Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.
Logan, Bruce; Cheng, Shaoan; Watson, Valerie; Estadt, Garett
2007-05-01
To efficiently generate electricity using bacteria in microbial fuel cells (MFCs), highly conductive noncorrosive materials are needed that have a high specific surface area (surface area per volume) and an open structure to avoid biofouling. Graphite brush anodes, consisting of graphite fibers wound around a conductive, but noncorrosive metal core, were examined for power production in cube (C-MFC) and bottle (B-MFC) air-cathode MFCs. Power production in C-MFCs containing brush electrodes at 9600 m2/m3 reactor volume reached a maximum power density of 2400 mW/m2 (normalized to the cathode projected surface area), or 73 W/m3 based on liquid volume, with a maximum Coulombic efficiency (CE) of 60%. This power density, normalized by cathode projected area, is the highest value yet achieved by an air-cathode system. The increased power resulted from a reduction in internal resistance from 31 to 8 Q. Brush electrodes (4200 m2/m3) were also tested in B-MFCs, consisting of a laboratory media bottle modified to have a single side arm with a cathode clamped to its end. B-MFCs inoculated with wastewater produced up to 1430 mW/m2 (2.3 W/m3, CE = 23%) with brush electrodes, versus 600 mW/m2 with a plain carbon paper electrode. These findings show that brush anodes that have high surface areas and a porous structure can produce high power densities, and therefore have qualities that make them ideal for scaling up MFC systems.
Lee, Pil Hyong; Hwang, Sang Soon
2009-01-01
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556
Lee, Pil Hyong; Hwang, Sang Soon
2009-01-01
In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.
Application of M-type cathodes to high-power cw klystrons
NASA Astrophysics Data System (ADS)
Isagawa, S.; Higuchi, T.; Kobayashi, K.; Miyake, S.; Ohya, K.; Yoshida, M.
1999-05-01
Two types of high-power cw klystrons have been widely used at KEK in both TRISTAN and KEKB e +e - collider projects: one is a 0.8 MW/1.0 MW tube, called YK1302/YK1303 (Philips); the other is a 1.2 MW tube, called E3786/E3732 (Toshiba). Normally, the dispenser cathodes of the `B-type' and the `S-type' have been used, respectively, but for improved versions they have been replaced by low-temperature cathodes, called the `M-type'. An Os/Ru coating was applied to the former, whereas an Ir one was applied to the latter. Until now, all upgraded tubes installing M-type cathodes, 9 and 8 in number, respectively, have worked successfully without any dropout. A positive experience concerning the lifetime under real operation conditions has been obtained. M-type cathodes are, however, more easily poisoned. One tube installing an Os/Ru-coated cathode showed a gradual, and then sudden decrease in emission during an underheating test, although the emission could fortunately be recovered by aging at the KEK test field. Once sufficiently aged, the emission of an Ir-coated cathode proved to be very high and stable, and its lifetime is expected to be very long. One disadvantage of this cathode is, however, susceptibility to gas poisoning and the necessity of long-term initial aging. New techniques, like ion milling and fine-grained tungsten top layers, were not as successful as expected from their smaller scale applications to shorten the initial aging period. A burn-in process at higher cathode loading was efficient to make the poisoned cathode active and to decrease unwanted Wehnelt emission. On top of that, the emission cooling, and thus thermal conductivity near the emitting layer could play an important role in such large-current cathodes as ours.
NASA Technical Reports Server (NTRS)
Edmond, John A. (Inventor); Palmour, John W. (Inventor)
1996-01-01
The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.
Movable anode x-ray source with enhanced anode cooling
Bird, C.R.; Rockett, P.D.
1987-08-04
An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.
Movable anode x-ray source with enhanced anode cooling
Bird, Charles R.; Rockett, Paul D.
1987-01-01
An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.
Development program on a cold cathode electron gun
NASA Technical Reports Server (NTRS)
Spindt, C. A.; Holland, C. E.
1985-01-01
During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beilis, I. I.
Experiments in the last decade showed that for cathode spots in a magnetic field that obliquely intercepts the cathode surface, the current per spot increased with the transverse component of the magnetic field and decreased with the normal component. The present work analyzes the nature of cathode spot splitting in an oblique magnetic field. A physical model for cathode spot current splitting was developed, which considered the relation between the plasma kinetic pressure, self-magnetic pressure, and applied magnetic pressure in a current carrying cathode plasma jet. The current per spot was calculated, and it was found to increase with themore » tangential component of the magnetic field and to decrease with the normal component, which agrees well with the experimental dependence.« less
Effect of sintering temperature on the electrolysis of TiO2
NASA Astrophysics Data System (ADS)
Li, Ze-quan; Ru, Li-yue; Bai, Cheng-guang; Zhang, Na; Wang, Hai-hua
2012-07-01
The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scanning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature increased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstructure became compact with the increase of sintering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electrolysis.
Kim, Junyoung; Sengodan, Sivaprakash; Kwon, Goeun; Ding, Dong; Shin, Jeeyoung; Liu, Meilin; Kim, Guntae
2014-10-01
We report on an excellent anode-supported H(+) -SOFC material system using a triple conducting (H(+) /O(2-) /e(-) ) oxide (TCO) as a cathode material for H(+) -SOFCs. Generally, mixed ionic (O(2-) ) and electronic conductors (MIECs) have been selected as the cathode material of H(+) -SOFCs. In an H(+) -SOFC system, however, MIEC cathodes limit the electrochemically active sites to the interface between the proton conducting electrolyte and the cathode. New approaches to the tailoring of cathode materials for H(+) -SOFCs should therefore be considered. TCOs can effectively extend the electrochemically active sites from the interface between the cathode and the electrolyte to the entire surface of the cathode. The electrochemical performance of NBSCF/BZCYYb/BZCYYb-NiO shows excellent long term stability for 500 h at 1023 K with high power density of 1.61 W cm(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-layer electrode for high contrast electrochromic devices
Schwendeman, Irina G [Wexford, PA; Finley, James J [Pittsburgh, PA; Polcyn, Adam D [Pittsburgh, PA; Boykin, Cheri M [Wexford, PA
2011-11-01
An electrochromic device includes a first substrate spaced from a second substrate. A first transparent conductive electrode is formed over at least a portion of the first substrate. A polymeric anode is formed over at least a portion of the first conductive electrode. A second transparent conductive electrode is formed over at least a portion of the second substrate. In one aspect of the invention, a multi-layer polymeric cathode is formed over at least a portion of the second conductive electrode. In one non-limiting embodiment, the multi-layer cathode includes a first cathodically coloring polymer formed over at least a portion of the second conductive electrode and a second cathodically coloring polymer formed over at least a portion of the first cathodically coloring polymer. An ionic liquid is positioned between the anode and the cathode.
Arc initiation in cathodic arc plasma sources
Anders, Andre
2002-01-01
A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.
Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity
NASA Astrophysics Data System (ADS)
Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.
2016-10-01
Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.
Mixed Conducting Electrodes for Better AMTEC Cells
NASA Technical Reports Server (NTRS)
Ryan, Margaret; Williams, Roger; Homer, Margie; Lara. Liana
2003-01-01
Electrode materials that exhibit mixed conductivity (that is, both electronic and ionic conductivity) have been investigated in a continuing effort to improve the performance of the alkali metal thermal-to-electric converter (AMTEC). These electrode materials are intended primarily for use on the cathode side of the sodium-ion-conducting solid electrolyte of a sodium-based AMTEC cell. They may also prove useful in sodium-sulfur batteries, which are under study for use in electric vehicles. An understanding of the roles played by the two types of conduction in the cathode of a sodium-based AMTEC cell is prerequisite to understanding the advantages afforded by these materials. In a sodium-based AMTEC cell, the anode face of an anode/solid-electrolyte/cathode sandwich is exposed to Na vapor at a suitable pressure. Upon making contact with the solid electrolyte on the anode side, Na atoms oxidize to form Na+ ions and electrons. Na+ ions then travel through the electrolyte to the cathode. Na+ ions leave the electrolyte at the cathode/electrolyte interface and are reduced by electrons that have been conducted through an external electrical load from the anode to the cathode. Once the Na+ ions have been reduced to Na atoms, they travel through the cathode to vaporize into a volume where the Na vapor pressure is much lower than it is on the anode side. Thus, the cathode design is subject to competing requirements to be thin enough to allow transport of sodium to the low-pressure side, yet thick enough to afford adequate electronic conductivity. The concept underlying the development of the present mixed conducting electrode materials is the following: The constraint on the thickness of the cathode can be eased by incorporating Na+ -ionconducting material to facilitate transport of sodium through the cathode in ionic form. At the same time, by virtue of the electronically conducting material mixed with the ionically conducting material, reduction of Na+ ions to Na atoms can take place throughout the thickness of the cathode. The net effect is to reduce the diffusion and flow resistance to sodium through the electrode while reducing the electronic resistance by providing shorter conduction paths for electrons. Reduced resistance to both sodium transport and electronic conductivity results in an increase in electric power output.
Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, E.; Ben-Zvi, I.; Kewisch, J.
2010-05-23
RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in themore » preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is expected to improve further. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper.« less
Cathode for aluminum producing electrolytic cell
Brown, Craig W.
2004-04-13
A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.
NASA Astrophysics Data System (ADS)
Jagannadham, K.
2018-05-01
A battery device with graphene platelets as anode, lithium nickel manganese oxide as cathode, and solid-state electrolyte consisting of layers of lithium phosphorous oxynitride and lithium lanthanum titanate is assembled on the stainless steel substrate. The battery in a polymer enclosure is subjected to several electrical tests consisting of charge and discharge cycles at different current and voltage levels. Thermal conductivity of the cathode layer is determined at the end of charge-discharge cycles using transient thermoreflectance. The microstructure and composition of the cathode layer and the interface between the cathode, the anode, and the electrolyte are characterized using scanning electron microscopy and elemental mapping. The decrease in the thermal conductivity of the same cathode observed after each set of electrical test cycles is correlated with the volume changes and formation of low ionic and thermal conductivity lithium oxide and lithium oxychloride at the interface and along porous regions. The interface between the metal current collector and the cathode is also found to be responsible for the increase in thermal resistance. The results indicate that changes in the thermal conductivity of the electrodes provide a measure of the resistance to heat transfer and degradation of ionic transport in the cathode accompanying the charge-discharge cycles in the batteries.
Microbial Fuel Cell Performance with a Pressurized Cathode Chamber
USDA-ARS?s Scientific Manuscript database
Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...
Fuel cell electrode interconnect contact material encapsulation and method
Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.
2016-05-31
A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.
Effect of current ripple on cathode erosion in 30 kWe class arcjets
NASA Technical Reports Server (NTRS)
Harris, William J.; O'Hair, Edgar A.; Hatfield, Lynn L.; Kristiansen, M.; Grimes, Montgomery D.
1991-01-01
An investigation was conducted to study the effect of current ripple on cathode erosion in 30 kWe class arcjets to determine the change in the cathode erosion rate for high (11 percent) and low (4 percent) current ripple. The measurements were conducted using a copper-tungsten cathode material to accelerate the cathode erosion process. It is shown that the high ripple erosion rate was initially higher than the low ripple erosion rate, but decreased asymptotically with time to a level less than half that of the low ripple value. Results suggest that high ripple extends the cathode lifetime for long duration operation, and improves arc stability by increasing the cathode attachment area.
Low resistance, low-inductance power connectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn Anthony
An electrical connector includes an anode assembly for conducting an electrical supply current from a source to a destination, the anode assembly includes an anode formed into a first shape from sheet metal or other sheet-like conducting material. A cathode assembly conducts an electrical return current from the destination to the source, the cathode assembly includes a cathode formed into a second shape from sheet metal or other sheet-like conducting material. An insulator prevents electrical conduction between the anode and the cathode. The first and second shapes are such as to provide a conformity of one to the other, withmore » the insulator therebetween having a predetermined relatively thin thickness. A predetermined low-resistance path for the supply current is provided by the anode, a predetermined low-resistance path for the return current is provided by the cathode, and the proximity of the anode to the cathode along these paths provides a predetermined low self-inductance of the connector, where the proximity is afforded by the conformity of the first and second shapes.« less
Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage
Farmer, Joseph C.; Kaschmitter, James; Pierce, Steve
2017-06-06
A method for producing a multi-layer bipolar coated cell according to one embodiment includes applying a first active cathode material above a substrate to form a first cathode; applying a first solid-phase ionically-conductive electrolyte material above the first cathode to form a first electrode separation layer; applying a first active anode material above the first electrode separation layer to form a first anode; applying an electrically conductive barrier layer above the first anode; applying a second active cathode material above the anode material to form a second cathode; applying a second solid-phase ionically-conductive electrolyte material above the second cathode to form a second electrode separation layer; applying a second active anode material above the second electrode separation layer to form a second anode; and applying a metal material above the second anode to form a metal coating section. In another embodiment, the anode is formed prior to the cathode. Cells are also disclosed.
Cathode for a hall-heroult type electrolytic cell for producing aluminum
Brown, Craig W.
2004-04-13
A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.
Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina
2017-07-01
Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3 h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
Oxide Fiber Cathode Materials for Rechargeable Lithium Cells
NASA Technical Reports Server (NTRS)
Rice, Catherine E.; Welker, Mark F.
2008-01-01
LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes.
Li, Yong; Wang, Shijie; Su, Pei-Chen
2016-01-01
An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode. PMID:26928192
Note: Measurement of the cathode layer thickness in glow discharges with a Langmuir probe
NASA Astrophysics Data System (ADS)
Wang, Hao; Hou, Xinyu; Zou, Xiaobing; Luo, Haiyun; Wang, Xinxin
2018-06-01
A method using a Langmuir probe to determine the thickness of the cathode layer for a glow discharge is developed. The method is based on the phenomenon that the curve of the voltage-current characteristics changes in shape as the Langmuir probe moves from the positive column into the cathode layer. The method was used to measure the thicknesses of the cathode layer in the normal glow discharges of argon and air with the cathodes made from stainless steel and aluminum. The results are in good agreement with those given in a book of gas discharge.
Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; ...
2016-06-11
The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less
Li, Weiyang; Zhang, Qianfan; Zheng, Guangyuan; Seh, Zhi Wei; Yao, Hongbin; Cui, Yi
2013-01-01
Lithium sulfur batteries have brought significant advancement to the current state-of-art battery technologies because of their high theoretical specific energy, but their wide-scale implementation has been impeded by a series of challenges, especially the dissolution of intermediate polysulfides species into the electrolyte. Conductive polymers in combination with nanostructured sulfur have attracted great interest as promising matrices for the confinement of lithium polysulfides. However, the roles of different conductive polymers on the electrochemical performances of sulfur electrode remain elusive and poorly understood due to the vastly different structural configurations of conductive polymer-sulfur composites employed in previous studies. In this work, we systematically investigate the influence of different conductive polymers on the sulfur cathode based on conductive polymer-coated hollow sulfur nanospheres with high uniformity. Three of the most well-known conductive polymers, polyaniline (PANI), polypyrrole (PPY), and poly(3,4-ethylenedioxythiophene) (PEDOT), were coated, respectively, onto monodisperse hollow sulfur nanopsheres through a facile, versatile, and scalable polymerization process. The sulfur cathodes made from these well-defined sulfur nanoparticles act as ideal platforms to study and compare how coating thickness, chemical bonding, and the conductivity of the polymers affected the sulfur cathode performances from both experimental observations and theoretical simulations. We found that the capability of these three polymers in improving long-term cycling stability and high-rate performance of the sulfur cathode decreased in the order of PEDOT > PPY > PANI. High specific capacities and excellent cycle life were demonstrated for sulfur cathodes made from these conductive polymer-coated hollow sulfur nanospheres.
Low-Current, Xenon Orificed Hollow Cathode Performance for In-Space Applications
NASA Technical Reports Server (NTRS)
Domonkos, Matthew T.; Patterson, Michael J.; Gallimore, Alec D.
2002-01-01
An experimental investigation of the operating characteristics of 3.2-mm diameter orificed hollow cathodes was conducted to examine low current and low flow rate operation. Cathode power was minimized with an orifice aspect ratio of approximately one and the use of an enclosed keeper. Cathode flow rate requirements were proportional to orifice diameter and the inverse of the orifice length. The minimum power consumption in diode mode was 10-W, and the minimum mass flow rate required for spot-mode emission was approximately 0.08-mg/s. Cathode temperature profiles were obtained using an imaging radiometer and conduction was found to be the dominant heat transfer mechanism from the cathode tube. Orifice plate temperatures were found to be weakly dependent upon the flow rate and strongly dependent upon the current.
Cathode for molten carbonate fuel cell
Kaun, Thomas D.; Mrazek, Franklin C.
1990-01-01
A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Chang-ling, E-mail: clfanhd@yahoo.com.cn; Zhang, Ke-he; Han, Shao-chang
2013-07-15
Graphical abstract: Relationships between the conductivities of LFPC-2 cathode and the volume percentages of AB (a) and PAn (b). - Highlights: • LiFe{sub 0.94}Mg{sub 0.03}Cu{sub 0.03}PO{sub 4}/C is synthesized by adding glucose with two-step method. • Conductive polymer polyaniline is used to replace acetylene black. • The content of conductive additive is optimized by the percolation theory. • LFPC-2 cathode containing polyaniline possesses the excellent performance. - Abstract: Comprehensive methods were utilized to improve the electrochemical performances of LiFe{sub 0.94}Mg{sub 0.03}Cu{sub 0.03}PO{sub 4}/C (LFPC) composite cathode. Experimental results show that LFPC-2, prepared by adding glucose in two steps, possesses themore » effective incorporated of doping ions and well-distributed pyrolysis carbon. It possesses higher conductivity and discharge capacity. The percolation theory analysis shows that the conductivity of LFPC-2 cathode film reaches its maximum value at the mass content of 15 wt.%. The replacement of acetylene black with polyaniline can greatly improve the electrochemical performances of LFPC-2 cathode. Its discharge capacity is 85.3 mAh g{sup −1} and its potential platform is as high as 3.2 V at the current density of 850 mA g{sup −1} when 15 wt.% polyaniline is used. The cycle performance of LFPC-2 is improved when polyaniline is used as conductive additives. And the change of charge transfer resistance of LFPC-2 cathode containing polyaniline is very small after 24 cycles.« less
Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship
NASA Astrophysics Data System (ADS)
Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.
2018-02-01
The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.
Efficiency arcjet thruster with controlled arc startup and steady state attachment
NASA Technical Reports Server (NTRS)
Smith, William W. (Inventor); Knowles, Steven C. (Inventor)
1989-01-01
An improved efficiency arcjet thruster has a constrictor and electrically-conductive nozzle anode defining an arc chamber, and an electrically-conductive rod having a tip spaced upstream from the constrictor and defining a cathode spaced from the anode by a gap generally coextensive with the arc chamber. An electrical potential is applied to the anode and cathode to generate an electrical arc in the arc chamber from the cathode to anode. Catalytically decomposed hydrazine is supplied to the arc chamber with generation of the arc so as to produce thermal heating and expansion thereof through the nozzle. The constrictor can have a electrically insulative portion disposed between the cathode tip and the nozzle anode, and an electrically-conductive anode extension disposed along the insulative portion so as to define an auxiliary gap with the cathode tip substantially smaller than the gap defined between the cathode and nozzle anode for facilitating startup of arc generation. The constrictor can also include an electrically-conductive electrode with a variable electrical potential to vary the shape of the arc generated in the arc chamber. Also, the cathode is mounted for axial movement such that the gap between its tip and the nozzle anode can be varied to facilitate a generally nonerosive generation of the electrical arc at startup and reliable steady state operation. Further, the arc chamber can have a nonparallel subsonic-to-supersonic transition configuration, or alternatively solely a nonparallel supersonic configuration, for improved arc attachment.
NASA Astrophysics Data System (ADS)
Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Investigation of Endurance Performance of Carbon Nanotube Cathodes
NASA Astrophysics Data System (ADS)
Saito, Nanako; Yamagiwa, Yoshiki; Ohkawa, Yasushi; Nishida, Shin-Ichiro; Kitamura, Shoji
The Aerospace Research and Development Directorate of the Japan Aerospace Exploration Agency (JAXA) is considering a demonstration of electrodynamic tether (EDT) systems in low Earth orbit (LEO). Carbon nanotubes (CNTs) have some advantages as electron sources compared to conventional Spindt type emitters, and so are expected to be useful in EDT systems. Experiments to investigate the durability of CNT cathodes in a space environment had been conducted in a diode mode, but it was found that electron extraction tests, in which the cathode with a gate electrode is used, are necessary to evaluate the endurance of CNTs more accurately. In this paper, we conducted long duration operating tests of a cathode with a gate. It was found that there was almost no change in cathode performance at current densities below 100 A/m2 even after the cathode was operated for over 500 hours in the high vacuum environment.
NASA Astrophysics Data System (ADS)
Ma, Xiaopin; Wang, Xiuyu; Li, Mingxiu; Chen, Tongning; Zhang, Hao; Chen, Qiang; Ding, Bonan; Liu, Yanpeng
2016-06-01
The highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films were prepared on porous tantalum pentoxide surface as cathode for polymer tantalum capacitors (PTC). The electrical performances of PTC with PEDOT:PSS films as cathode were optimized by dimethyl sulfoxide (DMSO) bath treatment. With the DMSO-bath treatment of PTC, the equivalent series resistance (ESR) of PTC decreased from 25 mΩ to 9 mΩ. The ultralow ESR led to better capacitance-frequency performance. The device reliability investigation revealed the enhanced environmental stability of PTC. The enhanced performances were attributed to the conductivity improvement of PEDOT:PSS cathode films and the removal of excess PSS from PEDOT:PSS films.
The Child-Langmuir laws and cathode sheath in the N2O
NASA Astrophysics Data System (ADS)
Lisovskiy, Valeriy; Artushenko, Ekaterina; Yegorenkov, Vladimir
2013-09-01
It is established which of the Child-Langmuir collisional laws are most appropriate for describing the cathode sheath in the N2O. At low pressure p < 0 . 3 Torr the Child-Langmuir law version relating to the constant ion mobility. At p > 0 . 75 Torr one has to employ the law version for which it is assumed that ion mean free path within the cathode sheath is constant. In the intermediate pressure range 0 . 3 < p < 0 . 75 Torr neither of the Child-Langmuir law versions gives a correct description of the cathode sheath in the N2O. The ratio of the normal current density to the gas pressure squared J /p2 , the normal voltage drop and the cathode sheath thickness are determined. For the stainless steel cathode they equals to U = 364 V and pd = 2 . 5 Torr .mm. At large N2O pressure the above ratio remains constant and it amounts to J /p2 = 0.44 mA/(cm .Torr)2 for any inter-electrode gap value we studied. On decreasing the N2O pressure the ratio J /p2 increases and for narrow gaps between electrodes it may approach several or even several tens mA/(cm .Torr)2. and Scientific Center of Physical Technologies, Svobody Sq.6, Kharkov, 61022, Ukraine.
Liu, Bo; Zhang, Hao; Lu, Qi; Li, Guanghe; Zhang, Fang
2018-09-01
To address the challenges of low hydrodechlorination efficiency by non-noble metals, a CuNi bimetallic cathode with nanostructured copper array film was fabricated for effective electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution. The CuNi bimetallic cathodes were prepared by a simple one-step electrodeposition of copper onto the Ni foam substrate, with various electrodeposition time of 5/10/15/20 min. The optimum electrodeposition time was 10 min when copper was coated as a uniform nanosheet array on the nickel foam substrate surface. This cathode exhibited the highest TCE removal, which was twice higher compared to that of the nickel foam cathode. At the same passed charge of 1080C, TCE removal increased from 33.9 ± 3.3% to 99.7 ± 0.1% with the increasing operation current from 5 to 20 mA cm -2 , while the normalized energy consumption decreased from 15.1 ± 1.0 to 2.6 ± 0.01 kWh log -1 m -3 . The decreased normalized energy consumption at a higher current density was due to the much higher removal efficiency at a higher current. These results suggest that CuNi cathodes prepared by simple electrodeposition method represent a promising and cost-effective approach for enhanced electrochemical dechlorination. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xiaozhen; Jiang, Yuhua; Hu, Xuebing; Sun, Liangliang; Ling, Yihan
2018-03-01
Proton-conducting solid oxide fuel cell (H-SOFC) based on layered perovskite type GdBaCuCoO5+x (GBCC) cathode was fabricated with in situ drop-coating BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte membrane. The influences of Cu doping into Co sites of GdBaCo2O5+ x on the electrical conductivity and conduction mechanism, thermal expansion property and electrochemical performance of cathode materials and corresponding single cell were investigated. Results show that the electrical conductivity decreased and the conduction mechanism would gradually transform to the semiconductor-like behavior. A high maximum power density of 480 mW cm-2 was obtained for the anode supported NiO-BZCY/NiO-BZCY/BZCY/GBCC single cells with wet H2 fuel at 700 °C. The corresponding polarization resistance was as low as 0.17 Ω cm2. The excellent electrochemical performance of as-prepared single cell indicates that GBCC is a good candidate of cathode materials for H-SOFCs.
NASA Astrophysics Data System (ADS)
Wang, Mingchao; Yu, Jingui; Lin, Shangchao
Sulfur (S) serves as a promising cathode material in Li-ion batteries owing to its abundance on earth, low cost and high theoretical specific capacity 1670 mAhg-1, which is 3-5 times higher than that of current commercial Li-ion batteries. Nowadays, the most popular strategies of using S cathode are based on producing nanostructured carbon matrices (i.e. hollow carbon nanospheres and nanofibers) to sustain S cathode loading. However, the possible stress evolution and mechanical degradation of the confined S cathode in those carbon matrices have never been explored before. In addition, the associated structural and conductivity changes of the confined S cathode during the lithiation/delithiation process plays a significant role in the battery performance. With the above in mind, here we conduct reactive molecular dynamics simulations to investigate the microstructural and stress evolution of the confined S cathode during lithiation/delithiation process. Simulation results indicate an unusual stress relaxation state in LixS compounds at lower Li concentrations (x >0.7). The strength of corresponding Li-S compounds also increases with respect to the Li concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan
Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containingmore » dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.« less
Air breathing direct methanol fuel cell
Ren, Xiaoming; Gottesfeld, Shimshon
2002-01-01
An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.
Anisotropic etching of platinum electrodes at the onset of cathodic corrosion
Hersbach, Thomas J. P.; Yanson, Alexei I.; Koper, Marc T. M.
2016-01-01
Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of −1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations. PMID:27554398
Oxyphosphorus-containing polymers as binders for battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Russell Clayton; Mullin, Scott Allen; Eitouni, Hany Basam
A class of polymeric phosphorous esters can be used as binders for battery cathodes. Metal salts can be added to the polymers to provide ionic conductivity. The polymeric phosphorous esters can be formulated with other polymers either as mixtures or as copolymers to provide additional desirable properties. Examples of such properties include even higher ionic conductivity and improved mechanical properties. Furthermore, cathodes that include the polymeric phosphorous esters can be assembled with a polymeric electrolyte separator and an anode to form a complete battery.
Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong
2013-05-22
In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.
Electrodeposition of Copper onto Polypyrrole Films: Application to Proton Reduction
NASA Astrophysics Data System (ADS)
Chikouche, Imene; Sahari, Ali; Zouaoui, Ahmed; Zegadi, Ameur
2016-09-01
In this paper, we have electrodeposited copper on polypyrrole surface. Results show that at high applied cathodic potential (>-1.8V), copper electrodeposition occurs with difficulties. The amount of electrodeposited copper is low (1.32%) and it is limited by the low polypyrrole conductivity. At this potential, poor conductivity is caused by its insulating state. However, at an applied cathodic potential of -1.2V, the polypyrrole exhibits a relatively high conductivity and copper particles are electrodeposited with large amounts (12.44%) on polypyrrole/silicon system. At high applied cathodic potential, the SEM images show clearly dispersed grains of copper, but polypyrrole surface is less occupied. At an applied cathodic potential of -1.2V, the SEM image shows that polypyrrole surface is homogenously more occupied with copper. After copper deposition, the Cu/PPy/Si system is used to catalyze the hydrogen reaction. It was found that, once the deposited copper is present with considerable amounts, the proton reduction occurs easily. As for the polypyrrole conductivity, it was found that electrodeposited copper onto PPy/Si surface affect the total conductivity.
Ionic Conductivity and its Role in Oxidation Reactions
NASA Astrophysics Data System (ADS)
Tamimi, Mazin Abdulla
In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the combination of a reference catalyst for the oxidative coupling of methane with a support with very high oxygen conductivity demonstrated a small increase in performance at low temperatures.
Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Rhodes, Christopher P. (Inventor); Anderson, Kelvin C. (Inventor)
2011-01-01
A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.
NASA Astrophysics Data System (ADS)
Lei, Libin; Tao, Zetian; Hong, Tao; Wang, Xiaoming; Chen, Fanglin
2018-06-01
The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400-650 °C). To address this problem, for the first time, a novel hybrid catalyst consisting of PrNi0.5Mn0.5O3 and PrOx is impregnated in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr0.8Y0.2O3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 W cm-2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm-2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. This study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.
Komini Babu, Siddharth; Chung, Hoon Taek; Zelenay, Piotr; ...
2017-08-04
Here, this paper presents a two-dimensional (2D) computational model of a polymer electrolyte fuel cell (PEFC) with a platinum group metal-free (PGM-free) catalyst cathode that can significantly reduce PEFC costs by eliminating the need for expensive platinum catalysts. Due to their comparatively low volumetric activity, PGM-free cathodes are an order of magnitude thicker than their Pt-based counterpart. The resulting need for greater electrode thickness to achieve sufficient power density requires careful attention to the transport losses across the thicker cathodes. The presented model is used to correlate the composition and morphology of the cathode to PEFC performance. The model ismore » a complete cell, continuum model that includes an advanced agglomerate model for a microstructurally consistent representation of the cathode. A unique feature of the approach is the integration of morphology and transport parameter statistics extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of PGM-free cathodes. The model was validated with experimental results of PGM-free cathodes with varying Nafion loading. Lastly, our key findings are a need for increased cathode hydrophobicity and increased ionomer conductivity through either reduced tortuosity or increased bulk conductivity. We further use the model to evaluate targets for the volumetric activity and active site density for future catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komini Babu, Siddharth; Chung, Hoon Taek; Zelenay, Piotr
Here, this paper presents a two-dimensional (2D) computational model of a polymer electrolyte fuel cell (PEFC) with a platinum group metal-free (PGM-free) catalyst cathode that can significantly reduce PEFC costs by eliminating the need for expensive platinum catalysts. Due to their comparatively low volumetric activity, PGM-free cathodes are an order of magnitude thicker than their Pt-based counterpart. The resulting need for greater electrode thickness to achieve sufficient power density requires careful attention to the transport losses across the thicker cathodes. The presented model is used to correlate the composition and morphology of the cathode to PEFC performance. The model ismore » a complete cell, continuum model that includes an advanced agglomerate model for a microstructurally consistent representation of the cathode. A unique feature of the approach is the integration of morphology and transport parameter statistics extracted from nano-scale resolution X-ray computed tomography (nano-CT) imaging of PGM-free cathodes. The model was validated with experimental results of PGM-free cathodes with varying Nafion loading. Lastly, our key findings are a need for increased cathode hydrophobicity and increased ionomer conductivity through either reduced tortuosity or increased bulk conductivity. We further use the model to evaluate targets for the volumetric activity and active site density for future catalysts.« less
Effects of direct current on dog liver: Possible mechanisms for tumor electrochemical treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, K.H.; Gu, Y.N.; Xu, B.I.
1997-03-01
Mechanisms of tumor electrochemical treatment (ECT) were studied using normal dog liver. Five physical and chemical methods were used. Two platinum electrodes were inserted into an anesthetized dog`s liver at 3 cm separation. A voltage of 8.5 V direct current (DC) at an average current of 30 mA was applied for 69 min; total charge was 124 coulombs. Concentrations of selected ions near the anode and cathode were measured. The concentrations of Na{sup +} and K{sup +} ions were higher around the cathode, whereas the concentration of Cl{sup {minus}} ions was higher around the anode. Water contents and pH weremore » determined near the anode and the cathode at the midpoint between the two electrodes and in an untreated area away from the electrodes. Hydration occurred around the cathode, and dehydration occurred around the anode. The pH values were 2.1 near the anode and 12.9 near the cathode. Spectrophotometric scans of the liver sample extract were obtained, and the released gases were identified by gas chromatography as chlorine at the anode and hydrogen at the cathode. These results indicate that a series of electrochemical reactions take place during ECT. The cell metabolism and its environment are severely disturbed. Both normal and tumor cells are rapidly and completely destroyed in this altered environment. The authors believe that the above reactions are the ECT mechanisms for treating tumors.« less
AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries
Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas
2013-01-01
Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455
Jin, Xinfang; Wang, Jie; Jiang, Long; ...
2016-03-25
A physics-based model is presented to simulate the electrochemical behavior of mixed ion and electron conducting (MIEC) cathodes for intermediate-temperature solid oxide fuel cells. Analytic solutions for both transient and impedance models based on a finite length cylinder are derived. These solutions are compared to their infinite length counterparts. The impedance solution is also compared to experimental electrochemical impedance spectroscopy data obtained from both a traditional well-established La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) cathode and a new SrCo 0.9Nb 0.1O 3-δ (SCN) porous cathode. Lastly, the impedance simulations agree well with the experimental values, demonstrating that the new modelsmore » can be used to extract electro-kinetic parameters of MIEC SOFC cathodes.« less
Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries.
Kichambare, Padmakar; Rodrigues, Stanley; Kumar, Jitendra
2012-01-01
The composite of nitrogen-doped carbon (N-C) blend with lithium aluminum germanium phosphate (LAGP) was studied as cathode material in a solid-state lithium-oxygen cell. Composite electrodes exhibit high electrochemical activity toward oxygen reduction. Compared to the cell capacity of N-C blend cathode, N-C/LAGP composite cathode exhibits six times higher discharge cell capacity. A significant enhancement in cell capacity is attributed to higher electrocatalytic activity and fast lithium ion conduction ability of LAGP in the cathode. © 2011 American Chemical Society
Metal-air flow batteries using oxygen enriched electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh
A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.
Metal-air flow batteries using oxygen enriched electrolyte
Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh; Chen, Xujie
2017-08-01
A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.
NASA Astrophysics Data System (ADS)
Serra, José M.; Buchkremer, Hans-Peter
Solid oxide fuel cells (SOFCs) are highly efficient energy converters for both stationary and mobile purposes. However, their market introduction still demands the reduction of manufacture costs and one possible way to reach this goal is the decrease of the operating temperatures, which entails the improvement of the cathode electrocatalytic properties. An ideal cathode material may have mixed ionic and electronic conductivity as well as proper catalytic properties. Nanostructuring and catalytic promotion of mixed conducting perovskites (e.g. La 0.58Sr 0.4Fe 0.8Co 0.2O 3- δ) seem to be promising approaches to overcoming cathode polarization problems and are briefly illustrated here. The preparation of nanostructured cathodes with relatively high surface area and enough thermal stability enables to improve the oxygen exchange rate and therefore the overall SOFC performance. A similar effect was obtained by catalytic promoting the perovskite surface, allowing decoupling the catalytic and ionic-transport properties in the cathode design. Noble metal incorporation may improve the reversibility of the reduction cycles involved in the oxygen reduction. Under the cathode oxidizing conditions, Pd seems to be partially dissolved in the perovskite structure and as a result very well dispersed.
Non-isothermal electrochemical model for lithium-ion cells with composite cathodes
NASA Astrophysics Data System (ADS)
Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang
2015-06-01
Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.
The effects of minor elements in La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes on oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Oishi, Junya; Otomo, Junichiro; Oshima, Yoshito; Koyama, Michihisa
2015-03-01
It is known that the minor elements affect the performance of solid oxide fuel cell (SOFC). In this study, we focus on the influence of minor elements on the SOFC cathode properties. The Ca, Ba, Al, and Si, which originate from raw materials and production processes for SOFC cathodes, are investigated as minor elements that may have effect on the properties of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. To examine the effects of minor elements on the cathode properties, Ca, Ba, Al, and Si with a controlled concentration are added to the LSCF reference sample. Conductivity relaxation measurements are conducted to determine the chemical diffusion coefficient (Dchem) and surface exchange coefficient (ktr), which governs the overpotential characteristics of the LSCF cathode. The results show that Al and Si have negative effects on both Dchem and ktr while Ca and Ba do not alter Dchem and show weakly positive effects on ktr. The effects of Ca and Ba for the cathode properties are discussed on the basis of XPS measurements.
DOT National Transportation Integrated Search
1997-01-01
As part of efforts to identify effective and durable anodes for use in cathodic protection (CP) of reinforced concrete members, a water-based, electrically conductive paint was evaluated for use as the secondary anode in CP systems for protecting inl...
Lithium-Based High Energy Density Flow Batteries
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.
Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane
NASA Technical Reports Server (NTRS)
Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)
2017-01-01
An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.
NASA Astrophysics Data System (ADS)
Wei, Yanni; Luo, Yongguang; Qu, Hongtao; Zou, Juntao; Liang, Shuhua
2017-12-01
In this paper, microstructure evolution and failure analysis of the aluminum-copper interface of cathode conductive heads during their use were studied. The interface morphologies, compositions, conductivity and mechanical properties were investigated and analyzed. Obvious corrosion was found on the surface of the contact interface, which was more prevalent on an Al matrix. The crack increased sharply in the local metallurgical bonding areas on the interface, with the compound volume having no significant change. The phase transformation occurred on the interface during use, which was investigated using the elemental composition and x-ray diffraction pattern. The microhardness near the interface increased accordingly. An obvious electrical conductivity decrease appeared on the Al/Cu interface of the cathode conductive head after use over a specific time interval. Therefore, the deterioration of the microstructures and corrosion are the primary factors that affect the electrical conductivity and effective bonding, which will lead to eventual failure.
NASA Astrophysics Data System (ADS)
Ren, Wenju; Wang, Kai; Yang, Jinlong; Tan, Rui; Hu, Jiangtao; Guo, Hua; Duan, Yandong; Zheng, Jiaxin; Lin, Yuan; Pan, Feng
2016-11-01
Conductive nanocarbons generally are used as the electronic conductive additives to contact with active materials to generate conductive network for electrodes of commercial Li-ion batteries (LIBs). A typical of LiFePO4 (LFP), which has been widely used as cathode material for LIBs with low electronic conductivity, needs higher quantity of conductive nanocarbons to enhance the performance for cathode electrodes. In this work, we systematically studied three types of conductive nanocarbons and related performances in the LFP electrodes, and classify them as hard/soft-contact conductive carbon (named as H/SCC), respectively, according to their crystallite size, surface graphite-defect, specific surface area and porous structure, in which SCC can generate much larger contact area with active nano-particles of cathode materials than that of HCC. It is found that LFP nanocrystals wrapped in SCC networks perform significantly enhanced both capacity and rate performance than that in HCC. Combined experiments with multiphysics simulation, the mechanism is that LFP nanoparticles embedded in SCC with large contact area enable to generate higher depolarized effects with a relatively uniform current density vector (is) and lithium flux vector (NLi) than that in HCC. This discovery will guide us to how to design LIBs by selective using conductive carbon for high-performance LIBs.
Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters
NASA Technical Reports Server (NTRS)
Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor); Hofer, Richard R. (Inventor)
2012-01-01
An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.
McCloskey, Bryan D; Burke, Colin M; Nichols, Jessica E; Renfrew, Sara E
2015-08-18
The Li-air battery has received significant attention over the past decade given its high theoretical specific energy compared to competing energy storage technologies. Yet, numerous scientific challenges remain unsolved in the pursuit of attaining a battery with modest Coulombic efficiency and high capacity. In this Feature Article, we provide our current perspective on challenges facing the development of nonaqueous Li-O2 battery cathodes. We initially present a review on our understanding of electrochemical processes occurring at the nonaqueous Li-O2 cathode. Electrolyte and cathode instabilities and Li2O2 conductivity limitations are then discussed, and suggestions for future materials research development to alleviate these issues are provided.
Conductor of high electrical current at high temperature in oxygen and liquid metal environment
Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth
2016-01-12
In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.
Enhanced lifetime for thin-dielectric microdischarge-arrays operating in DC
NASA Astrophysics Data System (ADS)
Dussart, Remi; Felix, Valentin; Overzet, Lawrence; Aubry, Olivier; Stolz, Arnaud; Lefaucheux, Philippe; Gremi-Univ Orleans-Cnrs Collaboration; University Of Texas At Dallas Collaboration
2016-09-01
Micro-hollow cathode discharge arrays using silicon as the cathode have a very limited lifetime because the silicon bubbles and initiates micro-arcing. To avoid this destructive behavior, the same configuration was kept but, another material was selected for the cathode. Using micro and nanotechnologies ordinarily used in microelectronic and MEMS device fabrication, we made arrays of cathode boundary layer (CBL)-type microreactors consisting of nickel electrodes separated by a 6 µm thick SiO2 layer. Microdischarges were ignited in arrays of 100 µm diameter holes at different pressures (200750 Torr) in different gases. Electrical and optical measurements were made to characterize the arrays. Unlike the microdischarges produced using silicon cathodes, the Ni cathode discharges remain very stable with essentially no micro-arcing. DC currents between 50 and 900 µA flowed through each microreactor with a discharge voltage of typically 200 V. Stable V-I characteristics showing both the normal and abnormal regimes were observed and are consistent with the spread of the plasma over the cathode area. Due to their stability and lifetime, new applications of these DC, CBL-type microreactors can now be envisaged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Libin; Tao, Zetian; Hong, Tao
The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400–650 °C). In this paper, to address this problem, for the first time, a novel hybrid catalyst consisting of PrNi 0.5Mn 0.5O 3 and PrOx is impregnated in the (La 0.60Sr 0.40) 0.95Co 0.20Fe 0.80O 3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr 0.8Y 0.2O 3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 Wmore » cm -2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm -2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. Finally, this study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.« less
Lei, Libin; Tao, Zetian; Hong, Tao; ...
2018-04-06
The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400–650 °C). In this paper, to address this problem, for the first time, a novel hybrid catalyst consisting of PrNi 0.5Mn 0.5O 3 and PrOx is impregnated in the (La 0.60Sr 0.40) 0.95Co 0.20Fe 0.80O 3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr 0.8Y 0.2O 3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 Wmore » cm -2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm -2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. Finally, this study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.« less
Influence of propellant choice on MPD arcjet cathode surface current density distribution
NASA Astrophysics Data System (ADS)
Sheshadri, T. S.
1989-10-01
The radial current density on an MPD arcjet cathode surface is theoretically investigated for five propellants. It is found that excessive current concentration at the upstream end of the cathode occurs in the case of hydrogen. This undesirable effect is traced to the higher electrical conductivity of hydrogen plasma.
Solar Powered CO.Sub.2 Conversion
NASA Technical Reports Server (NTRS)
Chen, Bin (Inventor)
2016-01-01
Methods and devices for reducing CO.sub.2 to produce hydrocarbons are disclosed. A device comprises a photoanode capable of splitting H.sub.2O into electrons, protons, and oxygen; an electrochemical cell cathode comprising an electro-catalyst capable of reducing CO.sub.2; H.sub.2O in contact with the surface of the photoanode; CO.sub.2 in contact with the surface of the cathode; and a proton-conducting medium positioned between the photoanode and the cathode. Electrical charges associated with the protons and the electrons move from the photoanode to the cathode, driven in part by a chemical potential difference sufficient to drive the electrochemical reduction of CO.sub.2 at the cathode. A light beam is the sole source of energy used to drive chemical reactions. The photoanode can comprise TiO.sub.2 nanowires or nanotubes, and can also include WO.sub.3 nanowires or nanotubes, quantum dots of CdS or PbS, and Ag or Au nanostructures. The cathode can comprise a conductive gas diffusion layer with nanostructures of an electro-catalyst such as Cu or Co.
Preliminary Results of Field Emission Cathode Tests
NASA Technical Reports Server (NTRS)
Sovey, James S.; Kovaleski, Scott D.
2001-01-01
Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.
Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.
Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo
2016-09-07
As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications.
Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries
Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo
2016-01-01
As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications. PMID:27600885
NASA Technical Reports Server (NTRS)
Batra, R.; Marino, D.
1986-01-01
The cathode life test program sponsored by NASA Lewis Research Center at Watkins-Johnson Company has been in continuous operation since 1972. Its primary objective has been to evaluate the long life capability of barium dispenser cathodes to produce emission current densities of 2 A sq. cm. or more in an operational environment simulating that of a highpower microwave tube. The life test vehicles were equipped with convergent flow electron guns, drift space tubes with solenoid magnets for electron beam confinement and water-cooled depressed collectors. A variety of cathode types has been tested, including GE Tungstate, Litton Impregnated, Philips Type B and M, Semicon types S and M, and Spectra-Mat Type M. Recent emphasis has been on monitoring the performance of Philips Type M cathodes at 2 A sq. cm. and Sprectra-Mat and Semicon Type M cathodes at 4 A sq. cm. These cathodes have been operated at a constant current of 616 mA and a cathode anode voltage on the order of 10 kV. Cathode temperatures were maintained at 1010 C true as measured from black body holes in the backs of the cathodes. This report presents results of the cathode life test program from July l982 through April l986. The results include hours of operation and performance data in the form of normalized emission current density versus temperature curves (Miram plots).
Apparatus and method for electrochemical modification of liquids
James, Patrick I
2015-04-21
An apparatus for electrochemical modification of liquid streams employing an electrolytic cell which includes an anode compartment defined by an anode structure where oxidation is effected, containing a liquid electrolyte anolyte, and a cathode compartment defined by a cathode structure where reduction is effected containing a liquid electrolyte catholyte. In addition, the electrolytic cell includes at least one additional compartment arranged at least partially between the anode compartment and the cathode compartment and separated from the anode compartment and the cathode compartment by a separator structure arranged to supports ionic conduction of current between the anode structure and the cathode structure.
Liao, Sih-Hao; Jhuo, Hong-Jyun; Cheng, Yu-Shan; Chen, Show-An
2013-09-14
Modification of a ZnO cathode by doping it with a hydroxyl-containing derivative - giving a ZnO-C60 cathode - provides a fullerene-derivative-rich surface and enhanced electron conduction. Inverted polymer solar cells with the ZnO-C60 cathode display markedly improved power conversion efficiency compared to those with a pristine ZnO cathode, especially when the active layer includes the low-bandgap polymer PTB7-Th. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beilis, I. I.
A model was developed of vacuum arc cathode spot motion in a magnetic field that obliquely intercepts the cathode surface. The model takes into account a force under an electric field caused by retrograde spot motion across the normal component of the magnetic field, producing a drift velocity component in the direction of the acute angle between the magnetic field and the cathode surface. The relationship between velocity of the retrograde direction and drift velocity of the cathode spot motion to the acute angle was developed. The dependencies of the drift angle θ on the acute angle φ, magnetic fieldmore » strength B, and arc current I were calculated. It was found that the calculated θ increased with φ, B, and I in accordance with Robson's measurements.« less
USDA-ARS?s Scientific Manuscript database
Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...
Investigation of plasma contactors for use with orbiting wires
NASA Technical Reports Server (NTRS)
Estes, Robert D.; Grossi, Mario D.; Hohlfeld, Robert
1987-01-01
The proposed Shuttle-based short tether experiments with hollow cathodes have the potential for providing important data that will not be obtained in long tether experiments. A critical property for hollow cathode effectiveness as a plasma contactor is the cross magnetic field conductivity of the emitted plasma. The different effects of hollow cathode cloud overlap in the cases of motion-driven and battery-driven operation are emphasized. The calculations presented on the size and shape of the hollow cathode cloud improve the qualitative picture of hollow cathodes in low Earth orbit and provide estimates of time constants for establishing the fully-expanded cloud. The magnetic boundary value problem calculations indicate the way in which the magnetic field will effect the shape of the cloud by resisting expansion in the direction perpendicular to the field. The large-scale interactions of the system were also considered. It was concluded that recent plasma chamber experiments by Stenzel and Urrutia do not model an electrodynamic tether well enough to apply the results to tethered system behavior. Orbiting short tether experiments on hollow cathodes will provide critical information on hollow cathode performance and the underlying physics that cannot be obtained any other way. Experiments should be conducted as soon as funding and a suitable space vehicle are available.
Hollow cathode heater development for the Space Station plasma contactor
NASA Technical Reports Server (NTRS)
Soulas, George C.
1993-01-01
A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.
Nonlinear Conductivities and Electrochemical Performances of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Electrodes
Su, Xin; Ha, Seonbaek; Ishwait, Manar B.; ...
2016-01-01
There is increasing research attention on optimizing the carbon black nanoparticles’ structure and loading procedure for improving conductivities and thus, electrochemical performances of cathodes in lithium-ion batteries. Recently, LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523) has been actively investigated due to its larger specific capacity and lower cost compared to conventional cathode materials. Presented here is a high energy density NCM523 cathode obtained by reducing the carbon content using the state-of-the-art carbon nanoparticles developed at Cabot Corporation. It is the first time that the nonlinear conductivity of NCM523 electrodes has been discovered, which is significantly impacted by the dispersion and surface crystalline quality of carbon black nanoparticles, especially when the loading of carbon black is only 1 wt%. The nonlinear conductivity of the cathodes can dramatically affect their electrochemical performances at high rates (more » $$\\geqq$$3C), which is close to the tunneling saturated current. In addition, there is no discernable difference in terms of the rate and cycle performance of the NCM523 electrodes, when reducing the loading of novel carbon black nanoparticles from 5 wt% to 1 wt% in the cathode. Therefore, the energy density of the electrode can be increased by 9% by using existing commercially available electrode materials.« less
Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media.
Lacasa, Engracia; Cañizares, Pablo; Llanos, Javier; Rodrigo, Manuel A
2012-04-30
In this work, the effect of the cathode material (conductive diamond, stainless steel, silicon carbide, graphite or lead) and the current density (150-1400 A m(-2)) on the removal of nitrates from aqueous solutions is studied by electrolysis in non-divided electrochemical cells equipped with conductive diamond anodes, using sodium sulphate as the electrolyte. The results show that the cathode material very strongly influences both the process performance and the product distribution. The main products obtained are gaseous nitrogen (NO, N(2)O and NO(2)) and ammonium ions. Nitrate removal follows first order kinetics, which indicates that the electrolysis process is controlled by mass transfer. Furthermore, the stainless steel and graphite cathodes show a great selectivity towards the production of ammonium ions, whereas the silicon carbide cathode leads to the highest formation of gaseous nitrogen, which production is promoted at low current densities. Copyright © 2012 Elsevier B.V. All rights reserved.
Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.
Kim, Kwi Ryong; Lee, Kug-Seung; Ahn, Chi-Yeong; Yu, Seung-Ho; Sung, Yung-Eun
2016-08-30
Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g(-1)cathode capacity after 50 cycles, which is equivalent to 800 mAh g(-1)S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved.
Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY
2011-11-22
The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.
Battery with modular air cathode and anode cage
Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.
1987-01-01
A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.
Battery with modular air cathode and anode cage
Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.; Turk, Thomas R.
1988-01-01
A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.
Multiple Hollow Cathode Wear Testing for the Space Station Plasma Contactor
NASA Technical Reports Server (NTRS)
Soulas, George C.
1994-01-01
A wear test of four hollow cathodes was conducted to resolve issues associated with the Space Station plasma contactor. The objectives of this test were to evaluate unit-to-unit dispersions, verify the transportability of contamination control protocols developed by the project, and to evaluate cathode contamination control and activation procedures to enable simplification of the gas feed system and heater power processor. These objectives were achieved by wear testing four cathodes concurrently to 2000 hours. Test results showed maximum unit-to-unit deviations for discharge voltages and cathode tip temperatures to be +/-3 percent and +/-2 percent, respectively, of the nominal values. Cathodes utilizing contamination control procedures known to increase cathode lifetime showed no trends in their monitored parameters that would indicate a possible failure, demonstrating that contamination control procedures had been successfully transferred. Comparisons of cathodes utilizing and not utilizing a purifier or simplified activation procedure showed similar behavior during wear testing and pre- and post-test performance characterizations. This behavior indicates that use of simplified cathode systems and procedures is consistent with long cathode lifetimes.
NASA Astrophysics Data System (ADS)
Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young
2014-10-01
Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.
Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates.
Mo, Runwei; Tung, Siu On; Lei, Zhengyu; Zhao, Guangyu; Sun, Kening; Kotov, Nicholas A
2015-05-26
Deficiencies of cathode materials severely limit cycling performance and discharge rates of Li batteries. The key problem is that cathode materials must combine multiple properties: high lithium ion intercalation capacity, electrical/ionic conductivity, porosity, and mechanical toughness. Some materials revealed promising characteristics in a subset of these properties, but attaining the entire set of often contrarian characteristics requires new methods of materials engineering. In this paper, we report high surface area 3D composite from reduced graphene oxide loaded with LiFePO4 (LFP) nanoparticles made by layer-by-layer assembly (LBL). High electrical conductivity of the LBL composite is combined with high ionic conductivity, toughness, and low impedance. As a result of such materials properties, reversible lithium storage capacity and Coulombic efficiency were as high as 148 mA h g(-1) and 99%, respectively, after 100 cycles at 1 C. Moreover, these composites enabled unusually high reversible charge-discharge rates up to 160 C with a storage capacity of 56 mA h g(-1), exceeding those of known LFP-based cathodes, some of them by several times while retaining high content of active cathode material. The study demonstrates that LBL-assembled composites enable resolution of difficult materials engineering tasks.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Duan, Xiaoyong; Wang, Jie; Wang, Congwei; Wang, Junying; Wang, Jianlong; Wang, Junzhong
2018-02-01
Lithium-sulfur battery receives intense attention owing to its high theoretical energy density. However, poor electrical conductivity of sulfur and poor cycle stability of the battery hinder its application. Here, we report that graphene microsheets prepared from microcrystalline graphite minerals by an electrochemical & mechanical approach work as a special conductive support to load sulfur as the cathode of lithium-sulfur battery. The graphene microsheets have the features of excellent conductivity and low defect, small sheet sizes of <1 μm2 and ≤6 atomic layers as well as natural silicate residue covered. Li-S batteries of graphene microsheets/S as cathode exhibit long-term cyclability and high coulombic efficiency. At 1 C for 2000 cycles, average coulombic efficiency of 99.7% is reached.
Effectiveness of cathodic protection : final report, June 30, 2009.
DOT National Transportation Integrated Search
2009-06-01
The report provides a summary of Oregons experience with cathodic protection of coastal reinforced concrete bridges. : Thermal-sprayed anodes, foil anodes with a conductive adhesive, and carbon painted anodes are effective in distributing : curren...
Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries.
Luo, Shu; Wang, Ke; Wang, Jiaping; Jiang, Kaili; Li, Qunqing; Fan, Shoushan
2012-05-02
Binder-free LiCoO(2) -SACNT cathodes with excellent flexibility and conductivity are obtained by constructing a continuous three-dimensional super-aligned carbon nanotube (SACNT) framework with embedded LiCoO(2) particles. These binder-free cathodes display much better cycling stability, greater rate performance, and higher energy density than classical cathodes with binder. Various functional binder-free SACNT composites can be mass produced by the ultrasonication and co-deposition method described in this paper. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bond layer for a solid oxide fuel cell, and related processes and devices
Wu, Jian; Striker, Todd-Michael; Renou, Stephane; Gaunt, Simon William
2017-03-21
An electrically-conductive layer of material having a composition comprising lanthanum and strontium is described. The material is characterized by a microstructure having bimodal porosity. Another concept in this disclosure relates to a solid oxide fuel cell attached to at least one cathode interconnect by a cathode bond layer. The bond layer includes a microstructure having bimodal porosity. A fuel cell stack which incorporates at least one of the cathode bond layers is also described herein, along with related processes for forming the cathode bond layer.
ERIC Educational Resources Information Center
Humphrey, T. E.; Calisa, Vaishnavi
2014-01-01
In 1879, in the midst of the debate between English and continental scientists about the nature of cathode rays, William Crookes conducted an experiment in which a small mill or "paddle wheel" was pushed along tracks inside a cathode ray tube (CRT) (similar to that shown in Fig. 1) when connected to a high-voltage induction coil. Crookes…
A method for achieving ignition of a low voltage gas discharge device
Kovarik, Vincent J.; Hershcovitch, Ady; Prelec, Krsto
1988-01-01
An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a larger number of gas atoms, thus reducing the voltage necesary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.
Low-voltage gas-discharge device
Kovarik, V.J.; Hershcovitch, A.; Prelec, K.
1982-06-08
An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.
High field CdS detector for infrared radiation
NASA Technical Reports Server (NTRS)
Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)
1974-01-01
An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.
A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.
Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R
2015-09-28
Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun
2016-09-21
Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.
New secondary batteries utilizing electronically conductive polymer cathodes
NASA Technical Reports Server (NTRS)
Martin, Charles R.; White, Ralph E.
1987-01-01
The objectives are to optimize the transport rates in electronically conductive polypyrrole films by controlling the morphology of the film and to assess the utility of these films as cathodes in a lithium/polypyrrole secondary battery. During this research period, a better understanding was gained of the fundamental electrochemical switching processes within the polypyrrole film. Three publications were submitted based on the work completed.
Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y
2015-09-14
An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.
Transparent Carbon Nanotube layers as cathodes in OLEDs
NASA Astrophysics Data System (ADS)
Papadimitratos, Alexios; Nasibulin, Albert; Kauppinen, Esko; Zakhidov, Anvar; Solarno Inc Collaboration; Aalto University Collaboration; UT Dallas Collaboration
2011-03-01
Organic Light Emitting diodes (OLEDs) have attracted high interest in recent years due to their potential use in future lighting and display applications. Reported work on OLEDs traditionally utilizes low work function materials as cathodes that are expensive to fabricate because of the high vacuum processing. Transparent carbon nanotube (CNT) sheets have excellent mechanical and electrical properties. We have already shown earlier that multi-wall (MWCNT) as well as single CNT (SWCNT) sheets can be used as effective anodes in bright OLEDs [,]. The true advantage of using the CNT sheets lies in flexible devices and new architectures with CNT sheet as layers in tandem devices with parallel connection. In this work, we are investigating the possibility of using SWCNT as cathodes in OLEDs. SWCNT sheets have been reported to show lower work function compared to MWCNT. Our work attempts to demonstrate transparent OLED devices with CNT anodes and cathodes. In the process, OLEDs with CNT cathodes have been fabricated in normal and inverted configurations using inorganic oxides (MoO3,ZnO) as invertion layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Y.; Cheng, T. -L.; Wen, Y. H.
Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less
Lei, Y.; Cheng, T. -L.; Wen, Y. H.
2017-07-05
Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less
New Cathode Material for High Energy-Density Batteries
1974-07-31
Lithium Anodes LINK A ROLK LINK B LINK C INSTRUCTIONS I. ORIGINATING ACTIVITY: Enter the name and oddM-ss of the contractor...theoretical energy density of 399 whr/lb when paired with a lithium anode. Results of related, but less extensive, work on zinc fluoride and...a) The semiconductor was cathodically passi- vated in the presence of lithium ions, which would normally exist in lithium battery electrolytes
Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian
A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, driedmore » and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.« less
Durable electrocatalytic-activity of Pt-Au/C cathode in PEMFCs.
Selvaganesh, S Vinod; Selvarani, G; Sridhar, P; Pitchumani, S; Shukla, A K
2011-07-21
Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ∼10% after 7000 accelerated potential-cycles as against ∼60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer. This journal is © the Owner Societies 2011
Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration
NASA Astrophysics Data System (ADS)
Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan
2018-02-01
Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.
Solid state electrochemical current source
Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich
2002-04-30
A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.
Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram
2016-03-01
In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram
In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less
Small polaron hopping conduction mechanism in LiFePO4 glass and crystal
NASA Astrophysics Data System (ADS)
Banday, Azeem; Murugavel, Sevi
2017-01-01
The optimization of a cathode material is the most important criterion of lithium ion battery technology, which decides the power density. In order to improve the rate capability, a cathode material must possess high electronic and ionic conductivities. Therefore, it is important to understand the charge transport mechanism in such an advanced cathode material in its intrinsic state before modifying it by various means. In this work, we report the thermal, structural, and electrical conductivity studies on lithium iron phosphate, LiFePO4, both in its polycrystalline (LFPC) and glassy (LFPG) counterpart states. The vibrational spectroscopic measurements reveal the characteristic vibrational modes, which are the intrinsic part of LFPC, whereas in LFPG, the phonon modes become broader and overlap with each other due to the lattice disorder. The electrical conductivity measurements reveal that LFPG exhibits a higher polaronic conductivity of 1.6 orders than the LFPC sample. The temperature dependent dc conductivity has been analyzed with the Mott model of polarons and reveals the origin of enhanced polaronic conductivity in LFPG. Based on the analysis, the enhanced polaronic conductivity in LFPG has been attributed to the combined effect of reduced hopping length, decreased activation energy, and enhanced polaron concentration.
Carbon nanotube polymer composition and devices
Liu, Gao [Oakland, CA; Johnson, Stephen [Richmond, CA; Kerr, John B [Oakland, CA; Minor, Andrew M [El Cerrito, CA; Mao, Samuel S [Castro Valley, CA
2011-06-14
A thin film device and compound having an anode, a cathode, and at least one light emitting layer between the anode and cathode, the at least one light emitting layer having at least one carbon nanotube and a conductive polymer.
Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries.
Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Shan, Hui; Fan, Linlin; Wu, Chunxia; Li, Dejun; Lu, Shigang
2017-03-29
Development of alternative cathode materials is of highly desirable for sustainable and cost-efficient lithium-ion batteries (LIBs) in energy storage fields. In this study, for the first time, we report tunable nitrogen-doped graphene with active functional groups for cathode utilization of LIBs. When employed as cathode materials, the functionalized graphene frameworks with a nitrogen content of 9.26 at% retain a reversible capacity of 344 mAh g -1 after 200 cycles at a current density of 50 mA g -1 . More surprisingly, when conducted at a high current density of 1 A g -1 , this cathode delivers a high reversible capacity of 146 mAh g -1 after 1000 cycles. Our current research demonstrates the effective significance of nitrogen doping on enhancing cathode performance of functionalized graphene for LIBs.
Yoon, Kyungho; Kim, Jung-Joon; Seong, Won Mo; Lee, Myeong Hwan; Kang, Kisuk
2018-05-23
All-solid-state batteries are considered as one of the attractive alternatives to conventional lithium-ion batteries, due to their intrinsic safe properties benefiting from the use of non-flammable solid electrolytes in ASSBs. However, one of the issues in employing the solid-state electrolyte is the sluggish ion transport kinetics arising from the chemical and physical instability of the interfaces among solid components including electrode material, electrolyte and additive agents. In this work, we investigate the stability of the interface between carbon conductive agents and Li 10 GeP 2 S 12 in a composite cathode and its effect on the electrochemical performance of ASSBs. It is found that the inclusion of various carbon conductive agents in composite cathode leads to inferior kinetic performance of the cathode despite expectedly enhanced electrical conductivity of the composite. We observe that the poor kinetic performance is attributed to a large interfacial impedance which is gradually developed upon the inclusions of the various carbon conductive agents regardless of their physical differences. The analysis through X-ray Photoelectron Spectroscopy suggests that the carbon additives in the composite cathode stimulate the electrochemical decomposition of LGPS electrolyte degrading its surface during cycling, indicating the large interfacial resistance stems from the undesirable decomposition of the electrolyte at the interface.
Pulsed metallic-plasma generators.
NASA Technical Reports Server (NTRS)
Gilmour, A. S., Jr.; Lockwood, D. L.
1972-01-01
A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.
Cylindrical electron beam diode
Bolduc, Paul E.
1976-01-01
A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.
Oxygen-consuming chlor alkali cell configured to minimize peroxide formation
Chlistunoff, Jerzy B [Los Alamos, NM; Lipp, Ludwig [Brookfield, CT; Gottesfeld, Shimshon [Niskayuna, NY
2006-08-01
Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majzoobi, A.; Joshi, R. P., E-mail: ravi.joshi@ttu.edu; Neuber, A. A.
Particle-in-cell simulations are performed to analyze the efficiency, output power and leakage currents in a 12-Cavity, 12-Cathode rising-sun magnetron with diffraction output (MDO). The central goal is to conduct a parameter study of a rising-sun magnetron that comprehensively incorporates performance enhancing features such as transparent cathodes, axial extraction, the use of endcaps, and cathode extensions. Our optimum results demonstrate peak output power of about 2.1 GW, with efficiencies of ∼70% and low leakage currents at a magnetic field of 0.45 Tesla, a 400 kV bias with a single endcap, for a range of cathode extensions between 3 and 6 centimeters.
A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries
Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang
2016-01-01
Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g−1 at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles. PMID:26842015
A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries.
Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang
2016-02-04
Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g(-1) at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.
A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries
NASA Astrophysics Data System (ADS)
Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang
2016-02-01
Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g-1 at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.
Nanocarbons for Battery Applications in China
2015-04-29
Lithium - Ion Batteries (LIBs) Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...Conductive Additives in Lithium - Ion Batteries (LIBs) 3.3.3 As Composite Cathodes in Lithium -Sulfur (Li-S) Batteries 3.3.6.1 CNTs...composite electrode materials and conductive additives in lithium - ion batteries (LIBs) and composite cathodes in novel lithium -sulfur (Li-S) and
Method of making a unitized electrode assembly
Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Solomon, Frank; Niksa, Andrew J.; Schue, Thomas J.; Genodman, Yury; Turk, Thomas R.; Hagel, Daniel P.
1988-01-01
A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.
Method of making a unitized electrode assembly
Niksa, M.J.; Pohto, G.R.; Lakatos, L.K.; Wheeler, D.J.; Solomon, F.; Niksa, A.J.; Schue, T.J.; Genodman, Y.; Turk, T.R.; Hagel, D.P.
1988-12-06
A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom. 6 figs.
Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges
DOT National Transportation Integrated Search
2002-03-01
Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of T...
Additive for iron disulfide cathodes used in thermal batteries
Armijo, James R.; Searcy, Jimmie Q.
1983-01-01
The invention comprises thermal batteries employing an FeS.sub.2 depolarizer, i.e. cathode material, and the depolarizer itself. A minor amount of CaSi.sub.2 preferably, 1-3% by weight is provided as an additive in the FeS.sub.2 depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS.sub.2 by weight generally comprises 64-90%.
Preparation of redox polymer cathodes for thin film rechargeable batteries
Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.
1994-11-08
The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.
Field-Emission Staggered Structure Based on Diamond-Graphite Clusters
NASA Astrophysics Data System (ADS)
Davidovich, M. V.; Yafarov, R. K.
2018-02-01
We have proposed and designed a vacuum field-emission triode structure with high-resistivity semiconducting or insulating micrometer-size right parallelepipeds deposited in the staggered order on the conducting substrate (cathode), as well as a structure with a nanofilm on the cathode, which is formed by evaporated diamond-graphite clusters. It has been shown theoretically and experimentally that the emissivity of these structures is much higher than that of an uncoated cathode.
Chromium (V) compounds as cathode material in electrochemical power sources
Delnick, F.M.; Guidotti, R.A.; McCarthy, D.K.
A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca/sub 5/(CrO/sub 4/)/sub 3/Cl, Ca/sub 5/(CrO/sub 4/)OH, and Cr/sub 2/O/sub 5/. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.
Chromium (V) compounds as cathode material in electrochemical power sources
Delnick, Frank M.; Guidotti, Ronald A.; McCarthy, David K.
1985-01-01
A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca.sub.5 (CrO.sub.4).sub.3 Cl, Ca.sub.5 (CrO.sub.4).sub.3 OH, and Cr.sub.2 O.sub.5. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.
Low temperature sulfur and sodium metal battery for grid-scale energy storage application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gao; Wang, Dongdong
A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.
Diamond-Coated Carbon Nanotubes for Efficient Field Emission
NASA Technical Reports Server (NTRS)
Dimitrijevic, Stevan; Withers, James C.
2005-01-01
Field-emission cathodes containing arrays of carbon nanotubes coated with diamond or diamondlike carbon (DLC) are undergoing development. Multiwalled carbon nanotubes have been shown to perform well as electron field emitters. The idea underlying the present development is that by coating carbon nanotubes with wideband- gap materials like diamond or DLC, one could reduce effective work functions, thereby reducing threshold electric-field levels for field emission of electrons and, hence, improving cathode performance. To demonstrate feasibility, experimental cathodes were fabricated by (1) covering metal bases with carbon nanotubes bound to the bases by an electrically conductive binder and (2) coating the nanotubes, variously, with diamond or DLC by plasma-assisted chemical vapor deposition. In tests, the threshold electric-field levels for emission of electrons were reduced by as much as 40 percent, relative to those of uncoated- nanotube cathodes. Coating with diamond or DLC could also make field emission-cathodes operate more stably by helping to prevent evaporation of carbon from nanotubes in the event of overheating of the cathodes. Cathodes of this type are expected to be useful principally as electron sources for cathode-ray tubes and flat-panel displays.
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam
2017-01-01
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608
NASA Astrophysics Data System (ADS)
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam
2017-04-01
Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.
An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yuan; Oh, Tae-Sik; Wilson, Rachel
Porous composites of Sr-doped LaFeO 3 (LSF) and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ratio. Because conductivity of undoped LSF increases with Sr content while both the ionic and electronic conductivities of Zr-dopedmore » LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La 0.9Sr 0.1FeO 3 (LSF91). Although scaffolds made with 100% LSF had a higher conductivity than scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF).« less
An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes
Cheng, Yuan; Oh, Tae-Sik; Wilson, Rachel; ...
2017-03-24
Porous composites of Sr-doped LaFeO 3 (LSF) and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ratio. Because conductivity of undoped LSF increases with Sr content while both the ionic and electronic conductivities of Zr-dopedmore » LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La 0.9Sr 0.1FeO 3 (LSF91). Although scaffolds made with 100% LSF had a higher conductivity than scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF).« less
NEXIS Reservoir Cathode 2000 Hour Life Test
NASA Technical Reports Server (NTRS)
Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm
2004-01-01
The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Tan, Rui; Yang, Jie; Wang, Kai; Gao, Rongtan; Liu, Dong; Liu, Yidong; Yang, Jinlong; Pan, Feng
2017-02-01
We report a novel 3D-hybrid cathode material with three-dimensional (3D) N-GO/CNT framework to load sulfur (77.6 wt %), and sulfonated polyaniline (SPANI) of coating layer. Used as a cathode material, it possesses a high capacity (1196 mAh g-1@0.3 A g-1@1.6 mg cm-2), excellent charging-discharging rate (680 mAh g-1@7.5 A g-1) and long-life performance (maintaining 71.1% capacity over 450 cycles), which is mainly attributed to the benefits of excellent electronic/Li-ionic dual-conductivity and confinement effect of the 3D-hybrid N-GO/CNT framework coated by self-doping conducting polymer SPANI. Thus, a 3D sulfur cathode modified with electronic/Li-ionic dual-conduction network can significantly enhance the electrochemical performance and stability, and this novel type of material is very promising for commercial applications that require high energy and power density, long life, and excellent abuse tolerance.
Electrochemical performance investigations on the hydrogen depolarized CO2 concentrator
NASA Technical Reports Server (NTRS)
Aylward, J. R.
1976-01-01
An extensive investigation of anode and cathode polarization in complete cells and half cells was conducted to determine the factors affecting HDC electrode polarization and the nature of this polarization. Matrix-electrolyte-electrode interactions and cell electrolyte composition were also investigated. The electrodes were found to have normal performance capabilities. The HDC anode polarization characteristics were correlated with a theoretical kinetic analysis; and, except for some quantitative details, a rather complete understanding of the causes for HDC electrode polarization was formulated. One of the important finding resulting from the kinetic analysis was that platinum appears to catalyze the decomposition of carbonic acid to carbon dioxide and water. It was concluded that the abnormal voltage performance of the One Man ARS HDC cells was caused by insufficient cell electrolyte volume under normal operating conditions due to deficiencies in the reservoir to cell interfacing.
Miller, William E [Naperville, IL; Gay, Eddie C [Park Forest, IL; Tomczuk, Zygmunt [Homer Glen, IL
2006-03-14
A improved device and process for recycling spent nuclear fuels, in particular uranium metal, that facilitates the refinement and recovery of uranium metal from spent metallic nuclear fuels. The electrorefiner device comprises two anodes in predetermined spatial relation to a cathode. The anodese have separate current and voltage controls. A much higher voltage than normal for the electrorefining process is applied to the second anode, thereby facilitating oxidization of uranium (III), U.sup.+, to uranium (IV), U.sup.+4. The current path from the second anode to the cathode is physically shorter than the similar current path from the second anode to the spent nuclear fuel contained in a first anode shaped as a basket. The resulting U.sup.+4 oxidizes and solubilizes rough uranium deposited on the surface of the cathode. A softer uranium metal surface is left on the cathode and is more readily removed by a scraper.
Chen, C-C; Chang, F-C; Peng, C Y; Wang, H Paul
2015-01-01
Transparent conductive glasses such as thin film transistor (TFT) array and colour filter glasses were recovered from the TFT-liquid crystal display panel wastes by dismantling and sonic cleaning. Noble metals (i.e. platinum (Pt)) and indium tin oxide (ITO) are generally used in the cathode of a dye-sensitized solar cell (DSSC). To reduce the DSSC cost, Pt was replaced with nano nickel-encapsulated carbon-shell (Ni@C) nanoparticles, which were prepared by carbonization of Ni²⁺-β-cyclodextrin at 673 K for 2 h. The recovered conductive glasses were used in the DSSC electrodes in the substitution of relatively expensive ITO. Interestingly, the efficiency of the DSSC having the Ni@C-coated cathode is as high as 2.54%. Moreover, the cost of the DSSC using the recovered materials can be reduced by at least 24%.
Cusick, Roland D; Hatzell, Marta; Zhang, Fang; Logan, Bruce E
2013-12-17
Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m(2)-cat) and wastewater (WW: 0.3 to 1.7 W/m(2)), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m(2); WW: 1.9 W/m(2)). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m(2)-mem; WW: 1.7 W/m(2)) and 2-CP (Acetate: 1.3 W/m(2)-mem; WW: 0.6 W/m(2)) reactors were much higher than previous MRCs (0.3-0.5 W/m(2)-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment.
Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application
NASA Astrophysics Data System (ADS)
Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.
2018-02-01
Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.
Research to develop guidelines for cathodic protection of concentric neutral cables, volume 3
NASA Astrophysics Data System (ADS)
Hanck, J. A.; Nekoksa, G.
1982-08-01
Data associated with the corrosion of concentric neutral (CN) wires of direct buried primary cables were statistically analyzed, and guidelines for cathodic protection of CN wires for the electric utility industry were developed. The cathodic protection are reported. Field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are described. Details of the electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are also included.
Olson, J.M.; Carleton, K.L.
1982-06-10
A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.
2010-08-01
a mathematical equation relates the cathode reaction reversible electric potential to the lithium content of the cathode electrode. Based on the...Transport of Lithium in the Cell Cathode Active Material The Nernst -Einstein relation linking the lithium-ion mass diffusivity and its ionic...transient, isothermal and isobaric conditions. The differential model equation describing the lithium diffusion and accumulation in a spherical, active
Stabilizing platinum in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Remick, R. J.
1982-01-01
Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.
Olson, Jerry M.; Carleton, Karen L.
1984-01-01
A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.
Foldable and High Sulfur Loading 3D Carbon Electrode for High-performance Li-S Battery Application
He, Na; Zhong, Lei; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Meng, Yuezhong
2016-01-01
Sulfur is a promising cathode material with a high theoretical capacity of 1672 mAh g−1, however, the practical energy density of Li-S battery is far away from such promising due to its low active material utilization and low sulfur loading. Moreover, the challenges of the low electrical conductivity of sulfur and the high solubility of polysulfide intermediates still hinder its practical application. Here, we report a kind of free-standing and foldable cathodes consisting of 3D activated carbon fiber matrix and sulfur cathode. The 3D activated carbon fiber matrix (ACFC) has continuous conductive framework and sufficient internal space to provide a long-distance and continuous high-speed electron pathway. It also gives a very larger internal space and tortuous cathode region to ACFC accommodate a highly sulfur loading and keeps polysulfide within the cathode. The unique structured 3D foldable sulfur cathode using a foldable ACFC as matrix delivers a reversible capacity of about 979 mAh g−1 at 0.2C, a capacity retention of 98% after 100 cycles, and 0.02% capacity attenuation per cycle. Even at an areal capacity of 6 mAh cm−2, which is 2 times higher than the values of Li-ion battery, it still maintains an excellent rate capability and cycling performance. PMID:27677602
Cao, Xuecheng; Sun, Zhihui; Zheng, Xiangjun; Jin, Chao; Tian, Jinhua; Li, Xiaowei; Yang, Ruizhi
2018-02-09
Carbon is usually used as cathode material for Li-O 2 batteries. However, the discharge product, such as Li 2 O 2 and LiO 2 , could react with carbon to form an insulating lithium carbonate layer, resulting in cathode passivation and capacity fading. To solve this problem, the development of non-carbon cathodes is highly desirable. Herein, we successfully synthesized MnCo 2 O 4 (MCO) nanoparticles anchored on porous MoO 2 nanosheets that are grown on Ni foam (current collector) (MCO/MoO 2 @Ni), acting as a carbon- and binder-free cathode for Li-O 2 batteries, in an attempt to improve the electrical conductivity, electrocatalytic activity, and durability. This MCO/MoO 2 @Ni electrode delivers excellent cyclability (more than 400 cycles) and rate performance (voltage gap of 0.75 V at 5000 mA g -1 ). Notably, the battery with this electrode exhibits a high energy efficiency (higher than 85 %). The advanced electrochemical performance of MCO/MoO 2 @Ni can be attributed to its high electrical conductivity, excellent stability, and outstanding electrocatalytic activity. This work offers a new strategy to fabricate high-performance Li-O 2 batteries with non-carbon cathode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A theoretical analysis of vacuum arc thruster performance
NASA Technical Reports Server (NTRS)
Polk, James E.; Sekerak, Mike; Ziemer, John K.; Schein, Jochen; Qi, Niansheng; Binder, Robert; Anders, Andre
2001-01-01
In vacuum arc discharges the current is conducted through vapor evaporated from the cathode surface. In these devices very dense, highly ionized plasmas can be created from any metallic or conducting solid used as the cathode. This paper describes theoretical models of performance for several thruster configurations which use vacuum arc plasma sources. This analysis suggests that thrusters using vacuum arc sources can be operated efficiently with a range of propellant options that gives great flexibility in specific impulse. In addition, the efficiency of plasma production in these devices appears to be largely independent of scale because the metal vapor is ionized within a few microns of the cathode electron emission sites, so this approach is well-suited for micropropulsion.
Thermally conductive lithium ion electrodes and batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevchenko, Elena; Sumant, Anirudha V.; Balandin, Alexander
A thermally conductive electrochemical cell comprises a lithium ion-containing liquid electrolyte contacting a cathode and anode. The cathode and anode are in the form of electroactive sheets separated from each other by a membrane that is permeable to the electrolyte. One or more of the cathode and anode comprises two or more layers of carbon nanotubes, one of which layers includes electrochemically active nanoparticles and/or microparticles disposed therein or deposited on the nanotubes thereof. The majority of the carbon nanotubes in each of the layers are oriented generally parallel to the layers. Optionally, one or more of the layers includesmore » an additional carbon material such as graphene, nanoparticulate diamond, microparticulate diamond, and a combination thereof.« less
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2013-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)
2017-01-01
An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.
Improved Cathode Structure for a Direct Methanol Fuel Cell
NASA Technical Reports Server (NTRS)
Valdez, Thomas; Narayanan, Sekharipuram
2005-01-01
An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been demonstrated to mitigate the effects of crossover and decrease the airflow required.
Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries
Yan, Jianhua; Liu, Xingbo
2016-01-01
Rechargeable lithium–sulfur (Li–S) batteries are receiving ever‐increasing attention due to their high theoretical energy density and inexpensive raw sulfur materials. However, their rapid capacity fade has been one of the key barriers for their further improvement. It is well accepted that the major degradation mechanisms of S‐cathodes include low electrical conductivity of S and sulfides, precipitation of nonconductive Li2S2 and Li2S, and poly‐shuttle effects. To determine these degradation factors, a comprehensive study of sulfur cathodes with different amounts of electrolytes is presented here. A survey of the fundamentals of Li–S chemistry with respect to capacity fade is first conducted; then, the parameters obtained through electrochemical performance and characterization are used to determine the key causes of capacity fade in Li–S batteries. It is confirmed that the formation and accumulation of nonconductive Li2S2/Li2S films on sulfur cathode surfaces are the major parameters contributing to the rapid capacity fade of Li–S batteries. PMID:27981001
Electrode contact configuration and energy consumption in spinal cord stimulation.
de Vos, Cecile C; Hilgerink, Marjolein P; Buschman, Hendrik P J; Holsheimer, Jan
2009-12-01
To test the hypothesis that in spinal cord stimulation, an increase in the number of cathodes increases the energy per pulse, contrary to an increase in the number of anodes, which decreases energy consumption per pulse. Patients with an Itrel III (7425; Medtronic, Inc., Minneapolis, MN) implantable pulse generator and a Pisces-Quad (3487A; Medtronic, Inc.) implantable quadripolar lead were selected for this study. A set of 7 standard contact configurations was used for each patient. Resistor network models mimicking these configurations were constructed. The University of Twente's Spinal Cord Stimulation software was used to simulate the effect of these contact configurations on large spinal nerve fibers. To allow a comparison of the measured and modeled energy per pulse, all values were normalized. Both the empirical and the modeling results showed an increase in energy consumption with an increasing number of cathodes. Although the patient data with 1 and 2 cathodes did not differ significantly, energy consumption was significantly higher when 3 cathodes were used instead of 1 or 2 cathodes. The average energy consumption was significantly higher when bipolar stimulation was used instead of monopolar cathodal stimulation. An increasing number of anodes caused a decrease in energy consumption. When the paresthesia area can be covered with several configurations, it will be beneficial for the patient to program a configuration with 1 cathode and either no or multiple anodes.
Fuel cell system with interconnect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goettler, Richard; Liu, Zhien
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
2010-12-01
and conventional Li-ion cells is the cathode material. Lithium iron phosphate ( LiFePO4 ) is a cathode material with many desirable characteristics: low... LiFePO4 , coated with conductive materials. The high surface area of the nanoparticles allows excellent interpenetration of the conductive materials...above--the A123 LiFePO4 -based nanoenabled battery, the Ioxus nanoenabled supercapacitor, and our custom-designed control circuit--were assembled into a
Fuel cell system with interconnect
Goettler, Richard; Liu, Zhien
2015-08-11
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Fuel cell system with interconnect
Goettler, Richard; Liu, Zhien
2015-03-10
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Fuel cell system with interconnect
Liu, Zhien; Goettler, Richard
2015-09-29
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; ...
2016-07-02
The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling ofmore » lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Lastly, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.« less
Advanced ion thruster research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1984-01-01
A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas
2014-01-01
The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wangda; Dolocan, Andrei; Oh, Pilgun
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; ...
2017-04-26
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less
Li, Xiao; Lu, Yaobin; Luo, Haiping; Liu, Guangli; Zhang, Renduo
2017-10-01
The aim of this study was to investigate the microbial stratification structure within cathodic biofilm of the microbial fuel cell (MFC) using the freezing microtome method. Experiments were conducted in a single-chamber air-cathode MFC with 0.8g/L maltodextrin as substrate for ∼30d operation. The maximum power density was 945±10mW/m 2 in the MFC. Maltodextrin resulted in the relative abundance of Candidatus Saccharibacteria of 37.0% in the anodic biofilm. Different bacterial communities were identified in different layers within the cathodic biofilm. The relative abundance of Enterococcus was 3.7%, 10.5%, and 1.6% in the top (100-150μm), middle (50-100μm), and bottom (0-50μm) layers, respectively. Higher bacterial viability was observed within the top and bottom layers of the cathodic biofilm. Understanding the stratification of bacterial community in cathodic biofilm should be important to control the cathodic biofilm in the MFC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Casting copper to tungsten for high-power arc lamp cathodes
NASA Technical Reports Server (NTRS)
Will, H. A.
1974-01-01
Voids forming at interface when copper is cast onto tungsten can be eliminated by adding wetting agent during casting process. Small amount of copper and nickel are cast onto thoriated tungsten insert, insert is recast with more copper to form electrode. Good thermal conductance results in long-lived cathode.
NASA Astrophysics Data System (ADS)
Granados, Victor H.; Pinheiro, Mario J.; Sá, Paulo A.
2017-12-01
The goal of this article is to contribute to the advancement and the improvement of the performances of electrohydrodynamic (EHD) propulsion systems for space missions, especially in what concerns the control of the geometries of the electrodes and the employed gas and its efficiency. We use a previously developed self-consistent model to compare and study the performance of these systems using three different working gases (argon, nitrogen, and oxygen) in terms of net thrust production and thrust-to-power efficiency of single-stage EHD thrusters. In order to verify the dependency of those physical parameters on the configuration and orientation of the electrodes, we conduct systematic simulations of three thruster cathode configurations (conical, cylindrical, and funnel-like). In the present study, the working pressure is ≈1.3 kPa (10 Torr), well below the normal atmospheric pressure, and the gas temperature is 300 K. A similar systematic investigation was conducted in a recent paper at a relatively much lower pressure of 0.5 Torr (20 times less) for the same cathode duct geometries and working gases, which permit to compare the performances of the considered thrusters and gases at these two pressures; then and now, the distance between the electrodes is fixed at 28 mm, but in addition to the pressure, other parameters were modified. Thus, the input voltage is fixed at 3 kV, and the resistance of the ballast varies in the range of 500-5000 MΩ. Nitrogen gas performed better than argon for all proposed geometries, doubling the produced thrust while presenting higher T/P ratios in almost all cases. Oxygen presented significantly better performance than nitrogen's and argon's, e.g., funnel like cathode configuration presented a net thrust higher than 0.1 mN, about one order of magnitude higher than nitrogen's.
Nickel-titanium-phosphate cathodes
Belharouak, Ilias [Westmont, IL; Amine, Khalil [Downers Grove, IL
2008-12-16
Cathode materials having an improved electronic conductivity allowing for faster kinetics in the electrochemical reaction, as well as higher conductivity to meet the power requirements for many consumer applications, especially at low temperatures. The cathode material comprises a compound from the family of compounds where the basic unit is generally represented by Li.sub.xNi.sub.0.5TiOPO.sub.4. The structure of Li.sub.xNi.sub.0.5TiOPO.sub.4 includes corner sharing octahedra [TiO.sub.6] running along the C-axis. The structure is such that nearly three Li atoms are being inserted in Li.sub.xNi.sub.0.5TiOPO.sub.4. A cell in accordance with the principles of the present invention is rechargable and demonstrates a high capacity of lithium intercalation and fast kinetics.
New secondary batteries utilizing electronically conductive polymer cathodes
NASA Technical Reports Server (NTRS)
Martin, Charles R.; White, Ralph E.
1989-01-01
The objectives of this project are to optimize the transport rates in electronically conductive polypyrrole films by controlling the morphology of the film and to assess the utility of these films as cathodes in a lithium/polypyrrole secondary battery. During this research period, progress has been made in improving the charge transport rate of the supermolecular-engineered polypyrrole electrode by eliminating the polypyrrole baselayer that hampered earlier work. Also, the fibril density of the polypyrrole electrode was increased, providing more electroactive sites per unit area.
Experimental characterization of hollow-cathode plasma sources at Frascati
NASA Technical Reports Server (NTRS)
Vannaroni, G.; Cosmovici, C. B.; Bonifazi, C.; Mccoy, J.
1988-01-01
An experimental characterization has been conducted for hollow cathodes applicable as plasma contactors on Space Shuttle-based experiments. The diagnostics tests were conducted in an 0.5 cu m vacuum chamber by means of Langmuir probes at various distances from the source. Two electron populations are noted, one in the 0.3-1 eV and the other in the 7-11 eV temperature range. Current developments in the design of plasma chambers incorporating magnetic field compensation are noted.
Effects of an Internally-Mounted Cathode on Hall Thruster Plume Properties
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Johnson, Lee K.; Goebel, Dan M.; Fitzgerald, Dennis J.
2006-01-01
The effects of cathode position on the plume properties of an 8 kW BHT-8000 Busek Hall thruster are discussed. Experiments were conducted at the Jet Propulsion Laboratory (JPL) in a vacuum chamber suitable for the development and qualification of high-power Hall thrusters. Multi-mode Hall thruster operation was demonstrated at operating conditions ranging from 200-500 V discharge voltage, 10-40 A discharge current, and 2-8 kW discharge power. Reductions in plume divergence and increased near-field plume symmetries were found to result from the use of an internally-mounted cathode instead of the traditional externally-mounted configuration. High-current hollow cathodes developed at JPL utilizing lanthanum hexaboride (LaB6) emitters were also demonstrated. Discharge currents up to 100 A were achieved with the cathode operating alone and up to 40 A during operation with the Hall thruster. LaB6 cathodes were investigated because of their potential to reduce overall system cost and risk due to less stringent xenon purity and handling requirements.
Li, Mengran; Zhou, Wei; Zhu, Zhonghua
2017-01-25
Susceptibility to CO 2 is one of the major challenges for the long-term stability of the alkaline-earth-containing cathodes for intermediate-temperature solid oxide fuel cells. To alleviate the adverse effects from CO 2 , we incorporated samarium-stabilized ceria (SDC) into a SrCo 0.85 Ta 0.15 O 3-δ (SCT15) cathode by either mechanical mixing or a wet impregnation method and evaluated their cathode performance stability in the presence of a gas mixture of 10% CO 2 , 21% O 2 , and 69% N 2 . We observed that the CO 2 tolerance of the hybrid cathode outperforms the pure SCT15 cathode by over 5 times at 550 °C. This significant enhancement is likely attributable to the low CO 2 adsorption and reactivity of the SDC protective layer, which are demonstrated through thermogravimetric analysis, energy-dispersive spectroscopy, and electrical conductivity study.
Raza, Rizwan; Abbas, Ghazanfar; Liu, Qinghua; Patel, Imran; Zhu, Bin
2012-06-01
Nanocomposite based cathode materials compatible for low temperature solid oxide fuel cells (LTSOFCs) are being developed. In pursuit of compatible cathode, this research aims to synthesis and investigation nanocomposite La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) based system. The material was synthesized through wet chemical method and investigated for oxide-ceria composite based electrolyte LTSOFCs. Electrical property was studied by AC electrochemical impedance spectroscopy (EIS). The microstructure, thermal properties, and elemental analysis of the samples were characterized by TGA/DSC, XRD, SEM, respectively. The AC conductivity of cathode was obtained for 2.4 Scm(-1) at 550 degrees C in air. This cathode is compatible with ceria-based composite electrolytes and has improved the stability of the material in SOFC cathode environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ji; Byrd, Ian; Jin, Congrui
V 2O 5 is deemed as one of the most promising cathode materials for next-generation high-capacity lithium-ion batteries (LIBs). It possesses a theoretical capacity of 294 mAh g -1, which is much higher than conventional cathodes. But, there are many issues to be solved before its practical use, including poor cycle life and unsatisfactory rate performance, mainly owing to its low electronic conductivity and ionic diffusivity, as well as structural instability. Our work reports three types of V 2O 5 asymmetric membranes synthesized by using an adapted reverse-osmosis membrane technology combined with sol-gel chemistry, aiming to stabilize the cyclability andmore » improve the rate performance. V 2O 5 asymmetric membrane cathodes prepared using graphene as the conductive additives have a specific capacity of approximately 160 mAh g -1 at a current density of 100 mA g -1 with no capacity degradation after 380 cycles. It is also found that the annealing temperature and the choice of conductive additives can affect the morphology of V 2O 5 nanoparticles and the overall electrode cyclability. Furthermore, we find that a lower annealing temperature (300 vs. 400 °C) and the addition of graphene are beneficial to long-term cycling performance.« less
Wu, Ji; Byrd, Ian; Jin, Congrui; ...
2017-02-27
V 2O 5 is deemed as one of the most promising cathode materials for next-generation high-capacity lithium-ion batteries (LIBs). It possesses a theoretical capacity of 294 mAh g -1, which is much higher than conventional cathodes. But, there are many issues to be solved before its practical use, including poor cycle life and unsatisfactory rate performance, mainly owing to its low electronic conductivity and ionic diffusivity, as well as structural instability. Our work reports three types of V 2O 5 asymmetric membranes synthesized by using an adapted reverse-osmosis membrane technology combined with sol-gel chemistry, aiming to stabilize the cyclability andmore » improve the rate performance. V 2O 5 asymmetric membrane cathodes prepared using graphene as the conductive additives have a specific capacity of approximately 160 mAh g -1 at a current density of 100 mA g -1 with no capacity degradation after 380 cycles. It is also found that the annealing temperature and the choice of conductive additives can affect the morphology of V 2O 5 nanoparticles and the overall electrode cyclability. Furthermore, we find that a lower annealing temperature (300 vs. 400 °C) and the addition of graphene are beneficial to long-term cycling performance.« less
Zhang, Yu; Huang, Yanshan; Yang, Guanhui; Bu, Fanxing; Li, Ke; Shakir, Imran; Xu, Yuxi
2017-05-10
Polymer cathode materials are promising alternatives to inorganic counterparts for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to their high theoretical capacity, adjustable molecular structure, and strong adaptability to different counterions in batteries, etc. However, they suffer from poor practical capacity and low rate capability because of their intrinsically poor conductivity. Herein, we report the synthesis of self-assembled graphene/poly(anthraquinonyl sufide) (PAQS) composite aerogel (GPA) with efficient integration of a three-dimensional (3D) graphene framework with electroactive PAQS particles via a novel dispersion-assembly strategy which can be used as a free-standing flexible cathode upon mechanical pressing. The entire GPA cathode can deliver the highest capacity of 156 mAh g -1 at 0.1 C (1 C = 225 mAh g -1 ) with an ultrahigh utilization (94.9%) of PAQS and exhibits an excellent rate performance with 102 mAh g -1 at 20 C in LIBs. Furthermore, the flexible GPA film was also tested as cathode for SIBs and demonstrated a high-rate capability with 72 mAh g -1 at 5 C and an ultralong cycling stability (71.4% capacity retention after 1000 cycles at 0.5 C) which has rarely been achieved before. Such excellent electrochemical performance of GPA as cathode for both LIBs and SIBs could be ascribed to the fast redox kinetics and electron transportation within GPA, resulting from the interconnected conductive framework of graphene and the intimate interaction between graphene and PAQS through an efficient wrapping structure. This approach opens a universal way to develop cathode materials for powerful batteries with different metal-based counter electrodes.
NASA Astrophysics Data System (ADS)
Suyati, L.; Widyayanti, O. A.; Qushoyyi, M.; Darmawan, A.; Nuryanto, R.
2018-04-01
Battery is a device that converts chemical energy into electrical energy through electrochemical process. Further research on the synthesis of cathode of Na-ion battery that has good conductivity to maximize the battery performance needs to be conducted. One of the production steps of the NaCo(1-x)NaCo cathode synthesis in the Na-Ion battery was a ball-milling process, in which by the ball-milling process, the crystal size of NaCo(1-x)MnxO2 cathode can be minimized. The purpose of this study was to determine the effect of variation of ball-milling speed to the characteristics of resulting product including the oxide types composing NaCo(1-x)MnxO2 cathode, surface morphology, and conductivity. The main ingredients used were sodium acetate, manganese acetate, cobalt acetate with molar ratio of 0.7: 0.66: 0.22, respectively and citric acid as chelating agent with the M/CA ratio of 1: 1. The variations of milling speed were 0, 300, 400, 500, 600 and 700 rpm. Characterization of the product was conducted using XRD, SEM-EDS, and conductivity meter (LCR-meter). The result showed that a solid electrolyte of NaCo(1-x)MnxO2 consisting of NaMnO2, NaO2, CoO, Co2O3, MnO2 components was successfully synthesized. The observation on the milling speed at 400 rpm showed that the solid electrolyte produced had the highest conductivity i.e. 4.08 x 10-6 Scm-1 with a homogeneous surface morphology and had a spinel formula NaCo0,65Mn0,35O2.
Capacitor discharge process for welding braided cable
Wilson, Rick D.
1995-01-01
A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.
40 CFR 280.21 - Upgrading of existing UST systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sound and free of corrosion holes prior to installing the cathodic protection system; or (ii) The tank... for corrosion holes by conducting two (2) tightness tests that meet the requirements of § 280.43(c... operation of the cathodic protection system; or (iv) The tank is assessed for corrosion holes by a method...
40 CFR 280.21 - Upgrading of existing UST systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sound and free of corrosion holes prior to installing the cathodic protection system; or (ii) The tank... for corrosion holes by conducting two (2) tightness tests that meet the requirements of § 280.43(c... operation of the cathodic protection system; or (iv) The tank is assessed for corrosion holes by a method...
Hardin, K. Dan
1977-01-01
The disclosure relates to a gas injected vacuum switch comprising a housing having an interior chamber, a conduit for evacuating the interior chamber, within the chamber an anode and a cathode spaced from the anode, and a detonator for injecting electrically conductive gas into the chamber between the anode and the cathode to provide a current path therebetween.
NASA Astrophysics Data System (ADS)
Huang, Xingkang; Shi, Keying; Yang, Joseph; Mao, George; Chen, Junhong
2017-07-01
Sulfur cathodes have attracted much attention recently because of their high energy density and power density. However, sulfur possesses very poor electrical conductivity, and lithium polysulfides, resulting from the lithiation of sulfur, are prone to dissolving into electrolytes, which leads to the loss of active materials and poor cyclic performance of the sulfur cathodes. Here we report an MnO2-graphene oxide (GO) double-shelled sulfur (S@MnO2@GO) with improved rate capability and cyclic performance, in which we propose a new reaction using sulfur-reducing KMnO4 to produce MnO2 that covers the surface of the excess sulfur in situ. The resulting MnO2 with honeycomb-like morphology provides excellent voids for storing polysulfides. The outermost GO was assembled to block the open pores of MnO2, thereby minimizing the opportunity for polysulfides to leach into the electrolytes. The GO significantly improved the electrical conductivity of the sulfur cathode, and the S@MnO2@GO exhibited excellent rate capability and long cycle life.
NASA Astrophysics Data System (ADS)
Huang, Shouguo; Feng, Shuangjiu; Lu, Qiliang; Li, Yide; Wang, Hong; Wang, Chunchang
2014-04-01
Sr0.9Ce0.1Co0.9Nb0.1O3-δ (SCCN) has been synthesized using solid state reaction, and investigated as a new cathode material for intermediate temperature solid oxide fuel cells (ITSOFCs). SCCN material exhibits sufficiently high electronic conductivity and excellent chemical compatibility with SDC electrolyte. Highly charged Ce4+ and Nb5+ successfully stabilize the perovskite structure to avoid order-disorder phase transition. The electrical conductivity reaches a high value of 516 S cm-1 at 300 °C in air. The area specific resistances of the SCCN-50 wt.% Ce0.8Sm0.2O1.9 (SDC) cathode are as low as 0.027, 0.049, and 0.094 Ω cm2 at 700, 650, and 600 °C, respectively, with the corresponding peak power densities of 1074, 905, and 589 mW cm-2. A relatively low thermal expansion coefficient of SCCN-SDC is 14.3 × 10-6 K-1 in air. All these results imply that SCCN holds tremendous promise as a cathode material for ITSOFCs.
Zhang, Xuqing; Xie, Dong; Zhong, Yu; Wang, Donghuang; Wu, Jianbo; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping
2017-08-04
Lithium-sulfur batteries (LSBs) are considered to be among the most promising next-generation high-energy batteries. It is a consensus that improving the conductivity of sulfur cathodes and impeding the dissolution of lithium polysulfides are two key accesses to high-performance LSBs. Herein we report a sulfur/carbon black (S/C) cathode modified by self-polymerized polydopamine (pDA) with the assistance of polymerization treatment. The pDA acts as a novel and effective shell on the S/C cathode to stop the shuttle effect of polysulfides. By the synergistic effect of enhanced conductivity and multiple blocking effect for polysulfides, the S/C@pDA electrode exhibits improved electrochemical performances including large specific capacity (1135 mAh g -1 at 0.2 C), high rate capability (533 mAh g -1 at 5 C) and long cyclic life (965 mAh g -1 after 200 cycles). Our smart design strategy may promote the development of high-performance LSBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel cobalt-free layered GdBaFe 2O 5+ δ cathode for proton conducting solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Ding, Hanping; Xue, Xingjian
While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO 2 and high thermal expansion coefficients. In this research, a cobalt-free layered GdBaFe 2O 5+ δ (GBF) perovskite was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton conducting electrolyte of stable BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY7). The button cells of Ni-BZCY7|BZCY7|GBF were fabricated and characterized using complex impedance technique from 600 to 700 °C. An open-circuit potential of 1.007 V, maximum power density of 417 mW cm -2, and a low electrode polarization resistance of 0.18 Ω cm 2 were achieved at 700 °C. The results indicate that layered GBF perovskite is a good candidate for cobalt-free cathode material, while the developed Ni-BZCY7|BZCY7|GBF cell is a promising functional material system for solid oxide fuel cells.
NASA Astrophysics Data System (ADS)
Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.
2012-07-01
The electrical conductivity of solid oxide fuel cell (SOFC) cathode is one of the most important indices affecting the efficiency of SOFC. In order to improve the performance of fuel cell system, it is advantageous to have accurate model with which one can predict the electrical conductivity. In this paper, a model utilizing support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter optimization was established to modeling and predicting the electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2 O3-δ-xSm0.5Sr0.5CoO3-δ (BSCF-xSSC) composite cathode under two influence factors, including operating temperature (T) and SSC content (x) in BSCF-xSSC composite cathode. The leave-one-out cross validation (LOOCV) test result by SVR strongly supports that the generalization ability of SVR model is high enough. The absolute percentage error (APE) of 27 samples does not exceed 0.05%. The mean absolute percentage error (MAPE) of all 30 samples is only 0.09% and the correlation coefficient (R2) as high as 0.999. This investigation suggests that the hybrid PSO-SVR approach may be not only a promising and practical methodology to simulate the properties of fuel cell system, but also a powerful tool to be used for optimal designing or controlling the operating process of a SOFC system.
Power generation in fuel cells using liquid methanol and hydrogen peroxide
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)
2002-01-01
The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.
NASA Astrophysics Data System (ADS)
Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.
2016-08-01
The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.
Lithium secondary batteries: Role of polymer cathode morphology
NASA Astrophysics Data System (ADS)
Naoi, Katsuhiko; Osaka, Tetsuya; Owens, Boone B.
1988-06-01
Electrically conducting polymers have been utilized both as the cathode and as the electrolyte element of Li secondary cells. Polymer cathodes were limited in their suitability for batteries because of the low energy content associated with low levels of doping and the inclusion of complex ionic species in the cathode. Recent studies have indicated that doping levels up to 100 percent can be achieved in polyanilene. High doping levels in combination with controlled morphologies have been found to improve the energy and rate capabilities of polymer cathodes. A morphology-modifying technique was utilized to enhance the charge/discharge characteristics of Li/liquid electrolyte polypyrrole cells. The polymer is electropolymerized in a preferred orientation morphology when the substrate is first precoated with an insulating film of nitrile butadiene rubber (NBR). Modification of the kinetic behavior of the electrode results from variations in the chemical composition of the NBR.
Neutron and gamma detector using an ionization chamber with an integrated body and moderator
Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul
2006-07-18
A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Sun, Xiao-Guang; Guo, Bingkun
The invention is directed in a first aspect to electron-conducting porous compositions comprising an organic polymer matrix doped with nitrogen atoms and having elemental sulfur dispersed therein, particularly such compositions having an ordered framework structure. The invention is also directed to composites of such S/N-doped electron-conducting porous aromatic framework (PAF) compositions, or composites of an S/N-doped mesoporous carbon composition, which includes the S/N-doped composition in admixture with a binder, and optionally, conductive carbon. The invention is further directed to cathodes for a lithium-sulfur battery in which such composites are incorporated.
A pulsed electron gun for the Plane Wave Transformer Linac
NASA Astrophysics Data System (ADS)
Mahadevan, S.; Gandhi, M. L.; Nandedkar, R. V.
2003-01-01
A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 μperv and the normalized emittance is within 5 π mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.
Theoretical and experimental investigation into high current hollow cathode arc attachment
NASA Astrophysics Data System (ADS)
Downey, Ryan T.
This research addresses several concerns of the mechanisms controlling performance and lifetime of high-current single-channel-hollow-cathodes, the central electrode and primary life-limiting component in Magnetoplasmadynamic thrusters. Specifically covered are the trends, and the theorized governing mechanisms, seen in the discharge efficiency and power, the size of the plasma attachment to the cathode (the active zone), cathode exit plume plasma density and energy, along with plasma property distributions of the internal plasma column (the IPC) of a single-channel-hollow-cathode. Both experiment and computational modeling were employed in the analysis of the cathodes. Employing Tantalum and Tungsten cathodes (of 2, 6 and 10 mm inner diameter), experiments were conducted to measure the temperature profile of operating cathodes, the width of the active zone, the discharge voltage, power, plasma arc resistance and efficiency, with mass flow rates of 50 to 300 sccm of Argon, and discharge currents of 15 to 50 Amps. Langmuir probing was used to obtain measurements for the electron temperature, plasma density and plasma potential at the cathode exit plane (down stream tip). A computational model was developed to predict the distribution of plasma inside the cathode, based upon experimentally determined boundary conditions. It was determined that the peak cathode temperature is a function of both interior cathode density and discharge current, though the location of the peak temperature is controlled gas density but not discharge current. The active zone width was found to be an increasing function of the discharge current, but a decreasing function of the mass flow rate. The width of the active zone was found to not be controlled by the magnitude of the peak cathode wall temperature. The discharge power consumed per unit of mass throughput is seen as a decreasing function of the mass flow rate, showing the increasing efficiency of the cathode. Finally, this new understanding of the mechanisms of the plasma attachment phenomena of a single-channel-hollow-cathode were extrapolated to the multi-channel-hollow-cathode environment, to explain performance characteristics of these devices seen in previous research.
Organic photovoltaic cell incorporating electron conducting exciton blocking layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen R.; Lassiter, Brian E.
2014-08-26
The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to anmore » analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing
2015-02-15
In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observedmore » that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.« less
Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N.
2015-01-01
In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L−1 reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A=254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes. PMID:26549889
NASA Astrophysics Data System (ADS)
Teran, Alexander Andrew
Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid-like environment around the ion while the second mechanism of ion conduction is attributed to diffusion of the entire polymer chain with coordinated ions. Equilibrated block copolymer electrolytes exhibit a non-monotonic dependence on molecular weight, decreasing with increasing molecular weight in the small molecular weight limit before increasing when molecular weight exceeds about 10 kg mol-1. Conductivity in annealed electrolytes was shown to be affected by two competing factors: the glass transition temperature of the insulating polystyrene block and the width of the conducting poly(ethylene oxide) (PEO) channel. In the low molecular weight limit, all ions are in contact with both polystyrene (PS) and PEO segments. The intermixing between PS and PEO segments is restricted to an interfacial zone of width of about 5 nm. The fraction of ions affected by the interfacial zone decreases as the conducting channel width increases. Furthermore, the effect of thermal history on the conductivity of the block copolymer electrolytes was examined. Results suggest that long-range order impedes ion transport, and consequently decreases in conductivity of up to 80% were seen upon annealing. The effect of morphology on ion transport was studied by conducting simultaneous impedance and X-ray scattering experiments as the block copolymer electrolyte transitioned from an ordered lamellar structure to a disordered phase. The ionic conductivity increased discontinuously through the transition from order to disorder. A simple framework for quantifying the magnitude of the discontinuity was presented. Finally, block copolymer electrolytes were examined specifically for use in high energy density solid state lithium/sulfur batteries. Such materials have been shown to form a stable interface with lithium metal anodes, maintain intimate contact upon cycling, and have sufficiently high shear moduli to retard dendrite formation. Having previously satisfied the concerns associated with the lithium metal anode, the compatibility of the sulfur cathode was explored. The sulfur cathode presents many unique challenges, including the generation of soluble lithium polysulfides (Li2Sx, 2 ≤ x ≤ 8) during discharge. The solubility of such species in block copolymers and their effect on morphology was examined. The lithium polysulfides were found to exhibit similar solubility in the block copolymers as in typical organic electrolytes, however induced unusual and unexpected phase behavior in the block copolymers. Inspired by successful efforts to physically confine the soluble lithium polysulfides via nanostructured carbon-sulfur composites in the cathode, our nanostructured block copolymer electrolytes were employed in full electrochemical cells with a lithium metal anode and sulfur cathode. Different cathode compositions, electrolyte additives, and cell architectures were tested. Surprisingly, the polysulfides diffused readily from the cathode through the block copolymer electrolyte, and the normally robust SEO|Li metal interface was detrimentally affected their presence during cycling. The polysulfides appeared to change the mechanical properties of the electrolyte such that intimate contact with the lithium metal was lost. Several promising strategies to overcome this problem were investigated and offer exciting avenues for improvement for future researchers. (Abstract shortened by UMI.).
Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.
Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi
2014-05-27
Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.
NASA Astrophysics Data System (ADS)
Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P.
2016-02-01
Manganese dioxide (MnO2) has been recognized as an effective catalyst for the oxygen reduction and oxygen evolution reactions in non-aqueous lithium-oxygen batteries. However, a further improvement in battery performance with the MnO2 catalyst is limited by its low electronic conductivity and catalytic activity, which strongly depend on the morphology and composition. In this work, we develop a carbon- and binder-free MnO2-x nanosheets/stainless steel (SS) cathode via a simple and effective electrodeposition-solvothermal route. The created Mn(III) and oxygen vacancy in MnO2-x nanosheets allows an significant increase in the electronic conductivity and catalytic activity. It is experimentally shown that the use of the present nanostructure MnO2-x/SS cathode in a non-aqueous lithium-oxygen battery results in a rechargeable specific capacity of 7300 mAh g-1 at a current density of 200 mA g-1, which is 39% higher than that with the MnO2/SS cathode. In addition, the specific capacities at 400 mA g-1 and 800 mA g-1 reach 5249 mAh g-1 and 2813 mAh g-1, respectively, which are over 30% higher than that with the MnO2/SS cathode. Furthermore, the discharge/charge cycle test shows no degradation for 120 cycles. All the results show that the present nanostructure MnO2-x/SS cathode is a promising candidate for high-performance lithium-oxygen batteries.
Doped carbon-sulfur species nanocomposite cathode for Li--S batteries
Wang, Donghai; Xu, Tianren; Song, Jiangxuan
2015-12-29
We report a heteroatom-doped carbon framework that acts both as conductive network and polysulfide immobilizer for lithium-sulfur cathodes. The doped carbon forms chemical bonding with elemental sulfur and/or sulfur compound. This can significantly inhibit the diffusion of lithium polysulfides in the electrolyte, leading to high capacity retention and high coulombic efficiency.
Exfoliated, Nitrogen-Doped Graphene Nanosheet Cathode for Lithium-Oxygen Batteries
2014-06-01
scanning electron microscopy; oxygen reduction reaction; cyclic voltammetry ; lithium-oxygen battery. Introduction The continuous...77 K (Micromeritics ASAP 2020). The porosity of cathode material was characterized by a gas pycnometer (Micromeritis, Accu Pyc II 1340). Cyclic ... voltammetry (CV) and galvanostatic charge-discharge measurements of the specimens were conducted using a computer controlled VersaSTAT 4 (Princeton
Improving cylinder-type LiFePO4 battery performance via control of internal resistance
NASA Astrophysics Data System (ADS)
Purwanto, Agus; Jumari, Arif; Nizam, Muhammad; Widiyandari, Hendri; Sudaryanto; Deswita; Azmin Mohamad, Ahmad
2018-04-01
Strategies for controlling the internal resistance to improve battery performance were systematically investigated. Electrode densification of LiFePO4 cathodes significantly reduced the internal resistance of the prepared batteries. Densification by reduction to 31.25% of initial thickness resulted in optimal electrochemical performance of the prepared LiFePO4 batteries. The addition of KS 6 graphite material improved the conductivity of the cathodes, which was indicated by a lowering of the internal resistance. The internal resistance was decreased from 73 to 54 when the KS6/AB ratio was varied from 3 to 1. Another factor in controlling the internal resistance was the location of a welded aluminum tab in the cathode. The welding of an aluminum tab in a small gap in the cathode significantly reduced the internal resistance. Thus, three main factors can be performed during fabrication to reduce the internal resistance of a LiFePO4 battery: cathode densification, KS-6 graphite addition, and the arrangement of an aluminum tab welded to the cathode. By optimizing these factors, high-performance LFP batteries were produced.
Materials characterization of impregnated W and W-Ir cathodes after oxygen poisoning
NASA Astrophysics Data System (ADS)
Polk, James E.; Capece, Angela M.
2015-05-01
Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten-iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W-Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W-Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W-Ir. However, the W-Ir emitter exhibited less erosion and redeposition at the upstream end than the pure W emitter.
Žužek, Monika C; Rozman, Janez; Pečlin, Polona; Vrecl, Milka; Frangež, Robert
2017-02-01
The ability to selectively stimulate Aα, Aβ-fibers and Aδ-fibers in an isolated rat sciatic nerve (SNR) was assessed. The stimulus used was a current, biphasic pulse with a quasitrapezoidal cathodic phase and rectangular anodic phase where parameters were systematically varied: intensity of the cathodic phase (ic); width of the cathodic phase (tc); width of the cathodic exponential decay (texp) and time constant of the exponential decay (τexp). A SNR was stimulated using a pair of hook electrodes while conduction velocity (CV) and compound action potentials (CAP) were measured at two sites along the SNR using another two pairs of electrodes. Results showed that the highest CAP1 (8.5-9 mV), shall be expected when parameters of the stimulus were within the following range: ic=3.8-4 mA, tc=350-400 μs and texp=330-440 μs. Results also showed that with ascending tc and texp, CV of the corresponding superficial region of the SNR was reduced in both, conduction velocity of CAP1 and conduction velocity of CAP2. It was concluded that action potentials (APs) were activated in the Aβ-fibers and Aδ-fibers along with a slight AP inhibition in the Aβ-fibers. The obtained results, could serve as a tool for developing multi-electrode systems that potentially enable fiber-type selective stimulation of nerve fibers.
NASA Astrophysics Data System (ADS)
Mahmoud, Lama; Singh Lalia, Boor; Hashaikeh, Raed
2016-12-01
Lithium iron phosphate (LiFePO4) battery cathode was fabricated without using any metallic current collector and polymeric binder. Carbon nanostructures (CNS) were used as microbinders for LiFePO4 particles and at the same time as a 3D current collector. A facile and cost effective method of fabricating composite cathodes of CNS and LiFePO4 was developed. Thick electrodes with high loading of active material (20-25 mg cm-2) were obtained that are almost 2-3 folds higher than commercial electrodes. SEM images confirm that the 3D CNS conductive network encapsulated the LiFePO4 particles homogenously facilitating the charge transfer at the electrode-CNS interface. The composition, scan rate and porosity of the paper-like cathode were sequentially varied and their influence was systematically monitored by means of linear sweep cyclic voltammetry and AC electrochemical impedance spectroscopy. Addition of CNS improved the electrode’s bulk electronic conductivity, mechanical integrity, surface area and double layer capacitance, yet compromised the charge transfer resistance at the electrode-electrolyte interface. Based on a range of the tested binder-free electrodes, this study proposes that electrodes with 20 wt% CNS having 49 ± 2.5% porosity had realized best improvements of two folds and four folds in the electronic conductivity and diffusion coefficient, respectively.
Lai, Chun-Han; Ashby, David S.; Lin, Terri C.; ...
2018-03-01
Poly (3-hexylthiophene-2,5-diyl) (P3HT), a conducting polymer studied extensively for its optoelectronic devices, offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials. By mixing with carbon nanotubes (CNT), P3HTCNT serves as a surface coating for the cathode material LiNi 0.8Co 0.15Al 0.05O 2 (NCA). Oxidation of the P3HT enables high electronic and ionic conductivity to be achieved over the potential range where the NCA is electrochemically active. In addition to the conductivity benefits from electrochemical doping, the P3HT-CNT coating suppresses electrolyte breakdown, thus inhibiting growth of the solid electrolyte interphase (SEI) layer andmore » preventing intergranular cracking in the NCA particles. In conclusion, The use of the P3HT-CNT binder system leads to improved cycling for NCA at high power density with capacities of 80 mAh g -1 obtained after 1000 cycles at 16C, a value that is 4 times greater than what is achieved in the control electrode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Chun-Han; Ashby, David S.; Lin, Terri C.
Poly (3-hexylthiophene-2,5-diyl) (P3HT), a conducting polymer studied extensively for its optoelectronic devices, offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials. By mixing with carbon nanotubes (CNT), P3HTCNT serves as a surface coating for the cathode material LiNi 0.8Co 0.15Al 0.05O 2 (NCA). Oxidation of the P3HT enables high electronic and ionic conductivity to be achieved over the potential range where the NCA is electrochemically active. In addition to the conductivity benefits from electrochemical doping, the P3HT-CNT coating suppresses electrolyte breakdown, thus inhibiting growth of the solid electrolyte interphase (SEI) layer andmore » preventing intergranular cracking in the NCA particles. In conclusion, The use of the P3HT-CNT binder system leads to improved cycling for NCA at high power density with capacities of 80 mAh g -1 obtained after 1000 cycles at 16C, a value that is 4 times greater than what is achieved in the control electrode.« less
Mou, Jirong; Deng, Yunlong; Song, Zhicui; Zheng, Qiaoji; Lam, Kwok Ho; Lin, Dunmin
2018-05-22
High-voltage LiNi0.5Mn1.5O4 is a promising cathode candidate for lithium-ion batteries (LIBs) due to its considerable energy density and power density, but the material generally undergoes serious capacity fading caused by side reactions between the active material and organic electrolyte. In this work, Li+-conductive Li2SnO3 was coated on the surface of LiNi0.5Mn1.5O4 to protect the cathode against the attack of HF, mitigate the dissolution of Mn ions during cycling and improve the Li+ diffusion coefficient of the materials. Remarkable improvement in cycling stability and rate performance has been achieved in Li2SnO3-coated LiNi0.5Mn1.5O4. The 1.0 wt% Li2SnO3-coated LiNi0.5Mn1.5O4 cathode exhibits excellent cycling stability with a capacity retention of 88.2% after 150 cycles at 0.1 C and rate capability at high discharge rates of 5 C and 10 C, presenting discharge capacities of 119.5 and 112.2 mAh g-1, respectively. In particular, a significant improvement in cycling stability at 55 °C is obtained after the coating of 1.0 wt% Li2SnO3, giving a capacity retention of 86.8% after 150 cycles at 1 C and 55 °C. The present study provides a significant insight into the effective protection of Li-conductive coating materials for a high-voltage LiNi0.5Mn1.5O4 cathode material.
Gao, Shuang; Liu, Gang; Chen, Qilai; Xue, Wuhong; Yang, Huali; Shang, Jie; Chen, Bin; Zeng, Fei; Song, Cheng; Pan, Feng; Li, Run-Wei
2018-02-21
Resistive random access memory (RRAM) with inherent logic-in-memory capability exhibits great potential to construct beyond von-Neumann computers. Particularly, unipolar RRAM is more promising because its single polarity operation enables large-scale crossbar logic-in-memory circuits with the highest integration density and simpler peripheral control circuits. However, unipolar RRAM usually exhibits poor switching uniformity because of random activation of conducting filaments and consequently cannot meet the strict uniformity requirement for logic-in-memory application. In this contribution, a new methodology that constructs cone-shaped conducting filaments by using chemically a active metal cathode is proposed to improve unipolar switching uniformity. Such a peculiar metal cathode will react spontaneously with the oxide switching layer to form an interfacial layer, which together with the metal cathode itself can act as a load resistor to prevent the overgrowth of conducting filaments and thus make them more cone-like. In this way, the rupture of conducting filaments can be strictly limited to the tip region, making their residual parts favorable locations for subsequent filament growth and thus suppressing their random regeneration. As such, a novel "one switch + one unipolar RRAM cell" hybrid structure is capable to realize all 16 Boolean logic functions for large-scale logic-in-memory circuits.
Torres, César I; Lee, Hyung-Sool; Rittmann, Bruce E
2008-12-01
Anodes of biological fuel cells (BFCs) normally must operate at a near-neutral pH in the presence of various ionic species required for the function of the biological catalyst (e.g., substrate, nutrients, and buffers). These ionic species are in higher concentration than protons (H+) and hydroxides (OH-); slow transport of H+ and OH- equivalents between anode and cathode compartments can lead to a large pH gradient that can inhibit the function of biological components, decrease voltage efficiency in BFCs, or both. We evaluate the use of carbonate species as OH- carriers from the cathode to the anode compartment. This is achieved by adding CO2 to the influent air in the cathode. CO2 is an acid that combines with OH- in the cathode to produce bicarbonate and carbonate. These species can migrate to the anode compartment as OH- carriers at a rate much greater than can OH- itself when the pH is not extremely high in the cathode compartment We demonstrate this concept by feeding different air/CO2 mixtures to the cathode of a dual-chamber microbial fuel cell (MFC) fed with acetate as substrate. Our results show a 45% increase in power density (from 1.9 to 2.8 W/m2) by feeding air augmented with 2-10% CO2. The cell voltage increased by as much as 120 mV, indicating that the pH gradient decreased by as much as 2 pH units. Analysis of the anode effluent showed an average increase of 4.9 mM in total carbonate, indicating that mostly carbonate was transferred from the cathode compartment This process provides a simple way to minimize potential losses in BFCs due to pH gradients between anode and cathode compartments.
Advanced electric propulsion and space plasma contactor research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1986-01-01
A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.
NASA Astrophysics Data System (ADS)
Baqué, Laura C.; Soldati, Analía L.; Teixeira-Neto, Erico; Troiani, Horacio E.; Schreiber, Anja; Serquis, Adriana C.
2017-01-01
The modification of surface composition after long-term operation is one of the most reported degradation mechanisms of (La,Sr)(Co,Fe)O3-δ (LSCFO) cathodes for Solid Oxide Fuel Cells (SOFCs). Nevertheless, its effect on the oxygen reduction reaction kinetics of porous LSCFO cathodes has not been yet reliably established. In this work, La- and Sr-enrichment at the LSCFO surface of porous cathodes has been induced after 50 h aging at 800 °C under air. Such cation redistribution can extend up to ∼400 nm depth under the LSCFO surface as detected by high resolution Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy maps acquired inside the cathode pores. The observed surface chemical changes hamper the oxygen surface exchange reaction at the LSCFO/gas interface. Accordingly, a suitable Electrochemical Impedance Spectroscopy analysis revealed that the oxygen ion conductivity remains practically unaltered during the aging treatment while the oxygen surface exchange resistance increases up to 1.8 times. As a result, the cathode impedance response deteriorates within the 10-0.1 Hz frequency range during the aging treatment, resulting in a total cathode area specific resistance increase of 150%. The methodology adopted has demonstrated to be very valuable for studying the degradation of SOFC cathodes produced by the modification of surface composition.
An experimental investigation of cathode erosion in high current magnetoplasmadynamic arc discharges
NASA Astrophysics Data System (ADS)
Codron, Douglas A.
Since the early to mid 1960's, laboratory studies have demonstrated the unique ability of magnetoplasmadynamic (MPD) thrusters to deliver an exceptionally high level of specific impulse and thrust at large power processing densities. These intrinsic advantages are why MPD thrusters have been identified as a prime candidate for future long duration space missions, including piloted Mars, Mars cargo, lunar cargo, and other missions beyond low Earth orbit (LEO). The large total impulse requirements inherent of the long duration space missions demand the thruster to operate for a significant fraction of the mission burn time while requiring the cathodes to operate at 50 to 10,000 kW for 2,000 to 10,000 hours. The high current levels lead to high operational temperatures and a corresponding steady depletion of the cathode material by evaporation. This mechanism has been identified as the life-limiting component of MPD thrusters. In this research, utilizing subscale geometries, time dependent cathode axial temperature profiles under varying current levels (20 to 60 A) and argon gas mass flow rates (450 to 640 sccm) for both pure and thoriated solid tungsten cathodes were measured by means of both optical pyrometry and charged-coupled (CCD) camera imaging. Thoriated tungsten cathode axial temperature profiles were compared against those of pure tungsten to demonstrate the large temperature reducing effect lowered work function imparts by encouraging increased thermionic electron emission from the cathode surface. Also, Langmuir probing was employed to measure the electron temperature, electron density, and plasma potential near the "active zone" (the surface area of the cathode responsible for approximately 70% of the emitted current) in order to characterize the plasma environment and verify future model predictions. The time changing surface microstructure and elemental composition of the thoriated tungsten cathodes were analyzed using a scanning electron microscope (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS). Such studies have provided a qualitative understanding of the typical pathways in which thorium diffuses and how it is normally redistributed along the cathode surface. Lastly, the erosion rates of both pure and thoriated tungsten cathodes were measured after various run times by use of an analytical scale. These measurements have revealed the ability of thoriated tungsten cathodes to run as long as that of pure tungsten but with significantly less material erosion.
MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Li, Zhengzheng
2018-02-01
MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur (MGN@MC/S) composite is successfully synthesized derived from metal-organic frameworks and investigated as cathode for lithium-ion batteries. Used as cathode, MGN@MC/S composite possesses electronic conductivity network for redox electron transfer and strong chemical bonding to lithium polysulfides, which enables low capacity loss to be achieved. MGN@MC/S cathodes exhibit high reversible capacity of 1475 mA h g-1 at 0.1 C and an ultra-low capacity fading of 0.042% per cycle at 1 C over 450 cycles.
NASA Astrophysics Data System (ADS)
Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu
2017-05-01
Vanadium oxide nanotubes (VOxNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VOxNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C12H27N) and intrinsic low conductivity of VOx. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VOxNTs and simultaneously form polypyrrole coating on VOxNTs, respectively. The resulting polypyrrole/VOxNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.
Alkaline and non-aqueous proton-conducting pouch-cell batteries
Young, Kwo-hsiung; Nei, Jean; Meng, Tiejun
2018-01-02
Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.
Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqiang; Yu, Guangsen; Zeng, Shumao; Parbey, Joseph; Xiao, Shuhao; Li, Baihai; Li, Tingshuai; Andersson, Martin
2018-03-01
Chromium poisoning the La0.875Sr0.125MnO3 (LSM) cathode for solid oxide fuel cells is a critical issue that can strongly affect the stability. In this study, we evaluate the temperature distribution in a SOFC based on a 3D model and then combine conductivity test and material computation to reveal the effects of chromium in SUS430 stainless steels on LSM conductivities. The starch concentration in LSM pellets and the applied pressure on the contact with interconnect materials show close relationships with the chromium poisoning behavior. The density functional theory (DFT) computing results indicate that chromium atoms preferably adsorb on the MnO2-terminated and La (Sr)-O-terminated (001) surfaces. The resulting conclusions are expected to deeply understand mechanism of chromium deactivating conventional cathodes at some typical operational conditions, and offer crucial information to optimize the structure to avoid the poisoning effect.
Efficient reversible electrodes for solid oxide electrolyzer cells
Elangovan, Singaravelu [South Jordan, UT; Hartvigsen, Joseph J [Kaysville, UT
2011-07-12
An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A'yBO(3-.differential.), wherein 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, and 0.8.ltoreq.z.ltoreq.1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.
Mathematical modeling of the temperature distribution under the cathode spot of the vacuum arc
NASA Astrophysics Data System (ADS)
Kuznetsov, V. G.; Babushkina, E. S.
2016-07-01
We present a solution to the problem of the temperature distribution under the cathode spot of taking into account melting and spare deposits of metal, brought to boiling temperature on the surface of the cathode spot. The process of heat transfer in the metal is described by the unsteady three dimensional heat conduction equation in Cartesian coordinate system. Similarly, we present a solution to the problem of the temperature distribution in the presence of the pores in the surface layer of the metal. To solve this task we used a numerical method to finite differences and variable directions. We present the calculated data on the distribution of temperature under the cathode spot for different values of spot diameters and speeds its movement.
NASA Astrophysics Data System (ADS)
Zhao, Hailei; Shen, Wei; Zhu, Zhiming; Li, Xue; Wang, Zhifeng
Ba xSr 1- xCo yFe 1- yO 3- δ (BSCF) materials with perovskite structure were synthesized via solid-state reaction. Their structural characteristics, electrical-conduction behavior and cathode performance were investigated. Compared to A-site elements, B-site elements show a wide solid-solution range in BSCF. The electrical-conduction behavior of BSCF obeys the small polaron-hopping mechanism. An increase of Ba or Co content in the BSCF samples results in a decrease of electrical conductivity, which is mainly attributable to the preferential existence of B 3+ rather than B 4+ in Ba- or Co-rich samples. At the same time, this leads to increases in the lattice parameter a and the number of oxygen vacancies. BSCF samples with high Ba content show a high structural stability (high oxygen-loss temperature). Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ and Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ materials present good thermal-cycling stability of the electrical conductivity. Compared with Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ, Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ exhibits a better cathode performance in a Ce 0.8Gd 0.2O 2- δ (GDC)-supported half cell. The cell performance can be improved by introducing a certain amount of GDC electrolyte into the BSCF cathode material.
NASA Astrophysics Data System (ADS)
Suksila, Thada
Since its invention at the University of Stuttgart, Germany in the mid-1960, scientists have been trying to understand and explain the mechanism of the plasma interaction inside the magnetoplasmadynamics (MPD) thruster. Because this thruster creates a larger level of efficiency than combustion thrusters, this MPD thruster is the primary cadidate thruster for a long duration (planetary) spacecraft. However, the complexity of this thruster make it difficult to fully understand the plasma interaction in an MPD thruster while operating the device. That is, there is a great deal of physics involved: the fluid dynamics, the electromagnetics, the plasma dynamics, and the thermodynamics. All of these physics must be included when an MPD thruster operates. In recent years, a computer simulation helped scientists to simulate the experiments by programing the physics theories and comparing the simulation results with the experimental data. Many MPD thruster simulations have been conducted: E. Niewood et al.[5], C. K. J. Hulston et al.[6], K. D. Goodfellow[3], J Rossignol et al.[7]. All of these MPD computer simulations helped the scientists to see how quickly the system responds to the new design parameters. For this work, a 1D MPD thruster simulation was developed to find the voltage drop between the cathode and the plasma regions. Also, the properties such as thermal conductivity, electrical conductivity and heat capacity are temperature and pressure dependent. These two conductivity and heat capacity are usually definded as constant values in many other models. However, this 1D and 2D cylindrical symmetry MPD thruster simulations include both temperature and pressure effects to the electrical, thermal conductivities and heat capacity values interpolated from W. F. Ahtye [4]. Eventhough, the pressure effect is also significant; however, in this study the pressure at 66 Pa was set as a baseline. The 1D MPD thruster simulation includes the sheath region, which is the interface between the plasma and the cathode regions. This sheath model [3] has been fully combined in the 1D simulation. That is, the sheath model calculates the heat flux and the sheath voltage by giving the temperature and the current density. This sheath model must be included in the simulation, as the sheath region is treated differently from the main plasma region. For our 2D cylindrical symmetry simulation, the dimensions of the cathode, the anode, the total current, the pressure, the type of gases, the work function can be changed in the input process as needed for particular interested. Also, the sheath model is still included and fully integrated in this 2D cylindrical symmetry simulation at the cathode surface grids. In addition, the focus of the 2D cylindrical symmetry simulation is to connect the properties on the plasma and the cathode regions on the cathode surface until the MPD thruster reach steady state and estimate the plasma arc attachement edge, electroarc edge, on the cathode surface. Finally, we can understand more about the behavior of an MPD thruster under many different conditions of 2D cylindrical symmetry MPD thruster simulations.
Hoskins, Daniel L; Zhang, Xiaoyuan; Hickner, Michael A; Logan, Bruce E
2014-11-01
Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339±29mW/m(2)), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444±8mW/m(2)) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ranjbar, Zahra; Moradian, Siamak; Rastegar, Saeed
2003-08-15
The electrodeposition behavior of blends of primary dispersions of a lower and a higher molecular weight epoxy-amine adduct has been investigated. The throwing power of the above-mentioned blends showed a voltage-dependent critical composition at which the throwing power dropped to a much lower value. This was assigned to the formation of an infinite conducting cluster, the extension of which is dependent on the rate of the electrocoagulation process at the cathode boundary. The random resistor network approach of Stauffer (RRNS) and the random resistor network approach of Miller and Abrahams (RRNMA) were applied to the experimental data with high correlations (r2=0.9314 and 0.9699). The percolating cluster formed within the film, however, gave a critical exponent of conductivity equal to 1.1028, much less than expected from a classical three-dimensional lattice (i.e., 1.5-2.0). This discrepancy was explained in terms of the changed behavior of the film resulting from the bubbles formed near the cathode and its effect on the infinite conducting cluster.
Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes
NASA Astrophysics Data System (ADS)
Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei
2015-12-01
Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.
Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode
NASA Astrophysics Data System (ADS)
Zheng, Honghe; Tan, Li; Liu, Gao; Song, Xiangyun; Battaglia, Vincent S.
2012-06-01
Li[Ni1/3Mn1/3Co1/3]O2 cathode laminate containing 8% PVDF and 7% acetylene black is fabricated and calendered to different porosities. Calendering effects on the physical and electrochemical properties of the Li[Ni1/3Mn1/3Co1/3]O2 cathode are investigated. It is found that mechanical properties of the composite laminate strongly depend on the electrode porosity whereas the electronic conductivity is not significantly affected by calendering. Electrochemical performances including the specific capacity, the first coulombic efficiency, cycling performance and rate capability for the cathode at different porosities are compared. An optimized porosity of around 30-40% is identified. Electrochemical impedance spectroscopy (EIS) studies illustrate that calendering improves the electronic conductivity between active particles at relatively high porosities, but increases charge transfer resistance at electrode/electrolyte interface at relatively low porosities. An increase of activation energy of Li interfacial transfer for the electrode at 0% porosity indicates a relatively high barrier of activation at the electrode/electrolyte interface, which accounts for the poor rate capability of the electrode at extremely low porosity.
NASA Astrophysics Data System (ADS)
Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.; Shunailov, S. A.; Kolomiets, M. D.; Mesyats, G. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R.; Yalandin, M. I.
2016-01-01
The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.
2016-01-14
The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, themore » theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.« less
NASA Astrophysics Data System (ADS)
Zeng, Weizhi; Wang, Shijie; Free, Michael L.
2016-10-01
Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.
Impact of electrode sequence on electrochemical removal of trichloroethylene from aqueous solution
Rajic, Ljiljana; Fallahpour, Noushin; Alshawabkeh, Akram N.
2015-01-01
The electrode sequence in a mixed flow-through electrochemical cell is evaluated to improve the hydrodechlorination (HDC) of trichloroethylene (TCE) in aqueous solutions. In a mixed (undivided) electrochemical cell, oxygen generated at the anode competes with the transformation of target contaminants at the cathode. In this study, we evaluate the effect of placing the anode downstream from the cathode and using multiple electrodes to promote TCE reduction. Experiments with a cathode followed by an anode (C→A) and an anode followed by a cathode (A→C) were conducted using mixed metal oxide (MMO) and iron as electrode materials. The TCE removal rates when the anode is placed downstream of the cathode (C→A) were 54% by MMO→MMO, 64% by MMO→Fe and 87% by Fe→MMO sequence. Removal rates when the anode is placed upstream of the cathode (A→C) were 38% by MMO→MMO, 58% by Fe→MMO and 69% by MMO→Fe sequence. Placing the anode downstream of the cathode positively improves (by 26%) the degradation of aqueous TCE in a mixed flow-through cell as it minimizes the influence of oxygen generated at the MMO anode on TCE reduction at the cathode. Furthermore, placing the MMO anode downstream of the cathode neutralizes pH and redox potential of the treated solution. Higher flow velocity under the C→A setup increases TCE mass flux reduction rate. Using multiple cathodes and an iron foam cathode up stream of the anode increase the removal rate by 1.6 and 2.4 times, respectively. More than 99% of TCE was removed in the presence of Pd catalyst on carbon and as an iron foam coating. Enhanced reaction rates found in this study imply that a mixed flow-through electrochemical cell with multiple cathodes up stream of an anode is an effective method to promote the reduction of TCE in groundwater. PMID:25931774
Effect of anode-cathode geometry on performance of the HIP-1 hot ion plasma. [magnetic mirrors
NASA Technical Reports Server (NTRS)
Lauver, M. R.
1978-01-01
Hot-ion hydrogen plasma experiments were conducted in the NASA Lewis HIP-1 magnetic mirror facility to determine how the ion temperature was influenced by the axial position of the cathode tips relative to the anodes. A steady-state EXB plasma was formed by applying a strong radially inward dc electric field near the throats of the magnetic mirrors. The dc electric field was created between hollow cathode rods inside hollow anode cylinders, both concentric with the magnetic axis. The highest ion temperatures, 900 eV, were attained when the tip of each cathode was in the same plane as the end of its anode. These temperatures were reached with 22 kV applied to the electrodes in a field of 1.1 tesla. Scaling relations were empirically determined for ion temperature and the product of ion density and neutral particle density as a function of cathode voltage, discharge current, and electrode positions. Plasma discharge current vs voltage (I-V) characteristics were determined.
Hot ion plasma production in HIP-1 using water-cooled hollow cathodes
NASA Technical Reports Server (NTRS)
Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.
1975-01-01
The paper reports on hot-ion plasma experiments conducted in a magnetic mirror facility. A steady-state E x B plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasmas with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage.
Observation of Li Diffusion in Cathode Sheets of Li-ion Battery by μ+SR
NASA Astrophysics Data System (ADS)
Umegaki, Izumi; Kawauchi, Shigehiro; Nozaki, Hiroshi; Sawada, Hiroshi; Nakano, Hiroyuki; Harada, Masashi; Cottrell, Stephen P.; Coomer, Fiona C.; Telling, Mark; Sugiyama, Jun
In order to know the change in Li diffusion during the operation of Li-ion batteries, we have initiated to measure Li diffusion not only in a powder sample but also in a cathode sheet with μ+SR. As the first step, we have measured μ+SR spectra on a cathode sheet, in which a mixture of a cathode material Li(Ni, Co)O2, a binder, and conducting additives is coated on an Al foil. The zero-field μ+SR spectrum exhibited a typical Kubo-Toyabe (KT) type relaxation at 100 K. By subtracting the contribution of the muons stopped in the Al foil, we found that Li+ ion starts to diffuse above 100 K in the Li(Ni, Co)O2. A self diffusion coefficient (DLi) at 300 K was estimated as 10-11 (cm2/s), which comparable with DLi (300 K) in the cathode materials previously reported. This leads to the future "in operando" measurements of DLi in Li-ion batteries.
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2016-06-07
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solidmore » cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.« less
Pulsed electromagnetic gas acceleration
NASA Technical Reports Server (NTRS)
Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.
1974-01-01
Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.
Self aligning electron beam gun having enhanced thermal and mechanical stability
Scarpetti, Jr., Raymond D.; Parkison, Clarence D.; Switzer, Vernon A.; Lee, Young J.; Sawyer, William C.
1995-01-01
A compact, high power electron gun having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the "triple point" where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques.
(Bi,Sr) (Fe1−x,Mx)O3−δ (M = Co, Ni and Mn) Cathode Materials with Mixed Electro-Ionic Conductivity
Wei, Wen-Cheng J.; Huang, Der-Rong; Wang, Dan
2016-01-01
(Bi,Sr)FeO3−δ (BSF) cathode materials doped with either Co, Ni or Mn are synthesized by an ethylene diamine tetra-acetic acid (EDTA)-citrate complexing method, and the effects of the doping level on the mixed electronic-ionic conductivity at various temperatures are studied up to 800 °C. The phase purity and solid solution limit are investigated by X-ray diffraction (XRD). The ionic conductivity is measured by the four-probe direct current (DC) method, the valence state of Fe and Mn by X-ray photoelectron spectroscopy (XPS), and the oxygen non-stoichiometry by differential thermo-gravimetric analysis (TGA). The doped ferrites show interesting electronic conductivity dependent on the testing temperature, implying two conductive mechanisms, either controlled by double exchange at lower temperatures or small polaron (electron-oxygen vacancy) conduction at temperatures greater than 400 °C. The results of Co-doped BSF (S50C20) show the best mixed conductivity among the ferrites, and this is used to assemble cells. The cell with a S50C20 cathode in the region of 600–800 °C is improved by 15% in maximum power density greater than the cell with La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) due to the balanced contribution from oxygen ions, vacancies and electrons. PMID:28774043
Electrochemical studies on the performance of SS316L electrode in electrokinetics
NASA Astrophysics Data System (ADS)
Choi, Jeong-Hee; Maruthamuthu, Sundaram; Lee, Hyun-Goo; Ha, Tae-Hyun; Bae, Jeong-Hyo
2009-10-01
Organic and trace metal pollutants are removed by employing various electrodes in an electrokinetic (EK) process. Stainless steel was used either as an anode or a cathode by various investigators in electroremediation systems. In the present study, the role of SS316L as an anode and cathode in EK system was studied by the measurements of pH, conductivity of electrolyte, and potential of the anode and cathode at different current densities. The weight loss of the anode and cathode and the leaching of chromium, iron, and nickel at different current densities were measured and discussed with an electroosmosis process. The electrochemical behavior of SS316L electrode in neutral, acidic and alkaline pH in soil environment was studied by an electrochemical technique viz. polarization study. Surface analysis of SS316L after EK was done by XPS and SEM. The higher conductivity was noticed at anolyte when compared to catholyte. The weight loss of the anode was in the following order 0.615 > 0.307 > 0.123 mA/cm2 and the cathode corrosion rate was vice versa. Peroxide production was also noticed at the anolyte, which may encourage the degradation of the total organic content (TOC) in the soil. The OCP (open circuit potential) of SS316L was about +75 mV vs SCE in the soil extract; while adding acetic acid, the potential shifted to the positive side, to about +380 mV vs SCE. The breakdown potential and the range of passivation potential were higher in acetic acid added system when compared to other systems. Pitting was observed on both the anode and cathode within 48 h during the EK process. The present study concludes that SS is not a proper electrode material for the EK process.
Thin film deposition by electric and magnetic crossed-field diode sputtering. [Patent application
Welch, K.M.
1975-04-04
Applying a coating of titanium nitride to a klystron window by means of a cross-field diode sputtering array is described. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent to a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate, and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thickness. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multifactoring under operating conditions of the components.
Ion energy distribution and gas heating in the cathode fall of a direct-current microdischarge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Tsuyohito; Cappelli, Mark A.
2006-04-15
This paper reports on measurements of the ion energy distribution (IED) at the cathode of an argon dc microdischarge using energy-resolved molecular beam mass spectrometry. The measurements are conducted at a fixed pressure-electrode separation product (pd) of 1 cm Torr with a maximum discharge pressure of 20 Torr. The measured IED is compared to the theory of Davis and Vanderslice [W. D. Davis and T. A. Vanderslice, Phys. Rev. 131, 219 (1963)]. A higher pressure in a case of almost constant normalized current densities by pressure (Jp{sup -2}=0.080{+-}0.006 mAecm{sup -2} Torr{sup -2}) yields a lower ratio of the ion meanmore » free path to the sheath thickness. The results in almost constant Jp{sup -2} case then indicate that a scaling law of Jp{sup -2} is no longer applicable for IED of microdischarge. Expected background gaseous temperatures from IEDs with the collisional Child law have reasonable increasing with increased current density (J) in both cases of almost constant Jp{sup -2} and a constant pressure of 10 Torr. Supported by temperature measurement by laser absorption spectroscopy, it is demonstrated that the expanded theory might be applicable also to microdischarges (Ar{approx}20 Torr) with temperature adjusting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belomestnykh, S.
Developing Superconducting RF (SRF) electron guns is an active field with several laboratories working on different gun designs. While the first guns were based on elliptic cavity geometries, Quarter Wave Resonator (QWR) option is gaining popularity. QWRs are especially well suited for producing beams with high charge per bunch. In this talk we will describe recent progress in developing both types of SRF guns. SRF guns made excellent progress in the last two years. Several guns generated beams and one, at HZDR, injected beam into an accelerator. By accomplishing this, HZDR/ELBE gun demonstrated feasibility of the SRF gun concept withmore » a normal-conducting Cs{sub 2}Te cathode. The cathode demonstrated very good performance with the lifetime of {approx}1 year. However, for high average current/high bunch charge operation CsK{sub 2}Sb is preferred as it needs green lasers, unlike UV laser for the Cs{sub 2}Te, which makes it easier to build laser/optics systems. Other high QE photocathodes are being developed for SRF guns, most notably diamond-amplified photocathode. Several QWR guns are under development with one producing beam already. They are very promising for high bunch charge operation. The field is very active and we should expect more good results soon.« less
Wavelengths and intensities of a platinum/neon hollow cathode lamp in the region 1100-4000 A
NASA Technical Reports Server (NTRS)
Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Sansonetti, Jean E.
1990-01-01
The spectrum of a platinum hollow cathode lamp containing neon carrier gas was recorded photographically and photoelectrically with a 10.7 m normal-incidence vacuum spectrograph. Wavelengths and intensities were determined for about 3000 lines in the region 1100-4000 A. The uncertainty of the measured wavelengths is estimated to be + or - 0.0020 A. Ritz-type wavelengths are given for about 550 classified lines of Pt II with uncertainites varying from + or - 0.0004 A to + or - 0.0025 A. The uncertainty of the relative intensities is estimated to be about 20 percent.
NASA Astrophysics Data System (ADS)
Kato, Tetsuya; Inoue, Tadashi; Iwai, Takashi; Arai, Yasuo
2006-10-01
Electrorefining in the molten LiCl-KCl eutectic salt containing actinide (An) and rare-earth (RE) elements was conducted to recover An elements up to 10 wt% into liquid cadmium (Cd) cathode, which is much higher than the solubility of the An elements in liquid Cd at the experimental temperature of 773 K. In the saturated Cd cathode, the An and RE elements were recovered forming a PuCd 11 type compound, MCd 11 (M = An and RE elements). The separation factors of element M against Pu defined as [M/Pu in Cd alloy (cathode)]/[M/Pu in molten salt] were calculated for the saturated Cd cathode including MCd 11. The separation factors were 0.011, 0.044, 0.064, and 0.064 for La, Ce, Pr, and Nd, respectively. These values were a little differed from 0.014, 0.038, 0.044, and 0.043 for the equilibrium unsaturated liquid Cd, respectively. The above slight differences were considered to be caused by the solid phase formation in the saturated Cd cathode and the electrochemical transfer of the An and RE elements in the molten salt.
Zhou, Xinxing; Xu, Yunzhi; Mei, Xiaojie; Du, Ningjie; Jv, Rongmao; Hu, Zhaoxia; Chen, Shouwen
2018-05-01
An efficient and inexpensive catalyst for oxygen reduction reaction (ORR), polyaniline (PANI) and β-MnO 2 nanocomposites (PANI/β-MnO 2 ), was developed for air-cathode microbial fuel cells (MFCs). The PANI/β-MnO 2 , β-MnO 2 , PANI and β-MnO 2 mixture modified graphite felt electrodes were fabricated as air-cathodes in double-chambered MFCs and their cell performances were compared. At a dosage of 6 mg cm -2 , the maximum power densities of MFCs with PANI/β-MnO 2 , β-MnO 2 , PANI and β-MnO 2 mixture cathodes reached 248, 183 and 204 mW m -2 , respectively, while the cathode resistances were 38.4, 45.5 and 42.3 Ω, respectively, according to impedance analysis. Weak interaction existed between the rod-like β-MnO 2 and surficial growth granular PANI, this together with the larger specific surface area and PANI electric conducting nature enhanced the electrochemical activity for ORR and improved the power generation. The PANI/β-MnO 2 nanocomposites are a promising cathode catalyst for practical application of MFCs. Copyright © 2018. Published by Elsevier Ltd.
Copper chloride cathode for a secondary battery
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Nagasubramanian, Ganesan (Inventor); Bankston, Clyde P. (Inventor)
1990-01-01
Higher energy and power densities are achieved in a secondary battery based on molten sodium and a solid, ceramic separator such as a beta alumina and a molten catholyte such as sodium tetrachloroaluminate and a copper chloride cathode. The higher cell voltage of copper chloride provides higher energy densities and the higher power density results from increased conductivity resulting from formation of copper as discharge proceeds.
Liaki, Christina; Rogers, Christopher D F; Boardman, David I
2008-07-01
To determine the consequences of applying electrokinetics to clay soils, in terms of mechanisms acting and resulting effects on the clay, tests were conducted in which an electrical gradient was applied across controlled specimens of English China Clay (ECC) using 'inert' electrodes and a 'Reverse Osmosis' water feed to the electrodes (i.e., to mimic electrokinetic stabilisation without the stabiliser added or electrokinetic remediation without the contaminant being present). The specimens in which electromigration was induced over time periods of 3, 7, 14 and 28 days were subsequently tested for Atterberg Limits, undrained shear strength using a hand shear vane, water content, pH, conductivity and zeta potential. Water flowed through the system from anode to cathode and directly affected the undrained shear strength of the clay. Acid and alkali fronts were created around the anode and cathode, respectively, causing changes in the pH, conductivity and zeta potential of the soil. Variations in zeta potential were linked to flocculation and dispersion of the soil particles, thus raising or depressing the Liquid Limit and Plastic Limit, and influencing the undrained shear strength. Initial weakening around the anode and cathode was replaced by a regain of strength at the anode once acidic conditions had been created, while highly alkaline conditions at the cathode induced a marked improvement in strength. A novel means of indicating strength improvement by chemical means, i.e., free from water content effects, is presented to assist in interpretation of the results.
Electrically Conductive and Protective Coating for Planar SOFC Stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jung-Pyung; Stevenson, Jeffry W.
Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, preventmore » Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be« less
Magnetically insulated transmission line oscillator
Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.
1988-01-01
A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.
Magnetically insulated transmission line oscillator
Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.
1987-05-19
A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.
Alkaline fuel cell performance investigation
NASA Technical Reports Server (NTRS)
Martin, R. E.; Manzo, M. A.
1988-01-01
An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.
Alkaline fuel cell performance investigation
NASA Technical Reports Server (NTRS)
Martin, R. E.; Manzo, M. A.
1988-01-01
An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.
Cathode preparation method for molten carbonate fuel cell
Smith, James L.; Sim, James W.; Kucera, Eugenia H.
1988-01-01
A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arifin, Muhammad; Aimon, Akfiny Hasdi; Winata, Toto
2016-02-08
LiFePO{sub 4} is fascinating cathode active materials for Li-ion batteries application because of their high electrochemical performance such as a stable voltage at 3.45 V and high specific capacity at 170 mAh.g{sup −1}. However, their low intrinsic electronic conductivity and low ionic diffusion are still the hindrance for their further application on Li-ion batteries. Therefore, the efforts to improve their conductivity are very important to elevate their prospecting application as cathode materials. Herein, we reported preparation of additional of reduced Graphene Oxide (rGO) into LiFePO{sub 4}-based composite via hydrothermal method and the influence of rGO on electrical conductivity of LiFePO{sub 4}−basedmore » composite by varying mass of rGO in composition. Vibration of LiFePO{sub 4}-based composite was detected on Fourier Transform Infrared Spectroscopy (FTIR) spectra, while single phase of LiFePO{sub 4} nanocrystal was observed on X-Ray Diffraction (XRD) pattern, it furthermore, Scanning Electron Microscopy (SEM) images showed that rGO was distributed around LiFePO4-based composite. Finally, the 4-point probe measurement result confirmed that the optimum electrical conductivity is in additional 2 wt% rGO for range 1 to 2 wt% rGO.« less
NASA Astrophysics Data System (ADS)
Bayer, T. J. M.; Carter, J. J.; Wang, Jian-Jun; Klein, Andreas; Chen, Long-Qing; Randall, C. A.
2017-12-01
Under electrical bias, mixed ionic conductors such as SrTiO3 are characterized by oxygen vacancy migration which leads to resistance degradation. The defect chemistry to describe the relationship between conductivity and oxygen vacancies is usually obtained by high temperature conductivity data or quenching experiments. These techniques can investigate the equilibrated state only. Here, we introduce a new approach using in-situ impedance studies with applied dc voltage to analyze the temperature dependent electrical properties of degraded SrTiO3 single crystals. This procedure is most beneficial since it includes electric field driven effects. The benefits of the approach are highlighted by comparing acceptor doped and undoped SrTiO3. This approach allows the determination of the temperature activation of both anodic and cathodic conductivity of Fe-doped SrTiO3 in the degraded state. The anodic activation energy matches well with the published results, while the activation energy of the degraded cathode region reported here is not in agreement with earlier assumptions. The specific discrepancies of the experimental data and the published defect chemistry are discussed, and a defect chemistry model that includes the strong temperature dependence of the electron conductivity in the cathode region is proposed.
Qian, Kai; Cai, Guofa; Nguyen, Viet Cuong; Chen, Tupei; Lee, Pooi See
2016-10-05
Transparent nonvolatile memory has great potential in integrated transparent electronics. Here, we present highly transparent resistive switching memory using stoichiometric WO 3 film produced by cathodic electrodeposition with indium tin oxide electrodes. The memory device demonstrates good optical transmittance, excellent operative uniformity, low operating voltages (+0.25 V/-0.42 V), and long retention time (>10 4 s). Conductive atomic force microscopy, ex situ transmission electron microscopy, and X-ray photoelectron spectroscopy experiments directly confirm that the resistive switching effects occur due to the electric field-induced formation and annihilation of the tungsten-rich conductive channel between two electrodes. Information on the physical and chemical nature of conductive filaments offers insightful design strategies for resistive switching memories with excellent performances. Moreover, we demonstrate the promising applicability of the cathodic electrodeposition method for future resistive memory devices.
Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan
2016-02-19
Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.
NASA Astrophysics Data System (ADS)
Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.
2016-03-01
The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.
Thin film deposition by electric and magnetic crossed-field diode sputtering
Welch, Kimo M.
1977-01-01
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
Titanium nitride thin films for minimizing multipactoring
Welch, Kimo M.
1979-01-01
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
Thin film deposition by electric and magnetic crossed-field diode sputtering
Welch, Kimo M.
1980-01-01
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
Resonant tunneling IR detectors
NASA Technical Reports Server (NTRS)
Woodall, Jerry M.; Smith, T. P., III
1990-01-01
Researchers propose a novel semiconductor heterojunction photodetector which would have a very low dark current and would be voltage tunable. A schematic diagram of the device and its band structure are shown. The two crucial components of the device are a cathode (InGaAs) whose condition band edge is below the conduction band edge of the quantum wells and a resonant tunneling filter (GaAs-AlGaAs). In a standard resonant tunneling device the electrodes are made of the same material as the quantum wells, and this device becomes highly conducting when the quantum levels in the wells are aligned with the Fermi level in the negatively biased electrode. In contrast, the researchers device is essentially non-conducting under the same bias conditions. This is because the Fermi Level of the cathode (InGaAs) is still well below the quantum levels so that no resonant transport occurs and the barriers (AlGaAs) effectively block current flow through the device. However, if light with the same photon energy as the conduction-band discontinuity between the cathode and the quantum wells, E sub c3-E sub c1, is shone on the sample, free carriers will be excited to an energy corresponding to the lowest quantum level in the well closest to the cathode (hv plue E sub c1 = E sub o). These electrons will resonantly tunnel through the quantum wells and be collected as a photocurrent in the anode (GaAs). To improve the quantum efficiency, the cathode (InGaAs) should be very heavily doped and capped with a highly reflective metal ohmic contact. The thickness of the device should be tailored to optimize thin film interference effects and afford the maximum absorption of light. Because the device relies on resonant tunneling, its response should be very fast, and the small voltages needed to change the responsivity should allow for very high frequency modulation of the photocurrent. In addition, the device is tuned to a specific photon energy so that it can be designed to detect a fairly narrow range of wavelengths. This selectivity is important for reducing the photocurrent due to spurious light sources.
Semi-solid electrode cell having a porous current collector and methods of manufacture
Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki
2017-11-21
An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.
Molten carbonate fuel cell matrices
Vogel, Wolfgang M.; Smith, Stanley W.
1985-04-16
A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.
NASA Astrophysics Data System (ADS)
Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Nó, María Luisa; Larrañaga, Aitor; Arriortua, María Isabel
2013-12-01
Spinel oxides with the general formula of (Mn,B)3O4 (B = Co, Fe) were used as barrier materials between the cathode and the metallic interconnect to reduce the rate of cathode degradation by Cr poisoning. The effect of doping at the B position was investigated terms of microstructure and electrical conductivity to determine its behaviour and effectiveness as a protective layer in contact with three metallic materials (Crofer 22 APU, SS430 and Conicro 4023 W 188). The analysis showed that the use of these materials considerably decreased the reactivity and diffusion of Cr between the cathode and the metallic interconnects. The protective layer doped with Fe at the B position exhibited the least amount of reactivity with the interconnector and cathode materials. The worst results were observed for SS430 cells coated with a protective layer perhaps due to their low Cr content. The Crofer 22 APU and Conicro 4023 W 188 samples exhibited very similar conductivity results in the presence of the MnCo1.9Fe0.1O4 protective coating. As a result, these two material combinations are a promising option for use as bipolar plates in SOFC.
Liddell, Mark R; Li, S Kevin; Higuchi, William I
2011-07-01
The purpose of this study was to characterize changes that occur in the iontophoretic transport of nonionic probe permeants in hairless mouse skin epidermal membrane from the anode to cathode when polystyrene sulfonate (PSS) oligomers are cotransported from the cathode to anode. The experiments were conducted with trace levels of the nonionic probe permeants: urea, mannitol, and raffinose. In order to systematically assess changes that occur as a result of having PSS in the cathodal chamber, the steady-state transport parameters of the membrane and the experimental permeability coefficients of the probe permeants were determined and compared with results obtained from earlier baseline experiments where both the cathodal and anodal chamber media were phosphate buffered saline. In addition, the physicochemical properties of the PSS solutions were determined including the solution viscosity and conductance as well as the mobilities of individual PSS oligomers. The effective pore radii of the transport pathways were calculated using a theoretical expression based on simultaneous diffusion and electroosmosis. Compared with the baseline results, the calculated radii were found to have increased up to around twofold and the iontophoretic fluxes of the probe permeants increased by as much sixfold. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association
Kretschmer, Katja; Sun, Bing; Zhang, Jinqiang; Xie, Xiuqiang; Liu, Hao; Wang, Guoxiu
2017-03-01
Sodium-ion batteries (NIBs) are an emerging technology, which can meet increasing demands for large-scale energy storage. One of the most promising cathode material candidates for sodium-ion batteries is Na 3 V 2 (PO 4 ) 3 due to its high capacity, thermal stability, and sodium (Na) Superionic Conductor 3D (NASICON)-type framework. In this work, the authors have significantly improved electrochemical performance and cycling stability of Na 3 V 2 (PO 4 ) 3 by introducing a 3D interconnected conductive network in the form of carbon fiber derived from ordinary paper towel. The free-standing Na 3 V 2 (PO 4 ) 3 -carbon paper (Na 3 V 2 (PO 4 ) 3 @CP) hybrid electrodes do not require a metallic current collector, polymeric binder, or conducting additives to function as a cathode material in an NIB system. The Na 3 V 2 (PO 4 ) 3 @CP cathode demonstrates extraordinary long term cycling stability for 30 000 deep charge-discharge cycles at a current density of 2.5 mA cm -2 . Such outstanding cycling stability can meet the stringent requirements for renewable energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meduri, Praveen; Chen, Honghao; Chen, Xilin
2011-12-01
This study demonstrates the excellent electrochemical performance of the hybrid carbon fluoride(CFx)/silver vanadium oxide(SVO)/graphene(G) cathode and its potential utilization in Acoustic Telemetry System Transmitter (ATST). The impedance increase issue caused by LiF formation from CFx is effectively addressed by the deposition of conductive silver metal from the reduction of SVO aided by the coexistence of graphene additive thus a prolonged operation voltage is observed with enhanced electronic conductivity throughout the whole discharge process. In particular, the hybrid shows capacity retention of {approx}462 mAhg-1 at 5C rate and 661 mAhg-1 at 1C rate. The peak current delivered from the as-designed hybridmore » cathode is improved compared with that of commercial Zn/Ag2O batteries suggesting the possibility of the further reduction on the size/weight of the micro batteries which is critical for the transmitters.« less
Efficient reversible electrodes for solid oxide electrolyzer cells
Elangovan, S.; Hartvigsen, Joseph J.; Zhao, Feng
2013-01-15
An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO.sub.2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H.sub.2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(.sub.1-x)La.sub.x)(z-y)A'.sub.yBO(3-.differential.), wherein 0
NASA Astrophysics Data System (ADS)
Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi
2017-04-01
The high solubility in molten salt and low conductivity of NiCl2, compared with traditional FeS2 and CoS2, have become the restrictions for its extensive application in cathode materials of thermal batteries. In this study, carbon coated NiCl2 cathode is successfully fabricated by the carbonization of stearic acid. The high specific energy of 641 Wh kg-1 at current densities of 0.5 A cm-2 are observed for the carbon coated NiCl2 thermal batteries, which is higher than the pure NiCl2 with 475 Wh kg-1. The high specific energies and high-current discharge ability are attribute to the graphite and amorphous carbon layers on the surface of NiCl2 crystalline, which were detected by TEM after carbonization. The graphite layers can improve the conductivity of NiCl2. Meanwhile the coated carbon structure could reduce the solubility of NiCl2 in molten salt.
Structure and transport investigations on lithium-iron-phosphate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banday, Azeem; Sharma, Monika; Murugavel, Sevi, E-mail: murug@physics.du.ac.in
2016-05-23
Cathode materials for Lithium Ion Batteries (LIB’s) are being constantly studied and reviewed especially in the past few decades. LiFePO{sub 4} (LFP) is one of the most potential candidates in the pedigree of cathode materials and has been under extensive study ever since. In this work, we report the synthesis of amorphous analogs of crystallite LFP by conventional melt quenching method. Thermal study by using differential scanning calorimetry (DSC) was used to determine the glass transition T{sub g} and crystallization T{sub c} temperatures on the obtained glass sample Fourier transform infrared (FTIR) absorption spectroscopy is being used to investigate themore » structural properties of the glass sample. The intrinsic electrical conductivity measurements were done using broad-band impedance spectroscopy with wide different temperature ranges. The conduction mechanism is described by non-adiabatic small polaron hopping between nearest neighbors. Based on the obtained results, we suggest that the glassy LFP is more suitable cathode material as compared to its crystalline counterpart.« less
NASA Technical Reports Server (NTRS)
Lin, Qian; Harb, John N.
2004-01-01
This paper describes the development of a thick-film microcathode for use in Li-ion microbatteries in order to provide increased power and energy per area. These cathodes take advantage of a composite porous electrode structure, utilizing carbon nanotubes (CNT) as the conductive filler. The use of carbon nanotubes was found to significantly reduce the measured resistance of the electrodes, increase active material accessibility, and improve electrode performance. In particular, the cycling and power performance of the thick-film cathodes was significantly improved, and the need for compression was eliminated. Cathode thickness and CNT content were optimized to maximize capacity and power performance. Power capability of >50 mW/sq cm (17 mA/sq cm) with discharge capacity of >0.17 mAh/sq cm was demonstrated. The feasibility of fabricating thick-film microcathodes capable of providing the power and capacity needed for use in autonomous microsensor systems was also demonstrated.
Testing and Analysis of NEXT Ion Engine Discharge Cathode Assembly Wear
NASA Technical Reports Server (NTRS)
Domonkos, Matthew T.; Foster, John E.; Soulas, George C.; Nakles, Michael
2003-01-01
Experimental and analytical investigations were conducted to predict the wear of the discharge cathode keeper in the NASA Evolutionary Xenon Thruster. The ion current to the keeper was found to be highly dependent upon the beam current, and the average beam current density was nearly identical to that of the NSTAR thruster for comparable beam current density. The ion current distribution was highly peaked toward the keeper orifice. A deterministic wear assessment predicted keeper orifice erosion to the same diameter as the cathode tube after processing 375 kg of xenon. A rough estimate of discharge cathode assembly life limit due to sputtering indicated that the current design exceeds the qualification goal of 405 kg. Probabilistic wear analysis showed that the plasma potential and the sputter yield contributed most to the uncertainty in the wear assessment. It was recommended that fundamental experimental and modeling efforts focus on accurately describing the plasma potential and the sputtering yield.
Feasibility study for a secondary Na/S battery
NASA Technical Reports Server (NTRS)
Abraham, K. M.; Schiff, R.; Brummer, S. B.
1979-01-01
The feasibility of a moderate temperature Na battery was studied. This battery is to operate at a temperature in the range of 100-150 C. Two kinds of cathode were investigated: (1) a soluble S cathode consisting of a solution of Na2Sn in an organic solvent and (2) an insoluble S cathode consisting of a transition metal dichalcogenide in contact with a Na(+)ion conducting electrolyte. Four amide solvents, dimethyl acetamide, diethyl acetamide, N-methyl acetamide and acetamide, were investigated as possible solvents for the soluble S cathode. Results of stability and electrochemical studies using these solvents are presented. The dialkyl substituted amides were found to be superior. Although the alcohol 1,3-cyclohexanediol was found to be stable in the presence of Na2Sn at 130 C, its Na2Sn solutions did not appear to have suitable electrochemical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, Jonathan; Orendorff, Christopher J.
This work investigated the effects of Al 2O 3 ALD coatings on the performance and thermal abuse tolerance of graphite based anodes and Li(NixMnyCoz)O2 (NMC) based cathodes. It was found that 5 cycles of Al 2O 3 ALD on the graphite anode increased the onset temperature of thermal runaway by approximately 20 °C and drastically reduced the anode’s contribution to the overall amount of heat released during thermal runaway. Although Al 2O 3 ALD improves the cycling stability of NMC based cathodes, the thermal abuse tolerance was not greatly improved. A series of conductive aluminum oxide/carbon composites were created andmore » characterized as potential thicker protective coatings for use on NMC based cathode materials. A series of electrodes were coated with manganese monoxide ALD to test the efficacy of an oxygen scavenging coating on NMC based cathodes.« less
Argon hollow cathode. M.S. Thesis; [propellants for ion bombardment thrusters
NASA Technical Reports Server (NTRS)
Rehn, L. A.
1976-01-01
An interest in alternate propellants for ion-bombardment thrusters, together with ground applications of this technology, has prompted consideration of argon. Several variations of conventional hollow cathode designs were tried, but the bulk of the testing used a hollow tube with an internal tungsten emitter and an orifice at one end. The optimum cathode tube diameter was found to be in the range of 1.0-2.5 cm, somewhat larger than those used for cesium and mercury. Optimum orifice diameter depended on operating conditions, and varied from 0.5 to 5 mm. Biasing the internal emitter negative relative to the cathode chamber reduced the external coupling voltage and should therefore improve orifice lifetime. The expected effect of this bias on emitter lifetime was less clear. Lifetime tests were not conducted as part of this investigation, but several designs show promise of long lifetime in specific applications.
Solid oxide fuel cell with multi-unit construction and prismatic design
McPheeters, Charles C.; Dees, Dennis W.; Myles, Kevin M.
1999-01-01
A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.
New secondary batteries utilizing electronically conductive polymer cathodes
NASA Technical Reports Server (NTRS)
Martin, Charles R.; White, Ralph E.
1989-01-01
The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.
Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho
2018-02-07
Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gui-Liang; Liu, Jianzhao; Amine, Rachid
2017-02-09
In the search for a transformative new energy storage system, the rechargeable Li/sulfur battery is considered as one of the promising candidates due to its much higher energy density and lower cost than state-of-the-art lithium-ion batteries. However, the insulating nature of sulfur and the dissolution of intermediary polysulfides into the electrolyte significantly hinder its practical application. Very recently, selenium and selenium-sulfur systems have received considerable attention as cathode materials for rechargeable batteries owing to the high electronic conductivity (20 orders of magnitude higher than sulfur) and high volumetric capacity (3254 mAh/cm3 ) of selenium. In this perspective, we present anmore » overview of the implications of employing selenium and selenium-sulfur systems with different structures and compositions as electroactive materials for rechargeable lithium batteries. We also show how the cathode structures, electrolytes, and electrode-electrolyte interfaces affect the electrochemistry of Se and Se-S based cathodes. Furthermore, suggestions are provided on paths for future development of these cathodes.« less
Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source
NASA Astrophysics Data System (ADS)
Christy, Larry
Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.
Miniature Lightweight Ion Pump
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva P.
2010-01-01
This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are sputtered away. For stable pumping of inert gases, one side of the cathode is made of Ta. Impaction on Ta produces energetic, neutral atoms that pump the inert gases on the anode structure at the peripheral areas of the cathodes (between anode rings). For inert gases stability, a post design has been implemented. Here, posts of cathode material (Ti) are mounted on the cathode. These protrude into the initial part of the anode elements. Materials sputtered from the posts condense on the anode assembly and on the cathode plane at higher rates than in the normal diodes due to enhanced sputtering at glancing angles from geometrical considerations. This increases pumping by burial. This post design has enhanced pumping rates for both active and inert gases, compared with conventional designs.
The feasibility and application of PPy in cathodic polarization antifouling.
Jia, Meng-Yang; Zhang, Zhi-Ming; Yu, Liang-Min; Wang, Jia; Zheng, Tong-Tong
2018-04-01
Cathodic polarization antifouling deserves attention because of its environmentally friendly nature and good sustainability. It has been proven that cathodic voltages applied on metal substrates exhibit outstanding antifouling effects. However, most metals immersed in marine environment are protected by insulated anticorrosive coatings, restricting the cathodic polarization applied on metals. This study developed a conducting polypyrrole (PPy)/acrylic resin coating (σ = 0.18 Scm -1 ), which can be applied in cathodic polarization antifouling. The good stability and electro-activity of PPy in the negative polarity zone in alkalescent NaCl solution were verified by linear sweep voltammetry (LSV), chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), demonstrating the feasibility of PPy as cathodic polarization material. Furthermore, the antifouling effects of PPy/acrylicresin coating on 24-h old Escherichia coli bacteria (E. coli) which formed on PPy/acrylic resin-coated plastic plate were measured under different cathodic potentials and treatment time, characterized by fluorescent microscope. The results suggest that at cathodic potential around -0.5 V (vs. saturated calomel electrode (SCE)), there was little trace of attached bacteria on the substrate after 20 min of treatment. PPy/acrylicresin-coated substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal, where high removal efficiencies were maintained throughout the total polarization process. Under these conditions, the generation of hydrogen peroxide is believed to be responsible for the antifouling effects because of causing oxidative damage to cells, suggesting the potential of the proposed technology for application on insulated surfaces in various industrial settings. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zaigao
2016-07-15
Explosive emission cathodes (EECs) are adopted in relativistic backward wave oscillators (RBWOs) to generate intense relativistic electron beam. The emission uniformity of the EEC can render saturation of the power generation unstable and the output mode impure. However, the direct measurement of the plasma parameters on the cathode surface is quite difficult and there are very few related numerical study reports about this issue. In this paper, a self-developed three-dimensional conformal fully electromagnetic particle in cell code is used to study the effect of emission uniformity on the X-band RBWO; the electron explosive emission model and the field emission modelmore » are both implemented in the same cathode surface, and the local field enhancement factor is also considered in the field emission model. The RBWO with a random nonuniform EEC is thoroughly studied using this code; the simulation results reveal that when the area ratio of cathode surface for electron explosive emission is 80%, the output power is unstable and the output mode is impure. When the annular EEC does not emit electron in the angle range of 30°, the RBWO can also operate normally.« less
Self aligning electron beam gun having enhanced thermal and mechanical stability
Scarpetti, R.D. Jr.; Parkison, C.D.; Switzer, V.A.; Lee, Y.J.; Sawyer, W.C.
1995-05-16
A compact, high power electron gun is disclosed having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the ``triple point`` where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques. 12 Figs.
Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition.
Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano A; Amato, Alessandra; Trocino, Stefano; Zignani, Sabrina C; Faro, Massimiliano Lo; Squadrito, Gaetano
2016-09-01
Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels.
Air cathode structure manufacture
Momyer, William R.; Littauer, Ernest L.
1985-01-01
An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2016-07-05
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at leastmore » 5 mAh/cm.sup.2 at a C-rate of C/2.« less
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2015-11-10
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.
Inorganic salt mixtures as electrolyte media in fuel cells
NASA Technical Reports Server (NTRS)
Angell, Charles Austen (Inventor); Francis-Gervasio, Dominic (Inventor); Belieres, Jean-Philippe (Inventor)
2012-01-01
Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.
NASA Astrophysics Data System (ADS)
Wang, Yulin; Yue, Like; Wang, Shixue
2017-03-01
The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.
Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping
2012-10-01
It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms
NASA Astrophysics Data System (ADS)
Strom, Matthew James
Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled out the enzymatic catalysis of ORR and supported the catalysis by MnO2. Sustainable redox reactions at the cathode were evaluated by monitoring the cathodic current of biofilm coated stainless steel for a year under different polarization intensities. The results showed that sustainable cathodic reactions were present in marine biofilms but their influence on the cathodic current was negligible until a potential was reached where the ORR could take place. Additionally seasonal variability was observed in the enhanced cathodic current in Delaware Bay biofilms. This was attributed to the seasonal variability of manganese in the water column.
High-Energy-Density, Low-Temperature Li/CFx Primary Cells
NASA Technical Reports Server (NTRS)
Whitacre, Jay; Bugga, Ratnakumar; Smart, Marshall; Prakash, G.; Yazami, Rachid
2007-01-01
High-energy-density primary (nonrechargeable) electrochemical cells capable of relatively high discharge currents at temperatures as low as -40 C have been developed through modification of the chemistry of commercial Li/CFx cells and batteries. The commercial Li/CFx units are not suitable for high-current and low-temperature applications because they are current limited and their maximum discharge rates decrease with decreasing temperature. The term "Li/CFx" refers to an anode made of lithium and a cathode made of a fluorinated carbonaceous material (typically graphite). In commercial cells, x typically ranges from 1.05 to 1.1. This cell composition makes it possible to attain specific energies up to 800 Wh/kg, but in order to prevent cell polarization and the consequent large loss of cell capacity, it is typically necessary to keep discharge currents below C/50 (where C is numerically equal to the current that, flowing during a charge or discharge time of one hour, would integrate to the nominal charge or discharge capacity of a cell). This limitation has been attributed to the low electronic conductivity of CFx for x approx. 1. To some extent, the limitation might be overcome by making cathodes thinner, and some battery manufacturers have obtained promising results using thin cathode structures in spiral configurations. The present approach includes not only making cathodes relatively thin [.2 mils (.0.051 mm)] but also using sub-fluorinated CFx cathode materials (x < 1) in conjunction with electrolytes formulated for use at low temperatures. The reason for choosing sub-fluorinated CFx cathode materials is that their electronic conductivities are high, relative to those for which x > 1. It was known from recent prior research that cells containing sub-fluorinated CFx cathodes (x between 0.33 and 0.66) are capable of retaining substantial portions of their nominal low-current specific energies when discharged at rates as high as 5C at room temperature. However, until experimental cells were fabricated following the present approach and tested, it was not known whether or to what extent low-temperature performance would be improved.
Silicon/Carbon Anodes with One-Dimensional Pore Structure for Lithium-Ion Batteries
2013-08-31
Connected by Single-Wall Carbon Nanotubes for Sodium Ion Battery Cathodes, Nano Letters 12, 5664, 2012. ( § equal contribution) Chao Luo,§ Yunhua...is superior to that of those conductive additive-incorporated iron oxide anodes, such as amorphous carbon , graphene as well as carbon nanotubes ...electrochemical performance. The C/S composite cathodes were prepared by mixing C/S powders with carbon black and sodium carboxymethyl cellulose (CMC
Liu, Di-Jia [Naperville, IL; Yang, Junbing [Bolingbrook, IL
2012-03-20
A membrane electrode assembly (MEA) of the invention comprises an anode and a cathode and a proton conductive membrane therebetween, the anode and the cathode each comprising a patterned sheet of longitudinally aligned transition metal-containing carbon nanotubes, wherein the carbon nanotubes are in contact with and are aligned generally perpendicular to the membrane, wherein a catalytically active transition metal is incorporated throughout the nanotubes.
Highly-flexible fibre battery incorporating polypyrrole cathode and carbon nanotubes anode
NASA Astrophysics Data System (ADS)
Wang, J.; Wang, C. Y.; Too, C. O.; Wallace, G. G.
The development of highly-flexible fibre batteries based on a conducting polymer and single-wall carbon nanotubes (SWNTs) is described. Initially, polypyrrole-hexafluorophosphate (PPy/PF 6) and SWNTs are tested in lithium cells to ascertain their performance. Based on the results, fibre batteries consisting of a PPy/PF 6 cathode and an anode based on SWNTs are fabricated and tested in both a "flooded cell" and 'dry cell', arrangement.
Thin-film Rechargeable Lithium Batteries
DOE R&D Accomplishments Database
Dudney, N. J.; Bates, J. B.; Lubben, D.
1995-06-01
Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.
Exploratory studies on some electrochemical cell systems
NASA Astrophysics Data System (ADS)
Chaudhuri, Srikumar; Guha, D.
Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Koyel; Mukhopadhyay, Jayanta, E-mail: jayanta_mu@cgcri.res.in; Barman, Madhurima
2015-12-15
Highlights: • La{sub 1−x}Sr{sub x}Co{sub y}Fe{sub 1−y}O{sub 3−δ}, x = 0.4; y = 0.2 system varying La-site (0.6–0.54) are studied. • Combustion synthesis technique is used to prepare the powder samples. • Highest electrical conductivity observed with largest A-site deficit composition. • Lowest cathode polarization is found with the same composition (0.02 Ω cm{sup 2}). • Composition with largest A-site deficiency exhibits best performance (2.84 A cm{sup −2}). - Abstract: Effect of A-site non-stoichiometry in strontium doped lanthanum cobalt ferrite (La{sub 1−x}Sr{sub x}Co{sub y}Fe{sub 1−y}O{sub 3−δ}, x = 0.4; y = 0.2) is studied in a systematic manner with variationmore » of ‘A’ site stoichiometry from 1 to 0.94. The perovskite based cathode compositions are synthesized by combustion synthesis. Powder characterizations reveal rhombohedral crystal structure with crystallite size ranging from 29 to 34 nm with minimum lattice spacing of 0.271 nm. Detailed sintering studies along with total DC electrical conductivities are evaluated in the bulk form with variation of sintering temperatures. The electrode polarizations are measured in the symmetric cell configuration by impedance spectroscopy which is found to be the lowest (0.02 Ω cm{sup 2} at 800 °C) for cathode having highest degree of ‘A’-site deficiency. The same cathode composition exhibits a current density of 2.84 A cm{sup −2} (at 0.7 V, 800 °C) in anode-supported single cell. An attempt has been made to correlate the trend of electrical behaviour with increasing ‘A’-site deficiency for such cathode compositions.« less
Modeling Co-Extruded Cathodes for High Energy Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobb, Corie Lynn
2016-06-01
Utilizing an existing macro-homogeneous porous electrode model developed by John Newman, this talk presents the potential energy density gains that can be realized in lithium-ion battery electrodes fabricated with co-extrusion (CoEx) technology. CoEx uses carefully engineered fluidic channels to cause multiple streams of dissimilar fluids to impart shape to one another. The result is a high-speed, continuous deposition process that can create fine linear structures much smaller than the smallest physical feature within the printhead. By eliminating the small channels necessary for conventional extrusion and injection processes, CoEx is able to deposit highly loaded and viscous pastes at high linemore » speeds under reasonable operating pressures. The CoEx process is capable of direct deposition of features as small as 10 μm with aspect ratios of 5 or greater, and print speeds > 80 ft/min. We conduct an analysis on two-dimensional cathode cross-sections in COMSOL and present the electrochemical performance results, including calculated volumetric energy capacity for Lithium Nickel Manganese Cobalt Oxide (NMC) co-extruded cathodes, in the presence of a lithium metal anode, polymer separator and ethylene carbonate–diethyl carbonate (EC:DEC) liquid electrolyte. The impact of structured electrodes on cell performance is investigated by varying the physical distribution of a fixed amount of cathode mass over a space of dimensions which can be fabricated by CoEx. By systematically varying the thickness and aspect ratio of the electrode structures, we present an optimal subset of geometries and design rules for co-extruded geometries. Modeling results demonstrate that NMC CoEx cathodes, on the order of 125-200 µm thick, can garner an improvement in material utilization and in turn capacity through the addition of fine width electrolyte channels or highly conductive electrode regions. We also present initial experimental results on CoEx NMC cathode structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancini, Alessandro; Felice, Valeria; Natali Sora, Isabella
Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25} has been extensively investigated by X-ray powder diffraction in a wide temperature range (up to 1573 K). Perovskite-type La{sub 0.8}Sr{sub 0.2}MnO{sub 3−d} and La{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−d} and K{sub 2}NiF{sub 4}-type La{sub 2}NiO{sub 4+d} were selected as cathode materials. The results of this study allow identifying the most suitable electrode material to be used in combination with the melilite-type gallate electrolyte andmore » set the basis for future work on this novel system. - Graphical abstract: Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25} has been extensively investigated by means of X-ray powder diffraction. - Highlights: • Chemical compatibility between melilite-type gallate and cathodes for SOFCs up to 1573 K. • No reactivity observed between La{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−d} and La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25}. • Reactivity observed between La{sub 0.80}Sr{sub 0.20}MnO{sub 3−d} and La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25}. • Significant reactivity observed between La{sub 2}NiO{sub 4+d} and La{sub 1.50}Sr{sub 0.50}Ga{sub 3}O{sub 7.25}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghadkolai, Milad Azami; Creager, Stephen; Nanda, Jagjit
Lithium titanate (Li 4Ti 5O 12) powders with and without molybdenum doping (LTO and MoLTO respectively) were synthesized by a solid-state method and used to fabricate electrodes on Cu foil using a normal tape-cast method and a novel freeze-tape-cast method. Modest molybdenum doping produces a significant electronic conductivity increase (e.g. 1 mS cm -1 for MoLTO vs 10 -7 mS cm -1 for LTO) that is thought to reflect a partial Ti 4+ reduction to Ti 3+ with charge compensation by the Mo 6+ dopant, producing a stable mixed-valent Ti 4+/3+ state. Freeze-tape-cast electrodes were fabricated by a variant ofmore » the normal tape-cast method that includes a rapid freezing step in which the solvent in the Cu-foil-supported slurry is rapidly frozen on a cold finger then subsequently sublimed to create unidirectional columnar macropores in the electrode. The resulting electrodes exhibit high porosity and low tortuosity which enhances electrolyte accessibility throughout the full electrode thickness. Freeze-tape-cast electrodes subjected to galvanostatic charge-discharge testing as cathodes in cells vs. a lithium metal anode exhibit higher specific capacity and lower capacity loss at high discharge rates compared with normal-tape-cast electrodes of the same mass loading, despite the fact that the freeze-tape-cast electrodes are nearly twice as thick as the normal tape cast electrodes.« less
Highlights of the Salt Extraction Process
NASA Astrophysics Data System (ADS)
Abbasalizadeh, Aida; Seetharaman, Seshadri; Teng, Lidong; Sridhar, Seetharaman; Grinder, Olle; Izumi, Yukari; Barati, Mansoor
2013-11-01
This article presents the salient features of a new process for the recovery of metal values from secondary sources and waste materials such as slag and flue dusts. It is also feasible in extracting metals such as nickel and cobalt from ores that normally are difficult to enrich and process metallurgically. The salt extraction process is based on extraction of the metals from the raw materials by a molten salt bath consisting of NaCl, LiCl, and KCl corresponding to the eutectic composition with AlCl3 as the chlorinating agent. The process is operated in the temperature range 973 K (700°C) to 1173 K (900°C). The process was shown to be successful in extracting Cr and Fe from electric arc furnace (EAF) slag. Electrolytic copper could be produced from copper concentrate based on chalcopyrite in a single step. Conducting the process in oxygen-free atmosphere, sulfur could be captured in the elemental form. The method proved to be successful in extracting lead from spent cathode ray tubes. In order to prevent the loss of AlCl3 in the vapor form and also chlorine gas emission at the cathode during the electrolysis, liquid aluminum was used. The process was shown to be successful in extracting Nd and Dy from magnetic scrap. The method is a highly promising process route for the recovery of strategic metals. It also has the added advantage of being environmentally friendly.
Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
Dykstra, Christy M; Pavlostathis, Spyros G
2017-05-01
Bioelectrochemical systems (BESs) may be used to upgrade anaerobic digester biogas by directly converting CO 2 to CH 4 . The objective of this study was to evaluate gas (N 2 , CO 2 , CH 4 , and H 2 ) and carbon transport within a methanogenic BES. Four BES configurations were evaluated: abiotic anode with abiotic cathode (AAn-ACa), bioanode with abiotic cathode (BAn-ACa), abiotic anode with biocathode (AAn-BCa), and bioanode with biocathode (BAn-BCa). Transport of N 2 , a gas commonly used for flushing anoxic systems, out of the anode headspace ranged from 3.7 to 6.2 L/d-atm-m 2 , normalized to the proton exchange membrane (PEM) surface area and net driving pressure (NDP). CO 2 was transported from the cathode to the anode headspace at rates from 3.7 to 5.4 L/d-atm-m 2 . The flux of H 2 from cathode to anode headspace was 48% greater when the system had a biocathode (AAn-BCa) than when H 2 was produced at an abiotic cathode (BAn-ACa), even though the abiotic cathode headspace had 75% more H 2 than the AAn-BCa biocathode at the end of 1 day. A 7-day carbon balance of a batch-fed BAn-BCa BES showed transient microbial carbon storage and a net transport of carbon from anode to cathode. After a 7-day batch incubation, the CH 4 production in the biocathode was 27% greater on a molar basis than the initial CO 2 supplied to the biocathode headspace, indicating conversion of CO 2 produced in the anode. This research expands the current understanding of methanogenic BES operation, which may be used in improving the assessment of BES performance and/or in the development of alternative BES designs and mathematical models. Biotechnol. Bioeng. 2017;114: 961-969. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Bak, Seong -Min; Kim, Seung Min
2015-08-11
In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of Li xNi yMn zCo 1-y-zO₂ (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cut-off voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni-content NMC cathode materials exhibit unusual behaviors,more » which is deviate from the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni-content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the sub-surface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation.« less
Cathode side hardware for carbonate fuel cells
Xu, Gengfu [Danbury, CT; Yuh, Chao-Yi [New Milford, CT
2011-04-05
Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO.sub.3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1) and X-doped LiMeO.sub.2, wherein X is one of Mg, Ca, and Co.
NASA Astrophysics Data System (ADS)
Jozwiuk, Anna; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten
2015-11-01
The lithium-sulfur system is one of the most promising next generation battery systems, as elemental sulfur is cheap, abundant and has a high theoretical specific capacity. Although much research is conducted on complex sulfur/carbon composites and architectures, it is difficult to compare the performance of the cathodes to one another. Factors, such as different electrolyte composition and cell components strongly affect the cyclability of the battery. Here, we show the importance of optimizing ;standard; conditions to allow for fair performance comparison of different carbon blacks. Our optimal electrolyte-to-sulfur ratio is 11 μL mgsulfur-1 and high concentrations of LiNO3 (>0.6 M) are needed because nitrate is consumed continuously during cycling. Utilizing these standard conditions, we tested the cycling behavior of four types of cathodes with individual carbon blacks having different specific surface areas, namely Printex-A, Super C65, Printex XE-2 and Ketjenblack EC-600JD. Both the specific capacity and polysulfide adsorption capability clearly correlate with the surface area of the carbon being used. High specific capacities (>1000 mAh gsulfur-1 at C/5) are achieved with high surface area carbons. We also demonstrate that a simple cathode using Ketjenblack EC-600JD as the conductive matrix material can well compete with those having complex architectures or additives.
Li, Yu; Zhou, Xingzhen; Bai, Ying; Chen, Guanghai; Wang, Zhaohua; Li, Hui; Wu, Feng; Wu, Chuan
2017-06-14
As a typical multielectron cathode material for lithium-ion batteries, iron fluoride (FeF 3 ) and its analogues suffer from poor electronic conductivity and low actual specific capacity. Herein, we introduce Ag nanoparticles by silver mirror reaction into the FeF 3 ·0.33H 2 O cathode to build the electronic bridge between the solid (active materials) and liquid (electrolyte) interface. The crystal structures of as-prepared samples are characterized by X-ray diffraction and Rietveld refinement. Moreover, the density of states of FeF 3 ·0.33H 2 O and FeF 3 ·0.33H 2 O/Ag (Ag-decorated FeF 3 ·0.33H 2 O) samples are calculated using the first principle density functional theory. The FeF 3 ·0.33H 2 O/Ag cathodes exhibit significant enhancements on the electrochemical performance in terms of the cycle performance and rate capability, especially for the Ag-decorated amount of 5%. It achieves an initial capacity of 168.2 mA h g -1 and retains a discharge capacity of 128.4 mA h g -1 after 50 cycles in the voltage range of 2.0-4.5 V. It demonstrates that Ag decoration can reduce the band gap, improve electronic conductivity, and elevate intercalation/deintercalation kinetics.
High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion
NASA Astrophysics Data System (ADS)
Sommerer, Timothy J.
2014-05-01
We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
Wang, Xinran; Gu, Wentian; Lee, Jung Tae; Nitta, Naoki; Benson, Jim; Magasinski, Alexandre; Schauer, Mark W; Yushin, Gleb
2015-10-01
Transition metal fluorides (MFx ) offer remarkably high theoretical energy density. However, the low cycling stability, low electrical and ionic conductivity of metal fluorides have severely limited their applications as conversion-type cathode materials for lithium ion batteries. Here, a scalable and low-cost strategy is reported on the fabrication of multifunctional cobalt fluoride/carbon nanotube nonwoven fabric nanocomposite, which demonstrates a combination of high capacity (near-theoretical, 550mAhgCoF2-1) and excellent mechanical properties. Its strength and modulus of toughness exceed that of many aluminum alloys, cast iron, and other structural materials, fulfilling the use of MFx -based materials in batteries with load-bearing capabilities. In the course of this study, cathode dissolution in conventional electrolytes has been discovered as the main reason that leads to the rapid growth of the solid electrolyte interphase layer and attributes to rapid cell degradation. And such largely overlooked degradation mechanism is overcome by utilizing electrolyte comprising a fluorinated solvent, which forms a protective ionically conductive layer on the cathode and anode surfaces. With this approach, 93% capacity retention is achieved after 200 cycles at the current density of 100 mA g(-1) and over 50% after 10 000 cycles at the current density of 1000 mA g(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oh, Sang-Eun; Logan, Bruce E
2006-03-01
Power generation in microbial fuel cells (MFCs) is a function of the surface areas of the proton exchange membrane (PEM) and the cathode relative to that of the anode. To demonstrate this, the sizes of the anode and cathode were varied in two-chambered MFCs having PEMs with three different surface areas (A (PEM)=3.5, 6.2, or 30.6 cm(2)). For a fixed anode and cathode surface area (A (An)=A (Cat)=22.5 cm(2)), the power density normalized to the anode surface area increased with the PEM size in the order 45 mW/m(2) (A (PEM)=3.5 cm(2)), 68 mW/m(2) (A (PEM)=6.2 cm(2)), and 190 mW/m(2) (A (PEM)=30.6 cm(2)). PEM surface area was shown to limit power output when the surface area of the PEM was smaller than that of the electrodes due to an increase in internal resistance. When the relative cross sections of the PEM, anode, and cathode were scaled according to 2A (Cat)=A(PEM)=2A (An), the maximum power densities of the three different MFCs, based on the surface area of the PEM (A (PEM)=3.5, 6.2, or 30.6 cm(2)), were the same (168+/-4.53 mW/m(2)). Increasing the ionic strength and using ferricyanide at the cathode also increased power output.
Organometallic catalysts for primary phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Walsh, Fraser
1987-01-01
A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.
Platinum redispersion on metal oxides in low temperature fuel cells.
Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan
2013-03-07
We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes.
Vacuum arc plasma thrusters with inductive energy storage driver
NASA Technical Reports Server (NTRS)
Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)
2004-01-01
An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.
Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-stage Electrolysis Stack
NASA Technical Reports Server (NTRS)
Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)
2016-01-01
An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O.sup.2-) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.
Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-Stage Electrolysis Stack
NASA Technical Reports Server (NTRS)
Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)
2017-01-01
An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O(2-)) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.
The Next Generation Photoinjector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.
2005-09-12
This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinalmore » laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a photocathode under high field gradient was found to be {epsilon}{sub n,rms} = 0.8 {pi} mm mrad. Agreement is found between the theoretical calculation of the thermal emittance, {epsilon}{sub 0} = 0.62 {pi} mm mrad, and the experimental results, after taking into account all of the emittance contribution terms. The 1 nC emittance was found to be {epsilon}{sub n,rms} = 4.75 {pi} mm mrad with a 95% electron beam bunch length of 14.7 psec. Systematic bunch length measurements showed electron beam bunch lengthening due the electron beam charge. They will show that the discrepancy between measurement and simulation is due to three effects. The major effect is due to the variation of the QE in the photo-emitting area of the Cu cathode. Also, space charge emittance blowup in the transport line will be shown to be a significant effect because the electron beam is still in the space charge dominated regime. The last effect, which has been observed experimentally, is the electron bunch lengthening as a function of total electron bunch charge.« less
NASA Astrophysics Data System (ADS)
Li, Weiqun
The lithium ion diffusion behavior and mechanism in the glassy electrolyte and the electrolyte/cathode interface during the initial stage of lithium ion diffusing from electrolyte into cathode were investigated using Molecular Dynamics simulation technique. Lithium aluminosilicate glass electrolytes with different R (ratio of the concentration of Al to Li) were simulated. The structural features of the simulated glasses are analyzed using Radial Distribution Function (RDF) and Pair Distribution Function (PDF). The diffusion coefficient and activation energy of lithium ion diffusion in simulated lithium aluminosilicate glasses were calculated and the values are consistent with those in experimental glasses. The behavior of lithium ion diffusion from the glassy electrolyte into a polycrystalline layered intercalation cathode has been studied. The solid electrolyte was a model lithium silicate glass while the cathode was a nanocrystalline vanadia with amorphous V2O5 intergranular films (IGF) between the V2O5 crystals. Two different orientations between the V2O5 crystal planes are presented for lithium ion intercalation via the amorphous vanadia IGF. A series of polycrystalline vanadia cathodes with 1.3, 1.9, 2.9 and 4.4 nm thickness IGFs were simulated to examine the effects of the IGF thickness on lithium ion transport in the polycrystalline vanadia cathodes. The simulated results showed that the lithium ions diffused from the glassy electrolyte into the IGF of the polycrystalline vanadia cathode and then part of those lithium ions diffused into the crystalline V2O5 from the IGF. The simulated results also showed an ordering of the vanadium ion structure in the IGF near the IGF/V2 O5 interface. The ordering structure still existed with glass former silica additive in IGF. Additionally, 2.9 run is suggested to be the optimal thickness of the IGF, which is neither too thick to decrease the capacity of the cathode nor too thin to impede the transport of lithium from glassy electrolyte into the cathode. Parallel molecular dynamic simulation technique was also used for a larger electrolyte/cathode interface system, which include more atoms and more complicated microstructures. Simulation results from larger electrolyte/cathode interface system prove that there is no size effect on simulation of smaller electrolyte/cathode interface system from statistical point of view.
Tian, Jiangnan; Zhao, Jixiang; Olajuyin, Ayobami Matthew; Sharshar, Moustafa Mohamed; Mu, Tingzhen; Yang, Maohua; Xing, Jianmin
2016-08-01
Polytetrafluoroethylene/ferromagnetic nanoparticle/carbon black (PTFE/MNP/CB)-modified graphite felt (GF) was successfully applied as cathode for the mineralization of rhodamine B (RhB) in electro-Fenton (EF) process. The modified cathode showed high decolorization efficiency for RhB solution even in neutral pH condition and without external aeration, achieving nearly complete decolorization and 89.52 % total organic carbon (TOC) removal after 270-min oxidation with the MNP load 1.2 g at 50 A/m(2). Moreover, the operational parameters (current density, MNP load, initial pH, and airflow rate) were optimized. After that, adsorption isotherm was also conducted to compare the absorption quantity of CB and carbon nanotube (CNT). Then, the surface morphologies of MNPs were characterized by transmission electron microscope (TEM), energy-dispersive X-ray detector (EDX), and Fourier transform infrared spectroscopy (FTIR); and the modified cathode was characterized by SEM and contact angle. Finally, the stability and reusability of modified cathode were tested. Result uncovered that the PTFE/MNP/CB-modified cathode has the potential for industrial application and the solution after treatment was easily biodegradable.
Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon
2008-01-01
Modeling and simulation for heat and mass transport in micro channel are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this study, we used a single-phase, fully three dimensional simulation model for PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. The results show that hydrogen and oxygen were solely supplied to the membrane by diffusion mechanism rather than convection transport, and the higher pressure drop at cathode side is thought to be caused by higher flow rate of oxygen at cathode. And it is found that the amount of water in cathode channel was determined by water formation due to electrochemical reaction plus electro-osmotic mass flux directing toward the cathode side. And it is very important to model the back diffusion and electro-osmotic mass flux accurately since the two flux was closely correlated each other and greatly influenced for determination of ionic conductivity of the membrane which directly affects the performance of fuel cell. PMID:27879774
Yao, Ying; Wu, Feng
2017-09-20
An Li-O 2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li-O 2 battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing "waste" such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.
Insights into the Influence of Work Functions of Cathodes on Efficiencies of Perovskite Solar Cells.
Yue, Shizhong; Lu, Shudi; Ren, Kuankuan; Liu, Kong; Azam, Muhammad; Cao, Dawei; Wang, Zhijie; Lei, Yong; Qu, Shengchun; Wang, Zhanguo
2017-05-01
Though various efforts on modification of electrodes are still undertaken to improve the efficiency of perovskite solar cells, attributing to the large scope of these methods, it is of significance to unveil the working principle systematically. Herein, inverted perovskite solar cells based on indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH 3 NH 3 PbI 3 /phenyl-C61-butyric acid methyl ester (PC 61 BM)/buffer metal/Al are constructed. Through the choice of different buffer metals to tune work function of the cathode, the contact nature of the active layer with the cathode could be manipulated well. In comparison with the device using Au/Al as the electrode that shows an unfavorable band bending for conducting the excited electrons to the cathode, the one with Ca/Al presents a dramatically improved efficiency over 17.1%, ascribed to the favorable band bending at the interface of the cathode with the active layer. Details for tuning the band bending and the corresponding charge transfer mechanism are given in a systematic manner. Thus, a general guideline for constructing perovskite photovoltaic devices efficiently is provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Ying; Wu, Feng
An Li–O 2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li–O 2more » battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing “waste” such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.« less
Hao, Youchen; Xiong, Dongbin; Liu, Wen; Fan, Linlin; Li, Dejun; Li, Xifei
2017-11-22
An interlayer has been regarded as a promising mediator to prolong the life span of lithium sulfur batteries because its excellent absorbability to soluble polysulfide efficiently hinders the shuttle effect. Herein, we designed various interlayers and understand the working mechanism of an interlayer for lithium sulfur batteries in detail. It was found that the electrochemical performance of a S electrode for an interlayer located in cathode side is superior to the pristine one without interlayers. Surprisingly, the performance of the S electrode for an interlayer located in anode side is poorer than that of pristine one. For comparison, glass fibers were also studied as a nonconductive interlayer for lithium sulfur batteries. Unlike the two interlayers above, these nonconductive interlayer did displays significant capacity fading because polysulfides were adsorbed onto insulated interlayer. Thus, the nonconductive interlayer function as a "dead zone" upon cycling. Based on our findings, it was for the first time proposed that a controllably optimized interlayer, with electrical conductivity as well as the absorbability of polysulfides, may function as a "vice-electrode" of the anode or cathode upon cycling. Therefore, the cathodic conductive interlayer can enhance lithium sulfur battery performance, and the anodic conductive interlayer may be helpful for the rational design of 3D networks for the protection of lithium metal.
Wafer-fused semiconductor radiation detector
Lee, Edwin Y.; James, Ralph B.
2002-01-01
Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.
Ha, Sung Hoon; Lee, Yun Jung
2015-01-26
Core-shell carbon-coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high-power lithium-ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon-coated LiFePO4 -rGO (LFP/C-rGO) hybrids were ascribed to three factors: 1) In-situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4 , 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C-rGO hybrids with LFP/C-rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li(+) ion and electron transport for high power applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luo, Yanzhu; Xu, Xu; Zhang, Yuxiang; Pi, Yuqiang; Yan, Mengyu; Wei, Qiulong; Tian, Xiaocong; Mai, Liqiang
2015-08-12
Olivine-type LiMnPO4 has been extensively studied as a high-energy density cathode material for lithium-ion batteries. To improve both the ionic and electronic conductivities of LiMnPO4, a series of carbon-decorated LiMnPO4·Li3V2(PO4)3 nanocomposites are synthesized by a facile sol-gel method combined with the conventional solid-state method. The optimized composite presents a three-dimensional hierarchical structure with active nanoparticles well-embedded in a conductive carbon matrix. The combination of the nanoscale carbon coating and the microscale carbon network could provide a more active site for electrochemical reaction, as well as a highly conductive network for both electron and lithium-ion transportation. When cycled at 20 C, an initial specific capacity of 103 mA h g(-1) can be obtained and the capacity retention reaches 68% after 3000 cycles, corresponding to a capacity fading of 0.013% per cycle. The stable capacity and excellent rate capability make this carbon-decorated LiMnPO4·Li3V2(PO4)3 nanocomposite a promising cathode for lithium-ion batteries.
Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Yang, Zhenguo; Xia, Guanguang; Singh, Prabhakar; Stevenson, Jeffry W.
In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a strontium doped lanthanum ferrite cathode and a Crofer22 APU interconnect. Among the materials studied, Pt, which has a prohibitive cost for the application, demonstrated the best performance as a contact paste. For the relatively cost-effective perovskites, the contact ASR was found to depend on their electrical conductivity, scale growth on the metallic interconnect, and interactions between the contact material and the metallic interconnect or particularly the scale grown on the interconnect. Manganites appeared to promote manganese-containing spinel interlayer formation that helped minimize the increase of contact ASR. Chromium from the interconnects reacted with strontium in the perovskites to form SrCrO 4. An improved performance was achieved by application of a thermally grown (Mn,Co) 3O 4 spinel protection layer on Crofer22 APU that dramatically minimized the contact resistance between the cathodes and interconnects.
Cathode Wetting Studies in Magnesium Electrolysis
NASA Astrophysics Data System (ADS)
McLean, Kevin; Pettingill, James; Davis, Boyd
The effects of cathode materials and electrolyte additives on magnesium wetting were studied with the goal of improving current efficiency in a magnesium electrolysis cell. The study consisted of static wetting and electrolysis tests, both conducted in a visual cell with a molten salt electrolyte of MgCl2-CaCl2-NaCl-KCl-CaF2. The wetting conditions were tested using high resolution photography and contact angle software. The electrolysis tests were completed to qualitatively assess the effect of additives to the melt and were recorded with a digital video camcorder. Results from the static wetting tests showed a significant variation in wetting depending on the material used for the cathode. Mo and a Mo-W alloy, with contact angles of 60° and 52° respectively, demonstrated excellent wetting. The contact angle for steel was 132° and it ranged from 142°-154° for graphite depending on the type. Improvements to the cathode wetting were observed with tungsten and molybdenum oxide additives.
Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun
2014-11-26
The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.
Solid oxide fuel cell with multi-unit construction and prismatic design
McPheeters, C.C.; Dees, D.W.; Myles, K.M.
1999-03-16
A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.
Niu, Xiao-Qing; Wang, Xiu-Li; Xie, Dong; Wang, Dong-Huang; Zhang, Yi-Di; Li, Yi; Yu, Ting; Tu, Jiang-Ping
2015-08-05
Tailored sulfur cathode is vital for the development of a high performance lithium-sulfur (Li-S) battery. A surface modification on the sulfur/carbon composite would be an efficient strategy to enhance the cycling stability. Herein, we report a nickel hydroxide-modified sulfur/conductive carbon black composite (Ni(OH)2@S/CCB) as the cathode material for the Li-S battery through the thermal treatment and chemical precipitation method. In this composite, the sublimed sulfur is stored in the CCB, followed by a surface modification of Ni(OH)2 nanoparticles with size of 1-2 nm. As a cathode for the Li-S battery, the as-prepared Ni(OH)2@S/CCB electrode exhibits better cycle stability and higher rate discharge capacity, compared with the bare S/CCB electrode. The improved performance is largely due to the introduction of Ni(OH)2 surface modification, which can effectively suppress the "shuttle effect" of polysulfides, resulting in enhanced cycling life and higher capacity.
Zhang, Yue; Lai, Jingyuan; Gong, Yudong; Hu, Yongming; Liu, Jin; Sun, Chunwen; Wang, Zhong Lin
2016-12-21
The electronic conductivity and structural stability are still challenges for vanadium pentoxide (V 2 O 5 ) as cathode materials in batteries. Here, we report a V 2 O 5 nanowire-reduced graphene oxide (rGO) composite paper for direct use as a cathode without any additives for high-temperature and high-safety solid polymer electrolyte [PEO-MIL-53(Al)-LiTFSI] lithium-vanadium batteries. The batteries can show a fast and stable lithium-ion-storage performance in a wide voltage window of 1.0-4.0 V versus Li + /Li at 80 °C, in which with an average capacity of 329.2 mAh g -1 at 17 mA g -1 and a stable cycling performance over 40 cycles are achieved. The excellent electrochemical performance is mainly ascribed to integration of the electronic conductivity of rGO and interconnected networks of the V 2 O 5 nanowires and solid electrolyte. This is a promising lithium battery for flexible and highly safe energy-storage devices.
Oxidation-Resistant Coating For Bipolar Lead/Acid Battery
NASA Technical Reports Server (NTRS)
Bolstad, James J.
1993-01-01
Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.
NASA Astrophysics Data System (ADS)
Xiong, Xiaolei
Recent research of Solid oxide fuel cells (SOFCs) is aimed to lower the operating temperature to an intermediate temperature (IT) range of 500 to 700°C, while maintaining a proper performance. This Ph.D. research project investigates the promotional effects of alkaline carbonate eutectics on the proton conductivity of proton conducting electrolytes and cathodic ORR reactivity in SOFCs by both experimental and computational methods. The ionic conductivity of the MC-BZY composite above 500°C increases with the higher loading of MC. The sample exhibited nearly a factor of two higher conductivity in H2-containing atmosphere than in air. First-principles DFT modeling further investigated proton transfer at the interface of BaZrO 3 and molten carbonate. With the presence of carbonate ion, the energy barrier for proton migration becomes as low as 0.332 eV. The modeling indicates the reduction of energy barrier is resulted from the change of rate-determining step from proton transfer between oxygen atoms to proton rotation around oxygen atom. Infiltration of MC into porous cathode can reduce the polarization of resistance (Rp), i.e., enhance the oxygen reduction reaction (ORR) activity. The EIS analysis shows that MC has a beneficial effect on reducing Rp for different cathodes including Au, La0.8Sr 0.2MnO3-delta(LSM), La0.6Sr0.4Co 0.2Fe0.8O3-delta(LSCF) and La2NiO 4+delta (LNO). Specifically, the study on MC loading effect was carried out on LSCF cathode. It shows that a higher loading makes a greater reduction on Rp and the degree of reduction is the same from 500 to 600°C. As the loading increases to 1.4 wt%, the degree of Rp reduction tends to reach a limit. First-principles DFT modeling was further used to investigate the incorporation of oxygen into MC. The formation of CO 52- in molten carbonate was considered as a chemisorption of gas oxygen on the surface of MC infiltrated cathodes. After the formation of CO52-, it reacts with another CO3 2- to form two CO42-, which is a rate-limiting step on potential energy surface. After dissociation, oxygen atoms migrate in molten carbonate, which is energetically favor by intermolecular pathways. An O-O-O linkage is formed between carbonate ions, which facilitates the oxygen migration between carbonate ions.
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Meng; Yang, Zhaoyi; Wang, Xindong
2017-06-01
In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm-2) than conventional PEMFC (699.30 mW cm-2). Electrochemically active surface area (ECSA) and charge transfer impedance (Rct) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order-structured membrane electrode with lower Pt loading for PEMFC in the future.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Murakami, Takeshi; Naito, Makio
2016-07-01
The Ni-doped lithium manganese oxide, LiNi0.5Mn1.5O4, has received much attention as a cathode active material in high-energy lithium-ion batteries (LIBs). This active material has two different spinel structures depending on the ordering state of the Ni and Mn ions. The ordered LiNi0.5Mn1.5O4 spinel has an inferior cathode performance than the disordered phase because of its poor electronic conductivity. However, the ordered LiNi0.5Mn1.5O4 spinel possesses the potential advantage of avoiding dissolution of the Mn ion, which is an issue for the disordered spinel. The improvement of cathode performance is important for future applications. Here, we report a unique approach to improve the cathode performance of the ordered LiNi0.5Mn1.5O4 spinel. The mechanical treatment using an attrition-type mill successfully inserted lattice strains into the ordered LiNi0.5Mn1.5O4 spinel structure without a phase transformation to the disordered phase. The insertion of lattice strains by mechanical stresses provided an increased discharge capacity and a decreased charge transfer resistance. This limited crystal structure modification improved the cathode performance. The present work has the potential for application of the mechanically treated ordered LiNi0.5Mn1.5O4 spinel as a cathode for high-energy LIBs.
Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes.
Wu, Tangqin; Chen, Haodong; Wang, Qingsong; Sun, Jinhua
2018-02-15
The thermal stability evaluation of materials in a soft-pack commercial cell is tested using C80 calorimeter, including anode, cathode, separator and full cell (mixing of the three materials including additional electrolyte). Thermal runaway characteristic of the commercial cell is tested on the accelerating rate calorimeter (ARC) with two heating modes, including internal heating mode and external heating mode. The results show that the thermal stability of internal material for tested cell follows the below order: anode
Formic acid fuel cells and catalysts
Masel, Richard I.; Larsen, Robert; Ha, Su Yun
2010-06-22
An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, Theodore M.; Lowden, Richard A.
1990-01-01
An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.
Silicon oxide based high capacity anode materials for lithium ion batteries
Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet
2017-03-21
Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
Durability and performance optimization of cathode materials for fuel cells
NASA Astrophysics Data System (ADS)
Colon-Mercado, Hector Rafael
The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and understanding the mechanisms of ORR. However, a relatively small number of publications are related to the durability of Pt alloys in the PEMFC environment. In the second part of this dissertation an ADT is developed for the evaluation of PEMFC cathode catalysts in a time and cost effective way.
Influence of lithium vacancies on the polaronic transport in olivine phosphate structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugavel, Sevi, E-mail: murug@physics.du.ac.in; Sharma, Monika; Shahid, Raza
2016-01-28
Intercalation and deintercalation of lithium ions in cathode materials are of principal to the operation of current rechargeable lithium ion batteries. The performance of lithium ion batteries highly relies on the active cathode material which includes cell potential, power/energy density, capacity, etc. An important issue in this class of material is to resolve the factors governing the electron and ion transport in olivine phosphate structure. In this class of material, there is still an open debate on the mechanism of charge transport including both polarons and lithium ions. On the one hand, this is due to the large disparity betweenmore » the experimental results and the theoretical model predictions. On the other hand, this is also due to the lack of precise experimental measurement without any parasitic phases in a given cathode material. Here, we present the polaronic conduction in lithiated triphylite LiFePO{sub 4} (LFP) and delithiated heterosite FePO{sub 4} (FP) by means of broadband ac impedance spectroscopy over wide range temperatures and frequency. It is found that the LFP phase possess two orders of higher polaronic conductivity than FP phase despite having similar mobility of polarons in both phases. We show that the differences in the polaronic conductivity of two phases are due to the significant differences in concentration of polarons. It is found that the formation energy of polarons in individual phases is mainly determined by the corresponding defect state associated with it. The temperature dependent dc conductivity has been analyzed within the framework of Mott model of polaronic conduction and explored the origin of polaronic conduction mechanism in this class of material.« less
NASA Astrophysics Data System (ADS)
Gao, Jing; Sun, Chunshui; Xu, Lei; Chen, Jian; Wang, Chong; Guo, Decai; Chen, Hao
2018-04-01
Due to flexible property and light weight, the lithiated Nafion membrane swollen with PC (PC-Li-Nafion) has been employed as both solid-state electrolyte and separator to fabricate solid-state Li-S cells. The electrochemical measurements of PC-Li-Nafion membrane show that its Li-ion transference number is 0.928, ionic conductivity of 2.1 × 10-4 S cm-1 can be achieved at 70 °C and its electrochemical window is 0 ∼ +4.1 V vs. Li+/Li. It is observed that the Li dendrites are suppressed by using PC-Li-Nafion membrane due to its single-ion conducting property. The amounts of Li-Nafion resin binder and conductive carbon in the cathode are optimized as 40% and 10% respectively to make a balance of ionic and electronic conductivities. A thin-layer Li-Nafion resin with a thickness of around 2 μm is fabricated between the cathode and PC-Li-Nafion membrane to improve the interfacial contact and further enhance the specific capacity of the cell. When measured at 70 °C, the Li-S cell delivers a reversible specific capacity of 1072.8 mAh g-1 (S) at 0.05 C and 895 mAh g-1 (S) at 1 C. The capacity retention at 1 C is 89% after 100 cycles. These results suggest that high-performance solid-state Li-S cells can be fabricated with the Li-Nafion polymer electrolyte.
The design and operating characteristics of an advanced 30-kW ammonia arcjet engine
NASA Technical Reports Server (NTRS)
Deininger, William D.; Pivirotto, Thomas J.; Brophy, John R.
1987-01-01
Experimental investigations were conducted to evaluate the effects of a contoured nozzle and modified cathode shape on ammonia arcjet engine performance. The contoured nozzle performance data were compared to the performance data of an arcjet which had a 38-deg included-angle, conical nozzle. Thrust improvements of up to 10 percent were demonstrated which corresponded to 3 percent improvements in specific impulse and 10 percent improvements in thrust efficiency. Performance characterizations for the modified cathode tip were conducted with the contoured nozzle arcjet. A uniform 15 percent decrease in arc voltage was demonstrated over a mass flow range of 0.175 to 0.350 g/s. A 4 percent improvement in thrust efficiency was noted at 22.0 kW.
Electrowinning apparatus and process
Buschmann, Wayne E [Boulder, CO
2012-06-19
Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.
TRANSVERSE IMPEDANCE OF THE SQUID GIANT AXON DURING CURRENT FLOW
Cole, Kenneth S.; Baker, Richard F.
1941-01-01
The change in the transverse impedance of the squid giant axon caused by direct current flow has been measured at frequencies from 1 kc. per second to 500 kc. per second. The impedance change is equivalent to an increase of membrane conductance at the cathode to a maximum value approximately the same as that obtained during activity and a decrease at the anode to a minimum not far from zero. There is no evidence of appreciable membrane capacity change in either case. It then follows that the membrane has the electrical characteristics of a rectifier. Interpreting the membrane conductance as a measure of ion permeability, this permeability is increased at the cathode and decreased at the anode. PMID:19873233
Air breathing direct methanol fuel cell
Ren, Xiaoming
2002-01-01
An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.
Research to develop guidelines for cathodic protection of concentric neutral cables, volume 1
NASA Astrophysics Data System (ADS)
Hanck, J. A.; Nekoksa, G.
1981-08-01
Data associated with corrosion of concentric neutrals (CN) of direct buried cables from field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are presented. The electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are included. Up to 129 values were determined for each bellhole and stored on cards as a data bank. All values were statistically analyzed and correlated with corrosion found. The severity of corrosion correlated best with CN corrosion potentials, CN resistance measurements, coarseness of backfill, and soil resistivity. The guidelines for installation of cathodic protection on CN cables are to be based upon the evaluation of over 100 experimental cathodic protection systems and upon laboratory testing for protection criteria with and without ac effects.
Asymmetric anode and cathode extraction structure fast recovery diode
NASA Astrophysics Data System (ADS)
Xie, Jiaqiang; Ma, Li; Gao, Yong
2018-05-01
This paper presents an asymmetric anode structure and cathode extraction fast and soft recovery diode. The device anode is partial-heavily doped and partial-lightly doped. The P+ region is introduced into the cathode. Firstly, the characteristics of the diode are simulated and analyzed. Secondly, the diode was fabricated and its characteristics were tested. The experimental results are in good agreement with the simulation results. The results show that, compared with the P–i–N diode, although the forward conduction characteristic of the diode is declined, the reverse recovery peak current is reduced by 47%, the reverse recovery time is shortened by 20% and the softness factor is doubled. In addition, the breakdown voltage is increased by 10%. Project supported by the National Natural Science Foundation of China (No. 51177133).
Fabrication and characterization of a 3D Positive ion detector and its applications
NASA Astrophysics Data System (ADS)
Venkatraman, Pitchaikannu; Sureka, Chandrasekaran Senbagavadivoo
2017-11-01
There is a growing interest to experimentally evaluate the track structure induced by ionizing particles in order to characterize the radiobiological quality of ionizing radiation for applications in radiotherapy and radiation protection. To do so, a novel positive ion detector based on the multilayer printed circuit board (PCB) technology has been proposed previously, which works under the principle of ion induced impact ionization. Based on this, an upgraded 3D positive ion detector was fabricated in order to improve its efficiency and use it for various applications. To improve the efficiency of the detector, cathodes with different insulators (Bakelite plate and Steatite Ceramics) and conducting layers (ITO, FTO, and Gold coated cathode) were studied under various gaseous media (methane, nitrogen, and air) using Am-241, Co-60, Co-57, Na-22, Cs-137, and Ba-133 sources. From this study, it is confirmed that the novel 3D positive ion detector that has been upgraded using gold as strip material, tungsten (87%) coated copper (13%) as the core wire, gold coated ceramic as cathode, and thickness of 3.483 mm showed 9.2% efficiency under methane medium at 0.9 Torr pressure using an Am-241 source. It is also confirmed that when the conductivity of the cathode and thickness of the detector is increased, the performance of the detector is improved significantly. Further, the scope of the detector to use in the field of radiation protection, radiation dosimetry, gamma spectrometry, radiation biology, and oncology are reported here.
Scalable synthesis of Na3V2(PO4)(3)/C porous hollow spheres as a cathode for Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, JF; Luo, C; Gao, T
2015-01-01
Na3V2(PO4)(3) (NVP) has been considered as a very promising cathode material for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na+ migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized via a template-free and scalable ultrasonic spray pyrolysis process, where the carbon coated NVP particles are uniformly decorated on the inner and outer surfaces of the porous hollow carbon spheres. When evaluated as a cathode material for SIBs, the unique NVP/C porousmore » hollow sphere cathode delivers an initial discharge capacity of 99.2 mA h g(-1) and retains 89.3 mA h g(-1) after 300 charge/discharge cycles with a very low degradation rate of 0.035% per cycle. For comparison, the NVP/C composite, prepared by the traditional sol-gel method, delivers a lower initial discharge capacity of 97.4 mA h g(-1) and decreases significantly to 71.5 mA h g(-1) after 300 cycles. The superior electrochemical performance of NVP/C porous hollow spheres is attributed to their unique porous, hollow and spherical structures, as well as the carbon-coating layer, which provides a high contact area between electrode/electrolyte, high electronic conductivity, and high mechanical strength.« less
Low-Temperature Nitriding of Pure Titanium by using Hollow Cathode RF-DC Plasma
NASA Astrophysics Data System (ADS)
Windajanti, J. M.; S, D. J. Djoko H.; Abdurrouf
2017-05-01
Pure titanium is widely used for the structures and mechanical parts due to its high strength, low density, and high corrosion resistance. Unfortunately, titanium products suffer from low hardness and low wear resistance. Titanium’s surface can be modified by nitriding process to overcome such problems, which is commonly conducted at high temperature. Here, we report the low-temperature plasma nitriding process, where pure titanium was utilized by high-density RF-DC plasma combined with hollow cathode device. To this end, a pure titanium plate was set inside a hollow tube placed on the cathode plate. After heating to 450 °C, a pre-sputtering process was conducted for 1 hour to remove the oxide layer and activate the surface for nitriding. Plasma nitriding using N2/H2 gasses was performed in 4 and 8 hours with the RF voltage of 250 V, DC bias of -500 to -600 V, and gas pressure of 75 to 30 Pa. To study the nitriding mechanism as well as the role of hollow cathode, the nitrided specimen was characterized by SEM, EDX, XRD, and micro-hardness equipment. The TiN compound was obtained with the diffusion zone of nitrogen until 5 μm thickness for 4 hours nitriding process, and 8 μm for 8 hours process. The average hardness also increased from 300 HV in the untreated specimen to 624 HV and 792 HV for 4 and 8 hours nitriding, respectively.
He, Meinan; Su, Chi-Cheung; Peebles, Cameron; Feng, Zhenxing; Connell, Justin G; Liao, Chen; Wang, Yan; Shkrob, Ilya A; Zhang, Zhengcheng
2016-05-11
Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt % of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0-4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that prevent oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li(+) ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li(+) ion conductivity through such materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Meinan; Su, Chi-Cheung; Peebles, Cameron
Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt% of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0 to 4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that preventmore » oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li+ ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li+ ion conductivity through such materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, D. J.; Almer, J.; Cruse, T.
2010-01-01
A key feature of planar solid oxide fuel cells (SOFCs) is the feasibility of using metallic interconnects made of high temperature ferritic stainless steels, which reduce system cost while providing excellent electric conductivity. Such interconnects, however, contain high levels of chromium, which has been found to be associated with SOFC cathode performance degradation at SOFC operating temperatures; a phenomenon known as Cr poisoning. Here, we demonstrate an accurate measurement of the phase and concentration distributions of Cr species in a degraded SOFC, as well as related properties including deviatoric strain, integrated porosity, and lattice parameter variation, using high energy microbeammore » X-ray diffraction and radiography. We unambiguously identify (MnCr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} as the two main contaminant phases and find that their concentrations correlate strongly with the cathode layer composition. Cr{sub 2}O{sub 3} deposition within the active cathode region reduces porosity and produces compressive residual strains, which hinders the reactant gas percolation and can cause structural breakdown of the SOFC cathode. The information obtained through this study can be used to better understand the Cr-poisoning mechanism and improve SOFC design.« less
Liang, Longwei; Sun, Xuan; Wu, Chen; Hou, Linrui; Sun, Jinfeng; Zhang, Xiaogang; Yuan, Changzhou
2018-02-14
Surface modifications are established well as efficient methodologies to enhance comprehensive Li-storage behaviors of the cathodes and play a significant role in cutting edge innovations toward lithium-ion batteries (LIBs). Herein, we first logically devised a pilot-scale coating strategy to integrate solid-state electrolyte NaTi 2 (PO 4 ) 3 (NTP) and layered LiNi 0.5 Mn 0.3 Co 0.2 O 2 (NMC) for smart construction of core-shell NMC@NTP cathodes. The Nasicon-type NTP nanoshell with exceptional ion conductivity effectively suppressed gradual encroachment and/or loss of electroactive NMC, guaranteed stable phase interfaces, and meanwhile rendered small sur-/interfacial electron/ion-diffusion resistance. By benefiting from immanently promoting contributions of the nano-NTP coating, the as-fabricated core-shell NMC@NTP architectures were competitively endowed with superior high-voltage cyclic stabilities and rate capacities within larger electrochemical window from 3.0 to 4.6 V when utilized as advanced cathodes for advanced LIBs. More meaningfully, the appealing electrode design concept proposed here will exert significant impact upon further constructing other high-voltage Ni-based cathodes for high-energy/power LIBs.
Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia
2016-07-05
Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.
ELECTROLYTIC SEPARATION PROCESS AND APPARATUS
McLain, M.E. Jr.; Roberts, M.W.
1962-03-01
A method is given for dissolving stainless steel-c lad fuel elements in dilute acids such as half normal sulfuric acid. The fuel element is made the anode in a Y-shaped electrolytic cell which has a flowing mercury cathode; the stainless steel elements are entrained in the mercury and stripped therefrom by a continuous process. (AEC)
Freeze Tape Cast Thick Mo Doped Li 4Ti 5O 12 Electrodes for Lithium-Ion Batteries
Ghadkolai, Milad Azami; Creager, Stephen; Nanda, Jagjit; ...
2017-08-30
Lithium titanate (Li 4Ti 5O 12) powders with and without molybdenum doping (LTO and MoLTO respectively) were synthesized by a solid-state method and used to fabricate electrodes on Cu foil using a normal tape-cast method and a novel freeze-tape-cast method. Modest molybdenum doping produces a significant electronic conductivity increase (e.g. 1 mS cm -1 for MoLTO vs 10 -7 mS cm -1 for LTO) that is thought to reflect a partial Ti 4+ reduction to Ti 3+ with charge compensation by the Mo 6+ dopant, producing a stable mixed-valent Ti 4+/3+ state. Freeze-tape-cast electrodes were fabricated by a variant ofmore » the normal tape-cast method that includes a rapid freezing step in which the solvent in the Cu-foil-supported slurry is rapidly frozen on a cold finger then subsequently sublimed to create unidirectional columnar macropores in the electrode. The resulting electrodes exhibit high porosity and low tortuosity which enhances electrolyte accessibility throughout the full electrode thickness. Freeze-tape-cast electrodes subjected to galvanostatic charge-discharge testing as cathodes in cells vs. a lithium metal anode exhibit higher specific capacity and lower capacity loss at high discharge rates compared with normal-tape-cast electrodes of the same mass loading, despite the fact that the freeze-tape-cast electrodes are nearly twice as thick as the normal tape cast electrodes.« less
Friction Stir Welding of Al Alloy 2219-T8: Part II-Mechanical and Corrosion
NASA Astrophysics Data System (ADS)
Kang, Ju; Feng, Zhi-Cao; Li, Ji-Chao; Frankel, G. S.; Wang, Guo-Qing; Wu, Ai-Ping
2016-09-01
In Part I of this series, abnormal agglomerations of θ particles with size of about 100 to 1000 µm were observed in friction stir welded AA2219-T8 joints. In this work, the effects of these agglomerated θ particles on the mechanical and corrosion properties of the joints are studied. Tensile testing with in situ SEM imaging was utilized to monitor crack initiation and propagation in base metal and weld nugget zone (WNZ) samples. These tests showed that cracks initiated in the θ particles and at the θ/matrix interfaces, but not in the matrix. The WNZ samples containing abnormal agglomerated θ particles had a similar ultimate tensile stress but 3 pct less elongation than other WNZ samples with only normal θ particles. Measurements using the microcell technique indicated that the agglomerated θ particles acted as a cathode causing the dissolution of adjacent matrix. The abnormal θ particle agglomerations led to more severe localized attack due to the large cathode/anode ratio. Al preferential dissolution occurred in the abnormal θ particle agglomerations, which was different from the corrosion behavior of normal size θ particles.
Heel and toe driving on fuel cell vehicle
Choi, Tayoung; Chen, Dongmei
2012-12-11
A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.
Metallofullerenes as fuel cell electrocatalysts: a theoretical investigation of adsorbates on C59Pt.
Gabriel, Margaret A; Genovese, Luigi; Krosnicki, Guillaume; Lemaire, Olivier; Deutsch, Thierry; Franco, Alejandro A
2010-08-28
Nano-structured electrode degradation in state-of-the-art polymer electrolyte membrane fuel cells (PEMFCs) is one of the main shortcomings that limit the large-scale development and commercialization of this technology. During normal operating conditions of the fuel cell, the PEMFC lifetime tends to be limited by coarsening of the cathode's Pt-based catalyst and by corrosion of the cathode's carbon black support. Because of their chemical properties, metallofullerenes such as C(59)Pt may be more electrochemically stable than the Pt/C mixture. In this paper we investigate, by theoretical methods, the stability of oxygen reduction reaction (ORR) adsorbates on the metallofullerene C(59)Pt and evaluate its potential as a PEMFC fuel cell catalyst.
Experimental Analysis of Pseudospark Sourced Electron Beam
NASA Astrophysics Data System (ADS)
Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.
2011-12-01
The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.
NASA Astrophysics Data System (ADS)
Zeng, Kaiyang; Li, Tao; Tian, Tian
2017-08-01
In this paper, the scanning probe microscopy (SPM) based techniques, namely, conductive-AFM, electrochemical strain microscopy (ESM) and AM-FM (amplitude modulation-frequency modulation) techniques, are used to in situ characterize the changes in topography, conductivity and elastic properties of Li-rich layered oxide cathode (Li1.2Mn0.54Ni0.13Co0.13O2) materials, in the form of nanoparticles, when subject to the external electric field. Nanoparticles are the basic building blocks for composite cathode in a Li-ion rechargeable battery. Characterization of the structure and electrochemical properties of the nanoparticles is very important to understand the performance and reliability of the battery materials and devices. In this study, the conductivity, deformation and mechanical properties of the Li-rich oxide nanoparticles under different polarities of biases are studied using the above-mentioned SPM techniques. This information can be correlated with the Li+-ion diffusion and migration in the particles under external electrical field. The results also confirm that the SPM techniques are ideal tools to study the changes in various properties of electrode materials at nano- to micro-scales during or after the ‘simulated’ battery operation conditions. These techniques can also be used to in situ characterize the electrochemical performances of other energy storage materials, especially in the form of the nanoparticles.
Patel, Rajankumar L.; Jiang, Ying-Bing; Choudhury, Amitava; Liang, Xinhua
2016-01-01
Atomic layer deposition (ALD) has evolved as an important technique to coat conformal protective thin films on cathode and anode particles of lithium ion batteries to enhance their electrochemical performance. Coating a conformal, conductive and optimal ultrathin film on cathode particles has significantly increased the capacity retention and cycle life as demonstrated in our previous work. In this work, we have unearthed the synergetic effect of electrochemically active iron oxide films coating and partial doping of iron on LiMn1.5Ni0.5O4 (LMNO) particles. The ionic Fe penetrates into the lattice structure of LMNO during the ALD process. After the structural defects were saturated, the iron started participating in formation of ultrathin oxide films on LMNO particle surface. Owing to the conductive nature of iron oxide films, with an optimal film thickness of ~0.6 nm, the initial capacity improved by ~25% at room temperature and by ~26% at an elevated temperature of 55 °C at a 1C cycling rate. The synergy of doping of LMNO with iron combined with the conductive and protective nature of the optimal iron oxide film led to a high capacity retention (~93% at room temperature and ~91% at 55 °C) even after 1,000 cycles at a 1C cycling rate. PMID:27142704
Lacroix, Rémy; Da Silva, Serge; Gaig, Monica Viaplana; Rousseau, Raphael; Délia, Marie-Line; Bergel, Alain
2014-11-07
The theoretical bases for modelling the distribution of the electrostatic potential in microbial electrochemical systems are described. The secondary potential distribution (i.e. without mass transport limitation of the substrate) is shown to be sufficient to validly address microbial electrolysis cells (MECs). MECs are modelled with two different ionic conductivities of the solution (1 and 5.3 S m(-1)) and two bioanode kinetics (jmax = 5.8 or 34 A m(-2)). A conventional reactor configuration, with the anode and the cathode face to face, is compared with a configuration where the bioanode perpendicular to the cathode implements the electrochemical reaction on its two sides. The low solution conductivity is shown to have a crucial impact, which cancels out the advantages obtained by setting the bioanode perpendicular to the cathode. For the same reason, when the surface area of the anode is increased by multiplying the number of plates, care must be taken not to create too dense anode architecture. Actually, the advantages of increasing the surface area by multiplying the number of plates can be lost through worsening of the electrochemical conditions in the multi-layered anode, because of the increase of the electrostatic potential of the solution inside the anode structure. The model gives the first theoretical bases for scaling up MECs in a rather simple but rigorous way.
Wang, Yujuan; Lin, Hui; Jin, Fangyuan; Niu, Junfeng; Zhao, Jinbo; Bi, Ying; Li, Ying
2016-07-01
Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion. Copyright © 2016 Elsevier B.V. All rights reserved.
Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F
2017-01-05
Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS 2 ) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS 2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS 2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene-SeS 2 full cell is 81% after 1,500 cycles at 268 mA g SeS2 -1 . The achieved cathode capacity is 403 mAh g SeS2 -1 (1,209 mAh cm SeS2 -3 ).
Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.
Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing
2018-01-01
The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Peng; Liu, Xianhua; Dong, Feng; Lin, Qingxia; Tong, Yindong; Li, Yang; Zhang, Pingping
2018-08-01
Low-cost and highly active catalyst for oxygen reduction reaction is of great importance in the design of alkaline fuel cells. In this work, Cu 2 O-Cu composite catalyst has been fabricated by a facile laser-irradiation method. The addition of Cu 2 O-Cu composite in activated carbon air-cathode greatly improves the performance of the cathode. Our results indicate the enhanced performance is likely attributed to the synergistic effect of high conductivity of Cu and the catalytic activity of Cu 2 O towards the oxygen reduction reaction. Furthermore, an alkaline fuel cell equipped with the composite air-cathode has been built to turn banana peels into electricity. Peak power density of 16.12Wm -2 is obtained under the condition of 3M KOH and 22.04gL -1 reducing sugar, which is higher than other reported low-temperature direct biomass alkaline fuel cells. HPLC results indicate the main oxidation products in the alkaline fuel cell were small organic acids. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Zan; Luo, Peifang; Wang, Daxiang
2017-03-01
Core-shell structured LiFePO4/C1 cathode material is synthesized via a rapid microwave irradiation route using ethylene diamine tetraacetic acid (EDTA) as the novel carbon source. XRD results reveal that all the patterns can be indexed as the olivine-type structured LiFePO4 with the space group of Pnma. TEM images show that the obtained carbon is an amorphous layer with a thickness of about 3-4 nm. When the LiFePO4/C1 used as cathode material for lithium-ion battery, it delivers an initial discharge capacity of 163.1 mAh g-1 at 0.1 C which is about 96% of the theoretical capacity. Moreover, it also shows excellent rate performance and good cycle stability due to the enhanced electronic conductivity as proved by the electrochemical impedance spectroscopy (EIS). Thus, this carbon decorated LiFePO4 composite synthesized via the rapid microwave irradiation method is a promising cathode material for high-performance lithium-ion battery.
NASA Astrophysics Data System (ADS)
Liu, Jiandi; Zhao, Yanyan; Li, Xin; Wang, Chunge; Zeng, Yaping; Yue, Guanghui; Chen, Qiang
2018-06-01
Rechargeable lithium-oxygen batteries have been considered as a promising energy storage technology because of their ultra-high theoretical energy densities which are comparable to gasoline. In order to improve the electrochemical properties of lithium-oxygen batteries (LOBs), especially the cycling performance, a high-efficiency cathode catalyst is the most important component. Hence, we aim to demonstrate that CuCr2O4@rGO (CCO@rGO) nanocomposites, which are synthesized using a facile hydrothermal method and followed by a series of calcination processes, are an effective cathode catalyst. The obtained CCO@rGO nanocomposites which served as the cathode catalyst of the LOBs exhibited an outstanding cycling performance for over 100 cycles with a fixed capacity of 1000 mAh g-1 at a current density of 200 mA g-1. The enhanced properties were attributed to the synergistic effect between the high catalytic efficiency of the spinel-structured CCO nanoparticles, the high specific surface area, and high conductivity of the rGO.[Figure not available: see fulltext.
Mode Transitions in Magnetically Shielded Hall Effect Thrusters
NASA Technical Reports Server (NTRS)
Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.
2014-01-01
A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.
Control Valve Trajectories for SOFC Hybrid System Startup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorrell, Megan; Banta, Larry; Rosen, William
2012-07-01
Control and management of cathode airflow in a solid oxide fuel cell gas turbine hybrid power system was analyzed using the Hybrid Performance (HyPer) hardware simulation at the National Energy Technology (NETL), U.S. Department of Energy. This work delves into previously unexplored operating practices for HyPer, via simultaneous manipulation of bypass valves and the electric load on the generator. The work is preparatory to the development of a Multi-Input, Multi-Output (MIMO) controller for HyPer. A factorial design of experiments was conducted to acquire data for 81 different combinations of the manipulated variables, which consisted of three air flow control valvesmore » and the electric load on the turbine generator. From this data the response surface for the cathode airflow with respect to bypass valve positions was analyzed. Of particular interest is the control of airflow through the cathode during system startup and during large load swings. This paper presents an algorithm for controlling air mass flow through the cathode based on a modification of the steepest ascent method.« less
Mixed Polyanion Glass Cathodes: Mixed Alkali Effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kercher, A. K.; Chapel, A. S.; Kolopus, J. A.
2017-01-01
In lithium-ion batteries, mixed polyanion glass cathodes have demonstrated high capacities (200-500 mAh/g) by undergoing conversion and intercalation reactions. Mixed polyanion glasses typically have the same fundamental issues as other conversion cathodes, i.e.: large hysteresis, capacity fade, and 1st-cycle irreversible loss. A key advantage of glass cathodes is the ability to tailor their composition to optimize the desired physical properties and electrochemical performance. The strong dependence of glass physical properties (e.g., ionic diffusivity, electrical conductivity, and chemical durability) on the composition of alkali mixtures in a glass is well known and has been named the mixed alkali effect. The mixedmore » alkali effect on battery electrochemical properties is reported here for the first time. Depending on glass composition, the mixed alkali effect is shown to improve capacity retention during cycling (from 39% to 50% after 50 cycle test), to reduce the 1st-cycle irreversible loss (from 41% to 22%), and improve the high power (500 mA/g) capacity (from 50% to 67% of slow discharge capacity).« less
Multielectronic conduction in La1-xSrxGa1/2Mn1/2O3-δ as solid oxide fuel cell cathode
NASA Astrophysics Data System (ADS)
Iguchi, E.; Hashimoto, Y.; Kurumada, M.; Munakata, F.
2003-08-01
Four-probe dc conductivities, capacitances, and thermopower have been measured in the temperature range of 80-1123 K for La1-xSrxGa1/2Mn1/2O3-δ, which is a desirable cathode material for lanthanum-gallate electrolytes of solid oxide fuel cells. The dc conductivities in the specimens (0.1⩽x⩽0.3) are insensitive to x but the thermopower is very sensitive to x, although the x=0 specimen exhibits a somewhat different conduction behavior. At T<300 K, a relaxation process has shown in dielectric loss factor with the activation energy higher than that for dc conduction in every specimen. These results at T<300 K have been numerically analyzed within the framework of the multielectronic conduction consisting of the polaronic conduction of Mn 3d eg holes created by Sr doping, the band conduction of O 2p holes and the hopping conduction of Mn 3d eg electrons, where the O 2p holes and Mn 3d eg electrons are created by thermal excitation of electrons from O 2p bands to Mn 3d eg narrow bands. At T>500 K, the band conduction dominates the electronic transports. The ionic conduction due to O2- migration seems difficult to contribute directly to the dc conduction even at high temperature.
More About Arc-Welding Process for Making Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Benavides, Jeanette M.; Leidecker, Henning
2005-01-01
High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.
NASA Astrophysics Data System (ADS)
Charles, T. K.; Paganin, D. M.; Dowd, R. T.
2016-08-01
Intrinsic emittance is often the limiting factor for brightness in fourth generation light sources and as such, a good understanding of the factors affecting intrinsic emittance is essential in order to be able to decrease it. Here we present a parameterization model describing the proportional increase in emittance induced by cathode surface roughness. One major benefit behind the parameterization approach presented here is that it takes the complexity of a Monte Carlo model and reduces the results to a straight-forward empirical model. The resulting models describe the proportional increase in transverse momentum introduced by surface roughness, and are applicable to various metal types, photon wavelengths, applied electric fields, and cathode surface terrains. The analysis includes the increase in emittance due to changes in the electric field induced by roughness as well as the increase in transverse momentum resultant from the spatially varying surface normal. We also compare the results of the Parameterization Model to an Analytical Model which employs various approximations to produce a more compact expression with the cost of a reduction in accuracy.
Grattieri, Matteo; Shivel, Nelson D; Sifat, Iram; Bestetti, Massimiliano; Minteer, Shelley D
2017-05-09
Microbial fuel cells are an emerging technology for wastewater treatment, but to be commercially viable and sustainable, the electrode materials must be inexpensive, recyclable, and reliable. In this study, recyclable polymeric supports were explored for the development of anode electrodes to be applied in single-chamber microbial fuel cells operated in field under hypersaline conditions. The support was covered with a carbon nanotube (CNT) based conductive paint, and biofilms were able to colonize the electrodes. The single-chamber microbial fuel cells with Pt-free cathodes delivered a reproducible power output after 15 days of operation to achieve 12±1 mW m -2 at a current density of 69±7 mA m -2 . The decrease of the performance in long-term experiments was mostly related to inorganic precipitates on the cathode electrode and did not affect the performance of the anode, as shown by experiments in which the cathode was replaced and the fuel cell performance was regenerated. The results of these studies show the feasibility of polymeric supports coated with CNT-based paint for microbial fuel cell applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Paper-Based Analytical Devices Relying on Visible-Light-Enhanced Glucose/Air Biofuel Cells.
Wu, Kaiqing; Zhang, Yan; Wang, Yanhu; Ge, Shenguang; Yan, Mei; Yu, Jinghua; Song, Xianrang
2015-11-04
A strategy that combines visible-light-enhanced biofuel cells (BFCs) and electrochemical immunosensor into paper-based analytical devices was proposed for sensitive detection of the carbohydrate antigen 15-3 (CA15-3). The gold nanoparticle modified paper electrode with large surface area and good conductibility was applied as an effective matrix for primary antibodies. The glucose dehydrogenase (GDH) modified gold-silver bimetallic nanoparticles were used as bioanodic biocatalyst and signal magnification label. Poly(terthiophene) (pTTh), a photoresponsive conducting polymer, served as catalyst in cathode for the reduction of oxygen upon illumination by visible light. In the bioanode, electrons were generated through the oxidation of glucose catalyzed by GDH. The amount of electrons is determined by the amount of GDH, which finally depended on the amount of CA15-3. In the cathode, electrons from the bioanode could combine with the generated holes in the HOMO energy level of cathode catalysts pTTh. Meanwhile, the high energy level photoexcited electrons were generated in the LUMO energy level and involved in the oxygen reduction reaction, finally resulting in an increasing current and a decreasing overpotential. According to the current signal, simple and efficient detection of CA15-3 was achieved.
Li, Duo; Han, Fei; Wang, Shuai; Cheng, Fei; Sun, Qiang; Li, Wen-Cui
2013-03-01
Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.
Effect of MWCNT on prepared cathode material (Li2Mn(x)Fe(1-x)SiO4) for energy storage applications
NASA Astrophysics Data System (ADS)
Agnihotri, Shruti; Rattan, Sangeeta; Sharma, A. L.
2016-05-01
The electrode material Li2MnFeSiO4 was successfully synthesized by standard sol-gel method and further modified with multiwalled carbon nano tube (MWCNT) to achieve better electrochemical properties. Our strategy helps us to improve the performance and storage capacity as compared with the bared material. This novel composite structure constructs an efficient cation (Li+) and electron channel which significantly enhance the Li+ ion diffusion coefficient and reduced charge transfer resistance. Hence leads to high conductivity and specific capacity. Characterization technique like Field emission scanning electron microscopy (FESEM) has been used to confirm its morphology, structure and particle size which comes out to be of the order of ˜20 to 30 nm. Lesser particle size reveals better electrochemical properties. Electrical conductivity (˜10-5 Scm-1) of MWCNT doped oxide cathode materials was recorded using ac impedance spectroscopy technique which reflects tenfold increment when compared with pure oxide cathode materials. Cyclic voltametery analysis has been done to calculate specific capacity and potential window of materials with and without CNTs. The results obtained from different techniques are well correlated and suitable for energy storage applications.
NASA Astrophysics Data System (ADS)
Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R.
2016-11-01
Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g-1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g-1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications.
Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R.
2016-01-01
Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g−1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g−1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications. PMID:27898104
Loveridge, M J; Lain, M J; Johnson, I D; Roberts, A; Beattie, S D; Dashwood, R; Darr, J A; Bhagat, R
2016-11-29
Lithium iron phosphate, LiFePO 4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g -1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g -1 for over 1 50 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications.
Zhang, Bin; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong
2014-08-13
Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.
Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery
NASA Technical Reports Server (NTRS)
Tsang, F. Y.
1974-01-01
Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.
The cycle life chemistry of ambient-temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Somoano, R.; Carter, B. J.; Subba Rao, S.; Shen, D.; Yen, S. P. S.
1985-01-01
The Jet Propulsion Laboratory is involved in a NASA-sponsored research program to demonstrate the feasibility of ambient-temperature secondary lithium batteries for geosynchronous space applications. Encouraging cycle life has been demonstrated in sealed, cathode-limited laboratory cells. However, the cell capacity declines with cycle life. The results of recent studies of the lithium electrode passivation chemistry, and of conductive diluents for TiS2 cathodes and their possible contribution to capacity decline, are here presented. Technical issues associated with the unique operational requirements of a geosynchronous mission are also described.
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, T.M.; Lowden, R.A.
1990-05-29
An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.
(PECASE 08) - ION-Conducting Network Membranes Using Tapered Block Copolymers
2015-07-08
iron phosphate ( LiFePO4 ) as an active material for the cathode. The composite cathode was prepared by mixing P(S-EO) with carbon black and LiFePO4 ...salt- doping ratio of [EO]:[Li] = 12:1. Example cycle-life data for the Li/P(S-EO)/ LiFePO4 cell is shown in Figure 1. The specific discharge...rates, indicating good cycling stability. This investigation currently is in progress. 1 Figure 1: Cycle-life data for the Li/P(S-EO)/ LiFePO4 cell
SOFC seal and cell thermal management
Potnis, Shailesh Vijay [Neenah, WI; Rehg, Timothy Joseph [Huntington Beach, CA
2011-05-17
The solid oxide fuel cell module includes a manifold, a plate, a cathode electrode, a fuel cell and an anode electrode. The manifold includes an air or oxygen inlet in communication with divergent passages above the periphery of the cell which combine to flow the air or oxygen radially or inwardly for reception in the center of the cathode flow field. The latter has interconnects providing circuitous cooling passages in a generally radial outward direction cooling the fuel cell and which interconnects are formed of different thermal conductivity materials for a preferential cooling.
All ceramic structure for molten carbonate fuel cell
Smith, James L.; Kucera, Eugenia H.
1992-01-01
An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.
Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent
NASA Astrophysics Data System (ADS)
Wei, Xufang; Guan, Yibiao; Zheng, Xiaohui; Zhu, Qizhen; Shen, Jinran; Qiao, Ning; Zhou, Shuqin; Xu, Bin
2018-05-01
In this work, the electrochemical properties of the LiFePO4 cathode using graphene as a conductive agent were revealed. Compared to the conventional LiFePO4 electrodes with carbon black as a conductive agent, the graphene sheets can establish a more effective conductive framework due to their layered structure and excellent electronic conductivity, leading to better electrochemical rate performance. Furthermore, the obverse of increasing graphene content is continued gains in high-rate performance of the LiFePO4 electrodes. The electrodes with 30 wt% graphene show high capacities up to 103.1 mA h g-1 and 68 mA h g-1 during discharging with extremely high rates of 30 C and 50 C, respectively. Besides, good cycling performance at high rate is also achieved. The electrodes with 30 wt% graphene display a capacity retention higher than 80% after 1000 cycles at 30 C. These results not only indicate that the graphene could be a promising candidate as a conductive agent, but also provide a new insight for designing LiFePO4 electrodes with brilliant high-rate performance via a simple method.
An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor
NASA Astrophysics Data System (ADS)
Buchholtz, Brett W.; Wilbur, Paul J.
1993-07-01
An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.
An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor
NASA Technical Reports Server (NTRS)
Buchholtz, Brett W.; Wilbur, Paul J.
1993-01-01
An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.
Electrochemical and XPS study of LiFePO4 cathode nanocomposite with PPy/PEG conductive network
NASA Astrophysics Data System (ADS)
Fedorková, A.; Oriňáková, R.; Oriňák, A.; Kupková, M.; Wiemhöfer, H.-D.; Audinot, J. N.; Guillot, J.
2012-08-01
High performance PPy/PEG-LiFePO4 nanocomposites as cathode materials were synthesized by solvothermal method and simple chemical oxidative polymerization of pyrrole (Py) monomer on the surface of LiFePO4 particles. The samples were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometry (XPS) and charge-discharge tests. PPyPEG hybrid layers decrease particle to particle contact resistance while the impedance measurements confirmed that the coating of PPy-PEG significantly decreases the charge transfer resistance of the electrode material. The initial discharge capacities of this sample at C/5 and 1C are 150 and 128 mAh/g, respectively. The results show that PPy/PEGLiFePO4 composites are more effective than bare LiFePO4 as cathode material.
Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode
Chang, Jung-Hung; Lin, Wei-Hsiang; Wang, Po-Chuan; Taur, Jieh-I; Ku, Ting-An; Chen, Wei-Ting; Yan, Shiang-Jiuan; Wu, Chih-I
2015-01-01
Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been lacking, which would limit the application of graphene in flexible electronics. In this paper, we demonstrate fully solution-processed OLEDs with n-type doped multilayer graphene as the top electrode. The work function and sheet resistance of graphene are modified by an aqueous process which can also transfer graphene on organic devices as the top electrodes. With n-doped graphene layers used as the top cathode, all-solution processed transparent OLEDs can be fabricated without any vacuum process. PMID:25892370
A hollow cathode neutralizer for a 30-cm diameter bombardment thruster
NASA Technical Reports Server (NTRS)
Bechtel, R. T.
1973-01-01
Recent improvements in overall thrustor performance have imposed new constraints on neutralizer performance. The use of compensated grid extraction system requires a re-evaluation of neutralizer position. In addition a suitable control logic for the neutralizer has proven difficult. A series of tests were conducted to determine what effect neutralizer cathode geometry has on performance. The parameters investigated included orifice diameter and length, and cathode diameter. Similar tests investigated open and enclosed keeper geometries. Neutralizer position tests with compensated grids suggest positions approximately 10 cm from the accelerator and radially out of the beam envelope should result in satisfactory performance and long life. Finally operation at keeper currents of 1.5 amp has resulted in lower total neutralizer power, the elimination of tip heater power, and suitable closed loop control of the neutralizer vaporizer.
Zeng, Shuaibo; Li, Ligui; Xie, Lihong; Zhao, Dengke; Wang, Nan; Chen, Shaowei
2017-09-11
Low electrical conductivity and a lack of chemical confinement are two major factors that limit the rate performances and cycling stabilities of cathode materials in lithium-sulfur (Li-S) batteries. Herein, sulfur is copolymerized with poly(m-aminothiophenol) (PMAT) nanoplates through inverse vulcanization to form the highly crosslinked copolymer cp(S-PMAT) in which approximately 80 wt % of the feed sulfur is bonded chemically to the thiol groups of PMAT. A cp(S-PMAT)/C-based cathode exhibits a high discharge capacity of 1240 mAh g -1 at 0.1 C and remarkable rate capacities of 880 mAh g -1 at 1 C and 600 mAh g -1 at 5 C. Moreover, it can retain a capacity of 495 mAh g -1 after 1000 deep discharge-charge cycles at 2 C; this corresponds to a retention of 66.9 % and a decay rate of only 0.040 % per cycle. Such a remarkable rate performance is attributed to the highly conductive pathways of PMAT nanoplates, and the excellent cycling stability is ascribed mainly to the chemical confinement of sulfur through a large number of stable covalent bonds between sulfur and the thiol groups of PMAT. The results suggest that this strategy is a viable paradigm for the design and engineering of conducting polymers with reactive functional groups as effective electrode materials for high-performance Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Delahoy, A. E.; Guo, S. Y.
2005-07-01
Highly transparent and conductive In2O3 and ZnO films containing different doping elements such as Ti, Mo, Zr, Nb, Ta, W (for In2O3), and B (for ZnO) have been prepared by reactive-environment, hollow cathode sputtering (RE-HCS). The use of Nb and W as effective dopants is reported for the first time. Metallic targets were used exclusively, and the dopant concentration was easily controlled using a second sputtering power supply. As a result of the cathode and gas flow geometry, the sputtering is conducted in metal mode, and the target and doping materials are free from oxidation during the deposition process. Film resistivities achieved with the various dopants are reported. For In2O3:Mo (IMO), a resistivity of 1.6×10-4Ω cm and a mobility of 80 cm2/Vs were achieved for Mo concentrations in the range 0.5-5.0% as measured by inductively coupled plasma (ICP). X-ray photoelectron spectroscopy (XPS) analysis indicates Mo with a +6 valence state and that the film is stoichiometric. For In2O3:Ti (ITiO), a superior optical transmission is achieved relative to IMO, while carrier mobility and conductivity were similar. Remarkably, semitransparent films of InN:O having sheet resistances of 9.5 Ω/square have also been prepared. ZnO:B films deposited by RE-HCS exhibit superior optical properties relative to ZnO:Al, and when applied as a window layer to CIGS solar cells yield higher quantum efficiencies.
Lithium-ion batteries having conformal solid electrolyte layers
Kim, Gi-Heon; Jung, Yoon Seok
2014-05-27
Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.
Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng
2018-05-22
Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.
Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator
NASA Astrophysics Data System (ADS)
Hutsel, B. T.; Corcoran, P. A.; Cuneo, M. E.; Gomez, M. R.; Hess, M. H.; Hinshelwood, D. D.; Jennings, C. A.; Laity, G. R.; Lamppa, D. C.; McBride, R. D.; Moore, J. K.; Myers, A.; Rose, D. V.; Slutz, S. A.; Stygar, W. A.; Waisman, E. M.; Welch, D. R.; Whitney, B. A.
2018-03-01
We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator configurations and load-impedance time histories. For these experiments, the apparent fractional current loss varies from 0% to 20%. Results of the circuit simulations agree with data acquired on 52 shots to within 2%.
NASA Astrophysics Data System (ADS)
Zhong, Haoxiang; He, Aiqin; Lu, Jidian; Sun, Minghao; He, Jiarong; Zhang, Lingzhi
2016-12-01
A water-soluble conductive composite binder consisting of carboxymethyl chitosan (CCTS) as a binder and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a conduction-promoting agent is reported for the LiFePO4 (LFP) cathode in Li-ion batteries. The introduction of conductive PEDOT:PSS as a conductive composite binder facilitates the formation of homogeneous and continuous conducting bridges throughout the electrode and raises the compaction density of the electrode sheet by decreasing the amounts of the commonly used conducting agent of acetylene black. The optimized replacement ratios of acetylene black with PEDOT:PSS (acetylene black/PEDOT:PSS = 1:1, by weight) are obtained by measuring electrical conductivity, peel strength and compaction density of the electrode sheets. The LFP half-cell with the optimized conductive binder exhibits better cycling and rate performance and more favorable electrochemical kinetics than that using only acetylene black conducting agent. The pilot application of PEDOT:PSS/CCTS binder in 10 Ah CCTS-LFP prismatic cell exhibits a comparable cycling performance, retaining 89.7% of capacity at 1 C/2 C (charge/discharge) rate as compared with 90% for commercial PVDF-LFP over 1000 cycles, and better rate capability than that of commercial PVDF-LFP, retaining 98% capacity of 1 C at 7 C rate as compared with 95.4% for PVDF-LFP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
Sulfur is an appealing cathode material for establishing advanced lithium batteries as it offers a high theoretical capacity of 1675 mA h g -1 at low material and operating costs. However, the lithium–sulfur (Li–S) electrochemical cells face several formidable challenges arising from both the materials chemistry (e.g., low electrochemical utilization of sulfur and severe polysulfide diffusion) and battery chemistry (e.g., dynamic and static instability and low sulfur loadings). Here in this study, we present the design of a core–shell cathode with a pure sulfur core shielded within a conductive shell-shaped electrode. The new electrode configuration allows Li–S cells to loadmore » with a high amount of sulfur (sulfur loadings of up to 30 mg cm -2 and sulfur content approaching 70 wt%). The core–shell cathodes demonstrate a superior dynamic and static electrochemical stability in Li–S cells. The high-loading cathodes exhibit (i) a high sulfur utilization of up to 97% at C/20–C/2 rates and (ii) a low self-discharge during long-term cell storage for a three-month rest period and at different cell-storage conditions. Finally, a polysulfide-trap cell configuration is designed to evidence the eliminations of polysulfide diffusion and to investigate the relationship between the electrode configuration and electrochemical characteristics. Finally, the comprehensive analytical results based on the high-loading cathodes suggest that (i) the core–shell cathode is a promising solution for designing highly reversible Li–S cells and (ii) the polysulfide-trap cell configuration is a viable approach to qualitatively evaluating the presence or absence of polysulfide diffusion.« less
Rivera, Harry; Lawton, Jamie S; Budil, David E; Smotkin, Eugene S
2008-07-24
The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 ECMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol-water incomplete mixing theories.
NASA Astrophysics Data System (ADS)
Ahmed, Zaghloul
2017-10-01
Objective. Lower urinary tract (LUT) dysfunction is a monumental problem affecting quality of life following neurotrauma, such as spinal cord injury (SCI). Proper function of the bladder and its associated structures depends on coordinated activity of the neuronal circuitry in the spinal cord and brain. Disconnection between the spinal and brain centers controlling the LUT causes fundamental changes in the mechanisms involved in the micturition and storage reflexes. We investigated the effects of cathodal trans-spinal direct current stimulation (c-tsDCS) of the lumbosacral spine on bladder and external urinary sphincter (EUS) functions. Approach. We used cystometry and electromyography (EMG), in mice with and without SCI. Main results. c-tsDCS caused initiation of the micturition reflex in urethane-anesthetized normal mice with depressed micturition reflexes. This effect was associated with normalized EUS-EMG activity. Moreover, in urethane-anesthetized normal mice with expressed micturition reflexes, c-tsDCS increased the firing frequency, amplitude, and duration of EUS-EMG activity. These effects were associated with increased maximum intravesical pressure (P max) and intercontraction interval (ICI). In conscious normal animals, c-tsDCS caused significant increases in P max, ICI, threshold pressure (P thres), baseline pressure (P base), and number and amplitude of non-voiding contractions (NVCnumb and P im, respectively). In conscious mice with severe contusive SCI and overactive bladder, c-tsDCS increased P max, ICI, and P thres, but decreased P base, NVCnumb, and P im. c-tsDCS reduced the detrusor-overactivity/cystometry ratio, which is a measure of bladder overactivity associated with renal deterioration. Significance. These results indicate that c-tsDCS induces robust modulation of the lumbosacral spinal-cord circuitry that controls the LUT.
Negative space charge effects in photon-enhanced thermionic emission solar converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segev, G.; Weisman, D.; Rosenwaks, Y.
2015-07-06
In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less
Chloride-reinforced carbon nanofiber host as effective polysulfide traps in lithium-sulfur batteries
Fan, Lei; Zhuang, Houlong; Zhang, Kaihang; ...
2016-01-01
Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-art lithium-ion batteries (LIBs) due to its high theoretical energy density and lower production cost from the use of earth abundant element - sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified-cathode through both chemical and physical confinements in a conductive host, these chloride-coatedmore » cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. We show that not only the binding energy but also the electronic conductivity of the host plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Electrochemical analysis of the chloride-modified cathodes over hundreds of cycles indicates that too strong binding of the sulfur species may lead to the decay of Coulombic efficiency. Cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salt modifications, delivering an average specific capacity of above 1200mAh g-1 at 0.2C over 200 cycles. Once loaded with high S content, it shows stable capacity retention with only 0.019% decay per cycle from 5th to 650th cycle. It also shows stabilized cyclability and enhanced Coulombic efficiency in the absence of traditional anode stabilizer lithium nitrite.« less
NASA Astrophysics Data System (ADS)
Mukundan, R.
Chemical modifications of barium cerium gadolinium oxide through the substitution of Bi, Tb, Pr, Nb and Ta were attempted in an effort to increase the p-type or n-type conductivity, and to develop new mixed-conducting electrodes that are chemically compatible with the Ba(Cesb{1-x}Gdsb{x})Osb{3-x/2} electrolyte. The structure, oxygen non-stoichiometry, electronic and ionic-conductivity of several compositions in the doped-barium cerate systems were studied by X-ray diffraction, TGA, DC and AC conductivity, and EMF measurements. The cathodic overpotential of the mixed (electronic/ionic) conducting compositions in this system, on a Ba(Cesb{0.8}Gdsb{0.2})Osb{2.9} electrolyte, were also studied using Current Interruption and AC impedance techniques. The substitution of Bi into Ba(Cesb{0.9}Gdsb{0.1})Osb{2.95} lead to a significant increase in the electronic conductivity, and a total conductivity of about 0.94 S/cm was obtained for Ba(Bisb{0.5}Cesb{0.4}Gdsb{0.1})Osb3 at 800sp°C in air. However, the concentration of oxygen-ion vacancies and hence the ionic conductivity decreased due to the oxidation of Bi to the 5sp{+} state. Compositions in the Ba(Bisb{0.5}Cesb{x}Gdsb{0.5-x})Osb3 system also exhibited significant oxygen non-stoichiometry depending upon the ordering of the B-site cations and the relative concentrations of Ce and Gd. However, the absence of any detectable EMF in the non-stoichiometric compositions implied that the oxygen vacancies are strongly associated with the Bisp{3+} cations. Although highly conductive, chemically stable compositions were prepared in the Ba(Bisb{x}Cesb{y}Gdsb{1-(x+y)})Osb{3-d} system, their ionic conductivities were low. The mixed-conduction properties of Ba(Cesb{1-x}Gdsb{x})Osb{3-d} were enhanced under cathode conditions (600-800sp°C in air) by the substitution of Ce by Tb and Pr. While the substitution of Tb resulted in a decrease in the total conductivity, Pr induced a significant increase in the total conductivity at high Pr levels (≥40 mole%) due to an enhancement of the electronic conductivity. The Ba(Prsb{0.8}Gdsb{0.2})Osb{2.9} sample was found to have the best mixed-conducting properties of all the perovskites evaluated, sigmasb{T}=0.75 S/cm in air at 800sp°C, tsb{H+}=0.15 in a wet argon//dry argon gradient, and tsb{0.2-}≈ 0.05 in a dry air//dry argon gradient. The cathodic overpotentials of the mixed-conducting Pr-doped barium cerates were low, and decreased with increasing ionic and electronic conductivity of the electrode. The lowest overpotential was obtained for the Ba(Prsb{0.8}Gdsb{0.2})Osb{2.9}, cathode, and at low current densities was comparable to that of an optimized porous Pt-electrode. While the substitution of Nb and Ta for Ce lead to an enhancement in the electronic conductivity under reducing conditions associated with the increased reduction of Cesp{4+} to Cesp{3+}, the ionic-conductivity of these perovskites was low. There was no evidence for any protonic conductivity in the 15 mole% Nb and Ta substituted barium cerates. Moreover the anodic overpotential and the anode resistance of these perovskites on a Ba(Cesb{0.8}Gdsb{0.2})Osb{2.9} electrolyte were both high.
NASA Astrophysics Data System (ADS)
Li, Jing-quan; Han, Chong; Jing, Mao-xiang; Yang, Hua; Shen, Xiang-qian; Qin, Shi-biao
2018-06-01
Low electronic and ionic conductivity for LiV3O8 cathode material could lead to poor cycling stability and rate capability, which are considered as the main restraint for its application in Li-ion battery. A novel flake-like LiV3O7.9 material modified by high ionic and electronic conductive Li0.3V2O5/C was fabricated via electrospinning and controlled thermal sintering processes. This oxygen-deficient LiV3O7.9/Li0.3V2O5-C composite electrode sintered at 500 °C exhibits improved rate and cycle stability. The electrode possesses a retention capacity of 151.9mAh/g after 500 cycles at 5C and 84.8mAh/g after 1000 cycles at 10C, respectively. The improvement of the electrochemical performance could be attributed to the synergistic effects of flake-like morphology, oxygen-deficiency and surface modification of Li0.3V2O5/C, which increase the ionic and electronic conductivity of LiV3O8.
Zhang, Xueqin; Guo, Kun; Shen, Dongsheng; Feng, Huajun; Wang, Meizhen; Zhou, Yuyang; Jia, Yufeng; Liang, Yuxiang; Zhou, Mengjiao
2017-08-01
Rather than the conventional concept of viewing conductive carbon black (CB) to be chemically inert in microbial electrochemical cells (MECs), here we confirmed the redox activity of CB for its feasibility as an electron sink in the microbial battery (MB). Acting as the cathode of a MB, the solid-state CB electrode showed the highest electron capacity equivalent of 18.58 ± 0.46 C/g for the unsintered one and the lowest capacity of 2.29 ± 0.48 C/g for the one sintered under 100% N 2 atmosphere. The capacity vibrations of CBs were strongly in coincidence with the abundances of C=O moiety caused by different pretreatments and it implied one plausible mechanism based on CB's surface functionality for its electron capturing. Once subjected to electron saturation, CB could be completely regenerated by different strategies in terms of electrochemical discharging or donating electrons to biologically-catalyzed nitrate reduction. Surface characterization also revealed that CB's regeneration fully depended on the reversible shift of C=O moiety, further confirming the functionality-based mechanism for CB's feasibility as the role of MB's cathode. Moreover, resilience tests demonstrated that CB cathode was robust for the multi-cycles charging-discharging operations. These results imply that CB is a promising alternative material for the solid-state cathode in MBs.
Three-Dimensionally Hierarchical Ni/Ni3S2/S Cathode for Lithium-Sulfur Battery.
Li, Zhe; Zhang, Shiguo; Zhang, Jiaheng; Xu, Miao; Tatara, Ryoichi; Dokko, Kaoru; Watanabe, Masayoshi
2017-11-08
Lithium-sulfur (Li-S) batteries have attracted interest as a promising energy-storage technology due to their overwhelming advantages such as high energy density and low cost. However, their commercial success is impeded by deterioration of sulfur utilization, significant capacity fade, and poor cycle life, which are principally originated from the severe shuttle effect in relation to the dissolution and migration of lithium polysulfides. Herein, we proposed an effective and facile strategy to anchor the polysulfides and improve sulfur loading by constructing a three-dimensionally hierarchical Ni/Ni 3 S 2 /S cathode. This self-supported hybrid architecture is sequentially fabricated by the partial sulfurization of Ni foam by a mild hydrothermal process, followed by physical loading of elemental sulfur. The incorporation of Ni 3 S 2 , with high electronic conductivity and strong polysulfide adsorption capability, can not only empower the cathode to alleviate the shuttle effect, but also afford a favorable electrochemical environment with lower interfacial resistance, which could facilitate the redox kinetics of the anchored polysulfides. Consequently, the obtained Ni/Ni 3 S 2 /S cathode with a sulfur loading of ∼4.0 mg/cm 2 demonstrated excellent electrochemical characteristics. For example, at high current density of 4 mA/cm 2 , this thick cathode demonstrated a discharge capacity of 441 mAh/g at the 150th cycle.
Yang, Zhixiong; Li, Rengui; Deng, ZhengHua
2018-04-25
To achieve the higher capacity and the better cycle performance of the lithium-sulfur (L-S) batteries, a copolymer electrolyte prepared via emulsifier-free emulsion polymerization was used as the binder for the sulfur cathode in this study. This polyelectrolyte binder has uniform dispersion and good Li + conductivity in the cathode that can improve the kinetics of sulfur electrochemical reactions. As a result, the capacity and cycle performance of the battery are improved evidently when the cell is discharged to 1.8 V. Moreover, when the cell is discharged to 1.5 V, the difficult deposition of Li 2 S 2 will take place easily at 1.75 V, and the difficult transformation from solid Li 2 S 2 to solid Li 2 S will progress smoothly and completely during the voltage range of 1.55-1.75 V, too. The capacity of this L-S battery discharged to 1.5 V is as much as 1700 mAh g -1 , which is very close to the theoretical value of sulfur cathode. The knowledge acquired in this study is valuable not only for the design of an efficient new polyelectrolyte binder for sulfur cathode but also the discovery that the discharge degree is the main fact that limits the capacity to reach its theoretical value.
Zheng, Shiyou; Han, Pan; Han, Zhuo; Zhang, Huijuan; Tang, Zhihong; Yang, Junhe
2014-04-29
High stable C/S composites are fabricated by a novel high-temperature sulfur infusion into micro-mesoporous carbon method following with solvent cleaning treatment. The C/S composite cathodes show high Coulombic efficiency, long cycling stability and good rate capability in the electrolyte of 1.0 M LiPF6 + EC/DEC (1:1 v/v), for instance, the reversible capacity of the treated C/S-50 (50% S) cathode retains around 860 mAh/g even after 500 cycles and the Coulombic efficiency is close to 100%, which demonstrates the best electrochemical performance of carbon-sulfur composite cathodes using the carbonate-based electrolyte reported to date. It is believed that the chemical bond of C-S is responsible for the superior electrochemical properties in Li-S battery, that is, the strong interaction between S and carbon matrix significantly improves the conductivity of S, effectively buffers the structural strain/stress caused by the large volume change during lithiation/delithiation, completely eliminates the formation of high-order polysulfide intermediates, and substantially avoids the shuttle reaction and the side reaction between polysulfide anions and carbonate solvent, and thus enables the C/S cathode to use conventional carbonate-based electrolytes and achieve outstanding electrochemical properties in Li-S battery. The results may substantially contribute to the progress of the Li-S battery technology.
Zhong, Lei; Yang, Kai; Guan, Ruiteng; Wang, Liangbin; Wang, Shuanjin; Han, Dongmei; Xiao, Min; Meng, Yuezhong
2017-12-20
Rechargeable lithium-sulfur (Li-S) batteries have been expected for new-generation electrical energy storages, which are attributed to their high theoretical energy density, cost effectiveness, and eco-friendliness. But Li-S batteries still have some problems for practical application, such as low sulfur utilization and dissatisfactory capacity retention. Herein, we designed and fabricated a foldable and compositionally heterogeneous three-dimensional sulfur cathode with integrated sandwich structure. The electrical conductivity of the cathode is facilitated by three different dimension carbons, in which short-distance and long-distance pathways for electrons are provided by zero-dimensional ketjen black (KB), one-dimensional activated carbon fiber (ACF) and two-dimensional graphene (G). The resultant three-dimensional sulfur cathode (T-AKG/KB@S) with an areal sulfur loading of 2 mg cm -2 exhibits a high initial specific capacity, superior rate performance and a reversible discharge capacity of up to 726 mAh g -1 at 3.6 mA cm -2 with an inappreciable capacity fading rate of 0.0044% per cycle after 500 cycles. Moreover, the cathode with a high areal sulfur loading of 8 mg cm -2 also delivers a reversible discharge capacity of 938 mAh g -1 at 0.71 mA cm -2 with a capacity fading rate of 0.15% per cycle and a Coulombic efficiency of almost 100% after 50 cycles.
NASA Astrophysics Data System (ADS)
He, Jiarui; Lv, Weiqiang; Chen, Yuanfu; Xiong, Jie; Wen, Kechun; Xu, Chen; Zhang, Wanli; Li, Yanrong; Qin, Wu; He, Weidong
2017-09-01
Three-dimensional, porous graphitic carbon co-doped with cobalt and nitrogen (C-Co-N) is prepared with metal-organic framework (MOF) and employed as Lewis base matrix to host selenium. Owing to the unique structure with abundant micro/meso-pores, the highly-conductive C-Co-N matrix provides highly-efficient channels for electron transfer and ionic diffusion, and sufficient surface area for loading of selenium nanoparticles while mitigating dissolution of polyselenides and suppressing volume expansion. The homogenous distribution of cobalt nanoparticles and nitrogen-group in C-Co-N composite immobilize polyselenides through strong chemical interaction in the operation of Li-Se batteries. With a very high Se loading of 76.5 wt%, the C-Co-N/Se cathode delivers superior electrochemical performance with an ultrahigh reversible capacity of 672.3 mAh g-1 (99.6% of the theoretical value) and a capacity of 574.2 mAh g-1 after 200 cycles, giving a capacity fading of only 0.07% per cycle and a nearly 100% Columbic efficiency. In-situ Raman spectroscopy and density functional theory simulations are employed to investigate the Se (de)lithiation mechanism at the electrolyte/cathode interface, and confirm that the structure and composition of C-Co-N scaffold give rise to efficient cathode host for high-performance Se-based cathodes with dramatically reduced capacity fading.
NASA Astrophysics Data System (ADS)
Ando, Keisuke; Matsuda, Tomoyuki; Imamura, Daichi
2018-06-01
Understanding the degradation factors (cathode and anode degradation and solid electrolyte interface (SEI) formation) of lithium-ion batteries (LIBs) with a blended cathode is necessary to improve their durability because battery drive vehicles often use LIBs with a blended cathode due to advantages of power and cost. We developed a dV/dQ curve analysis adapted for through a dQ/dV curve analysis to elucidate the relations between cycle test conditions and degradation factors. To compare said factors, cycle tests were conducted under different conditions: one charge/discharge rate (C/3), two state-of-charge (SoC) ranges (100%-0% and 100%-70%), and three temperatures (0 °C, 25 °C, and 45 °C). We confirmed that there are clear differences in the degree of contribution of each degradation factor depending on conditions. For instance, at 0 °C, although the capacity reduction rate was almost the same regardless of the SoC range, the degradation mechanisms were different, i.e., the cathode degradation and the SEI formation occurred at the same time, resulting in the reduced capacity for the 100%-0% SoC range, while capacity reduction was mainly due to SEI formation for the 100%-70% SoC range.
He, Jiarui; Chen, Yuanfu; Lv, Weiqiang; Wen, Kechun; Xu, Chen; Zhang, Wanli; Li, Yanrong; Qin, Wu; He, Weidong
2016-12-27
Owing to the high theoretical specific capacity (1166 mAh g -1 ), lithium sulfide (Li 2 S) has been considered as a promising cathode material for Li-S batteries. However, the polysulfide dissolution and low electronic conductivity of Li 2 S limit its further application in next-generation Li-S batteries. In this report, a nanoporous Li 2 S@C-Co-N cathode is synthesized by liquid infiltration-evaporation of ultrafine Li 2 S nanoparticles into graphitic carbon co-doped with cobalt and nitrogen (C-Co-N) derived from metal-organic frameworks. The obtained Li 2 S@C-Co-N architecture remarkably immobilizes Li 2 S within the cathode structure through physical and chemical molecular interactions. Owing to the synergistic interactions between C-Co-N and Li 2 S nanoparticles, the Li 2 S@C-Co-N composite delivers a reversible capacity of 1155.3 (99.1% of theoretical value) at the initial cycle and 929.6 mAh g -1 after 300 cycles, with nearly 100% Coulombic efficiency and a capacity fading of 0.06% per cycle. It exhibits excellent rate capacities of 950.6, 898.8, and 604.1 mAh g -1 at 1C, 2C, and 4C, respectively. Such a cathode structure is promising for practical applications in high-performance Li-S batteries.
Hatch, G.L.; Brummond, W.A.; Barrus, D.M.
1984-04-05
The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.
Qiao, Yi; Chen, Jie; Guo, Xiaoli; Cantrell, Donald; Ruoff, Rodney; Troy, John
2005-01-01
The fabrication and characterization of tungsten nanoelectrodes insulated with cathodic electrophoretic paint is described together with their application within the field of neurophysiology. The tip of a 127 μm diameter tungsten wire was etched down to less than 100 nm and then insulated with cathodic electrophoretic paint. Focused ion beam (FIB) polishing was employed to remove the insulation at the electrode’s apex, leaving a nanoscale sized conductive tip of 100–1000 nm. The nanoelectrodes were examined by scanning electron microscopy (SEM) and their electrochemical properties characterized by steady state linear sweep voltammetry. Electrode impedance at 1 kHz was measured too. The ability of a 700 nm tipped electrode to record well-isolated action potentials extracellularly from single visual neurons in vivo was demonstrated. Such electrodes have the potential to open new populations of neurons to study. PMID:16467926
NASA Technical Reports Server (NTRS)
Jahn, R. G.
1973-01-01
Direct measurement with thermocouples of the power deposited in the anode of a multi-megawatt magnetoplasmadynamic discharge has shown the fractional anode power to decrease from 50% at 200 kW to 10% at 20 MW. Using local measurements of current density, electric potential, and electron temperature, the traditional model for heat conduction to the anode is found to be inadequate. Other experiments in which the voltage-current characteristics and exhaust velocities of MPD arcs using Plexiglas and boron nitride chamber insulators and various mass injection configurations show that ablation can affect nominal accelerator operation in several distinct ways. The incorporation of a hollow cathode in a 7 kA plasma discharge has shown that a stable current attachment can be realized in the cavity without the aid of cathode heaters, keeper electrodes, or emissive coatings.
Kim, Jeonghyun; Song, Taeseup; Park, Hyunjung; Yuh, Junhan; Paik, Ungyu
2014-10-01
The Li2MnSiO4 is a promising candidate as a cathode for lithium ion batteries due to its large theoretical capacity of 330 mA h g(-1) and high thermal stability. However, the problems related to low electronic conductivity and large irreversible capacity at the first cycle limits its practical use as a Li-ion cathode material. We have developed a carbon coated Li2MnSiO4-graphene composite electrode to overcome these problems. Our designed electrode exhibits high reversible capacity of 301 mA h g(-1), with a high initial coulombic efficiency, and a discharge capacity at current rate of 0.5 C, that is double value of carbon coated Li2MnSiO4-carbon black composite electrode. These significant improvements are attributed to fast electron transport along the graphene sheet.
Ecton processes in the generation of pulsed runaway electron beams in a gas discharge
NASA Astrophysics Data System (ADS)
Mesyats, G. A.
2017-09-01
As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.
Magnetron cathodes in plasma electrode Pockels cells
Rhodes, M.A.
1995-04-25
Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.
Magnetron cathodes in plasma electrode pockels cells
Rhodes, Mark A.
1995-01-01
Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.
Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard
2015-01-01
In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533
Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.
Gong, Yunhui; Palacio, Diego; Song, Xueyan; Patel, Rajankumar L; Liang, Xinhua; Zhao, Xuan; Goodenough, John B; Huang, Kevin
2013-09-11
We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, Hailong; Li, Peipei; Liu, Jiurong
A composite organic cathode material based on aromatic polyimide (PI) and highly conductive graphene was prepared through a facile in situ polymerization method for application in lithium-ion batteries. The in situ polymerization generated intimate contact between PI and electronically conductive graphene, resulting in conductive composites with highly reversible redox reactions and good structure stability. The synergistic effect between PI and graphene enabled not only a high reversible capacity of 232.6 mAh g -1 at a charge–discharge rate of C/10 but also exceptionally high-rate cycling stability, that is, a high capacity of 108.9 mAh g -1 at a very high charge–dischargemore » rate of 50C with a capacity retention of 80 % after 1000 cycles. This improved electrochemical performance resulted from the combination of stable redox reversibility of PI and high electronic conductivity of the graphene additive. In conclusion, the graphene-based composite also exhibited much better performance than composites based on multi-walled carbon nanotubes and the conductive carbon black C45 in terms of specific capacity and long-term cycling stability under the same charge–discharge rates.« less
Lyu, Hailong; Li, Peipei; Liu, Jiurong; ...
2018-01-24
A composite organic cathode material based on aromatic polyimide (PI) and highly conductive graphene was prepared through a facile in situ polymerization method for application in lithium-ion batteries. The in situ polymerization generated intimate contact between PI and electronically conductive graphene, resulting in conductive composites with highly reversible redox reactions and good structure stability. The synergistic effect between PI and graphene enabled not only a high reversible capacity of 232.6 mAh g -1 at a charge–discharge rate of C/10 but also exceptionally high-rate cycling stability, that is, a high capacity of 108.9 mAh g -1 at a very high charge–dischargemore » rate of 50C with a capacity retention of 80 % after 1000 cycles. This improved electrochemical performance resulted from the combination of stable redox reversibility of PI and high electronic conductivity of the graphene additive. In conclusion, the graphene-based composite also exhibited much better performance than composites based on multi-walled carbon nanotubes and the conductive carbon black C45 in terms of specific capacity and long-term cycling stability under the same charge–discharge rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinsong; Dong, Qingfeng; Sao, Yuchuan
Continuous processes for fabricating a perovskite device are described that include using a doctor blade for continuously forming a perovskite layer and using a conductive tape lamination process to form an anode or a cathode layer on the perovskite device.
Wuest, Craig R.; Bionta, Richard M.; Ables, Elden
1994-01-01
An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.
Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David
2016-10-20
Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.
NASA Astrophysics Data System (ADS)
Yao, Bin; Ding, Zhaojun; Zhang, Jianxin; Feng, Xiaoyu; Yin, Longwei
2014-08-01
The severe capacity decay of LiFePO4 at low temperatures (≤0 °C) limits its wide applications as cathode materials for energy storage batteries. Creating comprehensive carbon network between particles with improved electronic conductivity is a well known solution to this problem. Here, a novel structured LiFePO4/C composite was prepared by a facile solid state route, in which nanosized LiFePO4 spheres were encapsulated by in-situ graphitized carbon cages. With the enhancement in electronic conductivity (2.15e-1 S cm-1), the composite presented excellent rate performance at room temperature and remarkable capacity retention at -40 °C, with charge transfer resistance much lower than commercial LiFePO4.
Wuest, C.R.; Bionta, R.M.; Ables, E.
1994-05-03
An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.
A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)
2016-10-01
Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.
Experimental study of the electrolysis of silicate melts
NASA Technical Reports Server (NTRS)
Keller, R.; Larimer, K. T.
1991-01-01
To produce oxygen from lunar resources, it may be feasible to melt and electrolyze local silicate ores. This possibility was explored experimentally with synthesized melts of appropriate compositions. Platinum electrodes were employed at a melt temperature of 1425 C. When silicon components of the melt were reduced, the platinum cathode degraded rapidly, which prompted the substitution of a graphite cathode substrate. Discrete particles containing iron or titanium were found in the solidified electrolyte after three hours of electrolysis. Electrolyte conductivities did not decrease substantially, but the escape of gas bubbles, in some cases, appeared to be hindered by high viscosity of the melt.
McElroy, James F.
1989-01-01
The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.
Advanced materials and design for low temperature SOFCs
Wachsman, Eric D.; Yoon, Heesung; Lee, Kang Taek; Camaratta, Matthew; Ahn, Jin Soo
2016-05-17
Embodiments of the invention are directed to SOFC with a multilayer structure comprising a porous ceramic cathode, optionally a cathodic triple phase boundary layer, a bilayer electrolyte comprising a cerium oxide comprising layer and a bismuth oxide comprising layer, an anion functional layer, and a porous ceramic anode with electrical interconnects, wherein the SOFC displays a very high power density at temperatures below 700.degree. C. with hydrogen or hydrocarbon fuels. The low temperature conversion of chemical energy to electrical energy allows the fabrication of the fuel cells using stainless steel or other metal alloys rather than ceramic conductive oxides as the interconnects.
Electrical Characteristics of a Seawater MHD Thruster
1990-06-01
rt tt % t1r (4k aia. da O :hityc, F iY#) 4.S7 ’outin, iljxJm mbr pud.ar v ~& OUi f th 4 fi.Lii1 11U.1, .1 :Ufrtt Of 10 4TIpt ure 1 ftn II 1 ( I- 4...cathode- the top surface as the anode; the sidewalls were made from non-conducting materials. This channel was fully submerged in the water flow. A...were fulls submerged in the water flow were also mnvestigated isee Fig 2(h). For both channels the bottom wall wa-as the cathode. the top wall the anode
Coated particles for lithium battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton
Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.
Li 2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries
Chen, Lin; Liu, Yuzi; Ashuri, Maziar; ...
2014-09-26
Using high-energy ball milling of the Li 2S plus carbon black mixture followed by carbonization of pyrrole, we have established a facile approach to synthesize Li 2S-plus-C composite particles of average size 400 nm, encapsulated by a nitrogen-doped carbon shell. Such an engineered core–shell structure exhibits an ultrahigh initial discharge specific capacity (1029 mAh/g), reaching 88% of the theoretical capacity (1,166 mAh/g of Li 2S) and thus offering the highest utilization of Li 2S in the cathode among all of the reported works for the encapsulated Li 2S cathodes. This Li 2S/C composite core with a nitrogen-doped carbon shell canmore » still retain 652 mAh/g after prolonged 100 cycles. These superior properties are attributed to the nitrogen-doped carbon shell that can improve the conductivity to enhance the utilization of Li 2S in the cathode. As a result, fine particle sizes and the presence of carbon black within the Li 2S core may also play a role in high utilization of Li 2S in the cathode.« less
High-Capacity, High-Voltage Composite Oxide Cathode Materials
NASA Technical Reports Server (NTRS)
Hagh, Nader M.
2015-01-01
This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.
NASA Astrophysics Data System (ADS)
Hilder, Matthias; Howlett, Patrick C.; Saurel, Damien; Gonzalo, Elena; Armand, Michel; Rojo, Teófilo; Macfarlane, Douglas R.; Forsyth, Maria
2017-05-01
A saturated solution of 2.3 M sodium bis(fluorosulfonyl)imide in trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide ionic liquid shows a high conductivity (0.94 mScm-1 at 50 °C), low ion association, and a wide operational temperature window (-71 °C-305 °C) making it a promising electrolyte for sodium battery applications. Cycling with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode display excellent performance at 50 °C outperforming conventional organic solvent based electrolytes in terms of capacities (at C/10) and long term cycle stability (at C/2). Post analysis of the electrolyte shows no measurable changes while the sodium metal anode and the cathode surface shows the presence of electrolyte specific elements after cycling, suggesting the formation of a stabilizing solid electrolyte interface. Additionally, cycling changes the topography and particle morphology of the cathode. Thus, the electrolyte properties and cell performance match or outperform previously reported results with the additional benefit of replacing the hazardous and flammable organic solvent solutions commonly employed.
Bakierska, Monika; Świętosławski, Michał; Dziembaj, Roman; Molenda, Marcin
2016-01-01
In this work, nanostructured LiMn2O4 (LMO) and LiMn2O3.99S0.01 (LMOS1) spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS) measurements as a function of state of charge (SOC) were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of the stoichiometric and sulphur-substituted lithium manganese oxide spinels were examined, and suggested explanations for the observed dependencies were given. A strong influence of sulphur introduction into the spinel structure on the chemical stability and electrochemical characteristic was observed. It was demonstrated that the significant improvement in coulombic efficiency and capacity retention of lithium cell with LMOS1 active material arises from a more stable solid electrolyte interphase (SEI) layer. Based on EIS studies, the Li ion diffusion coefficients in the cathodes were estimated, and the influence of sulphur on Li+ diffusivity in the spinel structure was established. The obtained results support the assumption that sulphur substitution is an effective way to promote chemical stability and the electrochemical performance of LiMn2O4 cathode material. PMID:28773819
NASA Astrophysics Data System (ADS)
Song, Xiong; Gao, Tuo; Wang, Suqing; Bao, Yue; Chen, Guoping; Ding, Liang-Xin; Wang, Haihui
2017-07-01
Lithium-sulfur (Li-S) batteries are regarded as a promising next-generation electrical-energy-storage technology due to their low cost and high theoretical energy density. Furthermore, flexible and wearable electronics urgently requires their power sources to be mechanically robust and flexible. However, the effective progress of high-performance, flexible Li-S batteries is still hindered by the poor conductivity of sulfur cathodes and the dissolution of lithium polysulfides as well as the weak mechanical properties of sulfur cathodes. Herein, a new type of flexible porous carbon nanofiber film modified with graphene and ultrafine polar TiO2 nanoparticles is designed as a sulfur host, in which the artful structure enabled the highly efficient dispersion of sulfur for a high capacity and a strong confinement capability of lithium polysulfides, resulting in prolonged cycle life. Thus, the cathode shows an extremely high initial specific discharge capacity of 1501 mA h g-1 at 0.1 C and an excellent rate capability of 668 mA h g-1 at 5 C as well as prolonged cycling stability. The artful design provides a facile method to fabricate high-performance, flexible sulfur cathodes for Li-S batteries.
Thin-film Rechargeable Lithium Batteries
DOE R&D Accomplishments Database
Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.
1993-11-01
Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.
Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F.
2017-01-01
Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS2) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene—SeS2 full cell is 81% after 1,500 cycles at 268 mA gSeS2−1. The achieved cathode capacity is 403 mAh gSeS2−1 (1,209 mAh cmSeS2−3). PMID:28054543
Song, Tian-Shun; Peng-Xiao; Wu, Xia-Yuan; Zhou, Charles C
2013-07-01
Sediment microbial fuel cells (SMFCs) could be used as power sources and one type of new technology for the removal of organic matters in sediments. In order to improve electrode materials and enhance their effect on the performance, we deposited multi-walled carbon nanotube (MWNT) on stainless steel net (SSN). Electrophoretic deposition technique as a method with low cost, process simplicity, and thickness control was used for this electrode modification and produced this novel SSN-MWNT electrode. The performances of SMFCs with SSN-MWNT as electrode were investigated. The results showed that the maximum power density of SMFC with SSN-MWNT cathode was 31.6 mW m(-2), which was 3.2 times that of SMFC with an uncoated stainless steel cathode. However, no significant increase in the maximum power density of SMFC with SSN-MWNT anode was detected. Further electrochemical analysis showed that when SSN-MWNT was used as the cathode, the cathodic electrochemical activity and oxygen reduction rate were significantly improved. This study demonstrates that the electrophoretic deposition of carbon nanotubes on conductive substrate can be applied for improving the performance of SMFC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Junkai; Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn; Fan, Weiwei
The structural and electrochemical properties of the layered perovskite oxides LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) were investigated to study the effects of substituting Sb for Co for application as cathode materials in intermediate temperature solid oxide fuel cells (IT-SOFCs). The results of crystal structure analyses show the maximum content of Sb in LaSrCo{sub 1−x}Sb{sub x}O{sub 4} to be 0.05 as a pure single phase. XPS shows that Co and Sb in LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} may possess mixed-oxidation states. The electrical conductivity increased greatly after Sb substitution. An improvement in the cathode polarization (R{sub p}) values is observed from themore » Sb-doped sample with respect to the undoped samples. For example, R{sub p} of LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} on LSGM was observed to be 0.16 Ω cm{sup 2} at 800 °C in air. The main rate-limiting step for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} cathode is charge transfer of oxygen atoms. These results indicate that Sb can be incorporated into LaSrCo{sub 1−x}Sb{sub x}O{sub 4} based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode materials in IT-SOFCs. - Graphical abstract: The oxygen partial pressure dependence of polarization resistances for a new layered perovskite cathode LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at various temperatures was measured. - Highlights: • The maximum content of Sb was 0.05 mol in LaSrCo{sub 1−x}Sb{sub x}O{sub 4}. • The maximum electrical conductivity is 194 S cm{sup −1}for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at 800 °C. • A rate-limiting process of charge transfer presented.« less
Bernuy-Lopez, Carlos; Rioja-Monllor, Laura; Nakamura, Takashi; Ricote, Sandrine; O’Hayre, Ryan; Amezawa, Koji; Einarsrud, Mari-Ann
2018-01-01
The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3−δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3−δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3−δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm2 at 400 °C and 0.16 and 0.32 Ω·cm2 at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3−δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration. PMID:29373541
Liu, Hanshuo; Bugnet, Matthieu; Tessaro, Matteo Z; Harris, Kristopher J; Dunham, Mark J R; Jiang, Meng; Goward, Gillian R; Botton, Gianluigi A
2016-10-26
Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNi x Mn y Co 1-x-y O 2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni 2+ (active) and Co 3+ (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive 7 Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to the electrochemical cycling effect, electrolyte exposure also shows non-negligible influence on cathode surface degradation. These chemical and structural changes of the NMC cathode could contribute to the first-cycle coulombic inefficiency, restrict the charge transfer characteristics and ultimately impact the cell capacity.
Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells.
Yuan, Pengyi; Kim, Younggy
2017-01-01
Microbial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode. High local pH conditions near the cathode can also be utilized to produce struvite from nutrient-rich wastewater. This beneficial aspect was investigated using lab-scale MECs fed with dewatering centrate collected at a local wastewater treatment plant. The main objective was to improve phosphorus recovery by examining various cathode configurations and electric current conditions. The stainless steel mesh (SSM) cathode was relatively inefficient to achieve complete phosphorus recovery because struvite crystals were smaller (a few to tens of micrometers) than the open space between mesh wires (80 µm). As a result, the use of multiple pieces of SSM also showed a limited improvement in the phosphorus recovery up to only 68% with 5 SSM pieces. Readily available organic substrates were not sufficient in the dewatering centrate, resulting in relatively low electric current density (mostly below 0.2 A/m 2 ). The slow electrode reaction did not provide sufficiently high pH conditions near the cathode for complete recovery of phosphorus as struvite. Based on these findings, additional experiments were conducted using stainless steel foil (SSF) as the cathode and acetate (12 mM) as an additional organic substrate for exoelectrogens at the bioanode. With the high electric current (>2 A/m 2 ), a thick layer of struvite crystals was formed on the SSF cathode. The phosphorus recovery increased to 96% with the increasing MEC operation time from 1 to 7 days. With the high phosphorus recovery, estimated energy requirement was relatively low at 13.8 kWh (with acetate) and 0.30 kWh (without acetate) to produce 1 kg struvite from dewatering centrate. For efficient phosphorus recovery from real wastewater, a foil-type cathode is recommended to avoid potential losses of small struvite crystals. Also, presence of readily available organic substrates is important to maintain high electric current and establish high local pH conditions near the cathode. Struvite precipitation was relatively slow, requiring 7 days for nearly complete removal (92%) and recovery (96%). Future studies need to focus on shortening the time requirement.
NASA Astrophysics Data System (ADS)
Fujii, Keitaro; Ito, Mizuki; Sato, Yasushi; Takenaka, Sakae; Kishida, Masahiro
2015-04-01
Pd metal particles supported on a high surface area carbon black (Pd/CB) were covered with silica layers to improve the durability under severe cathode condition of proton exchange membrane fuel cells (PEMFCs). The performance and the durability of the silica-coated Pd/CB (SiO2/Pd/CB) were investigated by rotating disk electrode (RDE) in aqueous HClO4 and single cell test of the membrane-electrode assemblies (MEAs). SiO2/Pd/CB showed excellent durability exceeding Pt/CB during potential cycle in single cell test as well as in RDE measurement while Pd/CB significantly degraded. Furthermore, the MEA using SiO2/Pd/CB as the cathode catalyst showed higher performance than that using Pd/CB even in the initial state. The catalytic activity of SiO2/Pd/CB was higher than that of Pd/CB, and the drop of the cell performances due to the inhibition of electron conduction, proton conduction, and oxygen diffusion by the silica layer was not significant. It has been shown that the silica-coating is a very practical technique that can stabilize metal species originally unstable in the cathode condition of PEMFCs without a decrease in the cell performance.
Li, Haipeng; Sun, Liancheng; Wang, Zhuo; Zhang, Yongguang; Tan, Taizhe; Wang, Gongkai
2018-01-01
A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO) was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D) interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g−1 at 0.1 C and can retain a capacity of 765 mAh g−1 after 100 cycles in potential range from 1 V to 3 V. PMID:29373525
Electronically conductive ceramics for high temperature oxidizing environments
Kucera, Gene H.; Smith, James L.; Sim, James W.
1986-01-01
A high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.
Analysis of a Mouse α-Globin Gene Mutation Induced by Ethylnitrosourea
Popp, R. A.; Bailiff, E. G.; Skow, L. C.; Johnson, F. M.; Lewis, Susan E.
1983-01-01
A DBA/2 mouse treated with ethylnitrosourea sired an offspring whose hemoglobin showed an extra band following starch gel electrophoresis. The variant hemoglobin migrated to a more cathodal position in starch gel. Isoelectric focusing indicated that chain 5 of the mutant hemoglobin migrated to a more cathodal position than the normal chain 5 from DBA/2 mice and that the other α-globin, chain 1, was not affected. On focusing gels the phenotype of the mutant allele, Hbay9, was expressed without dominance to normal chain 5, and Hbay9/Hbay9 homozygotes were fully viable in the laboratory. The molecular basis for the germinal mutation was investigated by analyzing the amino acid sequence of chain 5y9, the mutant form of α-chain 5. A single amino acid substitution (His → Leu) at position 89 was found in chain 5y9. We propose that ethylnitrosourea induced an A → T transversion in the histidine codon at position 89 (CAC → CTC). This mutation has apparently not been observed previously in humans, mice or other mammals, and its novel occurrence may be indicative of other unusual mutational events that do not ordinarily occur in the absence of specific mutagen exposure. PMID:6618166
A core–shell electrode for dynamically and statically stable Li–S battery chemistry
Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
2016-08-17
Sulfur is an appealing cathode material for establishing advanced lithium batteries as it offers a high theoretical capacity of 1675 mA h g -1 at low material and operating costs. However, the lithium–sulfur (Li–S) electrochemical cells face several formidable challenges arising from both the materials chemistry (e.g., low electrochemical utilization of sulfur and severe polysulfide diffusion) and battery chemistry (e.g., dynamic and static instability and low sulfur loadings). Here in this study, we present the design of a core–shell cathode with a pure sulfur core shielded within a conductive shell-shaped electrode. The new electrode configuration allows Li–S cells to loadmore » with a high amount of sulfur (sulfur loadings of up to 30 mg cm -2 and sulfur content approaching 70 wt%). The core–shell cathodes demonstrate a superior dynamic and static electrochemical stability in Li–S cells. The high-loading cathodes exhibit (i) a high sulfur utilization of up to 97% at C/20–C/2 rates and (ii) a low self-discharge during long-term cell storage for a three-month rest period and at different cell-storage conditions. Finally, a polysulfide-trap cell configuration is designed to evidence the eliminations of polysulfide diffusion and to investigate the relationship between the electrode configuration and electrochemical characteristics. Finally, the comprehensive analytical results based on the high-loading cathodes suggest that (i) the core–shell cathode is a promising solution for designing highly reversible Li–S cells and (ii) the polysulfide-trap cell configuration is a viable approach to qualitatively evaluating the presence or absence of polysulfide diffusion.« less
Cathode Characterization with Steel and Copper Collector Bars in an Electrolytic Cell
NASA Astrophysics Data System (ADS)
Das, Subrat; Morsi, Yos; Brooks, Geoffrey
2013-12-01
This article presents finite-element method simulation results of current distribution in an aluminum electrolytic cell. The model uses one quarter of the cell as a computational domain assuming longitudinal (along the length of the cell) and transverse axes of symmetries. The purpose of this work is to closely examine the impact of steel and copper collector bars on the cell current distribution. The findings indicated that an inclined steel collector bar (φ = 1°) can save up to 10-12 mV from the cathode lining in comparison to a horizontal 100 mm × 150-mm steel collector bar. It is predicted that a copper collector bar has a much higher potential of saving cathode voltage drop (CVD) and has a greater impact on the overall current distribution in the cell. A copper collector bar with 72% of cathode length and size of 100 mm × 150 mm is predicted to have more than 150 mV savings in cathode lining. In addition, a significant improvement in current distribution over the entire cathode surface is achieved when compared with a similar size of steel collector bar. There is a reduction of more than 70% in peak current density value due to the higher conductivity of copper. Comparisons between steel and copper collector bars with different sizes are discussed in terms CVD and current density distribution. The most important aspect of the findings is to recognize the influence of copper collector bars on the current distribution in molten metal. Lorentz fields are evaluated at different sizes of steel and copper collector bars. The simulation predicts that there is 50% decrease in Lorentz force due to the improvement in current distribution in the molten metal.
Quantification of the internal resistance distribution of microbial fuel cells.
Fan, Yanzhen; Sharbrough, Evan; Liu, Hong
2008-11-01
Identifying the limiting factors in a microbial fuel cell (MFC) system requires qualifying the contribution of each component of an MFC to internal resistance. In this study, a new method was developed to calculate the internal resistance distribution of an MFC. Experiments were conducted to identify the limiting factors in single-chamber MFCs by varying the anode surface areas, cathode surface areas, and phosphate buffer concentrations. For the MFCs with equally sized electrodes (7 cm2) and 200 mM phosphate buffer, the anode contributed just 5.4% of the internal resistance, while the cathode and the electrolyte each contributed 47.3%, indicating that the anode was not the limiting factor in power generation. The limitation of the cathode was further revealed by the 780% higher area-specific resistance (284.4 omega cm2) than the 32.3 omega cm2 of the anode. The electrolyte limitation was also evidenced by the greatly increased contribution of electrolyte in internal resistance from 47.3 to 78.2% when the concentration of phosphate buffer was decreased from 200 to 50 mM. An anodic power density of 6860 mW/m2 was achieved at a current density of 2.62 mA/cm2 using the MFCs with an anode/cathode area ratio of 1/14 and 200 mM phosphate buffer. The method was also successfully applied to analyze the internal resistance distribution of the two chamber MFCs from a previously reported study. The comparison of the internal resistances of the two air cathode systems indicates that the much lower resistances, including anode, cathode, and membrane resistances, contributed to the much better performance of the single-chamber MFCs than the two-chamber system.
Experimental Investigation of Pseudospark generated electron beam
NASA Astrophysics Data System (ADS)
Kumar, Niraj; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.; Pal, U. N.
2012-11-01
The pseudospark (PS) discharge is, however, more recently recognized as a different type of discharge which is capable of generating electron beams with the highest combined current density and brightness of any known type of electron source. PS discharge is a specific type of gas discharge, which operates on the left-hand side of the hollow cathode analogy to the Paschen curve with axially symmetric parallel electrodes and central holes on the electrodes. The PS discharge generated electron beam has tremendous applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been carried out experimentally for different applied voltages. The investigation has been done at different axial and radial location inside the drift tube in argon atmosphere. This paper represents experimentally derived axial and radial variation of the beam current inside the plasma filled drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed. It has been further confirmed the successful propagation of electron beam in confined manner without any assistance of external magnetic field.
Negassi, K; Closs, O; Harboe, M
1979-01-01
Cross-reactions between serum proteins and water soluble liver antigens of the nine-banded armadillo (Dasypus novemcinctus Linn.) and man were studied by crossed immunoelectrophoresis (CIE). Armadillo serum tested with rabbit antiserum against human serum proteins gave twelve components in CIE. Nine of these cross-reacting proteins were identified and showed partial identity with the corresponding human proteins. The electrophoretic mobility of alpha 2-macroglobulin and Gc-globulin differed in the two species. An ultrasonicate of normal armadillo liver gave twenty-eight anodic and eight cathodic components in CIE. By absorption experiments with armadillo serum, twenty of the former and seven of the latter were shown to be liver tissue components. A combination of CIE and crossed-line immunoelectrophoresis (CLIE) revealed the presence of twelve anodic and six cathodic liver tissue components cross-reacting with man. A cathodic armadillo liver antigen called (CALA-17) showed partial identity with that of man both in tandem and fused rocket immunoelectrophoresis. The implications of the findings are discussed in relation to the use of armadillo-grown M. leprae for skin testing and other purposes in man. Images FIG. 1 FIG. 3 FIG. 4 FIG. 5 PMID:93527
NASA Technical Reports Server (NTRS)
Kerber, Florian; Lindler, Don; Bristow, Paul; Lembke, Dominik; Nave, Gillian; Reader, Joseph; Sansonetti, Craig J.; Heap, Sara R.; Rosa, Michael R.; Wood, H. John
2006-01-01
The Space Telescope European Coordinating Facility (ST-ECF) and National Institute of Standards and Technology (NIST) are collaborating to study hollow cathode calibration lamps as used onboard the Hubble Space Telescope (HST). As part of the STIS Calibration Enhancement (STIS-CE) Project we are trying to improve our understanding of the performance of hollow cathode lamps and the physical processes involved in their long term operation. The original flight lamps from the Faint Object Spectrograph (FOS) and the Goddard High Resolution Spectrograph (GHRS) are the only lamps that have ever been returned to Earth after extended operation in space. We have taken spectra of all four lamps using NIST s 10.7-m normal-incidence spectrograph and Fourier transform spectrometer (FTS) optimized for use in the ultraviolet (UV). These spectra, together with spectra archived from six years of on-orbit operations and pre-launch spectra, provide a unique data set - covering a period of about 20 years - for studying aging effects in these lamps. Our findings represent important lessons for the choice and design of calibration sources and their operation in future UV and optical spectrographs in space.
Advanced Nanofiber-Based Lithium-Ion Battery Cathodes
NASA Astrophysics Data System (ADS)
Toprakci, Ozan
Among various energy storage technologies, rechargeable lithium-ion batteries have been considered as effective solution to the increasing need for high-energy density electrochemical power sources. Rechargeable lithium-ion batteries offer energy densities 2 - 3 times and power densities 5 - 6 times higher than conventional Ni-Cd and Ni-MH batteries, and as a result, they weigh less and take less space for a given energy delivery. However, the use of lithium-ion batteries in many large applications such as electric vehicles and storage devices for future power grids is hindered by the poor thermal stability, relatively high toxicity, and high cost of lithium cobalt oxide (LiCoO2) powders, which are currently used as the cathode material in commercial lithium-ion batteries. Recently, lithium iron phosphate (LiFePO 4) powders have become a favorable cathode material for lithium-ion batteries because of their low cost, high discharge potential (around 3.4 V versus Li/Li+), large specific capacity (170 mAh g -1), good thermal stability, and high abundance with the environmentally benign and safe nature. As a result, there is a huge demand for the production of high-performance LiFePO4. However, LiFePO4 also has its own limitation such as low conductivity (˜10-9 S cm -1), which results in poor rate capability. To address this problem, various approaches can be used such as decreasing particle size of LiFePO 4, doping LiFePO4 with metal ions or coating LiFePO 4 surface with carboneous materials. Formation of conductive layer on LiFePO4 and decreasing particle size are promising approaches due to their superior contribution to electrical conductivity and electrochemical performance of LiFePO4. Although different approaches can be used for surface coating and particle size decrement, electrospinning can be potentially considered as an efficient, simple and inexpensive way. In this study, LiFePO 4/carbon and carbon nanotube- and graphene-loaded electrospun LiFePO 4/carbon composite nanofibers were synthesized by using a combination of sol-gel and electrospinning. During the material preparation, polyacrylonitrile (PAN) was used as an electrospinning media and a carbon source. LiFePO 4 precursor materials and/or conductive materials (carbon nanotubes and graphene) and PAN were dissolved in N,N-dimethylformamide separately and they were mixed before electrospinning. LiFePO4 precursor/PAN fibers were heat treated, during which LiFePO4 precursor transformed to energy-storage LiFePO4 material and PAN was converted to carbon. The surface morphology, microstructure and electrochemical performance of the materials were analyzed. Compared with conventional powder based positive electrodes, the novel LiFePO4/C composite nanofiber cathodes possess better electrochemical performance. Furthermore, the newly developed LiFePO 4/C composite nanofibers are easy to fabricate, highly controllable, and can be used in practical Lithium-ion battery applications. In addition to LiFePO4, more recent efforts have been directed to mixed form of layered lithiummetal oxides (Li-Ni-Mn-Co). Nickel and manganese are of importance because of their lower cost, safety and higher abundance in nature. These new cathodes offer noticeable improvement in the capacity and cycling behavior. In these cathodes, LiNi1/3Co1/3Mn 1/3O2 attracted significant interest because of its good electrochemical properties such as high capacity, prolonged cycling life, and so on. On the other hand, it has some disadvantages such as instability at high voltages and high current densities. To overcome these problems, synthesis of layered Li-rich composite materials such as xLi2MnO3˙(1-x)LiCo 1/3Ni1/3Mn1/3O2 can be a promising approach. In this study, various xLi2MnO3˙(1-x)LiCo 1/3Ni1/3Mn1/3O2 (x=0.1, 0.2, 0.3, 0.4, 0.5) composite cathode materials were prepared by a one-step sol-gel route. Morphology, microstructure and electrochemical behavior of these cathode materials were evaluated. The resultant cathode material shows good electrochemical performance. Relatively low cost and simple preparation route make new xLi2MnO3˙(1-x)LiMn1/3Ni 1/3Co1/3O2 composite materials possible to use as potential cathode candidate for lithium-ion batteries.
Composite cathode materials development for intermediate temperature solid oxide fuel cell systems
NASA Astrophysics Data System (ADS)
Qin, Ya
Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have about twice the exchange current density of composite SSC-LSGMC/LSGMC interfaces at 700°C. In this research effort, it has been found that: (1) the glycine-nitrate combustion process is favorable to produce perovskite-type oxide powders with good phase purity and negligible intermediate or contaminant phases; (2) The electrochemical performance for both the SSC-LSGMC and LSCF-LSGMC composite electrode materials on LSGMC confirm their potential for use in intermediate temperature SOFC applications; (3) The composite LSCF-LSGMC electrode exhibited much higher current density than the composite SSC-LSGMC electrode in the current dc polarization measurements; and (4) Primary market study results showed promising commercialization feasibility of these new materials sets, provided production is scaled up (with dramatic cost reductions).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurapov, Denis; Reiss, Jennifer; Trinh, David H.
2007-07-15
Alumina thin films were deposited onto tempered hot working steel substrates from an AlCl{sub 3}-O{sub 2}-Ar-H{sub 2} gas mixture by plasma-assisted chemical vapor deposition. The normalized ion flux was varied during deposition through changes in precursor content while keeping the cathode voltage and the total pressure constant. As the precursor content in the total gas mixture was increased from 0.8% to 5.8%, the deposition rate increased 12-fold, while the normalized ion flux decreased by approximately 90%. The constitution, morphology, impurity incorporation, and the elastic properties of the alumina thin films were found to depend on the normalized ion flux. Thesemore » changes in structure, composition, and properties induced by normalized ion flux may be understood by considering mechanisms related to surface and bulk diffusion.« less
Advanced electric propulsion and space plasma contactor research
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.
1987-01-01
A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.
Electrically conductive concrete : a laboratory study.
DOT National Transportation Integrated Search
1987-01-01
In the cathodic protection of existing reinforced concrete bridge decks, there is a need for a simple secondary-anode system to facilitate the distribution of direct current over the structure being protected. It is believed that a durable, electrica...
Mandal, Braja K.; Filler, Robert
2004-06-08
The present invention provides for a battery having an anode, a cathode, and a flame-retarding electrolyte with a conductivity greater than about 10.sup.-3 S/cm at ambient temperature and which includes a compound that chemically interferes with flame propagation.
Secondary emission electron gun using external primaries
Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY
2009-10-13
An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.
Secondary emission electron gun using external primaries
Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY; Kewisch, Jorg [Wading River, NY; Chang, Xiangyun [Middle Island, NY
2007-06-05
An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.
NASA Technical Reports Server (NTRS)
Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz
1991-01-01
A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.
Performance Evaluation of a 50kW Hall Thruster
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Jankovsky, Robert S.
1999-01-01
An experimental investigation was conducted on a laboratory model Hall thruster designed to operate at power levels up to 50 kW. During this investigation the engine's performance was characterized over a range of discharge currents from 10 to 36 A and a range of discharge voltages from 200 to 800 V Operating on the Russian cathode a maximum thrust of 966 mN was measured at 35.6 A and 713.0 V. This corresponded to a specific impulse of 3325 s and an efficiency of 62%. The maximum power the engine was operated at was 25 kW. Additional testing was conducted using a NASA cathode designed for higher current operation. During this testing, thrust over 1 N was measured at 40.2 A and 548.9 V. Several issues related to operation of Hall thrusters at these high powers were encountered.
A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries
Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)
2016-01-01
Lithium–sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium–sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles. PMID:27762261
NASA Astrophysics Data System (ADS)
Rosaiah, P.; Hussain, O. M.; Zhu, Jinghui; Qiu, Yejun
2017-08-01
Lithium iron phosphate (Li x FePO4) is synthesized by a solid-state reaction method. The structural, electrical and electrochemical properties are studied in detail. It is found that the increment of lithium concentration (up to x = 1.05) does not affect the structure of LiFePO4 but improves its electrical conductivity as well as electrochemical performance. Surface morphological studies exhibited the formation of rod-like nanoparticles with small size. Electric and dielectric properties are also investigated over a frequency range of 1 Hz-1 MHz at different temperatures. The conductivity increased with increasing temperature, which follows the Arrhenius relation with the activation energy of about 0.31 eV. And the electrochemical tests found that the Li1.05FePO4 cathode possessed improved discharge capacity with better cycling performance.
Fischer, Michael G; Hua, Xiao; Wilts, Bodo D; Castillo-Martínez, Elizabeth; Steiner, Ullrich
2018-01-17
Lithium iron phosphate (LFP) is currently one of the main cathode materials used in lithium-ion batteries due to its safety, relatively low cost, and exceptional cycle life. To overcome its poor ionic and electrical conductivities, LFP is often nanostructured, and its surface is coated with conductive carbon (LFP/C). Here, we demonstrate a sol-gel based synthesis procedure that utilizes a block copolymer (BCP) as a templating agent and a homopolymer as an additional carbon source. The high-molecular-weight BCP produces self-assembled aggregates with the precursor-sol on the 10 nm scale, stabilizing the LFP structure during crystallization at high temperatures. This results in a LFP nanonetwork consisting of interconnected ∼10 nm-sized particles covered by a uniform carbon coating that displays a high rate performance and an excellent cycle life. Our "one-pot" method is facile and scalable for use in established battery production methodologies.
NASA Astrophysics Data System (ADS)
Li, Na; Wang, Yanping; Rao, Richuan; Dong, Xiongzi; Zhang, Xianwen; Zhu, Sane
2017-03-01
The graphene coated NaTi2(PO4)3 has been fabricated via a simple sol-gel process followed by calcination. The NaTi2(PO4)3/graphene (NTP/G) composite is used directly as cathode electrode material for lithium-ion battery and the electrochemical properties of the composite in this system is firstly studied in detail. In the charge-discharge process, two Li+ can occupy octahedral M (2) site and be reversibly intercalated into the 3D framework of NTP through the ion conduction channel where almost all of Na+ are immobilized to sustain the framework. At 5C rate, the capacity retention of the NTP/G composite after 800 cycles is still up to 82.7%. The superior electrochemical properties of NTP/G is ascribed to its stable 3-D framework and the enhanced electronic conduction resulting from the graphene sheets surface modification.
Jiang, Long; Wang, Jie; Xiong, Xiaolei; ...
2016-01-21
Here, the present study reports thermal and electrical properties of Sr 1-xYxCoO 2.5+δ (x = 0–0.40) as a promising cathode for intermediatetemperature solid oxide fuel cells. The results show that x = 0.10 is the best composition possessing a single primitive cubic perovskite structure, stable conductivity and the lowest polarization resistance. Thermogravimetric analysis indicates an oxygen intake from RT to ~375°C, above which oxygen loss occurs. The oxygen gain-loss behavior corresponds well with the conductivity increase-decrease trending, reflecting that oxygen-nonstoichiometry controls the hole-concentration (or oxidation-state of Co-ions). Electrochemical impedance spectroscopy analysis further reveals that the overall ORR polarization consists ofmore » a faster charge-transfer and a slower surface oxygen exchange.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Long; Wang, Jie; Xiong, Xiaolei
Here, the present study reports thermal and electrical properties of Sr 1-xYxCoO 2.5+δ (x = 0–0.40) as a promising cathode for intermediatetemperature solid oxide fuel cells. The results show that x = 0.10 is the best composition possessing a single primitive cubic perovskite structure, stable conductivity and the lowest polarization resistance. Thermogravimetric analysis indicates an oxygen intake from RT to ~375°C, above which oxygen loss occurs. The oxygen gain-loss behavior corresponds well with the conductivity increase-decrease trending, reflecting that oxygen-nonstoichiometry controls the hole-concentration (or oxidation-state of Co-ions). Electrochemical impedance spectroscopy analysis further reveals that the overall ORR polarization consists ofmore » a faster charge-transfer and a slower surface oxygen exchange.« less
Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries
Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T
2013-10-08
Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.
The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.
Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor
2015-12-08
Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.
The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells
Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor
2015-01-01
Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258
Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; ...
2016-04-29
Single nanowires of two manganese oxide polymorphs (α-MnO 2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO 2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO 2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between thismore » electrochemical performance, the electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li + diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li +.« less
Carlsten, R.W.; Nissen, D.A.
1973-03-06
The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.
Electronically conductive ceramics for high temperature oxidizing environments
Kucera, G.H.; Smith, J.L.; Sim, J.W.
1983-11-10
This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.
Huie, Matthew M.; Cama, Christina A.; Smith, Paul F.; ...
2016-10-01
Magnesium – ion batteries have the potential for high energy density but require new types of electrolytes for practical application. Ionic liquid (IL) electrolytes offer the opportunity for increased safety and broader voltage windows relative to traditional electrolytes. We present here a systematic study of both the conductivity and oxidative stability of hybrid electrolytes consisting of eleven ILs mixed with dipropylene glycol dimethylether (DPGDME) or acetonitrile (ACN) cosolvents and magnesium bis(trifluoromethylsulfonyl)imide (Mg(TFSI) 2). Our study finds a correlation of higher conductivity of ILs with unsaturated rings and short carbon chain lengths, but by contrast, these ILs also exhibited lower oxidationmore » voltage limits. For the cosolvent additive, although glymes have a demonstrated capability of coordination with Mg 2+ ions, a decrease in conductivity compared to acetonitrile hybrid electrolytes was observed. Lastly, when cycled within the appropriate voltage range, the IL-hybrid electrolytes that show the highest conductivity provide the best cathode magnesiation current densities and lowest polarization as demonstrated with a Mg 0.15MnO 2 and Mg 0.07V 2O 5 cathodes.« less
The design of an electron gun switchable between immersed and Brillouin flowa)
NASA Astrophysics Data System (ADS)
Becker, R.; Kester, O.
2012-02-01
An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A/cm2 at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB6 as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A/cm2. By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself - remember the "super-compression" reported on CRYEBIS-I - any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).
The design of an electron gun switchable between immersed and Brillouin flow.
Becker, R; Kester, O
2012-02-01
An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A∕cm(2) at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB(6) as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A∕cm(2). By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself--remember the "super-compression" reported on CRYEBIS-I--any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).