PubMed

    Robert, Kylie A; Brunet-Rossinni, Anja; Bronikowski, Anne M

    2007-06-01

    We test the 'free radical theory of aging' using six species of colubrid snakes (numerous, widely distributed, non-venomous snakes of the family Colubridae) that exhibit long (> 15 years) or short (< 10 years) lifespans. Because the 'rate of living theory' predicts metabolic rates to be correlated with rates of aging and oxidative damage results from normal metabolic processes we sought to answer whether physiological parameters and locomotor performance (which is a good predictor of survival in juvenile snakes) mirrored the evolution of lifespans in these colubrid snakes. We measured whole animal metabolic rate (oxygen consumption Vo2), locomotor performance, cellular metabolic rate (mitochondrial oxygen consumption), and oxidative stress potential (hydrogen peroxide production by mitochondria). Longer-lived colubrid snakes have greater locomotor performance and reduced hydrogen peroxide production than short-lived species, while whole animal metabolic rates and mitochondrial efficiency did not differ with lifespan. We present the first measures testing the 'free radical theory of aging' using reptilian species as model organisms. Using reptiles with different lifespans as model organisms should provide greater insight into mechanisms of aging.

  10. Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow.

    PubMed

    Shamout, Farah E; Pouliopoulos, Antonios N; Lee, Patrizia; Bonaccorsi, Simone; Towhidi, Leila; Krams, Rob; Choi, James J

    2015-09-01

    Sonoporation has been associated with drug delivery across cell membranes and into target cells, yet several limitations have prohibited further advancement of this technology. Higher delivery rates were associated with increased cellular death, thus implying a safety-efficacy trade-off. Meanwhile, there has been no reported study of safe in vitro sonoporation in a physiologically relevant flow environment. The objective of our study was not only to evaluate sonoporation under physiologically relevant flow conditions, such as fluid velocity, shear stress and temperature, but also to design ultrasound parameters that exploit the presence of flow to maximize sonoporation efficacy while minimizing or avoiding cellular damage. Human umbilical vein endothelial cells (EA.hy926) were seeded in flow chambers as a monolayer to mimic the endothelium. A peristaltic pump maintained a constant fluid velocity of 12.5 cm/s. A focused 0.5 MHz transducer was used to sonicate the cells, while an inserted focused 7.5 MHz passive cavitation detector monitored microbubble-seeded cavitation emissions. Under these conditions, propidium iodide, which is normally impermeable to the cell membrane, was traced to determine whether it could enter cells after sonication. Meanwhile, calcein-AM was used as a cell viability marker. A range of focused ultrasound parameters was explored, with several unique bioeffects observed: cell detachment, preservation of cell viability with no membrane penetration, cell death and preservation of cell viability with sonoporation. The parameters were then modified further to produce safe sonoporation with minimal cell death. To increase the number of favourable cavitation events, we lowered the ultrasound exposure pressure to 40 kPapk-neg and increased the number of cavitation nuclei by 50 times to produce a trans-membrane delivery rate of 62.6% ± 4.3% with a cell viability of 95% ± 4.2%. Furthermore, acoustic cavitation analysis showed that the low pressure sonication produced stable and non-inertial cavitation throughout the pulse sequence. To our knowledge, this is the first study to demonstrate a high drug delivery rate coupled with high cell viability in a physiologically relevant in vitro flow system. Copyright © 2015. Published by Elsevier Inc.

  11. Unique spatial and cellular expression patterns of Hoxa5, Hoxb4 and Hoxb6 proteins in normal developing murine lung are modified in pulmonary hypoplasia

    PubMed Central

    Volpe, MaryAnn Vitoria; Wang, Karen Ting Wai; Nielsen, Heber Carl; Chinoy, Mala Romeshchandra

    2009-01-01

    Background Hox transcription factors modulate signaling pathways controlling organ morphogenesis and maintain cell fate and differentiation in adults. Retinoid signaling, key in regulating Hox expression, is altered in pulmonary hypoplasia. Information on pattern-specific expression of Hox proteins in normal lung development and in pulmonary hypoplasia is minimal. Our objective was to determine how pulmonary hypoplasia alters temporal, spatial and cellular expression of Hoxa5, Hoxb4 and Hoxb6 proteins compared to normal lung development. Methods Temporal, spatial and cellular Hoxa5, Hoxb4 and Hoxb6 expression was studied in normal (untreated) and nitrofen-induced hypoplastic (NT-PH) lungs from gestational day 13.5, 16, 19 fetuses and neonates using western blot and immunohistochemistry. Results Modification of protein levels and spatial and cellular Hox expression patterns in NT-PH lungs was consistent with delayed lung development. Distinct protein isoforms were detected for each Hox protein. Expression levels of the Hoxa5 and Hoxb6 isoforms changed with development and further in NT-PH lungs. Compared to normal lungs, Gd19 and neonatal NT-PH lungs had decreased Hoxb6 and increased Hoxa5 and Hoxb4. Hoxa5 cellular localization changed from mesenchyme to epithelia earlier in normal lungs. Hoxb4 was expressed in mesenchyme and epithelial cells throughout development. Hoxb6 remained mainly in mesenchymal cells around distal airways. Conclusions Unique spatial and cellular expression of Hoxa5, Hoxb4 and Hoxb6 participates in branching morphogenesis and terminal sac formation. Altered Hox protein temporal and cellular balance of expression either contributes to pulmonary hypoplasia or functions as a compensatory mechanism attempting to correct abnormal lung development and maturation in this condition. PMID:18553509

  12. Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis.

    PubMed

    Kong, Yingzhen; Peña, Maria J; Renna, Luciana; Avci, Utku; Pattathil, Sivakumar; Tuomivaara, Sami T; Li, Xuemei; Reiter, Wolf-Dieter; Brandizzi, Federica; Hahn, Michael G; Darvill, Alan G; York, William S; O'Neill, Malcolm A

    2015-04-01

    Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems.

    PubMed

    Dos Santos, Patricia C; Johnson, Deborah C; Ragle, Brook E; Unciuleac, Mihaela-Carmen; Dean, Dennis R

    2007-04-01

    The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.

  14. Immobilized Cell Research

    DTIC Science & Technology

    1990-10-31

    specifically with the biotech nologi cal side of cellular immobilization, there aje aspects of this research that have importance in other fields. 20 C...meetings dealt lem facing the Navy. The techniques reviewed here specifically with the biotechnological side of cellular im- should be of particular...phenomena. types of organisms, and the many techniques used to compare cellular physiologies. Undoubtedly, any tech- Why Use Immobilized Cells in

  15. Minimum-noise production of translation factor eIF4G maps to a mechanistically determined optimal rate control window for protein synthesis

    PubMed Central

    Meng, Xiang; Firczuk, Helena; Pietroni, Paola; Westbrook, Richard; Dacheux, Estelle; Mendes, Pedro; McCarthy, John E.G.

    2017-01-01

    Gene expression noise influences organism evolution and fitness. The mechanisms determining the relationship between stochasticity and the functional role of translation machinery components are critical to viability. eIF4G is an essential translation factor that exerts strong control over protein synthesis. We observe an asymmetric, approximately bell-shaped, relationship between the average intracellular abundance of eIF4G and rates of cell population growth and global mRNA translation, with peak rates occurring at normal physiological abundance. This relationship fits a computational model in which eIF4G is at the core of a multi-component–complex assembly pathway. This model also correctly predicts a plateau-like response of translation to super-physiological increases in abundance of the other cap-complex factors, eIF4E and eIF4A. Engineered changes in eIF4G abundance amplify noise, demonstrating that minimum stochasticity coincides with physiological abundance of this factor. Noise is not increased when eIF4E is overproduced. Plasmid-mediated synthesis of eIF4G imposes increased global gene expression stochasticity and reduced viability because the intrinsic noise for this factor influences total cellular gene noise. The naturally evolved eIF4G gene expression noise minimum maps within the optimal activity zone dictated by eIF4G's mechanistic role. Rate control and noise are therefore interdependent and have co-evolved to share an optimal physiological abundance point. PMID:27928055

  16. Physiological Concentrations of Amyloid Beta Regulate Recycling of Synaptic Vesicles via Alpha7 Acetylcholine Receptor and CDK5/Calcineurin Signaling

    PubMed Central

    Lazarevic, Vesna; Fieńko, Sandra; Andres-Alonso, Maria; Anni, Daniela; Ivanova, Daniela; Montenegro-Venegas, Carolina; Gundelfinger, Eckart D.; Cousin, Michael A.; Fejtova, Anna

    2017-01-01

    Despite the central role of amyloid β (Aβ) peptide in the etiopathogenesis of Alzheimer’s disease (AD), its physiological function in healthy brain is still debated. It is well established that elevated levels of Aβ induce synaptic depression and dismantling, connected with neurotoxicity and neuronal loss. Growing evidence suggests a positive regulatory effect of Aβ on synaptic function and cognition; however the exact cellular and molecular correlates are still unclear. In this work, we tested the effect of physiological concentrations of Aβ species of endogenous origin on neurotransmitter release in rat cortical and hippocampal neurons grown in dissociated cultures. Modulation of production and degradation of the endogenous Aβ species as well as applications of the synthetic rodent Aβ40 and Aβ42 affected efficacy of neurotransmitter release from individual presynapses. Low picomolar Aβ40 and Aβ42 increased, while Aβ depletion or application of low micromolar concentration decreased synaptic vesicle recycling, showing a hormetic effect of Aβ on neurotransmitter release. These Aβ-mediated modulations required functional alpha7 acetylcholine receptors as well as extracellular and intracellular calcium, involved regulation of CDK5 and calcineurin signaling and increased recycling of synaptic vesicles. These data indicate that Aβ regulates neurotransmitter release from presynapse and suggest that failure of the normal physiological function of Aβ in the fine-tuning of SV cycling could disrupt synaptic function and homeostasis, which would, eventually, lead to cognitive decline and neurodegeneration. PMID:28785201

  17. A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS

    EPA Science Inventory

    We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...

  18. From the Cover: Manganese Stimulates Mitochondrial H2O2 Production in SH-SY5Y Human Neuroblastoma Cells Over Physiologic as well as Toxicologic Range

    PubMed Central

    Fernandes, Jolyn; Hao, Li; Bijli, Kaiser M.; Chandler, Joshua D.; Orr, Michael; Hu, Xin; Jones, Dean P.

    2017-01-01

    Manganese (Mn) is an abundant redox-active metal with well-characterized mitochondrial accumulation and neurotoxicity due to excessive exposures. Mn is also an essential co-factor for the mitochondrial antioxidant protein, superoxide dismutase-2 (SOD2), and the range for adequate intake established by the Institute of Medicine Food and Nutrition Board is 20% of the interim guidance value for toxicity by the Agency for Toxic Substances and Disease Registry, leaving little margin for safety. To study toxic mechanisms over this critical dose range, we treated human neuroblastoma SH-SY5Y cells with a series of MnCl2 concentrations (from 0 to 100 μM) and measured cellular content to compare to human brain Mn content. Concentrations ≤10 μM gave cellular concentrations comparable to literature values for normal human brain, whereas concentrations ≥50 μM resulted in values comparable to brains from individuals with toxic Mn exposures. Cellular oxygen consumption rate increased as a function of Mn up to 10 μM and decreased with Mn dose ≥50 μM. Over this range, Mn had no effect on superoxide production as measured by aconitase activity or MitoSOX but increased H2O2 production as measured by MitoPY1. Consistent with increased production of H2O2, SOD2 activity, and steady-state oxidation of total thiol increased with increasing Mn. These findings have important implications for Mn toxicity by re-directing attention from superoxide anion radical to H2O2-dependent mechanisms and to investigation over the entire physiologic range to toxicologic range. Additionally, the results show that controlled Mn exposure provides a useful cell manipulation for toxicological studies of mitochondrial H2O2 signaling. PMID:27701121

  19. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology.

    PubMed

    Turan, Belma; Tuncay, Erkan

    2017-11-12

    Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn 2+ . Although Zn 2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn 2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn 2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn 2+ -diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn 2+ in parallel to the discovery of subcellular localization of Zn 2+ -transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn 2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca 2+ dynamics. Cellular labile Zn 2+ is tightly regulated against its adverse effects through either Zn 2+ -transporters, Zn 2+ -binding molecules or Zn 2+ -sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn 2+ distribution in cardiomyocytes and how a remodeling of cellular Zn 2+ -homeostasis can be important in proper cell function with Zn 2+ -transporters under hyperglycemia. We also emphasize the recent investigations on Zn 2+ -transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.

  20. Atomic force microscopy studies on cellular elastic and viscoelastic properties.

    PubMed

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2018-01-01

    In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.

  1. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha.

    PubMed

    Desai, Seema S; Tung, Jason C; Zhou, Vivian X; Grenert, James P; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M; Chang, Tammy T

    2016-07-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275). © 2016 by the American Association for the Study of Liver Diseases.

  2. Micropatterns of Matrigel for three-dimensional epithelial cultures.

    PubMed

    Sodunke, Temitope R; Turner, Keneshia K; Caldwell, Sarah A; McBride, Kevin W; Reginato, Mauricio J; Noh, Hongseok Moses

    2007-09-01

    Three-dimensional (3D) epithelial culture models are widely used to promote a physiologically relevant microenvironment for the study of normal and aberrant epithelial organization. Despite the increased use of these models, their potential as a cell-based screening tool for therapeutics has been hindered by the lack of existing platforms for large-scale 3D cellular studies. Current 3D standard culture does not allow for single spheroid or 'acinus' analysis required for high-throughput systems. Here, we present general strategies for creating bulk micropatterns of Matrigel that can be used as a platform for 3D epithelial culture and cell-based assays at the single acinus level. Both buried and free-standing micropatterns of Matrigel were created using modified soft lithography techniques such as microtransfer molding (microTM) and dry lift-off technique. Surface modification of poly(dimethylsiloxane) (PDMS) with oxygen plasma followed by treatment with poly(2-hydroxy-ethylmethacrylate) (poly-HEMA) was sufficient to promote deformation-free release of Matrigel patterns. In addition, a novel dual-layer dry lift-off technique was developed to simultaneously generate patterns of Matrigel and poly-HEMA on a single substrate. We also demonstrate that the micropatterned Matrigel can support 3D culture originating from a single normal human mammary epithelial (MCF-10A) cell or a human breast cancer cell (MDA-MB-231) with comparable phenotypes to standard 3D culture techniques. Culture of normal MCF-10A cells on micropatterned Matrigel resulted in formation of structures with the characteristic apoptosis of centrally located cells and formation of hollow lumens. Moreover, the carcinoma cell line showed their characteristic formation of disorganized invasive cellular clusters, lacking the normal epithelial architecture on micropatterned Matrigel. Hence, micropatterned Matrigel can be used as a 3D epithelial cell-based platform for a wide variety of applications in epithelial and cancer biology, tissue engineering, as well as gene/drug screening technology.

  3. Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-family ubiquitin ligases

    PubMed Central

    Mohapatra, Bhopal; Ahmad, Gulzar; Nadeau, Scott; Zutshi, Neha; An, Wei; Scheffe, Sarah; Dong, Lin; Feng, Dan; Goetz, Benjamin; Arya, Priyanka; Bailey, Tameka A.; Palermo, Nicholas; Borgstahl, Gloria E.O.; Natarajan, Amarnath; Raja, Srikumar M.; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2012-01-01

    Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell–cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant “activated PTK-selective” ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease. PMID:23085373

  4. AMP-Activated Protein Kinase – A Ubiquitous Signalling Pathway with Key Roles in the Cardiovascular System

    PubMed Central

    Salt, Ian P.; Hardie, D. Grahame

    2017-01-01

    The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last two decades, it has become apparent that AMPK regulates a number of other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function as well as promoting anti-contractile, anti-inflammatory and anti-atherogenic actions in blood vessels. In this review, we will discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. PMID:28546359

  5. Dietary Modulation of Oxidative Stress in Alzheimer's Disease.

    PubMed

    Thapa, Arjun; Carroll, Nick J

    2017-07-21

    Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer's, and Parkinson's diseases. It is well accepted that natural compounds, including vitamins A, C, and E, β-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer's disease (AD). There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols) and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.

  6. MicroRNA-7: A miRNA with expanding roles in development and disease.

    PubMed

    Horsham, Jessica L; Ganda, Clarissa; Kalinowski, Felicity C; Brown, Rikki A M; Epis, Michael R; Leedman, Peter J

    2015-12-01

    MicroRNAs (miRNAs) are a family of short, non-coding RNA molecules (∼22nt) involved in post-transcriptional control of gene expression. They act via base-pairing with mRNA transcripts that harbour target sequences, resulting in accelerated mRNA decay and/or translational attenuation. Given miRNAs mediate the expression of molecules involved in many aspects of normal cell development and functioning, it is not surprising that aberrant miRNA expression is closely associated with many human diseases. Their pivotal role in driving a range of normal cellular physiology as well as pathological processes has established miRNAs as potential therapeutics, as well as potential diagnostic and prognostic tools in human health. MicroRNA-7 (miR-7) is a highly conserved miRNA which displays restricted spatiotemporal expression during development and in maturity. In humans and mice, mature miR-7 is generated from three different genes, illustrating unexpected redundancy and also the importance of this miRNA in regulating key cellular processes. In this review we examine the expanding role of miR-7 in the context of health, with emphasis on organ differentiation and development, as well as in various mammalian diseases, particularly of the brain, heart, endocrine pancreas and skin, as well as in cancer. The more we learn about miR-7, the more we realise the complexity of its regulation and potential functional application both from a biomarker and therapeutic perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Hydrogen sulfide releasing naproxen offers better anti-inflammatory and chondroprotective effect relative to naproxen in a rat model of zymosan induced arthritis.

    PubMed

    Dief, A E; Mostafa, D K; Sharara, G M; Zeitoun, T H

    2015-04-01

    Hydrogen sulfide (H2S) is rapidly gaining ground as a physiological mediator of inflammation, but there is no clear consensus as to its precise role in inflammation. Therefore, this study was undertaken to evaluate the effects of ATB-346 as a novel H2S-releasing naproxen compared to naproxen, as a traditional non-steroidal anti-inflammatory drug on zymosan induced mono-arthritis in rats. Male Wistar rats (n=48) were randomly assigned to four main groups: normal control, untreated arthritis, Naproxen and ATB-346 treated groups. Mono-arthritis was induced by intra-articular injection of zymosan into the knee joints. Mechanical hypernociception and joint swelling were evaluated at 6 hours and 5 days. Inflammatory cellular recruitment and adherence, tumor necrosis factor alpha, nuclear factor kappa β, total sulfide levels, and histological changes were evaluated in knee lavages, blood or joint tissues at selected time points. Zymosan injection evoked knee inflammation and pain as characterized by mechanical hypernociception, impaired gait, joint swelling with inflammatory exudation and histological changes. Treatment with ATB-346 attenuated nociceptive responses, inflammatory cellular and biochemical changes in comparison to naproxen. Only ATB-346 was able to suppress neutrophil adherence and to preserve normal articular structure. H2S releasing naproxen represents an advancement over the parent drug, naproxen. Apart from the superior anti-inflammatory and anti-noceiceptive activity, ATB-346 offered a distinguished chondroprotective effect and is almost devoid from naproxen deleterious effects on articular cartilage.

  8. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth.

    PubMed

    Franklin, Sarah; Kimball, Todd; Rasmussen, Tara L; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O; Vondriska, Thomas M

    2016-11-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. Copyright © 2016 the American Physiological Society.

  9. Chemical and Biochemical Approaches in the Study of Histone Methylation and Demethylation

    PubMed Central

    Li, Keqin Kathy; Luo, Cheng; Wang, Dongxia; Jiang, Hualiang; Zheng, Y. George

    2014-01-01

    Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and provide information otherwise difficulty to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation (ChIP), chemical ligation, mass spectrometry (MS), biochemical assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of the biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic application in the clinic. PMID:22777714

  10. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells

    PubMed Central

    2012-01-01

    Background Various by-products of the cellular metabolism, such as reactive carbonyl species (RCS) are potentially harmful to cells and tissues, and play a role in many physiological and pathological processes. Among various RCS is the highly reactive dicarbonyl glyoxal (GO), which is a natural physiological metabolite produced by the auto-oxidation of glucose, and can form covalent adducts known as advanced glycation endproducts (AGE). We have previously reported that GO accelerates ageing and causes premature senescence in normal human skin fibroblasts. Results Using a bone marrow-derived telomerase-immortalised mesenchymal stem cell line hMSC-TERT we have observed that an exposure of cells to 0.75 mM and 1 mM GO induces irreversible cellular senescence within 3 days. Induction of senescence in hMSC-TERT was demonstrated by a variety of markers, including characteristic cell morphology and enlargement, vacuolisation, multinucleation, induction of senescence associated β-galactosidase, cell cycle arrest, and increased levels of a cell cycle inhibitor p16. These changes were accompanied by increased extent of DNA breaks as measured by the comet assay, and increased levels of the AGE product, carboxymethyl-lysine (CML). Furthermore, the in vitro differentiation potential of hMSC-TERT to become functional osteoblasts was highly reduced in GO-treated stem cells, as determined by alkaline phosphatase (ALP) activity and mineralized matrix (MM) formation. Conclusions The results of our study imply that an imbalanced glucose metabolism can reduce the functioning ability of stem cells in vivo both during ageing and during stem cell-based therapeutic interventions. PMID:22424056

  11. The endoplasmic reticulum stress response: A link with tuberculosis?

    PubMed

    Cui, Yongyong; Zhao, Deming; Barrow, Paul Andrew; Zhou, Xiangmei

    2016-03-01

    Tuberculosis (TB) remains a major cause of mortality and morbidity in the worldwide. The endoplasmic-reticulum stress (ERS) response constitutes a cellular process that is triggered by mycobacterial infection that disturbs the folding of proteins in the endoplasmic reticulum (ER). The unfolded protein response (UPR) is induced to suspend the synthesis of early proteins and reduce the accumulation of unfolded- or misfolded proteins in the ER restoring normal physiological cell function. Prolonged or uncontrolled ERS leads to the activation of three signaling pathways (IRE1, PERK and ATF6) which directs the cell towards apoptosis. The absence of this process facilitates spread of the mycobacteria within the body. We summarize here recent advances in understanding the signaling pathway diversity governing ERS in relation to TB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Computation as the mechanistic bridge between precision medicine and systems therapeutics.

    PubMed

    Hansen, J; Iyengar, R

    2013-01-01

    Over the past 50 years, like molecular cell biology, medicine and pharmacology have been driven by a reductionist approach. The focus on individual genes and cellular components as disease loci and drug targets has been a necessary step in understanding the basic mechanisms underlying tissue/organ physiology and drug action. Recent progress in genomics and proteomics, as well as advances in other technologies that enable large-scale data gathering and computational approaches, is providing new knowledge of both normal and disease states. Systems-biology approaches enable integration of knowledge from different types of data for precision medicine and systems therapeutics. In this review, we describe recent studies that contribute to these emerging fields and discuss how together these fields can lead to a mechanism-based therapy for individual patients.

  13. Renal control of calcium, phosphate, and magnesium homeostasis.

    PubMed

    Blaine, Judith; Chonchol, Michel; Levi, Moshe

    2015-07-07

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.

  14. Computation as the Mechanistic Bridge Between Precision Medicine and Systems Therapeutics

    PubMed Central

    Hansen, J; Iyengar, R

    2014-01-01

    Over the past 50 years, like molecular cell biology, medicine and pharmacology have been driven by a reductionist approach. The focus on individual genes and cellular components as disease loci and drug targets has been a necessary step in understanding the basic mechanisms underlying tissue/organ physiology and drug action. Recent progress in genomics and proteomics, as well as advances in other technologies that enable large-scale data gathering and computational approaches, is providing new knowledge of both normal and disease states. Systems-biology approaches enable integration of knowledge from different types of data for precision medicine and systems therapeutics. In this review, we describe recent studies that contribute to these emerging fields and discuss how together these fields can lead to a mechanism-based therapy for individual patients. PMID:23212109

  15. Cell competition in mammals - novel homeostatic machinery for embryonic development and cancer prevention.

    PubMed

    Maruyama, Takeshi; Fujita, Yasuyuki

    2017-10-01

    In the multi-cellular community, cells with different properties often compete with each other for survival and space. This process is named cell competition and was originally discovered in Drosophila. Recent studies have revealed that comparable phenomena also occur in mammals under various physiological and pathological conditions. Within the epithelium, normal cells often recognize the presence of the neighboring transformed cells and actively eliminate them from the epithelium; a process termed EDAC (Epithelial Defense Against Cancer). Furthermore, physical force can play a crucial role in the intercellular recognition and elimination of loser cells during cell competition. Further studies are expected to reveal a variety of roles of cell competition in embryonic development and human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Glucose 6-phosphate dehydrogenase and the kidney.

    PubMed

    Spencer, Netanya Y; Stanton, Robert C

    2017-01-01

    Glucose 6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. G6PD is the main source of the essential cellular reductant, NADPH. The purpose of this review is to describe the biochemistry of G6PD and NADPH, cellular factors that regulate G6PD, normal physiologic roles of G6PD, and the pathogenic role altered G6PD/NADPH plays in kidney disease. NADPH is required for many essential cellular processes such as the antioxidant system, nitric oxide synthase, cytochrome p450 enzymes, and NADPH oxidase. Decreased G6PD activity and, as a result, decreased NADPH level have been associated with diabetic kidney disease, altered nitric oxide production, aldosterone-mediated endothelial dysfunction, and dialysis-associated anemia. Increased G6PD activity is associated with all cancers including kidney cancer. Inherited G6PD deficiency is the most common mutation in the world that is thought to be a relatively mild disorder primarily associated with anemia. Yet, intriguing studies have shown an increased prevalence of diabetes mellitus in G6PD-deficient people. It is not known if G6PD-deficient people are at more risk for other diseases. Much more research needs to be done to determine the role of altered G6PD activity (inherited or acquired) in the pathogenesis of kidney disease.

  17. Cellular changes in the hamster testicular interstitium with ageing and after exposure to short photoperiod.

    PubMed

    Beltrán-Frutos, E; Seco-Rovira, V; Ferrer, C; Madrid, J F; Sáez, F J; Canteras, M; Pastor, L M

    2016-04-01

    The aim of this study was to evaluate the cellular changes that occur in the hamster testicular interstitium in two very different physiological situations involving testicular involution: ageing and exposure to a short photoperiod. The animals were divided into an 'age group' with three subgroups - young, adult and old animals - and a 'regressed group' with animals subjected to a short photoperiod. The testicular interstitium was characterised by light and electron microscopy. Interstitial cells were studied histochemically with regard to their proliferation, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling (TUNEL+) and testosterone synthetic activity. We identified two types of Leydig cell: Type A cells showed a normal morphology, while Type B cells appeared necrotic. With ageing, pericyte proliferation decreased but there was no variation in the index of TUNEL-positive Leydig cells. In the regressed group, pericyte proliferation was greater and TUNEL-positive cells were not observed in the interstitium. The testicular interstitium suffered few ultrastructural changes during ageing and necrotic Leydig cells were observed. In contrast, an ultrastructural involution of Leydig cells with no necrosis was observed in the regressed group. In conclusion, the testicular interstitium of Mesocricetus auratus showed different cellular changes in the two groups (age and regressed), probably due to the irreversible nature of ageing and the reversible character of changes induced by short photoperiod.

  18. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties[S

    PubMed Central

    Sousa, Tânia; Castro, Rui E.; Pinto, Sandra N.; Coutinho, Ana; Lucas, Susana D.; Moreira, Rui; Rodrigues, Cecília M. P.; Prieto, Manuel; Fernandes, Fábio

    2015-01-01

    Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure. PMID:26351365

  19. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration.

    PubMed

    Amanullah, Ayeman; Upadhyay, Arun; Joshi, Vibhuti; Mishra, Ribhav; Jana, Nihar Ranjan; Mishra, Amit

    2017-12-01

    Proteins are ordered useful cellular entities, required for normal health and organism's survival. The proteome is the absolute set of cellular expressed proteins, which regulates a wide range of physiological functions linked with all domains of life. In aging cells or under unfavorable cellular conditions, misfolding of proteins generates common pathological events linked with neurodegenerative diseases and aging. Current advances of proteome studies systematically generates some progress in our knowledge that how misfolding of proteins or their accumulation can contribute to the impairment or depletion of proteome functions. Still, the underlying causes of this unrecoverable loss are not clear that how such unsolved transitions give rise to multifactorial challengeable degenerative pathological conditions in neurodegeneration. In this review, we specifically focus and systematically summarize various molecular mechanisms of proteostasis maintenance, as well as discuss progressing neurobiological strategies, promising natural and pharmacological candidates, which can be useful to counteract the problem of proteopathies. Our article emphasizes an urgent need that now it is important for us to recognize the fundamentals of proteostasis to design a new molecular framework and fruitful strategies to uncover how the proteome defects are associated with aging and neurodegenerative diseases. A enhance understanding of progress link with proteome and neurobiological challenges may provide new basic concepts in the near future, based on pharmacological agents, linked with impaired proteostasis and neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    PubMed

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR. Nonetheless, our understanding of species-induced cellular stress lags far behind our understanding of abiotic cellular stress. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow

    PubMed Central

    Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L.

    2014-01-01

    Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. PMID:24780131

  2. Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F₁F₀-ATP synthase

    PubMed Central

    Bergeaud, Marie; Mathieu, Lise; Guillaume, Arnaud; Moll, Ute M; Mignotte, Bernard; Le Floch, Nathalie; Vayssière, Jean-Luc; Rincheval, Vincent

    2013-01-01

    We and others previously reported that endogenous p53 can be located at mitochondria in the absence of stress, suggesting that p53 has a role in the normal physiology of this organelle. The aim of this study was to characterize in unstressed cells the intramitochondrial localization of p53 and identify new partners and functions of p53 in mitochondria. We find that the intramitochondrial pool of p53 is located in the intermembrane space and the matrix. Of note, unstressed HCT116 p53+/+ cells simultaneously show increased O₂ consumption and decreased mitochondrial superoxide production compared with their p53-null counterpart. This data was confirmed by stable H1299 cell lines expressing low levels of p53 specifically targeted to the matrix. Using immunoprecipitation and mass spectrometry, we identified the oligomycin sensitivity-conferring protein (OSCP), a subunit of the F₁F₀-ATP synthase complex, as a new partner of endogenous p53, specifically interacting with p53 localized in the matrix. Interestingly, this interaction seems implicated in mitochondrial p53 localization. Moreover, p53 localized in the matrix promotes the assembly of F₁F₀-ATP synthase. Taking into account that deregulations of mitochondrial respiration and reactive oxygen species production are tightly linked to cancer development, we suggest that mitochondrial p53 may be an important regulator of normal mitochondrial and cellular physiology, potentially exerting tumor suppression activity inside mitochondria. PMID:23966169

  3. Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F₁F0-ATP synthase.

    PubMed

    Bergeaud, Marie; Mathieu, Lise; Guillaume, Arnaud; Moll, Ute M; Mignotte, Bernard; Le Floch, Nathalie; Vayssière, Jean-Luc; Rincheval, Vincent

    2013-09-01

    We and others previously reported that endogenous p53 can be located at mitochondria in the absence of stress, suggesting that p53 has a role in the normal physiology of this organelle. The aim of this study was to characterize in unstressed cells the intramitochondrial localization of p53 and identify new partners and functions of p53 in mitochondria. We find that the intramitochondrial pool of p53 is located in the intermembrane space and the matrix. Of note, unstressed HCT116 p53(+/+) cells simultaneously show increased O₂ consumption and decreased mitochondrial superoxide production compared with their p53-null counterpart. This data was confirmed by stable H1299 cell lines expressing low levels of p53 specifically targeted to the matrix. Using immunoprecipitation and mass spectrometry, we identified the oligomycin sensitivity-conferring protein (OSCP), a subunit of the F₁F₀-ATP synthase complex, as a new partner of endogenous p53, specifically interacting with p53 localized in the matrix. Interestingly, this interaction seems implicated in mitochondrial p53 localization. Moreover, p53 localized in the matrix promotes the assembly of F₁F₀-ATP synthase. Taking into account that deregulations of mitochondrial respiration and reactive oxygen species production are tightly linked to cancer development, we suggest that mitochondrial p53 may be an important regulator of normal mitochondrial and cellular physiology, potentially exerting tumor suppression activity inside mitochondria.

  4. Isolating specific cell and tissue compartments from 3D images for quantitative regional distribution analysis using novel computer algorithms.

    PubMed

    Fenrich, Keith K; Zhao, Ethan Y; Wei, Yuan; Garg, Anirudh; Rose, P Ken

    2014-04-15

    Isolating specific cellular and tissue compartments from 3D image stacks for quantitative distribution analysis is crucial for understanding cellular and tissue physiology under normal and pathological conditions. Current approaches are limited because they are designed to map the distributions of synapses onto the dendrites of stained neurons and/or require specific proprietary software packages for their implementation. To overcome these obstacles, we developed algorithms to Grow and Shrink Volumes of Interest (GSVI) to isolate specific cellular and tissue compartments from 3D image stacks for quantitative analysis and incorporated these algorithms into a user-friendly computer program that is open source and downloadable at no cost. The GSVI algorithm was used to isolate perivascular regions in the cortex of live animals and cell membrane regions of stained spinal motoneurons in histological sections. We tracked the real-time, intravital biodistribution of injected fluorophores with sub-cellular resolution from the vascular lumen to the perivascular and parenchymal space following a vascular microlesion, and mapped the precise distributions of membrane-associated KCC2 and gephyrin immunolabeling in dendritic and somatic regions of spinal motoneurons. Compared to existing approaches, the GSVI approach is specifically designed for isolating perivascular regions and membrane-associated regions for quantitative analysis, is user-friendly, and free. The GSVI algorithm is useful to quantify regional differences of stained biomarkers (e.g., cell membrane-associated channels) in relation to cell functions, and the effects of therapeutic strategies on the redistributions of biomolecules, drugs, and cells in diseased or injured tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. MYC activation is a hallmark of cancer initiation and maintenance.

    PubMed

    Gabay, Meital; Li, Yulin; Felsher, Dean W

    2014-06-02

    The MYC proto-oncogene has been implicated in the pathogenesis of most types of human tumors. MYC activation alone in many normal cells is restrained from causing tumorigenesis through multiple genetic and epigenetically controlled checkpoint mechanisms, including proliferative arrest, apoptosis, and cellular senescence. When pathologically activated in a permissive epigenetic and/or genetic context, MYC bypasses these mechanisms, enforcing many of the "hallmark" features of cancer, including relentless tumor growth associated with DNA replication and transcription, cellular proliferation and growth, protein synthesis, and altered cellular metabolism. MYC mandates tumor cell fate, by inducing stemness and blocking cellular senescence and differentiation. Additionally, MYC orchestrates changes in the tumor microenvironment, including the activation of angiogenesis and suppression of the host immune response. Provocatively, brief or even partial suppression of MYC back to its physiological levels of activation can result in the restoration of intrinsic checkpoint mechanisms, resulting in acute and sustained tumor regression, associated with tumor cells undergoing proliferative arrest, differentiation, senescence, and apoptosis, as well as remodeling of the tumor microenvironment, recruitment of an immune response, and shutdown of angiogenesis. Hence, tumors appear to be "addicted" to MYC because of both tumor cell-intrinsic, cell-autonomous and host-dependent, immune cell-dependent mechanisms. Both the trajectory and persistence of many human cancers require sustained MYC activation. Multiscale mathematical modeling may be useful to predict when tumors will be addicted to MYC. MYC is a hallmark molecular feature of both the initiation and maintenance of tumorigenesis. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Insulin signaling pathway protects neuronal cell lines by Sirt3 mediated IRS2 activation.

    PubMed

    Mishra, Neha; Lata, Sonam; Deshmukh, Priyanka; Kamat, Kajal; Surolia, Avadhesha; Banerjee, Tanushree

    2018-05-01

    Cellular stress like ER and oxidative stress are the principle causative agents of various proteinopathies. Multifunctional protein PARK7/DJ-1 provides protection against cellular stress. Recently, insulin/IGF also has emerged as a neuro-protective molecule. However, it is not known whether DJ-1 and insulin/IGF complement each other for cellular protection in response to stress. In this study, we show for the first time, that in human and mouse neuronal cell lines, down regulation of DJ-1 for 48 h leads to compensatory upregulation of insulin/IGF signaling (IIS) pathway genes, namely, insulin receptor, insulin receptor substrate, and Akt under normal physiological conditions as well as in cellular stress conditions. Moreover, upon exogenous supply of insulin there is a marked increase in the IIS components both at gene and protein levels leading to down regulation and inactivation of GSK3β. By immunoprecipitation, it was observed that Sirt3 mediated deacetylation and activation of FoxO3a could not occur under DJ-1 downregulation. Transient DJ-1 downregulation also led to Akt mediated increased phosphorylation and nuclear exclusion of FoxO3a. When DJ-1 was downregulated increased interaction of Sirt3 with IRS2 was observed leading to its activation resulting in IIS upregulation. Thus, transient downregulation of DJ-1 leads to stimulation of IIS pathway by Sirt3 mediated IRS2 activation. Consequently, antiapoptotic program is triggered in neuronal cells via Akt-GSK3β-FoxO3a axis. © 2018 BioFactors, 44(3):224-236, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  7. Prediction of lung cells oncogenic transformation for induced radon progeny alpha particles using sugarscape cellular automata.

    PubMed

    Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil

    2014-01-01

    Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.

  8. Sub-cellular force microscopy in single normal and cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer andmore » significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.« less

  9. Fructose metabolism in the cerebellum.

    PubMed

    Funari, Vincent A; Crandall, James E; Tolan, Dean R

    2007-01-01

    Under normal physiological conditions, the brain utilizes only a small number of carbon sources for energy. Recently, there is growing molecular and biochemical evidence that other carbon sources, including fructose, may play a role in neuro-energetics. Fructose is the number one commercial sweetener in Western civilization with large amounts of fructose being toxic, yet fructose metabolism remains relatively poorly characterized. Fructose is purportedly metabolized via either of two pathways, the fructose-1-phosphate pathway and/or the fructose-6-phosphate pathway. Many early metabolic studies could not clearly discriminate which of these two pathways predominates, nor could they distinguish which cell types in various tissues are capable of fructose metabolism. In addition, the lack of good physiological models, the diet-induced changes in gene expression in many tissues, the involvement of multiple genes in multiple pathways involved in fructose metabolism, and the lack of characterization of some genes involved in fructose metabolism have complicated our understanding of the physiological role of fructose in neuro-energetics. A recent neuro-metabolism study of the cerebellum demonstrated fructose metabolism and co-expression of the genes specific for the fructose 1-phosphate pathway, GLUT5 (glut5) and ketohexokinase (khk), in Purkinje cells suggesting this as an active pathway in specific neurons? Meanwhile, concern over the rapid increase in dietary fructose, particularly among children, has increased awareness about how fructose is metabolized in vivo and what effects a high fructose diet might have. In this regard, establishment of cellular and molecular studies and physiological characterization of the important and/or deleterious roles fructose plays in the brain is critical. This review will discuss the status of fructose metabolism in the brain with special reference to the cerebellum and the physiological roles of the different pathways.

  10. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, Kahkashan; Sil, Parames C., E-mail: parames@jcbose.ac.in

    The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65 mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100 mg/kg body weight for eight weeks.more » Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-α, IL1-β and IFN-γ), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus. - Highlights: • STZ induced cellular stress plays a vital role in pancreatic dysfunction. • Cellular stress causes inflammation, pancreatic islet cell death and diabetes. • Deregulation of Nrf-2 mediated antioxidant defense machinery takes place. • Islet cells undergo apoptosis (via ER/mitochondrial dependent/independent pathways). • Curcumin protects pancreatic β-cells from the adverse effects of cellular stress.« less

  11. Cardiac anatomy and physiology: a review.

    PubMed

    Gavaghan, M

    1998-04-01

    This article reviews the normal anatomy and physiology of the heart. Understanding the normal anatomic and physiologic relationships described in this article will help perioperative nurses care for patients who are undergoing cardiac procedures. Such knowledge also assists nurses in educating patients about cardiac procedures and about activities that can prevent, reverse, or improve cardiac illness.

  12. Determination of cellular strains by combined atomic force microscopy and finite element modeling.

    PubMed Central

    Charras, Guillaume T; Horton, Mike A

    2002-01-01

    Many organs adapt to their mechanical environment as a result of physiological change or disease. Cells are both the detectors and effectors of this process. Though many studies have been performed in vitro to investigate the mechanisms of detection and adaptation to mechanical strains, the cellular strains remain unknown and results from different stimulation techniques cannot be compared. By combining experimental determination of cell profiles and elasticities by atomic force microscopy with finite element modeling and computational fluid dynamics, we report the cellular strain distributions exerted by common whole-cell straining techniques and from micromanipulation techniques, hence enabling their comparison. Using data from our own analyses and experiments performed by others, we examine the threshold of activation for different signal transduction processes and the strain components that they may detect. We show that modulating cell elasticity, by increasing the F-actin content of the cytoskeleton, or cellular Poisson ratio are good strategies to resist fluid shear or hydrostatic pressure. We report that stray fluid flow in some substrate-stretch systems elicits significant cellular strains. In conclusion, this technique shows promise in furthering our understanding of the interplay among mechanical forces, strain detection, gene expression, and cellular adaptation in physiology and disease. PMID:12124270

  13. Cellular metabolic rates from primary dermal fibroblast cells isolated from birds of different body masses.

    PubMed

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-10-01

    The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Kinetic Adaptations of Myosins for their Diverse Cellular Functions

    PubMed Central

    Heissler, Sarah M.; Sellers, James R.

    2016-01-01

    Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to with actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that – together with structural adaptations – result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular function. PMID:26929436

  15. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology

    PubMed Central

    Turan, Belma; Tuncay, Erkan

    2017-01-01

    Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes. PMID:29137144

  16. Low-temperature carbon utilization is regulated by novel gene activity in the heart of a hibernating mammal

    PubMed Central

    Andrews, Matthew T.; Squire, Teresa L.; Bowen, Christopher M.; Rollins, Martha B.

    1998-01-01

    Hibernation is a physiological adaptation characterized by dramatic decreases in heart rate, body temperature, and metabolism, resulting in long-term dormancy. Hibernating mammals survive for periods up to 6 mo in the absence of food by minimizing carbohydrate catabolism and using triglyceride stores as their primary source of fuel. The cellular and molecular mechanisms underlying the changes from a state of activity to the hibernating state are poorly understood; however, the selective expression of genes offers one level of control. To address this problem, we used a differential gene expression screen to identify genes that are responsible for the physiological characteristics of hibernation in the heart of the thirteen-lined ground squirrel (Spermophilus tridecemlineatus). Here, we report that genes for pancreatic lipase and pyruvate dehydrogenase kinase isozyme 4 are up-regulated in the heart during hibernation. Pancreatic lipase is normally expressed exclusively in the pancreas, but when expressed in the hibernating heart it liberates fatty acids from triglycerides at temperatures as low as 0°C. Pyruvate dehydrogenase kinase isozyme 4 inhibits carbohydrate oxidation and depresses metabolism by preventing the conversion of pyruvate to Ac-CoA. The resulting anaerobic glycolysis and low-temperature lipid catabolism provide evidence that adaptive changes in cardiac physiology are controlled by the differential expression of genes during hibernation. PMID:9653197

  17. Neuronal Responses to Physiological Stress

    PubMed Central

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  18. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    NASA Astrophysics Data System (ADS)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  19. Sub-cellular force microscopy in single normal and cancer cells.

    PubMed

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury.

    PubMed

    Patsalos, Andreas; Pap, Attila; Varga, Tamas; Trencsenyi, Gyorgy; Contreras, Gerardo Alvarado; Garai, Ildiko; Papp, Zoltan; Dezso, Balazs; Pintye, Eva; Nagy, Laszlo

    2017-09-01

    The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6C high ) to a repair (Ly6C low ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  1. Pollen tube energetics: respiration, fermentation and the race to the ovule

    PubMed Central

    Rounds, Caleb M.; Winship, Lawrence J.; Hepler, Peter K.

    2011-01-01

    Background Pollen tubes grow by transferring chemical energy from stored cellular starch and newly assimilated sugars into ATP. This drives myriad processes essential for cell elongation, directly or through the creation of ion gradients. Respiration plays a central role in generating and regulating this energy flow and thus in the success of plant reproduction. Pollen tubes are easily grown in vitro and have become an excellent model for investigating the contributions of respiration to plant cellular growth and morphogenesis at the molecular, biochemical and physiological levels. Scope In recent decades, pollen tube research has become increasingly focused on the molecular mechanisms involved in cellular processes. Yet, effective growth and development requires an intact, integrated set of cellular processes, all supplied with a constant flow of energy. Here we bring together information from the current and historical literature concerning respiration, fermentation and mitochondrial physiology in pollen tubes, and assess the significance of more recent molecular and genetic investigations in a physiological context. Conclusions The rapid growth of the pollen tube down the style has led to the evolution of high rates of pollen tube respiration. Respiration rates in lily predict a total energy turnover of 40–50 fmol ATP s−1 per pollen grain. Within this context we examine the energetic requirements of cell wall synthesis, osmoregulation, actin dynamics and cyclosis. At present, we can only estimate the amount of energy required, because data from growing pollen tubes are not available. In addition to respiration, we discuss fermentation and mitochondrial localization. We argue that the molecular pathways need to be examined within the physiological context to understand better the mechanisms that control tip growth in pollen tubes. PMID:22476489

  2. Ionotropic AMPA-type glutamate and metabotropic GABAB receptors: determining cellular physiology by proteomes.

    PubMed

    Bettler, Bernhard; Fakler, Bernd

    2017-08-01

    Ionotropic AMPA-type glutamate receptors and G-protein-coupled metabotropic GABA B receptors are key elements of neurotransmission whose cellular functions are determined by their protein constituents. Over the past couple of years unbiased proteomic approaches identified comprehensive sets of protein building blocks of these two types of neurotransmitter receptors in the brain (termed receptor proteomes). This provided the opportunity to match receptor proteomes with receptor physiology and to study the structural organization, regulation and function of native receptor complexes in an unprecedented manner. In this review we discuss the principles of receptor architecture and regulation emerging from the functional characterization of the proteomes of AMPA and GABA B receptors. We also highlight progress in unraveling the role of unexpected protein components for receptor physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Microbial production of metabolites and associated enzymatic reactions under high pressure.

    PubMed

    Dong, Yongsheng; Jiang, Hua

    2016-11-01

    High environmental pressure exerts an external stress on the survival of microorganisms that are commonly found under normal pressure. In response, many growth traits alter, including cell morphology and physiology, cellular structure, metabolism, physical and chemical properties, the reproductive process, and defense mechanisms. The high-pressure technology (HP) has been industrially utilized in pressurized sterilization, synthesis of stress-induced products, and microbial/enzymatic transformation of chemicals. This article reviews current research on pressure-induced production of metabolites in normal-pressure microbes and their enzymatic reactions. Factors that affect the production of such metabolites are summarized, as well as the effect of pressure on the performance of microbial fermentation and the yield of flavoring compounds, different categories of induced enzymatic reactions and their characteristics in the supercritical carbon dioxide fluid, effects on enzyme activity, and the selection of desirable bacterial strains. Technological challenges are discussed, and future research directions are proposed. Information presented here will benefit the research, development, and application of the HP technology to improve microbial fermentation and enzymatic production of biologically active substances, thereby help to meet their increasing demand from the ever-expanding market.

  4. NF-κB Signaling Pathway and its Potential as a Target for Therapy in Lymphoid Neoplasms

    PubMed Central

    Yu, Li; Li, Ling; Medeiros, L. Jeffrey; Young, Ken H.

    2016-01-01

    The NF-κB pathway, a critical regulator of apoptosis, plays a key role in many normal cellular functions. Genetic alterations and other mechanisms leading to constitutive activation of the NF-κB pathway contribute to cancer development, progression and therapy resistance by activation of downstream anti-apoptotic pathways, unfavorable microenvironment interactions, and gene dysregulation. Not surprisingly, given its importance to normal and cancer cell function, the NF-κB pathway has emerged as a target for therapy. In the review, we present the physiologic role of the NF-κB pathway and recent advances in better understanding of the pathologic roles of the NF-κB pathway in major types of lymphoid neoplasms. We also provide an update of clinical trials that use NF-κB pathway inhibitors. These trials are exploring the clinical efficiency of combining NF-κB pathway inhibitors with various agents that target diverse mechanisms of action with the goal being to optimize novel therapeutic opportunities for targeting oncogenic pathways to eradicate cancer cells. PMID:27773462

  5. Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury

    PubMed Central

    Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.

    2009-01-01

    Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795

  6. Autophagy: a new player in skeletal maintenance?

    PubMed

    Hocking, Lynne J; Whitehouse, Caroline; Helfrich, Miep H

    2012-07-01

    Imbalances between bone resorption and formation lie at the root of disorders such as osteoporosis, Paget's disease of bone (PDB), and osteopetrosis. Recently, genetic and functional studies have implicated proteins involved in autophagic protein degradation as important mediators of bone cell function in normal physiology and in pathology. Autophagy is the conserved process whereby aggregated proteins, intracellular pathogens, and damaged organelles are degraded and recycled. This process is important both for normal cellular quality control and in response to environmental or internal stressors, particularly in terminally-differentiated cells. Autophagic structures can also act as hubs for the spatial organization of recycling and synthetic process in secretory cells. Alterations to autophagy (reduction, hyperactivation, or impairment) are associated with a number of disorders, including neurodegenerative diseases and cancers, and are now being implicated in maintenance of skeletal homoeostasis. Here, we introduce the topic of autophagy, describe the new findings that are starting to emerge from the bone field, and consider the therapeutic potential of modifying this pathway for the treatment of age-related bone disorders. Copyright © 2012 American Society for Bone and Mineral Research.

  7. The Influence of Hyperthyroidism and Hypothyroidism on the β-Adrenergic Responsiveness of the Turkey Erythrocyte

    PubMed Central

    Bilezikian, John P.; Loeb, John N.; Gammon, Donald E.

    1979-01-01

    The mechanisms responsible for altered adrenergic tone in hyperthyroidism and hypothyroidism are not fully understood. To investigate these mechanisms, the β-adrenergic receptor-cyclic AMP complex of the turkey erythrocyte was studied among groups of normal, hyperthyroid, and hypothyroid turkeys. In erythrocytes obtained from hypothyroid turkeys, there were fewer β-adrenergic receptors than in normal cells as determined by the specific binding of [125I]iodohydroxybenzylpindolol, as well as associated decreases both in catecholamine-responsive adenylate cyclase activity and in cellular cyclic AMP content. In contrast, erythrocytes obtained from hyperthyroid turkeys contained the same number of β-receptors and had the same catecholamine-responsive adenylate cyclase activity as cells from normal birds. Other characteristics of the β-receptors in cells from hyperthyroid birds were indistinguishable from those present in normal erythrocytes. However, within the range of circulating catecholamine concentrations, 5-50 nM, the erythrocytes of the hyperthyroid turkeys generated substantially more cyclic AMP after exposure to isoproterenol than did normal cells. These results suggest that thyroid hormone affects β-receptor-cyclic AMP interrelationships in the turkey erythrocyte by two distinct mechanisms: (a) In hypothyroidism, both β-receptors and catecholamine-dependent cyclic AMP formation are coordinately decreased; (b) in hyperthyroidism, β-receptors are unchanged but there is an amplification of the hormonal signal so that occupation of a given number of receptors at physiological concentrations of catecholamines leads to increased levels of cyclic AMP. PMID:219032

  8. A prospective randomized trial of two solutions for intrapartum amnioinfusion: effects on fetal electrolytes, osmolality, and acid-base status.

    PubMed

    Pressman, E K; Blakemore, K J

    1996-10-01

    Our purpose was to compare the effects of intrapartum amnioinfusion with normal saline solution versus lactated Ringer's solution plus physiologic glucose on neonatal electrolytes and acid-base balance. Patients undergoing amnioinfusion for obstetric indications were randomized to receive normal saline solution or lactated Ringer's solution plus physiologic glucose at standardized amnioinfusion rates. Data were collected prospectively on maternal demographics, course of labor, and maternal and neonatal outcome. Arterial cord blood was obtained for analysis of electrolytes, glucose, osmolality, lactic acid, and blood gases. Control subjects with normal fetal heart rate patterns, and clear amniotic fluid not receiving amnioinfusion were studied concurrently. Data were collected on 59 patients (21 normal saline solution, 18 lactated Ringer's solution plus physiologic glucose, and 20 controls). Maternal demographics, course of labor, and neonatal outcome were similar in all three groups. Cesarean sections were performed more often in the amnioinfusion groups (33.3% for normal saline solution, 38.9% for lactated Ringer's solution plus physiologic glucose) than in the control group (5.0%), p < 0.05. Cord arterial electrolytes, glucose, osmolality, lactic acid, and blood gases were not altered by amnioinfusion with either solution. Intrapartum amnioinfusion with normal saline solution or lactated Ringer's solution plus physiologic glucose has no effect on neonatal electrolytes or acid-base balance.

  9. Cellular redox dysfunction in the development of cardiovascular diseases.

    PubMed

    Kanaan, Georges N; Harper, Mary-Ellen

    2017-11-01

    To meet its exceptionally high energy demands, the heart relies largely on fatty acid oxidation, which then drives the oxidative phosphorylation system in mitochondria. Each day, this system produces about 6kg of ATP to sustain heart function. Fatty acid oxidation is sometimes associated with high rates of mitochondrial reactive oxygen species (ROS) production. By definition, ROS are singlet electron intermediates formed during the partial reduction of oxygen to water and they include radical and non-radical intermediates like superoxide, hydrogen peroxide and hydroxyl radical. Superoxide can also interact with nitric oxide to produce peroxynitrite that in turn can give rise to other radical or non-radical reactive nitrogen species (RNS) like nitrogen dioxide, dinitrogen trioxide and others. While mitochondrial and cellular functions can be impaired by ROS if they accumulate, under normal physiological conditions ROS are important signaling molecules in the cardiovascular system. A fine balance between ROS production and antioxidant systems, including glutathione redox, is essential in the heart; otherwise the ensuing damage can contribute to pathogenic processes, which can culminate in endothelial dysfunction, atherosclerosis, hypertension, cardiac hypertrophy, arrhythmias, myocardial ischemia/reperfusion damage, and heart failure. Here we provide a succinct review of recent findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The role of estrogen in cutaneous ageing and repair.

    PubMed

    Wilkinson, Holly N; Hardman, Matthew J

    2017-09-01

    Combined advances in modern medical practice and increased human longevity are driving an ever-expanding elderly population. Females are particularly at risk of age-associated pathology, spending more of their lives in a post-menopausal state. Menopause, denoted by a rapid decline in serum sex steroid levels, accelerates biological ageing across the body's tissues. Post-menopause physiological changes are particularly noticeable in the skin, which loses structural architecture and becomes prone to damage. The sex steroid most widely discussed as an intrinsic contributor to skin ageing and pathological healing is 17β-estradiol (or estrogen), although many others are involved. Estrogen deficiency is detrimental to many wound-healing processes, notably inflammation and re-granulation, while exogenous estrogen treatment widely reverses these effects. Over recent decades, many of the molecular and cellular correlates to estrogen's beneficial effect on normal skin homeostasis and wound healing have been reported. However, disparities still exist, particularly in the context of mechanistic studies investigating estrogen receptor signalling and its potential cellular effects. New molecular techniques, coupled with increased understanding of estrogen in skin biology, will provide further opportunities to develop estrogen receptor-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Antioxidant enzymes as redox-based biomarkers: a brief review

    PubMed Central

    Yang, Hee-Young; Lee, Tae-Hoon

    2015-01-01

    The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208] PMID:25560698

  12. Mammalian Cell-Based Sensor System

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  13. Emerging connections between RNA and autophagy.

    PubMed

    Frankel, Lisa B; Lubas, Michal; Lund, Anders H

    2017-01-02

    Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome/vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy in yeast, plants and animals, reviewing the molecular mechanisms and biological importance in normal physiology, stress and disease. In addition, we explore emerging evidence of core autophagy regulation mediated by RNA-binding proteins and noncoding RNAs, and point to gaps in our current knowledge of the connection between RNA and autophagy. Finally, we discuss the pathological implications of RNA-protein aggregation, primarily in the context of neurodegenerative disease.

  14. α7 nicotinic ACh receptors as a ligand-gated source of Ca(2+) ions: the search for a Ca(2+) optimum.

    PubMed

    Uteshev, Victor V

    2012-01-01

    The spatiotemporal distribution of cytosolic Ca(2+) ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca(2+) ions including ligand- and voltage-gated Ca(2+) channels contribute to intracellular Ca(2+) homeostasis. Many normal physiological and therapeutic neuronal functions are Ca(2+)-dependent, however an excess of cytosolic Ca(2+) or a lack of the appropriate balance between Ca(2+) entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca(2+) elevations and thus, optimal activation of ligand- and voltage-gated Ca(2+) ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic -acetylcholine receptors (nAChRs) are highly permeable to Ca(2+) ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca(2+) influx and how this source of Ca(2+) entry compares to NMDA receptors in supporting cytosolic Ca(2+) homeostasis, neuronal function and survival.

  15. Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury

    PubMed Central

    Mami, Iadh; Bouvier, Nicolas; El Karoui, Khalil; Gallazzini, Morgan; Rabant, Marion; Laurent-Puig, Pierre; Li, Shuping; Tharaux, Pierre-Louis; Beaune, Philippe; Thervet, Eric; Chevet, Eric; Hu, Guo-Fu

    2016-01-01

    Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang−/−) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism. PMID:26195817

  16. Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models

    NASA Astrophysics Data System (ADS)

    Sud, Dhruv; Zhong, Wei; Beer, David G.; Mycek, Mary-Ann

    2006-05-01

    A fluorescence lifetime imaging microscopy (FLIM) method was developed and applied to investigate metabolic function in living human normal esophageal (HET-1) and Barrett’s adenocarcinoma (SEG-1) cells. In FLIM, image contrast is based on fluorophore excited state lifetimes, which reflect local biochemistry and molecular activity. Unique FLIM system attributes, including variable ultrafast time gating (≥ 200 ps), wide spectral tunability (337.1 - 960 nm), large temporal dynamic range (≥ 600 ps), and short data acquisition and processing times (15 s), enabled the study of two key molecules consumed at the termini of the oxidative phosphorylation pathway, NADH and oxygen, in living cells under controlled and calibrated environmental conditions. NADH is an endogenous cellular fluorophore detectable in living human tissues that has been shown to be a quantitative biomarker of dysplasia in the esophagus. Lifetime calibration of an oxygen-sensitive, ruthenium-based cellular stain enabled in vivo oxygen level measurements with a resolution of 8 μM over the entire physiological range (1 - 300 μM). Starkly higher intracellular oxygen and NADH levels in living SEG-1 vs. HET-1 cells were detected by FLIM and attributed to altered metabolic pathways in malignant cells.

  17. Confocal Microscopy and Molecular-Specific Optical Contrast Agents for the Detection of Oral Neoplasia

    PubMed Central

    Carlson, Alicia L.; Gillenwater, Ann M.; Williams, Michelle D.; El-Naggar, Adel K.; Richards-Kortum, R. R.

    2009-01-01

    Using current clinical diagnostic techniques, it is difficult to visualize tumor morphology and architecture at the cellular level, which is necessary for diagnostic localization of pathologic lesions. Optical imaging techniques have the potential to address this clinical need by providing real-time, sub-cellular resolution images. This paper describes the use of dual mode confocal microscopy and optical molecular-specific contrast agents to image tissue architecture, cellular morphology, and sub-cellular molecular features of normal and neoplastic oral tissues. Fresh tissue slices were prepared from 33 biopsies of clinically normal and abnormal oral mucosa obtained from 14 patients. Reflectance confocal images were acquired after the application of 6% acetic acid, and fluorescence confocal images were acquired after the application of a fluorescence contrast agent targeting the epidermal growth factor receptor (EGFR). The dual imaging modes provided images similar to light microscopy of hematoxylin and eosin and immunohistochemistry staining, but from thick fresh tissue slices. Reflectance images provided information on the architecture of the tissue and the cellular morphology. The nuclear-to-cytoplasmic (N/C) ratio from the reflectance images was at least 7.5 times greater for the carcinoma than the corresponding normal samples, except for one case of highly keratinized carcinoma. Separation of carcinoma from normal and mild dysplasia was achieved using this ratio (p<0.01). Fluorescence images of EGFR expression yielded a mean fluorescence labeling intensity (FLI) that was at least 2.7 times higher for severe dysplasia and carcinoma samples than for the corresponding normal sample, and could be used to distinguish carcinoma from normal and mild dysplasia (p<0.01). Analyzed together, the N/C ratio and the mean FLI may improve the ability to distinguish carcinoma from normal squamous epithelium. PMID:17877424

  18. Prohibitin( PHB) roles in granulosa cell physiology.

    PubMed

    Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E

    2016-01-01

    Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of a highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/PHB/flotillin/HflK/C (SPFH) domain (also known as the PHB domain) found in diverse species from prokaryotes to eukaryotes. PHB is ubiquitously expressed in a circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane and forms complexes with the ATPases associated with proteases having diverse cellular activities. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulates transcriptional activity directly or through interactions with chromatin remodeling proteins. Many functions have been attributed to the mitochondrial and nuclear PHB complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintenance of the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood.

  19. Prohibitin (PHB) roles in granulosa cell physiology

    PubMed Central

    Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E.

    2015-01-01

    Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on the recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/prohibitin/flotillin/HflK/C (SPFH) domain [also known as the PHB domain] found in divergent species from prokaryotes to eukaryotes. PHB is ubiquitously expressed either in circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane (IMM), and form complexes with the ATPases Associated with diverse cellular Activities (m-AAA) proteases. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulate transcriptional activity directly or through interactions with chromatin remodeling proteins. Multiple functions have been attributed to the mitochondrial and nuclear prohibitin complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintaining the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood. PMID:26496733

  20. Abnormalities in the cellular phase of blood fibrinolytic activity in systemic lupus erythematosus and in venous thromboembolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroz, L.A.; MacLean, L.D.; Langleben, D.

    1986-09-15

    Fibrinolytic activities of whole blood and plasma were determined by /sup 125/I-fibrin radiometric assay in 16 normal subjects, and in 11 patients with systemic lupus erythematosus (SLE), 14 with progressive systemic sclerosis (PSS), 23 with venous thromboembolic disease, and 20 patients awaiting elective surgery. Mean whole blood and plasma activities for patients with PSS, and for those awaiting elective surgery, were similar to normal values, as was the mean plasma activity in patients with SLE. However, mean whole blood activity in SLE was significantly decreased compared with normals (p less than 0.05), with mean plasma activity accounting for 44% ofmore » mean whole blood activity (compared with 17% in normal subjects), representing a 67% decrease in mean calculated cellular phase activity in SLE, when compared with normals. Since the numbers of cells (neutrophils, monocytes) possibly involved in cellular activity were not decreased, the findings suggest a functional defect in fibrinolytic activity of one or more blood cell types in SLE. An additional finding was the participation of the cellular phase as well as the well-known plasma phase of blood in the fibrinolytic response to thromboembolism.« less

  1. Nonlinear dynamics applied to the study of cardiovascular effects of stress

    NASA Astrophysics Data System (ADS)

    Anishchenko, T. G.; Igosheva, N. B.

    1998-03-01

    We study cardiovascular responses to emotional stresses in humans and rats using traditional physiological parameters and methods of nonlinear dynamics. We found that emotional stress results in significant changes of chaos degree of ECG and blood pressure signals, estimated using a normalized entropy. We demonstrate that the normalized entropy is a more sensitive indicator of the stress-induced changes in cardiovascular systems compared with traditional physiological parameters Using the normalized entropy we discovered the significant individual differences in cardiovascular stress-reactivity that was impossible to obtain by traditional physiological methods.

  2. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism

    PubMed Central

    Shimada, Takashi; Kakitani, Makoto; Yamazaki, Yuji; Hasegawa, Hisashi; Takeuchi, Yasuhiro; Fujita, Toshiro; Fukumoto, Seiji; Tomizuka, Kazuma; Yamashita, Takeyoshi

    2004-01-01

    Inorganic phosphate is essential for ECM mineralization and also as a constituent of important molecules in cellular metabolism. Investigations of several hypophosphatemic diseases indicated that a hormone-like molecule probably regulates serum phosphate concentration. FGF23 has recently been recognized as playing important pathophysiological roles in several hypophosphatemic diseases. We present here the evidence that FGF23 is a physiological regulator of serum phosphate and 1,25-dihydroxyvitamin D (1,25[OH]2D) by generating FGF23-null mice. Disruption of the Fgf23 gene did not result in embryonic lethality, although homozygous mice showed severe growth retardation with abnormal bone phenotype and markedly short life span. The Fgf23–/– mice displayed significantly high serum phosphate with increased renal phosphate reabsorption. They also showed an elevation in serum 1,25(OH)2D that was due to the enhanced expression of renal 25-hydroxyvitamin D-1α-hydroxylase (1α-OHase) from 10 days of age. These phenotypes could not be explained by currently known regulators of mineral homeostasis, indicating that FGF23 is essential for normal phosphate and vitamin D metabolism. PMID:14966565

  3. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism.

    PubMed

    Shimada, Takashi; Kakitani, Makoto; Yamazaki, Yuji; Hasegawa, Hisashi; Takeuchi, Yasuhiro; Fujita, Toshiro; Fukumoto, Seiji; Tomizuka, Kazuma; Yamashita, Takeyoshi

    2004-02-01

    Inorganic phosphate is essential for ECM mineralization and also as a constituent of important molecules in cellular metabolism. Investigations of several hypophosphatemic diseases indicated that a hormone-like molecule probably regulates serum phosphate concentration. FGF23 has recently been recognized as playing important pathophysiological roles in several hypophosphatemic diseases. We present here the evidence that FGF23 is a physiological regulator of serum phosphate and 1,25-dihydroxyvitamin D (1,25[OH]2D) by generating FGF23-null mice. Disruption of the Fgf23 gene did not result in embryonic lethality, although homozygous mice showed severe growth retardation with abnormal bone phenotype and markedly short life span. The Fgf23(-/-) mice displayed significantly high serum phosphate with increased renal phosphate reabsorption. They also showed an elevation in serum 1,25(OH)2D that was due to the enhanced expression of renal 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-OHase) from 10 days of age. These phenotypes could not be explained by currently known regulators of mineral homeostasis, indicating that FGF23 is essential for normal phosphate and vitamin D metabolism.

  4. Identifying corals displaying aberrant behavior in Fiji’s Lau Archipelago

    PubMed Central

    Chen, Chii-Shiarng; Dempsey, Alexandra C.

    2017-01-01

    Abstract Given the numerous threats against Earth’s coral reefs, there is an urgent need to develop means of assessing reef coral health on a proactive timescale. Molecular biomarkers may prove useful in this endeavor because their expression should theoretically undergo changes prior to visible signs of health decline, such as the breakdown of the coral-dinoflagellate (genus Symbiodinium) endosymbiosis. Herein 13 molecular- and physiological-scale biomarkers spanning both eukaryotic compartments of the anthozoan-Symbiodinium mutualism were assessed across 70 pocilloporid coral colonies sampled from reefs of Fiji’s easternmost province, Lau. Eleven colonies were identified as outliers upon employment of a detection method based partially on the Mahalanobis distance; these corals were hypothesized to have been displaying aberrant sub-cellular behavior with respect to their gene expression signatures, as they were characterized not only by lower Symbiodinium densities, but also by higher levels of expression of several stress-targeted genes. Although these findings could suggest that the sampled colonies were physiologically compromised at the time of sampling, further studies are warranted to state conclusively whether these 11 scleractinian coral colonies are more stress-prone than nearby conspecifics that demonstrated statistically normal phenotypes. PMID:28542245

  5. Role of ACTH in the Interactive/Paracrine Regulation of Adrenal Steroid Secretion in Physiological and Pathophysiological Conditions

    PubMed Central

    Lefebvre, Hervé; Thomas, Michaël; Duparc, Céline; Bertherat, Jérôme; Louiset, Estelle

    2016-01-01

    In the normal human adrenal gland, steroid secretion is regulated by a complex network of autocrine/paracrine interactions involving bioactive signals released by endothelial cells, nerve terminals, chromaffin cells, immunocompetent cells, and adrenocortical cells themselves. ACTH can be locally produced by medullary chromaffin cells and is, therefore, a major mediator of the corticomedullary functional interplay. Plasma ACTH also triggers the release of angiogenic and vasoactive agents from adrenocortical cells and adrenal mast cells and, thus, indirectly regulates steroid production through modulation of the adrenal blood flow. Adrenocortical neoplasms associated with steroid hypersecretion exhibit molecular and cellular defects that tend to reinforce the influence of paracrine regulatory loops on corticosteroidogenesis. Especially, ACTH has been found to be abnormally synthesized in bilateral macronodular adrenal hyperplasia responsible for hypercortisolism. In these tissues, ACTH is detected in a subpopulation of adrenocortical cells that express gonadal markers. This observation suggests that ectopic production of ACTH may result from impaired embryogenesis leading to abnormal maturation of the adrenogonadal primordium. Globally, the current literature indicates that ACTH is a major player in the autocrine/paracrine processes occurring in the adrenal gland in both physiological and pathological conditions. PMID:27489549

  6. Swelling and Eicosanoid Metabolites Differentially Gate TRPV4 Channels in Retinal Neurons and Glia

    PubMed Central

    Ryskamp, Daniel A.; Jo, Andrew O.; Frye, Amber M.; Vazquez-Chona, Felix; MacAulay, Nanna; Thoreson, Wallace B.

    2014-01-01

    Activity-dependent shifts in ionic concentrations and water that accompany neuronal and glial activity can generate osmotic forces with biological consequences for brain physiology. Active regulation of osmotic gradients and cellular volume requires volume-sensitive ion channels. In the vertebrate retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume increases into physiological responses. Hypotonic stimuli induced sustained [Ca2+]i elevations that were inhibited by TRPV4 antagonists and absent in TRPV4−/− Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, characterized by slow-onset and Ca2+ waves, and, in excess, were sufficient to induce reactive gliosis. In contrast, neurons responded to TRPV4 agonists and swelling with fast, inactivating Ca2+ signals that were independent of phospholipase A2. Our results support a model whereby swelling and proinflammatory signals associated with arachidonic acid metabolites differentially gate TRPV4 in retinal neurons and glia, with potentially significant consequences for normal and pathological retinal function. PMID:25411497

  7. Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy

    PubMed Central

    Roy, Sohini; Bag, Arup K.; Singh, Rakesh K.; Talmadge, James E.; Batra, Surinder K.; Datta, Kaustubh

    2017-01-01

    Neuropilins (NRPs) are non-tyrosine kinase cell surface glycoproteins expressed in all vertebrates and widely conserved across species. The two isoforms, such as neuropilin-1 (NRP1) and neuropilin-2 (NRP2), mainly act as coreceptors for class III Semaphorins and for members of the vascular endothelial growth factor family of molecules and are widely known for their role in a wide array of physiological processes, such as cardiovascular, neuronal development and patterning, angiogenesis, lymphangiogenesis, as well as various clinical disorders. Intriguingly, additional roles for NRPs occur with myeloid and lymphoid cells, in normal physiological as well as different pathological conditions, including cancer, immunological disorders, and bone diseases. However, little is known concerning the molecular pathways that govern these functions. In addition, NRP1 expression has been characterized in different immune cellular phenotypes including macrophages, dendritic cells, and T cell subsets, especially regulatory T cell populations. By contrast, the functions of NRP2 in immune cells are less well known. In this review, we briefly summarize the genomic organization, structure, and binding partners of the NRPs and extensively discuss the recent advances in their role and function in different immune cell subsets and their clinical implications. PMID:29067024

  8. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease.

    PubMed

    Polyak, Erzsebet; Ostrovsky, Julian; Peng, Min; Dingley, Stephen D; Tsukikawa, Mai; Kwon, Young Joon; McCormack, Shana E; Bennett, Michael; Xiao, Rui; Seiler, Christoph; Zhang, Zhe; Falk, Marni J

    2018-04-01

    Oxidative stress is a known contributing factor in mitochondrial respiratory chain (RC) disease pathogenesis. Yet, no efficient means exists to objectively evaluate the comparative therapeutic efficacy or toxicity of different antioxidant compounds empirically used in human RC disease. We postulated that pre-clinical comparative analysis of diverse antioxidant drugs having suggested utility in primary RC disease using animal and cellular models of RC dysfunction may improve understanding of their integrated effects and physiologic mechanisms, and enable prioritization of lead antioxidant molecules to pursue in human clinical trials. Here, lifespan effects of N-acetylcysteine (NAC), vitamin E, vitamin C, coenzyme Q10 (CoQ10), mitochondrial-targeted CoQ10 (MS010), lipoate, and orotate were evaluated as the primary outcome in a well-established, short-lived C. elegans gas-1(fc21) animal model of RC complex I disease. Healthspan effects were interrogated to assess potential reversal of their globally disrupted in vivo mitochondrial physiology, transcriptome profiles, and intermediary metabolic flux. NAC or vitamin E fully rescued, and coenzyme Q, lipoic acid, orotic acid, and vitamin C partially rescued gas-1(fc21) lifespan toward that of wild-type N2 Bristol worms. MS010 and CoQ10 largely reversed biochemical pathway expression changes in gas-1(fc21) worms. While nearly all drugs normalized the upregulated expression of the "cellular antioxidant pathway", they failed to rescue the mutant worms' increased in vivo mitochondrial oxidant burden. NAC and vitamin E therapeutic efficacy were validated in human fibroblast and/or zebrafish complex I disease models. Remarkably, rotenone-induced zebrafish brain death was preventable partially with NAC and fully with vitamin E. Overall, these pre-clinical model animal data demonstrate that several classical antioxidant drugs do yield significant benefit on viability and survival in primary mitochondrial disease, where their major therapeutic benefit appears to result from targeting global cellular, rather than intramitochondria-specific, oxidative stress. Clinical trials are needed to evaluate whether the two antioxidants, NAC and vitamin E, that show greatest efficacy in translational model animals significantly improve the survival, function, and feeling of human subjects with primary mitochondrial RC disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Endocytosis and Endosomal Trafficking in Plants.

    PubMed

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  10. Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism.

    PubMed

    Ardestani, Amin; Lupse, Blaz; Maedler, Kathrin

    2018-05-05

    The evolutionarily conserved Hippo pathway is a key regulator of organ size and tissue homeostasis. Its dysregulation is linked to multiple pathological disorders. In addition to regulating development and growth, recent studies show that Hippo pathway components such as MST1/2 and LATS1/2 kinases, as well as YAP/TAZ transcriptional coactivators, are regulated by metabolic pathways and that the Hippo pathway controls metabolic processes at the cellular and organismal levels in physiological and metabolic disease states such as obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), cardiovascular disorders, and cancer. In this review we summarize the connection between key Hippo components and metabolism, and how this interplay regulates cellular metabolism and metabolic pathways. The emerging function of Hippo in the regulation of metabolic homeostasis under physiological and pathological conditions is highlighted. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Motifs, modules and games in bacteria.

    PubMed

    Wolf, Denise M; Arkin, Adam P

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.

  12. Motifs, modules and games in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Denise M.; Arkin, Adam P.

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment.more » Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.« less

  13. The Esophagiome: concept, status, and future perspectives.

    PubMed

    Gregersen, Hans; Liao, Donghua; Brasseur, James G

    2016-09-01

    The term "Esophagiome" is meant to imply a holistic, multiscale treatment of esophageal function from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. The development and application of multiscale mathematical models of esophageal function are central to the Esophagiome concept. These model elements underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease by quantitatively contrasting normal and pathophysiological function. Functional models incorporate anatomical details with sensory-motor properties and functional responses, especially related to biomechanical functions, such as bolus transport and gastrointestinal fluid mixing. This brief review provides insight into Esophagiome research. Future advanced models can provide predictive evaluations of the therapeutic consequences of surgical and endoscopic treatments and will aim to facilitate clinical diagnostics and treatment. © 2016 New York Academy of Sciences.

  14. Cellular fluid mechanics.

    PubMed

    Kamm, Roger D

    2002-01-01

    The coupling of fluid dynamics and biology at the level of the cell is an intensive area of investigation because of its critical role in normal physiology and disease. Microcirculatory flow has been a focus for years, owing to the complexity of cell-cell or cell-glycocalyx interactions. Noncirculating cells, particularly those that comprise the walls of the circulatory system, experience and respond biologically to fluid dynamic stresses. In this article, we review the more recent studies of circulating cells, with an emphasis on the role of the glycocalyx on red-cell motion in small capillaries and on the deformation of leukocytes passing through the microcirculation. We also discuss flows in the vicinity of noncirculating cells, the influence of fluid dynamic shear stress on cell biology, and diffusion in the lipid bi-layer, all in the context of the important fluid-dynamic phenomena.

  15. Stem cell therapy and its potential role in pituitary disorders.

    PubMed

    Lara-Velazquez, Montserrat; Akinduro, Oluwaseun O; Reimer, Ronald; Woodmansee, Whitney W; Quinones-Hinojosa, Alfredo

    2017-08-01

    The pituitary gland is one of the key components of the endocrine system. Congenital or acquired alterations can mediate destruction of cells in the gland leading to hormonal dysfunction. Even though pharmacological treatment for pituitary disorders is available, exogenous hormone replacement is neither curative nor sustainable. Thus, alternative therapies to optimize management and improve quality of life are desired. An alternative modality to re-establish pituitary function is to promote endocrine cell regeneration through stem cells that can be obtained from the pituitary parenchyma or pluripotent cells. Stem cell therapy has been successfully applied to a plethora of other disorders, and is a promising alternative to hormonal supplementation for resumption of normal hormone homeostasis. In this review, we describe the common causes for pituitary deficiencies and the advances in cellular therapy to restore the physiological pituitary function.

  16. Growth and Remodeling in Blood Vessels Studied In Vivo With Fractal Analysis

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.

    2003-01-01

    Every cell in the human body must reside in close proximity to a blood vessel (within approximately 200 mm) because blood vessels provide the oxygen, metabolite, and fluid exchanges required for cellular existence. The growth and remodeling of blood vessels are required to support the normal physiology of embryonic development, reproductive biology, wound healing and adaptive remodeling to exercise, as well as abnormal tissue change in diseases such as cancer, diabetes, and coronary heart disease. Cardiovascular and hemodynamic (blood flow dynamics) alterations experienced by astronauts during long-term spaceflight, including orthostatic intolerance, fluid shifts in the body, and reduced numbers of red (erythrocyte) and white (immune) blood cells, are identified as risk factors of very high priority in the NASA task force report on risk reduction for human spaceflight, the "Critical Path Roadmap."

  17. Role of STAT3 in Cancer Metastasis and Translational Advances

    PubMed Central

    Patil, Prachi; Gude, Rajiv P.

    2013-01-01

    Signal transducer and activator of transcription 3 (STAT3) is a latent cytoplasmic transcription factor, originally discovered as a transducer of signal from cell surface receptors to the nucleus. It is activated by tyrosine phosphorylation at position 705 leading to its dimerization, nuclear translocation, DNA binding, and activation of gene transcription. Under normal physiological conditions, STAT3 activation is tightly regulated. However, compelling evidence suggests that STAT3 is constitutively activated in many cancers and plays a pivotal role in tumor growth and metastasis. It regulates cellular proliferation, invasion, migration, and angiogenesis that are critical for cancer metastasis. In this paper, we first describe the mechanism of STAT3 regulation followed by how STAT3 is involved in cancer metastasis, then we summarize the various small molecule inhibitors that inhibit STAT3 signaling. PMID:24199193

  18. New Insight into the Role of Reactive Oxygen Species (ROS) in Cellular Signal-Transduction Processes.

    PubMed

    Russell, Eileen G; Cotter, Thomas G

    2015-01-01

    Reactive oxygen species (ROS) were once considered to be deleterious agents, contributing to a vast range of pathologies. But, now their protective effects are being appreciated. Both their damaging and beneficial effects are initiated when they target distinct molecules and consequently begin functioning as part of complex signal-transduction pathways. The recognition of ROS as signaling mediators has driven a wealth of research into their roles in both normal and pathophysiological states. The present review assesses the relevant recent literature to outline the current perspectives on redox-signaling mechanisms, physiological implications, and therapeutic strategies. This study highlights that a more fundamental knowledge about many aspects of redox signaling will allow better targeting of ROS, which would in turn improve prophylactic and pharmacotherapy for redox-associated diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Breaking into the epithelial apical–junctional complex — news from pathogen hackers

    PubMed Central

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2012-01-01

    The epithelial apical–junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical–junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical–junctional complex of the Ig superfamily — junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor — are important regulators of junction structure and function and represent critical targets of microbial virulence gene products. PMID:15037310

  20. Breaking into the epithelial apical-junctional complex--news from pathogen hackers.

    PubMed

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2004-02-01

    The epithelial apical-junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical-junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical-junctional complex of the Ig superfamily--junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor--are important regulators of junction structure and function and represent critical targets of microbial virulence gene products.

  1. The expanding universe of hypoxia.

    PubMed

    Zhang, Huafeng; Semenza, Gregg L

    2008-07-01

    Reduced oxygen availability (hypoxia) is sensed and transduced into changes in the activity or expression of cellular macromolecules. These responses impact on virtually all areas of biology and medicine. In this meeting report, we summarize major developments in the field that were presented at the 2008 Keystone Symposium on Cellular, Physiological, and Pathogenic Responses to Hypoxia.

  2. Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation.

    PubMed

    Nakamura, Tomohiro; Lipton, Stuart A

    2016-03-01

    Reactive nitrogen species, such as nitric oxide (NO), exert their biological activity in large part through post-translational modification of cysteine residues, forming S-nitrosothiols. This chemical reaction proceeds via a process that we and our colleagues have termed protein S-nitrosylation. Under conditions of normal NO production, S-nitrosylation regulates the activity of many normal proteins. However, in degenerative conditions characterized by nitrosative stress, increased levels of NO lead to aberrant S-nitrosylation that contributes to the pathology of the disease. Thus, S-nitrosylation has been implicated in a wide range of cellular mechanisms, including mitochondrial function, proteostasis, transcriptional regulation, synaptic activity, and cell survival. In recent years, the research area of protein S-nitrosylation has become prominent due to improvements in the detection systems as well as the demonstration that protein S-nitrosylation plays a critical role in the pathogenesis of neurodegenerative and other neurological disorders. To further promote our understanding of how protein S-nitrosylation affects cellular systems, guidelines for the design and conduct of research on S-nitrosylated (or SNO-)proteins would be highly desirable, especially for those newly entering the field. In this review article, we provide a strategic overview of designing experimental approaches to study protein S-nitrosylation. We specifically focus on methods that can provide critical data to demonstrate that an S-nitrosylated protein plays a (patho-)physiologically-relevant role in a biological process. Hence, the implementation of the approaches described herein will contribute to further advancement of the study of S-nitrosylated proteins, not only in neuroscience but also in other research fields.

  3. Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system

    PubMed Central

    Imanaka-Yoshida, Kyoko; Aoki, Hiroki

    2014-01-01

    Living tissue is composed of cells and extracellular matrix (ECM). In the heart and blood vessels, which are constantly subjected to mechanical stress, ECM molecules form well-developed fibrous frameworks to maintain tissue structure. ECM is also important for biological signaling, which influences various cellular functions in embryonic development, and physiological/pathological responses to extrinsic stimuli. Among ECM molecules, increased attention has been focused on matricellular proteins. Matricellular proteins are a growing group of non-structural ECM proteins highly up-regulated at active tissue remodeling, serving as biological mediators. Tenascin-C (TNC) is a typical matricellular protein, which is highly expressed during embryonic development, wound healing, inflammation, and cancer invasion. The expression is tightly regulated, dependent on the microenvironment, including various growth factors, cytokines, and mechanical stress. In the heart, TNC appears in a spatiotemporal-restricted manner during early stages of development, sparsely detected in normal adults, but transiently re-expressed at restricted sites associated with tissue injury and inflammation. Similarly, in the vascular system, TNC is strongly up-regulated during embryonic development and under pathological conditions with an increase in hemodynamic stress. Despite its intriguing expression pattern, cardiovascular system develops normally in TNC knockout mice. However, deletion of TNC causes acute aortic dissection (AAD) under strong mechanical and humoral stress. Accumulating reports suggest that TNC may modulate the inflammatory response and contribute to elasticity of the tissue, so that it may protect cardiovascular tissue from destructive stress responses. TNC may be a key molecule to control cellular activity during development, adaptation, or pathological tissue remodeling. PMID:25120494

  4. Dehydration-Anorexia Derives From A Reduction In Meal Size, But Not Meal Number

    PubMed Central

    Boyle, Christina N.; Lorenzen, Sarah M.; Compton, Douglas; Watts, Alan G.

    2011-01-01

    The anorexia that results from extended periods of cellular dehydration is an important physiological adaptation that limits the intake of osmolytes from food and helps maintain the integrity of fluid compartments. The ability to experimentally control both the development and reversal of anorexia, together with the understanding of underlying hormonal and neuropeptidergic signals, make dehydration (DE)-anorexia a powerful model for exploring the interactions of neural networks that stimulate and inhibit food intake. However, it is not known which meal parameters are affected by cellular dehydration to generate anorexia. Here we use continuous and high temporal resolution recording of food and fluid intake, together with a drinking-explicit method of meal pattern analysis to explore which meal parameters are modified during DE-anorexia. We find that the most important factor responsible for DE-anorexia is the failure to maintain feeding behavior once a meal has started, rather than the ability to initiate a meal, which remains virtually intact. This outcome is consistent with increased sensitivity to satiation signals and post-prandial satiety mechanisms. We also find that DE-anorexia significantly disrupts the temporal distribution of meals across the day so that the number of nocturnal meals gradually decreases while diurnal meal number increases. Surprisingly, once DE-anorexia is reversed this temporal redistribution is maintained for at least 4 days after normal food intake has resumed, which may allow increased daily food intake even after normal satiety mechanisms are reinstated. Therefore, DE-anorexia apparently develops from a selective targeting of those neural networks that control meal termination, whereas meal initiation mechanisms remain viable. PMID:21854794

  5. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    PubMed

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  6. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    PubMed Central

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID:26023144

  7. Regulation of gene expression is associated with tolerance of the Arctic copepod Calanus glacialis to CO2-acidified sea water.

    PubMed

    Bailey, Allison; De Wit, Pierre; Thor, Peter; Browman, Howard I; Bjelland, Reidun; Shema, Steven; Fields, David M; Runge, Jeffrey A; Thompson, Cameron; Hop, Haakon

    2017-09-01

    Ocean acidification is the increase in seawater p CO 2 due to the uptake of atmospheric anthropogenic CO 2 , with the largest changes predicted to occur in the Arctic seas. For some marine organisms, this change in p CO 2 , and associated decrease in pH, represents a climate change-related stressor. In this study, we investigated the gene expression patterns of nauplii of the Arctic copepod Calanus glacialis cultured at low pH levels. We have previously shown that organismal-level performance (development, growth, respiration) of C. glacialis nauplii is unaffected by low pH. Here, we investigated the molecular-level response to lowered pH in order to elucidate the physiological processes involved in this tolerance. Nauplii from wild-caught C. glacialis were cultured at four pH levels (8.05, 7.9, 7.7, 7.5). At stage N6, mRNA was extracted and sequenced using RNA-seq. The physiological functionality of the proteins identified was categorized using Gene Ontology and KEGG pathways. We found that the expression of 151 contigs varied significantly with pH on a continuous scale (93% downregulated with decreasing pH). Gene set enrichment analysis revealed that, of the processes downregulated, many were components of the universal cellular stress response, including DNA repair, redox regulation, protein folding, and proteolysis. Sodium:proton antiporters were among the processes significantly upregulated, indicating that these ion pumps were involved in maintaining cellular pH homeostasis. C. glacialis significantly alters its gene expression at low pH, although they maintain normal larval development. Understanding what confers tolerance to some species will support our ability to predict the effects of future ocean acidification on marine organisms.

  8. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators.

    PubMed

    Prossnitz, Eric R; Arterburn, Jeffrey B

    2015-07-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.

    PubMed

    Maddalena, Lucas A; Selim, Shehab M; Fonseca, Joao; Messner, Holt; McGowan, Shannon; Stuart, Jeffrey A

    2017-11-04

    Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Unique Transcriptome Patterns of the White and Grey Matter Corroborate Structural and Functional Heterogeneity in the Human Frontal Lobe

    PubMed Central

    Mills, James D.; Kavanagh, Tomas; Kim, Woojin S.; Chen, Bei Jun; Kawahara, Yoshihiro; Halliday, Glenda M.; Janitz, Michael

    2013-01-01

    The human frontal lobe has undergone accelerated evolution, leading to the development of unique human features such as language and self-reflection. Cortical grey matter and underlying white matter reflect distinct cellular compositions in the frontal lobe. Surprisingly little is known about the transcriptomal landscape of these distinct regions. Here, for the first time, we report a detailed transcriptomal profile of the frontal grey (GM) and white matter (WM) with resolution to alternatively spliced isoforms obtained using the RNA-Seq approach. We observed more vigorous transcriptome activity in GM compared to WM, presumably because of the presence of cellular bodies of neurons in the GM and RNA associated with the nucleus and perinuclear space. Among the top differentially expressed genes, we also identified a number of long intergenic non-coding RNAs (lincRNAs), specifically expressed in white matter, such as LINC00162. Furthermore, along with confirmation of expression of known markers for neurons and oligodendrocytes, we identified a number of genes and splicing isoforms that are exclusively expressed in GM or WM with examples of GABRB2 and PAK2 transcripts, respectively. Pathway analysis identified distinct physiological and biochemical processes specific to grey and white matter samples with a prevalence of synaptic processes in GM and myelination regulation and axonogenesis in the WM. Our study also revealed that expression of many genes, for example, the GPR123, is characterized by isoform switching, depending in which structure the gene is expressed. Our report clearly shows that GM and WM have perhaps surprisingly divergent transcriptome profiles, reflecting distinct roles in brain physiology. Further, this study provides the first reference data set for a normal human frontal lobe, which will be useful in comparative transcriptome studies of cerebral disorders, in particular, neurodegenerative diseases. PMID:24194939

  11. Real-time Molecular Study of Bystander Effects of Low dose Low LET radiation Using Living Cell Imaging and Nanoparticale Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natarajan, Mohan; Xu, Nancy R; Mohan, Sumathy

    2013-06-03

    In this study two novel approaches are proposed to investigate precisely the low dose low LET radiation damage and its effect on bystander cells in real time. First, a flow shear model system, which would provide us a near in vivo situation where endothelial cells in the presence of extra cellular matrix experiencing continuous flow shear stress, will be used. Endothelial cells on matri-gel (simulated extra cellular matrix) will be subjected to physiological flow shear (that occurs in normal blood vessels). Second, a unique tool (Single nano particle/single live cell/single molecule microscopy and spectroscopy; Figure A) will be used tomore » track the molecular trafficking by single live cell imaging. Single molecule chemical microscopy allows one to single out and study rare events that otherwise might be lost in assembled average measurement, and monitor many target single molecules simultaneously in real-time. Multi color single novel metal nanoparticle probes allow one to prepare multicolor probes (Figure B) to monitor many single components (events) simultaneously and perform multi-complex analysis in real-time. These nano-particles resist to photo bleaching and hence serve as probes for unlimited timeframe of analysis. Single live cell microscopy allows one to image many single cells simultaneously in real-time. With the combination of these unique tools, we will be able to study under near-physiological conditions the cellular and sub-cellular responses (even subtle changes at one molecule level) to low and very low doses of low LET radiation in real time (milli-second or nano-second) at sub-10 nanometer spatial resolution. This would allow us to precisely identify, at least in part, the molecular mediators that are responsible of radiation damage in the irradiated cells and the mediators that are responsible for initiating the signaling in the neighboring cells. Endothelial cells subjected to flow shear (2 dynes/cm2 or 16 dynes/cm2) and exposed to 0.1, 1 and 10 cGy on coverslips will be examined for (a) low LET radiation-induced alterations of cellular function and its physiological relevance in real time; and (b) radiation damage triggered bystander effect on the neighboring unirradiated cells. First, to determine the low LET radiation induced alteration of cellular function we will examine: (i) the real time transformation of single membrane transporters in single living cells; (ii) the pump efficiency of membrane efflux pump of live cells in real time at the molecular level; (iii) the kinetics of single-ligand receptor interaction on single live cell surface (Figure C); and (iv) alteration in chromosome replication in living cell. Second, to study the radiation triggered bystander responses, we will examine one of the key signaling pathway i.e. TNF- alpha/NF-kappa B mediated signaling. TNF-alpha specific nano particle sensors (green) will be developed to detect the releasing dynamics, transport mechanisms and ligand-receptor binding on live cell surface in real time. A second sensor (blue) will be developed to simultaneously monitor the track of NF-kB inside the cell. The proposed nano-particle optics approach would complement our DOE funded study on biochemical mechanisms of TNF-alpha- NF-kappa B-mediated bystander effect.« less

  12. Cardiovascular anatomy and physiology of the fetus, neonate, infant, child, and adolescent.

    PubMed

    Alyn, I B; Baker, L K

    1992-04-01

    Practicing cardiovascular nurses are aware that significant differences exist in the cardiac anatomy and physiology of children and adults. Generally, the younger the child the greater these differences are. The cellular anatomy and physiology are markedly different in the fetus, neonate, and infant. As development progresses, cardiac function begins to more closely approximate that of an adult. This article describes the anatomical and physiologic development of the fetus, neonate, infant, child, and adolescent. The developmental differences in preload, afterload, contractility, and heart rate are summarized.

  13. Fasting increases the phosphorylation of AMPK and expression of sirtuin1 in muscle of adult male northern elephant seals (Mirounga angustirostris).

    PubMed

    Lee, Debby; Martinez, Bridget; Crocker, Daniel E; Ortiz, Rudy M

    2017-02-01

    Fasting typically suppresses thyroid hormone (TH)-mediated cellular events and increases sirtuin 1 (SIRT1) activity. THs may regulate metabolism through nongenomic pathways and directly through activation of adenosine monophosphate-activated protein kinase (AMPK). Adult male elephant seals ( Mirounga angustirostris ) are active, hypermetabolic, and normothermic during their annual breeding fast, which is characterized by stable TH levels. However, the contribution of TH to maintenance of their fasting metabolism is unknown. To investigate the fasting effects on cellular TH-mediated events and its potential association with SIRT1 and AMPK, we quantified plasma TH levels, mRNA expressions of muscle SIRT1 and TH-associated genes as well as the phosphorylation of AMPK in adult, male northern elephant seals ( n  = 10/fasting period) over 8 weeks of fasting (early vs. late). Deiodinase type I (DI1) expression increased twofold with fasting duration suggesting that the potential for TH-mediated cellular signaling is increased. AMPK phosphorylation increased 61 ± 21% with fasting suggesting that cellular metabolism is increased. The mRNA expression of the TH transporter, monocarboxylate transporter 10 (MCT10), increased 2.4-fold and the TH receptor (THr β -1) decreased 30-fold suggesting that cellular uptake of T 4 is increased, but its subsequent cellular effects such as activation of AMPK are likely nongenomic. The up-regulation of SIRT1 mRNA expression (2.6-fold) likely contributes to the nongenomic activation of AMPK by TH, which may be necessary to maintain the expression of PGC-1 α These coordinated changes likely contribute to the up-regulation of mitochondrial metabolism to support the energetic demands associated with prolonged fasting in adult seals. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates.

    PubMed

    Magesky, Adriano; Pelletier, Émilien

    2018-01-01

    Silver nanoparticles (AgNPs) incorporation in commercial products is increasing due to their remarkable physical and chemical properties and their low cost on the market. Silver has been known for a long time to be highly toxic to bacterial communities, aquatic organisms, and particularly to marine biota. Strong chloro-complexes dominate Ag speciation in seawater and facilitate its persistence in dissolved form. It has a great impact on marine organisms because low concentration of silver can lead to strong bioaccumulation, partly because the neutral silver chloro complex (AgCl 0 ) is highly bioavailable. Owing to the fact that estuaries and coastal areas are considered as the ultimate fate for AgNPs, the study of their toxic effects on marine invertebrates can reveal some environmental risks related to nanosilver exposure. In an attempt to reach this goal, many invertebrate taxa including mollusks, crustaceans, echinoderms and polychaetes have been used as biological models. The main findings related to AgNP toxicity and marine invertebrates are summarized hereafter. Some cellular mechanisms involving nano-internalization (cellular uptake, distribution and elimination), DNA damaging, antioxidant cellular defenses and protein expression are discussed. Physiological effects on early stage development, silver metabolic speciation, immune response, tissue damaging, anti-oxidant effects and nano-depuration are also described. Finally, we paid attention to some recent interesting findings using sea urchin developmental stages and their cells as models for nanotoxicity investigation. Cellular and physiological processes characterizing sea urchin development revealed new and multiple toxicity mechanisms of both soluble and nano forms of silver.

  15. Fuzzy cellular automata models in immunology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, E.

    1996-10-01

    The self-nonself character of antigens is considered to be fuzzy. The Chowdhury et al. cellular automata model is generalized accordingly. New steady states are found. The first corresponds to a below-normal help and suppression and is proposed to be related to autoimmune diseases. The second corresponds to a below-normal B-cell level.

  16. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses.

    PubMed

    Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2013-10-01

    Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth.

    PubMed

    Sabatino, Maria Eugenia; Grondona, Ezequiel; Sosa, Liliana D V; Mongi Bragato, Bethania; Carreño, Lucia; Juarez, Virginia; da Silva, Rodrigo A; Remor, Aline; de Bortoli, Lucila; de Paula Martins, Roberta; Pérez, Pablo A; Petiti, Juan Pablo; Gutiérrez, Silvina; Torres, Alicia I; Latini, Alexandra; De Paul, Ana L

    2018-05-20

    The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A comparative analysis of transcriptomic, biochemical and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops

    USDA-ARS?s Scientific Manuscript database

    Current concentrations of tropospheric ozone (O3) pollution negatively impact plant metabolism, which can result in decreased crop yields. Interspecific variation in the physiological response of plants to elevated [O3] exists; however, the underlying cellular responses explaining species-specific d...

  19. Role of cellular oxalate in oxalate clearance of patients with calcium oxalate monohydrate stone formation and normal controls.

    PubMed

    Oehlschläger, Sven; Fuessel, Susanne; Meye, Axel; Herrmann, Jana; Froehner, Michael; Albrecht, Steffen; Wirth, Manfred P

    2009-03-01

    To examine the cellular, plasma, and urinary oxalate and erythrocyte oxalate flux in patients with calcium oxalate monohydrate (COM) stone formation vs normal controls. Pathologic oxalate clearance in humans is mostly integrated in calcium oxalate stone formation. An underlying cause of deficient oxalate clearance could be defective transmembrane oxalate transport, which, in many tissues, is regulated by an anion exchanger (SLC26). We studied 2 groups: 40 normal controls and 41 patients with COM stone formation. Red blood cells were divided for cellular oxalate measurement and for resuspension in a buffered solution (pH 7.40); 0.1 mmol/L oxalate was added. The supernatant was measured for oxalate immediately and 1 hour after incubation. The plasma and urinary oxalate were analyzed in parallel. The mean cellular oxalate concentrations were significantly greater in the normal controls (5.25 +/- 0.47 micromol/L) than in those with COM stone formation (2.36 +/- 0.28 micromol/L; P < .01). The mean urinary oxalate concentrations were significantly greater in those with COM stone formation (0.31 +/- 0.02 mmol/L) than in the controls (0.24 +/- 0.02 mmol/L; P < .01). The cellular oxalate concentrations correlated significantly with the plasma (r = 0.49-0.63; P < .01) and urinary oxalate (r = -0.29-0.41; P < .03) concentrations in both groups. The plasma oxalate concentrations correlated significantly with the urinary oxalate concentrations (r = -0.30; P < .03) in the controls and with the erythrocyte oxalate flux (r = 0.25; P < .05) in those with COM stone formation. Our data implicate the presence of a cellular oxalate buffer to stabilize plasma and urinary oxalate concentrations in normal controls.

  20. Mechanisms of physiological and pathological cardiac hypertrophy.

    PubMed

    Nakamura, Michinari; Sadoshima, Junichi

    2018-04-19

    Cardiomyocytes exit the cell cycle and become terminally differentiated soon after birth. Therefore, in the adult heart, instead of an increase in cardiomyocyte number, individual cardiomyocytes increase in size, and the heart develops hypertrophy to reduce ventricular wall stress and maintain function and efficiency in response to an increased workload. There are two types of hypertrophy: physiological and pathological. Hypertrophy initially develops as an adaptive response to physiological and pathological stimuli, but pathological hypertrophy generally progresses to heart failure. Each form of hypertrophy is regulated by distinct cellular signalling pathways. In the past decade, a growing number of studies have suggested that previously unrecognized mechanisms, including cellular metabolism, proliferation, non-coding RNAs, immune responses, translational regulation, and epigenetic modifications, positively or negatively regulate cardiac hypertrophy. In this Review, we summarize the underlying molecular mechanisms of physiological and pathological hypertrophy, with a particular emphasis on the role of metabolic remodelling in both forms of cardiac hypertrophy, and we discuss how the current knowledge on cardiac hypertrophy can be applied to develop novel therapeutic strategies to prevent or reverse pathological hypertrophy.

  1. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow.

    PubMed

    Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L

    2014-07-01

    Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Gene expression profiling in the Cynomolgus macaque Macaca fascicularis shows variation within the normal birth range

    PubMed Central

    2011-01-01

    Background Although an adverse early-life environment has been linked to an increased risk of developing the metabolic syndrome, the molecular mechanisms underlying altered disease susceptibility as well as their relevance to humans are largely unknown. Importantly, emerging evidence suggests that these effects operate within the normal range of birth weights and involve mechanisms of developmental palsticity rather than pathology. Method To explore this further, we utilised a non-human primate model Macaca fascicularis (Cynomolgus macaque) which shares with humans the same progressive history of the metabolic syndrome. Using microarray we compared tissues from neonates in the average birth weight (50-75th centile) to those of lower birth weight (5-25th centile) and studied the effect of different growth trajectories within the normal range on gene expression levels in the umbilical cord, neonatal liver and skeletal muscle. Results We identified 1973 genes which were differentially expressed in the three tissue types between average and low birth weight animals (P < 0.05). Gene ontology analysis identified that these genes were involved in metabolic processes including cellular lipid metabolism, cellular biosynthesis, cellular macromolecule synthesis, cellular nitrogen metabolism, cellular carbohydrate metabolism, cellular catabolism, nucleotide and nucleic acid metabolism, regulation of molecular functions, biological adhesion and development. Conclusion These differences in gene expression levels between animals in the upper and lower percentiles of the normal birth weight range may point towards early life metabolic adaptations that in later life result in differences in disease risk. PMID:21999700

  3. Cellular, synaptic and biochemical features of resilient cognition in Alzheimer’s disease

    PubMed Central

    Arnold, Steven. E.; Louneva, Natalia; Cao, Kajia; Wang, Li-San; Han, Li-Ying; Wolk, David A.; Negash, Selamawit; Leurgans, Sue E.; Schneider, Julie A.; Buchman, Aron S.; Wilson, Robert S.; Bennett, David A.

    2012-01-01

    While neuritic plaques and neurofibrillary tangles in older adults are correlated with cognitive impairment and severity of dementia, it has long been recognized that the relationship is imperfect as some people exhibit normal cognition despite high levels of AD pathology. We compared the cellular, synaptic and biochemical composition of midfrontal cortices in female subjects from the Religious Orders Study who were stratified into three subgroups: 1) pathological AD with normal cognition (“AD-Resilient”), 2) pathological AD with AD-typical dementia (“AD-Dementia)” and 3) pathologically normal with normal cognition (“Normal Comparison”). The AD-Resilient group exhibited preserved densities of synaptophysin-labeled presynaptic terminals and synaptopodin-labeled dendritic spines compared to the AD-Dementia group, and increased densities of GFAP astrocytes compared to both the AD-Dementia and Normal Comparison group. Further, in a discovery antibody microarray protein analysis we identified a number of candidate protein abnormalities that were associated with diagnostic group. These data characterize cellular and synaptic features and identify novel biochemical targets that may be associated with resilient cognitive brain aging in the setting of pathological AD. PMID:22554416

  4. Regulation of the cellular and physiological effects of glutamine.

    PubMed

    Chwals, Walter J

    2004-10-01

    Glutamine is the most abundant amino acid in humans and possesses many functions in the body. It is the major transporter of amino-nitrogen between cells and an important fuel source for rapidly dividing cells such as cells of the immune and gastrointestinal systems. It is important in the synthesis of nucleic acids, glutathione, citrulline, arginine, gamma aminobutyric acid, and glucose. It is important for growth, gastrointestinal integrity, acid-base homeostasis, and optimal immune function. The regulation of glutamine levels in cells via glutaminase and glutamine synthetase is discussed. The cellular and physiologic effects of glutamine upon the central nervous system, gastrointestinal function, during metabolic support, and following tissue injury and critical illness is also discussed.

  5. Rapid, Optimized Interactomic Screening

    PubMed Central

    Hakhverdyan, Zhanna; Domanski, Michal; Hough, Loren; Oroskar, Asha A.; Oroskar, Anil R.; Keegan, Sarah; Dilworth, David J.; Molloy, Kelly R.; Sherman, Vadim; Aitchison, John D.; Fenyö, David; Chait, Brian T.; Jensen, Torben Heick; Rout, Michael P.; LaCava, John

    2015-01-01

    We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screen that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners and the elucidation of their functional interactions in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles even for well-studied proteins. Our approach is robust, economical and automatable, providing an inroad to the rigorous, systematic dissection of cellular interactomes. PMID:25938370

  6. Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures.

    PubMed

    Yang, Dong-Ping; Robinson, P A

    2017-04-01

    A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.

  7. Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Ping; Robinson, P. A.

    2017-04-01

    A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.

  8. Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production.

    PubMed

    Tilot, Amanda K; Gaugler, Mary K; Yu, Qi; Romigh, Todd; Yu, Wanfeng; Miller, Robert H; Frazier, Thomas W; Eng, Charis

    2014-06-15

    PTEN Hamartoma Tumor Syndrome (PHTS) is an autosomal-dominant genetic condition underlying a subset of autism spectrum disorder (ASD) with macrocephaly. Caused by germline mutations in PTEN, PHTS also causes increased risks of multiple cancers via dysregulation of the PI3K and MAPK signaling pathways. Conditional knockout models have shown that neural Pten regulates social behavior, proliferation and cell size. Although much is known about how the intracellular localization of PTEN regulates signaling in cancer cell lines, we know little of how PTEN localization influences normal brain physiology and behavior. To address this, we generated a germline knock-in mouse model of cytoplasm-predominant Pten and characterized its behavioral and cellular phenotypes. The homozygous Pten(m3m4) mice have decreased total Pten levels including a specific drop in nuclear Pten and exhibit region-specific increases in brain weight. The Pten(m3m4) model displays sex-specific increases in social motivation, poor balance and normal recognition memory-a profile reminiscent of some individuals with high functioning ASD. The cytoplasm-predominant protein caused cellular hypertrophy limited to the soma and led to increased NG2 cell proliferation and accumulation of glia. The animals also exhibit significant astrogliosis and microglial activation, indicating a neuroinflammatory phenotype. At the signaling level, Pten(m3m4) mice show brain region-specific differences in Akt activation. These results demonstrate that differing alterations to the same autism-linked gene can cause distinct behavioral profiles. The Pten(m3m4) model is the first murine model of inappropriately elevated social motivation in the context of normal cognition and may expand the range of autism-related behaviors replicated in animal models. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. TRPM4 channels in the cardiovascular system: physiology, pathophysiology, and pharmacology.

    PubMed

    Abriel, Hugues; Syam, Ninda; Sottas, Valentin; Amarouch, Mohamed Yassine; Rougier, Jean-Sébastien

    2012-10-01

    The transient receptor potential channel (TRP) family comprises at least 28 genes in the human genome. These channels are widely expressed in many different tissues, including those of the cardiovascular system. The transient receptor potential channel melastatin 4 (TRPM4) is a Ca(2+)-activated non-specific cationic channel, which is impermeable to Ca(2+). TRPM4 is expressed in many cells of the cardiovascular system, such as cardiac cells of the conduction pathway and arterial and venous smooth muscle cells. This review article summarizes the recently described roles of TRPM4 in normal physiology and in various disease states. Genetic variants in the human gene TRPM4 have been linked to several cardiac conduction disorders. TRPM4 has also been proposed to play a crucial role in secondary hemorrhage following spinal cord injuries. Spontaneously hypertensive rats with cardiac hypertrophy were shown to over-express the cardiac TRPM4 channel. Recent studies suggest that TRPM4 plays an important role in cardiovascular physiology and disease, even if most of the molecular and cellular mechanisms have yet to be elucidated. We conclude this review article with a brief overview of the compounds that have been shown to either inhibit or activate TRPM4 under experimental conditions. Based on recent findings, the TRPM4 channel can be proposed as a future target for the pharmacological treatment of cardiovascular disorders, such as hypertension and cardiac arrhythmias. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Streptococcus pyogenes Sortase Mutants Are Highly Susceptible to Killing by Host Factors Due to Aberrant Envelope Physiology

    PubMed Central

    Raz, Assaf; Tanasescu, Ana-Maria; Zhao, Anna M.; Serrano, Anna; Alston, Tricia; Sol, Asaf; Bachrach, Gilad; Fischetti, Vincent A.

    2015-01-01

    Cell wall anchored virulence factors are critical for infection and colonization of the host by Gram-positive bacteria. Such proteins have an N-terminal leader sequence and a C-terminal sorting signal, composed of an LPXTG motif, a hydrophobic stretch, and a few positively charged amino acids. The sorting signal halts translocation across the membrane, allowing sortase to cleave the LPXTG motif, leading to surface anchoring. Deletion of sortase prevents the anchoring of virulence factors to the wall; the effects on bacterial physiology however, have not been thoroughly characterized. Here we show that deletion of Streptococcus pyogenes sortase A leads to accumulation of sorting intermediates, particularly at the septum, altering cellular morphology and physiology, and compromising membrane integrity. Such cells are highly sensitive to cathelicidin, and are rapidly killed in blood and plasma. These phenomena are not a loss-of-function effect caused by the absence of anchored surface proteins, but specifically result from the accumulation of sorting intermediates. Reduction in the level of sorting intermediates leads to a return of the sortase mutant to normal morphology, while expression of M protein with an altered LPXTG motif in wild type cells leads to toxicity in the host environment, similar to that observed in the sortase mutant. These unanticipated effects suggest that inhibition of sortase by small-molecule inhibitors could similarly lead to the rapid elimination of pathogens from an infected host, making such inhibitors much better anti-bacterial agents than previously believed. PMID:26484774

  11. Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales

    NASA Astrophysics Data System (ADS)

    Brahmi, C.; Domart-Coulon, I.; Rougée, L.; Pyle, D. G.; Stolarski, J.; Mahoney, J. J.; Richmond, R. H.; Ostrander, G. K.; Meibom, A.

    2012-09-01

    A method to label marine biocarbonates is developed based on a concentration enrichment of a minor stable isotope of a trace element that is a natural component of seawater, resulting in the formation of biocarbonate with corresponding isotopic enrichments. This biocarbonate is subsequently imaged with a NanoSIMS ion microprobe to visualize the locations of the isotopic marker on sub-micrometric length scales, permitting resolution of all ultra-structural details. In this study, a scleractinian coral, Pocillopora damicornis, was labeled 3 times with 86Sr-enhanced seawater for a period of 48 h with 5 days under normal seawater conditions separating each labeling event. Two non-specific cellular stress biomarkers, glutathione-S-transferase activity and porphyrin concentration plus carbonic anhydrase, an enzymatic marker involved in the physiology of carbonate biomineralization, as well as unchanged levels of zooxanthellae photosynthesis efficiency indicate that coral physiological processes are not affected by the 86Sr-enhancement. NanoSIMS images of the 86Sr/44Ca ratio in skeleton formed during the experiment allow for a determination of the average extension rate of the two major ultra-structural components of the coral skeleton: Rapid Accretion Deposits are found to form on average about 4.5 times faster than Thickening Deposits. The method opens up new horizons in the study of biocarbonate formation because it holds the potential to observe growth of calcareous structures such as skeletons, shells, tests, spines formed by a wide range of organisms under essentially unperturbed physiological conditions.

  12. Evolutionary tradeoffs in cellular composition across diverse bacteria

    PubMed Central

    Kempes, Christopher P; Wang, Lawrence; Amend, Jan P; Doyle, John; Hoehler, Tori

    2016-01-01

    One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components. PMID:27046336

  13. Teaching a changing paradigm in physiology: a historical perspective on gut interstitial cells.

    PubMed

    Drumm, Bernard T; Baker, Salah A

    2017-03-01

    The study and teaching of gastrointestinal (GI) physiology necessitates an understanding of the cellular basis of contractile and electrical coupling behaviors in the muscle layers that comprise the gut wall. Our knowledge of the cellular origin of GI motility has drastically changed over the last 100 yr. While the pacing and coordination of GI contraction was once thought to be solely attributable to smooth muscle cells, it is now widely accepted that the motility patterns observed in the GI tract exist as a result of a multicellular system, consisting of not only smooth muscle cells but also enteric neurons and distinct populations of specialized interstitial cells that all work in concert to ensure proper GI functions. In this historical perspective, we focus on the emerging role of interstitial cells in GI motility and examine the key discoveries and experiments that led to a major shift in a paradigm of GI physiology regarding the role of interstitial cells in modulating GI contractile patterns. A review of these now classic experiments and papers will enable students and educators to fully appreciate the complex, multicellular nature of GI muscles as well as impart lessons on how shifting paradigms in physiology are fueled by new technologies that lead to new emerging discoveries. Copyright © 2017 the American Physiological Society.

  14. Comparative Proteomic Analysis of Differentially Expressed Proteins Induced by Hydrogen Sulfide in Spinacia oleracea Leaves

    PubMed Central

    Chen, Juan; Liu, Ting-Wu; Hu, Wen-Jun; Simon, Martin; Wang, Wen-Hua; Chen, Juan; Liu, Xiang; Zheng, Hai-Lei

    2014-01-01

    Hydrogen sulfide (H2S), as a potential gaseous messenger molecule, has been suggested to play important roles in a wide range of physiological processes in plants. The aim of present study was to investigate which set of proteins is involved in H2S-regulated metabolism or signaling pathways. Spinacia oleracea seedlings were treated with 100 µM NaHS, a donor of H2S. Changes in protein expression profiles were analyzed by 2-D gel electrophoresis coupled with MALDI-TOF MS. Over 1000 protein spots were reproducibly resolved, of which the abundance of 92 spots was changed by at least 2-fold (sixty-five were up-regulated, whereas 27 were down-regulated). These proteins were functionally divided into 9 groups, including energy production and photosynthesis, cell rescue, development and cell defense, substance metabolism, protein synthesis and folding, cellular signal transduction. Further, we found that these proteins were mainly localized in cell wall, plasma membrane, chloroplast, mitochondria, nucleus, peroxisome and cytosol. Our results demonstrate that H2S is involved in various cellular and physiological activities and has a distinct influence on photosynthesis, cell defense and cellular signal transduction in S. oleracea leaves. These findings provide new insights into proteomic responses in plants under physiological levels of H2S. PMID:25181351

  15. Ocean acidification stimulates particulate organic carbon accumulation in two Antarctic diatom species under moderate and high natural solar radiation.

    PubMed

    Heiden, Jasmin P; Thoms, Silke; Bischof, Kai; Trimborn, Scarlett

    2018-05-23

    Impacts of rising atmospheric CO 2 concentrations and increased daily irradiances from enhanced surface water stratification on phytoplankton physiology in the coastal Southern Ocean remain still unclear. Therefore, in the two Antarctic diatoms Fragilariopsis curta and Odontella weissflogii the effects of moderate and high natural solar radiation combined with either ambient or future pCO 2 on cellular particulate organic carbon (POC) contents and photophysiology were investigated. Results showed that increasing CO 2 concentrations had greater impacts on diatom physiology than exposure to increasing solar radiation. Irrespective of the applied solar radiation regime, cellular POC quotas increased with future pCO 2 in both diatoms. Lowered maximum quantum yields of photochemistry in PSII (F v /F m ) indicated a higher photosensitivity under these conditions, being counteracted by increased cellular concentrations of functional photosynthetic reaction centers. Overall, our results suggest that both bloom-forming Antarctic coastal diatoms might increase carbon contents under future pCO 2 conditions despite reduced physiological fitness. This indicates a higher potential for primary productivity by the two diatom species with important implications for the CO 2 sequestration potential of diatom communities in the future coastal Southern Ocean. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. PHAGE FORMATION IN STAPHYLOCOCCUS MUSCAE CULTURES

    PubMed Central

    Price, Winston H.

    1949-01-01

    1. The total nucleic acid synthesized by normal and by infected S. muscae suspensions is approximately the same. This is true for either lag phase cells or log phase cells. 2. The amount of nucleic acid synthesized per cell in normal cultures increases during the lag period and remains fairly constant during log growth. 3. The amount of nucleic acid synthesized per cell by infected cells increases during the whole course of the infection. 4. Infected cells synthesize less RNA and more DNA than normal cells. The ratio of RNA/DNA is larger in lag phase cells than in log phase cells. 5. Normal cells release neither ribonucleic acid nor desoxyribonucleic acid into the medium. 6. Infected cells release both ribonucleic acid and desoxyribonucleic acid into the medium. The time and extent of release depend upon the physiological state of the cells. 7. Infected lag phase cells may or may not show an increased RNA content. They release RNA, but not DNA, into the medium well before observable cellular lysis and before any virus is liberated. At virus liberation, the cell RNA content falls to a value below that initially present, while DNA, which increased during infection falls to approximately the original value. 8. Infected log cells show a continuous loss of cell RNA and a loss of DNA a short time after infection. At the time of virus liberation the cell RNA value is well below that initially present and the cells begin to lyse. PMID:18139006

  17. Glucose-Induced Trophic Shift in an Endosymbiont Dinoflagellate with Physiological and Molecular Consequences1[OPEN

    PubMed Central

    Jinkerson, Robert E.; Clowez, Sophie; Onishi, Masayuki; Cleves, Phillip A.; Pringle, John R.

    2018-01-01

    Interactions between the dinoflagellate endosymbiont Symbiodinium and its cnidarian hosts (e.g. corals, sea anemones) are the foundation of coral-reef ecosystems. Carbon flow between the partners is a hallmark of this mutualism, but the mechanisms governing this flow and its impact on symbiosis remain poorly understood. We showed previously that although Symbiodinium strain SSB01 can grow photoautotrophically, it can grow mixotrophically or heterotrophically when supplied with Glc, a metabolite normally transferred from the alga to its host. Here we show that Glc supplementation of SSB01 cultures causes a loss of pigmentation and photosynthetic activity, disorganization of thylakoid membranes, accumulation of lipid bodies, and alterations of cell-surface morphology. We used global transcriptome analyses to determine if these physiological changes were correlated with changes in gene expression. Glc-supplemented cells exhibited a marked reduction in levels of plastid transcripts encoding photosynthetic proteins, although most nuclear-encoded transcripts (including those for proteins involved in lipid synthesis and formation of the extracellular matrix) exhibited little change in their abundances. However, the altered carbon metabolism in Glc-supplemented cells was correlated with modest alterations (approximately 2x) in the levels of some nuclear-encoded transcripts for sugar transporters. Finally, Glc-bleached SSB01 cells appeared unable to efficiently populate anemone larvae. Together, these results suggest links between energy metabolism and cellular physiology, morphology, and symbiotic interactions. However, the results also show that in contrast to many other organisms, Symbiodinium can undergo dramatic physiological changes that are not reflected by major changes in the abundances of nuclear-encoded transcripts and thus presumably reflect posttranscriptional regulatory processes. PMID:29217594

  18. Evaluation of reference genes for insect olfaction studies.

    PubMed

    Omondi, Bonaventure Aman; Latorre-Estivalis, Jose Manuel; Rocha Oliveira, Ivana Helena; Ignell, Rickard; Lorenzo, Marcelo Gustavo

    2015-04-22

    Quantitative reverse transcription PCR (qRT-PCR) is a robust and accessible method to assay gene expression and to infer gene regulation. Being a chain of procedures, this technique is subject to systematic error due to biological and technical limitations mainly set by the starting material and downstream procedures. Thus, rigorous data normalization is critical to grant reliability and repeatability of gene expression quantification by qRT-PCR. A number of 'housekeeping genes', involved in basic cellular functions, have been commonly used as internal controls for this normalization process. However, these genes could themselves be regulated and must therefore be tested a priori. We evaluated eight potential reference genes for their stability as internal controls for RT-qPCR studies of olfactory gene expression in the antennae of Rhodnius prolixus, a Chagas disease vector. The set of genes included were: α-tubulin; β-actin; Glyceraldehyde-3-phosphate dehydrogenase; Eukaryotic initiation factor 1A; Glutathione-S-transferase; Serine protease; Succinate dehydrogenase; and Glucose-6-phosphate dehydrogenase. Five experimental conditions, including changes in age,developmental stage and feeding status were tested in both sexes. We show that the evaluation of candidate reference genes is necessary for each combination of sex, tissue and physiological condition analyzed in order to avoid inconsistent results and conclusions. Although, Normfinder and geNorm software yielded different results between males and females, five genes (SDH, Tub, GAPDH, Act and G6PDH) appeared in the first positions in all rankings obtained. By using gene expression data of a single olfactory coreceptor gene as an example, we demonstrated the extent of changes expected using different internal standards. This work underlines the need for a rigorous selection of internal standards to grant the reliability of normalization processes in qRT-PCR studies. Furthermore, we show that particular physiological or developmental conditions require independent evaluation of a diverse set of potential reference genes.

  19. Long-term C. elegans immobilization enables high resolution developmental studies in vivo.

    PubMed

    Berger, Simon; Lattmann, Evelyn; Aegerter-Wilmsen, Tinri; Hengartner, Michael; Hajnal, Alex; deMello, Andrew; Casadevall I Solvas, Xavier

    2018-05-01

    Live-imaging of C. elegans is essential for the study of conserved cellular pathways (e.g. EGFR/Wnt signaling) and morphogenesis in vivo. However, the usefulness of live imaging as a research tool has been severely limited by the need to immobilize worms prior to and during imaging. Conventionally, immobilization is achieved by employing both physical and chemical interventions. These are known to significantly affect many physiological processes, and thus limit our understanding of dynamic developmental processes. Herein we present a novel, easy-to-use microfluidic platform for the long-term immobilization of viable, normally developing C. elegans, compatible with image acquisition at high resolution, thereby overcoming the limitations associated with conventional worm immobilization. The capabilities of the platform are demonstrated through the continuous assessment of anchor cell (AC) invasion and distal tip cell (DTC) migration in larval C. elegans and germ cell apoptosis in adult C. elegans in vivo for the first time.

  20. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro.

    PubMed

    Torisawa, Yu-suke; Spina, Catherine S; Mammoto, Tadanori; Mammoto, Akiko; Weaver, James C; Tat, Tracy; Collins, James J; Ingber, Donald E

    2014-06-01

    Current in vitro hematopoiesis models fail to demonstrate the cellular diversity and complex functions of living bone marrow; hence, most translational studies relevant to the hematologic system are conducted in live animals. Here we describe a method for fabricating 'bone marrow-on-a-chip' that permits culture of living marrow with a functional hematopoietic niche in vitro by first engineering new bone in vivo, removing it whole and perfusing it with culture medium in a microfluidic device. The engineered bone marrow (eBM) retains hematopoietic stem and progenitor cells in normal in vivo-like proportions for at least 1 week in culture. eBM models organ-level marrow toxicity responses and protective effects of radiation countermeasure drugs, whereas conventional bone marrow culture methods do not. This biomimetic microdevice offers a new approach for analysis of drug responses and toxicities in bone marrow as well as for study of hematopoiesis and hematologic diseases in vitro.

  1. Measuring mitochondrial uncoupling protein-2 level and activity in insulinoma cells.

    PubMed

    Barlow, Jonathan; Hirschberg, Verena; Brand, Martin D; Affourtit, Charles

    2013-01-01

    Mitochondrial uncoupling protein-2 (UCP2) regulates glucose-stimulated insulin secretion (GSIS) by pancreatic beta cells-the physiological role of the beta cell UCP2 remains a subject of debate. Experimental studies informing this debate benefit from reliable measurements of UCP2 protein level and activity. In this chapter, we describe how UCP2 protein can be detected in INS-1 insulinoma cells and how it can be knocked down by RNA interference. We demonstrate briefly that UCP2 knockdown lowers glucose-induced rises in mitochondrial respiratory activity, coupling efficiency of oxidative phosphorylation, levels of mitochondrial reactive oxygen species, and insulin secretion. We provide protocols for the detection of the respective UCP2 phenotypes, which are indirect, but invaluable measures of UCP2 activity. We also introduce a convenient method to normalize cellular respiration to cell density allowing measurement of UCP2 effects on specific mitochondrial oxygen consumption. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    PubMed

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  3. Understanding Super-Resolution Nanoscopy and Its Biological Applications in Cell Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dehong; Zhao, Baoming; Xie, Yumei

    2013-01-01

    Optical microscopy has been an ideal tool to study phenomena in live cells because visible light at reasonable intensity does not perturb much of the normal biological functions. However, optical resolution using visible light is significantly limited by the wavelength. Overcoming this diffraction-limit barrier will reveal biological mechanisms, cellular structures, and physiological processes at nanometer scale, orders of magnitude lower than current optical microscopy. Although this appears to be a daunting task, recently developed photoswitchable probes enable reconstruction of individual images into a super-resolution image, thus the emergence of nanoscopy. Harnessing the resolution power of nanoscopy, we report here nano-resolutionmore » fluorescence imaging of microtubules and their network structures in biological cells. The super-resolution nanoscopy successfully resolved nanostructures of microtubule network—a daunting task that cannot be completed using conventional wide-field microscopy.« less

  4. Surveillance, Phagocytosis, and Inflammation: How Never-Resting Microglia Influence Adult Hippocampal Neurogenesis

    PubMed Central

    Sierra, Amanda; Beccari, Sol; Diaz-Aparicio, Irune; Encinas, Juan M.; Comeau, Samuel; Tremblay, Marie-Ève

    2014-01-01

    Microglia cells are the major orchestrator of the brain inflammatory response. As such, they are traditionally studied in various contexts of trauma, injury, and disease, where they are well-known for regulating a wide range of physiological processes by their release of proinflammatory cytokines, reactive oxygen species, and trophic factors, among other crucial mediators. In the last few years, however, this classical view of microglia was challenged by a series of discoveries showing their active and positive contribution to normal brain functions. In light of these discoveries, surveillant microglia are now emerging as an important effector of cellular plasticity in the healthy brain, alongside astrocytes and other types of inflammatory cells. Here, we will review the roles of microglia in adult hippocampal neurogenesis and their regulation by inflammation during chronic stress, aging, and neurodegenerative diseases, with a particular emphasis on their underlying molecular mechanisms and their functional consequences for learning and memory. PMID:24772353

  5. From Embryonic Development to Human Diseases: The Functional Role of Caveolae/Caveolin

    PubMed Central

    Sohn, Jihee; Brick, Rachel M.; Tuan, Rocky S.

    2017-01-01

    Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders. PMID:26991990

  6. Non-fused phospholes as fluorescent probes for imaging of lipid droplets in living cells

    NASA Astrophysics Data System (ADS)

    Öberg, Elisabet; Appelqvist, Hanna; Nilsson, K. Peter R.

    2017-04-01

    Molecular tools for fluorescent imaging of specific compartments in cells are essential for understanding the function and activity of cells. Here, we report the synthesis of a series of pyridyl- and thienyl-substituted phospholes and the evaluation of these dyes for fluorescent imaging of cells. The thienyl-substituted phospholes proved to be successful for staining of cultured normal and malignant cells due to their fluorescent properties and low toxicity. Co-staining experiments demonstrated that these probes target lipid droplets, which are, lipid-storage organelles found in the cytosol of nearly all cell types. Our findings confirm that thienyl-substituted phospholes can be utilized as fluorescent tools for vital staining of cells, and we foresee that these fluorescent dyes might be used in studies to unravel the roles that lipid droplets play in cellular physiology and their role in diseases.

  7. Voltage gating of mechanosensitive PIEZO channels.

    PubMed

    Moroni, Mirko; Servin-Vences, M Rocio; Fleischer, Raluca; Sánchez-Carranza, Oscar; Lewin, Gary R

    2018-03-15

    Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts.

  8. NF-κB Essential Modulator (NEMO) Is Critical for Thyroid Function.

    PubMed

    Reale, Carla; Iervolino, Anna; Scudiero, Ivan; Ferravante, Angela; D'Andrea, Luca Egildo; Mazzone, Pellegrino; Zotti, Tiziana; Leonardi, Antonio; Roberto, Luca; Zannini, Mariastella; de Cristofaro, Tiziana; Shanmugakonar, Muralitharan; Capasso, Giovambattista; Pasparakis, Manolis; Vito, Pasquale; Stilo, Romania

    2016-03-11

    The I-κB kinase (IKK) subunit NEMO/IKKγ (NEMO) is an adapter molecule that is critical for canonical activation of NF-κB, a pleiotropic transcription factor controlling immunity, differentiation, cell growth, tumorigenesis, and apoptosis. To explore the functional role of canonical NF-κB signaling in thyroid gland differentiation and function, we have generated a murine strain bearing a genetic deletion of the NEMO locus in thyroid. Here we show that thyrocyte-specific NEMO knock-out mice gradually develop hypothyroidism after birth, which leads to reduced body weight and shortened life span. Histological and molecular analysis indicate that absence of NEMO in thyrocytes results in a dramatic loss of the thyroid gland cellularity, associated with down-regulation of thyroid differentiation markers and ongoing apoptosis. Thus, NEMO-dependent signaling is essential for normal thyroid physiology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Cellular Signaling Pathways and Posttranslational Modifications Mediated by Nematode Effector Proteins.

    PubMed

    Hewezi, Tarek

    2015-10-01

    Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Pac-Man for biotechnology: co-opting degrons for targeted protein degradation to control and alter cell function.

    PubMed

    Yu, Geng; Rosenberg, Julian N; Betenbaugh, Michael J; Oyler, George A

    2015-12-01

    Protein degradation in normal living cells is precisely regulated to match the cells' physiological requirements. The selectivity of protein degradation is determined by an elaborate degron-tagging system. Degron refers to an amino acid sequence that encodes a protein degradation signal, which is oftentimes a poly-ubiquitin chain that can be transferred to other proteins. Current understanding of ubiquitination dependent and independent protein degradation processes has expanded the application of degrons for targeted protein degradation and novel cell engineering strategies. Recent findings suggest that small molecules inducing protein association can be exploited to create degrons that target proteins for degradation. Here, recent applications of degron-based targeted protein degradation in eukaryotic organisms are reviewed. The degron mediated protein degradation represents a rapidly tunable methodology to control protein abundance, which has broad application in therapeutics and cellular function control and monitoring. Copyright © 2015. Published by Elsevier Ltd.

  11. Integrated Physiological Mechanisms of Exercise Performance, Adaptation, and Maladaptation to Heat Stress

    DTIC Science & Technology

    2011-10-01

    performance. We discuss novel systemic (heat acclimation) and cellular ( acquired thermal tolerance) adaptations that improve performance in hot and...cellular ( acquired thermal tolerance) adaptations that improve perfor- mance in hot and temperate environments and protect organs from heat stroke as...performance; (iii) newly identified adaptations associated with heat accli- mation/ acquired thermal tolerance that impact exercise-heat tolerance; (iv

  12. USAFSAM Review and Analysis of Radiofrequency Radiation Bioeffects Literature: Second Report.

    DTIC Science & Technology

    1982-05-01

    10 Cellular 11 Mechanisms of interaction 12 Environmental 13 Medical applications 14 Review 15 Ecological 16 Physical methods/dosimetry 17 Other 18...APPLICATIONS List of Analyses ......... .................... 137 (14) REVIEW List of Analyses ......... .................... 138 (16) PHYSICAL METHODS/DOSIMETRY...physiological 10 Cellular 11 Mechanisms of interaction 12 Environmental 13 Medical applications 14 Review 15 Ecological 16 Physical methods/dosimetry 17

  13. First cellular approach of the effects of global warming on groundwater organisms: a study of the HSP70 gene expression.

    PubMed

    Colson-Proch, Céline; Morales, Anne; Hervant, Frédéric; Konecny, Lara; Moulin, Colette; Douady, Christophe J

    2010-05-01

    Whereas the consequences of global warming at population or community levels are well documented, studies at the cellular level are still scarce. The study of the physiological or metabolic effects of such small increases in temperature (between +2 degrees C and +6 degrees C) is difficult because they are below the amplitude of the daily or seasonal thermal variations occurring in most environments. In contrast, subterranean biotopes are highly thermally buffered (+/-1 degrees C within a year), and underground water organisms could thus be particularly well suited to characterise cellular responses of global warming. To this purpose, we studied genes encoding chaperone proteins of the HSP70 family in amphipod crustaceans belonging to the ubiquitous subterranean genus Niphargus. An HSP70 sequence was identified in eight populations of two complexes of species of the Niphargus genus (Niphargus rhenorhodanensis and Niphargus virei complexes). Expression profiles were determined for one of these by reverse transcription and quantitative polymerase chain reaction, confirming the inducible nature of this gene. An increase in temperature of 2 degrees C seemed to be without effect on N. rhenorhodanensis physiology, whereas a heat shock of +6 degrees C represented an important thermal stress for these individuals. Thus, this study shows that although Niphargus individuals do not undergo any daily or seasonal thermal variations in underground water, they display an inducible HSP70 heat shock response. This controlled laboratory-based physiological experiment constitutes a first step towards field investigations of the cellular consequences of global warming on subterranean organisms.

  14. Insights on Localized and Systemic Delivery of Redox-Based Therapeutics

    PubMed Central

    Batrakova, Elena V.; Mota, Roberto

    2018-01-01

    Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression. Accordingly, antioxidant intervention to restore redox homeostasis has been pursued as a therapeutic strategy for cardiovascular disease, cancer, and neurodegenerative disorders among many others. Despite preliminary success in cellular and animal models, redox-based interventions have virtually been ineffective in clinical trials. We propose the fundamental reason for their failure is a flawed delivery approach. Namely, systemic delivery for a geographically local disease limits the effectiveness of the antioxidant. We take a critical look at the literature and evaluate successful and unsuccessful approaches to translation of redox intervention to the clinical arena, including dose, patient selection, and delivery approach. We argue that when interpreting a failed antioxidant-based clinical trial, it is crucial to take into account these variables and importantly, whether the drug had an effect on the redox status. Finally, we propose that local and targeted delivery hold promise to translate redox-based therapies from the bench to the bedside. PMID:29636836

  15. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology.

    PubMed

    Rajagopal, Vijay; Holmes, William R; Lee, Peter Vee Sin

    2018-03-01

    Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models. © 2017 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  16. Computational modeling of single‐cell mechanics and cytoskeletal mechanobiology

    PubMed Central

    Holmes, William R.; Lee, Peter Vee Sin

    2017-01-01

    Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state‐of‐the‐art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed‐forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: 1Models of Systems Properties and Processes > Mechanistic Models2Physiology > Mammalian Physiology in Health and Disease3Models of Systems Properties and Processes > Cellular Models PMID:29195023

  17. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment.

    PubMed

    Rangel-Castilla, Leonardo; Russin, Jonathan J; Martinez-Del-Campo, Eduardo; Soriano-Baron, Hector; Spetzler, Robert F; Nakaji, Peter

    2014-09-01

    Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.

  18. Dependence of Impedance of Embedded Single Cells on Cellular Behaviour.

    PubMed

    Cho, Sungbo; Castellarnau, Marc; Samitier, Josep; Thielecke, Hagen

    2008-02-21

    Non-invasive single cell analyses are increasingly required for the medicaldiagnostics of test substances or the development of drugs and therapies on the single celllevel. For the non-invasive characterisation of cells, impedance spectroscopy whichprovides the frequency dependent electrical properties has been used. Recently,microfludic systems have been investigated to manipulate the single cells and tocharacterise the electrical properties of embedded cells. In this article, the impedance ofpartially embedded single cells dependent on the cellular behaviour was investigated byusing the microcapillary. An analytical equation was derived to relate the impedance ofembedded cells with respect to the morphological and physiological change ofextracellular interface. The capillary system with impedance measurement showed afeasibility to monitor the impedance change of embedded single cells caused bymorphological and physiological change of cell during the addition of DMSO. By fittingthe derived equation to the measured impedance of cell embedded at different negativepressure levels, it was able to extrapolate the equivalent gap and gap conductivity betweenthe cell and capillary wall representing the cellular behaviour.

  19. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell.

    PubMed

    Arrigo, André-Patrick

    2017-07-01

    Constitutively expressed small heat shock protein HspB1 regulates many fundamental cellular processes and plays major roles in many human pathological diseases. In that regard, this chaperone has a huge number of apparently unrelated functions that appear linked to its ability to recognize many client polypeptides that are subsequently modified in their activity and/or half-life. A major parameter to understand how HspB1 is dedicated to interact with particular clients in defined cellular conditions relates to its complex oligomerization and phosphorylation properties. Indeed, HspB1 structural organization displays dynamic and complex rearrangements in response to changes in the cellular environment or when the cell physiology is modified. These structural modifications probably reflect the formation of structural platforms aimed at recognizing specific client polypeptides. Here, I have reviewed data from the literature and re-analyzed my own studies to describe and discuss these fascinating changes in HspB1 structural organization.

  20. Accumulation of senescent cells in mitotic tissue of aging primates.

    PubMed

    Jeyapalan, Jessie C; Ferreira, Mark; Sedivy, John M; Herbig, Utz

    2007-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over 40 years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event.

  1. Enterococcus faecalis Responds to Individual Exogenous Fatty Acids Independently of Their Degree of Saturation or Chain Length

    PubMed Central

    2017-01-01

    ABSTRACT Enterococcus faecalis is a commensal of the human gastrointestinal tract that can persist in the external environment and is a leading cause of hospital-acquired infections. Given its diverse habitats, the organism has developed numerous strategies to survive a multitude of environmental conditions. Previous studies have demonstrated that E. faecalis will incorporate fatty acids from bile and serum into its membrane, resulting in an induced tolerance to membrane-damaging agents. To discern whether all fatty acids induce membrane stress protection, we examined how E. faecalis responded to individually supplied fatty acids. E. faecalis readily incorporated fatty acids 14 to 18 carbons in length into its membrane but poorly incorporated fatty acids shorter or longer than this length. Supplementation with saturated fatty acids tended to increase generation time and lead to altered cellular morphology in most cases. Further, exogenously supplied saturated fatty acids did not induce tolerance to the membrane-damaging antibiotic daptomycin. Supplementation with unsaturated fatty acids produced variable growth effects, with some impacting generation time and morphology. Exogenously supplied unsaturated fatty acids that are normally produced by E. faecalis and those that are found in bile or serum could restore growth in the presence of a fatty acid biosynthetic inhibitor. However, only the eukaryote-derived fatty acids oleic acid and linoleic acid provided protection from daptomycin. Thus, exogenous fatty acids do not lead to a common physiological effect on E. faecalis. The organism responds uniquely to each, and only host-derived fatty acids induce membrane protection. IMPORTANCE Enterococcus faecalis is a commonly acquired hospital infectious agent with resistance to many antibiotics, including those that target its cellular membrane. We previously demonstrated that E. faecalis will incorporate fatty acids found in human fluids, like serum, into its cellular membrane, thereby altering its membrane composition. In turn, the organism is better able to survive membrane-damaging agents, including the antibiotic daptomycin. We examined fatty acids commonly found in serum and those normally produced by E. faecalis to determine which fatty acids can induce protection from membrane damage. Supplementation with individual fatty acids produced a myriad of different effects on cellular growth, morphology, and stress response. However, only host-derived unsaturated fatty acids provided stress protection. Future studies are aimed at understanding how these specific fatty acids induce protection from membrane damage. PMID:29079613

  2. The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    PubMed

    Hogg, James C; Paré, Peter D; Hackett, Tillie-Louise

    2017-04-01

    The hypothesis that the small conducting airways were the major site of obstruction to airflow in normal lungs was introduced by Rohrer in 1915 and prevailed until Weibel introduced a quantitative method of studying lung anatomy in 1963. Green repeated Rohrer's calculations using Weibels new data in 1965 and found that the smaller conducting airways offered very little resistance to airflow. This conflict was resolved by seminal experiments conducted by Macklem and Mead in 1967, which confirmed that a small proportion of the total lower airways resistance is attributable to small airways <2 mm in diameter. Shortly thereafter, Hogg, Macklem, and Thurlbeck used this technique to show that small airways become the major site of obstruction in lungs affected by emphysema. These and other observations led Mead to write a seminal editorial in 1970 that postulated the small airways are a silent zone within normal lungs where disease can accumulate over many years without being noticed. This review provides a progress report since the 1970s on methods for detecting chronic obstructive pulmonary disease, the structural nature of small airways' disease, and the cellular and molecular mechanisms that are thought to underlie its pathogenesis. Copyright © 2017 the American Physiological Society.

  3. An update on oxidative stress-mediated organ pathophysiology.

    PubMed

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Role of stem cell derived exosomes in tumor biology.

    PubMed

    Sharma, Aman

    2018-03-15

    Exosomes are nano-scale messengers loaded with bio-molecular cargo of RNA, DNA, and Proteins. As a master regulator of cellular signaling, stem cell (both normal, and cancer stem cells) secreted exosome orchestrate various autocrine and paracrine functions which alter tumor micro-environment, growth and progression. Exosomes secreted by one of the two important stem cell phenotypes in cancers a) Mesenchymal stem cells, and b) Cancer stem cells not only promote cancerous growth but also impart therapy resistance in cancer cells. In tumors, normal or mesenchymal stem cell (MSCs) derived exosomes (MSC-exo) modulate tumor hallmarks by delivering unique miRNA species to neighboring cells and help in tumor progression. Apart from regulating tumor cell fate, MSC-exo are also capable of inducing physiological processes, for example, angiogenesis, metastasis and so forth. Similarly, cancer stem cells (CSCs) derived exosomes (CSC-exo) contain stemness-specific proteins, self-renewal promoting regulatory miRNAs, and survival factors. CSC-exo specific cargo maintains tumor heterogeneity and alters tumor progression. In this review we critically discuss the importance of stem cell specific exosomes in tumor cell signaling pathways with their role in tumor biology. © 2017 UICC.

  5. VOLTAGE-GATED POTASSIUM CHANNELS AT THE CROSSROADS OF NEURONAL FUNCTION, ISCHEMIC TOLERANCE, AND NEURODEGENERATION

    PubMed Central

    Shah, Niyathi Hegde; Aizenman, Elias

    2013-01-01

    Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system, and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K+ efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer’s disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage-dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels, and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons, and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases. PMID:24323720

  6. Functional Genomic Analysis of the let-7 Regulatory Network in Caenorhabditis elegans

    PubMed Central

    Zisoulis, Dimitrios G.; Lovci, Michael T.; Melnik-Martinez, Katya V.; Yeo, Gene W.; Pasquinelli, Amy E.

    2013-01-01

    The let-7 microRNA (miRNA) regulates cellular differentiation across many animal species. Loss of let-7 activity causes abnormal development in Caenorhabditis elegans and unchecked cellular proliferation in human cells, which contributes to tumorigenesis. These defects are due to improper expression of protein-coding genes normally under let-7 regulation. While some direct targets of let-7 have been identified, the genome-wide effect of let-7 insufficiency in a developing animal has not been fully investigated. Here we report the results of molecular and genetic assays aimed at determining the global network of genes regulated by let-7 in C. elegans. By screening for mis-regulated genes that also contribute to let-7 mutant phenotypes, we derived a list of physiologically relevant potential targets of let-7 regulation. Twenty new suppressors of the rupturing vulva or extra seam cell division phenotypes characteristic of let-7 mutants emerged. Three of these genes, opt-2, prmt-1, and T27D12.1, were found to associate with Argonaute in a let-7–dependent manner and are likely novel direct targets of this miRNA. Overall, a complex network of genes with various activities is subject to let-7 regulation to coordinate developmental timing across tissues during worm development. PMID:23516374

  7. SUMO proteases as potential targets for cancer therapy.

    PubMed

    Bialik, Piotr; Woźniak, Katarzyna

    2017-12-08

    Sumoylation is one of the post-translational modifications of proteins, responsible for the regulation of many cellular processes, such as DNA replication and repair, transcription, signal transduction and nuclear transport. During sumoylation, SUMO proteins are covalently attached to the ε-amino group of lysine in target proteins via an enzymatic cascade that requires the sequential action of E1, E2 and E3 enzymes. An important aspect of sumoylation is its reversibility, which involves SUMO-specific proteases called SENPs. SENPs (sentrin/SUMO-specific proteases) catalyze the deconjugation of SUMO proteins using their isopeptidase activity. These enzymes participate through hydrolase activity in the reaction of SUMO protein maturation, which involves the removal of a short fragment on the C-terminus of SUMO inactive form and exposure two glycine residues. SENPs are important for maintaining the balance between sumoylated and desumoylated proteins required for normal cellular physiology. Six SENP isoforms (SENP1, SENP2, SENP3, SENP5, SENP6 and SENP7) have been identified in mammals. These SENPs can be divided into three subfamilies based on their sequence homology, substrate specificity and subcellular localization. Results of studies indicate the role of SUMO proteases in the development of human diseases including cancer, suggesting that these proteins may be attractive targets for new drugs.

  8. A Functional Study of AUXILIN-LIKE1 and 2, Two Putative Clathrin Uncoating Factors in Arabidopsis[OPEN

    PubMed Central

    Adamowski, Maciek; Kania, Urszula

    2018-01-01

    Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterized compared with that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing tandem affinity purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologs of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in Arabidopsis caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like1/2 loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the ongoing characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in Arabidopsis. PMID:29511054

  9. Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station

    PubMed Central

    Fitzgerald, Wendy; Chen, Silvia; Walz, Carl; Zimmerberg, Joshua; Margolis, Leonid

    2013-01-01

    The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction. PMID:19609626

  10. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  11. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns.

    PubMed

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-01-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  12. The cell envelope proteome of Aggregatibacter actinomycetemcomitans

    PubMed Central

    Smith, Kenneth P.; Fields, Julia G.; Voogt, Richard D.; Deng, Bin; Lam, Ying-Wai; Mintz, Keith P.

    2014-01-01

    Summary The cell envelope of Gram-negative bacteria serves a critical role in maintenance of cellular homeostasis, resistance to external stress, and host-pathogen interactions. Envelope protein composition is influenced by the physiological and environmental demands placed on the bacterium. In this study, we report a comprehensive compilation of cell envelope proteins from the periodontal and systemic pathogen Aggregatibacter actinomycetemcomitans VT1169, an afimbriated serotype b strain. The urea-extracted membrane proteins were identified by mass spectrometry-based shotgun proteomics. The membrane proteome, isolated from actively growing bacteria under normal laboratory conditions, included 648 proteins representing 28% of the predicted ORFs in the genome. Bioinformatic analyses were used to annotate and predict the cellular location and function of the proteins. Surface adhesins, porins, lipoproteins, numerous influx and efflux pumps, multiple sugar, amino acid and iron transporters, and components of the type I, II and V secretion systems were identified. Periplasmic space and cytoplasmic proteins with chaperone function were also identified. 107 proteins with unknown function were associated with the cell envelope. Orthologs of a subset of these uncharacterized proteins are present in other bacterial genomes, while others are found exclusively in A. actinomycetemcomitans. This knowledge will contribute to elucidating the role of cell envelope proteins in bacterial growth and survival in the oral cavity. PMID:25055881

  13. Variable phosphorus uptake rates and allocation across microbial groups in the oligotrophic Gulf of Mexico.

    PubMed

    Popendorf, Kimberly J; Duhamel, Solange

    2015-10-01

    Microbial uptake of dissolved phosphorus (P) is an important lever in controlling both microbial production and the fate and cycling of marine P. We investigated the relative role of heterotrophic bacteria and phytoplankton in P cycling by measuring the P uptake rates of individual microbial groups (heterotrophic bacteria and the phytoplankton groups Synechococcus, Prochlorococcus and picoeukaryotic phytoplankton) in the P-depleted Gulf of Mexico. Phosphorus uptake rates were measured using incubations with radiolabelled phosphate and adenosine triphosphate coupled with cell sorting flow cytometry. We found that heterotrophic bacteria were the dominant consumers of P on both a biomass basis and a population basis. Biovolume normalized heterotrophic bacteria P uptake rate per cell (amol P μm(-3) h(-1)) was roughly an order of magnitude greater than phytoplankton uptake rates, and heterotrophic bacteria were responsible for generally greater than 50% of total picoplankton P uptake. We hypothesized that this variation in uptake rates reflects variation in cellular P allocation strategies, and found that, indeed, the fraction of cellular P uptake utilized for phospholipid production was significantly higher in heterotrophic bacteria compared with cyanobacterial phytoplankton. These findings indicate that heterotrophic bacteria have a uniquely P-oriented physiology and play a dominant role in cycling dissolved P. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Topical Application of Trisodium Ascorbyl 6-Palmitate 2-Phosphate Actively Supplies Ascorbate to Skin Cells in an Ascorbate Transporter-Independent Manner

    PubMed Central

    Shibuya, Shuichi; Sakaguchi, Ikuyo; Ito, Shintaro; Kato, Eiko; Watanabe, Kenji; Izuo, Naotaka; Shimizu, Takahiko

    2017-01-01

    Ascorbic acid (AA) possesses multiple beneficial functions, such as regulating collagen biosynthesis and redox balance in the skin. AA derivatives have been developed to overcome this compound’s high fragility and to assist with AA supplementation to the skin. However, how AA derivatives are transferred into cells and converted to AA in the skin remains unclear. In the present study, we showed that AA treatment failed to increase the cellular AA level in the presence of AA transporter inhibitors, indicating an AA transporter-dependent action. In contrast, torisodium ascorbyl 6-palmitate 2-phosphate (APPS) treatment significantly enhanced the cellular AA level in skin cells despite the presence of inhibitors. In ex vivo experiments, APPS treatment also increased the AA content in a human epidermis model. Interestingly, APPS was readily metabolized and converted to AA in keratinocyte lysates via an intrinsic mechanism. Furthermore, APPS markedly repressed the intracellular superoxide generation and promoted viability associated with an enhanced AA level in Sod1-deficient skin cells. These findings indicate that APPS effectively restores the AA level and normalizes the redox balance in skin cells in an AA transporter-independent manner. Topical treatment of APPS is a beneficial strategy for supplying AA and improving the physiology of damaged skin. PMID:28640219

  15. Fyn is an important molecule in cancer pathogenesis and drug resistance.

    PubMed

    Elias, Daniel; Ditzel, Henrik J

    2015-10-01

    Fyn is a non-receptor tyrosine kinase that belongs to the Src family kinases (SFKs) which under normal physiological conditions is involved in signal transduction pathways in the nervous system, as well as the development and activation of T lymphocytes. In cancer, Fyn contributes to the development and progression of several cancer types through its involvement in the control of cell growth, death, morphogenic transformation and cellular motility. Enhanced expression and/or activation of Fyn is observed in various cancers, including melanoma, glioblastoma, squamous cell carcinoma, prostate and breast cancers. Recent studies have demonstrated the importance of Fyn in the resistance or susceptibility of cancer cells to some anti-cancer treatments. We have recently shown that Fyn is upregulated in tamoxifen-resistant breast cancer cell lines and demonstrated that it plays a key role in the resistance mechanism. Further, we found that the cellular localization of Fyn within cancer cells of primary ER+ breast tumor tissue may serve as a prognostic marker. Understanding the role of Fyn in initiation and progression of cancer and its contribution to resistance against anti-cancer therapeutic agents may facilitate the development and use of novel drugs targeting Fyn for better management of malignancies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Oxidative Modulation of Voltage-Gated Potassium Channels

    PubMed Central

    Sahoo, Nirakar; Hoshi, Toshinori

    2014-01-01

    Abstract Significance: Voltage-gated K+ channels are a large family of K+-selective ion channel protein complexes that open on membrane depolarization. These K+ channels are expressed in diverse tissues and their function is vital for numerous physiological processes, in particular of neurons and muscle cells. Potentially reversible oxidative regulation of voltage-gated K+ channels by reactive species such as reactive oxygen species (ROS) represents a contributing mechanism of normal cellular plasticity and may play important roles in diverse pathologies including neurodegenerative diseases. Recent Advances: Studies using various protocols of oxidative modification, site-directed mutagenesis, and structural and kinetic modeling provide a broader phenomenology and emerging mechanistic insights. Critical Issues: Physicochemical mechanisms of the functional consequences of oxidative modifications of voltage-gated K+ channels are only beginning to be revealed. In vivo documentation of oxidative modifications of specific amino-acid residues of various voltage-gated K+ channel proteins, including the target specificity issue, is largely absent. Future Directions: High-resolution chemical and proteomic analysis of ion channel proteins with respect to oxidative modification combined with ongoing studies on channel structure and function will provide a better understanding of how the function of voltage-gated K+ channels is tuned by ROS and the corresponding reducing enzymes to meet cellular needs. Antioxid. Redox Signal. 21, 933–952. PMID:24040918

  17. Endurance Exercise: Normal Physiology and Limitations Imposed by Pathological Processes (Part 1).

    ERIC Educational Resources Information Center

    Frontera, Walter R.; Adams, Richard P.

    1986-01-01

    The physiologic and metabolic adjustments of the body to a single endurance exercise session are analyzed in terms of the respiratory system, the cardiovascular system, and oxygen delivery to the muscles. Patients with cardiorespiratory and neuromuscular diseases are compared to normal individuals. (Author/MT)

  18. Oxysterol Signatures Distinguish Age-Related Macular Degeneration from Physiologic Aging.

    PubMed

    Lin, Jonathan B; Sene, Abdoulaye; Santeford, Andrea; Fujiwara, Hideji; Sidhu, Rohini; Ligon, Marianne M; Shankar, Vikram A; Ban, Norimitsu; Mysorekar, Indira U; Ory, Daniel S; Apte, Rajendra S

    2018-06-11

    Macrophage aging is pathogenic in numerous diseases, including age-related macular degeneration (AMD), a leading cause of blindness in older adults. Although prior studies have explored the functional consequences of macrophage aging, less is known about its cellular basis or what defines the transition from physiologic aging to disease. Here, we show that despite their frequent self-renewal, macrophages from old mice exhibited numerous signs of aging, such as impaired oxidative respiration. Transcriptomic profiling of aged murine macrophages revealed dysregulation of diverse cellular pathways, especially in cholesterol homeostasis, that manifested in altered oxysterol signatures. Although the levels of numerous oxysterols in human peripheral blood mononuclear cells and plasma exhibited age-associated changes, plasma 24-hydroxycholesterol levels were specifically associated with AMD. These novel findings demonstrate that oxysterol levels can discriminate disease from physiologic aging. Furthermore, modulation of cholesterol homeostasis may be a novel strategy for treating age-associated diseases in which macrophage aging is pathogenic. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Predicting Transport of 3,5,6-Trichloro-2-Pyridinol Into Saliva Using a Combination Experimental and Computational Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan Ned; Carver, Zana A.; Weber, Thomas J.

    A combination experimental and computational approach was developed to predict chemical transport into saliva. A serous-acinar chemical transport assay was established to measure chemical transport with non-physiological (standard cell culture medium) and physiological (using surrogate plasma and saliva medium) conditions using 3,5,6-trichloro-2-pyridinol (TCPy) a metabolite of the pesticide chlorpyrifos. High levels of TCPy protein binding was observed in cell culture medium and rat plasma resulting in different TCPy transport behaviors in the two experimental conditions. In the non-physiological transport experiment, TCPy reached equilibrium at equivalent concentrations in apical and basolateral chambers. At higher TCPy doses, increased unbound TCPy was observed,more » and TCPy concentrations in apical and basolateral chambers reached equilibrium faster than lower doses, suggesting only unbound TCPy is able to cross the cellular monolayer. In the physiological experiment, TCPy transport was slower than non-physiological conditions, and equilibrium was achieved at different concentrations in apical and basolateral chambers at a comparable ratio (0.034) to what was previously measured in rats dosed with TCPy (saliva:blood ratio: 0.049). A cellular transport computational model was developed based on TCPy protein binding kinetics and accurately simulated all transport experiments using different permeability coefficients for the two experimental conditions (1.4 vs 0.4 cm/hr for non-physiological and physiological experiments, respectively). The computational model was integrated into a physiologically based pharmacokinetic (PBPK) model and accurately predicted TCPy concentrations in saliva of rats dosed with TCPy. Overall, this study demonstrates an approach to predict chemical transport in saliva potentially increasing the utility of salivary biomonitoring in the future.« less

  20. Biofield Physiology: A Framework for an Emerging Discipline

    PubMed Central

    Levin, Michael; McCraty, Rollin; Bat, Namuun; Ives, John A.; Lutgendorf, Susan K.; Oschman, James L.

    2015-01-01

    Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed. PMID:26665040

  1. Biofield Physiology: A Framework for an Emerging Discipline.

    PubMed

    Hammerschlag, Richard; Levin, Michael; McCraty, Rollin; Bat, Namuun; Ives, John A; Lutgendorf, Susan K; Oschman, James L

    2015-11-01

    Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed.

  2. Engineering the robustness of industrial microbes through synthetic biology.

    PubMed

    Zhu, Linjiang; Zhu, Yan; Zhang, Yanping; Li, Yin

    2012-02-01

    Microbial fermentations and bioconversions play a central role in the production of pharmaceuticals, enzymes and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximized carbon flux towards target metabolites regardless of fluctuations in intracellular or extracellular environments. This requires cellular systems that maintain functional stability and dynamic homeostasis in a given physiological state, or manipulate transitions between different physiological states. Stable maintenance or smooth transition can be achieved through engineering of dynamic controllability, modular and hierarchical organization, or functional redundancy, three key features of biological robustness in a cellular system. This review summarizes how synthetic biology can be used to improve the robustness of industrial microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The JCR:LA-cp rat: a novel rodent model of cystic medial necrosis.

    PubMed

    Pung, Yuh Fen; Chilian, William M; Bennett, Martin R; Figg, Nichola; Kamarulzaman, Mohd Hamzah

    2017-03-01

    Although there are multiple rodent models of the metabolic syndrome, very few develop vascular complications. In contrast, the JCR:LA-cp rat develops both metabolic syndrome and early atherosclerosis in predisposed areas. However, the pathology of the normal vessel wall has not been described. We examined JCR:LA control (+/+) or cp/cp rats fed normal chow diet for 6 or 18 mo. JCR:LA-cp rats developed multiple features of advanced cystic medial necrosis including "cysts," increased collagen formation and proteoglycan deposition around cysts, apoptosis of vascular smooth muscle cells, and spotty medial calcification. These appearances began within 6 mo and were extensive by 18 mo. JCR:LA-cp rats had reduced medial cellularity, increased medial thickness, and vessel hypoxia that was most marked in the adventitia. In conclusion, the normal chow-fed JCR:LA-cp rat represents a novel rodent model of cystic medial necrosis, associated with multiple metabolic abnormalities, vascular smooth muscle cell apoptosis, and vessel hypoxia. NEW & NOTEWORTHY Triggers for cystic medial necrosis (CMN) have been difficult to study due to lack of animal models to recapitulate the pathologies seen in humans. Our study is the first description of CMN in the rat. Thus the JCR:LA-cp rat represents a useful model to investigate the underlying molecular changes leading to the development of CMN. Copyright © 2017 the American Physiological Society.

  4. In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer.

    PubMed

    Pandi, Narayanan Sathiya; Suganya, Sivagurunathan; Rajendran, Suriliyandi

    2013-10-04

    Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However, the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. An Expanding Range of Functions for the Copper Chaperone/Antioxidant Protein Atox1

    PubMed Central

    Hatori, Yuta

    2013-01-01

    Abstract Significance: Antioxidant protein 1 (Atox1 in human cells) is a copper chaperone for the copper export pathway with an essential role in cellular copper distribution. In vitro, Atox1 binds and transfers copper to the copper-transporting ATPases, stimulating their catalytic activity. Inactivation of Atox1 in cells inhibits maturation of secreted cuproenzymes as well as copper export from cells. Recent Advances: Accumulating data suggest that cellular functions of Atox1 are not limited to its copper-trafficking role and may include storage of labile copper, modulation of transcription, and antioxidant defense. The conserved metal binding site of Atox1, CxGC, differs from the metal-binding sites of copper-transporting ATPases and has a physiologically relevant redox potential that equilibrates with the GSH:GSSG pair. Critical Issues: Tight relationship appears to exist between intracellular copper levels and glutathione (GSH) homeostasis. The biochemical properties of Atox1 place it at the intersection of cellular networks that regulate copper distribution and cellular redox balance. Mechanisms through which Atox1 facilitates copper export and contributes to oxidative defense are not fully understood. Future Directions: The current picture of cellular redox homeostasis and copper physiology will be enhanced by further mechanistic studies of functional interactions between the GSH:GSSG pair and copper-trafficking machinery. Antioxid. Redox Signal. 19, 945–957. PMID:23249252

  6. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism

    PubMed Central

    Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798

  7. Pathomimetic cancer avatars for live-cell imaging of protease activity

    PubMed Central

    Ji, Kyungmin; Heyza, Joshua; Cavallo-Medved, Dora; Sloane, Bonnie F.

    2016-01-01

    Proteases are essential for normal physiology as well as multiple diseases, e.g., playing a causative role in cancer progression, including in tumor angiogenesis, invasion, and metastasis. Identification of dynamic alterations in protease activity may allow us to detect early stage cancers and to assess the efficacy of anti-cancer therapies. Despite the clinical importance of proteases in cancer progression, their functional roles individually and within the context of complex protease networks have not yet been well defined. These gaps in our understanding might be addressed with: 1) accurate and sensitive tools and methods to directly identify changes in protease activities in live cells, and 2) pathomimetic avatars for cancer that recapitulate in vitro the tumor in the context of its cellular and non-cellular microenvironment. Such avatars should be designed to facilitate mechanistic studies that can be translated to animal models and ultimately the clinic. Here, we will describe basic principles and recent applications of live-cell imaging for identification of active proteases. The avatars optimized by our laboratory are three-dimensional (3D) human breast cancer models in a matrix of reconstituted basement membrane (rBM). They are designated mammary architecture and microenvironment engineering (MAME) models as they have been designed to mimic the structural and functional interactions among cell types in the normal and cancerous human breast. We have demonstrated the usefulness of these pathomimetic avatars for following dynamic and temporal changes in cell:cell interactions and quantifying changes in protease activity associated with these interactions in real-time (4D). We also briefly describe adaptation of the avatars to custom-designed and fabricated tissue architecture and microenvironment engineering (TAME) chambers that enhance our ability to analyze concomitant changes in the malignant phenotype and the associated tumor microenvironment. PMID:26375517

  8. Pathomimetic cancer avatars for live-cell imaging of protease activity.

    PubMed

    Ji, Kyungmin; Heyza, Joshua; Cavallo-Medved, Dora; Sloane, Bonnie F

    2016-03-01

    Proteases are essential for normal physiology as well as multiple diseases, e.g., playing a causative role in cancer progression, including in tumor angiogenesis, invasion, and metastasis. Identification of dynamic alterations in protease activity may allow us to detect early stage cancers and to assess the efficacy of anti-cancer therapies. Despite the clinical importance of proteases in cancer progression, their functional roles individually and within the context of complex protease networks have not yet been well defined. These gaps in our understanding might be addressed with: 1) accurate and sensitive tools and methods to directly identify changes in protease activities in live cells, and 2) pathomimetic avatars for cancer that recapitulate in vitro the tumor in the context of its cellular and non-cellular microenvironment. Such avatars should be designed to facilitate mechanistic studies that can be translated to animal models and ultimately the clinic. Here, we will describe basic principles and recent applications of live-cell imaging for identification of active proteases. The avatars optimized by our laboratory are three-dimensional (3D) human breast cancer models in a matrix of reconstituted basement membrane (rBM). They are designated mammary architecture and microenvironment engineering (MAME) models as they have been designed to mimic the structural and functional interactions among cell types in the normal and cancerous human breast. We have demonstrated the usefulness of these pathomimetic avatars for following dynamic and temporal changes in cell:cell interactions and quantifying changes in protease activity associated with these interactions in real-time (4D). We also briefly describe adaptation of the avatars to custom-designed and fabricated tissue architecture and microenvironment engineering (TAME) chambers that enhance our ability to analyze concomitant changes in the malignant phenotype and the associated tumor microenvironment. Copyright © 2015. Published by Elsevier B.V.

  9. The endoplasmic reticulum stress response in aging and age-related diseases

    PubMed Central

    Brown, Marishka K.; Naidoo, Nirinjini

    2012-01-01

    The endoplasmic reticulum(ER) is a multifunctional organelle within which protein folding, lipid biosynthesis, and calcium storage occurs. Perturbations such as energy or nutrient depletion, disturbances in calcium or redox status that disrupt ER homeostasis lead to the misfolding of proteins, ER stress and up-regulation of several signaling pathways coordinately called the unfolded protein response (UPR). The UPR is characterized by the induction of chaperones, degradation of misfolded proteins and attenuation of protein translation. The UPR plays a fundamental role in the maintenance of cellular homeostasis and thus is central to normal physiology. However, sustained unresolved ER stress leads to apoptosis. Aging linked declines in expression and activity of key ER molecular chaperones and folding enzymes compromise proper protein folding and the adaptive response of the UPR. One mechanism to explain age associated declines in cellular functions and age-related diseases is a progressive failure of chaperoning systems. In many of these diseases, proteins or fragments of proteins convert from their normally soluble forms to insoluble fibrils or plaques that accumulate in a variety of organs including the liver, brain or spleen. This group of diseases, which typically occur late in life includes Alzheimer's, Parkinson's, type II diabetes and a host of less well known but often equally serious conditions such as fatal familial insomnia. The UPR is implicated in many of these neurodegenerative and familial protein folding diseases as well as several cancers and a host of inflammatory diseases including diabetes, atherosclerosis, inflammatory bowel disease and arthritis. This review will discuss age-related changes in the ER stress response and the role of the UPR in age-related diseases. PMID:22934019

  10. RNA fluorescence with light-up aptamers

    NASA Astrophysics Data System (ADS)

    Ouellet, Jonathan

    2016-06-01

    Seeing is not only believing; it also includes understanding. Cellular imaging with GFP in live cells has been transformative in many research fields. Modulation of cellular regulation is tightly regulated and innovative imaging technologies contribute to further understand cellular signaling and physiology. New types of genetically encoded biosensors have been developed over the last decade. They are RNA aptamers that bind with their cognate fluorogen ligands and activate their fluorescence. The emergence and the evolution of these RNA aptamers as well as their conversion into a wide spectrum of applications are examined in a global way.

  11. Transhydrogenase Promotes the Robustness and Evolvability of E. coli Deficient in NADPH Production

    PubMed Central

    Chou, Hsin-Hung; Marx, Christopher J.; Sauer, Uwe

    2015-01-01

    Metabolic networks revolve around few metabolites recognized by diverse enzymes and involved in myriad reactions. Though hub metabolites are considered as stepping stones to facilitate the evolutionary expansion of biochemical pathways, changes in their production or consumption often impair cellular physiology through their system-wide connections. How does metabolism endure perturbations brought immediately by pathway modification and restore hub homeostasis in the long run? To address this question we studied laboratory evolution of pathway-engineered Escherichia coli that underproduces the redox cofactor NADPH on glucose. Literature suggests multiple possibilities to restore NADPH homeostasis. Surprisingly, genetic dissection of isolates from our twelve evolved populations revealed merely two solutions: (1) modulating the expression of membrane-bound transhydrogenase (mTH) in every population; (2) simultaneously consuming glucose with acetate, an unfavored byproduct normally excreted during glucose catabolism, in two subpopulations. Notably, mTH displays broad phylogenetic distribution and has also played a predominant role in laboratory evolution of Methylobacterium extorquens deficient in NADPH production. Convergent evolution of two phylogenetically and metabolically distinct species suggests mTH as a conserved buffering mechanism that promotes the robustness and evolvability of metabolism. Moreover, adaptive diversification via evolving dual substrate consumption highlights the flexibility of physiological systems to exploit ecological opportunities. PMID:25715029

  12. Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST)

    PubMed Central

    Szewczyk, N.J.; Tillman, J.; Conley, C.A.; Granger, L.; Segalat, L.; Higashitani, A.; Honda, S.; Honda, Y.; Kagawa, H.; Adachi, R.; Higashibata, A.; Fujimoto, N.; Kuriyama, K.; Ishioka, N.; Fukui, K.; Baillie, D.; Rose, A.; Gasset, G.; Eche, B.; Chaput, D.; Viso, M.

    2008-01-01

    Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads. PMID:22146801

  13. Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS.

    PubMed

    Zepeda, Andrea B; Pessoa, Adalberto; Castillo, Rodrigo L; Figueroa, Carolina A; Pulgar, Victor M; Farías, Jorge G

    2013-08-01

    Reactive oxygen species such as superoxide anion radicals (O2 (-) ) and hydrogen peroxide (H2 O2 ) have for long time been recognized as undesirable by-products of the oxidative mitochondrial generation of adenosine triphosphate (ATP). Recently, these highly reactive species have been associated to important signaling pathways in diverse physiological conditions such as those activated in hypoxic microenvironments. The molecular response to hypoxia requires fast-acting mechanisms acting within a wide range of partial pressures of oxygen (O2 ). Intracellular O2 sensing is an evolutionary preserved feature, and the best characterized molecular responses to hypoxia are mediated through transcriptional activation. The transcription factor, hypoxia-inducible factor 1 (HIF-1), is a critical mediator of these adaptive responses, and its activation by hypoxia involves O2 -dependent posttranslational modifications and nuclear translocation. Through the induction of the expression of its target genes, HIF-1 coordinately regulates tissue O2 supply and energetic metabolism. Other transcription factors such as nuclear factor κB are also redox sensitive and are activated in pro-oxidant and hypoxic conditions. The purpose of this review is to summarize new developments in HIF-mediated O2 sensing mechanisms and their interactions with reactive oxygen species-generating pathways in normal and abnormal physiology. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Diurnal Variation in Vascular and Metabolic Function in Diet-Induced Obesity

    PubMed Central

    Prasai, Madhu J.; Mughal, Romana S.; Wheatcroft, Stephen B.; Kearney, Mark T.; Grant, Peter J.; Scott, Eleanor M.

    2013-01-01

    Circadian rhythms are integral to the normal functioning of numerous physiological processes. Evidence from human and mouse studies suggests that loss of rhythm occurs in obesity and cardiovascular disease and may be a neglected contributor to pathophysiology. Obesity has been shown to impair the circadian clock mechanism in liver and adipose tissue but its effect on cardiovascular tissues is unknown. We investigated the effect of diet-induced obesity in C57BL6J mice upon rhythmic transcription of clock genes and diurnal variation in vascular and metabolic systems. In obesity, clock gene function and physiological rhythms were preserved in the vasculature but clock gene transcription in metabolic tissues and rhythms of glucose tolerance and insulin sensitivity were blunted. The most pronounced attenuation of clock rhythm occurred in adipose tissue, where there was also impairment of clock-controlled master metabolic genes and both AMPK mRNA and protein. Across tissues, clock gene disruption was associated with local inflammation but diverged from impairment of insulin signaling. We conclude that vascular tissues are less sensitive to pathological disruption of diurnal rhythms during obesity than metabolic tissues and suggest that cellular disruption of clock gene rhythmicity may occur by mechanisms shared with inflammation but distinct from those leading to insulin resistance. PMID:23382450

  15. Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST)

    NASA Astrophysics Data System (ADS)

    Szewczyk, N. J.; Tillman, J.; Conley, C. A.; Granger, L.; Segalat, L.; Higashitani, A.; Honda, S.; Honda, Y.; Kagawa, H.; Adachi, R.; Higashibata, A.; Fujimoto, N.; Kuriyama, K.; Ishioka, N.; Fukui, K.; Baillie, D.; Rose, A.; Gasset, G.; Eche, B.; Chaput, D.; Viso, M.

    2008-09-01

    Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads.

  16. Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST).

    PubMed

    Szewczyk, N J; Tillman, J; Conley, C A; Granger, L; Segalat, L; Higashitani, A; Honda, S; Honda, Y; Kagawa, H; Adachi, R; Higashibata, A; Fujimoto, N; Kuriyama, K; Ishioka, N; Fukui, K; Baillie, D; Rose, A; Gasset, G; Eche, B; Chaput, D; Viso, M

    2008-09-15

    Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads.

  17. Cysteine Oxidative Post-translational Modifications: Emerging Regulation in the Cardiovascular System

    PubMed Central

    Chung, Heaseung S.; Wang, Sheng-Bing; Venkatraman, Vidya; Murray, Christopher I.; Van Eyk, Jennifer E.

    2014-01-01

    In the cardiovascular system, changes in the oxidative balance can affect many aspects of cellular physiology through redox-signaling. Depending on the magnitude, fluctuations in the cell's production of reactive oxygen and nitrogen species can regulate normal metabolic processes, activate protective mechanisms, or be cytotoxic. Reactive oxygen and nitrogen species can have many effects including the post-translational modification of proteins at critical cysteine (Cys) thiols. A subset can act as redox-switches, which elicit functional effects in response to changes in oxidative state. While the general concepts of redox-signaling have been established, the identity and function of many regulatory switches remains unclear. Characterizing the effects of individual modifications is the key to understanding how the cell interprets oxidative signals under physiological and pathological conditions. Here, we review the various Cys oxidative post-translational modifications (Ox-PTMs) and their ability to function as redox-switches that regulate the cell's response to oxidative stimuli. In addition, we discuss how these modifications have the potential to influence other post-translational modifications' signaling pathways though cross-talk. Finally, we review the growing number of tools being developed to identify and quantify the various Cys Ox-PTMs and how this will advance our understanding of redox-regulation. PMID:23329793

  18. Engineering of functional, perfusable 3D microvascular networks on a chip.

    PubMed

    Kim, Sudong; Lee, Hyunjae; Chung, Minhwan; Jeon, Noo Li

    2013-04-21

    Generating perfusable 3D microvessels in vitro is an important goal for tissue engineering, as well as for reliable modelling of blood vessel function. To date, in vitro blood vessel models have not been able to accurately reproduce the dynamics and responses of endothelial cells to grow perfusable and functional 3D vascular networks. Here we describe a microfluidic-based platform whereby we model natural cellular programs found during normal development and angiogenesis to form perfusable networks of intact 3D microvessels as well as tumor vasculatures based on the spatially controlled co-culture of endothelial cells with stromal fibroblasts, pericytes or cancer cells. The microvessels possess the characteristic morphological and biochemical markers of in vivo blood vessels, and exhibit strong barrier function and long-term stability. An open, unobstructed microvasculature allows the delivery of nutrients, chemical compounds, biomolecules and cell suspensions, as well as flow-induced mechanical stimuli into the luminal space of the endothelium, and exhibits faithful responses to physiological shear stress as demonstrated by cytoskeleton rearrangement and increased nitric oxide synthesis. This simple and versatile platform provides a wide range of applications in vascular physiology studies as well as in developing vascularized organ-on-a-chip and human disease models for pharmaceutical screening.

  19. Bringing the light to high throughput screening: use of optogenetic tools for the development of recombinant cellular assays

    NASA Astrophysics Data System (ADS)

    Agus, Viviana; Di Silvio, Alberto; Rolland, Jean Francois; Mondini, Anna; Tremolada, Sara; Montag, Katharina; Scarabottolo, Lia; Redaelli, Loredana; Lohmer, Stefan

    2015-03-01

    The use of light-activated proteins represents a powerful tool to control biological processes with high spatial and temporal precision. These so called "optogenetic" technologies have been successfully validated in many recombinant systems, and have been widely applied to the study of cellular mechanisms in intact tissues or behaving animals; to do that, complex, high-intensity, often home-made instrumentations were developed to achieve the optimal power and precision of light stimulation. In our study we sought to determine if this optical modulation can be obtained also in a miniaturized format, such as a 384-well plate, using the instrumentations normally dedicated to fluorescence analysis in High Throughput Screening (HTS) activities, such as for example the FLIPR (Fluorometric Imaging Plate Reader) instrument. We successfully generated optogenetic assays for the study of different ion channel targets: the CaV1.3 calcium channel was modulated by the light-activated Channelrhodopsin-2, the HCN2 cyclic nucleotide gated (CNG) channel was modulated by the light activated bPAC adenylyl cyclase, and finally the genetically encoded voltage indicator ArcLight was efficiently used to measure potassium, sodium or chloride channel activity. Our results showed that stable, robust and miniaturized cellular assays can be developed using different optogenetic tools, and efficiently modulated by the FLIPR instrument LEDs in a 384-well format. The spatial and temporal resolution delivered by this technology might enormously advantage the early stages of drug discovery, leading to the identification of more physiological and effective drug molecules.

  20. Nonessential role of beta3 and beta5 integrin subunits for efficient clearance of cellular debris after light-induced photoreceptor degeneration.

    PubMed

    Joly, Sandrine; Samardzija, Marijana; Wenzel, Andreas; Thiersch, Markus; Grimm, Christian

    2009-03-01

    During light-induced photoreceptor degeneration, large amounts of cellular debris are formed that must be cleared from the subretinal space. The integrins alphavbeta5 and alphavbeta3 are involved in the normal physiological process of phagocytosis in the retina. This study was conducted to investigate the question of whether the lack of beta5 and/or beta3 integrin subunits might influence the course of retinal degeneration and/or clearance of photoreceptor debris induced by acute exposure to light. Wild-type, beta5(-/-) and beta3(-/-) single-knockout, and beta3(-/-)/beta5(-/-) Ccl2(-/-)/beta5(-/-) double-knockout mice were exposed to 13,000 lux of white light for 2 hours to induce severe photoreceptor degeneration. Real-time PCR and Western blot analysis were used to analyze gene and protein expression, light- and electron microscopy to judge retinal morphology, and immunofluorescence to study retinal distribution of proteins. Individual or combined deletion of beta3 and beta5 integrin subunits did not affect the pattern of photoreceptor cell loss or the clearance of photoreceptor debris in mice compared with that in wild-type mice. Invading macrophages may contribute to efficient phagocytosis. However, ablation of the MCP-1 gene did not prevent macrophage recruitment. Several chemokines in addition to MCP-1 were induced after light-induced damage that may have compensated for the deletion of MCP-1. Acute clearance of a large amount of cellular debris from the subretinal space involves invading macrophages and does not depend on beta3 and beta5 integrins.

  1. Second-harmonic generation and fluorescence lifetime imaging microscopy through a rodent mammary imaging window

    NASA Astrophysics Data System (ADS)

    Young, Pamela A.; Nazir, Muhammad; Szulczewski, Michael J.; Keely, Patricia J.; Eliceiri, Kevin W.

    2012-03-01

    Tumor-Associated Collagen Signatures (TACS) have been identified that manifest in specific ways during breast tumor progression and that correspond to patient outcome. There are also compelling metabolic changes associated with carcinoma invasion and progression. We have characterized the difference in the autofluorescent properties of metabolic co-factors, NADH and FAD, between normal and carcinoma breast cell lines. Also, we have shown in vitro that increased collagen density alters metabolic genes which are associated with glycolysis and leads to a more invasive phenotype. Establishing the relationship between collagen density, cellular metabolism, and metastasis in physiologically relevant cancer models is crucial for developing cancer therapies. To study cellular metabolism with respect to collagen density in vivo, we use multiphoton fluorescence excitation microscopy (MPM) in conjunction with a rodent mammary imaging window implanted in defined mouse cancer models. These models are ideal for the study of collagen changes in vivo, allowing determination of corresponding metabolic changes in breast cancer invasion and progression. To measure cellular metabolism, we collect fluorescence lifetime (FLIM) signatures of NADH and FAD, which are known to change based on the microenvironment of the cells. Additionally, MPM systems are capable of collecting second harmonic generation (SHG) signals which are a nonlinear optical property of collagen. Therefore, MPM, SHG, and FLIM are powerful tools with great potential for characterizing key features of breast carcinoma in vivo. Below we present the current efforts of our collaborative group to develop intravital approaches based on these imaging techniques to look at defined mouse mammary models.

  2. Microbial forensics: predicting phenotypic characteristics and environmental conditions from large-scale gene expression profiles.

    PubMed

    Kim, Minseung; Zorraquino, Violeta; Tagkopoulos, Ilias

    2015-03-01

    A tantalizing question in cellular physiology is whether the cellular state and environmental conditions can be inferred by the expression signature of an organism. To investigate this relationship, we created an extensive normalized gene expression compendium for the bacterium Escherichia coli that was further enriched with meta-information through an iterative learning procedure. We then constructed an ensemble method to predict environmental and cellular state, including strain, growth phase, medium, oxygen level, antibiotic and carbon source presence. Results show that gene expression is an excellent predictor of environmental structure, with multi-class ensemble models achieving balanced accuracy between 70.0% (±3.5%) to 98.3% (±2.3%) for the various characteristics. Interestingly, this performance can be significantly boosted when environmental and strain characteristics are simultaneously considered, as a composite classifier that captures the inter-dependencies of three characteristics (medium, phase and strain) achieved 10.6% (±1.0%) higher performance than any individual models. Contrary to expectations, only 59% of the top informative genes were also identified as differentially expressed under the respective conditions. Functional analysis of the respective genetic signatures implicates a wide spectrum of Gene Ontology terms and KEGG pathways with condition-specific information content, including iron transport, transferases, and enterobactin synthesis. Further experimental phenotypic-to-genotypic mapping that we conducted for knock-out mutants argues for the information content of top-ranked genes. This work demonstrates the degree at which genome-scale transcriptional information can be predictive of latent, heterogeneous and seemingly disparate phenotypic and environmental characteristics, with far-reaching applications.

  3. A Major Binding Protein for Leukemia Inhibitory Factor in Normal Mouse Serum: Identification as a Soluble Form of the Cellular Receptor

    NASA Astrophysics Data System (ADS)

    Layton, Meredith J.; Cross, Bronwyn A.; Metcalf, Donald; Ward, Larry D.; Simpson, Richard J.; Nicola, Nicos A.

    1992-09-01

    A protein that specifically binds leukemia inhibitory factor (LIF) has been isolated from normal mouse serum by using four successive fractionation steps: chromatography on a LIF affinity matrix, anion-exchange chromatography, size-exclusion chromatography, and preparative native gel electrophoresis. The purified LIF-binding protein (LBP) is a glycoprotein with an apparent molecular mass of 90 kDa that specifically binds 125I-labeled murine LIF with an affinity comparable to that of the low-affinity cellular LIF receptor (K_d = 600 pM). N-terminal sequencing has identified this protein as a soluble truncated form of the α chain of the cellular LIF receptor. LBP is present in normal mouse serum at high levels (1 μg/ml) and these levels are elevated in pregnant mice and reduced in neonatal mice. Since normal serum concentrations of LBP can block the biological actions of LIF in culture, LBP may serve as an inhibitor of the systemic effects of locally produced LIF.

  4. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model

    NASA Astrophysics Data System (ADS)

    Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo

    2016-02-01

    In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08358c

  5. Tissue Physiology and Pathology of Aromatase

    PubMed Central

    Stocco, Carlos

    2011-01-01

    Summary Aromatase is expressed in multiple tissues, indicating a crucial role for locally produced oestrogens in the differentiation, regulation and normal function of several organs and processes. This review is an overview of the role of aromatase in different tissues under normal physiological conditions and its contribution to the development of some oestrogen-related pathologies. PMID:22108547

  6. Distinguishing hyperhidrosis and normal physiological sweat production: new data and review of hyperhidrosis data for 1980-2013.

    PubMed

    Thorlacius, Linnea; Gyldenløve, Mette; Zachariae, Claus; Carlsen, Berit C

    2015-10-01

    Hyperhidrosis is a condition in which the production of sweat is abnormally increased. No objective criteria for the diagnosis of hyperhidrosis exist, mainly because reference intervals for normal physiological sweat production at rest are unknown. The main objective of this study was to establish reference intervals for normal physiological axillary and palmar sweat production. Gravimetric testing was performed in 75 healthy control subjects. Subsequently, these results were compared with findings in a cohort of patients with hyperhidrosis and with the results derived from a review of data on hyperhidrosis published between 1980 and 2013. Approximately 90% of the controls had axillary and palmar sweat production rates of below 100 mg/5 min. In all except one of the axillary and palmar hyperhidrosis studies reviewed, average sweat production exceeded 100 mg/5 min. A sweat production rate of 100 mg/5 min as measured by gravimetric testing may be a reasonable cut-off value for distinguishing axillary and palmar hyperhidrosis from normal physiological sweat production. © 2015 The International Society of Dermatology.

  7. Adaptation of bone to physiological stimuli.

    PubMed

    Judex, S; Gross, T S; Bray, R C; Zernicke, R F

    1997-05-01

    The ability of bone to alter its morphology in response to local physical stimuli is predicated upon the appropriate recruitment of bone cell populations. In turn, the ability to initiate cellular recruitment is influenced by numerous local and systemic factors. In this paper, we discuss data from three ongoing projects from our laboratory that examine how physiological processes influence adaptation and growth in the skeleton. In the first study, we recorded in vivo strains to quantify the locomotion-induced distribution of two parameters closely related to bone fluid flow strain rate and strain gradients. We found that the magnitude of these parameters (and thus the implied fluid flow) varies substantially within a given cross-section, and that while strain rate magnitude increases uniformly with elevated speed, strain gradients increase focally as gait speed is increased. Secondly, we examined the influence of vascular alterations on bone adaptation by assessing bone blood flow and bone mechanical properties in an in vivo model of trauma-induced joint laxity. A strong negative correlation (r2 = 0.8) was found between increased blood flow (76%) in the primary and secondary spongiosa and decreased stiffness (-34%) following 14 weeks of joint laxity. These data suggest that blood flow and/or vascular adaptation may interact closely with bone adaptation initiated by trauma. Thirdly, we examined the effect of a systemic influence upon skeletal health. After 4 weeks old rats were fed high fat-sucrose diets for 2 yr, their bone mechanical properties were significantly reduced. These changes were primarily due to interference with normal calcium absorption. In the aggregate, these studies emphasize the complexity of bone's normal physical environment, and also illustrate the potential interactions of local and systemic factors upon the process by which bone adapts to physical stimuli.

  8. pH regulators in invadosomal functioning: proton delivery for matrix tasting.

    PubMed

    Brisson, Lucie; Reshkin, Stephan J; Goré, Jacques; Roger, Sébastien

    2012-01-01

    Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. SR-BI as target in atherosclerosis and cardiovascular disease - A comprehensive appraisal of the cellular functions of SR-BI in physiology and disease.

    PubMed

    Hoekstra, Menno

    2017-03-01

    High-density lipoprotein (HDL) is considered an anti-atherogenic lipoprotein species due to its role in reverse cholesterol transport. HDL delivers cholesterol esters to the liver through selective uptake by scavenger receptor class B type I (SR-BI). In line with the protective role for HDL in the context of cardiovascular disease, studies in mice and recently also in humans have shown that a disruption of normal SR-BI function predisposes subjects to the development of atherosclerotic lesions and cardiovascular disease. Although SR-BI function has been studied primarily in the liver, it should be acknowledged that the SR-BI protein is expressed in multiple tissues and cell types across the body, albeit at varying levels between the different tissues. Given that SR-BI is widely expressed throughout the body, multiple cell types and tissues can theoretically contribute to the atheroprotective effect of SR-BI. In this review the different functions of SR-BI in normal physiology are highlighted and the (potential) consequences of cell type-specific disruption of SR-BI function for atherosclerosis and cardiovascular disease susceptibility discussed. It appears that hepatocyte and platelet SR-BI inhibit respectively the development of atherosclerotic lesions and thrombosis, suggesting that SR-BI located on these cell compartments should be regarded as being a protective factor in the context of cardiovascular disease. The relative contribution of SR-BI present on endothelial cells, steroidogenic cells, adipocytes and macrophages to the pathogenesis of atherosclerosis and cardiovascular disease remains less clear, although proper SR-BI function in these cells does appear to influence multiple processes that impact on cardiovascular disease susceptibility. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  10. Influence of Neonatal Hypothyroidism on Hepatic Gene Expression and Lipid Metabolism in Adulthood

    PubMed Central

    Bocos, Carlos; Henríquez-Hernández, Luis A.; Kahlon, Nusrat; Herrera, Emilio; Norstedt, Gunnar; Parini, Paolo; Flores-Morales, Amilcar; Fernández-Pérez, Leandro

    2012-01-01

    Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood. PMID:22666351

  11. Iron depletion results in Src kinase inhibition with associated cell cycle arrest in neuroblastoma cells.

    PubMed

    Siriwardana, Gamini; Seligman, Paul A

    2015-03-01

    Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for this G1 block. Initial studies showed in the presence of DFO, these cells have high levels of p27 and after reversal of iron chelation p27 is degraded allowing for CDK2 kinase activity. The initial activation of CDK2 kinase allows cells to exit G1 and enter S phase. Furthermore, we found that inhibition of p27 degradation by DFO is directly associated with inhibition of Src kinase activity measured by lack of phosphorylation of Src at the 416 residue. Activation of Src kinase occurs very early after reversal from the DFO G1 block and is temporally associated with initiation of cellular proliferation associated with entry into S phase. For the first time therefore we show that iron chelation inhibits Src kinase activity and this activity is a requirement for cellular proliferation. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. An instructional design process based on expert knowledge for teaching students how mechanisms are explained.

    PubMed

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2016-06-01

    In biology and physiology courses, students face many difficulties when learning to explain mechanisms, a topic that is demanding due to the immense complexity and abstract nature of molecular and cellular mechanisms. To overcome these difficulties, we asked the following question: how does an instructor transform their understanding of biological mechanisms and other difficult-to-learn topics so that students can comprehend them? To address this question, we first reviewed a model of the components used by biologists to explain molecular and cellular mechanisms: the MACH model, with the components of methods (M), analogies (A), context (C), and how (H). Next, instructional materials were developed and the teaching activities were piloted with a physical MACH model. Students who used the MACH model to guide their explanations of mechanisms exhibited both improvements and some new difficulties. Third, a series of design-based research cycles was applied to bring the activities with an improved physical MACH model into biology and biochemistry courses. Finally, a useful rubric was developed to address prevalent student difficulties. Here, we present, for physiology and biology instructors, the knowledge and resources for explaining molecular and cellular mechanisms in undergraduate courses with an instructional design process aimed at realizing pedagogical content knowledge for teaching. Our four-stage process could be adapted to advance instruction with a range of models in the life sciences. Copyright © 2016 The American Physiological Society.

  13. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster.

    PubMed

    Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd

    2011-07-01

    Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca(2+) oscillations. Here, we have unraveled the molecular basis of cellular Ca(2+) signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca(2+) imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca(2+) signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.

  14. A pharma perspective on the systems medicine and pharmacology of inflammation.

    PubMed

    Lahoz-Beneytez, Julio; Schnizler, Katrin; Eissing, Thomas

    2015-02-01

    Biological systems are complex and comprehend multiple scales of organisation. Hence, holistic approaches are necessary to capture the behaviour of these entities from the molecular and cellular to the whole organism level. This also applies to the understanding and treatment of different diseases. Traditional systems biology has been successful in describing different biological phenomena at the cellular level, but it still lacks of a holistic description of the multi-scale interactions within the body. The importance of the physiological context is of particular interest in inflammation. Regulatory agencies have urged the scientific community to increase the translational power of bio-medical research and it has been recognised that modelling and simulation could be a path to follow. Interestingly, in pharma R&D, modelling and simulation has been employed since a long time ago. Systems pharmacology, and particularly physiologically based pharmacokinetic/pharmacodynamic models, serve as a suitable framework to integrate the available and emerging knowledge at different levels of the drug development process. Systems medicine and pharmacology of inflammation will potentially benefit from this framework in order to better understand inflammatory diseases and to help to transfer the vast knowledge on the molecular and cellular level into a more physiological context. Ultimately, this may lead to reliable predictions of clinical outcomes such as disease progression or treatment efficacy, contributing thereby to a better care of patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Activation of AMP-activated protein kinase in response to temperature elevation shows seasonal variation in the zebra mussel, Dreissena polymorpha.

    PubMed

    Jost, Jennifer A; Keshwani, Sarah S; Abou-Hanna, Jacob J

    2015-04-01

    Global climate change is affecting ectothermic species, and a variety of studies are needed on thermal tolerances, especially from cellular and physiological perspectives. This study utilized AMP-activated protein kinase (AMPK), a key regulator of cellular energy levels, to examine the effects of high water temperatures on zebra mussel (Dreissena polymorpha) physiology. During heating, AMPK activity increased as water temperature increased to a point, and maximum AMPK activity was detected at high, but sublethal, water temperatures. This pattern varied with season, suggesting that cellular mechanisms of seasonal thermal acclimatization affect basic metabolic processes during sublethal heat stress. There was a greater seasonal variation in the water temperature at which maximum AMPK activity was measured than in lethal water temperature. Furthermore, baseline AMPK activity varied significantly across seasons, most likely reflecting altered metabolic states during times of growth and reproduction. In addition, when summer-collected mussels were lab-acclimated to winter and spring water temperatures, patterns of heat stress mirrored those of field-collected animals. These data suggest that water temperature is the main driver of the seasonal variation in physiology. This study concluded that AMPK activity, which reflects changes in energy supply and demand during heat stress, can serve as a sensitive and early indicator of temperature stress in mussels. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines

    PubMed Central

    2010-01-01

    Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822

  17. Taming the Sphinx: Mechanisms of Cellular Sphingolipid Homeostasis

    PubMed Central

    Olson, D. K.; Fröhlich, F.; Farese, R; Walther, T. C.

    2016-01-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. PMID:26747648

  18. Physiological responses of wild type and putrescine-overproducing transgenic cells of poplar to variations in the form and concentration of nitrogen in the medium

    Treesearch

    Rakesh Minocha; Jae Soon Lee; Stephanie Long; Pratiksha Bhatnagar; Subhash C. Minocha

    2004-01-01

    We determined: (a) the physiological consequences of overproduction of putrescine in transgenic poplar (Populus nigra x mnrimoviczir) cells expressing an omithine decarboxylase transgene; and (b) effects of variation in nitrogen (N) concentration of the medium on cellular polyamine concentration in transgenic and non-transgenic cells. Cells grown in...

  19. Premature aging/senescence in cancer cells facing therapy: good or bad?

    PubMed

    Gonzalez, Llilians Calvo; Ghadaouia, Sabrina; Martinez, Aurélie; Rodier, Francis

    2016-02-01

    Normal and cancer cells facing their demise following exposure to radio-chemotherapy can actively participate in choosing their subsequent fate. These programmed cell fate decisions include true cell death (apoptosis-necroptosis) and therapy-induced cellular senescence (TIS), a permanent "proliferative arrest" commonly portrayed as premature cellular aging. Despite a permanent loss of proliferative potential, senescent cells remain viable and are highly bioactive at the microenvironment level, resulting in a prolonged impact on tissue architecture and functions. Cellular senescence is primarily documented as a tumor suppression mechanism that prevents cellular transformation. In the context of normal tissues, cellular senescence also plays important roles in tissue repair, but contributes to age-associated tissue dysfunction when senescent cells accumulate. Theoretically, in multi-step cancer progression models, cancer cells have already bypassed cellular senescence during their immortalization step (see hallmarks of cancer). It is then perhaps surprising to find that cancer cells often retain the ability to undergo TIS, or premature aging. This occurs because cellular senescence results from multiple signalling pathways, some retained in cancer cells, aiming to prevent cell cycle progression in damaged cells. Since senescent cancer cells persist after therapy and secrete an array of cytokines and growth factors that can modulate the tumor microenvironment, these cells may have beneficial and detrimental effects regarding immune modulation and survival of remaining proliferation-competent cancer cells. Similarly, while normal cells undergoing senescence are believed to remain indefinitely growth arrested, whether this is true for senescent cancer cells remains unclear, raising the possibility that these cells may represent a reservoir for cancer recurrence after treatment. This review discusses our current knowledge on cancer cell senescence and highlight questions that must be addressed to fully understand the beneficial and detrimental impacts of cellular senescence during cancer therapy.

  20. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1

    PubMed Central

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    ABSTRACT Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp−/− mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein. PMID:26237451

  1. Virtual tissues in toxicology.

    PubMed

    Shah, Imran; Wambaugh, John

    2010-02-01

    New approaches are vital for efficiently evaluating human health risk of thousands of chemicals in commerce. In vitro models offer a high-throughput approach for assaying chemical-induced molecular and cellular changes; however, bridging these perturbations to in vivo effects across chemicals, dose, time, and species remains challenging. Technological advances in multiresolution imaging and multiscale simulation are making it feasible to reconstruct tissues in silico. In toxicology, these "virtual" tissues (VT) aim to predict histopathological outcomes from alterations of cellular phenotypes that are controlled by chemical-induced perturbations in molecular pathways. The behaviors of thousands of heterogeneous cells in tissues are simulated discretely using agent-based modeling (ABM), in which computational "agents" mimic cell interactions and cellular responses to the microenvironment. The behavior of agents is constrained by physical laws and biological rules derived from experimental evidence. VT extend compartmental physiologic models to simulate both acute insults as well as the chronic effects of low-dose exposure. Furthermore, agent behavior can encode the logic of signaling and genetic regulatory networks to evaluate the role of different pathways in chemical-induced injury. To extrapolate toxicity across species, chemicals, and doses, VT require four main components: (a) organization of prior knowledge on physiologic events to define the mechanistic rules for agent behavior, (b) knowledge on key chemical-induced molecular effects, including activation of stress sensors and changes in molecular pathways that alter the cellular phenotype, (c) multiresolution quantitative and qualitative analysis of histologic data to characterize and measure chemical-, dose-, and time-dependent physiologic events, and (d) multiscale, spatiotemporal simulation frameworks to effectively calibrate and evaluate VT using experimental data. This investigation presents the motivation, implementation, and application of VT with examples from hepatotoxicity and carcinogenesis.

  2. Evaluating acoustic speaker normalization algorithms: evidence from longitudinal child data.

    PubMed

    Kohn, Mary Elizabeth; Farrington, Charlie

    2012-03-01

    Speaker vowel formant normalization, a technique that controls for variation introduced by physical differences between speakers, is necessary in variationist studies to compare speakers of different ages, genders, and physiological makeup in order to understand non-physiological variation patterns within populations. Many algorithms have been established to reduce variation introduced into vocalic data from physiological sources. The lack of real-time studies tracking the effectiveness of these normalization algorithms from childhood through adolescence inhibits exploration of child participation in vowel shifts. This analysis compares normalization techniques applied to data collected from ten African American children across five time points. Linear regressions compare the reduction in variation attributable to age and gender for each speaker for the vowels BEET, BAT, BOT, BUT, and BOAR. A normalization technique is successful if it maintains variation attributable to a reference sociolinguistic variable, while reducing variation attributable to age. Results indicate that normalization techniques which rely on both a measure of central tendency and range of the vowel space perform best at reducing variation attributable to age, although some variation attributable to age persists after normalization for some sections of the vowel space. © 2012 Acoustical Society of America

  3. Heart failure: when form fails to follow function.

    PubMed

    Katz, Arnold M; Rolett, Ellis L

    2016-02-01

    Cardiac performance is normally determined by architectural, cellular, and molecular structures that determine the heart's form, and by physiological and biochemical mechanisms that regulate the function of these structures. Impaired adaptation of form to function in failing hearts contributes to two syndromes initially called systolic heart failure (SHF) and diastolic heart failure (DHF). In SHF, characterized by high end-diastolic volume (EDV), the left ventricle (LV) cannot eject a normal stroke volume (SV); in DHF, with normal or low EDV, the LV cannot accept a normal venous return. These syndromes are now generally defined in terms of ejection fraction (EF): SHF became 'heart failure with reduced ejection fraction' (HFrEF) while DHF became 'heart failure with normal or preserved ejection fraction' (HFnEF or HFpEF). However, EF is a chimeric index because it is the ratio between SV--which measures function, and EDV--which measures form. In SHF the LV dilates when sarcomere addition in series increases cardiac myocyte length, whereas sarcomere addition in parallel can cause concentric hypertrophy in DHF by increasing myocyte thickness. Although dilatation in SHF allows the LV to accept a greater venous return, it increases the energy cost of ejection and initiates a vicious cycle that contributes to progressive dilatation. In contrast, concentric hypertrophy in DHF facilitates ejection but impairs filling and can cause heart muscle to deteriorate. Differences in the molecular signals that initiate dilatation and concentric hypertrophy can explain why many drugs that improve prognosis in SHF have little if any benefit in DHF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  4. First-Year Medical Students' Naïve Beliefs about Respiratory Physiology

    ERIC Educational Resources Information Center

    Badenhorst, Elmi; Mamede, Silvia; Abrahams, Amaal; Bugarith, Kishor; Friedling, Jacqui; Gunston, Geney; Kelly-Laubscher, Roisin; Schmidt, Henk G.

    2016-01-01

    The present study explored the nature and frequency of physiology naïve beliefs by investigating novices' understanding of the respiratory system. Previous studies have shown considerable misconceptions related to physiology but focused mostly on specific physiological processes of normal respiration. Little is known about novices' broader…

  5. Reduced G tolerance associated with supplement use.

    PubMed

    Barker, Patrick D

    2011-02-01

    High G forces encountered in tactical military aviation and aerobatic flight produce a host of physiologic responses aimed at preserving cerebral perfusion. The military has instituted measures to augment the physiologic response in order to avoid G-induced loss of consciousness (G-LOC) because of its potential to cause a catastrophic mishap. The case presented here details a Naval Aviator who experienced reduced G tolerance over two successive flights with a temporal relationship of starting a new supplement. Two components of the supplement, coenzyme Q10 and niacin, are highlighted here for their hemodynamic effects. After stopping the supplement the aviator regained his normal G tolerance and had no further issues in flight. There are several factors that can reduce G tolerance and supplement use has to be considered here because of the potential for altering the normal physiological response to increased G force. Our discussion reviews the physiological effects of increased G force, the spectrum of signs of decompensation under the stress of G force, and the potential effects this supplement had on the normal physiological response to increased G force, thus reducing the aviator's G tolerance.

  6. Protein O-GlcNAcylation: emerging mechanisms and functions

    PubMed Central

    Yang, Xiaoyong; Qian, Kevin

    2017-01-01

    O-GlcNAcylation—the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins—is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes—O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA)—controls the dynamic cycling of this post-translational modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels ranging from structural and molecular biology to cell signalling and gene regulation to physiology and disease. Emerging from these recent developments are new mechanisms and functions of O-GlcNAcylation that enable us to begin constructing a unified conceptual framework through which to understand the significance of this modification in cellular and organismal physiology. PMID:28488703

  7. The importance of physiological oxygen concentrations in the sandwich cultures of rat hepatocytes on gas-permeable membranes.

    PubMed

    Xiao, Wenjin; Shinohara, Marie; Komori, Kikuo; Sakai, Yasuyuki; Matsui, Hitoshi; Osada, Tomoharu

    2014-01-01

    Oxygen supply is a critical issue in the optimization of in vitro hepatocyte microenvironments. Although several strategies have been developed to balance complex oxygen requirements, these techniques are not able to accurately meet the cellular oxygen demand. Indeed, neither the actual oxygen concentration encountered by cells nor the cellular oxygen consumption rates (OCR) was assessed. The aim of this study is to define appropriate oxygen conditions at the cell level that could accurately match the OCR and allow hepatocytes to maintain liver specific functions in a normoxic environment. Matrigel overlaid rat hepatocytes were cultured on the polydimethylsiloxane (PDMS) membranes under either atmospheric oxygen concentration [20%-O2 (+)] or physiological oxygen concentrations [10%-O2 (+), 5%-O2 (+)], respectively, to investigate the effects of various oxygen concentrations on the efficient functioning of hepatocytes. In parallel, the gas-impermeable cultures (polystyrene) with PDMS membrane inserts were used as the control groups [PS-O2 (-)]. The results indicated that the hepatocytes under 10%-O2 (+) exhibited improved survival and maintenance of metabolic activities and functional polarization. The dramatic elevation of cellular OCR up to the in vivo liver rate proposed a normoxic environment for hepatocytes, especially when comparing with PS-O2 (-) cultures, in which the cells generally tolerated hypoxia. Additionally, the expression levels of 84 drug-metabolism genes were the closest to physiological levels. In conclusion, this study clearly shows the benefit of long-term culture of hepatocytes at physiological oxygen concentration, and indicates on an oxygen-permeable membrane system to provide a simple method for in vitro studies. © 2014 American Institute of Chemical Engineers.

  8. Cellular Basis for Learning Impairment in Fragile X Syndrome

    DTIC Science & Technology

    2014-08-01

    oxygen is restored. Induction of the heat shock proteins (HSPs) is one of the first lines of defense against physiological stress , shifting cellular...Haddad, 2001), and aid resistance to glutamate and hypoxic stress in mammals (Zhang et al., 2000). AMPA receptor currents, meanwhile, are also...level in anoxic turtle brain. These include increases in heat shock proteins, anti-apoptotic factors, the MAP kinases, antioxidants and modulation of

  9. Proteomic analysis reveals metabolic and regulatory systems involved in the syntrophic and axenic lifestyle of Syntrophomonas wolfei

    DOE PAGES

    Sieber, Jessica R.; Crable, Bryan R.; Sheik, Cody S.; ...

    2015-02-11

    We report that microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomics approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF) value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detectedmore » were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product) delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. In conclusion, the proteomic analysis revealed an emphasis on macromolecular stability and energy metabolism by S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status.« less

  10. Proteomic analysis reveals metabolic and regulatory systems involved in the syntrophic and axenic lifestyle of Syntrophomonas wolfei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieber, Jessica R.; Crable, Bryan R.; Sheik, Cody S.

    We report that microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomics approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF) value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detectedmore » were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product) delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. In conclusion, the proteomic analysis revealed an emphasis on macromolecular stability and energy metabolism by S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status.« less

  11. Multiple Oxygen Tension Environments Reveal Diverse Patterns of Transcriptional Regulation in Primary Astrocytes

    PubMed Central

    Zhou, Yu; Wang, Liyun; Park, Sung-Soo; Martin, Bronwen; Wang, Rui; Becker, Kevin G.; Wood, William H.; Zhang, Yongqing; Peers, Chris; Maudsley, Stuart

    2011-01-01

    The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity. PMID:21738745

  12. Cancer as robust intrinsic state shaped by evolution: a key issues review

    NASA Astrophysics Data System (ADS)

    Yuan, Ruoshi; Zhu, Xiaomei; Wang, Gaowei; Li, Site; Ao, Ping

    2017-04-01

    Cancer is a complex disease: its pathology cannot be properly understood in terms of independent players—genes, proteins, molecular pathways, or their simple combinations. This is similar to many-body physics of a condensed phase that many important properties are not determined by a single atom or molecule. The rapidly accumulating large ‘omics’ data also require a new mechanistic and global underpinning to organize for rationalizing cancer complexity. A unifying and quantitative theory was proposed by some of the present authors that cancer is a robust state formed by the endogenous molecular-cellular network, which is evolutionarily built for the developmental processes and physiological functions. Cancer state is not optimized for the whole organism. The discovery of crucial players in cancer, together with their developmental and physiological roles, in turn, suggests the existence of a hierarchical structure within molecular biology systems. Such a structure enables a decision network to be constructed from experimental knowledge. By examining the nonlinear stochastic dynamics of the network, robust states corresponding to normal physiological and abnormal pathological phenotypes, including cancer, emerge naturally. The nonlinear dynamical model of the network leads to a more encompassing understanding than the prevailing linear-additive thinking in cancer research. So far, this theory has been applied to prostate, hepatocellular, gastric cancers and acute promyelocytic leukemia with initial success. It may offer an example of carrying physics inquiring spirit beyond its traditional domain: while quantitative approaches can address individual cases, however there must be general rules/laws to be discovered in biology and medicine.

  13. Ovarian expression of cellular Ki-ras p21 varies with physiological status.

    PubMed Central

    Palejwala, S; Goldsmith, L T

    1992-01-01

    To elucidate the potential role of the ras protooncogene proteins in a specific tissue, the present study determined the levels of individual c-ras-encoded p21 proteins in the rat ovary during various stages of physiological function. p21 protein was extracted from ovaries taken from immature normal female rats, mature nonpregnant animals in the metestrus stage of the estrus cycle, rats at various stages of pregnancy, and actively lactating animals. Levels of individual p21s were evaluated by immunoblot analysis with specific antibodies to the p21 proteins encoded by the Kirsten, Harvey, and neuroblastoma c-ras protooncogenes, c-Ki-ras, c-Ha-ras, and N-ras. Results showed that c-Ki-ras p21 is at its lowest level in the immature ovary and increases with development of the corpora lutea to its highest levels at day 16 of pregnancy, after which levels decline and then rise again during lactation. This pattern, which mimics that of circulating progesterone levels, suggests that ovarian c-Ki-ras p21 levels are regulated and that c-Ki-ras p21 plays a role in the differentiated function of the rat ovary, likely the luteal compartment. In contrast, levels of c-N-ras p21 did not appear to vary with changes in the physiological function of the ovary but appeared to be constitutive. A preferential role for the c-Ki-ras p21 may be due to the documented unique differences in the structure of the carboxyl terminus of this particular c-ras p21. Images PMID:1570348

  14. Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously.

    PubMed

    Tercé-Laforgue, Thérèse; Bedu, Magali; Dargel-Grafin, Céline; Dubois, Frédéric; Gibon, Yves; Restivo, Francesco M; Hirel, Bertrand

    2013-10-01

    Glutamate dehydrogenase (GDH; EC 1.4.1.2) is able to carry out the deamination of glutamate in higher plants. In order to obtain a better understanding of the physiological function of GDH in leaves, transgenic tobacco (Nicotiana tabacum L.) plants were constructed that overexpress two genes from Nicotiana plumbaginifolia (GDHA and GDHB under the control of the Cauliflower mosiac virus 35S promoter), which encode the α- and β-subunits of GDH individually or simultaneously. In the transgenic plants, the GDH protein accumulated in the mitochondria of mesophyll cells and in the mitochondria of the phloem companion cells (CCs), where the native enzyme is normally expressed. Such a shift in the cellular location of the GDH enzyme induced major changes in carbon and nitrogen metabolite accumulation and a reduction in growth. These changes were mainly characterized by a decrease in the amount of sucrose, starch and glutamine in the leaves, which was accompanied by an increase in the amount of nitrate and Chl. In addition, there was an increase in the content of asparagine and a decrease in proline. Such changes may explain the lower plant biomass determined in the GDH-overexpressing lines. Overexpressing the two genes GDHA and GDHB individually or simultaneously induced a differential accumulation of glutamate and glutamine and a modification of the glutamate to glutamine ratio. The impact of the metabolic changes occurring in the different types of GDH-overexpressing plants is discussed in relation to the possible physiological function of each subunit when present in the form of homohexamers or heterohexamers.

  15. Using precursor ion scan of 184 with liquid chromatography-electrospray ionization-tandem mass spectrometry for concentration normalization in cellular lipidomic studies.

    PubMed

    Chao, Hsi-Chun; Chen, Guan-Yuan; Hsu, Lih-Ching; Liao, Hsiao-Wei; Yang, Sin-Yu; Wang, San-Yuan; Li, Yu-Liang; Tang, Sung-Chun; Tseng, Yufeng Jane; Kuo, Ching-Hua

    2017-06-08

    Cellular lipidomic studies have been favored approaches in many biomedical research areas. To provide fair comparisons of the studied cells, it is essential to perform normalization of the determined concentration before lipidomic analysis. This study proposed a cellular lipidomic normalization method by measuring the phosphatidylcholine (PC) and sphingomyelin (SM) contents in cell extracts. To provide efficient analysis of PC and SM in cell extracts, flow injection analysis-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) with a precursor ion scan (PIS) of m/z 184 was used, and the parameters affecting the performance of the method were optimized. Good linearity could be observed between the cell extract dilution factor and the reciprocal of the total ion chromatogram (TIC) area in the PIS of m/z 184 within the dilution range of 1- to 16-fold (R 2  = 0.998). The calibration curve could be used for concentration adjustment of the unknown concentration of a cell extract. The intraday and intermediate precisions were below 10%. The accuracy ranged from 93.0% to 105.6%. The performance of the new normalization method was evaluated using different numbers of HCT-116 cells. Sphingosine, ceramide (d18:1/18:0), SM (d18:1/18:0) and PC (16:1/18:0) were selected as the representative test lipid species, and the results showed that the peak areas of each lipid species obtained from different cell numbers were within a 20% variation after normalization. Finally, the PIS of 184 normalization method was applied to study ischemia-induced neuron injury using oxygen and glucose deprivation (OGD) on primary neuronal cultured cells. Our results showed that the PIS of 184 normalization method is an efficient and effective approach for concentration normalization in cellular lipidomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Forging a signature of in vivo senescence.

    PubMed

    Sharpless, Norman E; Sherr, Charles J

    2015-07-01

    'Cellular senescence', a term originally defining the characteristics of cultured cells that exceed their replicative limit, has been broadened to describe durable states of proliferative arrest induced by disparate stress factors. Proposed relationships between cellular senescence, tumour suppression, loss of tissue regenerative capacity and ageing suffer from lack of uniform definition and consistently applied criteria. Here, we highlight caveats in interpreting the importance of suboptimal senescence-associated biomarkers, expressed either alone or in combination. We advocate that more-specific descriptors be substituted for the now broadly applied umbrella term 'senescence' in defining the suite of diverse physiological responses to cellular stress.

  17. The calcium paradox - What should we have to fear?

    PubMed Central

    de Oliveira, Marcos Aurélio Barboza; Brandi, Antônio Carlos; dos Santos, Carlos Alberto; Botelho, Paulo Henrique Husseni; Cortez, José Luís Lasso; Goissis, Gilberto; Braile, Domingo Marcolino

    2014-01-01

    The calcium paradox was first mentioned in 1966 by Zimmerman et al. Thereafter gained great interest from the scientific community due to the fact of the absence of calcium ions in heart muscle cells produce damage similar to ischemia-reperfusion. Although not all known mechanisms involved in cellular injury in the calcium paradox intercellular connection maintained only by nexus seems to have a key role in cellular fragmentation. The addition of small concentrations of calcium, calcium channel blockers, and hyponatraemia hypothermia are important to prevent any cellular damage during reperfusion solutions with physiological concentration of calcium. PMID:25140476

  18. qpure: A Tool to Estimate Tumor Cellularity from Genome-Wide Single-Nucleotide Polymorphism Profiles

    PubMed Central

    Song, Sarah; Nones, Katia; Miller, David; Harliwong, Ivon; Kassahn, Karin S.; Pinese, Mark; Pajic, Marina; Gill, Anthony J.; Johns, Amber L.; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Newell, Felicity; Cowley, Mark J.; Wu, Jianmin; Wilson, Peter; Fink, Lynn; Biankin, Andrew V.; Waddell, Nic; Grimmond, Sean M.; Pearson, John V.

    2012-01-01

    Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 (-value = 0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 (-value 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 (-value = 0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/. PMID:23049875

  19. Fundamental principles in bacterial physiology—history, recent progress, and the future with focus on cell size control: a review

    NASA Astrophysics Data System (ADS)

    Jun, Suckjoon; Si, Fangwei; Pugatch, Rami; Scott, Matthew

    2018-05-01

    Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1–3), we review the first ‘golden era’ of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4–7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the ‘adder’ principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome ‘sectors’ re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.

  20. Cellular self-assembly and biomaterials-based organoid models of development and diseases.

    PubMed

    Shah, Shivem B; Singh, Ankur

    2017-04-15

    Organogenesis and morphogenesis have informed our understanding of physiology, pathophysiology, and avenues to create new curative and regenerative therapies. Thus far, this understanding has been hindered by the lack of a physiologically relevant yet accessible model that affords biological control. Recently, three-dimensional ex vivo cellular cultures created through cellular self-assembly under natural extracellular matrix cues or through biomaterial-based directed assembly have been shown to physically resemble and recapture some functionality of target organs. These "organoids" have garnered momentum for their applications in modeling human development and disease, drug screening, and future therapy design or even organ replacement. This review first discusses the self-organizing organoids as materials with emergent properties and their advantages and limitations. We subsequently describe biomaterials-based strategies used to afford more control of the organoid's microenvironment and ensuing cellular composition and organization. In this review, we also offer our perspective on how multifunctional biomaterials with precise spatial and temporal control could ultimately bridge the gap between in vitro organoid platforms and their in vivo counterparts. Several notable reviews have highlighted PSC-derived organoids and 3D aggregates, including embryoid bodies, from a development and cellular assembly perspective. The focus of this review is to highlight the materials-based approaches that cells, including PSCs and others, adopt for self-assembly and the controlled development of complex tissues, such as that of the brain, gut, and immune system. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics

    DOE PAGES

    Bordbar, Aarash; Yurkovich, James T.; Paglia, Giuseppe; ...

    2017-04-07

    In this study, the increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed “unsteady-state flux balance analysis” (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBAmore » predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through 13C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.« less

  2. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordbar, Aarash; Yurkovich, James T.; Paglia, Giuseppe

    In this study, the increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed “unsteady-state flux balance analysis” (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBAmore » predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through 13C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.« less

  3. Bioengineered humanized livers as better three-dimensional drug testing model system.

    PubMed

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Nagarapu, Raju; Habeeb, Md Aejaz; Khan, Aleem Ahmed

    2018-01-27

    To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses. The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs. The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.

  4. Dependence of Impedance of Embedded Single Cells on Cellular Behaviour

    PubMed Central

    Cho, Sungbo; Castellarnau, Marc; Samitier, Josep; Thielecke, Hagen

    2008-01-01

    Non-invasive single cell analyses are increasingly required for the medical diagnostics of test substances or the development of drugs and therapies on the single cell level. For the non-invasive characterisation of cells, impedance spectroscopy which provides the frequency dependent electrical properties has been used. Recently, microfludic systems have been investigated to manipulate the single cells and to characterise the electrical properties of embedded cells. In this article, the impedance of partially embedded single cells dependent on the cellular behaviour was investigated by using the microcapillary. An analytical equation was derived to relate the impedance of embedded cells with respect to the morphological and physiological change of extracellular interface. The capillary system with impedance measurement showed a feasibility to monitor the impedance change of embedded single cells caused by morphological and physiological change of cell during the addition of DMSO. By fitting the derived equation to the measured impedance of cell embedded at different negative pressure levels, it was able to extrapolate the equivalent gap and gap conductivity between the cell and capillary wall representing the cellular behaviour. PMID:27879760

  5. Accumulation of Senescent Cells in Mitotic Tissue of Aging Primates

    PubMed Central

    Jeyapalan, Jessie C.; Ferreira, Mark; Sedivy, John M.; Herbig, Utz

    2013-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over forty years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event. PMID:17116315

  6. Physiological and environmental control of yeast prions

    PubMed Central

    Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.

    2014-01-01

    Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions. PMID:24236638

  7. Sex-Based Differences in Physiology: What Should We Teach in the Medical Curriculum?

    ERIC Educational Resources Information Center

    Blair, Martha L.

    2007-01-01

    An abundance of recent research indicates that there are multiple differences between males and females both in normal physiology and in the pathophysiology of disease. The Refresher Course on Gender Differences in Physiology, sponsored by the American Physiological Society Education Committee at the 2006 Experimental Biology Meeting in San…

  8. 77 FR 9675 - Center for Scientific Review: Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ...; Fellowships: Physiology and Pathobiology of Musculoskeletal, Oral, and Skin Systems. Date: March 14, 2012... Special Emphasis Panel; Small Business: Molecular and Cellular Neuroscience, Development and Aging Biology...

  9. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease.

    PubMed

    Wancket, Lyn M; Frazier, W Joshua; Liu, Yusen

    2012-02-13

    Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Electrophysiological experiments in microgravity: lessons learned and future challenges.

    PubMed

    Wuest, Simon L; Gantenbein, Benjamin; Ille, Fabian; Egli, Marcel

    2018-01-01

    Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results. In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying mechanisms.

  11. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep.

    PubMed

    Huupponen, E; Maksimow, A; Lapinlampi, P; Särkelä, M; Saastamoinen, A; Snapir, A; Scheinin, H; Scheinin, M; Meriläinen, P; Himanen, S-L; Jääskeläinen, S

    2008-02-01

    Dexmedetomidine, a selective alpha(2)-adrenoceptor agonist, induces a unique, sleep-like state of sedation. The objective of the present work was to study human electroencephalogram (EEG) sleep spindles during dexmedetomidine sedation and compare them with spindles during normal physiological sleep, to test the hypothesis that dexmedetomidine exerts its effects via normal sleep-promoting pathways. EEG was continuously recorded from a bipolar frontopolar-laterofrontal derivation with Entropy Module (GE Healthcare) during light and deep dexmedetomidine sedation (target-controlled infusions set at 0.5 and 3.2 ng/ml) in 11 healthy subjects, and during physiological sleep in 10 healthy control subjects. Sleep spindles were visually scored and quantitatively analyzed for density, duration, amplitude (band-pass filtering) and frequency content (matching pursuit approach), and compared between the two groups. In visual analysis, EEG activity during dexmedetomidine sedation was similar to physiological stage 2 (S2) sleep with slight to moderate amount of slow-wave activity and abundant sleep spindle activity. In quantitative EEG analyses, sleep spindles were similar during dexmedetomidine sedation and normal sleep. No statistically significant differences were found in spindle density, amplitude or frequency content, but the spindles during dexmedetomidine sedation had longer duration (mean 1.11 s, SD 0.14 s) than spindles in normal sleep (mean 0.88 s, SD 0.14 s; P=0.0014). Analysis of sleep spindles shows that dexmedetomidine produces a state closely resembling physiological S2 sleep in humans, which gives further support to earlier experimental evidence for activation of normal non-rapid eye movement sleep-promoting pathways by this sedative agent.

  12. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells

    PubMed Central

    López-Otín, Carlos

    2016-01-01

    ABSTRACT Ageing is a process that inevitably affects most living organisms and involves the accumulation of macromolecular damage, genomic instability and loss of heterochromatin. Together, these alterations lead to a decline in stem cell function and to a reduced capability to regenerate tissue. In recent years, several genetic pathways and biochemical mechanisms that contribute to physiological ageing have been described, but further research is needed to better characterize this complex biological process. Because premature ageing (progeroid) syndromes, including progeria, mimic many of the characteristics of human ageing, research into these conditions has proven to be very useful not only to identify the underlying causal mechanisms and identify treatments for these pathologies, but also for the study of physiological ageing. In this Review, we summarize the main cellular and animal models used in progeria research, with an emphasis on patient-derived induced pluripotent stem cell models, and define a series of molecular and cellular hallmarks that characterize progeroid syndromes and parallel physiological ageing. Finally, we describe the therapeutic strategies being investigated for the treatment of progeroid syndromes, and their main limitations. PMID:27482812

  13. Mapping Thermal Habitat of Ectotherms Based on Behavioral Thermoregulation in a Controlled Thermal Environment

    NASA Astrophysics Data System (ADS)

    Fei, T.; Skidmore, A.; Liu, Y.

    2012-07-01

    Thermal environment is especially important to ectotherm because a lot of physiological functions rely on the body temperature such as thermoregulation. The so-called behavioural thermoregulation function made use of the heterogeneity of the thermal properties within an individual's habitat to sustain the animal's physiological processes. This function links the spatial utilization and distribution of individual ectotherm with the thermal properties of habitat (thermal habitat). In this study we modelled the relationship between the two by a spatial explicit model that simulates the movements of a lizard in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton algorithm as a way to link the physiology knowledge of the animal with the spatial utilization of its microhabitat. On a larger spatial scale, 'thermal roughness' of the habitat was defined and used to predict the habitat occupancy of the target species. The results showed the habitat occupancy can be modelled by the cellular automaton based algorithm at a smaller scale, and can be modelled by the thermal roughness index at a larger scale.

  14. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.

    PubMed

    Olson, D K; Fröhlich, F; Farese, R V; Walther, T C

    2016-08-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.

  15. Quantitation of Cellular Dynamics in Growing Arabidopsis Roots with Light Sheet Microscopy

    PubMed Central

    Birnbaum, Kenneth D.; Leibler, Stanislas

    2011-01-01

    To understand dynamic developmental processes, living tissues have to be imaged frequently and for extended periods of time. Root development is extensively studied at cellular resolution to understand basic mechanisms underlying pattern formation and maintenance in plants. Unfortunately, ensuring continuous specimen access, while preserving physiological conditions and preventing photo-damage, poses major barriers to measurements of cellular dynamics in growing organs such as plant roots. We present a system that integrates optical sectioning through light sheet fluorescence microscopy with hydroponic culture that enables us to image, at cellular resolution, a vertically growing Arabidopsis root every few minutes and for several consecutive days. We describe novel automated routines to track the root tip as it grows, to track cellular nuclei and to identify cell divisions. We demonstrate the system's capabilities by collecting data on divisions and nuclear dynamics. PMID:21731697

  16. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice.

    PubMed

    Smith, Carli J; Emge, Jacob R; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M; Sousa, Andrew J; Reardon, Colin; Sherman, Philip M; Barrett, Kim E; Gareau, Mélanie G

    2014-10-15

    The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1(-/-) mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. Copyright © 2014 the American Physiological Society.

  17. The resolution of ambiguity as the basis for life: A cellular bridge between Western reductionism and Eastern holism.

    PubMed

    Torday, John S; Miller, William B

    2017-12-01

    Boundary conditions enable cellular life through negentropy, chemiosmosis, and homeostasis as identifiable First Principles of Physiology. Self-referential awareness of status arises from this organized state to sustain homeostatic imperatives. Preferred homeostatic status is dependent upon the appraisal of information and its communication. However, among living entities, sources of information and their dissemination are always imprecise. Consequently, living systems exist within an innate state of ambiguity. It is presented that cellular life and evolutionary development are a self-organizing cellular response to uncertainty in iterative conformity with its basal initiating parameters. Viewing the life circumstance in this manner permits a reasoned unification between Western rational reductionism and Eastern holism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A simple hanging drop cell culture protocol for generation of 3D spheroids.

    PubMed

    Foty, Ramsey

    2011-05-06

    Studies of cell-cell cohesion and cell-substratum adhesion have historically been performed on monolayer cultures adherent to rigid substrates. Cells within a tissue, however, are typically encased within a closely packed tissue mass in which cells establish intimate connections with many near-neighbors and with extracellular matrix components. Accordingly, the chemical milieu and physical forces experienced by cells within a 3D tissue are fundamentally different than those experienced by cells grown in monolayer culture. This has been shown to markedly impact cellular morphology and signaling. Several methods have been devised to generate 3D cell cultures including encapsulation of cells in collagen gels or in biomaterial scaffolds. Such methods, while useful, do not recapitulate the intimate direct cell-cell adhesion architecture found in normal tissues. Rather, they more closely approximate culture systems in which single cells are loosely dispersed within a 3D meshwork of ECM products. Here, we describe a simple method in which cells are placed in hanging drop culture and incubated under physiological conditions until they form true 3D spheroids in which cells are in direct contact with each other and with extracellular matrix components. The method requires no specialized equipment and can be adapted to include addition of any biological agent in very small quantities that may be of interest in elucidating effects on cell-cell or cell-ECM interaction. The method can also be used to co-culture two (or more) different cell populations so as to elucidate the role of cell-cell or cell-ECM interactions in specifying spatial relationships between cells. Cell-cell cohesion and cell-ECM adhesion are the cornerstones of studies of embryonic development, tumor-stromal cell interaction in malignant invasion, wound healing, and for applications to tissue engineering. This simple method will provide a means of generating tissue-like cellular aggregates for measurement of biomechanical properties or for molecular and biochemical analysis in a physiologically relevant model. Copyright © 2011 Journal of Visualized Experiments

  19. Metabolomics: the apogee of the omic triology

    PubMed Central

    Patti, Gary J; Yanes, Oscar; Siuzdak, Gary

    2013-01-01

    Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of metabolites can now be quantitatively measured from minimal amounts of biological material, which has thereby enabled systems-level analyses. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanism are being revealed and shaping our understanding of cell biology, physiology, and medicine. PMID:22436749

  20. THE RHYTHMIC RANGE OF THE WHITE BLOOD CELLS IN HUMAN, PATHOLOGICAL LEUCOPENIC AND LEUCOCYTIC STATES, WITH A STUDY OF THIRTY-TWO HUMAN BONE MARROWS

    PubMed Central

    Doan, Charles A.; Zerfas, Leon G.

    1927-01-01

    In a study of twenty clinical cases with a wide range of diagnoses, repeated total counts of the white cells at 15 minute intervals reveal a large fluctuation at various levels comparable to that found for the normal (1, 2). The granulocytes seem to follow a more or less hourly rhythm, the most marked shift to the left in the Ameth pattern and the moment of greatest percentage of motility coinciding with the peaks. The independence found existing between the peripheral blood concentrations of individual strains of white cells and the red cells, as determined by total and differential counts, their differential response to pathological and pharmacological stimuli, and their normal relative relations, all indicate some separate physiological mechanism of control for each type of cell, either working through, or independently of, their sources of origin. The many factors to which the circulation of the blood, as such, is subject, the complexity of the influences on origin, maturation, delivery, longevity, and destruction of each cell group, the limitations inherent in the present involved, indirect technics of counting, combine to make any single observation subject to grave misinterpretation. The value to the clinician must come in repeated observations, at times when the diagnosis or a therapeutic procedure is in doubt, at frequent intervals, at other times over longer or shorter periods, but always with the relation between consecutive counts, rather than the absolute values, the important point for consideration. Both the red and the white cells probably change their relative concentrations in the peripheral blood from time to time over a considerable range that is quite within normal physiological limits, so that, in theoretical considerations and in practical functional estimations, a zonal concept with adequate individual extremes should always be kept in mind for both physiological and pathological states. A cytological analysis of thirty-two bone marrows from human biopsy and autopsy material shows the striking reciprocity found to exist between the myelocytes and the mature polymorphonuclear leucocytes. This, together with the observed focal uniformity of maturation found in bone marrow, and the periodicity of the fluctuations of the neutrophils in the peripheral blood, leads to the formulation of the hypothesis of a constant functional withdrawal of granulocytes from the peripheral blood with a periodic delivery of new cells from the marrow, which in leucopenia and in leucocytosis represents a depression or a stimulation, respectively, of the normal mechanism. The nature and degree of the response are an approximate index of the cellular factor in the complex of the "resistance" of the particular individual. PMID:19869352

  1. Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis.

    PubMed

    Moore, Michael N; Shaw, Jennifer P; Ferrar Adams, Dawn R; Viarengo, Aldo

    2015-06-01

    The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of autophagy in hormesis and anti-ageing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A Novel Dual-cre Motif Enables Two-Way Autoregulation of CcpA in Clostridium acetobutylicum.

    PubMed

    Zhang, Lu; Liu, Yanqiang; Yang, Yunpeng; Jiang, Weihong; Gu, Yang

    2018-04-15

    The master regulator CcpA (catabolite control protein A) manages a large and complex regulatory network that is essential for cellular physiology and metabolism in Gram-positive bacteria. Although CcpA can affect the expression of target genes by binding to a cis -acting catabolite-responsive element ( cre ), whether and how the expression of CcpA is regulated remain poorly explored. Here, we report a novel dual- cre motif that is employed by the CcpA in Clostridium acetobutylicum , a typical solventogenic Clostridium species, for autoregulation. Two cre sites are involved in CcpA autoregulation, and they reside in the promoter and coding regions of CcpA. In this dual- cre motif, cre P , in the promoter region, positively regulates ccpA transcription, whereas cre ORF , in the coding region, negatively regulates this transcription, thus enabling two-way autoregulation of CcpA. Although CcpA bound cre P more strongly than cre ORF in vitro , the in vivo assay showed that cre ORF -based repression dominates CcpA autoregulation during the entire fermentation. Finally, a synonymous mutation of cre ORF was made within the coding region, achieving an increased intracellular CcpA expression and improved cellular performance. This study provides new insights into the regulatory role of CcpA in C. acetobutylicum and, moreover, contributes a new engineering strategy for this industrial strain. IMPORTANCE CcpA is known to be a key transcription factor in Gram-positive bacteria. However, it is still unclear whether and how the intracellular CcpA level is regulated, which may be essential for maintaining normal cell physiology and metabolism. We discovered here that CcpA employs a dual- cre motif to autoregulate, enabling dynamic control of its own expression level during the entire fermentation process. This finding answers the questions above and fills a void in our understanding of the regulatory network of CcpA. Interference in CcpA autoregulation leads to improved cellular performance, providing a new useful strategy in genetic engineering of C. acetobutylicum Since CcpA is widespread in Gram-positive bacteria, including pathogens, this dual- cre -based CcpA autoregulation would be valuable for increasing our understanding of CcpA-based global regulation in bacteria. Copyright © 2018 American Society for Microbiology.

  3. Quantitative mapping of intracellular cations in the human amniotic membrane

    NASA Astrophysics Data System (ADS)

    Moretto, Ph.; Llabador, Y.; Simonoff, M.; Razafindrabe, L.; Bara, M.; Guiet-Bara, A.

    1993-05-01

    The effect of magnesium and taurine on the permeability of cell membranes to monovalent cations has been investigated using the Bordeaux nuclear microprobe. PIXE and RBS techniques have been used to provide quantitative measurements and ion distributions in the isolated amniotic membrane. This physiological model for cellular exchanges allowed us to reveal the distribution of most elements involved in cellular pathways and the modifications under different experimental conditions of incubation in physiological fluids. The PIXE microanalysis provided an original viewpoint on these mechanisms. Following this first study, the amnion compact lamina was found to play a role which was not, up to now, taken into account in the interpretation of electrophysiological experimentations. The release of some ionic species, such as K +, from the epithelial cells, during immersion in isotonic fluids, could have been hitherto underestimated.

  4. Recent Advances in Particulate Matter and Nanoparticle Toxicology: A Review of the In Vivo and In Vitro Studies

    PubMed Central

    Nemmar, Abderrahim; Holme, Jørn A.; Rosas, Irma; Schwarze, Per E.

    2013-01-01

    Epidemiological and clinical studies have linked exposure to particulate matter (PM) to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques. PMID:23865044

  5. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival.

    PubMed

    Stanton, Robert C

    2012-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. Many scientists think that the roles and regulation of G6PD in physiology and pathophysiology have been well established as the enzyme was first identified 80 years ago. And that G6PD has been extensively studied especially with respect to G6PD deficiency and its association with hemolysis, and with respect to the role G6PD plays in lipid metabolism. But there has been a growing understanding of the central importance of G6PD to cellular physiology as it is a major source of NADPH that is required by many essential cellular systems including the antioxidant pathways, nitric oxide synthase, NADPH oxidase, cytochrome p450 system, and others. Indeed G6PD is essential for cell survival. It has also become evident that G6PD is highly regulated by many signals that affect transcription, post-translation, intracellular location, and interactions with other protein. Pathophysiologic roles for G6PD have also been identified in such disease processes as diabetes, aldosterone-induced endothelial dysfunction, cancer, and others. It is now clear that G6PD is under complex regulatory control and of central importance to many cellular processes. In this review the biochemistry, regulatory signals, physiologic roles, and pathophysiologic roles for G6PD that have been elucidated over the past 20 years are discussed. Copyright © 2012 Wiley Periodicals, Inc.

  6. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster

    PubMed Central

    Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd

    2011-01-01

    Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca2+ oscillations. Here, we have unraveled the molecular basis of cellular Ca2+ signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca2+ imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca2+ signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.—Hoff M., Balfanz, S., Ehling, P., Gensch, T., Baumann, A. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster. PMID:21478261

  7. Staying young at heart: autophagy and adaptation to cardiac aging.

    PubMed

    Leon, Leonardo J; Gustafsson, Åsa B

    2016-06-01

    Aging is a predominant risk factor for developing cardiovascular disease. Therefore, the cellular processes that contribute to aging are attractive targets for therapeutic interventions that can delay or prevent the development of age-related diseases. Our understanding of the underlying mechanisms that contribute to the decline in cell and tissue functions with age has greatly advanced over the past decade. Classical hallmarks of aging cells include increased levels of reactive oxygen species, DNA damage, accumulation of dysfunctional organelles, oxidized proteins and lipids. These all contribute to a progressive decline in the normal physiological function of the cell and to the onset of age-related conditions. A major cause of the aging process is progressive loss of cellular quality control. Autophagy is an important quality control pathway and is necessary to maintain cardiac homeostasis and to adapt to stress. A reduction in autophagy has been observed in a number of aging models and there is compelling evidence that enhanced autophagy delays aging and extends life span. Enhancing autophagy counteracts age-associated accumulation of protein aggregates and damaged organelles in cells. In this review, we discuss the functional role of autophagy in maintaining homeostasis in the heart, and how a decline is associated with accelerated cardiac aging. We also evaluate therapeutic approaches being researched in an effort to maintain a healthy young heart. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes*

    PubMed Central

    Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orfali, Nina; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA.; McKenna, Sharon L.

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL.more » Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.« less

  10. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications

    PubMed Central

    Song, Byoung-Joon; Akbar, Mohammed; Abdelmegeed, Mohamed A.; Byun, Kyunghee; Lee, Bonghee; Yoon, Seung Kew; Hardwick, James P.

    2014-01-01

    Mitochondria are critically important in providing cellular energy ATP as well as their involvement in anti-oxidant defense, fat oxidation, intermediary metabolism and cell death processes. It is well-established that mitochondrial functions are suppressed when living cells or organisms are exposed to potentially toxic agents including alcohol, high fat diets, smoking and certain drugs or in many pathophysiological states through increased levels of oxidative/nitrative stress. Under elevated nitroxidative stress, cellular macromolecules proteins, DNA, and lipids can undergo different oxidative modifications, leading to disruption of their normal, sometimes critical, physiological functions. Recent reports also indicated that many mitochondrial proteins are modified via various post-translation modifications (PTMs) and primarily inactivated. Because of the recently-emerging information, in this review, we specifically focus on the mechanisms and roles of five major PTMs (namely oxidation, nitration, phosphorylation, acetylation, and adduct formation with lipid-peroxides, reactive metabolites, or advanced glycation end products) in experimental models of alcoholic and nonalcoholic fatty liver disease as well as acute hepatic injury caused by toxic compounds. We also highlight the role of the ethanol-inducible cytochrome P450-2E1 (CYP2E1) in some of these PTM changes. Finally, we discuss translational research opportunities with natural and/or synthetic anti-oxidants, which can prevent or delay the onset of mitochondrial dysfunction, fat accumulation and tissue injury. PMID:25465468

  11. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence.

    PubMed

    Çaliskan, Gürsel; Müller, Iris; Semtner, Marcus; Winkelmann, Aline; Raza, Ahsan S; Hollnagel, Jan O; Rösler, Anton; Heinemann, Uwe; Stork, Oliver; Meier, Jochen C

    2016-05-01

    Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L(185L)to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders. © The Author 2016. Published by Oxford University Press.

  12. Animal cell hydraulics.

    PubMed

    Charras, Guillaume T; Mitchison, Timothy J; Mahadevan, L

    2009-09-15

    Water is the dominant ingredient of cells and its dynamics are crucial to life. We and others have suggested a physical picture of the cell as a soft, fluid-infiltrated sponge, surrounded by a water-permeable barrier. To understand water movements in an animal cell, we imposed an external, inhomogeneous osmotic stress on cultured cancer cells. This forced water through the membrane on one side, and out on the other. Inside the cell, it created a gradient in hydration, that we visualized by tracking cellular responses using natural organelles and artificially introduced quantum dots. The dynamics of these markers at short times were the same for normal and metabolically poisoned cells, indicating that the cellular responses are primarily physical rather than chemical. Our finding of an internal gradient in hydration is inconsistent with a continuum model for cytoplasm, but consistent with the sponge model, and implies that the effective pore size of the sponge is small enough to retard water flow significantly on time scales ( approximately 10-100 seconds) relevant to cell physiology. We interpret these data in terms of a theoretical framework that combines mechanics and hydraulics in a multiphase poroelastic description of the cytoplasm and explains the experimentally observed dynamics quantitatively in terms of a few coarse-grained parameters that are based on microscopically measurable structural, hydraulic and mechanical properties. Our fluid-filled sponge model could provide a unified framework to understand a number of disparate observations in cell morphology and motility.

  13. Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence

    PubMed Central

    Çalışkan, Gürsel; Müller, Iris; Semtner, Marcus; Winkelmann, Aline; Raza, Ahsan S.; Hollnagel, Jan O.; Rösler, Anton; Heinemann, Uwe; Stork, Oliver; Meier, Jochen C.

    2016-01-01

    Parvalbumin-positive (PV) basket cells provide perisomatic inhibition in the cortex and hippocampus and control generation of memory-related network activity patterns, such as sharp wave ripples (SPW-R). Deterioration of this class of fast-spiking interneurons has been observed in neuropsychiatric disorders and evidence from animal models suggests their involvement in the acquisition and extinction of fear memories. Here, we used mice with neuron type-targeted expression of the presynaptic gain-of-function glycine receptor RNA variant GlyR α3L185L to genetically enhance the network activity of PV interneurons. These mice showed reduced extinction of contextual fear memory but normal auditory cued fear memory. They furthermore displayed increase of SPW-R activity in area CA3 and CA1 and facilitated propagation of this particular network activity pattern, as determined in ventral hippocampal slice preparations. Individual freezing levels during extinction and SPW-R propagation were correlated across genotypes. The same was true for parvalbumin immunoreactivity in the ventral hippocampus, which was generally augmented in the GlyR mutant mice and correlated with individual freezing levels. Together, these results identify PV interneurons as critical cellular substrate of fear memory persistence and associated SPW-R activity in the hippocampus. Our findings may be relevant for the identification and characterization of physiological correlates for posttraumatic stress and anxiety disorders. PMID:26908632

  14. Normal development of mice lacking PAXX, the paralogue of XRCC4 and XLF.

    PubMed

    Gago-Fuentes, Raquel; Xing, Mengtan; Sæterstad, Siri; Sarno, Antonio; Dewan, Alisa; Beck, Carole; Bradamante, Stefano; Bjørås, Magnar; Oksenych, Valentyn

    2018-03-01

    DNA repair consists of several cellular pathways which recognize and repair damaged DNA. The classical nonhomologous DNA end-joining (NHEJ) pathway repairs double-strand breaks in DNA. It is required for maturation of both B and T lymphocytes by supporting V(D)J recombination as well as B-cell differentiation during class switch recombination (CSR). Inactivation of NHEJ factors Ku70, Ku80, XRCC4, DNA ligase 4, DNA-PKcs, and Artemis impairs V(D)J recombination and blocks lymphocyte development. Paralogue of XRCC4 and XLF (PAXX) is an accessory NHEJ factor that has a significant impact on the repair of DNA lesions induced by ionizing radiation in human, murine, and chicken cells. However, the role of PAXX during development is poorly understood. To determine the physiological role of PAXX, we deleted part of the Paxx promoter and the first two exons in mice. Further, we compared Paxx -knockout mice with wild-type (WT) and NHEJ-deficient controls including Ku80- and Dna-pkcs -null and severe combined immunodeficiency mice. Surprisingly, Paxx -deficient mice were not distinguishable from the WT littermates; they were the same weight and size, fertility status, had normal spleen, thymus, and bone marrow. Paxx -deficient mice had the same number of chromosomal and chromatid breaks as WT mice. Moreover, Paxx -deficient primary B lymphocytes had the same level of CSR as lymphocytes isolated from WT mice. We concluded that PAXX is dispensable for normal mouse development.

  15. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology

    PubMed Central

    Smirnova, Olga A.; Bartosch, Birke; Zakirova, Natalia F.; Kochetkov, Sergey N.

    2018-01-01

    Reactive oxygen species (ROS) are produced in various cell compartments by an array of enzymes and processes. An excess of ROS production can be hazardous for normal cell functioning, whereas at normal levels, ROS act as vital regulators of many signal transduction pathways and transcription factors. ROS production is affected by a wide range of viruses. However, to date, the impact of viral infections has been studied only in respect to selected ROS-generating enzymes. The role of several ROS-generating and -scavenging enzymes or cellular systems in viral infections has never been addressed. In this review, we focus on the roles of biogenic polyamines and oxidative protein folding in the endoplasmic reticulum (ER) and their interplay with viruses. Polyamines act as ROS scavengers, however, their catabolism is accompanied by H2O2 production. Hydrogen peroxide is also produced during oxidative protein folding, with ER oxidoreductin 1 (Ero1) being a major source of oxidative equivalents. In addition, Ero1 controls Ca2+ efflux from the ER in response to e.g., ER stress. Here, we briefly summarize the current knowledge on the physiological roles of biogenic polyamines and the role of Ero1 at the ER, and present available data on their interplay with viral infections. PMID:29673197

  16. Acoustic microscopy analyses to determine good vs. failed tissue engineered oral mucosa under normal or thermally stressed culture conditions.

    PubMed

    Winterroth, Frank; Lee, Junho; Kuo, Shiuhyang; Fowlkes, J Brian; Feinberg, Stephen E; Hollister, Scott J; Hollman, Kyle W

    2011-01-01

    This study uses scanning acoustic microscopy (SAM) ultrasonic profilometry to determine acceptable vs. failed tissue engineered oral mucosa. Specifically, ex vivo-produced oral mucosal equivalents (EVPOMEs) under normal or thermally stressed culture conditions were scanned with the SAM operator blinded to the culture conditions. As seeded cells proliferate, they fill in and smooth out the surface irregularities; they then stratify and produce a keratinized protective upper layer. Some of these transformations could alter backscatter of ultrasonic signals and in the case of the thermally stressed cells, produce backscatter similar to an unseeded device. If non-invasive ultrasonic monitoring could be developed, then tissue cultivation could be adjusted to measure biological variations in the stratified surface. To create an EVPOME device, oral mucosa keratinocytes were seeded onto acellular cadaveric dermis. Two sets of EVPOMEs were cultured: one at physiological temperature 37 °C and the other at 43 °C. The specimens were imaged with SAM consisting of a single-element transducer: 61 MHz center frequency, 32 MHz bandwidth, 1.52 f#. Profilometry for the stressed and unseeded specimens showed higher surface irregularities compared to unstressed specimens. Elevated thermal stress retards cellular differentiation, increasing root mean square values; these results show that SAM can potentially monitor cell/tissue development.

  17. Biophysical Model of Ion Transport across Human Respiratory Epithelia Allows Quantification of Ion Permeabilities

    PubMed Central

    Garcia, Guilherme J.M.; Boucher, Richard C.; Elston, Timothy C.

    2013-01-01

    Lung health and normal mucus clearance depend on adequate hydration of airway surfaces. Because transepithelial osmotic gradients drive water flows, sufficient hydration of the airway surface liquid depends on a balance between ion secretion and absorption by respiratory epithelia. In vitro experiments using cultures of primary human nasal epithelia and human bronchial epithelia have established many of the biophysical processes involved in airway surface liquid homeostasis. Most experimental studies, however, have focused on the apical membrane, despite the fact that ion transport across respiratory epithelia involves both cellular and paracellular pathways. In fact, the ion permeabilities of the basolateral membrane and paracellular pathway remain largely unknown. Here we use a biophysical model for water and ion transport to quantify ion permeabilities of all pathways (apical, basolateral, paracellular) in human nasal epithelia cultures using experimental (Ussing Chamber and microelectrode) data reported in the literature. We derive analytical formulas for the steady-state short-circuit current and membrane potential, which are for polarized epithelia the equivalent of the Goldman-Hodgkin-Katz equation for single isolated cells. These relations allow parameter estimation to be performed efficiently. By providing a method to quantify all the ion permeabilities of respiratory epithelia, the model may aid us in understanding the physiology that regulates normal airway surface hydration. PMID:23442922

  18. Investigation of phosphoserine and cytidine 5'-phosphate by heteronuclear two-dimensional spectroscopy: samples with strong proton coupling

    NASA Astrophysics Data System (ADS)

    Bolton, Philip H.

    Heteronuclear two-dimensional magnetic resonance is a novel method for investigating the conformations of cellular phosphates. The two-dimensional proton spectra are detected indirectly via the phosphorus-31 nucleus and thus allow determination of proton chemical shifts and coupling constants in situations in which the normal proton spectrum is obscured. Previous investigations of cellular phosphates with relatively simple spin systems have shown that the two-dimensional proton spectrum can be readily related to the normal proton spectrum by subspectral analysis. The normal proton spectrum can be decomposed into two subspectra, one for each polarization of the phosphorus-31 nucleus. The two-dimensional spectrum arises from the difference between the subspectra, and the normal proton spectrum is the sum. This allows simulation of the two-dimensional spectra and hence determination of the proton chemical shifts and coupling constants. Many cellular phosphates of interest, such as 5'-nucleotides and phosphoserine, contain three protons coupled to the phosphorus which are strongly coupled to one another. These samples are amenable to the two-dimensional method and the straightforward subspectral analysis is preserved when a 90° pulse is applied to the protons in the magnetization transfer step. The two-dimensional proton spectra of the samples investigated here have higher resolution than the normal proton spectra, revealing spectral features not readily apparent in the normal proton spectra.

  19. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues. © 2016 Elsevier Inc. All rights reserved.

  20. Proteolytic-antiproteolytic balance and its regulation in carcinogenesis

    PubMed Central

    Skrzydlewska, Elzbieta; Sulkowska, Mariola; Koda, Mariusz; Sulkowski, Stanislaw

    2005-01-01

    Cancer development is essentially a tissue remodeling process in which normal tissue is substituted with cancer tissue. A crucial role in this process is attributed to proteolytic degradation of the extracellular matrix (ECM). Degradation of ECM is initiated by proteases, secreted by different cell types, participating in tumor cell invasion and increased expression or activity of every known class of proteases (metallo-, serine-, aspartyl-, and cysteine) has been linked to malignancy and invasion of tumor cells. Proteolytic enzymes can act directly by degrading ECM or indirectly by activating other proteases, which then degrade the ECM. They act in a determined order, resulting from the order of their activation. When proteases exert their action on other proteases, the end result is a cascade leading to proteolysis. Presumable order of events in this complicated cascade is that aspartyl protease (cathepsin D) activates cysteine proteases (e.g., cathepsin B) that can activate pro-uPA. Then active uPA can convert plasminogen into plasmin. Cathepsin B as well as plasmin are capable of degrading several components of tumor stroma and may activate zymogens of matrix metalloproteinases, the main family of ECM degrading proteases. The activities of these proteases are regulated by a complex array of activators, inhibitors and cellular receptors. In physiological conditions the balance exists between proteases and their inhibitors. Proteolytic-antiproteolytic balance may be of major significance in the cancer development. One of the reasons for such a situation is enhanced generation of free radicals observed in many pathological states. Free radicals react with main cellular components like proteins and lipids and in this way modify proteolytic-antiproteolytic balance and enable penetration damaging cellular membrane. All these lead to enhancement of proteolysis and destruction of ECM proteins and in consequence to invasion and metastasis. PMID:15761961

  1. Investigation of a calcium-responsive contrast agent in cellular model systems: feasibility for use as a smart molecular probe in functional MRI.

    PubMed

    Angelovski, Goran; Gottschalk, Sven; Milošević, Milena; Engelmann, Jörn; Hagberg, Gisela E; Kadjane, Pascal; Andjus, Pavle; Logothetis, Nikos K

    2014-05-21

    Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca(2+) may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca(2+)-sensitive, Gd(3+)-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca(2+) showed that, despite a reduction in the Ca(2+) level, transport of Ca(2+) through the plasma membrane remained unaffected, while stimulation with ATP induced Ca(2+)-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca(2+) level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca(2+) concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1-6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level.

  2. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids.

    PubMed

    Lager, Susanne; Jansson, Thomas; Powell, Theresa L

    2014-10-15

    Fatty acids are critical for normal fetal development but may also influence placental function. We have previously reported that oleic acid (OA) stimulates amino acid transport in primary human trophoblasts (PHTs). In other tissues, saturated and unsaturated fatty acids have distinct effects on cellular signaling, for instance, palmitic acid (PA) but not OA reduces IκBα expression. We hypothesized that saturated and unsaturated fatty acids differentially affect trophoblast amino acid transport and cellular signaling. To test this hypothesis, PHTs were cultured in docosahexaenoic acid (DHA; 50 μM), OA (100 μM), or PA (100 μM). DHA and OA were also combined to test whether DHA could counteract the OA stimulatory effect on amino acid transport. The effects of fatty acids were compared against a vehicle control. Amino acid transport was measured by isotope-labeled tracers. Activation of inflammatory-related signaling pathways and the mechanistic target of rapamycin (mTOR) pathway were determined by Western blot analysis. Exposure of PHTs to DHA for 24 h reduced amino acid transport and phosphorylation of p38 MAPK, STAT3, mTOR, eukaryotic initiation factor 4E-binding protein 1, and ribosomal protein (rp)S6. In contrast, OA increased amino acid transport and phosphorylation of ERK, mTOR, S6 kinase 1, and rpS6. The combination of DHA with OA increased amino acid transport and rpS6 phosphorylation. PA did not affect amino acid transport but reduced IκBα expression. In conclusion, these fatty acids differentially regulated placental amino acid transport and cellular signaling. Taken together, these findings suggest that dietary fatty acids could alter the intrauterine environment by modifying placental function, thereby having long-lasting effects on the developing fetus. Copyright © 2014 the American Physiological Society.

  3. ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content

    PubMed Central

    Joseph, Roy; Poschmann, Jeremie; Sukarieh, Rami; Too, Peh Gek; Julien, Sofi G.; Xu, Feng; Teh, Ai Ling; Holbrook, Joanna D.; Ng, Kai Lyn; Chong, Yap Seng; Gluckman, Peter D.; Prabhakar, Shyam

    2015-01-01

    Individuals who are born small for gestational age (SGA) have a risk to develop various metabolic diseases during their life course. The biological memory of the prenatal state of growth restricted individuals may be reflected in epigenetic alterations in stem cell populations. Mesenchymal stem cells (MSCs) from the Wharton's jelly of umbilical cord tissue are multipotent, and we generated primary umbilical cord MSC isolates from SGA and normal neonates, which were subsequently differentiated into adipocytes. We established chromatin state maps for histone marks H3K27 acetylation and H3K27 trimethylation and tested whether enrichment of these marks was associated with gene expression changes. After validating gene expression levels for 10 significant chromatin immunoprecipitation sequencing candidate genes, we selected acyl-coenzyme A synthetase 1 (ACSL1) for further investigations due to its key roles in lipid metabolism. The ACSL1 gene was found to be highly associated with histone acetylation in adipocytes differentiated from MSCs with SGA background. In SGA-derived adipocytes, the ACSL1 expression level was also found to be associated with increased lipid loading as well as higher insulin sensitivity. ACSL1 depletion led to changes in expression of candidate genes such as proinflammatory chemokines and down-regulated both, the amount of cellular lipids and glucose uptake. Increased ACSL1, as well as modulated downstream candidate gene expression, may reflect the obese state, as detected in mice fed a high-fat diet. In summary, we believe that ACSL1 is a programmable mediator of insulin sensitivity and cellular lipid content and adipocytes differentiated from Wharton's jelly MSCs recapitulate important physiological characteristics of SGA individuals. PMID:25915184

  4. ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content.

    PubMed

    Joseph, Roy; Poschmann, Jeremie; Sukarieh, Rami; Too, Peh Gek; Julien, Sofi G; Xu, Feng; Teh, Ai Ling; Holbrook, Joanna D; Ng, Kai Lyn; Chong, Yap Seng; Gluckman, Peter D; Prabhakar, Shyam; Stünkel, Walter

    2015-06-01

    Individuals who are born small for gestational age (SGA) have a risk to develop various metabolic diseases during their life course. The biological memory of the prenatal state of growth restricted individuals may be reflected in epigenetic alterations in stem cell populations. Mesenchymal stem cells (MSCs) from the Wharton's jelly of umbilical cord tissue are multipotent, and we generated primary umbilical cord MSC isolates from SGA and normal neonates, which were subsequently differentiated into adipocytes. We established chromatin state maps for histone marks H3K27 acetylation and H3K27 trimethylation and tested whether enrichment of these marks was associated with gene expression changes. After validating gene expression levels for 10 significant chromatin immunoprecipitation sequencing candidate genes, we selected acyl-coenzyme A synthetase 1 (ACSL1) for further investigations due to its key roles in lipid metabolism. The ACSL1 gene was found to be highly associated with histone acetylation in adipocytes differentiated from MSCs with SGA background. In SGA-derived adipocytes, the ACSL1 expression level was also found to be associated with increased lipid loading as well as higher insulin sensitivity. ACSL1 depletion led to changes in expression of candidate genes such as proinflammatory chemokines and down-regulated both, the amount of cellular lipids and glucose uptake. Increased ACSL1, as well as modulated downstream candidate gene expression, may reflect the obese state, as detected in mice fed a high-fat diet. In summary, we believe that ACSL1 is a programmable mediator of insulin sensitivity and cellular lipid content and adipocytes differentiated from Wharton's jelly MSCs recapitulate important physiological characteristics of SGA individuals.

  5. Viral Infection Induces Expression of Novel Phased MicroRNAs from Conserved Cellular MicroRNA Precursors

    PubMed Central

    Zhang, Jiayao; Zhao, Shuqi; Zheng, Hong; Gao, Ge; Wei, Liping; Li, Yi

    2011-01-01

    RNA silencing, mediated by small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs), is a potent antiviral or antibacterial mechanism, besides regulating normal cellular gene expression critical for development and physiology. To gain insights into host small RNA metabolism under infections by different viruses, we used Solexa/Illumina deep sequencing to characterize the small RNA profiles of rice plants infected by two distinct viruses, Rice dwarf virus (RDV, dsRNA virus) and Rice stripe virus (RSV, a negative sense and ambisense RNA virus), respectively, as compared with those from non-infected plants. Our analyses showed that RSV infection enhanced the accumulation of some rice miRNA*s, but not their corresponding miRNAs, as well as accumulation of phased siRNAs from a particular precursor. Furthermore, RSV infection also induced the expression of novel miRNAs in a phased pattern from several conserved miRNA precursors. In comparison, no such changes in host small RNA expression was observed in RDV-infected rice plants. Significantly RSV infection elevated the expression levels of selective OsDCLs and OsAGOs, whereas RDV infection only affected the expression of certain OsRDRs. Our results provide a comparative analysis, via deep sequencing, of changes in the small RNA profiles and in the genes of RNA silencing machinery induced by different viruses in a natural and economically important crop host plant. They uncover new mechanisms and complexity of virus-host interactions that may have important implications for further studies on the evolution of cellular small RNA biogenesis that impact pathogen infection, pathogenesis, as well as organismal development. PMID:21901091

  6. Physiological functions of the alpha class of carbonic anhydrases.

    PubMed

    Frost, Susan C

    2014-01-01

    Carbonic anhydrases are ubiquitous enzymes that catalyze the reversible hydration of carbon dioxide. These enzymes are of ancient origin as they are found in the deepest of branches of the evolutionary tree. Of the five different classes of carbonic anhydrases, the alpha class has perhaps received the most attention because of its role in human pathology. This review focuses on the physiological function of this class of carbonic anhydrases organized by their cellular location.

  7. Semi-quantitative estimation of cellular SiO2 nanoparticles using flow cytometry combined with X-ray fluorescence measurements.

    PubMed

    Choi, Seo Yeon; Yang, Nuri; Jeon, Soo Kyung; Yoon, Tae Hyun

    2014-09-01

    In this study, we have demonstrated feasibility of a semi-quantitative approach for the estimation of cellular SiO2 nanoparticles (NPs), which is based on the flow cytometry measurements of their normalized side scattering intensity. In order to improve our understanding on the quantitative aspects of cell-nanoparticle interactions, flow cytometry, transmission electron microscopy, and X-ray fluorescence experiments were carefully performed for the HeLa cells exposed to SiO2 NPs with different core diameters, hydrodynamic sizes, and surface charges. Based on the observed relationships among the experimental data, a semi-quantitative cellular SiO2 NPs estimation method from their normalized side scattering and core diameters was proposed, which can be applied for the determination of cellular SiO2 NPs within their size-dependent linear ranges. © 2014 International Society for Advancement of Cytometry.

  8. High vascular delivery of EGF, but low receptor binding rate is observed in AsPC-1 tumors as compared to normal pancreas.

    PubMed

    Samkoe, Kimberley S; Sexton, Kristian; Tichauer, Kenneth M; Hextrum, Shannon K; Pardesi, Omar; Davis, Scott C; O'Hara, Julia A; Hoopes, P Jack; Hasan, Tayyaba; Pogue, Brian W

    2012-08-01

    Cellular receptor targeted imaging agents present the potential to target extracellular molecular expression in cancerous lesions; however, the image contrast in vivo does not reflect the magnitude of overexpression expected from in vitro data. Here, the in vivo delivery and binding kinetics of epidermal growth factor receptor (EGFR) was determined for normal pancreas and AsPC-1 orthotopic pancreatic tumors known to overexpress EGFR. EGFR in orthotopic xenograft AsPC-1 tumors was targeted with epidermal growth factor (EGF) conjugated with IRDye800CW. The transfer rate constants (k(e), K₁₂, k₂₁, k₂₃, and k₃₂) associated with a three-compartment model describing the vascular delivery, leakage rate and binding of targeted agents were determined experimentally. The plasma excretion rate, k (e), was determined from extracted blood plasma samples. K₁₂, k₂₁, and k₃₂ were determined from ex vivo tissue washing studies at time points ≥ 24 h. The measured in vivo uptake of IRDye800CW-EGF and a non-targeted tracer dye, IRDye700DX-carboxylate, injected simultaneously was used to determined k₂₃. The vascular exchange of IRDye800CW-EGF in the orthotopic tumor (K₁₂ and k₂₁) was higher than in the AsPC-1 tumor as compared to normal pancreas, suggesting that more targeted agent can be taken up in tumor tissue. However, the cellular associated (binding) rate constant (k₂₃) was slightly lower for AsPC-1 pancreatic tumor (4.1 × 10(-4) s(-1)) than the normal pancreas (5.5 × 10(-4) s(-1)), implying that less binding is occurring. Higher vascular delivery but low cellular association in the AsPC-1 tumor compared to the normal pancreas may be indicative of low receptor density due to low cellular content. This attribute of the AsPC-1 tumor may indicate one contributing cause of the difficulty in treating pancreatic tumors with cellular targeted agents.

  9. Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells.

    PubMed

    Aliper, Alexander M; Csoka, Antonei Benjamin; Buzdin, Anton; Jetka, Tomasz; Roumiantsev, Sergey; Moskalev, Alexy; Zhavoronkov, Alex

    2015-01-01

    For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging.

  10. A tribute to Dr. Gordon Hisashi Sato (December 24, 1927-March 31, 2017).

    PubMed

    Sato, J Denry; Okamoto, Tetsuji; Barnes, David; Hayashi, Jun; Serrero, Ginette; McKeehan, Wallace L

    2018-03-01

    Gordon H. Sato, an innovator in mammalian tissue culture and integrated cellular physiology, passed away in 2017. In tribute to Dr. Sato, In Vitro Cellular and Developmental Biology-Animal presents a collection of invited remembrances from six colleagues whose associations with Dr. Sato spanned more than 40 years. Dr. Sato was a past president of the Tissue Culture Association (now the Society for In Vitro Biology), editor-in-chief of In Vitro Cellular and Developmental Biology (1987-1991), and the recipient of the lifetime achievement award from the Society for In Vitro Biology (2002). He was elected to the US National Academy of Sciences in 1984.

  11. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system.

    PubMed

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system. © 2013 The British Pharmacological Society.

  12. Electrical and Thermal Modulation of Protein Synthesis in Cartilage: A Model for Field Effects on Biological Tissues.

    DTIC Science & Technology

    1988-01-15

    76] under physiological conditions. Oscillatory streaming currents of 1-5 pA/cm’ were recently demonstrated in bovine knee articular cartilage...in cellular metabolism or cellular acidosis ). In general, these agents are lethal in high enough doses. The stress proteins are highly conserved...which under reducing conditions subdivides into subunits of 35 kD (on SDS-PAGE) in bovine fetal epiphyseal and articular cartilage [170]. The tissue

  13. Redox control of plant growth and development.

    PubMed

    Kocsy, Gábor; Tari, Irma; Vanková, Radomíra; Zechmann, Bernd; Gulyás, Zsolt; Poór, Péter; Galiba, Gábor

    2013-10-01

    Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Explaining intermediate filament accumulation in giant axonal neuropathy

    PubMed Central

    Opal, Puneet; Goldman, Robert D.

    2013-01-01

    Giant axonal neuropathy (GAN)1 is a rare autosomal recessive neurological disorder caused by mutations in the GAN gene that encodes gigaxonin, a member of the BTB/Kelch family of E3 ligase adaptor proteins.1 This disease is characterized by the aggregation of Intermediate Filaments (IF)—cytoskeletal elements that play important roles in cell physiology including the regulation of cell shape, motility, mechanics and intra-cellular signaling. Although a range of cell types are affected in GAN, neurons display the most severe pathology, with neuronal intermediate filament accumulation and aggregation; this in turn causes axonal swellings or “giant axons.” A mechanistic understanding of GAN IF pathology has eluded researchers for many years. In a recent study1 we demonstrate that the normal function of gigaxonin is to regulate the degradation of IF proteins via the proteasome. Our findings present the first direct link between GAN mutations and IF pathology; moreover, given the importance of IF aggregations in a wide range of disease conditions, our findings could have wider ramifications. PMID:25003002

  15. A photostable near-infrared fluorescent tracker with pH-independent specificity to lysosomes for long time and multicolor imaging.

    PubMed

    Zhang, Xinfu; Wang, Chao; Han, Zhuo; Xiao, Yi

    2014-12-10

    A new boron-dipyrromethene-based lysosome tracker, Lyso-NIR, is facilely synthesized. Besides the intensive near-infrared (NIR) fluorescence and high photostability, Lyso-NIR shows the capability to stably localize in lysosomes, which is independent of the local pH. Lyso-NIR does not have the problematic alkalization effect suffered by the commonly used lysotrackers; thus, it shows ignorable cytotoxicity and slightly affects normal physiological functions of lysosomes. The above advantages of Lyso-NIR make it feasible to track lysosomes' dynamic changes in a relatively long time during the full cellular processes such as apoptosis, heavy metal stimulation, and endocytosis, as is demonstrated in this work. Moreover, Lyso-NIR's narrow NIR emission at 740 nm with a full width at half-maximum smaller than 50 nm makes it easy to avoid the crosstalk with the emissions from other common fluorescent probes, which strengthens Lyso-NIR's competitiveness as a standard lysosome tracker for multicolor bioimaging.

  16. Biological pathways involved in the development of inflammatory bowel disease.

    PubMed

    Zemljic, Mateja; Pejkovic, Bozena; Krajnc, Ivan; Lipovsek, Saska

    2014-10-01

    Apoptosis, autophagy and necrosis are three distinct functional types of the mammalian cell death network. All of them are characterized by a number of cell's morphological changes. The inappropriate induction of cell death is involved in the pathogenesis of a number of diseases.Pathogenesis of inflammatory bowel diseases (ulcerative colitis, Crohn's disease) includes an abnormal immunological response to disturbed intestinal microflora. One of the most important reason in pathogenesis of chronic inflammatory disease and subsequent multiple organ pathology is a barrier function of the gut, regulating cellular viability. Recent findings have begun to explain the mechanisms by which intestinal epithelial cells are able to survive in such an environment and how loss of normal regulatory processes may lead to inflammatory bowel disease (IBD).This review focuses on the regulation of biological pathways in development and homeostasis in IBD. Better understanding of the physiological functions of biological pathways and their influence on inflammation, immunity, and barrier function will simplify our expertice of homeostasis in the gastrointestinal tract and in upgrading diagnosis and treatment.

  17. Apoptosis: Focus on sea urchin development.

    PubMed

    Agnello, Maria; Roccheri, Maria Carmela

    2010-03-01

    It has been proposed that the apoptosis is an essential requirement for the evolution of all animals, in fact the apoptotic program is highly conserved from nematodes to mammals. Throughout development, apoptosis is employed by multicellular organisms to eliminate damaged or unnecessary cells. Here, we will discuss both developmental programmed cell death (PCD) under normal conditions and stress induced apoptosis, in sea urchin embryos. Sea urchin represent an excellent model system for studying embryogenesis and cellular processes involved in metamorphosis. PCD plays an essential role in sculpting and remodelling the embryos and larvae undergoing metamorphosis. Moreover, this marine organism directly interacts with its environment, and is susceptible to effects of several aquatic contaminants. Apoptosis can be adopted as a defence mechanism against any environmental chemical, physical and mechanical stress, for removing irreversibly damaged cells. This review, while not comprehensive in its reporting, aims to provide an overview of current knowledge on mechanisms to regulate physiological and the induced apoptotic program in sea urchin embryos.

  18. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease.

    PubMed

    Payne, Felicity; Lim, Koini; Girousse, Amandine; Brown, Rebecca J; Kory, Nora; Robbins, Ann; Xue, Yali; Sleigh, Alison; Cochran, Elaine; Adams, Claire; Dev Borman, Arundhati; Russel-Jones, David; Gorden, Phillip; Semple, Robert K; Saudek, Vladimir; O'Rahilly, Stephen; Walther, Tobias C; Barroso, Inês; Savage, David B

    2014-06-17

    Phosphatidylcholine (PC) is the major glycerophospholipid in eukaryotic cells and is an essential component in all cellular membranes. The biochemistry of de novo PC synthesis by the Kennedy pathway is well established, but less is known about the physiological functions of PC. We identified two unrelated patients with defects in the Kennedy pathway due to biallellic loss-of-function mutations in phosphate cytidylyltransferase 1 alpha (PCYT1A), the rate-limiting enzyme in this pathway. The mutations lead to a marked reduction in PCYT1A expression and PC synthesis. The phenotypic consequences include some features, such as severe fatty liver and low HDL cholesterol levels, that are predicted by the results of previously reported liver-specific deletion of murine Pcyt1a. Both patients also had lipodystrophy, severe insulin resistance, and diabetes, providing evidence for an additional and essential role for PCYT1A-generated PC in the normal function of white adipose tissue and insulin action.

  19. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease

    PubMed Central

    Payne, Felicity; Lim, Koini; Girousse, Amandine; Brown, Rebecca J.; Kory, Nora; Robbins, Ann; Xue, Yali; Sleigh, Alison; Cochran, Elaine; Adams, Claire; Dev Borman, Arundhati; Russel-Jones, David; Gorden, Phillip; Semple, Robert K.; Saudek, Vladimir; O’Rahilly, Stephen; Walther, Tobias C.; Barroso, Inês; Savage, David B.

    2014-01-01

    Phosphatidylcholine (PC) is the major glycerophospholipid in eukaryotic cells and is an essential component in all cellular membranes. The biochemistry of de novo PC synthesis by the Kennedy pathway is well established, but less is known about the physiological functions of PC. We identified two unrelated patients with defects in the Kennedy pathway due to biallellic loss-of-function mutations in phosphate cytidylyltransferase 1 alpha (PCYT1A), the rate-limiting enzyme in this pathway. The mutations lead to a marked reduction in PCYT1A expression and PC synthesis. The phenotypic consequences include some features, such as severe fatty liver and low HDL cholesterol levels, that are predicted by the results of previously reported liver-specific deletion of murine Pcyt1a. Both patients also had lipodystrophy, severe insulin resistance, and diabetes, providing evidence for an additional and essential role for PCYT1A-generated PC in the normal function of white adipose tissue and insulin action. PMID:24889630

  20. A New Perspective for Parkinson's Disease: Circadian Rhythm.

    PubMed

    Li, Siyue; Wang, Yali; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2017-02-01

    Circadian rhythm is manifested by the behavioral and physiological changes from day to night, which is controlled by the pacemaker and its regulator. The former is located at the suprachiasmatic nuclei (SCN) in the anterior hypothalamus, while the latter is composed of clock genes present in all tissues. Circadian desynchronization influences normal patterns of day-night rhythms such as sleep and alertness cycles, rest and activity cycles. Parkinson's disease (PD) exhibits diurnal fluctuations. Circadian dysfunction has been observed in PD patients and animal models, which may result in negative consequences to the homeostasis and even exacerbate the disease progression. Therefore, circadian therapies, including light stimulation, physical activity, dietary and social schedules, may be helpful for PD patients. However, the cellular and molecular mechanisms that underlie the circadian dysfunction in PD remain elusive. Further research on circadian patterns is needed. This article summarizes the existing research on the circadian rhythms in PD, focusing on the clinical symptom variations, molecular changes, as well as the available treatment options.

  1. Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy

    PubMed Central

    2017-01-01

    Intercellular communications play a major role in tissue homeostasis and responses to external cues. Novel structures for this communication have recently been described. These tunneling nanotubes (TNTs) consist of thin-extended membrane protrusions that connect cells together. TNTs allow the cell-to-cell transfer of various cellular components, including proteins, RNAs, viruses, and organelles, such as mitochondria. Mesenchymal stem cells (MSCs) are both naturally present and recruited to many different tissues where their interaction with resident cells via secreted factors has been largely documented. Their immunosuppressive and repairing capacities constitute the basis for many current clinical trials. MSCs recruited to the tumor microenvironment also play an important role in tumor progression and resistance to therapy. MSCs are now the focus of intense scrutiny due to their capacity to form TNTs and transfer mitochondria to target cells, either in normal physiological or in pathological conditions, leading to changes in cell energy metabolism and functions, as described in this review. PMID:28659978

  2. p21(WAF1) Mediates Cell-Cycle Inhibition, Relevant to Cancer Suppression and Therapy.

    PubMed

    El-Deiry, Wafik S

    2016-09-15

    p21 (WAF1/CIP1; CDKN1a) is a universal cell-cycle inhibitor directly controlled by p53 and p53-independent pathways. Knowledge of the regulation and function of p21 in normal and cancer cells has opened up several areas of investigation and has led to novel therapeutic strategies. The discovery in 1993 and subsequent work on p21 has illuminated basic cellular growth control, stem cell phenotypes, the physiology of differentiation, as well as how cells respond to stress. There remain open questions in the signaling networks, the ultimate role of p21 in the p53-deficiency phenotype in the context of other p53 target defects, and therapeutic strategies continue to be a work in progress. Cancer Res; 76(18); 5189-91. ©2016 AACRSee related article by El-Deiry et al., Cancer Res 1994;54:1169-74Visit the Cancer Research 75(th) Anniversary timeline. ©2016 American Association for Cancer Research.

  3. The Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions

    PubMed Central

    Søvik, Eirik; LaMora, Angela; Seehra, Gurpreet; Barron, Andrew B.; Duncan, Jennifer G.; Ben-Shahar, Yehuda

    2017-01-01

    Members of the Natural resistance-associated macrophage protein (NRAMP) family are evolutionarily-conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the specific physiological and cellular processes that require the action of Mvl for appropriate feeding decisions remain elusive. Here we demonstrate that normal food choice requires Mvl function specifically in the dopaminergic system, and can be rescued by supplementing food with manganese. Collectively, our data indicate that the action of the Mvl transporter affects food choice behavior via the regulation of dopaminergic innervation of the mushroom bodies, a principle brain region associated with decision making in insects. Our studies suggest that the homeostatic regulation of the intra-neuronal levels of divalent cations plays an important role in the development and function of the dopaminergic system and associated behaviors. PMID:28220999

  4. Control of Rest:Activity by a Dopaminergic Ultradian Oscillator and the Circadian Clock.

    PubMed

    Bourguignon, Clément; Storch, Kai-Florian

    2017-01-01

    There is long-standing evidence for rhythms in locomotor activity, as well as various other aspects of physiology, with periods substantially shorter than 24 h in organisms ranging from fruit flies to humans. These ultradian oscillations, whose periods frequently fall between 2 and 6 h, are normally well integrated with circadian rhythms; however, they often lack the period stability and expression robustness of the latter. An adaptive advantage of ultradian rhythms has been clearly demonstrated for the common vole, suggesting that they may have evolved to confer social synchrony. The cellular substrate and mechanism of ultradian rhythm generation have remained elusive so far, however recent findings-the subject of this review-now indicate that ultradian locomotor rhythms rely on an oscillator based on dopamine, dubbed the dopaminergic ultradian oscillator (DUO). These findings also reveal that the DUO period can be lengthened from <4 to >48 h by methamphetamine treatment, suggesting that the previously described methamphetamine-sensitive (circadian) oscillator represents a long-period manifestation of the DUO.

  5. Family matters: sibling rivalry and bonding between p53 and p63 in cancer.

    PubMed

    Romano, Rose-Anne; Sinha, Satrajit

    2014-04-01

    The p53 family (p53, p63 and p73) is intimately linked with an overwhelming number of cellular processes during normal physiological as well as pathological conditions including cancer. The fact that these proteins are expressed in myriad isoforms, each with unique biochemical properties and distinct effects on tumorigenesis, complicates their study. A case in point is Squamous Cell Carcinoma (SCC) where p53 is often mutated and the ΔNp63 isoform is overexpressed. Given that p53 and p63 can hetero-dimerize, bind to quite similar DNA elements and share common co-factors, any alterations in their individual expression levels, activity and/or mutation can severely disrupt the family equilibrium. The burgeoning genomics data sets and new additions to the experimental toolbox are offering crucial insights into the complex role of the p53 family in SCC, but more mechanistic studies are needed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. High-Throughput Screening based Identification of Small Molecule Antagonists of Integrin CD11b/CD18 Ligand Binding

    PubMed Central

    Faridi, Mohd Hafeez; Maiguel, Dony; Brown, Brock T.; Suyama, Eigo; Barth, Constantinos J.; Hedrick, Michael; Vasile, Stefan; Sergienko, Eduard; Schürer, Stephan; Gupta, Vineet

    2010-01-01

    Binding of leukocyte specific integrin CD11b/CD18 to its physiologic ligands is important for the development of normal immune response in vivo. Integrin CD11b/CD18 is also a key cellular effector of various inflammatory and autoimmune diseases. However, small molecules selectively inhibiting the function of integrin CD11b/CD18 are currently lacking. We used a newly described cell-based high throughput screening assay to identify a number of highly potent antagonists of integrin CD11b/CD18 from chemical libraries containing >100,000 unique compounds. Computational analyses suggest that the identified compounds cluster into several different chemical classes. A number of the newly identified compounds blocked adhesion of wild-type mouse neutrophils to CD11b/CD18 ligand fibrinogen. Mapping the most active compounds against chemical fingerprints of known antagonists of related integrin CD11a/CD18 shows little structural similarity, suggesting that the newly identified compounds are novel and unique. PMID:20188705

  7. Regulation of the Cardiovascular System by Histamine.

    PubMed

    Hattori, Yuichi; Hattori, Kohshi; Matsuda, Naoyuki

    2017-01-01

    Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H 1 - and H 2 -receptors has become recognized adequately. Besides the recognized H 1 - and H 2 -receptor-mediated cardiovascular responses, novel roles of H 3 - and H 4 -receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H 3 - and H 4 -receptors, their potential mechanisms of action, and their pathological significance.

  8. The motor cortex: a network tuned to 7-14 Hz

    PubMed Central

    Castro-Alamancos, Manuel A.

    2013-01-01

    The neocortex or six layer cortex consists of at least 52 cytoarchitectonically distinct areas in humans, and similar areas can be distinguished in rodents. Each of these areas has a defining set of extrinsic connections, identifiable functional roles, a distinct laminar arrangement, etc. Thus, neocortex is extensively subdivided into areas of anatomical and functional specialization, but less is known about the specialization of cellular and network physiology across areas. The motor cortex appears to have a distinct propensity to oscillate in the 7–14 Hz frequency range. Augmenting responses, normal mu and beta oscillations, and abnormal oscillations or after discharges caused by enhancing excitation or suppressing inhibition are all expressed around this frequency range. The substrate for this activity may be an excitatory network that is unique to the motor cortex or that is more strongly suppressed in other areas, such as somatosensory cortex. Interestingly, augmenting responses are dependent on behavioral state. They are abolished during behavioral arousal. Here, I briefly review this evidence. PMID:23439785

  9. Myosin Light Chain Kinase Is Necessary for Tonic Airway Smooth Muscle Contraction*

    PubMed Central

    Zhang, Wen-Cheng; Peng, Ya-Jing; Zhang, Gen-Sheng; He, Wei-Qi; Qiao, Yan-Ning; Dong, Ying-Ying; Gao, Yun-Qian; Chen, Chen; Zhang, Cheng-Hai; Li, Wen; Shen, Hua-Hao; Ning, Wen; Kamm, Kristine E.; Stull, James T.; Gao, Xiang; Zhu, Min-Sheng

    2010-01-01

    Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance. PMID:20018858

  10. Alternans Arrhythmias: From Cell to Heart

    PubMed Central

    Weiss, James N.; Nivala, Michael; Garfinkel, Alan; Qu, Zhilin

    2010-01-01

    The goal of systems biology is to relate events at the molecular level to more integrated scales from organelle to cell, tissue and living organism. Here we review how normal and abnormal excitation-contraction (EC) coupling properties emerge from the protein scale, where behaviors are dominated by randomness, to the cell and tissue scales, where heart has to beat with reliable regularity for a life-time. Beginning with the fundamental unit of EC coupling, the couplon where L-type Ca channels in the sarcolemmal membrane adjoin ryanodine receptors in the sarcoplasmic reticulum membrane, we show how a network of couplons with three basic properties (random activation, refractoriness, and recruitment) produces the classical physiological properties of excitation-contraction (EC) coupling and, under pathophysiological conditions, leads to Ca alternans and Ca waves. Moving to the tissue scale, we discuss how cellular Ca alternans and Ca waves promote both reentrant and focal arrhythmias in the heart. Throughout, we emphasize the qualitatively novel properties which emerge at each new scale of integration. PMID:21212392

  11. Extremely low frequency 7 Hz 100 microT electromagnetic radiation promotes differentiation in the human epithelial cell line HaCaT.

    PubMed

    Lisi, Antonella; Foletti, Alberto; Ledda, Mario; Rosola, Emanuela; Giuliani, Livio; D'Emilia, Enrico; Grimaldi, Settimio

    2006-01-01

    Electromagnetic therapy is a treatment method in which an electromagnetic or magnetic stimulus is used to achieve physiological changes in the body. The specific aim of the present work concerns the effectiveness of low frequency electromagnetic fields to modify the biochemical properties of human keratinocytes (HaCaT). Cells exposed to a 7 Hz 100 microT electromagnetic field for one hour (twice daily), indicated modification in shape and morphology. These modifications were also associated with different actin distribution as revealed by phalloidin fluorescence analysis. Indirect immunofluorescence with fluorescent antibodies against involucrin and beta-Catenin, both differentiation and adhesion markers, revealed an increase in involucrin and beta-Catenin expression, supporting the conclusion that exposure to electromagnetic field carries keratinocytes to an upper differentiation level. This study confirms our previous observation and supports the hypothesis that 7 Hz electromagnetic field, may modify cell biochemistry interfering in the differentiation and cellular adhesion of normal keratinocytes.

  12. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    PubMed Central

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  13. Thirst, Drinking Behavior, And Dehydration

    NASA Technical Reports Server (NTRS)

    Greenleaf, John

    1996-01-01

    Report describes review of physiological mechanisms of involuntary dehydration. Researchers considered cellular dehydration and effects of sodium on thirst, as well as extracellular dehydration and restoration of vascular volume, effects of renin on thirst, and effects of heat.

  14. Chronic toxicity of five metals to the polar marine microalga Cryothecomonas armigera - Application of a new bioassay.

    PubMed

    Koppel, Darren J; Gissi, Francesca; Adams, Merrin S; King, Catherine K; Jolley, Dianne F

    2017-09-01

    The paucity of ecotoxicological data for Antarctic organisms is impeding the development of region-specific water quality guidelines. To address this limitation, toxicity testing protocols need to be developed to account for the unique physiology of polar organisms, in particular their slow growth rates. In this study, a toxicity test protocol was developed to investigate the toxicities of five metals to the polar marine microalga Cryothecomonas armigera. The concentrations which reduced population growth rate by 10% (EC10) after 24-d for Cu, Pb, Zn, Cd and Ni were 21.6, 152, 366, 454, and 1220 μg.L -1 , respectively. At the concentrations used in tests, only Cu and Ni were sufficiently toxic to enable the derivation of EC50 values of 63.1 and 1570 μg.L -1 respectively. All metals affected C. armigera's cellular physiology including cellular chlorophyll a fluorescence, cell complexity and size, and lipid concentrations. However, no changes to cellular membrane permeability were observed. The reduction in cellular lipid concentrations was a more sensitive indicator of toxicity for Cd, Ni, and Pb than growth rate inhibition, with EC10 values of 89, 894, and 11 μg.L -1 , respectively, highlighting its potential as a sensitive measure of metal toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hydrodynamics in Cell Studies

    PubMed Central

    2018-01-01

    Hydrodynamic phenomena are ubiquitous in living organisms and can be used to manipulate cells or emulate physiological microenvironments experienced in vivo. Hydrodynamic effects influence multiple cellular properties and processes, including cell morphology, intracellular processes, cell–cell signaling cascades and reaction kinetics, and play an important role at the single-cell, multicellular, and organ level. Selected hydrodynamic effects can also be leveraged to control mechanical stresses, analyte transport, as well as local temperature within cellular microenvironments. With a better understanding of fluid mechanics at the micrometer-length scale and the advent of microfluidic technologies, a new generation of experimental tools that provide control over cellular microenvironments and emulate physiological conditions with exquisite accuracy is now emerging. Accordingly, we believe that it is timely to assess the concepts underlying hydrodynamic control of cellular microenvironments and their applications and provide some perspective on the future of such tools in in vitro cell-culture models. Generally, we describe the interplay between living cells, hydrodynamic stressors, and fluid flow-induced effects imposed on the cells. This interplay results in a broad range of chemical, biological, and physical phenomena in and around cells. More specifically, we describe and formulate the underlying physics of hydrodynamic phenomena affecting both adhered and suspended cells. Moreover, we provide an overview of representative studies that leverage hydrodynamic effects in the context of single-cell studies within microfluidic systems. PMID:29420889

  16. Endoplasmic reticulum stress in the pathogenesis of hypertension.

    PubMed

    Young, Colin N

    2017-08-01

    What is the topic of this review? This review highlights the emerging role of disruptions in endoplasmic reticulum (ER) function, namely ER stress, as a contributor to hypertension. What advances does it highlight? This review presents an integrative view of ER stress in cardiovascular control systems, including systems within the brain, kidney and peripheral vasculature, as related to development of hypertension. The endoplasmic reticulum (ER) is a cellular organelle specialized in the synthesis, folding, assembly and modification of proteins. In situations of increased protein demand, complex signalling pathways, termed the unfolded protein response, influence a series of cellular feedback loops to control ER function strictly. Although this is initially a compensatory attempt to maintain cellular homeostasis, chronic activation of the unfolded protein response, known as ER stress, leads to sustained changes in cellular function. A growing body of literature points to ER stress in diverse cardioregulatory systems, including the brain, kidney and vasculature, as central to the development of hypertension. Here, these recent findings from essential and obesity-related forms of hypertension are highlighted in an integrative manner, with discussion of the potential upstream causes and downstream consequences of ER stress. Given that hypertension is a leading medical and socio-economic global challenge, emerging findings suggest that targeting ER stress might represent a viable strategy for the treatment of hypertensive disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  17. [Claude Bernard and the Comptes Rendus de la Société de Biologie: the movie of the physiological revolution by him who made it (1849-1878)].

    PubMed

    Hainaut, Jean

    2009-01-01

    Claude Bernard presented most of his fundamental results to the Société de Biologie, including proof of the modulation of the nervous system by the internal micromilieu. However, he did not describe the principle of a stable internal milieu as a condition for free life. Physiology, which is a part of biology, was not founded on cellular biology. Rather, Claude Bernard considered chemistry, anatomy and histology as the necessary auxiliary sciences for physiology. His articles are direct pictures, and not isolated ones, despite possible limitations, from a pre-montage movie of the physiological revolution he thought he had initiated, but not finished.

  18. Dry Preservation of Spermatozoa: Considerations for Different Species.

    PubMed

    Patrick, Jennifer; Comizzoli, Pierre; Elliott, Gloria

    2017-04-01

    The current gold standard for sperm preservation is storage at cryogenic temperatures. Dry preservation is an attractive alternative, eliminating the need for ultralow temperatures, reducing storage maintenance costs, and providing logistical flexibility for shipping. Many seeds and anhydrobiotic organisms are able to survive extended periods in a dry state through the accumulation of intracellular sugars and other osmolytes and are capable of returning to normal physiology postrehydration. Using techniques inspired by nature's adaptations, attempts have been made to dehydrate and dry preserve spermatozoa from a variety of species. Most of the anhydrous preservation research performed to date has focused on mouse spermatozoa, with only a small number of studies in nonrodent mammalian species. There is a significant difference between sperm function in rodent and nonrodent mammalian species with respect to centrosomal inheritance. Studies focused on reproductive technologies have demonstrated that in nonrodent species, the centrosome must be preserved to maintain sperm function as the spermatozoon centrosome contributes the dominant nucleating seed, consisting of the proximal centriole surrounded by pericentriolar components, onto which the oocyte's centrosomal material is assembled. Preservation techniques used for mouse sperm may therefore not necessarily be applicable to nonrodent spermatozoa. The range of technologies used to dehydrate sperm and the effect of processing and storage conditions on fertilization and embryogenesis using dried sperm are reviewed in the context of reproductive physiology and cellular morphology in different species.

  19. Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction.

    PubMed

    Podlasek, Carol A; Mulhall, John; Davies, Kelvin; Wingard, Christopher J; Hannan, Johanna L; Bivalacqua, Trinity J; Musicki, Biljana; Khera, Mohit; González-Cadavid, Nestor F; Burnett, Arthur L

    2016-08-01

    The biological importance of testosterone is generally accepted by the medical community; however, controversy focuses on its relevance to sexual function and the sexual response, and our understanding of the extent of its role in this area is evolving. To provide scientific evidence examining the role of testosterone at the cellular and molecular levels as it pertains to normal erectile physiology and the development of erectile dysfunction and to assist in guiding successful therapeutic interventions for androgen-dependent sexual dysfunction. In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current basic science literature examining the role of testosterone in sexual function and dysfunction. Testosterone plays an important role in sexual function through multiple processes: physiologic (stimulates activity of nitric oxide synthase), developmental (establishes and maintains the structural and functional integrity of the penis), neural (development, maintenance, function, and plasticity of the cavernous nerve and pelvic ganglia), therapeutically for dysfunctional regulation (beneficial effect on aging, diabetes, and prostatectomy), and phosphodiesterase type 5 inhibition (testosterone supplement to counteract phosphodiesterase type 5 inhibitor resistance). Despite controversies concerning testosterone with regard to sexual function, basic science studies provide incontrovertible evidence for a significant role of testosterone in sexual function and suggest that properly administered testosterone therapy is potentially advantageous for treating male sexual dysfunction. Published by Elsevier Inc.

  20. Multidrug Resistance Proteins (MRPs/ABCCs) in Cancer Chemotherapy and Genetic Diseases

    PubMed Central

    Chen, Zhe-Sheng; Tiwari, Amit K.

    2011-01-01

    The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the ‘C’ subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called Multidrug Resistance Proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C4 and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this review article, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed. PMID:21740521

Top