Control logic for exhaust gas driven turbocharger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeff, G.A.
1991-12-31
This patent describes a method of controlling an exhaust gas driven turbocharger supplying charge air for an internal combustion engine powering vehicle, the turbocharger being adjustable from a normal mode to a power mode in which the charge air available to the engine during vehicle acceleration is increased over that available when the turbocharger is in the normal mode, the vehicle including engine power control means switchable by the vehicle operator from a normal mode to a power mode so that the vehicle operator may selectively elect either the normal mode or the power mode, comprising the steps of measuringmore » the speed of the vehicle, permitting the vehicle operator to elect either the power mode or the normal mode for a subsequent vehicle acceleration, and then adjusting the turbocharger to the power mode when the speed of the vehicle is less than a predetermined reference speed and the vehicle operator has elected to power mode to increase the charge air available to the engine and thereby increasing engine power on a subsequent acceleration of the vehicle.« less
14 CFR 23.65 - Climb: All engines operating.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Climb: All engines operating. 23.65 Section... Climb: All engines operating. (a) Each normal, utility, and acrobatic category reciprocating engine... than maximum continuous power on each engine; (2) The landing gear retracted; (3) The wing flaps in the...
14 CFR 23.65 - Climb: All engines operating.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Climb: All engines operating. 23.65 Section... Climb: All engines operating. (a) Each normal, utility, and acrobatic category reciprocating engine... than maximum continuous power on each engine; (2) The landing gear retracted; (3) The wing flaps in the...
14 CFR 27.65 - Climb: all engines operating.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Climb: all engines operating. 27.65 Section... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.65 Climb: all engines operating. (a...) With maximum continuous power on each engine; (ii) With the landing gear retracted; and (iii) For the...
14 CFR 27.65 - Climb: all engines operating.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Climb: all engines operating. 27.65 Section... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Performance § 27.65 Climb: all engines operating. (a...) With maximum continuous power on each engine; (ii) With the landing gear retracted; and (iii) For the...
Internal combustion engine controls for reduced exhausts contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, D.R. Jr.
1974-06-04
An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less
14 CFR 137.51 - Operation over congested areas: General.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engine aircraft must be operated as follows: (i) Except for helicopters, no person may take off a loaded... effective length of the runway from any point on takeoff up to the time of attaining, with all engines operating at normal takeoff power, 105 percent of the minimum control speed with the critical engine...
14 CFR 137.51 - Operation over congested areas: General.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engine aircraft must be operated as follows: (i) Except for helicopters, no person may take off a loaded... effective length of the runway from any point on takeoff up to the time of attaining, with all engines operating at normal takeoff power, 105 percent of the minimum control speed with the critical engine...
14 CFR 137.51 - Operation over congested areas: General.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine aircraft must be operated as follows: (i) Except for helicopters, no person may take off a loaded... effective length of the runway from any point on takeoff up to the time of attaining, with all engines operating at normal takeoff power, 105 percent of the minimum control speed with the critical engine...
14 CFR 137.51 - Operation over congested areas: General.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engine aircraft must be operated as follows: (i) Except for helicopters, no person may take off a loaded... effective length of the runway from any point on takeoff up to the time of attaining, with all engines operating at normal takeoff power, 105 percent of the minimum control speed with the critical engine...
14 CFR 137.51 - Operation over congested areas: General.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine aircraft must be operated as follows: (i) Except for helicopters, no person may take off a loaded... effective length of the runway from any point on takeoff up to the time of attaining, with all engines operating at normal takeoff power, 105 percent of the minimum control speed with the critical engine...
40 CFR 86.1910 - How must I prepare and test my in-use engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (including auxiliary loads such as air conditioning in the cab), normal ambient conditions, and the normal... engines? 86.1910 Section 86.1910 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... document that the owner/operator of the prospective test vehicle has a history of normally using the fuel...
Method and system for monitoring and displaying engine performance parameters
NASA Technical Reports Server (NTRS)
Abbott, Terence S. (Inventor); Person, Jr., Lee H. (Inventor)
1991-01-01
The invention is a method and system for monitoring and directly displaying the actual thrust produced by a jet aircraft engine under determined operating conditions and the available thrust and predicted (commanded) thrust of a functional model of an ideal engine under the same determined operating conditions. A first set of actual value output signals representative of a plurality of actual performance parameters of the engine under the determined operating conditions is generated and compared with a second set of predicted value output signals representative of the predicted value of corresponding performance parameters of a functional model of the engine under the determined operating conditions to produce a third set of difference value output signals within a range of normal, caution, or warning limit values. A thrust indicator displays when any one of the actual value output signals is in the warning range while shaping function means shape each of the respective difference output signals as each approaches the limit of the respective normal, caution, and warning range limits.
Organic rankine cycle system for use with a reciprocating engine
Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.
2006-01-17
In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.
NASA Technical Reports Server (NTRS)
Wallhagen, R. E.; Arpasi, D. J.
1974-01-01
The design and evaluation are described of a digital turbojet engine control which is capable of sensing catastrophic failures in either the engine rotor speed or the compressor discharge static-pressure signal and is capable of switching control modes to maintain near normal operation. The control program was developed for and tested on a turbojet engine located in a sea-level test stand. The control program is also capable of acquiring all the data that are necessary for the fail-operational control to function.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2015-01-01
This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.
Cockpit noise intensity : eleven twin-engine light aircraft.
DOT National Transportation Integrated Search
1968-10-01
Eleven of the most popular twin-engine general-aviation light aircraft were tested for the noise intensity present during normal cruising operations at 2000, 6000, and 10000 feet MSL (mean sea level). Although generally quieter than single-engine pla...
14 CFR 33.87 - Endurance test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... particular engine being tested. (2) Any automatic engine control that is part of the engine must control the engine during the endurance test except for operations where automatic control is normally overridden by manual control or where manual control is otherwise specified for a particular test run. (3) Except as...
14 CFR 33.87 - Endurance test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... particular engine being tested. (2) Any automatic engine control that is part of the engine must control the engine during the endurance test except for operations where automatic control is normally overridden by manual control or where manual control is otherwise specified for a particular test run. (3) Except as...
1979-07-01
Engineering Division p 0 CAR WE H FRZIAN, NENBER Design Branch Engineering Division J SEPE FIN~EGAN, JR.,CIV ater Control Branch * Engineering Division...Operator g. Purpose of Dam h. Design and Construction History i. Normal Operational Procedures 1.3 PERTINENT DATA ........................... 4 a...Tunnel i. Spillways j. Regulating Outlets SECTION 2: ENGINEERING DATA 2.1 DESIGN .............................. 9 a. Available Data b. Design Features c
A simplified dynamic model of the T700 turboshaft engine
NASA Technical Reports Server (NTRS)
Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.
1992-01-01
A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.
Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism
NASA Technical Reports Server (NTRS)
Kurasaki, S. S.; Vallotton, W. C.
1985-01-01
The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.
Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Spanogle, J A; Hicks, C W; Foster, H H
1934-01-01
The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.
Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine
NASA Technical Reports Server (NTRS)
Watson, T. L.
1982-01-01
A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.
1980-04-01
CARNEY M. TERZIAN, HENBER I Design Branch Engineering Division RICHARD DIB * Water Control Branch Engineering Division [ hPIPWVAL 220ininu: Chief...2 f. Operator 2 I g. Purpose of Dam 2 h. Design and Construction History 2 i. Normal Operational Procedure 2 1.3 Pertinent Data 2 a. Drainage...i. Spillway 5 J. Regulating Outlets 5 [I h] Section Page 2. ENGINEERING DATA 6 2.1 Design Data 6 2.2 Construction Data 6 2.3 Operation Data 6 2.4
A Risk Management Architecture for Emergency Integrated Aircraft Control
NASA Technical Reports Server (NTRS)
McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.
2011-01-01
Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.
Engineering Margin Factors Used in the Design of the VVER Fuel Cycles
NASA Astrophysics Data System (ADS)
Lizorkin, M. P.; Shishkov, L. K.
2017-12-01
The article describes methods for determination of the engineering margin factors currently used to estimate the uncertainties of the VVER reactor design parameters calculated via the KASKAD software package developed at the National Research Center Kurchatov Institute. These margin factors ensure the meeting of the operating (design) limits and a number of other restrictions under normal operating conditions.
Modeling operators' emergency response time for chemical processing operations.
Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam
2014-01-01
Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations to determine performance coefficients. These coefficients represent the decrease in time required for various basic motions in emergency situations and were used to model an emergency response. This approach will make hazardous operations requiring operator response, alarm management, and evacuation processes easier to design and predict. An application of this methodology is included in the article. The time required for an emergency response was roughly a one-third faster than for a normal response time.
Contingency Power Study for Short Haul Civil Tiltrotor
NASA Technical Reports Server (NTRS)
D'Angelo, Marin M.
2004-01-01
NASA has concluded from previous studies that the twin engine tiltrotor is the most economical and technologically viable rotorcraft for near-term civil applications. Twin engine civil rotorcraft must be able to hover safely on one engine in an emergency. This emergency power requirement generally results in engines 20 to 50 percent larger than needed for normal engine operation, negatively impacting aircraft economics. This study identifies several contingency power enhancement concepts, and quantifies their potential to reduce aircraft operating costs. Many unique concepts were examined, and the selected concepts are simple, reliable, and have a high potential for near term realization. These engine concepts allow extremely high turbine temperatures during emergency operation by providing cooling to the power turbine and augmenting cooling of both turbines and structural hardware. Direct operating cost are reduced 3 to percent, which could yield a 30 to 80 percent increase in operating profits. The study consists of the definition of an aircraft economics model and a baseline engine, and an engine concept screening study, and a preliminary definition of the selected concepts. The selected concepts are evaluated against the baseline engine, and the critical technologies and development needs are identified, along with applications for this technology.
Cockpit noise intensity : fifteen single-engine light aircraft.
DOT National Transportation Integrated Search
1968-09-01
Fifteen of the most popular single-engine general-aviation light aircraft were tested for the noise intensity present during normal cruising operations at 2000, and 10,000 feet MSL (mean sea level). In comparison with currently accepted DRC (damage-r...
Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, Edward L.; Rothschild, William J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.
2012-01-01
This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.
Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics
NASA Technical Reports Server (NTRS)
Stevens, Howard C., Jr.
1947-01-01
An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Litt, Jonathan S.
2007-01-01
Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.
Engineering Infrastructures: Problems of Safety and Security in the Russian Federation
NASA Astrophysics Data System (ADS)
Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.
Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.
A survey of oscillating flow in Stirling engine heat exchangers
NASA Technical Reports Server (NTRS)
Simon, Terrence W.; Seume, Jorge R.
1988-01-01
Similarity parameters for characterizing the effect of flow oscillation on wall shear stress, viscous dissipation, pressure drop and heat transfer rates are proposed. They are based on physical agruments and are derived by normalizing the governing equations. The literature on oscillating duct flows, regenerator and porous media flows is surveyed. The operating characteristics of the heat exchanger of eleven Stirling engines are discribed in terms of the similarity parameters. Previous experimental and analytical results are discussed in terms of these parameters and used to estimate the nature of the oscillating flow under engine operating conditions. The operating points for many of the modern Stirling engines are in or near the laminar to turbulent transition region. In several engines, working fluid does not pass entirely through heat exchangers during a cycle. Questions that need to be addressed by further research are identified.
NASA Technical Reports Server (NTRS)
Schneider, E. T.; Enevoldson, E. K.
1984-01-01
The introduction of electronic fuel control to modern turbine engines has a number of advantages, which are related to an increase in engine performance and to a reduction or elimination of the problems associated with high angle of attack engine operation from the surface to 50,000 feet. If the appropriate engine display devices are available to the pilot, the fuel control system can provide a great amount of information. Some of the wealth of information available from modern fuel controls are discussed in this paper. The considered electronic engine control systems in their most recent forms are known as the Full Authority Digital Engine Control (FADEC) and the Digital Electronic Engine Control (DEEC). Attention is given to some details regarding the control systems, typical engine problems, the solution of problems with the aid of displays, engine displays in normal operation, an example display format, a multipage format, flight strategies, and hardware considerations.
Diagnostics for Hypersonic Engine Control
2015-02-01
modeling efforts and/or lead to the development of sensors that can be used as part of scramjet engine control strategies. Activities included work on...of a model scramjet engine cannot rely on the presence of water. Instead, light sources operating at wavelengths resonant with molecular oxygen are...transmitted beam amplitude fluctuations (scintillation). Frequency axis is normalized. Figure 3. Oxygen absorption feature recorded using direct
Power processor for a 20CM ion thruster
NASA Technical Reports Server (NTRS)
Biess, J. J.; Schoenfeld, A. D.; Cohen, E.
1973-01-01
A power processor breadboard for the JPL 20CM Ion Engine was designed, fabricated, and tested to determine compliance with the electrical specification. The power processor breadboard used the silicon-controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to the ion engine. The breadboard power processor was integrated with the JPL 20CM ion engine and complete testing was performed. The integration tests were performed without any silicon-controlled rectifier failure. This demonstrated the ruggedness of the series resonant inverter in protecting the switching elements during arcing in the ion engine. A method of fault clearing the ion engine and returning back to normal operation without elaborate sequencing and timing control logic was evolved. In this method, the main vaporizer was turned off and the discharge current limit was reduced when an overload existed on the screen/accelerator supply. After the high voltage returned to normal, both the main vaporizer and the discharge were returned to normal.
14 CFR 27.1091 - Air induction.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...
14 CFR 27.1091 - Air induction.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...
14 CFR 27.1091 - Air induction.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...
14 CFR 27.1091 - Air induction.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...
14 CFR 27.1091 - Air induction.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...
Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.
Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B
2010-01-01
This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler.
NASA Technical Reports Server (NTRS)
Shillito, T B; Nakanishi, Shigeo
1952-01-01
The results of an altitude test-chamber investigation of the effects of a number of design changes and operating conditions on altitude peformance of a 28-inch diameter ram jet engine are presented. Most of the investigation was for a simulated flight Mach number of 2.0 above the tropopause. Fuel-air distribution, gutter width, the presence of a pilot flame, cimbustion-chamber-inlet temperature, and exhaust-nozzle throat area were found to have significant effects on limits of combustion. Combustion efficiency increased with increasing combustion-chamber-inlet temperature and was adversely affected by an increase in the exhaust-nozzld area. Similiar lean limits of combustion were obtained for both Diesel fuel and normal heptane, but combustion efficiences obtained with Diesel fuel were lower than those obtained with normal heptane.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... distribution and equipment-loads-demand condition. 2. After the unrestorable loss of normal engine generator... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. FAA-2011-1172: Notice No. 25-11-17-SC] Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane...
49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).
Code of Federal Regulations, 2010 CFR
2010-10-01
... stationary locomotives at load cells: (1) Each noise emission test shall begin after the engine of the locomotive has attained the normal cooling water operating temperature as prescribed by the locomotive manufacturer. (2) Noise emission testing in idle or maximum throttle setting shall start after a 40 second...
Carbon Monoxide Exposure in Norwegian Rescue Helicopters.
Busch, Michael
2015-01-01
Exposure to exhaust fumes from combustion engines can lead to carbon monoxide (CO) poisoning. Sea King Rescue helicopter crews are frequently subjected to engine exhaust. This study investigates the extent of CO exposure and potential for intoxication for flight crews during standard operational training procedures. Over a 2-week period, rescue helicopter flight crews were monitored for exposure to exhaust fumes and clinical symptoms of CO intoxication by means of a written survey and measurements of carboxyhemoglobin saturation (SpCO) with a handheld pulse CO oximeter (RAD-57; Masimo, Irvine, CA). Normal ranges for SpCO were defined as ≤ 4%. Sixty-nine completed surveys and 138 SpCO measurements of 37 crewmembers were included in the study. Sixty-four percent (n = 44) experienced subjective exposure to engine exhaust during training. Clinical symptoms were reported in 8.6% (n = 6) and included exhaustion (n = 4), headache (n = 1), and nausea (n = 1). Twenty-nine percent (n = 20) showed postflight SpCO levels outside the normal range (≥ 4%). The maximum postflight SpCO level among all measurements was 7%. Exposure to engine fumes is common, even more so during open cargo door operations. However, clinical symptoms are infrequent and mild. Toxic SpCO levels were not reached in this study, but approximately one third of postflight SpCO levels were outside the normal range. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hawkins, J. E.
1980-01-01
A 0.15 scale model of a proposed conformal variable-ramp inlet for the Multirole Fighter was tested from Mach 0.8 to 2.2 at a wide range of angles of attack and sideslip. Inlet ramp angle was varied to optimize ramp angle as a function of engine airflow, Mach number, angle of attack, and angle of sideslip. Several inlet configuration options were investigated to study their effects on inlet operation and to establish the final flight configuration. These variations were cowl sidewall cutback, cowl lip bluntness, boundary layer bleed, and first-ramp leading edge shape. Diagnostic and engine face instrumentation were used to evaluate inlet operation at various inlet stations and at the inlet/engine interface. Pressure recovery and stability of the inlet were satisfactory for the proposed application. On the basis of an engine stability audit of the worst-case instantaneous distortion patterns, no inlet/engine compatibility problems are expected for normal operations.
Apollo Operations Handbook Lunar Module (LM 11 and Subsequent) Vol. 2 Operational Procedures
NASA Technical Reports Server (NTRS)
1971-01-01
The Apollo Operations Handbook (AOH) is the primary means of documenting LM descriptions and procedures. The AOH is published in two separately bound volumes. This information is useful in support of program management, engineering, test, flight simulation, and real time flight support efforts. This volume contains crew operational procedures: normal, backup, abort, malfunction, and emergency. These procedures define the sequence of actions necessary for safe and efficient subsystem operation.
NASA Technical Reports Server (NTRS)
Fleming, William A.
1948-01-01
An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.
NASA Astrophysics Data System (ADS)
Fgeppert, E.
1984-09-01
Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.
Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J
2015-06-01
Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating conditions. During specific idle engine operation without EGR and adjusted fueling conditions, brown carbon can be formed in significant amounts, requiring careful management tactics. Control technologies for particulate matter are very effective for light-absorbing carbon, reducing black carbon emissions to near zero for modern engines equipped with a DPF. Efforts to control atmospheric brown carbon need to focus on other sources other than modern diesel engines, such as biomass burning.
Code of Federal Regulations, 2013 CFR
2013-04-01
... OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Proposal Evaluation...? Normally, technical and price proposals are reviewed independently by separate evaluation teams. However...
Code of Federal Regulations, 2012 CFR
2012-04-01
... OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Proposal Evaluation...? Normally, technical and price proposals are reviewed independently by separate evaluation teams. However...
Code of Federal Regulations, 2010 CFR
2010-04-01
... OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Proposal Evaluation...? Normally, technical and price proposals are reviewed independently by separate evaluation teams. However...
Code of Federal Regulations, 2014 CFR
2014-04-01
... OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Proposal Evaluation...? Normally, technical and price proposals are reviewed independently by separate evaluation teams. However...
Code of Federal Regulations, 2011 CFR
2011-04-01
... OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Proposal Evaluation...? Normally, technical and price proposals are reviewed independently by separate evaluation teams. However...
Experimental test results of a generalized parameter fuel control
NASA Technical Reports Server (NTRS)
Batterton, P. G.; Gold, H.
1973-01-01
Considerable interest has been generated recently in low cost jet propulsion systems. One of the more complicated components of jet engines is the fuel control. Results of an effort to develop a simpler hydromechanical fuel control are presented. This prototype fuel control was installed on a J85-GE-13 jet engine. Results show that the fuel control provided satisfactory engine performance at sea level static conditions over its normal nonafterburning operating range, including startup. Results of both bench and engine tests are presented; the difficulties encountered are described.
NASA Technical Reports Server (NTRS)
Walter, T. J.
1978-01-01
Vibration characteristics for overhauled T53 engines, including rejection rate, principal sources of vibration, and normal procedures taken by the overhaul center to reduce engine vibration are summarized. Analytical and experimental data were compared to determine the engine's dynamic response to unbalance forces with results showing that the engine operates through bending critical speeds. Present rigid rotor balancing techniques are incapable of compensating for the flexible rotor unbalance. A comparison of typical test cell and aircraft vibration levels disclosed significant differences in the engine's dynamic response. A probable spline shift phenomenon was uncovered and investigated. Action items to control costs and reduce vibration levels were identified from analytical and experimental studies.
Corbett, J J; Robinson, A L
2001-04-01
This paper describes measurements of NOx emissions from one engine on a commercial towboat operating on the Upper Ohio River system around the Port of Pittsburgh. Continuous measurements were made over a one-week period to characterize emissions during normal operations. The average NOx emission factor is 70 +/- 4.2 kg of NOx per t of fuel, similar to that of larger marine engines. A vessel-specific duty cycle is derived to characterize the towboat's operations; more than 50% of the time the vessel engines are at idle. Although recently promulgated EPA regulations apply only to new marine engines, these data provide insight into inland-river operations, which can be used to evaluate these regulations within the inland river context. This vessel operates as a courier service, scheduling pickups and deliveries of single- or multiple-barge loads per customers' requests; as many as 30% of the 277 towboats in the Pittsburgh region operate in this fashion. The EPA-prescribed ISO E3 duty cycle does not accurately describe inland-river operations of this towboat: its application overestimates actual NOx emissions by 14%. Only 41% of this vessel's operations fall within the Not-To-Exceed Zone defined by the EPA regulations, which limits the effectiveness of this component of the regulations to limit emissions from vessels that operate in a similar fashion.
High density fuel qualification for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macleod, J.D.; Orbanski, B.; Hastings, P.R.
1992-01-01
A program for the evaluation of gas turbine engine performance, carried out in the Engine Laboratory of the National Research Council of Canada, is described. Problems under consideration include performance alteration between JP-4 fuel and a high energy density fuel, called strategic military fuel (SMF); performance deterioration during the accelerated endurance test; and emission analysis. The T56 fuel control system is found to be capable of operation on the higher energy density fuel with no detrimental effects regarding control of the engine's normal operating regime. The deterioration of the engine performance during 150-hour endurance tests on SMF was very high,more » which was caused by an increase in turbine nozzle effective flow area and turbine blade untwist. The most significant performance losses during the endurance tests were on corrected output power, fuel flow, specific fuel consumption and compressor and turbine presure ratio. 9 refs.« less
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2004-01-01
The goal of the Autonomous Propulsion System Technology (APST) project is to reduce pilot workload under both normal and anomalous conditions. Ongoing work under APST develops and leverages technologies that provide autonomous engine monitoring, diagnosing, and controller adaptation functions, resulting in an integrated suite of algorithms that maintain the propulsion system's performance and safety throughout its life. Engine-to-engine performance variation occurs among new engines because of manufacturing tolerances and assembly practices. As an engine wears, the performance changes as operability limits are reached. In addition to these normal phenomena, other unanticipated events such as sensor failures, bird ingestion, or component faults may occur, affecting pilot workload as well as compromising safety. APST will adapt the controller as necessary to achieve optimal performance for a normal aging engine, and the safety net of APST algorithms will examine and interpret data from a variety of onboard sources to detect, isolate, and if possible, accommodate faults. Situations that cannot be accommodated within the faulted engine itself will be referred to a higher level vehicle management system. This system will have the authority to redistribute the faulted engine's functionality among other engines, or to replan the mission based on this new engine health information. Work is currently underway in the areas of adaptive control to compensate for engine degradation due to aging, data fusion for diagnostics and prognostics of specific sensor and component faults, and foreign object ingestion detection. In addition, a framework is being defined for integrating all the components of APST into a unified system. A multivariable, adaptive, multimode control algorithm has been developed that accommodates degradation-induced thrust disturbances during throttle transients. The baseline controller of the engine model currently being investigated has multiple control modes that are selected according to some performance or operational criteria. As the engine degrades, parameters shift from their nominal values. Thus, when a new control mode is swapped in, a variable that is being brought under control might have an excessive initial error. The new adaptive algorithm adjusts the controller gains on the basis of the level of degradation to minimize the disruptive influence of the large error on other variables and to recover the desired thrust response.
Generator voltage stabilisation for series-hybrid electric vehicles.
Stewart, P; Gladwin, D; Stewart, J; Cowley, R
2008-04-01
This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.
Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...
2012-01-01
Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ , microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less
Nee, Sean
2018-05-01
Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as 'infant mortality'. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality- sensu engineering-without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy.
Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John
1998-01-01
With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.
Contingency Power Study for Short Haul Civil Tiltrotor
NASA Technical Reports Server (NTRS)
Eisenberg, Joseph D. (Technical Monitor); Wait, John
2003-01-01
AlliedSignal Engines (AE) defined a number of concepts that significantly increased the horsepower of a turboshaft engine to accommodate the loss of an engine and enable the safe landing of a twin-engined, 40-passenger, short haul civil tiltrotor. From these concepts, "Water/Methanol Injection," a "Better Power Turbine Than Required," and a "Secondary Combustor For Interturbine Reheat" were chosen, based on system safety and economics, for more detailed examination. Engine performance, mission, and cost analysis of these systems indicated contingency power levels of 26 to 70 percent greater than normal rated takeoff could be attained for short durations, thus enabling direct operating cost savings between 2 and 6 percent.
Anomalous Transient Amplification of Waves in Non-normal Photonic Media
NASA Astrophysics Data System (ADS)
Makris, K. G.; Ge, L.; Türeci, H. E.
2014-10-01
Dissipation is a ubiquitous phenomenon in dynamical systems encountered in nature because no finite system is fully isolated from its environment. In optical systems, a key challenge facing any technological application has traditionally been the mitigation of optical losses. Recent work has shown that a new class of optical materials that consist of a precisely balanced distribution of loss and gain can be exploited to engineer novel functionalities for propagating and filtering electromagnetic radiation. Here we show a generic property of optical systems that feature an unbalanced distribution of loss and gain, described by non-normal operators, namely, that an overall lossy optical system can transiently amplify certain input signals by several orders of magnitude. We present a mathematical framework to analyze the dynamics of wave propagation in media with an arbitrary distribution of loss and gain, and we construct the initial conditions to engineer such non-normal power amplifiers. Our results point to a new design space for engineered optical systems employed in photonics and quantum optics.
Development of a solar receiver for an organic rankine cycle engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haskins, H.J.; Taylor, R.M.; Osborn, D.B.
A solar receiver is described for use with an organic Rankine cycle (ORC) engine as part of the Small Community Solar Thermal Power Experiment (SCSE). The selected receiver concept is a direct-heated, once-through, monotube boiler normally operating at supercritical pressure. Fabrication methods for the receiver core have been developed and validated with flat braze samples, cylindrical segment samples, and a complete full-scale core assembly.
Liu, Yu-Qing; Keane, Michael; Ensell, Mang; Miller, William; Kashon, Michael; Ong, Tong-man; Mauderly, Joe; Lawson, Doug; Gautam, Mridul; Zielinska, Barbara; Whitney, Kevin; Eberhardt, James; Wallace, William
2005-01-01
Acetone extracts of engine exhaust particulate matter (PM) and of vapor-phase semi-volatile organic compounds (SVOCs) collected from a set of 1998-2000 model year normal emitter diesel engine automobile or light trucks and from a set of 1982-1996 normal emitter gasoline engine automobiles or light trucks operated on the California Unified Driving Cycle at 22 [degree]C were assayed for in vitro genotoxic activities. Gasoline and diesel PM were comparably positive mutagens for Salmonella typhimurium strains YG1024 and YG1029 on a mass of PM extract basis with diesel higher on a mileage basis; gasoline SVOC was more active than diesel on an extracted-mass basis, with diesel SVOC more active on a mileage basis. For chromosomal damage indicated by micronucleus induction in Chinese hamster lung fibroblasts (V79 cells), diesel PM expressed about one-tenth that of gasoline PM on a mass of extract basis, but was comparably active on a mileage basis; diesel SVOC was inactive. For DNA damage in V79 cells indicated by the single cell gel electrophoresis (SCGE) assay, gasoline PM was positive while diesel PM was active at the higher doses; gasoline SVOC was active with toxicity preventing measurement at high doses, while diesel SVOC was inactive at all but the highest dose.
Demand charge reduction with digester gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-02-01
This paper examines a rather sophisticated treatment system in the city of Whitewater, Wisconsin. The power generated is used to trim utility peak power loads and demand charges. Power is derived from four Waukesha VHP 3600G engine generator sets with provisions for a fifth as growth requires. The engine is a Waukesha F3521GU spark ignited, six-cylinder gas engine with 9.375 in. x 8.50 bore and stroke driving a Kato 350 kW generator rated at 480/277 volts and 1200 rpm. Normal operation is to reduce the peak demand.
The design of propeller blade roots
NASA Technical Reports Server (NTRS)
Cordes, G
1942-01-01
Predicated on the assumption of certain normal conditions for engine and propeller, simple expressions for the static and dynamic stresses of propeller blade roots are evolved. They, in combination with the fatigue strength diagram of the employed material, afford for each engine power one certain operating point by which the state of stress serving as a basis for the design of the root is defined. Different stress cases must be analyzed, depending on the vibration tendency of engine and use of propeller. The solution affords an insight into the possible introduction of different size classes of propeller.
Progress on Shape Memory Alloy Actuator Development for Active Clearance Control
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Melcher, Kevin; Noebe, Ronald
2006-01-01
Results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine has been conducted. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 in. Design results show that an actuator comprised of 10 wires 2 in. in length is adequate for control at critical engine operating points and still exhibit acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.
Electric converters of electromagnetic strike machine with battery power
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.
2018-03-01
At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.
Engine With Regression and Neural Network Approximators Designed
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2001-01-01
At the NASA Glenn Research Center, the NASA engine performance program (NEPP, ref. 1) and the design optimization testbed COMETBOARDS (ref. 2) with regression and neural network analysis-approximators have been coupled to obtain a preliminary engine design methodology. The solution to a high-bypass-ratio subsonic waverotor-topped turbofan engine, which is shown in the preceding figure, was obtained by the simulation depicted in the following figure. This engine is made of 16 components mounted on two shafts with 21 flow stations. The engine is designed for a flight envelope with 47 operating points. The design optimization utilized both neural network and regression approximations, along with the cascade strategy (ref. 3). The cascade used three algorithms in sequence: the method of feasible directions, the sequence of unconstrained minimizations technique, and sequential quadratic programming. The normalized optimum thrusts obtained by the three methods are shown in the following figure: the cascade algorithm with regression approximation is represented by a triangle, a circle is shown for the neural network solution, and a solid line indicates original NEPP results. The solutions obtained from both approximate methods lie within one standard deviation of the benchmark solution for each operating point. The simulation improved the maximum thrust by 5 percent. The performance of the linear regression and neural network methods as alternate engine analyzers was found to be satisfactory for the analysis and operation optimization of air-breathing propulsion engines (ref. 4).
Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Anderson, William G.; Tarau, Calin
2008-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.
Hoffman, Melvin G.; Janneck, Frank W.
1982-01-01
A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.
Dual clearance squeeze film damper
NASA Technical Reports Server (NTRS)
Fleming, D. P. (Inventor)
1985-01-01
A dual clearance hydrodynamic liquid squeeze film damper for a gas turbine engine is described. Under normal operating conditions, the device functions as a conventional squeeze film damper, using only one of its oil films. When an unbalance reaches abusive levels, as may occur with a blade loss or foreign object damage, a second, larger clearance film becomes active, controlling vibration amplitudes in a near optimum manner until the engine can be safely shut down and repaired.
A review of acoustic dampers applied to combustion chambers in aerospace industry
NASA Astrophysics Data System (ADS)
Zhao, Dan; Li, X. Y.
2015-04-01
In engine combustion systems such as rockets, aero-engines and gas turbines, pressure fluctuations are always present, even during normal operation. One of design prerequisites for the engine combustors is stable operation, since large-amplitude self-sustained pressure fluctuations (also known as combustion instability) have the potential to cause serious structural damage and catastrophic engine failure. To dampen pressure fluctuations and to reduce noise, acoustic dampers are widely applied as a passive control means to stabilize combustion/engine systems. However, they cannot respond to the dynamic changes of operating conditions and tend to be effective over certain narrow range of frequencies. To maintain their optimum damping performance over a broad frequency range, extensive researches have been conducted during the past four decades. The present work is to summarize the status, challenges and progress of implementing such acoustic dampers on engine systems. The damping effect and mechanism of various acoustic dampers, such as Helmholtz resonators, perforated liners, baffles, half- and quarter-wave tube are introduced first. A summary of numerical, experimental and theoretical studies are then presented to review the progress made so far. Finally, as an alternative means, ';tunable acoustic dampers' are discussed. Potential, challenges and issues associated with the dampers practical implementation are highlighted.
NASA Astrophysics Data System (ADS)
Lee, R. A.; Rau, T. H.; Jones, C.
1982-07-01
The hush-house noise suppressor was made by Aero Systems Engineering of Texas, Inc. for acoustical suppression of various AF fighter/trainer aircraft during ground runup operations. This report provides measured and extrapolated data defining the bioacoustic environments produced by several aircraft/engines operating in the hush-house suppressor for various engine power configurations. Far-field data measured at 20 locations are normalized to standard meteorological conditions and extrapolated from 75-8000 meters to derive sets of equal-value contours for seven acoustic measures as function of angle and distance from the source. Refer to Volume 1 of this handbook, 'USAF Bioenvironmental Noise Data Handbook, Vol 1: Organization, Content and Application,' AMRL-TR-75(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc. Data are presented for the following aircraft/engines operating in the hush-house noise suppressor: F-4, F-15, F-16, F-105, F-106, F-111F and T-38 aircraft and the TF41-A-1, J79-GE-15, F100-PW-100, J75-P19, J-75-P-17 and TF30-P-100 engines.
Adaptive model-based control systems and methods for controlling a gas turbine
NASA Technical Reports Server (NTRS)
Brunell, Brent Jerome (Inventor); Mathews, Jr., Harry Kirk (Inventor); Kumar, Aditya (Inventor)
2004-01-01
Adaptive model-based control systems and methods are described so that performance and/or operability of a gas turbine in an aircraft engine, power plant, marine propulsion, or industrial application can be optimized under normal, deteriorated, faulted, failed and/or damaged operation. First, a model of each relevant system or component is created, and the model is adapted to the engine. Then, if/when deterioration, a fault, a failure or some kind of damage to an engine component or system is detected, that information is input to the model-based control as changes to the model, constraints, objective function, or other control parameters. With all the information about the engine condition, and state and directives on the control goals in terms of an objective function and constraints, the control then solves an optimization so the optimal control action can be determined and taken. This model and control may be updated in real-time to account for engine-to-engine variation, deterioration, damage, faults and/or failures using optimal corrective control action command(s).
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components... installations, each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 23.991 Section 23.991...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components... installations, each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel pumps. 23.991 Section 23.991...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components... installations, each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel pumps. 23.991 Section 23.991...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components... installations, each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel pumps. 23.991 Section 23.991...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components... installations, each fuel pump required for proper engine operation, or required to meet the fuel system... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel pumps. 23.991 Section 23.991...
NASA Technical Reports Server (NTRS)
Golladay, Richard L.; Gendler, Stanley L.
1947-01-01
An investigation has been conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of the I-40 jet-propulsion engine over a range of pressure altitudes from 10,000 to 50,000 feet and ram-pressure ratios from 1.00 to 1.76. Engine operational data were obtained with the engine in the standard configuration and with various modifications of the fuel system, the electrical system, and the combustion chambers. The effects of altitude and airspeed on operating speed range, starting, windmilli.ng, acceleration, speed regulation, cooling, and vibration of the standard and modified engines were determined, and damage to parts was noted. Maximum engine speed was obtainable at all altitudes and airspeeds wi th each fuel-control system investigated. The minimum idling speed was raised by increases in altitude and airspeed. The lowest minimum stable speeds were obtained with the standard configuration using 40-gallon nozzles with individual metering plugs. The engine was started normally at altitudes as high as 20,000 feet with all of the fuel systems and ignition combinations except one. Ignition at 70,000 feet was difficult and, although successful ignition occurred, acceleration was slow and usually characterized by excessive tail-pipe temperature. During windmilling investigations of the engine equipped with the standard fuel system, the engine could not be started at ram-pressure ratios of 1.1 to 1.7 at altitudes of 10,000, 20,000 and 30,000 feet. When equipped with the production barometric and Monarch 40-gallon nozzles, the engine accelerated in 12 seconds from an engine speed of 6000 rpm to 11,000 rpm at 20,000 feet and an average tail-pipe temperature of 11000 F. At the same altitude and temperature, all the engine configurations had approximately the same rate of acceleration. The Woodward governor produced the safest accelerations, inasmuch as it could be adjusted to automatically prevent acceleration blow out. The engine speed was held constant by the Woodward governor and the Edwards regulator during simulated dives and climbs at constant throttle position. The bearing cooling system was satisfactory at all altitudes and airspeeds. The engines operated without serious failure, although the exhaust cone, the tail pipe, and the airplane fuselage were damaged during altitude starts.
Successful completion of a cyclic ground test of a mercury ion auxiliary propulsion system
NASA Technical Reports Server (NTRS)
Francisco, David R.; Low, Charles A., Jr.; Power, John L.
1988-01-01
An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.
Successful completion of a cyclic ground test of a mercury Ion Auxiliary Propulsion System
NASA Technical Reports Server (NTRS)
Francisco, David R.; Low, Charles A., Jr.; Power, John L.
1988-01-01
An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.
NASA Technical Reports Server (NTRS)
Rothrock, A M; Spencer, R C; Miller, Cearcy D
1941-01-01
Combustion in a spark-ignition engine was investigated by means of the NACA high-speed motion-picture cameras. This camera is operated at a speed of 40,000 photographs a second and therefore makes possible the study of changes that take place in the intervals as short as 0.000025 second. When the motion pictures are projected at the normal speed of 16 frames a second, any rate of movement shown is slowed down 2500 times. Photographs are presented of normal combustion, of combustion from preignitions, and of knock both with and without preignition. The photographs of combustion show that knock may be preceded by a period of exothermic reaction in the end zone that persists for a time interval of as much as 0.0006 second. The knock takes place in 0.00005 second or less.
Exposure to triaryl phosphates: metabolism and biomarkers of exposure.
Furlong, Clement E
2011-01-01
The leakage of tricresyl phosphate-containing engine lubricants into aircraft cabin air, either from worn or defective engine seals or under normal operating conditions, is a serious concern for both the health and safety of the cabin occupants, since the oil contains one to five percent tricresyl phosphate (TCP) esters, known neurotoxins. The exposure of pilots is a particular concern since their impairment can affect their safe operation of the aircraft. Mass spectrometric (MS)-based protocols for documenting exposures of individuals are described that entail a rapid purification of the TCP-modified plasma enzyme butyrylcholinesterase (BChE). Following protease digestion of BChE, the modified active site peptide is characterized by MS analysis. Approaches for identifying safer engine oil additives are also described. Some general comments regarding the necessity of improving the quality and safety of the cabin air supply are presented.
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.
2005-01-01
This paper describes results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 inches. Design results show that an actuator comprised of 10 wires 2 inches in length is adequate for control at critical engine operating points and still exhibits acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.
Liquid Nitrogen Subcooler Pressure Vessel Engineering Note
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucinski, R.; /Fermilab
1997-04-24
The normal operating pressure of this dewar is expected to be less than 15 psig. This vessel is open to atmospheric pressure thru a non-isolatable vent line. The backpressure in the vent line was calculated to be less than 1.5 psig at maximum anticipated flow rates.
14 CFR 29.927 - Additional tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controlled by the pilot under normal operating conditions (such as where the primary engine power control is accomplished through the flight control), the following test must be made: (1) Under conditions associated with... applicant for continued flight, for at least 30 minutes after perception by the flightcrew of the...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... actuated after engine power loss, can move the propeller blades toward the feather position to reduce... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was...
Model-based diagnostics of gas turbine engine lubrication systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byington, C.S.
1998-09-01
The objective of the current research was to develop improved methodology for diagnosing anomalies and maintaining oil lubrication systems for gas turbine engines. The effort focused on the development of reasoning modules that utilize the existing, inexpensive sensors and are applicable to on-line monitoring within the full-authority digital engine controller (FADEC) of the engine. The target application is the Enhanced TF-40B gas turbine engine that powers the Landing Craft Air Cushion (LCAC) platform. To accomplish the development of the requisite data fusion algorithms and automated reasoning for the diagnostic modules, Penn State ARL produced a generic Turbine Engine Lubrication Systemmore » Simulator (TELSS) and Data Fusion Workbench (DFW). TELSS is a portable simulator code that calculates lubrication system parameters based upon one-dimensional fluid flow resistance network equations. Validation of the TF- 40B modules was performed using engineering and limited test data. The simulation model was used to analyze operational data from the LCAC fleet. The TELSS, as an integral portion of the DFW, provides the capability to experiment with combinations of variables and feature vectors that characterize normal and abnormal operation of the engine lubrication system. The model-based diagnostics approach is applicable to all gas turbine engines and mechanical transmissions with similar pressure-fed lubrication systems.« less
4. Photographic copy of a photograph taken from pasteup negatives ...
4. Photographic copy of a photograph taken from paste-up negatives for U.S. Army Corps of Engineers document GF-500-MCP, entitled "Grand Forks Site RLS Army Operating Drawings, Master Composite Photographs for SAFEGUARD TSE Systems and Equipment," Page 9, dated 1 September 1974 (original document and negatives in possession of U.S. Army Corps of Engineers, Huntsville, AL). Photographer unknown. View of remote launch operations building exterior (southwest corner), prior to earth mounding. A,B,C, and D are heat exchangers HX-1102B, HX-1102A, HX-1101B, and HX-1101 A, respectively. The heat exchangers transferred heat from the cooling water to the outside air during the normal operating mode. On the far right is the air exhaust shaft - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND
NASA Technical Reports Server (NTRS)
Gupta, U. K.; Ali, M.
1988-01-01
The theoretical basis and operation of LEBEX, a machine-learning system for jet-engine performance monitoring, are described. The behavior of the engine is modeled in terms of four parameters (the rotational speeds of the high- and low-speed sections and the exhaust and combustion temperatures), and parameter variations indicating malfunction are transformed into structural representations involving instances and events. LEBEX extracts descriptors from a set of training data on normal and faulty engines, represents them hierarchically in a knowledge base, and uses them to diagnose and predict faults on a real-time basis. Diagrams of the system architecture and printouts of typical results are shown.
Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Astrophysics Data System (ADS)
Anderson, William G.; Tarau, Calin
2008-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.
DARPA DTN Phase 3 Core Engineering Support
NASA Technical Reports Server (NTRS)
Torgerson, J. Leigh; Richard Borgen, Richard; McKelvey, James; Segui, John; Tsao, Phil
2010-01-01
This report covers the initial DARPA DTN Phase 3 activities as JPL provided Core Engineering Support to the DARPA DTN Program, and then further details the culmination of the Phase 3 Program with a systematic development, integration and test of a disruption-tolerant C2 Situation Awareness (SA) system that may be transitioned to the USMC and deployed in the near future. The system developed and tested was a SPAWAR/JPL-Developed Common Operating Picture Fusion Tool called the Software Interoperability Environment (SIE), running over Disruption Tolerant Networking (DTN) protocols provided by BBN and MITRE, which effectively extends the operational range of SIE from normal fully-connected internet environments to the mobile tactical edges of the battlefield network.
14 CFR 27.927 - Additional tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controlled by the pilot under normal operating conditions (such as where the primary engine power control is accomplished through the flight control), the following test must be made: (1) Under conditions associated with... the torque must be absorbed by the rotors to be installed, except that other ground or flight test...
14 CFR 27.927 - Additional tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controlled by the pilot under normal operating conditions (such as where the primary engine power control is accomplished through the flight control), the following test must be made: (1) Under conditions associated with... the torque must be absorbed by the rotors to be installed, except that other ground or flight test...
14 CFR 33.71 - Lubrication system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in which an aircraft is expected to operate. (b) Oil strainer or filter. There must be an oil strainer or filter through which all of the engine oil flows. In addition: (1) Each strainer or filter... normal rate through the rest of the system with the strainer or filter element completely blocked. (2...
14 CFR 33.17 - Fire protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection. 33.17 Section 33.17... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.17 Fire protection. (a) The design and... fire during normal operation and failure conditions, and must minimize the effect of such a fire. In...
Engineering thinking in emergency situations: A new nuclear safety concept
Guarnieri, Franck; Travadel, Sébastien
2014-01-01
The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for “engineering thinking in emergency situations.” This is a new concept that emphasizes adaptability and resilience within organizations—such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident. PMID:25419015
Engineering thinking in emergency situations: A new nuclear safety concept.
Guarnieri, Franck; Travadel, Sébastien
2014-11-01
The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.
Consortium Requirements Engineering Guidebook
1993-12-01
re- quirements among developers or contractors, acquisition managers, and users. A CoRE specification serves as both the test -to and design-to...that are used for the following purposes: (1) the button labeled SELF TEST allows the operator to check the FLMS’s output hardware while the system is...shut down; and (2) the button labeled RESET allows the system to be brought back into normal operation following a shutdown or testing as long as the
NASA Astrophysics Data System (ADS)
Kumar, A. Raj; Janardhana Raju, G.; Hemachandra Reddy, K.
2018-03-01
The current research work investigates the influence of helical guide vanes in to the intake runner of a D.I diesel engine operating by the high viscous Mamey Sapote biodiesel to enhance in-cylinder suction air flow features. Helical guide vanes of different number of vanes are produced from 3D printing and placed in the intake manifold to examine the air flow characteristics. Four different helical guide vane devices namely 3, 4, 5 and 6 vanes of the same dimensions are tested in a D.I diesel engine operating with Mamey Sapote biodiesel blend. As per the experimental results of engine performance and emission characteristics, it is found that 5 vanes helical guide vane swirl device exhibited in addition number of increased improvements such as the brake power and bake thermal efficiency by 2.4% and 8.63% respectively and the HC, NOx, Carbon monoxide and, Smoke densities are reduced by 15.62%, 4.23%, 14.27% and 9.6% at peak load operating conditions as collate with normal engine at the same load. Hence this investigation concluded that Helical Guide Vane Devices successfully enhanced the in-cylinder air flow to improve better addition of Mamey Sapote biodiesel with air leading in better performance of the engine than without vanes.
Exposure to triaryl phosphates: metabolism and biomarkers of exposure
Furlong, Clement E.
2013-01-01
The leakage of tricresyl phosphate-containing engine lubricants into aircraft cabin air, either from worn or defective engine seals or under normal operating conditions, is a serious concern for both the health and safety of the cabin occupants, since the oil contains one to five percent tricresyl phosphate (TCP) esters, known neurotoxins. The exposure of pilots is a particular concern since their impairment can affect their safe operation of the aircraft. Mass spectrometric (MS)-based protocols for documenting exposures of individuals are described that entail a rapid purification of the TCP-modified plasma enzyme butyrylcholinesterase (BChE). Following protease digestion of BChE, the modified active site peptide is characterized by MS analysis. Approaches for identifying safer engine oil additives are also described. Some general comments regarding the necessity of improving the quality and safety of the cabin air supply are presented. PMID:24285929
Lessons Learned with Metallized Gelled Propellants
NASA Technical Reports Server (NTRS)
1996-01-01
During testing of metallized gelled propellants in a rocket engine, many changes had to be made to the normal test program for traditional liquid propellants. The lessons learned during the testing and the solutions for many of the new operational conditions posed with gelled fuels will help future programs run more smoothly. The major factors that influenced the success of the testing were propellant settling, piston-cylinder tank operation, control of self pressurization, capture of metal oxide particles, and a gelled-fuel protective layer. In these ongoing rocket combustion experiments at the NASA Lewis Research Center, metallized, gelled liquid propellants are used in a small modular engine that produces 30 to 40 lb of thrust. Traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt% loadings of aluminum are used with gaseous oxygen as the oxidizer. The figure compares the thrust chamber efficiencies of different engines.
Program for refan JT8D engine design, fabrication and test, phase 2
NASA Technical Reports Server (NTRS)
Glass, J. A.; Zimmerman, E. S.; Scaramella, V. M.
1975-01-01
The objective of the JT8D refan program was to design, fabricate, and test certifiable modifications of the JT8D engine which would reduce noise generated by JT8D powered aircraft. This was to be accomplished without affecting reliability and maintainability, at minimum retrofit cost, and with no performance penalty. The mechanical design, engine performance and stability characteristics at sea-level and altitude, and the engine noise characteristics of the test engines are documented. Results confirmed the structural integrity of the JT8D-109. Engine operation was stable throughout the airplane flight envelope. Fuel consumption of the test engines was higher than that required to meet the goal of no airplane performance penalty, but the causes were identified and corrected during a normal pre-certification engine development program. Compared to the baseline JT8D-109 engine, the acoustically treated JT8D-109 engine showed noise reductions of 6 PNdB at takeoff and 11 PNdB at a typical approach power setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Y.; Obata, Y.; Takeoka, T.
1987-04-21
A cooling system is described for radiator and condenser of vehicles with an air conditioner having a first blower and a second blower for cooling the radiator and the condenser so as to cool the engine cooling water and so as to condense the coolant, and a cooling cycle operation switch which comprises: (a) engine cooling water temperature switch (SW1) connected between a power supply and the first blower and turned on and off in accordance with high and low temperature conditions of the engine cooling water; (b) relay switching means for controlling the first and second blowers in accordancemore » with the on-off conditions of the cooling cycle operation switch; and (c) a control circuit having an on-off switch and a solenoid and connected between the relay switching means and either the first blower or the second blower, the solenoid of the control circuit being connected to switches (SW3, SW4 and SW5) for electrical equipment such as headlights, wipers; whereby, when any one of the switches for the electrical equipment of the vehicle is turned off, the first and second blowers are operated at normal speed through the relay switching means and the control circuit, upon the operation of the cooling cycle operation switch, while when any one of the switches for the electrical equipment is turned on, the first blower is on-off controlled through the engine cooling water temperature switch (SW1) and the second blower remains operated through the relay switching means.« less
NASA Technical Reports Server (NTRS)
Spanogle, J A; Whitney, E G
1931-01-01
An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion.
Selected Design Parameters for Reclining Seats Based on Engineering Anthropometry
1977-09-01
mounted on these arm rests and immediately adjacent surfaces -provide upper extremity configuratinns conducive to maximum biomechanical advantage -meet...operation at the rudder pedals under normal or under high G environments. (2) Size: The foot rest must be large enough to cover the range of heel positions...See Figure 9.) Foot Control Adjustment Two horizontal cylinders 2" in diameter x 6" long represented rudder pedals to be operated by feet. They were
Isolator-combustor interaction in a dual-mode scramjet engine
NASA Technical Reports Server (NTRS)
Pratt, David T.; Heiser, William H.
1993-01-01
A constant-area diffuser, or 'isolator', is required in both the ramjet and scramjet operating regimes of a dual-mode engine configuration in order to prevent unstarts due to pressure feedback from the combustor. Because the nature of the combustor-isolator interaction is different in the two operational modes, however, attention is presently given to the use of thermal vs kinetic energy coordinates for these interaction processes' visualization. The results of the analysis thus conducted indicate that the isolator requires severe flow separation at combustor entry, and that its entropy-generating characteristics are more severe than an equivalent oblique shock. A constant-area diffuser is only marginally able to contain the equivalent normal shock required for subsonic combustor entry.
Sawlog weights for Appalachian hardwoods
Floyd G. Timson; Floyd G. Timson
1972-01-01
The tables are presented in this paper as reference material needed as a foundation for further work in the field of hardwood log weights. Such work may be undertaken by researchers, engineers, and equipment designers in the form of formal and informal studies, or by timbermen in the normal course of action to improve their operations.
2018-01-01
Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as ‘infant mortality’. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality—sensu engineering—without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy. PMID:29892407
Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.
Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry
2018-05-15
Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.
High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator
NASA Technical Reports Server (NTRS)
Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.
2011-01-01
In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.
Fatigue Lifespan of Engine Box Influenced by Fan Blade Out
NASA Astrophysics Data System (ADS)
Qiu, Ju; Shi, Jingwei; Su, Huaizhong; Zhang, Jinling; Feng, Juan; Shi, Qian; Tian, Xiaoyu
2017-11-01
This provides precious experience and reliable reference data for future design. This paper introduces the analysis process of Fan-blade-out, and considers the effect of windmill load on the fatigue lifespan of the case. According to Extended Operations (ETOPS) in the airworthiness regulations, the fatigue crack of it is analyzed by the unbalanced rotor load, during FBO. Compared with the lifespan in normal work of the engine, this research provides valuable design experience and reliable reference data for the case design in the near future.
NASA Technical Reports Server (NTRS)
Engel, Jerome N.; Copp, Martin R.
1959-01-01
Acceleration, airspeed, and altitude data obtained with an NACA VGH recorder from a four-engine commercial transport airplane operating over a northwestern United States-Alaska route were evaluated to determine the magnitude and frequency of occurrence of gust and maneuver accelerations., operating airspeeds, and gust velocities. The results obtained were then compared with the results previously reported in NACA Technical Note 3475 for two similar airplanes operating over transcontinental routes in the United States. No large variations in the gust experience for the three operations were noted. The results indicate that the gust-load experience of the present operation closely approximated that of the central transcontinental route in the United States with which it is compared and showed differences of about 4 to 1 when compared with that of the southern transcontinental route in the United States. In general, accelerations due to gusts occurred much more frequently than those due to operational maneuvers. At a measured normal-acceleration increment of 0.5g, accelerations due to gusts occurred roughly 35 times more frequently than those due to operational maneuvers.
Remote Operations of Laser Guide Star Systems: Gemini Observatory.
NASA Astrophysics Data System (ADS)
Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; D'Orgeville, Celine
2011-03-01
The Gemini North telescope, equipped with a 14W laser, has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. The new 55W laser system for MCAO was installed on the Gemini South telescope in May 2010. In this paper, we comment on how Gemini Observatory developed regular remote operation of the Laser Guide Star Facility and high-power solid-state laser as routine normal operations. Fully remote operation of the LGSF from the Hilo base facility HBF was initially trialed and then optimized and became the standard operating procedure (SOP) for LGS operation in December 2008. From an engineering perspective remote operation demands stable, well characterized and base-lined equipment sets. In the effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.
Knock detection system to improve petrol engine performance, using microphone sensor
NASA Astrophysics Data System (ADS)
Sujono, Agus; Santoso, Budi; Juwana, Wibawa Endra
2017-01-01
An increase of power and efficiency of spark ignition engines (petrol engines) are always faced with the problem of knock. Even the characteristics of the engine itself are always determined from the occurrence of knock. Until today, this knocking problem has not been solved completely. Knock is caused by principal factors that are influenced by the engine rotation, the load or opening the throttle and spark advance (ignition timing). In this research, the engine is mounted on the engine test bed (ETB) which is equipped with the necessary sensors. Knock detection using a new method, which is based on pattern recognition, which through the knock sound detection by using a microphone sensor, active filter, the regression of the normalized envelope function, and the calculation of the Euclidean distance is used for identifying knock. This system is implemented with a microcontroller which uses fuzzy logic controller ignition (FLIC), which aims to set proper spark advance, in accordance with operating conditions. This system can improve the engine performance for approximately 15%.
Observations of directional gamma prime coarsening during engine operation
NASA Astrophysics Data System (ADS)
Draper, S.; Hull, D.; Dreshfield, R.
1989-04-01
Two alloys, NASAIR 100 and a modified NASAIR 100 called Alloy 3, were run as turbine blades in an experimental ground-based Garrett TFE731 engine for up to 200 hours. The stress induced directional coarsening of γ' (rafting) that developed during engine testing was analyzed and compared to previous research from laboratory tests. The blades were found to have formed a lamellar structure, the lamellae being normal to the centrifugal stress axis over much of the span. However, near the surfaces, the blades were found to have formed lamellae parallel to the centrifugal stress axis for certain cycles. Representative photomicrographs of the blades and the effects of stress and temperature on lamellae formation are shown.
Observations of directional gamma prime coarsening during engine operation
NASA Technical Reports Server (NTRS)
Draper, Susan L.; Hull, David R.; Dreshfield, Robert L.
1987-01-01
Two alloys with negative mismatch parameters, NASAIR 100 and a modified NASAIR 100 called Alloy 3 were run as turbine blades in an experimental ground based Garret TFE731 engine for up to 200 hr. The directional coarsening of gamma prime (rafting) that developed during engine testing was analyzed and compared to previous research from laboratory tests. The blades were found to be rafted normal to the centrifugal stress axis over much of the span, but near the surfaces, the blades were found to be rafted parallel to the centrifugal stress axis for certain cycles. Representative photomicrographs of the blades and the effects of stress and temperature on raft formation are shown.
Observations of directional gamma prime coarsening during engine operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, S.L.; Hull, D.R.; Dreshfield, R.L.
1987-02-01
Two alloys with negative mismatch parameters, NASAIR 100 and a modified NASAIR 100 called Alloy 3 were run as turbine blades in an experimental ground based Garret TFE731 engine for up to 200 hr. The directional coarsening of gamma prime (rafting) that developed during engine testing was analyzed and compared to previous research from laboratory tests. The blades were found to be rafted normal to the centrifugal stress axis over much of the span, but near the surfaces, the blades were found to be rafted parallel to the centrifugal stress axis for certain cycles. Representative photomicrographs of the blades andmore » the effects of stress and temperature on raft formation are shown.« less
Observations of directional gamma prime coarsening during engine operation
NASA Technical Reports Server (NTRS)
Draper, S.; Hull, D.; Dreshfield, R.
1989-01-01
Two alloys, NASAIR 100 and a modified NASAIR 100 called Alloy 3, were run as turbine blades in an experimental ground-based Garrett TFE731 engine for up to 200 hours. The stress induced directional coarsening of gamma-prime (rafting) that developed during engine testing was analyzed and compared to previous research from laboratory tests. The blades were found to have formed a lamellar structure, the lamellae being normal to the centrifugal stress axis over much of the span. However, near the surfaces, the blades were found to have formed lamellae parallel to the centrifugal stress axis for certain cycles. Representative photomicrographs of the blades and the effects of stress and temperature on lamellae formation are shown.
1978-07-01
For NTIS GRA&I DTIC TAB >0 Unannounced [D Just ification- D T C ELECTE By Distribution/ NOV 20 1981 Avail and/orS Availabilit CodesD=-Dist Spca D NO...Hutton, Engineering Geologist. Impoundment of water began in 1970. h. Normal Operating Procedure. Normal rainfall, runoff, transpir- ation, and...evaporation all combine to maintain a relatively stable water surface elevation. 1.3 PERTINENT DATA a. Drainage Area - 9,900 acres of which approximately 15
Ranking of sabotage/tampering avoidance technology alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, W.B.; Tabatabai, A.S.; Powers, T.B.
1986-01-01
Pacific Northwest Laboratory conducted a study to evaluate alternatives to the design and operation of nuclear power plants, emphasizing a reduction of their vulnerability to sabotage. Estimates of core melt accident frequency during normal operations and from sabotage/tampering events were used to rank the alternatives. Core melt frequency for normal operations was estimated using sensitivity analysis of results of probabilistic risk assessments. Core melt frequency for sabotage/tampering was estimated by developing a model based on probabilistic risk analyses, historic data, engineering judgment, and safeguards analyses of plant locations where core melt events could be initiated. Results indicate the most effectivemore » alternatives focus on large areas of the plant, increase safety system redundancy, and reduce reliance on single locations for mitigation of transients. Less effective options focus on specific areas of the plant, reduce reliance on some plant areas for safe shutdown, and focus on less vulnerable targets.« less
Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Conners, Timothy R.; Sims, Robert L.
1998-01-01
Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.
Reduction of aircraft gas turbine engine pollutant emissions
NASA Technical Reports Server (NTRS)
Diehl, L. A.
1978-01-01
To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Roth, Don J.
2004-01-01
Engine makers and aviation safety government institutions continue to have a strong interest in monitoring the health of rotating components in aircraft engines to improve safety and to lower maintenance costs. To prevent catastrophic failure (burst) of the engine, they use nondestructive evaluation (NDE) and major overhauls for periodic inspections to discover any cracks that might have formed. The lowest cost fluorescent penetrant inspection NDE technique can fail to disclose cracks that are tightly closed during rest or that are below the surface. The NDE eddy current system is more effective at detecting both crack types, but it requires careful setup and operation and only a small portion of the disk can be practically inspected. So that sensor systems can sustain normal function in a severe environment, health-monitoring systems require the sensor system to transmit a signal if a crack detected in the component is above a predetermined length (but below the length that would lead to failure) and lastly to act neutrally upon the overall performance of the engine system and not interfere with engine maintenance operations. Therefore, more reliable diagnostic tools and high-level techniques for detecting damage and monitoring the health of rotating components are very essential in maintaining engine safety and reliability and in assessing life.
Spacecraft operations automation: Automatic alarm notification and web telemetry display
NASA Astrophysics Data System (ADS)
Short, Owen G.; Leonard, Robert E.; Bucher, Allen W.; Allen, Bryan
1999-11-01
In these times of Faster, Better, Cheaper (FBC) spacecraft, Spacecraft Operations Automation is an area that is targeted by many Operations Teams. To meet the challenges of the FBC environment, the Mars Global Surveyor (MGS) Operations Team designed and quickly implemented two new low-cost technologies: one which monitors spacecraft telemetry, checks the status of the telemetry, and contacts technical experts by pager when any telemetry datapoints exceed alarm limits, and a second which allows quick and convenient remote access to data displays. The first new technology is Automatic Alarm Notification (AAN). AAN monitors spacecraft telemetry and will notify engineers automatically if any telemetry is received which creates an alarm condition. The second new technology is Web Telemetry Display (WTD). WTD captures telemetry displays generated by the flight telemetry system and makes them available to the project web server. This allows engineers to check the health and status of the spacecraft from any computer capable of connecting to the global internet, without needing normally-required specialized hardware and software. Both of these technologies have greatly reduced operations costs by alleviating the need to have operations engineers monitor spacecraft performance on a 24 hour per day, 7 day per week basis from a central Mission Support Area. This paper gives details on the design and implementation of AAN and WTD, discusses their limitations, and lists the ongoing benefits which have accrued to MGS Flight Operations since their implementation in late 1996.
NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Carter, David; Wetzel, Scott
2000-01-01
The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.
Feasibility study for convertible engine torque converter
NASA Technical Reports Server (NTRS)
1985-01-01
The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.
Development of Diesel Engine Operated Forklift Truck for Explosive Gas Atmospheres
NASA Astrophysics Data System (ADS)
Vishwakarma, Rajendra Kumar; Singh, Arvind Kumar; Ahirwal, Bhagirath; Sinha, Amalendu
2018-02-01
For the present study, a prototype diesel engine operated Forklift truck of 2 t capacity is developed for explosive gas atmosphere. The parts of the Forklift truck are assessed against risk of ignition of the explosive gases, vapors or mist grouped in Gr. IIA and having ignition temperature more than 200°C. Identification of possible sources of ignition and their control or prevention is the main objective of this work. The design transformation of a standard Forklift truck into a special Forklift truck is made on prototype basis. The safety parameters of the improved Forklift truck are discussed in this paper. The specially designed Forklift truck is useful in industries where explosive atmospheres may present during normal working conditions and risk of explosion is a concern during handling or transportation of materials. This indigenous diesel engine based Forklift truck for explosive gas atmosphere classified as Zone 1 and Zone 2 area and gas group IIA is developed first time in India in association with the Industry.
Simulation of hybrid propulsion system using LSRG and single cylinder engine
NASA Astrophysics Data System (ADS)
Han, C.; Ohyama, K.; Wang, W. Q.
2017-11-01
Nowadays, more and more people are beginning to use hybrid vehicles (HVs). The drive system of HVs needs to produce the electric energy with the electric generator and gearbox powered by an engine. Therefore, the structure becomes complex and the cost is high. To solve this issue, this research proposes a new drive system design that combines the engine and a linear switched reluctance generator (LSRG). When the engine is operating, the LSRG can simultaneously assist the engine’s mechanical output or can generate power to charge the battery. In this research, three research steps are executed. In the first step, the LSRG is designed according to the size of normal engine. Then, finite element analysis is used to get the data of flux linkage and calculate the inductance and translator force. Finally, Simulink models of control system are constructed to verify the performance of LSRG.
Performance evaluation approach for the supercritical helium cold circulators of ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaghela, H.; Sarkar, B.; Bhattacharya, R.
2014-01-29
The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe coldmore » circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad
This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep themore » fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.« less
Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air
Poola, Ramesh B.; Sekar, Ramanujam R.; Stork, Kevin C.
1997-01-01
An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.
NASA Astrophysics Data System (ADS)
Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali
2014-01-01
Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.
USAF bioenvironmental noise data handbook. Volume 161: A/M32A-86 generator set, diesel engine driven
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-05-01
The A/M32A-86 generator set is a diesel engine driven source of electrical power used for the starting of aircraft, and for ground maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at normal rated/loaded conditions. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
New potentials for conventional aircraft when powered by hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Menard, W. A.; Moynihan, P. I.; Rupe, J. H.
1976-01-01
Overall system efficiency and performance of a Beech Model 20 Duke aircraft was studied to provide analytical representations of an aircraft piston engine system, including all essential components required for onboard hydrogen generation. Lower emission levels and a 20% reduction in fuel consumption may be obtained by using a catalytic hydrogen generator, incorporated as part of the air induction system, to generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen is then mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultra lean fuel/air ratios, resulting in higher efficiencies.
Douglas flight deck design philosophy
NASA Technical Reports Server (NTRS)
Oldale, Paul
1990-01-01
The systems experience gained from 17 years of DC-10 operation was used during the design of the MD-11 to automate system operation and reduce crew workload. All functions, from preflight to shutdown at the termination of flight, require little input from the crew. The MD-11 aircraft systems are monitored for proper operation by the Aircraft Systems Controllers (ASC). In most cases, system reconfiguration as a result of a malfunction is automated. Manual input is required for irreversible actions such as engine shutdown, fuel dump, fire agent discharge, or Integrated Drive Generator (IDG) disconnect. During normal operations, when the cockpit is configured for flight, all annunciators on the overhead panel will be extinguished. This Dark Cockpit immediately confirms to the crew that the panels are correctly configured and that no abnormalities are present. Primary systems annunciations are shown in text on the Alert Area of the Engine and Alert Display (EAD). This eliminates the need to scan the overhead. The MD-11 aircraft systems can be manually controlled from the overhead area of the cockpit. The center portion of the overhead panel is composed of the primary aircraft systems panels, which include FUEL, AIR, Electrical (ELEC) and Hydraulic (HYD) systems, which are easily accessible from both flight crew positions. Each Aircraft Systems Controller (ASC) has two automatic channels and a manual mode. All rectangular lights are annunciators. All square lights are combined switches and annunciators called switch/lights. Red switch/lights on the overhead (Level 3 alerts) are for conditions requiring immediate crew action. Amber (Level 2 or Level 1 alerts) indicates a fault or switch out of position requiring awareness or crew interaction. Overhead switches used in normal operating conditions will illuminate blue when in use (Level 0 alerts) such as WING ANTI-ICE - ON. An overhead switch/light with BLACK LETTERING on an amber or red background indicates a system failure and that crew interaction is required. A switch/light with blue or amber lettering and a BLACK BACKGROUND indicates a switch out of normal position and that crew action is necessary only if the system is in manual operation.
Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V
2010-04-01
The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.
Daniel Sokolowski in the Rocket Operations Building
1966-06-21
Dan Sokolowski worked as an engineering coop student at the National Aeronautics and Space Administration (NASA) Lewis Research Center from 1962 to 1966 while earning his Mechanical Engineering degree from Purdue. At the time of this photograph Sokolowski had just been hired as a permanent NASA employee in the Chemical Rocket Evaluation Branch of the Chemical Rocket Division. He had also just won a regional American Institute of Aeronautics and Astronautics competition for his paper on high and low-frequency combustion instability. The resolution of the low-frequency combustion instability, or chugging, in liquid hydrogen rocket systems was one of Lewis’ more significant feats of the early 1960s. In most rocket engine combustion chambers, the pressure, temperature, and flows are in constant flux. The engine is considered to be operating normally if the fluctuations remain random and within certain limits. Lewis researchers used high-speed photography to study and define Pratt and Whitney’s RL-10’s combustion instability by throttling the engine under the simulated flight conditions. They found that the injection of a small stream of helium gas into the liquid-oxygen tank immediately stabilized the system. Sokolowski’s later work focused on combustion in airbreathing engines. In 1983 was named Manager of a multidisciplinary program aimed at improving durability of combustor and turbine components. After 39 years Sokolowski retired from NASA in September 2002.
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Vincent, Danny; Tobias, Leonard (Technical Monitor)
1997-01-01
NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.
Energy Guiding and Harvesting through Phonon-Engineered Graphene
2016-01-28
improve the performance of carbon nanotube array transistors. Such transistors suffer about two orders of magnitude performance penalty due to high... nanotube - nanotube resistances in the current pathways from source to drain. Thus, under normal operation CNT array 1. REPORT DATE (DD-MM-YYYY) 4. TITLE...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Carbon Nanotubes , FETs, Nanosoldering REPORT DOCUMENTATION PAGE 11. SPONSOR
Code of Federal Regulations, 2011 CFR
2011-07-01
... conditioning system compressor, converted to an equivalent roadload component, to the normal dynamometer... driving the SC03 cycle with the air conditioning system operating. (1) Engine revolutions/minute (ERPMt...)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...
Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.
Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong
2015-10-23
The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.
Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Yu, Linxiao; Li, Jiaqiang; Wang, Xin
2014-02-15
A particulate oxidation catalyst (POC) was employed to perform experiments on the engine test bench to evaluate the effects on the nitrogen dioxide (NO2) and particulate matter (PM) emissions from diesel engine. The engine exhaust was sampled from both upstream and downstream of the POC. The results showed that the POC increased the ratios of NO2/NOx significantly in the middle and high loads, the ratio of NO2/nitrogen oxides (NOx) increased 4.5 times on average under all experiment modes with the POC. An engine exhaust particle sizer (EEPS) was used to study the particle number-weighted size distributions and the abnormal particle emissions with the POC. The results indicated that the average reduction rate of particle number (PN) was 61% in the operating range of the diesel engine. At the engine speed of 1,400 r/min, the reduction rates of PN tended to decrease with the larger particle size. In the long time run under the steady mode (520 Nm, 1,200 r/min), abnormal particle emissions after the POC happened seven times in the first hour, and the average PN concentration of these abnormal emission peaks was much higher than that in normal state. The particle emissions of peaks 1-5 equaled the particles emitted downstream of the POC in normal state for 1.9h in number concentration, and for 3.6h in mass concentration. The PN concentrations tended to increase over time in 5h under the steady engine mode and the increase of the PN in the size range of 6.04-14.3 nm was more evident. Copyright © 2013 Elsevier B.V. All rights reserved.
Rocket Engine Innovations Advance Clean Energy
NASA Technical Reports Server (NTRS)
2012-01-01
During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.
Low pressure EGR system having full range capability
Easley, Jr., William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir
2009-09-22
An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.
Engineering a responsive, low cost, tactical satellite, TACSAT-1
NASA Astrophysics Data System (ADS)
Hurley, M.; Duffey, T.; Huffine, Christopher; Weldy, Ken; Clevland, Jeff; Hauser, Joe
2004-11-01
The Secretary of Defense's Office of Force Transformation (OFT) is currently undertaking an initiative to develop a low-cost, responsive, operationally relevant space capability using small satellites. The Naval Research Laboratory (NRL) is tasked to be program manger for this initiative, which seeks to make space assets and capabilities available to operational users. TacSat-1 is the first in a series of small satellites that will result in rapid, tailored, and operationally relevant experimental space capabilities for tactical forces. Components of the resulting tactical architecture include a highly automated small satellite bus, modular payloads, common launch and payload interfaces, tasking and data dissemination using the SIPRNET (Secret Internet Protocol Routing Network), and low cost, rapid response launches. The overall goal of TacSat-1 is to demonstrate the utility of a broader complementary business model and provide a catalyst for energizing DoD and industry in the operational space area. This paper first provides a brief overview of the TacSat- 1 experiment and then discusses the engineering designs and practices used to achieve the aggressive cost and schedule goals. Non-standard approaches and engineering philosophies that allowed the TacSat-1 spacecraft to be finished in twelve months are detailed and compared with "normal" satellite programs where applicable. Specific subsystem design, integration and test techniques, which contributed to the successful completion of the TacSat-1 spacecraft, are reviewed. Finally, lessons learned are discussed.
1980-08-01
4 985 G DEPARTMENT OF THE ARMY [ NEW ENGLAND DIVISION, CORPS OF ENGINEERS WALTHAM, MASS. 02154 * DI~~~~h~ U~M ~qE M W A " AUGUST 1_App buomr w...AODREO9(if diffemen IC l mMA OfUice) IS. SECURITY CLASS. (of ShJi r.90,) UNCLASSIFIED IS. DC-ASSI FIC ATION/DOWNGRADIN G SCN DULE I6. DISTRIBUTION... g . Purpose of Dam 2 h. Design and Construction History 3 i. Normal Operational Procedure 3 1.3 Pertinent Data 3 2. ENGINEERING DATA 2.1 Design
Problems of standardizing and technical regulation in the electric power industry
NASA Astrophysics Data System (ADS)
Grabchak, E. P.
2016-12-01
A mandatory condition to ensure normal operation of a power system and efficiency in the sector is standardization and legal regulation of technological activities of electric power engineering entities and consumers. Compared to the times of USSR, the present-time technical guidance documents are not mandatory to follow in most cases, being of an advisory nature due to the lack of new ones. During the last five years, the industry has been showing a deterioration of the situation in terms of ensuring reliability and engineering controllability as a result of the dominant impact of short-term market stimuli and the differences in basic technological policies. In absence of clear requirements regarding the engineering aspects of such activities, production operation does not contribute to the preserving of technical integrity of the Russian power system, which leads to the loss of performance capability and controllability and causes disturbances in the power supply to consumers. The result of this problem is a high rate of accident incidence. The dynamics of accidents by the type of equipment is given, indicating a persisting trend of growth in the number of accidents, which are of a systematic nature. Several problematic aspects of engineering activities of electric power engineering entities, requiring standardization and legal regulation are pointed out: in the domestic power system, a large number of power electrotechnical and generating equipment operate along with systems of regulation, which do not comply with the principles and technical rules representing a framework where the Energy System of Russia is built and functioning
The time-frequency method of signal analysis in internal combustion engine diagnostics
NASA Astrophysics Data System (ADS)
Avramchuk, V. S.; Kazmin, V. P.; Faerman, V. A.; Le, V. T.
2017-01-01
The paper presents the results of the study of applicability of time-frequency correlation functions to solving the problems of internal combustion engine fault diagnostics. The proposed methods are theoretically justified and experimentally tested. In particular, the method’s applicability is illustrated by the example of specially generated signals that simulate the vibration of an engine both during the normal operation and in the case of a malfunction in the system supplying fuel to the cylinders. This method was confirmed during an experiment with an automobile internal combustion engine. The study offers the main findings of the simulation and the experiment and highlights certain characteristic features of time-frequency autocorrelation functions that allow one to identify malfunctions in an engine’s cylinder. The possibility in principle of using time-frequency correlation functions in function testing of the internal combustion engine is demonstrated. The paper’s conclusion proposes further research directions including the application of the method to diagnosing automobile gearboxes.
NASA Technical Reports Server (NTRS)
Saltsman, J. F.; Halford, G. R.
1984-01-01
A hydrodynamic air bearing with a compliment surface is used in the gas generator of an upgraded automotive gas turbine engine. In the prototype design, the compliant surface is a thin foil spot welded at one end to the bearing cartridge. During operation, the foil failed along the line of spot welds which acted as a series of stress concentrators. Because of its higher degree of geometric uniformity, electron beam welding of the foil was selected as an alternative to spot welding. Room temperature bending fatigue tests were conducted to determine the fatigue resistance of the electron beam welded foils. Equations were determined relating cycles to crack initiation and cycles to failure to nominal total strain range. A scaling procedure is presented for estimating the reduction in cyclic life when the foil is at its normal operating temperature of 260 C (500 F).
Gonen, Eran; Grossman, Gershon
2015-09-01
Conventional reciprocating pistons, normally found in thermoacoustic engines, tend to introduce complex impedance characteristics, including acoustic, mechanical, and electrical portions. System behavior and performance usually rely on proper tuning processes and selection of an optimal point of operation, affected substantially by complementary hardware, typically adjusted for the specific application. The present study proposes an alternative perspective on the alternator behavior, by considering the relative motion between gas and piston during the engine mode of operation. Direct analytical derivation of the velocity distribution inside a tight seal gap and the associated impedance is employed to estimate the electro-acoustic conversion efficiency, thus indicating how to improve the system performance. The influence of acoustic phase, gap dimensions, and working conditions is examined, suggesting the need to develop tighter and longer seal gaps, having increased impedance, to allow optimization for use in upcoming sustainable power generation solutions and smart grids.
Seal Technology in Gas Turbine Engines
1978-08-01
ambient temperatures and 427*C (800*F). 3. Application as a part of the normal manufacturing sequence without subsequent finishing operations...of demonstrable hardnless with sharp, cutting edges. 4. The coating must be applied to a finish dimmsion without subsequent processing. 5. Application...The JC1-Iii 3.4 coating had a surface finish of 11 V metre (425 mioroinches). Both materials appeared to be adequately rough for the proposed
NASA Technical Reports Server (NTRS)
Miller, W. S.
1974-01-01
A structural analysis performed on the 1/4-watt cryogenic refrigerator. The analysis covered the complete assembly except for the cooling jacket and mounting brackets. Maximum stresses, margin of safety, and natural frequencies were calculated for structurally loaded refrigerator components shown in assembly drawings. The stress analysis indicates that the design is satisfactory for the specified vibration environment, and the proof, burst, and normal operating loads.
Standardization and program effect analysis (Study 2.4). Volume 3: Design-to-cost analysis
NASA Technical Reports Server (NTRS)
Shiokari, T.
1975-01-01
The program procedures that were incorporated into an on-going "design-to-cost" spacecraft program are examined. Program procedures are the activities that support the development and operations of the flight unit: contract management, documents, integration meetings, engineering, and testing. This report is limited to the program procedures that were implemented, with emphasis on areas that may depart from normal satellite development practices.
Test development for the thermionic system evaluation test (TSET) project
NASA Astrophysics Data System (ADS)
Morris, D. Brent; Standley, Vaughn H.; Schuller, Michael J.
1992-01-01
The arrival of a Soviet TOPAZ-II space nuclear reactor affords the US space nuclear power (SNP) community the opportunity to study an assembled thermionic conversion power system. The TOPAZ-II will be studied via the Thermionic System Evaluation Test (TSET) Project. This paper is devoted to the discussion of TSET test development as related to the objectives contained in the TSET Project Plan (Standley et al. 1991). The objectives contained in the Project Plan are the foundation for scheduled TSET tests on TOPAZ-II and are derived from the needs of the Air Force Thermionic SNP program. Our ability to meet the objectives is bounded by unique constraints, such as procurement requirements, operational limitations, and necessary interaction between US and Soviet Scientists and engineers. The fulfillment of the test objectives involves a thorough methodology of test scheduling and data managment. The overall goals for the TSET program are gaining technical understanding of a thermionic SNP system and demonstrating the capabilities and limitations of such a system while assisting in the training of US scientist and engineers in preparation for US SNP system testing. Tests presently scheduled as part of TSET include setup, demonstration, and verification tests; normal and off-normal operating test, and system and component performance tests.
NASA Astrophysics Data System (ADS)
Mohlman, H. T.
1983-04-01
The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.
1975-06-01
beat model for the filtered series is based upon estimates of residual variances. One proceedo by estimating the parameters of the different models for...8217.4.%7 subjects were screened for nor-mality of binaural hearin_ and for Ntter !ne-cal requirements az prescribed by the staf: at Patterson Ary Hospital...selecting the beat normal populavton,"Journal of the American Statistilcal Association, Vol. 67, No. 339. pp. 1061 Bechhofer, R. E. (1954); "A single-sampl
Development of an instantaneous local fuel-concentration measurement probe: an engine application
NASA Astrophysics Data System (ADS)
Guibert, P.; Boutar, Z.; Lemoyne, L.
2003-11-01
This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.; Burcham, R. E.; Diamond, W. A.
1985-01-01
High-pressure, high-temperature seal flow (leakage) data for nonrotating and rotating Raleigh-step and convergent-tapered-bore seals were characterized in terms of a normalized flow coefficient. The data for normalized Rayleigh-steip and nonrotating tapered-bore seals were in reasonable agreement with theory, but data for the rotating tapered-bore seals were not. The tapered-bore-seal operational clearances estimated from the flow data were significantly larger than calculated. Although clearances are influenced by wear from conical to cylindrical geometry and errors in clearance corrections, the problem was isolated to the shaft temperature - rotational speed clearance correction. The geometric changes support the use of some conical convergence in any seal. Under these conditions rotation reduced the normalized flow coefficiently by nearly 10 percent.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mullen, R. L.; Braun, M. J.; Burcham, R. E.; Diamond, W. A.
1987-01-01
High-pressure, high-temperature seal flow (leakage) data for nonrotating and rotating Raleigh-step and convergent-tapered-bore seals were characterized in terms of a normalized flow coefficient. The data for normalized Rayleigh-step and nonrotating tapered-bore seals were in reasonable agreement with theory, but data for the rotating tapered-bore seals were not. The tapered-bore-seal operational clearances estimated from the flow data were significantly larger than calculated. Although clearances are influenced by wear from conical to cylindrical geometry and errors in clearance corrections, the problem was isolated to the shaft temperature - rotational speed clearance correction. The geometric changes support the use of some conical convergence in any seal. Under these conditions rotation reduced the normalized flow coefficiently by nearly 10 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunting, Bruce G; Farrell, John T
2006-01-01
The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCImore » combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.« less
Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health
NASA Technical Reports Server (NTRS)
2004-01-01
Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate expected sensor values for targeted fault scenarios. Taken together, this information provides an efficient condensation of the engineering experience and engine flow physics needed for sensor selection. The systematic sensor selection strategy is composed of three primary algorithms. The core of the selection process is a genetic algorithm that iteratively improves a defined quality measure of selected sensor suites. A merit algorithm is employed to compute the quality measure for each test sensor suite presented by the selection process. The quality measure is based on the fidelity of fault detection and the level of fault source discrimination provided by the test sensor suite. An inverse engine model, whose function is to derive hardware performance parameters from sensor data, is an integral part of the merit algorithm. The final component is a statistical evaluation algorithm that characterizes the impact of interference effects, such as control-induced sensor variation and sensor noise, on the probability of fault detection and isolation for optimal and near-optimal sensor suites.
NASA Technical Reports Server (NTRS)
Shontz, W. D.; Records, R. M.; Antonelli, D. R.
1992-01-01
The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.
Improvement of Eustachian Tube Function by Tissue-Engineered Regeneration of Mastoid Air Cells
Kanemaru, Shin-ichi; Umeda, Hiroo; Yamashita, Masaru; Hiraumi, Harukazu; Hirano, Shigeru; Nakamura, Tatsuo; Ito, Juichi
2013-01-01
Objectives/Hypothesis Most cases of chronic otitis media (OMC) are associated with poor development of the mastoid air cells (MACs) and poor Eustachian tube (ET) function. We have previously reported that MAC regeneration can effectively eliminate intractable OMC. In this study, we assessed the ability of regenerated MACs to restore normal gas exchange function and contribute to improved ET function. Study Design Clinical trial with control. Setting General hospitals. Materials and Methods Seventy-six patients with OMC, including cholesteatoma and adhesive otitis media, received tympanoplasty and MAC regeneration therapy. At the first-stage of tympanoplasty, artificial pneumatic bones and/or autologous bone fragments were implanted into the opened mastoid cavity. At the 2nd-stage operation, a nitrous oxide (N2O) gas study was performed in 10 patients to measure middle ear pressure (MEP). For the control group, MEP was measured in five patients with good MAC development during cochlear implantation or facial nerve decompression. ET function was measured twice in each patient, once before the 1st operation and 6 months after the second operation. Results At the 2nd-stage operation, in all cases with regenerated MACs and in the normal control group, MEP changed after administration of N2O. In contrast, no change in MEP was observed in cases with unregenerated MACs. In 70% (n = 37/53) of the regenerated MAC group, ET function was improved, whereas improvement of ET function was observed in only 13% (n = 3/23) of the unregenerated MAC group. Conclusions Tissue-engineered regeneration of MACs improves ET function and gas exchange in the middle ear. Laryngoscope, 2012 Level of Evidence 3b PMID:23086494
Managing the equipment service life in rendering engineering support to NPP operation
NASA Astrophysics Data System (ADS)
Ryasnyy, S. I.
2015-05-01
Apart from subjecting metal to nondestructive testing and determining its actual state, which are the traditional methods used for managing the service life of NPP equipment during its operation, other approaches closely linked with rendering engineering support to NPP operation have emerged in recent decades, which, however, have been covered in publications to a lesser extent. Service life management matters occupy the central place in the structure of engineering support measures. Application of the concept of repairing NPP equipment based on assessing its technical state and the risk of its failure makes it possible to achieve significantly smaller costs for maintenance and repairs and produce a larger amount of electricity due to shorter planned outages. Decreasing the occurrence probability of a process-related abnormality through its prediction is a further development of techniques for monitoring the technical state of equipment and systems. The proposed and implemented procedure for predicting the occurrence of process-related deviations from normal NPP operation opens the possibility to record in the online mode the trends in changes of process parameters that are likely to lead to malfunctions in equipment operation and to reduce the probability of power unit unloading when an abnormal technical state of equipment occurs and develops by recording changes in the state at an early stage and taking timely corrective measures. The article presents the structure of interconnections between the objectives and conditions of adjustment and commissioning tests, in which the management of equipment service life (saving and optimizing the service life) occupies the central place. Special attention is paid to differences in resource saving and optimization measures.
Analysis of rig test data for an axial/centrifugal compressor in the 12 kg/sec
NASA Technical Reports Server (NTRS)
Owen, A. K.
1994-01-01
Extensive testing was done on a T55-L-712 turboshaft engine compressor in a compressor test rig at TEXTRON/Lycoming. These rig tests will be followed by a series of engine tests to occur at the NASA Lewis Research Center beginning in the last quarter of 1993. The goals of the rig testing were: (1) map the steady state compressor operation from 20 percent to 100 percent design speed, (2) quantify the effects of compressor bleed on the operation of the compressor, and (3) explore and measure the operation of the compressor in the flow ranges 'beyond' the normal compressor stall line. Instrumentation consisted of 497 steady state pressure sensors, 153 temperature sensors and 34 high response transducers for transient analysis in the pre- and post-stall operating regime. These measurements allow for generation of detailed stage characteristics as well as overall mapping. Transient data is being analyzed for the existence of modal disturbances at the front face of the compression system ('stall precursors'). This paper presents some preliminary results of the ongoing analysis and a description of the current and future program plans. It will primarily address the unsteady events at the front face of the compression system that occur as the system transitions from steady state to unsteady (stall/surge) operation.
Seagrave, JeanClare; McDonald, Jacob D; Gigliotti, Andrew P; Nikula, Kristen J; Seilkop, Steven K; Gurevich, Michael; Mauderly, Joe L
2002-12-01
Exposure to engine emissions is associated with adverse health effects. However, little is known about the relative effects of emissions produced by different operating conditions, fuels, or technologies. Rapid screening techniques are needed to compare the biological effects of emissions with different characteristics. Here, we examined a set of engine emission samples using conventional bioassays. The samples included combined particulate material and semivolatile organic compound fractions of emissions collected from normal- and high-emitter gasoline and diesel vehicles collected at 72 degrees F, and from normal-emitter groups collected at 30 degrees F. The relative potency of the samples was determined by statistical analysis of the dose-response curves. All samples induced bacterial mutagenicity, with a 10-fold range of potency among the samples. Responses to intratracheal instillation in rats indicated generally parallel rankings of the samples by multiple endpoints reflecting cytotoxic, inflammatory, and lung parenchymal changes, allowing selection of a more limited set of parameters for future studies. The parameters selected to assess oxidative stress and macrophage function yielded little useful information. Responses to instillation indicated little difference in potency per unit of combined particulate material and semivolatile organic compound mass between normal-emitter gasoline and diesel vehicles, or between emissions collected at different temperatures. However, equivalent masses of emissions from high-emitter vehicles of both types were more potent than those from normal-emitters. While preliminary in terms of assessing contributions of different emissions to health hazards, the results indicate that a subset of this panel of assays will be useful in providing rapid, cost-effective feedback on the biological impact of modified technology.
Cabin fuselage structural design with engine installation and control system
NASA Technical Reports Server (NTRS)
Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike
1994-01-01
Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie
2012-01-01
Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to a normally unstable high-power condition, thus enabling the high-power condition.
Evaluation of advanced displays for engine monitoring and control
NASA Technical Reports Server (NTRS)
Summers, L. G.
1993-01-01
The relative effectiveness of two advanced display concepts for monitoring engine performance for commercial transport aircraft was studied. The concepts were the Engine Monitoring and Control System (EMACS) display developed by NASA Langley and a display by exception design. Both of these concepts were based on the philosophy of providing information that is directly related to the pilot's task. Both concepts used a normalized thrust display. In addition, EMACS used column deviation indicators; i.e., the difference between the actual parameter value and the value predicted by an engine model, for engine health monitoring; while the Display by Exception displayed the engine parameters if the automated system detected a difference between the actual and the predicted values. The results showed that the advanced display concepts had shorter detection and response times. There were no differences in any of the results between manual and auto throttles. There were no effects upon perceived workload or performance on the primary flight task. The majority of pilots preferred the advanced displays and thought they were operationally acceptable. Certification of these concepts depends on the validation of the engine model. Recommendations are made to improve both the EMACS and the display by exception display formats.
Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method
Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong
2015-01-01
The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments. PMID:26512668
Synthesized voice approach callouts for air transport operations
NASA Technical Reports Server (NTRS)
Simpson, C. A.
1980-01-01
A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.
Underground coal mine instrumentation and test
NASA Technical Reports Server (NTRS)
Burchill, R. F.; Waldron, W. D.
1976-01-01
The need to evaluate mechanical performance of mine tools and to obtain test performance data from candidate systems dictate that an engineering data recording system be built. Because of the wide range of test parameters which would be evaluated, a general purpose data gathering system was designed and assembled to permit maximum versatility. A primary objective of this program was to provide a specific operating evaluation of a longwall mining machine vibration response under normal operating conditions. A number of mines were visited and a candidate for test evaluation was selected, based upon management cooperation, machine suitability, and mine conditions. Actual mine testing took place in a West Virginia mine.
NASA Technical Reports Server (NTRS)
Askew, John C.
1994-01-01
An alternative to the immersion process for the electrodeposition of chromium from aqueous solutions on the inside diameter (ID) of long tubes is described. The Vessel Plating Process eliminates the need for deep processing tanks, large volumes of solutions, and associated safety and environmental concerns. Vessel Plating allows the process to be monitored and controlled by computer thus increasing reliability, flexibility and quality. Elimination of the trivalent chromium accumulation normally associated with ID plating is intrinsic to the Vessel Plating Process. The construction and operation of a prototype Vessel Plating Facility with emphasis on materials of construction, engineered and operational safety and a unique system for rinse water recovery are described.
Performance of J33 turbojet engine with shaft-power extraction III : turbine performance
NASA Technical Reports Server (NTRS)
Huppert, M C; Nettles, J C
1949-01-01
The performance of the turbine component of a J33 turbojet engine was determined over a range of turbine speeds from 8000 to 11,500 rpm.Turbine-inlet temperature was varied from the minimum required to drive the compressor to a maximum of approximately 2000 degrees R at each of several intermediate turbine speeds. Data are presented that show the horsepower developed by the turbine per pound of gas flow. The relation between turbine-inlet stagnation pressure, turbine-outlet stagnation pressure, and turbine-outlet static pressure was established. The turbine-weight-flow parameter varied from 39.2 to 43.6. The maximum turbine efficiency measured was 0.86 at a pressure ratio of 3.5 and a ratio of blade speed to theoretical nozzle velocity of 0.39. A generalized performance map of the turbine-horsepower parameter plotted against the turbine-speed parameter indicated that the best turbine efficiency is obtained when the turbine power is 10 percent greater than the compressor horsepower. The variation of efficiency with the ratio of blade speed to nozzle velocity indicated that the turbine operates at a speed above that for maximum efficiency when the engine is operated normally with the 19-inch-diameter jet nozzle.
New potentials for conventional aircraft when powered by hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Menard, W. A.; Moynihan, P. I.; Rupe, J. H.
1976-01-01
Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultralean fuel/air ratios, resulting in higher efficiencies and hence less fuel consumption. This paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon
1997-01-01
An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.
Fault diagnosis in orbital refueling operations
NASA Technical Reports Server (NTRS)
Boy, Guy A.
1988-01-01
Usually, operation manuals are provided for helping astronauts during space operations. These manuals include normal and malfunction procedures. Transferring operation manual knowledge into a computerized form is not a trivial task. This knowledge is generally written by designers or operation engineers and is often quite different from the user logic. The latter is usually a compiled version of the former. Experiments are in progress to assess the user logic. HORSES (Human - Orbital Refueling System - Expert System) is an attempt to include both of these logics in the same tool. It is designed to assist astronauts during monitoring and diagnosis tasks. Basically, HORSES includes a situation recognition level coupled to an analytical diagnoser, and a meta-level working on both of the previous levels. HORSES is a good tool for modeling task models and is also more broadly useful for knowledge design. The presentation is represented by abstract and overhead visuals only.
Development of spiral-groove self-acting seals for helicopter engines
NASA Technical Reports Server (NTRS)
Obrien, M.
1979-01-01
A spiral-groove, self-acting face seal was rig tested at advanced gas turbine operating conditions to determine wear and leakage rates. The spiral-groove, self-acting geometry was located in the rotating seal seat. Seal component wear induced by start-stop operation was measured after subjecting the test seal to 176 start-stop cycles. Wear occurring during normal operation was documented throughout a 75-hour endurance test. Seal air leakage was also measured. During endurance operation, the seal was subjected to operating conditions bounded by the values surface speed - 244 m/s (800 ft/sec), air pressure - 148 N/sq cm abs (215 psia), and air temperature - 622 K (660 F). The post-test condition of the seal components was documented. Wear data is presented in tabular form, while seal air leakage is presented graphically, as a function of pressure and speed.
High/variable mixture ratio O2/H2 engine
NASA Technical Reports Server (NTRS)
Adams, A.; Parsley, R. C.
1988-01-01
Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.
Applying Contamination Modelling to Spacecraft Propulsion Systems Designs and Operations
NASA Technical Reports Server (NTRS)
Chen, Philip T.; Thomson, Shaun; Woronowicz, Michael S.
2000-01-01
Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.
Experimental Evaluation of Cermet Turbine Stator Blades for Use at Elevated Gas Temperatures
NASA Technical Reports Server (NTRS)
Chiarito, Patrick T.; Johnston, James R.
1959-01-01
The suitability of cermets for turbine stator blades of a modified turbojet engine was determined at an average turbine-inlet-gas temperature of 2000 F. Such an increase in temperature would yield a premium in thrust from a service engine. Because the cermet blades require no cooling, all the available compressor bleed air could be used to cool a turbine made from conventional ductile alloys. Cermet blades were first run in 100-hour endurance tests at normal gas temperatures in order to evaluate two methods for mounting them. The elevated gas-temperature test was then run using the method of support considered best for high-temperature operation. After 52 hours at 2000 F, one of the group of four cermet blades fractured probably because of end loads resulting from thermal distortion of the spacer band of the nozzle diaphragm. Improved design of a service engine would preclude this cause of premature failure.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2010-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2008-01-01
Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2008-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero- Propulso-Servo-Elastic model and for propulsion efficiency studies.
[Use of tissue engineering in the reconstruction of flexor tendon injuries of the hand].
Bíró, Vilmos
2015-02-08
In his literary analysis, the author describes a novel method applied in the reconstruction of flexor tendon injuries of the hand. This procedure is named tissue engineering, and it is examined mainly under experimental circumstances. After definition of the method and descriptions of literary preliminaries the author discusses the healing process of the normal tendon tissue, then development of the scaffold, an important step of tissue engineering is described. After these topics the introduction of the pluripotent mesenchymal stem cells into the scaffold, and proliferation of these cells and development of the sliding systems are presented. The mechanical resisting ability of the formed tendon tissue is also discussed. Finally, the author concludes that as long as results of experimental research cannot be successfully applied into clinical practice, well-tried tendon reconstruction operations and high quality postoperative rehabilitation are needed.
Retooling Predictive Relations for non-volatile PM by Comparison to Measurements
NASA Astrophysics Data System (ADS)
Vander Wal, R. L.; Abrahamson, J. P.
2015-12-01
Non-volatile particulate matter (nvPM) emissions from jet aircraft at cruise altitude are of particular interest for climate and atmospheric processes but are difficult to measure and are normally approximated. To provide such inventory estimates the present approach is to use measured, ground-based values with scaling to cruise (engine operating) conditions. Several points are raised by this approach. First is what ground based values to use. Empirical and semi-empirical approaches, such as the revised first order approximation (FOA3) and formation-oxidation (FOX) methods, each with embedded assumptions are available to calculate a ground-based black carbon concentration, CBC. Second is the scaling relation that can depend upon the ratios of fuel-air equivalence, pressure, and combustor flame temperature. We are using measured ground-based values to evaluate the accuracy of present methods towards developing alternative methods for CBCby smoke number or via a semi-empirical kinetic method for the specific engine, CFM56-2C, representative of a rich-dome style combustor, and as one of the most prevalent engine families in commercial use. Applying scaling relations to measured ground based values and comparison to measurements at cruise evaluates the accuracy of current scaling formalism. In partnership with GE Aviation, performing engine cycle deck calculations enables critical comparison between estimated or predicted thermodynamic parameters and true (engine) operational values for the CFM56-2C engine. Such specific comparisons allow tracing differences between predictive estimates for, and measurements of nvPM to their origin - as either divergence of input parameters or in the functional form of the predictive relations. Such insights will lead to development of new predictive tools for jet aircraft nvPM emissions. Such validated relations can then be extended to alternative fuels with confidence in operational thermodynamic values and functional form. Comparisons will then be made between these new predictive relationships and measurements of nvPM from alternative fuels using ground and cruise data - as collected during NASA-led AAFEX and ACCESS field campaigns, respectively.
Troubleshooting crude vacuum tower overhead ejector systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, J.R.; Frens, L.L.
1995-03-01
Routinely surveying tower overhead vacuum systems can improve performance and product quality. These vacuum systems normally provide reliable and consistent operation. However, process conditions, supplied utilities, corrosion, erosion and fouling all have an impact on ejector system performance. Refinery vacuum distillation towers use ejector systems to maintain tower top pressure and remove overhead gases. However, as with virtually all refinery equipment, performance may be affected by a number of variables. These variables may act independently or concurrently. It is important to understand basic operating principles of vacuum systems and how performance is affected by: utilities, corrosion and erosion, fouling, andmore » process conditions. Reputable vacuum-system suppliers have service engineers that will come to a refinery to survey the system and troubleshoot performance or offer suggestions for improvement. A skilled vacuum-system engineer may be needed to diagnose and remedy system problems. The affect of these variables on performance is discussed. A case history is described of a vacuum system on a crude tower in a South American refinery.« less
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl (Compiler); Guo, Ten-Huei
2014-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei
2015-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
The 1989-1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations
Casadevall, T.J.
1994-01-01
The December 1989-June 1990 eruption of Redoubt Volcano affected commercial and military air operations in the vicinity of Anchorage, Alaska. These effects were due to the direct impact of volcanic ash on jet aircraft, as well as to the rerouting and cancellations of flight operations owing to eruptive activity. Between December and February, five commercial jetliners were damaged from ash encounters. The most serious incident took place on December 15, 1989 when a Boeing 747-400 aircraft temporarily lost power of all four engines after encountering an ash cloud as the airplane descended for a landing in Anchorage. While there were no injuries to passengers, the damage to engines, avionics, and aircraft structure from this encounter is estimated at $80 million. Four additional encounters between jet aircraft and Redoubt ash clouds occurred in the Anchorage area on December 15 and 16, 1989 and February 21, 1990; none resulted in engine failure. Two additional encounters took place on December 17, 1989 when jet airliners encountered the Redoubt cloud over west Texas. At the time of these encounters, the cloud was up to 55 hours old and had traveled in excess of 2,900 nautical miles (5,300 km). Following the December 15 encounters, Anchorage International Airport remained open, however, most airline companies canceled operations for up to several days. As communications between Federal agencies and airlines improved, and as a better understanding of the nature and behavior of ash-rich eruption clouds was achieved, most airlines resumed normal service by early January 1990. The resulting loss of revenue at Anchorage International Airport during several months following the eruption is estimated to total $2.6 million. The impact on general aviation and military operations consisted mostly of cancellation and rerouting of flights. ?? 1994.
PIV investigation of the flow induced by a passive surge control method in a radial compressor
NASA Astrophysics Data System (ADS)
Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf
2012-09-01
Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.
Altitude Performance of AN-F-58 Fuels in British Rolls-Royce Nene Single Combustor
NASA Technical Reports Server (NTRS)
Cook, William P.; Koch, Richard G.
1949-01-01
An investigation was conducted with a single combustor from a British Rolls-Royce Nene turbojet engine to determine the altitude performance characteristics of AN-F-58 fuels. Three fuel blends conforming to AN-F-58 specifications were prepared in order to determine the influence of fuel boiling temperatures and aromatic content on combustion efficiencies and altitude operational limits. The performance of the three AN-F-58 fuels was compared in the range of altitudes from sea level to 65,000 feet, engine speeds from 40- to 100- percent normal rated, and flight Mach numbers of 0.0 and 0.6. Similar information was obtained for AN-F-32 fuel at a flight Mach number of 0.0
NASA Astrophysics Data System (ADS)
Smolenskaya, N. M.; Smolenskii, V. V.
2018-01-01
The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.
Multidisciplinary Design and Analysis for Commercial Aircraft
NASA Technical Reports Server (NTRS)
Cummings, Russell M.; Freeman, H. JoAnne
1999-01-01
Multidisciplinary design and analysis (MDA) has become the normal mode of operation within most aerospace companies, but the impact of these changes have largely not been reflected at many universities. On an effort to determine if the emergence of multidisciplinary design concepts should influence engineering curricula, NASA has asked several universities (Virginia Tech, Georgia Tech, Clemson, BYU, and Cal Poly) to investigate the practicality of introducing MDA concepts within their undergraduate curricula. A multidisciplinary team of faculty, students, and industry partners evaluated the aeronautical engineering curriculum at Cal Poly. A variety of ways were found to introduce MDA themes into the curriculum without adding courses or units to the existing program. Both analytic and educational tools for multidisciplinary design of aircraft have been developed and implemented.
STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
2017-09-26
NASA Launch Director Charlie Blackwell-Thompson, center, talks to engineers at Launch Pad 39B at the agency's Kennedy Space Center in Florida. Blackwell-Thompson will observe the first major tanking operation of liquid oxygen, or LO2, into the giant storage sphere at the northwest corner of the pad to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. During the operation, several Praxair trucks will slowly offload LO2 to gradually chill down the sphere from normal temperature to about negative 298 degrees Fahrenheit. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
2017-09-26
NASA Launch Director Charlie Blackwell-Thompson, at right, greets engineers and technicians at Launch Pad 39B at the agency's Kennedy Space Center in Florida. Blackwell-Thompson will observe the first major tanking operation of liquid oxygen, or LO2, into the giant storage sphere at the northwest corner of the pad to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. During the operation, several Praxair trucks will slowly offload LO2 to gradually chill down the sphere from normal temperature to about negative 298 degrees Fahrenheit. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
Behavior of U 3Si 2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso
2016-09-01
As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Losmore » Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.« less
A simulation study of turbofan engine deterioration estimation using Kalman filtering techniques
NASA Technical Reports Server (NTRS)
Lambert, Heather H.
1991-01-01
Deterioration of engine components may cause off-normal engine operation. The result is an unecessary loss of performance, because the fixed schedules are designed to accommodate a wide range of engine health. These fixed control schedules may not be optimal for a deteriorated engine. This problem may be solved by including a measure of deterioration in determining the control variables. These engine deterioration parameters usually cannot be measured directly but can be estimated. A Kalman filter design is presented for estimating two performance parameters that account for engine deterioration: high and low pressure turbine delta efficiencies. The delta efficiency parameters model variations of the high and low pressure turbine efficiencies from nominal values. The filter has a design condition of Mach 0.90, 30,000 ft altitude, and 47 deg power level angle (PLA). It was evaluated using a nonlinear simulation of the F100 engine model derivative (EMD) engine, at the design Mach number and altitude over a PLA range of 43 to 55 deg. It was found that known high pressure turbine delta efficiencies of -2.5 percent and low pressure turbine delta efficiencies of -1.0 percent can be estimated with an accuracy of + or - 0.25 percent efficiency with a Kalman filter. If both the high and low pressure turbine are deteriorated, the delta efficiencies of -2.5 percent to both turbines can be estimated with the same accuracy.
Abrams, John M; White, Michael A
2004-12-01
In development and in the adult, complex signaling pathways operate within and between cells to coordinate proliferation and cell death. These networks can be viewed as coupling devices that link engines driving the cell cycle and the initiation of apoptosis. We propose three simple frameworks for modeling the effects of proliferative drive on apoptotic propensity. This perspective offers a potentially useful foundation for predicting group behaviors of cells in normal and pathological settings.
NASA Technical Reports Server (NTRS)
Coe, Paul L., Jr.; Turner, Steven G.; Owens, D. Bruce
1990-01-01
An investigation was conducted to determine the low-speed flight dynamic behavior of a representative advanced turboprop business/commuter aircraft concept. Free-flight tests were conducted in the NASA Langley Research Center's 30- by 60-Foot Tunnel. In support of the free-flight tests, conventional static, dynamic, and free-to-roll oscillation tests were performed. Tests were intended to explore normal operating and post stall flight conditions, and conditions simulating the loss of power in one engine.
NASA Astrophysics Data System (ADS)
Shonin, O. B.; Novozhilov, N. G.
2017-02-01
Voltage sags in electric grids of mechanical engineering enterprises may lead to disconnection of important power consumers with variable frequency drives from the power grid and further interruption of the production process. The paper considers a sensorless V/f control system of еру induction motor drive under normal conditions and under voltage sags on the basis of a computer model of the drive and derivation of a formula for assessment of possible duration of the drive operation in the mode of controlled recovery of kinetic energy accumulated in rotating mass of the drive. Results of simulations have been used to validate results of calculations of the rotor velocity deceleration made in a closed form obtained from the equation reflecting the balance of torques. It is shown that results of calculations practically coincide with results of simulations in the range up to 5% of the velocity initial value. The proposed formula may be useful for estimation of the duration of the drive operation in the mode of recovery of kinetic energy depending on parameters of the motor and driven mechanisms.
Online Normalization Algorithm for Engine Turbofan Monitoring
2014-10-02
Online Normalization Algorithm for Engine Turbofan Monitoring Jérôme Lacaille 1 , Anastasios Bellas 2 1 Snecma, 77550 Moissy-Cramayel, France...understand the behavior of a turbofan engine, one first needs to deal with the variety of data acquisition contexts. Each time a set of measurements is...it auto-adapts itself with piecewise linear models. 1. INTRODUCTION Turbofan engine abnormality diagnosis uses three steps: reduction of
Method and apparatus for effecting light-off of a catalytic converter in a hybrid powertrain system
Roos, Bryan Nathaniel; Spohn, Brian L
2013-07-02
A powertrain system includes a hybrid transmission and an internal combustion engine coupled to an exhaust aftertreatment device. A method for operating the powertrain system includes operating the hybrid transmission to generate tractive torque responsive to an operator torque request with the internal combustion engine in an engine-off state so long as the tractive torque is less than a threshold. The internal combustion engine is operated in an engine-on state at preferred operating conditions to effect light-off of the exhaust aftertreatment device and the hybrid transmission is coincidentally operated to generate tractive torque responsive to the operator torque request when the operator torque request exceeds the threshold. The internal combustion engine is then operated in the engine-on state to generate tractive torque responsive to the operator torque request.
Path planning during combustion mode switch
Jiang, Li; Ravi, Nikhil
2015-12-29
Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.
Realizing steady-state tokamak operation for fusion energy
NASA Astrophysics Data System (ADS)
Luce, T. C.
2011-03-01
Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.
Defining a region of optimization based on engine usage data
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-08-04
Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.
The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert Stephen
Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologiesmore » may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.« less
Normal accidents: Living with high-risk technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrow, Ch.
1984-01-01
It was a major nuclear accident, the one at Three Mile Island in 1979, that turned Perrow's attention to accidents in general. A specialist in the sociology of organizations, he soon learned that events at TMI were not simply the result of an engineering failure or the result of operator error; rather, they were a consequence of systems failure. What the author learned from his research into the accident at TMI is that there was no coherent theory of accidents in either the engineering or the social science literature, so he set out to create one. This book discusses themore » science of accident research. Since Perrow is an outsider to all of the many technical fields reviewed in the book, ranging from nuclear power to marine transport to DNA research, experts may challenge his sources and point out his errors. Perrow's central thesis is that accidents are inevitable - that is, they are ''normal'' - in technologies that have two system characteristics that he terms ''interactive complexity'' and ''tight coupling''. Using these concepts, Perrow constructs a theory of systems which he believes to be unique in the literature on accidents and the literature on organizations. His theory concentrates upon the properties of systems themselves, rather than on the errors that owners, designers and operators make in running them. He seeks a more basic explanation than operator error; faulty design or equipment; inadequately trained personnel; or the system is too big, under-financed or mismanaged. Nuclear power in the United States may not survive its current economic and regulatory troubles, but discussion continues. Only a small part of the debate concerns plant safety: economic competitiveness, nuclear arms proliferation and nuclear waste disposal are the salient themes.« less
14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Identical powerplant controls for each engine must be located to prevent confusion as to the engines they...) operates the left engines(s) and the right control(s) operates the right engine(s). (2) On twin-engine airplanes with front and rear engine locations (tandem), the left powerplant controls must operate the front...
46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...
46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...
46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...
46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...
The scaling of performance and losses in miniature internal combustion engines
NASA Astrophysics Data System (ADS)
Menon, Shyam Kumar
Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (<500 g) piston engine performance. A unique dynamometer system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate mostly in the 'wrinkled laminar flame sheet' regime. Taken together, the results show that the combustion process is the key obstacle to realizing the potential of small IC engines. Overcoming this obstacle will require new diagnostic techniques, measurements, combustion models, and high temperature materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered: En...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations: All...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered: En...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations: All...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered: En...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations: All...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered: En...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations: All...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered: En...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations: All...
Heavy Duty Diesel Exhaust Particles during Engine Motoring Formed by Lube Oil Consumption.
Karjalainen, Panu; Ntziachristos, Leonidas; Murtonen, Timo; Wihersaari, Hugo; Simonen, Pauli; Mylläri, Fanni; Nylund, Nils-Olof; Keskinen, Jorma; Rönkkö, Topi
2016-11-15
This study reports high numbers of exhaust emissions particles during engine motoring. Such particles were observed in the exhaust of two heavy duty vehicles with no diesel particle filter (DPF), driven on speed ramp tests and transient cycles. A significant fraction of these particles was nonvolatile in nature. The number-weighted size distribution peak was below 10 nm when a thermodenuder was used to remove semivolatile material, growing up to 40 nm after semivolatile species condensation. These particles were found to contribute to 9-13% of total particle number emitted over a complete driving cycle. Engine motoring particles originated from lube oil and evidence suggests that these are of heavy organic or organometallic material. Particles of similar characteristics have been observed in the core particle mode during normal fired engine operation. Their size and chemical character has implications primarily on the environmental toxicity of non-DPF diesel and, secondarily, on the performance of catalytic devices and DPFs. Lube oil formulation measures can be taken to reduce the emission of such particles.
Energy conservation through utilization of mechanical energy storage
NASA Astrophysics Data System (ADS)
Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.
Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.
Defining Gas Turbine Engine Performance Requirements for the Large Civil TiltRotor (LCTR2)
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2013-01-01
Defining specific engine requirements is a critical part of identifying technologies and operational models for potential future rotary wing vehicles. NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project has identified the Large Civil TiltRotor (LCTR) as the configuration to best meet technology goals. This notional vehicle concept has evolved with more clearly defined mission and operational requirements to the LCTR-iteration 2 (LCTR2). This paper reports on efforts to further review and refine the LCTR2 analyses to ascertain specific engine requirements and propulsion sizing criteria. The baseline mission and other design or operational requirements are reviewed. Analysis tools are described to help understand their interactions and underlying assumptions. Various design and operational conditions are presented and explained for their contribution to defining operational and engine requirements. These identified engine requirements are discussed to suggest which are most critical to the engine sizing and operation. The most-critical engine requirements are compared to in-house NASA engine simulations to try to ascertain which operational requirements define engine requirements versus points within the available engine operational capability. Finally, results are summarized with suggestions for future efforts to improve analysis capabilities, and better define and refine mission and operational requirements.
Republic P-47G Thunderbolt Undergoes Ground Testing
1945-06-21
A Republic P-47G Thunderbolt is tested with a large blower on the hangar apron at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. The blower could produce air velocities up to 250 miles per hour. This was strong enough to simulate take-off power and eliminated the need to risk flights with untried engines. The Republic P-47G was loaned to the laboratory to test NACA modifications to the Wright R-2800 engine’s cooling system at higher altitudes. The ground-based tests, seen here, were used to map the engine’s normal operating parameters. The P-47G then underwent an extensive flight test program to study temperature distribution among the engine’s 18 cylinders and develop methods to improve that distribution.
14 CFR 25.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...
14 CFR 25.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...
14 CFR 25.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...
14 CFR 25.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...
14 CFR 25.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...
76 FR 73494 - Airworthiness Directives; Turbomeca S.A. Arriel 2B Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... identified in the MCAI. The one-time functional test required by the service bulletin is not a normal engine run-up test: the one-time functional test involves additional requirements including mode switching, that are not part of a normal engine run-up after start. FAA's Determination and Requirements of This...
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.
1999-01-01
With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.
Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.
1994-01-01
Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.
Fiveland, Scott B.; Wiggers, Timothy E.
2004-06-22
An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.
2011-01-01
A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-07-01
Measured and extrapolated data define the bioacoustic environments produced by a gasoline engine driven cabin leakage tester operating outdoors on a concrete apron at normal rated conditions. Near field data are presented for 37 locations at a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
14 CFR 33.89 - Operation test.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., acceleration, overspeeding, ignition, functioning of the propeller (if the engine is designated to operate with a propeller); (2) Compliance with the engine response requirements of § 33.73; and (3) The minimum... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.89 Operation test. (a) The operation...
14 CFR 33.89 - Operation test.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., acceleration, overspeeding, ignition, functioning of the propeller (if the engine is designated to operate with a propeller); (2) Compliance with the engine response requirements of § 33.73; and (3) The minimum... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.89 Operation test. (a) The operation...
NASA Technical Reports Server (NTRS)
Graham, Robert C.; Hartmann, Melvin J.
1949-01-01
An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.
Avoid problems during distillation column startups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloley, A.W.
1996-07-01
The startup of a distillation column is the end product of the design process. Indeed, startup is the culmination of the theory and practice of designing the column to meet the process objectives. The author will direct most of this discussion towards column revamps due to their inherent complexity; however, the points apply equally to new columns, as well. The most important question that must be answered prior to a startup is how will the distillation system changes affect initial startup, process control of the system, and normal day-to-day operations? How will the operators run the system? Steady-state distillation-column simulationsmore » alone cannot provide an authoritative answer and, indeed, engineers` over-reliance on software too often has led them to ignore many practical aspects. Computer modeling, while an important engineering tool, is not reality. Distillation columns are real functioning pieces of equipment that require practical skills to successfully modify. They are not steady-state solutions that result from converged computer simulations. Early planning, coupled with thorough inspections and comprehensive reviews of instrumentation and procedures, can play a key role in assuring smooth startups.« less
Nuclear plants gain integrated information systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.
1994-10-01
With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features anmore » integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants.« less
NASA Technical Reports Server (NTRS)
Sallee, G. P.; Martin, R. L.
1980-01-01
The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airplane acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/JT9D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the most cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined.
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1990-01-01
General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path angle and flight path angle rate in construction of the flight path over this Mach range, the resulting algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle selection over the entire Mach range from take-off to orbit.
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: En route...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One...
14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: En route...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.193 Airplanes: Turbine engine powered: En route limitations: Two...
14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: En route...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.193 Airplanes: Turbine engine powered: En route limitations: Two...
14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: En route...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One...
14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: En route...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.193 Airplanes: Turbine engine powered: En route limitations: Two...
14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: En route...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One...
Code of Federal Regulations, 2011 CFR
2011-07-01
... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...
Code of Federal Regulations, 2013 CFR
2013-07-01
... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...
Code of Federal Regulations, 2014 CFR
2014-07-01
... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...
Code of Federal Regulations, 2012 CFR
2012-07-01
... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...
Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios
Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.
2006-01-03
A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.
NASA Astrophysics Data System (ADS)
Noh, H. Mohd; Mahamad Taher, M. N.; Rodrigo, G. A.; Rahman, N. A. Abdul; Ismail, S.; Mat Rani, M.; Salleh, I. Mohd; Dahdi, Y.; Wan, W. N. S.; Razak, Abdul; Mat Ghani, M. S.; Yusoff, M. R.; Benito, A.
2018-05-01
Due to different motivations, including the interest in reducing the dependency on fossil fuel and environmental implications, drop-in biofuels are a reality in today’s commercial aviation. This paper summarizes the state-of-the-art of biomass-origin kerosene certification and provides references to the commercial flights performed so far by all airlines around the world. Results prove that the normal operation of the flights using the drop-in biofuel do not experience any repercussion in the performance in both engine and maintenance.
Engine control techniques to account for fuel effects
Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.
2014-08-26
A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.
14 CFR 121.565 - Engine inoperative: Landing; reporting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine inoperative: Landing; reporting. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.565 Engine... engine fails or whenever an engine is shutdown to prevent possible damage, the pilot in command must land...
14 CFR 121.565 - Engine inoperative: Landing; reporting.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Engine inoperative: Landing; reporting. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.565 Engine... engine fails or whenever an engine is shutdown to prevent possible damage, the pilot in command must land...
14 CFR 121.565 - Engine inoperative: Landing; reporting.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Engine inoperative: Landing; reporting. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.565 Engine... engine fails or whenever an engine is shutdown to prevent possible damage, the pilot in command must land...
14 CFR 121.565 - Engine inoperative: Landing; reporting.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Engine inoperative: Landing; reporting. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.565 Engine... engine fails or whenever an engine is shutdown to prevent possible damage, the pilot in command must land...
14 CFR 33.51 - Operation test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.51 Operation test. The... characteristics, starting, idling, acceleration, overspeeding, functioning of propeller and ignition, and any other operational characteristic of the engine. If the engine incorporates a multispeed supercharger...
14 CFR 33.51 - Operation test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.51 Operation test. The... characteristics, starting, idling, acceleration, overspeeding, functioning of propeller and ignition, and any other operational characteristic of the engine. If the engine incorporates a multispeed supercharger...
Accessible engineering drawings for visually impaired machine operators.
Ramteke, Deepak; Kansal, Gayatri; Madhab, Benu
2014-01-01
An engineering drawing provides manufacturing information to a machine operator. An operator plans and executes machining operations based on this information. A visually impaired (VI) operator does not have direct access to the drawings. Drawing information is provided to them verbally or by using sample parts. Both methods have limitations that affect the quality of output. Use of engineering drawings is a standard practice for every industry; this hampers employment of a VI operator. Accessible engineering drawings are required to increase both independence, as well as, employability of VI operators. Today, Computer Aided Design (CAD) software is used for making engineering drawings, which are saved in CAD files. Required information is extracted from the CAD files and converted into Braille or voice. The authors of this article propose a method to make engineering drawings information directly accessible to a VI operator.
Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels
NASA Technical Reports Server (NTRS)
Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.
1981-01-01
An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.
Fuel quantity modulation in pilot ignited engines
May, Andrew
2006-05-16
An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.
Method for operating a spark-ignition, direct-injection internal combustion engine
Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.
2015-06-02
A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.
49 CFR 236.1047 - Training specific to locomotive engineers and other operating personnel.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Training specific to locomotive engineers and... engineers and other operating personnel. (a) Operating personnel. Training provided under this subpart for any locomotive engineer or other person who participates in the operation of a train in train control...
49 CFR 236.1047 - Training specific to locomotive engineers and other operating personnel.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Training specific to locomotive engineers and... engineers and other operating personnel. (a) Operating personnel. Training provided under this subpart for any locomotive engineer or other person who participates in the operation of a train in train control...
49 CFR 236.1047 - Training specific to locomotive engineers and other operating personnel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Training specific to locomotive engineers and... engineers and other operating personnel. (a) Operating personnel. Training provided under this subpart for any locomotive engineer or other person who participates in the operation of a train in train control...
49 CFR 236.1047 - Training specific to locomotive engineers and other operating personnel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Training specific to locomotive engineers and... engineers and other operating personnel. (a) Operating personnel. Training provided under this subpart for any locomotive engineer or other person who participates in the operation of a train in train control...
Scaling Study of Wave Rotor Turbo-normalization of a Small Internal Combustion Engine
2012-09-01
14 Figure 6: Acceleration response of turbocharger versus Comprex...for increased engine performance. Turbo-normalization can be accomplished through the addition of a turbocharger , supercharger, or a pressure wave... turbocharger over the same test regime (12). The Comprex® was first used on a passenger car in 1978 on an Opel 2.1 liter diesel engine (13). In 1987
MD-11 PCA - Research flight team photo
NASA Technical Reports Server (NTRS)
1995-01-01
On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.
Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Narayanappa, Kumar Gottekere
2017-06-01
Due to presence of more oxygen, absence of carbon-carbon (C-C) bond in chemical structure, and high cetane number of dimethyl ether (DME), pollution from DME operated engine is less compared to diesel engine. Hence, the DME can be a promising alternative fuel for diesel engine. The present study emphasizes the effect of various exhaust gas recirculation (EGR) rates (0-20%) and DME/Diesel blends (0-20%) on combustion characteristics and exhaust emissions of common rail direct injection (CRDI) engine using three-dimensional computational fluid dynamics (CFD) simulation. Extended coherent flame model-3 zone (ECFM-3Z) is implemented to carry out combustion analysis, and k-ξ-f model is employed for turbulence modeling. Results show that in-cylinder pressure marginally decreases with employing EGR compared to without EGR case. As EGR rate increases, nitrogen oxide (NO) formation decreases, whereas soot increases marginally. Due to better combustion characteristics of DME, indicated thermal efficiency (ITE) increases with the increases in DME/diesel blend ratio. Adverse effect of EGR on efficiency for blends is less compared to neat diesel, because the anoxygenated region created due to EGR is compensated by extra oxygen present in DME. The trade-off among NO, soot, carbon monoxide (CO) formation, and efficiency is studied by normalizing the parameters. Optimum operating condition is found at 10% EGR rate and 20% DME/diesel blend. The maximum indicated thermal efficiency was observed for DME/diesel ratio of 20% in the present range of study. Obtained results are validated with published experimental data and found good agreement.
Predictors of obesity in Michigan Operating Engineers.
Duffy, Sonia A; Cohen, Kathleen A; Choi, Seung Hee; McCullagh, Marjorie C; Noonan, Devon
2012-06-01
Blue collar workers are at risk for obesity. Little is known about obesity in Operating Engineers, a group of blue collar workers, who operate heavy earth-moving equipment in road building and construction. Therefore, 498 Operating Engineers in Michigan were recruited to participate in a cross-sectional survey to determine variables related to obesity in this group. Bivariate and multivariate analyses were conducted to determine personal, psychological, and behavioral factors predicting obesity. Approximately 45% of the Operating Engineers screened positive for obesity, and another 40% were overweight. Multivariate analysis revealed that younger age, male sex, higher numbers of self-reported co-morbidities, not smoking, and low physical activity levels were significantly associated with obesity among Operating Engineers. Operating Engineers are significantly at risk for obesity, and workplace interventions are needed to address this problem.
Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders.
Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A
2016-12-01
Temporomandibular disorders (TMDs) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function, is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ.
Recent tissue engineering advances for the treatment of temporomandibular joint disorders
Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A
2016-01-01
Temporomandibular disorders (TMD) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although, current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ. PMID:27704395
Facility siting as a decision process at the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wike, L.D.
1995-12-31
Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating amore » facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...
Study of Bird Ingestions into Small Inlet Area Aircraft Turbine Engines
1990-12-01
engines (ALF502, TFE731 , TPE331, and JTI5D) included in the study. This includes 24 months of operations for the first three engines and 12 months of...through the National Teclical Bird Ingestion- TFE731 Information Service, Springfield, 4 Tuibine Engine,’ TPt331 Virginia 22161 Turbofan Engine...ALF502 Engine 7 2.2 Operations, TFE731 Engine 8 2.3 Operations, TPE331 Engine 9 3.1 Distribution of Bird Weights 13 3.2 Aircraft Ingestions by Month
Providing Self-Healing Ability for Wireless Sensor Node by Using Reconfigurable Hardware
Yuan, Shenfang; Qiu, Lei; Gao, Shang; Tong, Yao; Yang, Weiwei
2012-01-01
Wireless sensor networks (WSNs) have received tremendous attention over the past ten years. In engineering applications of WSNs, a number of sensor nodes are usually spread across some specific geographical area. Some of these nodes have to work in harsh environments. Dependability of the Wireless Sensor Network (WSN) is very important for its successful applications in the engineering area. In ordinary research, when a node has a failure, it is usually discarded and the network is reorganized to ensure the normal operation of the WSN. Using appropriate WSN re-organization methods, though the sensor networks can be reorganized, this causes additional maintenance costs and sometimes still decreases the function of the networks. In those situations where the sensor networks cannot be reorganized, the performance of the whole WSN will surely be degraded. In order to ensure the reliable and low cost operation of WSNs, a method to develop a wireless sensor node with self-healing ability based on reconfigurable hardware is proposed in this paper. Two self-healing WSN node realization paradigms based on reconfigurable hardware are presented, including a redundancy-based self-healing paradigm and a whole FPAA/FPGA based self-healing paradigm. The nodes designed with the self-healing ability can dynamically change their node configurations to repair the nodes' hardware failures. To demonstrate these two paradigms, a strain sensor node is adopted as an illustration to show the concepts. Two strain WSN sensor nodes with self-healing ability are developed respectively according to the proposed self-healing paradigms. Evaluation experiments on self-healing ability and power consumption are performed. Experimental results show that the developed nodes can self-diagnose the failures and recover to a normal state automatically. The research presented can improve the robustness of WSNs and reduce the maintenance cost of WSNs in engineering applications. PMID:23202176
Independently variable phase and stroke control for a double acting Stirling engine
Berchowitz, David M.
1983-01-01
A phase and stroke control apparatus for the pistons of a Stirling engine includes a ring on the end of each piston rod in which a pair of eccentrics is arranged in series, torque transmitting relationship. The outer eccentric is rotatably mounted in the ring and is rotated by the orbiting ring; the inner eccentric is mounted on an output shaft. The two eccentrics are mounted for rotation together within the ring during normal operation. A device is provided for rotating one eccentric with respect to another to change the effective eccentricity of the pair of eccentrics. A separately controlled phase adjustment is provided to null the phase change introduced by the change in the orientation of the outer eccentric, and also to enable the phase of the pistons to be changed independently of the stroke change.
NASA Astrophysics Data System (ADS)
Borisovich Zelentsov, Leonid; Dmitrievna Mailyan, Liya; Sultanovich Shogenov, Murat
2017-10-01
The article deals with the problems of using the energy-efficient materials and engineering technologies during the construction of buildings and structures. As the analysis showed, one of the most important problems in this sphere is the infringement of production technologies working with energy-efficient materials. To improve the given situation, it is offered to set a technological normal at the design stage by means of working out the technological maps studying the set and the succession of operations in details, taking in mind the properties of energy-efficient materials. At Don State Technical University (DSTU) the intelligent systems of management are being developed providing organizational and technological and also informational integration of design and production stages by means of creating the single database of technological maps, volumes of work and resources.
FAA Rotorcraft Research, Engineering, and Development Bibliography, 1962-1988. Supplement
1989-03-01
fires, the aircraft engine was the major fire origin for twin- and single- engine air - craft. Only in single- engine aircraft was the instrument panel a...Certification Issues. The topics of Operational Requirements, Procedures, Air - worthiness and Engineering Capabilities are discussed. Volume II presents the...Issues. The topics of Operational Requirements, Procedures, Air - worthiness and Engineering Capabilities are discussed. Volume II presents the operator
Cryogenics for high-energy particle accelerators: highlights from the first fifty years
NASA Astrophysics Data System (ADS)
Lebrun, Ph
2017-02-01
Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices - magnets and high-frequency cavities - distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.
Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications
NASA Technical Reports Server (NTRS)
Barbi, E.; Mahan, J. R.; O'Brien, W. F.; Wagner, T. C.
1989-01-01
The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated.
NASA Technical Reports Server (NTRS)
Brophy, John R. (Inventor)
1993-01-01
Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.
14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... powerplant controls for each engine must be located to prevent confusion as to the engines they control. (1... engines(s) and the right control(s) operates the right engine(s). (2) On twin-engine airplanes with front and rear engine locations (tandem), the left powerplant controls must operate the front engine and the...
14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... powerplant controls for each engine must be located to prevent confusion as to the engines they control. (1... engines(s) and the right control(s) operates the right engine(s). (2) On twin-engine airplanes with front and rear engine locations (tandem), the left powerplant controls must operate the front engine and the...
Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.; Williams, A.; Christensen, E.
Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC)more » and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometer (MAD) using the U.S. Environmental Protection Agency's Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous operation under DPF regeneration events. During the second stage of HD testing, the ULSD lube-oil dilution levels fell from 1.5% to 0.8%, while for B20, lube-oil dilution levels fell from 1.6% to 1.0%, but the fuel in the oil was 36% biodiesel. For the LD vehicle tests, the frequency of DPF regeneration events was observed to be the same for both ULSD and B20. No significant difference between the two fuels' estimated soot loading was detected by the engine control unit (ECU), although a 23% slower rate of increase in differential pressure across DPF was observed with B20. It appears that the ECU estimated soot loading is based on the engine map, not taking advantage of the lower engine-out particulate matter from the use of biodiesel. After 4,000 miles of LD vehicle operation with ULSD, fuel dilution in the lube-oil samples showed total dilution levels of 4.1% diesel. After 4,000 miles of operation with B20, total fuel in oil dilution levels were 6.7% consisting of 3.6% diesel fuel and 3.1% biodiesel. Extrapolation to the 10,000-mile oil drain interval with B20 suggests that the total fuel content in the oil could reach 12%, compared to 5% for operation on ULSD. Analysis of the oil samples also included measurement of total acid number, total base number, viscosity, soot, metals and wear scar; however, little difference in these parameters was noted.« less
14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a...
14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations. (a...
14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a...
14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations. (a...
14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a...
14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a...
14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations. (a...
14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations. (a...
14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations. (a...
14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a...
Automated Power Assessment for Helicopter Turboshaft Engines
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Litt, Jonathan S.
2008-01-01
An accurate indication of available power is required for helicopter mission planning purposes. Available power is currently estimated on U.S. Army Blackhawk helicopters by performing a Maximum Power Check (MPC), a manual procedure performed by maintenance pilots on a periodic basis. The MPC establishes Engine Torque Factor (ETF), an indication of available power. It is desirable to replace the current manual MPC procedure with an automated approach that will enable continuous real-time assessment of available power utilizing normal mission data. This report presents an automated power assessment approach which processes data currently collected within helicopter Health and Usage Monitoring System (HUMS) units. The overall approach consists of: 1) a steady-state data filter which identifies and extracts steady-state operating points within HUMS data sets; 2) engine performance curve trend monitoring and updating; and 3) automated ETF calculation. The algorithm is coded in MATLAB (The MathWorks, Inc.) and currently runs on a PC. Results from the application of this technique to HUMS mission data collected from UH-60L aircraft equipped with T700-GE-701C engines are presented and compared to manually calculated ETF values. Potential future enhancements are discussed.
Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft
NASA Astrophysics Data System (ADS)
Desbazeille, M.; Randall, R. B.; Guillet, F.; El Badaoui, M.; Hoisnard, C.
2010-07-01
This work aims at monitoring large diesel engines by analyzing the crankshaft angular speed variations. It focuses on a powerful 20-cylinder diesel engine with crankshaft natural frequencies within the operating speed range. First, the angular speed variations are modeled at the crankshaft free end. This includes modeling both the crankshaft dynamical behavior and the excitation torques. As the engine is very large, the first crankshaft torsional modes are in the low frequency range. A model with the assumption of a flexible crankshaft is required. The excitation torques depend on the in-cylinder pressure curve. The latter is modeled with a phenomenological model. Mechanical and combustion parameters of the model are optimized with the help of actual data. Then, an automated diagnosis based on an artificially intelligent system is proposed. Neural networks are used for pattern recognition of the angular speed waveforms in normal and faulty conditions. Reference patterns required in the training phase are computed with the model, calibrated using a small number of actual measurements. Promising results are obtained. An experimental fuel leakage fault is successfully diagnosed, including detection and localization of the faulty cylinder, as well as the approximation of the fault severity.
The Viking Orbiter 1975 beryllium INTEREGEN rocket engine assembly.
NASA Technical Reports Server (NTRS)
Martinez, R. S.; Mcfarland, B. L.; Fischler, S.
1972-01-01
Description of the conversion of the Mariner 9 rocket engine for Viking Orbiter use. Engine conversion consists of replacing the 40:1 expansion area ratio nozzle with a 60:1 nozzle of the internal regeneratively (INTEREGEN) cooled rocket engine. Five converted engines using nitrogen tetroxide and monomethylhydrazine demonstrated thermal stability during the nominal 2730-sec burn, but experienced difficulty at operating extremes. The thermal stability characteristic was treated in two ways. The first treatment consisted of mapping the operating regime of the engine to determine its safest operating boundaries as regards thermal equilibrium. Six engines were used for this purpose. Two of the six engines were then modified to effect the second approach - i.e., extend the operating regime. The engines were modified by permitting fuel injection into the acoustic cavity.
Successful human long-term application of in situ bone tissue engineering
Horch, Raymund E; Beier, Justus P; Kneser, Ulrich; Arkudas, Andreas
2014-01-01
Tissue Engineering (TE) and Regenerative Medicine (RM) have gained much popularity because of the tremendous prospects for the care of patients with tissue and organ defects. To overcome the common problem of donor-site morbidity of standard autologous bone grafts, we successfully combined tissue engineering techniques for the first time with the arteriovenous loop model to generate vascularized large bone grafts. We present two cases of large bone defects after debridement of an osteomyelitis. One of the defects was localized in the radius and one in the tibia. For osseus reconstruction, arteriovenous loops were created as vascular axis, which were placed in the bony defects. In case 1, the bone generation was achieved using cancellous bone from the iliac crest and fibrin glue and in case 2 using a clinically approved β-tricalciumphosphate/hydroxyapatite (HA), fibrin glue and directly auto-transplanted bone marrow aspirate from the iliac crest. The following post-operative courses were uneventful. The final examinations took place after 36 and 72 months after the initial operations. Computer tomogrphy (CT), membrane resonance imaging (MRI) and doppler ultrasound revealed patent arterio-venous (AV) loops in the bone grafts as well as completely healed bone defects. The patients were pain-free with normal ranges of motion. This is the first study demonstrating successfully axially vascularized in situ tissue engineered bone generation in large bone defects in a clinical scenario using the arteriovenous loop model without creation of a significant donor-site defect utilizing TE and RM techniques in human patients with long-term stability. PMID:24801710
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otobe, Y.; Chikamatsu, M.
1988-03-08
A method of controlling the fuel supply to an internal combustion engine is described, wherein a quantity of fuel for supply to the engine is determined by correcting a basic value of the quantity of fuel determined as a function of at least one operating parameter of the engine by correction values dependent upon operating conditions of the engine and the determined quantity of fuel is supplied to the engine. The method comprises the steps of: (1) detecting a value of at least one predetermined operating parameter of the engine; (2) manually adjusting a single voltage creating means to setmore » an output voltage therefrom to such a desired value as to compensate for deviation of the air/fuel ratio of a mixture supplied to the engine due to variations in operating characteristics of engines between different production lots or aging changes; (3) determining a value of the predetermined one correction value corresponding to the set desired value of output voltage of the single voltage creating means, and then modifying the thus determined value in response to the detected value of the predetermined at least one operating parameter of the engine during engine operation; and (4) correcting the basic value of the quantity of fuel by the value of the predetermined one correction value having the thus modified value, and the other correction values.« less
de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar
2009-05-01
A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.
14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing limitations...
14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing limitations...
14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing limitations...
14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing limitations...
14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing limitations...
14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing limitations...
14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing limitations...
14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing limitations...
14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing limitations...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
2017-09-26
Engineers watch as several Praxair trucks carrying their loads of liquid oxygen, or LO2, arrive at Launch Pad 39B at NASA's Kennedy Space Center in Florida. The trucks will offload the LO2 one at a time into the giant storage sphere located at the northwest corner of the pad. The sphere will gradually be chilled down from normal temperature to about negative 298 degrees Fahrenheit, during the first major integrated operation to prepare for the launch of the agency's Orion spacecraft atop the Space Launch System (SLS) rocket. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to pad B to support the launch of the SLS and Orion spacecraft for Exploration Mission-1, deep space missions and NASA’s journey to Mars.
49 CFR 236.927 - Training specific to locomotive engineers and other operating personnel.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Training specific to locomotive engineers and... Training specific to locomotive engineers and other operating personnel. (a) What elements apply to operating personnel? Training provided under this subpart for any locomotive engineer or other person who...
49 CFR 236.927 - Training specific to locomotive engineers and other operating personnel.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Training specific to locomotive engineers and... Training specific to locomotive engineers and other operating personnel. (a) What elements apply to operating personnel? Training provided under this subpart for any locomotive engineer or other person who...
49 CFR 236.927 - Training specific to locomotive engineers and other operating personnel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Training specific to locomotive engineers and... Training specific to locomotive engineers and other operating personnel. (a) What elements apply to operating personnel? Training provided under this subpart for any locomotive engineer or other person who...
49 CFR 236.927 - Training specific to locomotive engineers and other operating personnel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Training specific to locomotive engineers and... Training specific to locomotive engineers and other operating personnel. (a) What elements apply to operating personnel? Training provided under this subpart for any locomotive engineer or other person who...
Intelligent Life-Extending Controls for Aircraft Engines
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Chen, Philip; Jaw, Link
2005-01-01
Aircraft engine controllers are designed and operated to provide desired performance and stability margins. The purpose of life-extending-control (LEC) is to study the relationship between control action and engine component life usage, and to design an intelligent control algorithm to provide proper trade-offs between performance and engine life usage. The benefit of this approach is that it is expected to maintain safety while minimizing the overall operating costs. With the advances of computer technology, engine operation models, and damage physics, it is necessary to reevaluate the control strategy fro overall operating cost consideration. This paper uses the thermo-mechanical fatigue (TMF) of a critical component to demonstrate how an intelligent engine control algorithm can drastically reduce the engine life usage with minimum sacrifice in performance. A Monte Carlo simulation is also performed to evaluate the likely engine damage accumulation under various operating conditions. The simulation results show that an optimized acceleration schedule can provide a significant life saving in selected engine components.
NASA Technical Reports Server (NTRS)
Sellers, J. F.; Daniele, C. J.
1975-01-01
The DYNGEN, a digital computer program for analyzing the steady state and transient performance of turbojet and turbofan engines, is described. The DYNGEN is based on earlier computer codes (SMOTE, GENENG, and GENENG 2) which are capable of calculating the steady state performance of turbojet and turbofan engines at design and off-design operating conditions. The DYNGEN has the combined capabilities of GENENG and GENENG 2 for calculating steady state performance; to these the further capability for calculating transient performance was added. The DYNGEN can be used to analyze one- and two-spool turbojet engines or two- and three-spool turbofan engines without modification to the basic program. A modified Euler method is used by DYNGEN to solve the differential equations which model the dynamics of the engine. This new method frees the programmer from having to minimize the number of equations which require iterative solution. As a result, some of the approximations normally used in transient engine simulations can be eliminated. This tends to produce better agreement when answers are compared with those from purely steady state simulations. The modified Euler method also permits the user to specify large time steps (about 0.10 sec) to be used in the solution of the differential equations. This saves computer execution time when long transients are run. Examples of the use of the program are included, and program results are compared with those from an existing hybrid-computer simulation of a two-spool turbofan.
14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate...
14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: Takeoff... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a...
14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Takeoff... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a...
14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Takeoff... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a...
14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Landing...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations...
14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate...
14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Landing...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations...
14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: Landing...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations...
14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate...
Altitude Wind Tunnel Control Room at the Aircraft Engine Research Laboratory
1944-07-21
Operators in the control room for the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory remotely operate a Wright R–3350 engine in the tunnel’s test section. Four of the engines were used to power the B–29 Superfortress, a critical weapon in the Pacific theater during World War II. The wind tunnel, which had been in operation for approximately six months, was the nation’s only wind tunnel capable of testing full-scale engines in simulated altitude conditions. The soundproof control room was used to operate the wind tunnel and control the engine being run in the test section. The operators worked with assistants in the adjacent Exhauster Building and Refrigeration Building to manage the large altitude simulation systems. The operator at the center console controlled the tunnel’s drive fan and operated the engine in the test section. Two sets of pneumatic levers near his right forearm controlled engine fuel flow, speed, and cooling. Panels on the opposite wall, out of view to the left, were used to manage the combustion air, refrigeration, and exhauster systems. The control panel also displayed the master air speed, altitude, and temperature gauges, as well as a plethora of pressure, temperature, and airflow readings from different locations on the engine. The operator to the right monitored the manometer tubes to determine the pressure levels. Despite just being a few feet away from the roaring engine, the control room remained quiet during the tests.
NASA Technical Reports Server (NTRS)
Goldstein, Arthur W; Alpert, Sumner; Beede, William; Kovach, Karl
1949-01-01
In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine.
46 CFR 112.35-3 - Normal source for emergency loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
....35-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-3 Normal source...
46 CFR 112.35-3 - Normal source for emergency loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
....35-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-3 Normal source...
46 CFR 112.35-3 - Normal source for emergency loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
....35-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-3 Normal source...
46 CFR 112.35-3 - Normal source for emergency loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
....35-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-3 Normal source...
46 CFR 112.35-3 - Normal source for emergency loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
....35-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-3 Normal source...
Nickel cadmium battery operations and performance
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna; Prettyman-Lukoschek, Jill; Calvin, Richard; Berry, Thomas; Bote, Robert; Toft, Mark
1994-01-01
The Earth Radiation Budget Satellite (ERBS), Compton Gamma Ray Observatory (CGRO), Upper Atmosphere Research Satellite (UARS), and Extreme Ultraviolet Explorer (EUVE) spacecraft are operated from NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. On-board power subsystems for each satellite employ NASA Standard 50 Ampere-hour (Ah) nickel-cadmium batteries in a parallel configuration. To date, these batteries have exhibited degradation over periods from several months (anomalous behavior, UARS and CGRO (MPS-1); to little if any, EUVE) to several years (old age, normal behavior, ERBS). Since the onset of degraded performance, each mission's Flight Operations Team (FOT), under the direction of their cognizant GSFC Project Personnel and Space Power Application Branch's Engineers has closely monitored the battery performance and implemented several charge control schemes in an effort to extend battery life. Various software and hardware solutions have been developed to minimize battery overcharge. Each of the four sections of this paper covers a brief overview of each mission's operational battery management and its associated spacecraft battery performance. Also included are new operational procedures developed on-orbit that may be of special interest to future mission definition and development.
14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...
14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...
14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...
14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...
The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alpay, Daniel, E-mail: dany@math.bgu.ac.il; Kimsey, David P., E-mail: dpkimsey@gmail.com; Colombo, Fabrizio, E-mail: fabrizio.colombo@polimi.it
In this paper we prove the spectral theorem for quaternionic unbounded normal operators using the notion of S-spectrum. The proof technique consists of first establishing a spectral theorem for quaternionic bounded normal operators and then using a transformation which maps a quaternionic unbounded normal operator to a quaternionic bounded normal operator. With this paper we complete the foundation of spectral analysis of quaternionic operators. The S-spectrum has been introduced to define the quaternionic functional calculus but it turns out to be the correct object also for the spectral theorem for quaternionic normal operators. The lack of a suitable notion ofmore » spectrum was a major obstruction to fully understand the spectral theorem for quaternionic normal operators. A prime motivation for studying the spectral theorem for quaternionic unbounded normal operators is given by the subclass of unbounded anti-self adjoint quaternionic operators which play a crucial role in the quaternionic quantum mechanics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugo, Jacques
The software application is called "HFE-Trace". This is an integrated method and tool for the management of Human Factors Engineering analyses and related data. Its primary purpose is to support the coherent and consistent application of the nuclear industry's best practices for human factors engineering work. The software is a custom Microsoft® Access® application. The application is used (in conjunction with other tools such as spreadsheets, checklists and normal documents where necessary) to collect data on the design of a new nuclear power plant from subject matter experts and other sources. This information is then used to identify potential systemmore » and functional breakdowns of the intended power plant design. This information is expanded by developing extensive descriptions of all functions, as well as system performance parameters, operating limits and constraints, and operational conditions. Once these have been verified, the human factors elements are added to each function, including intended operator role, function allocation considerations, prohibited actions, primary task categories, and primary work station. In addition, the application includes a computational method to assess a number of factors such as system and process complexity, workload, environmental conditions, procedures, regulations, etc.) that may shape operator performance. This is a unique methodology based upon principles described in NUREG/CR-3331 ("A methodology for allocating nuclear power plant control functions to human or automatic control") and it results in a semi-quantified allocation of functions to three or more levels of automation for a conceptual automation system. The aggregate of all this information is then linked to the Task Analysis section of the application where the existing information on all operator functions is transformed into task information and ultimately into design requirements for Human-System Interfaces and Control Rooms. This final step includes assessment of methods to prevent potential operator errors.« less
Breadboard RL10-11B low thrust operating mode
NASA Technical Reports Server (NTRS)
Kmiec, Thomas D.; Galler, Donald E.
1987-01-01
Cryogenic space engines require a cooling process to condition engine hardware to operating temperature before start. This can be accomplished most efficiently by burning propellants that would otherwise be dumped overboard after cooling the engine. The resultant low thrust operating modes are called Tank Head Idle and Pumped Idle. During February 1984, Pratt & Whitney conducted a series of tests demonstrating operation of the RL10 rocket engines at low thrust levels using a previously untried hydrogen/oxygen heat exchanger. The initial testing of the RL10-11B Breadboard Low Thrust Engine is described. The testing demonstrated operation at both tank head idle and pumped idle modes.
4K Video of Colorful Liquid in Space
2015-10-09
Once again, astronauts on the International Space Station dissolved an effervescent tablet in a floating ball of water, and captured images using a camera capable of recording four times the resolution of normal high-definition cameras. The higher resolution images and higher frame rate videos can reveal more information when used on science investigations, giving researchers a valuable new tool aboard the space station. This footage is one of the first of its kind. The cameras are being evaluated for capturing science data and vehicle operations by engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama.
Improved Ultrasonic Fuel Mass Flowmeter for Army Aircraft Engine Diagnostics
1975-06-01
B-6), at least for large pipes , with diameters from ~0, 2 m to over 1 m. See Refs. 3-7. For area-averaging over a limited range of flow...u l a r c r o s s section. Sheet -meta l duct can be instal led to operate at hydrosta t ic p r e s s u r e within pipes of normal or heavy...practical limit is on the order of 1/4 of the pipe radius. To avoid this limit , and at the same time obtain propagation over a path independent of
NASA Astrophysics Data System (ADS)
Abbas, Mohammad
Recently developed methodology that provides the direct assessment of traditional thrust-based performance of aerospace vehicles in terms of entropy generation (i.e., exergy destruction) is modified for stand-alone jet engines. This methodology is applied to a specific single-spool turbojet engine configuration. A generic compressor performance map along with modeled engine component performance characterizations are utilized in order to provide comprehensive traditional engine performance results (engine thrust, mass capture, and RPM), for on and off-design engine operation. Details of exergy losses in engine components, across the entire engine, and in the engine wake are provided and the engine performance losses associated with their losses are discussed. Results are provided across the engine operating envelope as defined by operational ranges of flight Mach number, altitude, and fuel throttle setting. The exergy destruction that occurs in the engine wake is shown to be dominant with respect to other losses, including all exergy losses that occur inside the engine. Specifically, the ratio of the exergy destruction rate in the wake to the exergy destruction rate inside the engine itself ranges from 1 to 2.5 across the operational envelope of the modeled engine.
46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; operation. 113.35-13 Section 113.35-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...
Gas turbine power plant with supersonic shock compression ramps
Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA
2008-10-14
A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.
USAF bioenvironmental noise data handbook. Volume 158: F-106A aircraft, near and far-field noise
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-05-01
The USAF F-106A is a single seat, all-weather fighter/interceptor aircraft powered by a J75-P-17 turbojet engine. This report provides measured and extrapolated data defining the bioacoustic environments produced by this aircraft operating on a concrete runup pad for five engine-power conditions. Near-field data are reported for five locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 19 locations are normalized to standard meteorological conditions and extrapolated from 75 - 8000 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
NASA Technical Reports Server (NTRS)
Dominick, Jeffrey; Bull, John; Healey, Kathleen J.
1990-01-01
The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.
American power conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less
40 CFR 1054.305 - How must I prepare and test my production-line engines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... way that represents the assembly procedures for other engines in the engine family. You must ask us to approve any deviations from your normal assembly procedures for other production engines in the engine family. (a) Test procedures. Test your production-line engines using the applicable testing procedures in...
40 CFR 1054.305 - How must I prepare and test my production-line engines?
Code of Federal Regulations, 2013 CFR
2013-07-01
... way that represents the assembly procedures for other engines in the engine family. You must ask us to approve any deviations from your normal assembly procedures for other production engines in the engine family. (a) Test procedures. Test your production-line engines using the applicable testing procedures in...
40 CFR 1054.305 - How must I prepare and test my production-line engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... way that represents the assembly procedures for other engines in the engine family. You must ask us to approve any deviations from your normal assembly procedures for other production engines in the engine family. (a) Test procedures. Test your production-line engines using the applicable testing procedures in...
40 CFR 1054.305 - How must I prepare and test my production-line engines?
Code of Federal Regulations, 2014 CFR
2014-07-01
... way that represents the assembly procedures for other engines in the engine family. You must ask us to approve any deviations from your normal assembly procedures for other production engines in the engine family. (a) Test procedures. Test your production-line engines using the applicable testing procedures in...
40 CFR 1054.305 - How must I prepare and test my production-line engines?
Code of Federal Regulations, 2012 CFR
2012-07-01
... way that represents the assembly procedures for other engines in the engine family. You must ask us to approve any deviations from your normal assembly procedures for other production engines in the engine family. (a) Test procedures. Test your production-line engines using the applicable testing procedures in...
40 CFR 1065.930 - Engine starting, restarting, and shutdown.
Code of Federal Regulations, 2010 CFR
2010-07-01
... cranking time as normal. (c) Respond to engine stalling with the following steps: (1) If the engine stalls... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Engine starting, restarting, and...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement...
ERIC Educational Resources Information Center
Blanco, Monica; Ginovart, Marta
2010-01-01
Little has been explored with regard to introducing historical aspects in the undergraduate statistics classroom in engineering studies. This article focuses on the design, implementation and assessment of a specific activity concerning the introduction of the normal probability curve and related aspects from a historical dimension. Following a…
46 CFR 112.25-5 - Failure of power from the normal source.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...
46 CFR 112.25-5 - Failure of power from the normal source.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...
46 CFR 112.25-5 - Failure of power from the normal source.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...
46 CFR 112.25-5 - Failure of power from the normal source.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...
46 CFR 112.25-5 - Failure of power from the normal source.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Failure of power from the normal source. 112.25-5 Section 112.25-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas...
40 CFR 86.1910 - How must I prepare and test my in-use engines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (including auxiliary loads such as air conditioning in the cab), normal ambient conditions, and the normal... engines? 86.1910 Section 86.1910 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... consistent with proper maintenance and use, either test the prospective test vehicle as received or repair...
40 CFR 86.1910 - How must I prepare and test my in-use engines?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (including auxiliary loads such as air conditioning in the cab), normal ambient conditions, and the normal... engines? 86.1910 Section 86.1910 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... consistent with proper maintenance and use, either test the prospective test vehicle as received or repair...
Research and Exploration for Operational Research Education in Industry and Engineering Subject
ERIC Educational Resources Information Center
Wu, Yu-hua; Wang, Feng-ming; Du, Gang
2007-01-01
On the basic of exploring the relationship of industry engineering and operational research technique, the thesis analyzes the location and utility of the operational research education in the whole industry engineering subject education. It brings forward the system design about operational research and relative class among industry engineering…
Procedure Training Aid for the SH-3D/H Normal Start Checklist.
1982-02-01
1 Engine .... START Pupoe: To make a Normal Start of No. 1 engine. :4 14. Action Pilot/Copilot verify lite -off by noting rapid rise in T5 and Nq and...Nf increasinq 15. Note Normal starts are characterized by 7 0-75D0 T5 in I seconds after lite -off 16. If T5 is incrasinn too rapidlyv or appears to...Pumps 206 NORMAL START CHECKLIST ITEM NO. 23. No. I Ergine ... TART 14. Action Pilot/Copilot verify lite -off by noting ra ’pid rise in and Ng and Nf
Electric turbocompound control system
Algrain, Marcelo C [Dunlap, IL
2007-02-13
Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.
14 CFR 27.1011 - Engines: General.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate...
14 CFR 27.1011 - Engines: General.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate...
14 CFR 27.1011 - Engines: General.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate...
14 CFR 27.1011 - Engines: General.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate...
14 CFR 27.1011 - Engines: General.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate...
Code of Federal Regulations, 2013 CFR
2013-07-01
... I am an owner or operator of a stationary SI internal combustion engine? 60.4233 Section 60.4233... Combustion Engines Emission Standards for Owners and Operators § 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine? (a) Owners and operators...
Code of Federal Regulations, 2010 CFR
2010-07-01
... I am an owner or operator of a stationary SI internal combustion engine? 60.4233 Section 60.4233... Combustion Engines Emission Standards for Owners and Operators § 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine? (a) Owners and operators...
Code of Federal Regulations, 2012 CFR
2012-07-01
... I am an owner or operator of a stationary SI internal combustion engine? 60.4233 Section 60.4233... Combustion Engines Emission Standards for Owners and Operators § 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine? (a) Owners and operators...
Code of Federal Regulations, 2014 CFR
2014-07-01
... I am an owner or operator of a stationary SI internal combustion engine? 60.4233 Section 60.4233... Combustion Engines Emission Standards for Owners and Operators § 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine? (a) Owners and operators...
Code of Federal Regulations, 2011 CFR
2011-07-01
... I am an owner or operator of a stationary SI internal combustion engine? 60.4233 Section 60.4233... Combustion Engines Emission Standards for Owners and Operators § 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine? (a) Owners and operators...
Apparatus for sensor failure detection and correction in a gas turbine engine control system
NASA Technical Reports Server (NTRS)
Spang, H. A., III; Wanger, R. P. (Inventor)
1981-01-01
A gas turbine engine control system maintains a selected level of engine performance despite the failure or abnormal operation of one or more engine parameter sensors. The control system employs a continuously updated engine model which simulates engine performance and generates signals representing real time estimates of the engine parameter sensor signals. The estimate signals are transmitted to a control computational unit which utilizes them in lieu of the actual engine parameter sensor signals to control the operation of the engine. The estimate signals are also compared with the corresponding actual engine parameter sensor signals and the resulting difference signals are utilized to update the engine model. If a particular difference signal exceeds specific tolerance limits, the difference signal is inhibited from updating the model and a sensor failure indication is provided to the engine operator.
Intelligent Life-Extending Controls for Aircraft Engines Studied
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
2005-01-01
Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.
Characterizing SI Engine Transient Fuel Consumption in ALPHA
Examine typical transient engine operation encountered over the EPA's vehicle and engine testing drive cycles to characterize that transient fuel usage, and then describe the changes made to ALPHA to better model transient engine operation.
Proinflammatory Effects of Diesel Exhaust Nanoparticles on Scleroderma Skin Cells
Mastrofrancesco, A.; Alfè, M.; Rosato, E.; Gargiulo, V.; Beatrice, C.; Di Blasio, G.; Zhang, B.; Su, D. S.; Picardo, M.; Fiorito, S.
2014-01-01
Autoimmune diseases are complex disorders of unknown etiology thought to result from interactions between genetic and environmental factors. We aimed to verify whether environmental pollution from diesel engine exhaust nanoparticulate (DEP) of actually operating vehicles could play a role in the development of a rare immune-mediated disease, systemic sclerosis (SSc), in which the pathogenetic role of environment has been highlighted. The effects of carbon-based nanoparticulate collected at the exhaust of newer (Euro 5) and older (Euro 4) diesel engines on SSc skin keratinocytes and fibroblasts were evaluated in vitro by assessing the mRNA expression of inflammatory cytokines (IL-1α, IL-6, IL-8, and TNF-α) and fibroblast chemical mediators (metalloproteases 2, 3, 7, 9, and 12; collagen types I and III; VEGF). DEP was shown to stimulate cytokine gene expression at a higher extent in SSc keratinocytes versus normal cells. Moreover, the mRNA gene expression of all MMPs, collagen types, and VEGF genes was significantly higher in untreated SSc fibroblasts versus controls. Euro 5 particle exposure increased the mRNA expression of MMP-2, -7, and -9 in SSc fibroblasts in a dose dependent manner and only at the highest concentration in normal cells. We suggest that environmental DEP could trigger the development of SSc acting on genetically hyperreactive cell systems. PMID:24982919
Winterroth, Frank; Lee, Junho; Kuo, Shiuhyang; Fowlkes, J Brian; Feinberg, Stephen E; Hollister, Scott J; Hollman, Kyle W
2011-01-01
This study uses scanning acoustic microscopy (SAM) ultrasonic profilometry to determine acceptable vs. failed tissue engineered oral mucosa. Specifically, ex vivo-produced oral mucosal equivalents (EVPOMEs) under normal or thermally stressed culture conditions were scanned with the SAM operator blinded to the culture conditions. As seeded cells proliferate, they fill in and smooth out the surface irregularities; they then stratify and produce a keratinized protective upper layer. Some of these transformations could alter backscatter of ultrasonic signals and in the case of the thermally stressed cells, produce backscatter similar to an unseeded device. If non-invasive ultrasonic monitoring could be developed, then tissue cultivation could be adjusted to measure biological variations in the stratified surface. To create an EVPOME device, oral mucosa keratinocytes were seeded onto acellular cadaveric dermis. Two sets of EVPOMEs were cultured: one at physiological temperature 37 °C and the other at 43 °C. The specimens were imaged with SAM consisting of a single-element transducer: 61 MHz center frequency, 32 MHz bandwidth, 1.52 f#. Profilometry for the stressed and unseeded specimens showed higher surface irregularities compared to unstressed specimens. Elevated thermal stress retards cellular differentiation, increasing root mean square values; these results show that SAM can potentially monitor cell/tissue development.
O absorption measurements in an engineering-scale high-pressure coal gasifier
NASA Astrophysics Data System (ADS)
Sun, Kai; Sur, Ritobrata; Jeffries, Jay B.; Hanson, Ronald K.; Clark, Tommy; Anthony, Justin; Machovec, Scott; Northington, John
2014-10-01
A real-time, in situ water vapor (H2O) sensor using a tunable diode laser near 1,352 nm was developed to continuously monitor water vapor in the synthesis gas of an engineering-scale high-pressure coal gasifier. Wavelength-scanned wavelength-modulation spectroscopy with second harmonic detection (WMS-2 f) was used to determine the absorption magnitude. The 1 f-normalized, WMS-2 f signal (WMS-2 f/1 f) was insensitive to non-absorption transmission losses including beam steering and light scattering by the particulate in the synthesis gas. A fitting strategy was used to simultaneously determine the water vapor mole fraction and the collisional-broadening width of the transition from the scanned 1 f-normalized WMS-2 f waveform at pressures up to 15 atm, which can be used for large absorbance values. This strategy is analogous to the fitting strategy for wavelength-scanned direct absorption measurements. In a test campaign at the US National Carbon Capture Center, the sensor demonstrated a water vapor detection limit of ~800 ppm (25 Hz bandwidth) at conditions with more than 99.99 % non-absorption transmission losses. Successful unattended monitoring was demonstrated over a 435 h period. Strong correlations between the sensor measurements and transient gasifier operation conditions were observed, demonstrating the capability of laser absorption to monitor the gasification process.
Review of jet engine emissions
NASA Technical Reports Server (NTRS)
Grobman, J. S.
1972-01-01
A review of the emission characteristics of jet engines is presented. The sources and concentrations of the various constituents in the engine exhaust and the influence of engine operating conditions on emissions are discussed. Cruise emissions to be expected from supersonic engines are compared with emissions from subsonic engines. The basic operating principles of the gas turbine combustor are reviewed together with the effects of combustor operating conditions on emissions. The performance criteria that determine the design of gas turbine combustors are discussed. Combustor design techniques are considered that may be used to reduce emissions.
Towards Robust Designs Via Multiple-Objective Optimization Methods
NASA Technical Reports Server (NTRS)
Man Mohan, Rai
2006-01-01
Fabricating and operating complex systems involves dealing with uncertainty in the relevant variables. In the case of aircraft, flow conditions are subject to change during operation. Efficiency and engine noise may be different from the expected values because of manufacturing tolerances and normal wear and tear. Engine components may have a shorter life than expected because of manufacturing tolerances. In spite of the important effect of operating- and manufacturing-uncertainty on the performance and expected life of the component or system, traditional aerodynamic shape optimization has focused on obtaining the best design given a set of deterministic flow conditions. Clearly it is important to both maintain near-optimal performance levels at off-design operating conditions, and, ensure that performance does not degrade appreciably when the component shape differs from the optimal shape due to manufacturing tolerances and normal wear and tear. These requirements naturally lead to the idea of robust optimal design wherein the concept of robustness to various perturbations is built into the design optimization procedure. The basic ideas involved in robust optimal design will be included in this lecture. The imposition of the additional requirement of robustness results in a multiple-objective optimization problem requiring appropriate solution procedures. Typically the costs associated with multiple-objective optimization are substantial. Therefore efficient multiple-objective optimization procedures are crucial to the rapid deployment of the principles of robust design in industry. Hence the companion set of lecture notes (Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks ) deals with methodology for solving multiple-objective Optimization problems efficiently, reliably and with little user intervention. Applications of the methodologies presented in the companion lecture to robust design will be included here. The evolutionary method (DE) is first used to solve a relatively difficult problem in extended surface heat transfer wherein optimal fin geometries are obtained for different safe operating base temperatures. The objective of maximizing the safe operating base temperature range is in direct conflict with the objective of maximizing fin heat transfer. This problem is a good example of achieving robustness in the context of changing operating conditions. The evolutionary method is then used to design a turbine airfoil; the two objectives being reduced sensitivity of the pressure distribution to small changes in the airfoil shape and the maximization of the trailing edge wedge angle with the consequent increase in airfoil thickness and strength. This is a relevant example of achieving robustness to manufacturing tolerances and wear and tear in the presence of other objectives.
USAF bioenvironmental noise data handbook. Volume 163: GPC-28 compressor
NASA Astrophysics Data System (ADS)
Rau, T. H.
1982-05-01
The GPC-28 is a gasoline engine-driven compressor with a 120 volt 60 Hz generator used for general purpose maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at a normal rated condition. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.
NASA Technical Reports Server (NTRS)
Preston, J. L., Jr.; Cook, T. S.
1975-01-01
An investigation of the response of a graphite-epoxy material to foreign object impact was made by impacting spherical projectiles of gelatin, ice, and steel normally on flat panels. The observed damage was classified as transverse (stress wave delamination and cracking), penetrative, or structural (gross failure): the minimum, or threshold, velocity to cause each class of damage was established as a function of projectile characteristics. Steel projectiles had the lowest transverse damage threshold, followed by gelatin and ice. Making use of the threshold velocities and assuming that the normal component of velocity produces the damage in nonnormal impacts, a set of impact angles and velocities was established for each projectile material which would result in damage to composite fan blades. Analysis of the operating parameters of a typical turbine fan blade shows that small steel projectiles are most likely to cause delamination and penetration damage to unprotected graphite-epoxy composite fan blades.
Sensor Based Engine Life Calculation: A Probabilistic Perspective
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Chen, Philip
2003-01-01
It is generally known that an engine component will accumulate damage (life usage) during its lifetime of use in a harsh operating environment. The commonly used cycle count for engine component usage monitoring has an inherent range of uncertainty which can be overly costly or potentially less safe from an operational standpoint. With the advance of computer technology, engine operation modeling, and the understanding of damage accumulation physics, it is possible (and desirable) to use the available sensor information to make a more accurate assessment of engine component usage. This paper describes a probabilistic approach to quantify the effects of engine operating parameter uncertainties on the thermomechanical fatigue (TMF) life of a selected engine part. A closed-loop engine simulation with a TMF life model is used to calculate the life consumption of different mission cycles. A Monte Carlo simulation approach is used to generate the statistical life usage profile for different operating assumptions. The probabilities of failure of different operating conditions are compared to illustrate the importance of the engine component life calculation using sensor information. The results of this study clearly show that a sensor-based life cycle calculation can greatly reduce the risk of component failure as well as extend on-wing component life by avoiding unnecessary maintenance actions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Part 25 airplanes with four or more engines... SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.183 Part 25 airplanes with four or... person may operate an airplane certificated under part 25 and having four or more engines unless— (1...
SSME Key Operations Demonstration
NASA Technical Reports Server (NTRS)
Anderson, Brian; Bradley, Michael; Ives, Janet
1997-01-01
A Space Shuttle Main Engine (SSME) test program was conducted between August 1995 and May 1996 using the Technology Test Bed (TTB) Engine. SSTO vehicle studies have indicated that increases in the propulsion system operating range can save significant weight and cost at the vehicle level. This test program demonstrated the ability of the SSME to accommodate a wide variation in safe operating ranges and therefore its applicability to the SSTO mission. A total of eight tests were completed with four at Marshall Space Flight Center's Advanced Engine Test Facility and four at the Stennis Space Center (SSC) A-2 attitude test stand. Key demonstration objectives were: 1) Mainstage operation at 5.4 to 6.9 mixture ratio; 2) Nominal engine start with significantly reduced engine inlet pressures of 50 psia LOX and 38 psia fuel; and 3) Low power level operation at 17%, 22%, 27%, 40%, 45%, and 50% of Rated Power Level. Use of the highly instrumented TTB engine for this test series has afforded the opportunity to study in great detail engine system operation not possible with a standard SSME and has significantly contributed to a greater understanding of the capabilities of the SSME and liquid rocket engines in general.
Testing and evaluation for astronaut extravehicular activity (EVA) operability.
Shields, N; King, L C
1998-09-01
Because it is the human component that defines space mission success, careful planning is required to ensure that hardware can be operated and maintained by crews on-orbit. Several methods exist to allow researchers and designers to better predict how hardware designs will behave under the harsh environment of low Earth orbit, and whether designs incorporate the necessary features for Extra Vehicular Activity (EVA) operability. Testing under conditions of simulated microgravity can occur during the design concept phase when verifying design operability, during mission training, or concurrently with on-orbit mission operations. The bulk of testing is focused on normal operations, but also includes evaluation of credible mission contingencies or "what would happen if" planning. The astronauts and cosmonauts who fly these space missions are well prepared and trained to survive and be productive in Earth's orbit. The engineers, designers, and training crews involved in space missions subject themselves to Earth based simulation techniques that also expose them to extreme environments. Aircraft falling ten thousand feet, alternating g-loads, underwater testing at 45 foot depth, enclosure in a vacuum chamber and subject to thermal extremes, each carries with it inherent risks to the humans preparing for space missions.
Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera
2015-05-14
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.
Factors that Affect Operational Reliability of Turbojet Engines
NASA Technical Reports Server (NTRS)
1956-01-01
The problem of improving operational reliability of turbojet engines is studied in a series of papers. Failure statistics for this engine are presented, the theory and experimental evidence on how engine failures occur are described, and the methods available for avoiding failure in operation are discussed. The individual papers of the series are Objectives, Failure Statistics, Foreign-Object Damage, Compressor Blades, Combustor Assembly, Nozzle Diaphrams, Turbine Buckets, Turbine Disks, Rolling Contact Bearings, Engine Fuel Controls, and Summary Discussion.
The dynamic simulation of the Progetto Energia combined cycle power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giglio, R.; Cerabolini, M.; Pisacane, F.
1996-12-31
Over the next four years, the Progetto Energia project is building several cogeneration plants to satisfy the increasing demands of Italy`s industrial complex and the country`s demand for electrical power. Located at six different sites within Italy`s borders these Combined Cycle Cogeneration Plants will supply a total of 500 MW of electricity and 100 tons/hr of process steam to Italian industries and residences. To ensure project success, a dynamic model of the 50 MW base unit was developed. The goal established for the model was to predict the dynamic behavior of the complex thermodynamic system in order to assess equipmentmore » performance and control system effectiveness for normal operation and, more importantly, abrupt load changes. In addition to fulfilling its goals, the dynamic study guided modifications to controller logic that significantly improved steam drum pressure control and bypassed steam de-superheating performance. Simulations of normal and abrupt transient events allowed engineers to define optimum controller gain coefficients. The paper discusses the Combined Cycle plant configuration, its operating modes and control system, the dynamic model representation, the simulation results and project benefits.« less
Yu, Wen; Taylor, J Alex; Davis, Michael T; Bonilla, Leo E; Lee, Kimberly A; Auger, Paul L; Farnsworth, Chris C; Welcher, Andrew A; Patterson, Scott D
2010-03-01
Despite recent advances in qualitative proteomics, the automatic identification of peptides with optimal sensitivity and accuracy remains a difficult goal. To address this deficiency, a novel algorithm, Multiple Search Engines, Normalization and Consensus is described. The method employs six search engines and a re-scoring engine to search MS/MS spectra against protein and decoy sequences. After the peptide hits from each engine are normalized to error rates estimated from the decoy hits, peptide assignments are then deduced using a minimum consensus model. These assignments are produced in a series of progressively relaxed false-discovery rates, thus enabling a comprehensive interpretation of the data set. Additionally, the estimated false-discovery rate was found to have good concordance with the observed false-positive rate calculated from known identities. Benchmarking against standard proteins data sets (ISBv1, sPRG2006) and their published analysis, demonstrated that the Multiple Search Engines, Normalization and Consensus algorithm consistently achieved significantly higher sensitivity in peptide identifications, which led to increased or more robust protein identifications in all data sets compared with prior methods. The sensitivity and the false-positive rate of peptide identification exhibit an inverse-proportional and linear relationship with the number of participating search engines.
Test Results of the RS-44 Integrated Component Evaluator Liquid Oxygen/ Hydrogen Rocket Engine
1993-10-12
achieved on the same test. Figure 5-1 is a photograph of the RS-44 ICE engine as it achieved mainstage 3 operation on test 87-017-006. Nominal and...engine transition to mainstage main chamber pressure, 3 Igniter operation satisfactory 87-017-004 1.09 Igniter operation / engine Redline cutoff due...ok, transition stage satisfactory, 3 maInstage operation achieved, all other objectives met. 3 I I I -56- 1 CR 194443 Figure 7-22 RS-44 ENGtNE
Some Operating Experience and Problems Encountered During Operation of a Free-jet Facility
NASA Technical Reports Server (NTRS)
Mcaulay, John E; Prince, William R
1957-01-01
During a free-jet investigation of a 28-inch ram-jet engine at a Mach number of 2.35, flow pulsation at the engine inlet were discovered which proved to have an effect on the engine performance and operational characteristics, particularly the engine rich blowout limits. This report discusses the finding of the flow pulsations, their elimination, and effect. Other facility characteristics, such as the establishment of flow simulation and the degree of subcritical operation of the diffuser, are also explained.
Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Duffy, Kevin P [Metamora, IL; Liechty, Michael P [Chillicothe, IL
2008-05-27
An HCCI engine has the ability to operate over a large load range by utilizing a lower cetane distillate diesel fuel to increase ignition delay. This permits more stable operation at high loads by avoidance of premature combustion before top dead center. During low load conditions, a portion of the engines cylinders are deactivated so that the remaining cylinders can operate at a pseudo higher load while the overall engine exhibits behavior typical of a relatively low load.
Iridium/Rhenium Parts For Rocket Engines
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Harding, John T.; Wooten, John R.
1991-01-01
Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.
Control system for, and a method of, heating an operator station of a work machine
Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad
2005-04-05
There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.
Code of Federal Regulations, 2010 CFR
2010-01-01
... four or more engines: Reciprocating engine powered: En route limitations: Two engines inoperative. 135... Airplane Performance Operating Limitations § 135.373 Part 25 transport category airplanes with four or more... operate an airplane certificated under part 25 and having four or more engines unless— (1) There is no...
Engine systems and methods of operating an engine
Scotto, Mark Vincent
2015-08-25
One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Engine systems and methods of operating an engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scotto, Mark Vincent
One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Allam, Ahmed; Schulz, Peter Johannes; Nakamoto, Kent
2014-04-02
During the past 2 decades, the Internet has evolved to become a necessity in our daily lives. The selection and sorting algorithms of search engines exert tremendous influence over the global spread of information and other communication processes. This study is concerned with demonstrating the influence of selection and sorting/ranking criteria operating in search engines on users' knowledge, beliefs, and attitudes of websites about vaccination. In particular, it is to compare the effects of search engines that deliver websites emphasizing on the pro side of vaccination with those focusing on the con side and with normal Google as a control group. We conducted 2 online experiments using manipulated search engines. A pilot study was to verify the existence of dangerous health literacy in connection with searching and using health information on the Internet by exploring the effect of 2 manipulated search engines that yielded either pro or con vaccination sites only, with a group receiving normal Google as control. A pre-post test design was used; participants were American marketing students enrolled in a study-abroad program in Lugano, Switzerland. The second experiment manipulated the search engine by applying different ratios of con versus pro vaccination webpages displayed in the search results. Participants were recruited from Amazon's Mechanical Turk platform where it was published as a human intelligence task (HIT). Both experiments showed knowledge highest in the group offered only pro vaccination sites (Z=-2.088, P=.03; Kruskal-Wallis H test [H₅]=11.30, P=.04). They acknowledged the importance/benefits (Z=-2.326, P=.02; H5=11.34, P=.04) and effectiveness (Z=-2.230, P=.03) of vaccination more, whereas groups offered antivaccination sites only showed increased concern about effects (Z=-2.582, P=.01; H₅=16.88, P=.005) and harmful health outcomes (Z=-2.200, P=.02) of vaccination. Normal Google users perceived information quality to be positive despite a small effect on knowledge and a negative effect on their beliefs and attitudes toward vaccination and willingness to recommend the information (χ²₅=14.1, P=.01). More exposure to antivaccination websites lowered participants' knowledge (J=4783.5, z=-2.142, P=.03) increased their fear of side effects (J=6496, z=2.724, P=.006), and lowered their acknowledgment of benefits (J=4805, z=-2.067, P=.03). The selection and sorting/ranking criteria of search engines play a vital role in online health information seeking. Search engines delivering websites containing credible and evidence-based medical information impact positively Internet users seeking health information. Whereas sites retrieved by biased search engines create some opinion change in users. These effects are apparently independent of users' site credibility and evaluation judgments. Users are affected beneficially or detrimentally but are unaware, suggesting they are not consciously perceptive of indicators that steer them toward the credible sources or away from the dangerous ones. In this sense, the online health information seeker is flying blind.
Schulz, Peter Johannes; Nakamoto, Kent
2014-01-01
Background During the past 2 decades, the Internet has evolved to become a necessity in our daily lives. The selection and sorting algorithms of search engines exert tremendous influence over the global spread of information and other communication processes. Objective This study is concerned with demonstrating the influence of selection and sorting/ranking criteria operating in search engines on users’ knowledge, beliefs, and attitudes of websites about vaccination. In particular, it is to compare the effects of search engines that deliver websites emphasizing on the pro side of vaccination with those focusing on the con side and with normal Google as a control group. Method We conducted 2 online experiments using manipulated search engines. A pilot study was to verify the existence of dangerous health literacy in connection with searching and using health information on the Internet by exploring the effect of 2 manipulated search engines that yielded either pro or con vaccination sites only, with a group receiving normal Google as control. A pre-post test design was used; participants were American marketing students enrolled in a study-abroad program in Lugano, Switzerland. The second experiment manipulated the search engine by applying different ratios of con versus pro vaccination webpages displayed in the search results. Participants were recruited from Amazon’s Mechanical Turk platform where it was published as a human intelligence task (HIT). Results Both experiments showed knowledge highest in the group offered only pro vaccination sites (Z=–2.088, P=.03; Kruskal-Wallis H test [H5]=11.30, P=.04). They acknowledged the importance/benefits (Z=–2.326, P=.02; H5=11.34, P=.04) and effectiveness (Z=–2.230, P=.03) of vaccination more, whereas groups offered antivaccination sites only showed increased concern about effects (Z=–2.582, P=.01; H5=16.88, P=.005) and harmful health outcomes (Z=–2.200, P=.02) of vaccination. Normal Google users perceived information quality to be positive despite a small effect on knowledge and a negative effect on their beliefs and attitudes toward vaccination and willingness to recommend the information (χ2 5=14.1, P=.01). More exposure to antivaccination websites lowered participants’ knowledge (J=4783.5, z=−2.142, P=.03) increased their fear of side effects (J=6496, z=2.724, P=.006), and lowered their acknowledgment of benefits (J=4805, z=–2.067, P=.03). Conclusion The selection and sorting/ranking criteria of search engines play a vital role in online health information seeking. Search engines delivering websites containing credible and evidence-based medical information impact positively Internet users seeking health information. Whereas sites retrieved by biased search engines create some opinion change in users. These effects are apparently independent of users’ site credibility and evaluation judgments. Users are affected beneficially or detrimentally but are unaware, suggesting they are not consciously perceptive of indicators that steer them toward the credible sources or away from the dangerous ones. In this sense, the online health information seeker is flying blind. PMID:24694866
Engine lubrication circuit including two pumps
Lane, William H.
2006-10-03
A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.
Advanced Control Considerations for Turbofan Engine Design
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy
2016-01-01
This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.
14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine powered: Takeoff limitations. 135.379 Section 135.379 Aeronautics and Space FEDERAL AVIATION... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category airplane...
14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine powered: Takeoff limitations. 135.379 Section 135.379 Aeronautics and Space FEDERAL AVIATION... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category airplane...
Successful human long-term application of in situ bone tissue engineering.
Horch, Raymund E; Beier, Justus P; Kneser, Ulrich; Arkudas, Andreas
2014-07-01
Tissue Engineering (TE) and Regenerative Medicine (RM) have gained much popularity because of the tremendous prospects for the care of patients with tissue and organ defects. To overcome the common problem of donor-site morbidity of standard autologous bone grafts, we successfully combined tissue engineering techniques for the first time with the arteriovenous loop model to generate vascularized large bone grafts. We present two cases of large bone defects after debridement of an osteomyelitis. One of the defects was localized in the radius and one in the tibia. For osseus reconstruction, arteriovenous loops were created as vascular axis, which were placed in the bony defects. In case 1, the bone generation was achieved using cancellous bone from the iliac crest and fibrin glue and in case 2 using a clinically approved β-tricalciumphosphate/hydroxyapatite (HA), fibrin glue and directly auto-transplanted bone marrow aspirate from the iliac crest. The following post-operative courses were uneventful. The final examinations took place after 36 and 72 months after the initial operations. Computer tomogrphy (CT), membrane resonance imaging (MRI) and doppler ultrasound revealed patent arterio-venous (AV) loops in the bone grafts as well as completely healed bone defects. The patients were pain-free with normal ranges of motion. This is the first study demonstrating successfully axially vascularized in situ tissue engineered bone generation in large bone defects in a clinical scenario using the arteriovenous loop model without creation of a significant donor-site defect utilizing TE and RM techniques in human patients with long-term stability. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Sodium heat pipe use in solar Stirling power conversion systems
NASA Astrophysics Data System (ADS)
Zimmerman, W. F.; Divakaruni, S. M.; Won, Y. S.
1980-08-01
Sodium heat pipes were selected for use as a thermal transport method in a focus-mounted, distributed concentrator solar Stirling power conversion system intended to produce 15-20 kWe per unit. Heat pipes were used both to receive thermal power in the solar receiver and to transmit it to a secondary heat pipe containing both latent heat salt (for up to 1.25 hours of thermal storage) and the heat exchanger of the Stirling engine. Experimental tests were performed on five solar receiver heat pipes with various internal wicking configurations. The performance of the heat pipes at various power levels and operating attitudes was investigated at temperatures near 1550 F; the unidirectional heat transfer in these heat pipes was demonstrated in normal operating attitudes and particularly in the inverted position required during overnight stowage of the concentrator.
Far-field acoustic data for the Texas ASE, Inc. hush house
NASA Astrophysics Data System (ADS)
Lee, R. A.
1982-04-01
This report supplements AFAMRL-TR-73-110, which describes the data base (NOISEFILE) used in the computer program (NOISEMAP) to predict the community noise exposure resulting from military aircraft operations. The results of field test measurements to define the single-event noise produced on the ground by military aircraft/engines operating in the Texas ASE Inc. hush-house are presented as a function of angle (0 deg to 180 deg from the front of the hush-house) and distance (200 ft to 2500 ft) in various acoustic metrics. All the data are normalized to standard acoustic reference conditions of 59 F temperature and 70% relative humidity. Refer to Volume I of the AFAMRL-TR-73-110 report for discussion of the scope, limitations, and definitions needed to understand and use the data in this report.
Sodium heat pipe use in solar Stirling power conversion systems
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Divakaruni, S. M.; Won, Y. S.
1980-01-01
Sodium heat pipes were selected for use as a thermal transport method in a focus-mounted, distributed concentrator solar Stirling power conversion system intended to produce 15-20 kWe per unit. Heat pipes were used both to receive thermal power in the solar receiver and to transmit it to a secondary heat pipe containing both latent heat salt (for up to 1.25 hours of thermal storage) and the heat exchanger of the Stirling engine. Experimental tests were performed on five solar receiver heat pipes with various internal wicking configurations. The performance of the heat pipes at various power levels and operating attitudes was investigated at temperatures near 1550 F; the unidirectional heat transfer in these heat pipes was demonstrated in normal operating attitudes and particularly in the inverted position required during overnight stowage of the concentrator.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1973-01-01
The vibration response of a gas-bearing rotor-support system was analyzed experimentally documented for sinusoidal and random vibration environments. The NASA Brayton Rotating Unit (BRU), 36,000 rpm; 10 KWe turbogenerator; was subjected in the laboratory to sinusoidal and random vibrations to evaluate the capability of the BRU to (1) survive the vibration levels expected to be encountered during periods of nonoperation and (2) operate satisfactorily (that is, without detrimental bearing surface contacts) at the vibration levels expected during normal BRU operation. Response power spectral density was calculated for specified input random excitation, with particular emphasis upon the dynamic motions of the thrust bearing runner and stator. A three-mass model with nonlinear representation of the engine isolator mounts was used to calculate axial rotor-bearing shock response.
Real Time Energy Management Control Strategies for Hybrid Powertrains
NASA Astrophysics Data System (ADS)
Zaher, Mohamed Hegazi Mohamed
In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.
Dynamic System Simulation of the KRUSTY Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Steven Karl; Kimpland, Robert Herbert
2016-05-09
The proposed KRUSTY experiment is a demonstration of a reactor operating at power. The planned experimental configuration includes a highly enriched uranium (HEU) reflected core, cooled by multiple heat pipes leading to Stirling engines for primary heat rejection. Operating power is expected to be approximately four (4) to five (5) kilowatts with a core temperature above 1,000 K. No data is available on any historical reactor employing HEU metal that operated over the temperature range required for the KRUSTY experiment. Further, no reactor has operated with heat pipes as the primary cooling mechanism. Historic power reactors have employed either naturalmore » or forced convection so data on their operation is not directly applicable to the KRUSTY experiment. The primary purpose of the system model once developed and refined by data from these component experiments, will be used to plan the KRUSTY experiment. This planning will include expected behavior of the reactor from start-up, through various transient conditions where cooling begins to become present and effective, and finally establishment of steady-state. In addition, the model can provide indicators of anticipated off-normal events and appropriate operator response to those conditions. This information can be used to develop specific experiment operating procedures and aids to guide the operators in conduct of the experiment.« less
14 CFR 29.65 - Climb: All engines operating.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Climb: All engines operating. 29.65 Section 29.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.65 Climb: All engines operating...
14 CFR 29.65 - Climb: All engines operating.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Climb: All engines operating. 29.65 Section 29.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.65 Climb: All engines operating...
Rotating Detonation Engine Operation (Preprint)
2012-01-01
MdotH2 = mass flow of hydrogen MdotAir = mass flow of air PCB = Piezoelectric Pressure Sensor PDE = Pulsed Detonation Engine RDE = Rotating ...and unsteady thrust output of PDEs . One of the new designs was the Rotating Detonation Engine (RDE). An RDE operates by exhausting an initial...AFRL-RZ-WP-TP-2012-0003 ROTATING DETONATION ENGINE OPERATION (PREPRINT) James A. Suchocki and Sheng-Tao John Yu The Ohio State
NASA Technical Reports Server (NTRS)
Hunczak, Henry R
1952-01-01
An investigation was conducted to determine the effectiveness of a free-jet diffuser in reducing the over-all pressure ratios required to operate a free jet with a large air-breathing engine as a test vehicle. Efficient operation of the free jet was determined with and without the considerations required for producing suitable engine-inlet flow conditions. A minimum operating pressure ration of 5.5 was attained with a ratio of nozzle-exit to engine-inlet area of 1.85. Operation of the free jet with unstable engine-inlet flow (buzz) is also included.
49 CFR 192.605 - Procedural manual for operations, maintenance, and emergencies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... operations and maintenance activities are conducted. (b) Maintenance and normal operations. The manual... personnel to determine the effectiveness, and adequacy of the procedures used in normal operation and... or flow rate outside normal operating limits; (iii) Loss of communications; (iv) Operation of any...
Code of Federal Regulations, 2012 CFR
2012-07-01
... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...
Reactor engineering support of operations at the Davis-Besse nuclear power station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, D.B.
1995-12-31
Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.
NASA Technical Reports Server (NTRS)
Kaufman, Samuel J.; Staudt, Robert C.; Valerino, Michael F.
1947-01-01
A study of the data obtained in a flight investigation of an R-2800-21 engine in a P-47G airplane was made to determine the effect of the flight variables on the engine cooling-air pressure distribution. The investigation consisted of level flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The data showed that the average engine front pressures ranged from 0.73 to 0.82 of the impact pressure (velocity head). The average engine rear pressures ranged from 0.50 to 0.55 of the impact pressure for closed cowl flaps and from 0.10 to 0.20 for full-open cowl flaps. In general, the highest front pressures were obtained at the bottom of the engine. The rear pressures for the rear-row cylinders were .lower and the pressure drops correspondingly higher than for the front-row cylinders. The rear-pressure distribution was materially affected by cowl-flap position in that the differences between the rear pressures of the front-row and rear-row cylinders markedly increased as the cowl flaps were opened. For full-open cowl flaps, the pressure drops across the rear-row cylinders were in the order of 0.2 of the impact pressure greater than across the front-row cylinders. Propeller speed and altitude had little effect on the -coolingair pressure distribution, Increase in angle of inclination of the thrust axis decreased the front ?pressures for the cylinders at the top of the engine and increased them for the cylinders at the bottom of the engine. As more auxiliary air was taken from the engine cowling, the front pressures and, to a lesser extent, the rear pressures for the cylinders at the bottom of the engine decreased. No correlation existed between the cooling-air pressure-drop distribution and the cylinder-temperature distribution.
Diagnostics of the Supernova Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fryer, Chris L.; Ellinger, Carola; Young, Patrick A.
The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Finally, we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.
Diagnostics of the Supernova Engine
Fryer, Chris L.; Ellinger, Carola; Young, Patrick A.; ...
2017-10-17
The standard engine behind core-collapse supernovae is continuously evolving with increasingly detailed models. At this time, most simulations focus on an engine invoking turbulence above the proto-neutron star, sometimes termed the “convection-enhanced” engine. Finally, we review this engine and why it has become the standard for normal supernovae, focusing on a wide set of observations that provide insight into the supernova engine.
Operator Informational Needs for Multiple Autonomous Small Vehicles
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal
2015-01-01
With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.
Engineering Elegant Systems: Postulates, Principles, and Hypotheses of Systems Engineering
NASA Technical Reports Server (NTRS)
Watson, Michael D.
2018-01-01
Definition: System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system; Elegant System - A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation. Primary Focus: System Design and Integration: Identify system couplings and interactions; Identify system uncertainties and sensitivities; Identify emergent properties; Manage the effectiveness of the system. Engineering Discipline Integration: Manage flow of information for system development and/or operations; Maintain system activities within budget and schedule. Supporting Activities: Process application and execution.
Advanced Data Acquisition Systems with Self-Healing Circuitry
NASA Technical Reports Server (NTRS)
Larson, William E.; Ihlefeld, Curtis M.; Medelius, Pedro J.; Delgado, H. (Technical Monitor)
2001-01-01
Kennedy Space Center's Spaceport Engineering & Technology Directorate has developed a data acquisition system that will help drive down the cost of ground launch operations. This system automates both the physical measurement set-up function as well as configuration management documentation. The key element of the system is a self-configuring, self-calibrating, signal-conditioning amplifier that automatically adapts to any sensor to which it is connected. This paper will describe the core technology behind this device and the automated data system in which it has been integrated. The paper will also describe the revolutionary enhancements that are planned for this innovative measurement technology. All measurement electronics devices contain circuitry that, if it fails or degrades, requires the unit to be replaced, adding to the cost of operations. Kennedy Space Center is now developing analog circuits that will be able to detect their own failure and dynamically reconfigure their circuitry to restore themselves to normal operation. This technology will have wide ranging application in all electronic devices used in space and ground systems.
Small Engines Care, Operation, Maintenance and Repair. Volume I.
ERIC Educational Resources Information Center
Turner, J. Howard
Developed by teacher educators and agricultural engineers and tested by vocational agriculture teachers, this reference is for student and teacher use as part of a course on servicing and operating an engine. Content includes: (1) Distinguishing Features of Small Engines, (2) How Small Gasoline Engines Work, (3) Comparing 4-(Stroke)Cycle and…
Characterizing SI Engine Transient Fuel Consumption in ...
Examine typical transient engine operation encountered over the EPA's vehicle and engine testing drive cycles to characterize that transient fuel usage, and then describe the changes made to ALPHA to better model transient engine operation. To present an approach to capture dynamic fuel consumption during engine transients and then implement these identified characteristics in ALPHA.
A Roadmap for Aircraft Engine Life Extending Control
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
2001-01-01
The concept of Aircraft Engine Life Extending Control is introduced. A brief description of the tradeoffs between performance and engine life are first explained. The overall goal of the life extending controller is to reduce the engine operating cost by extending the on-wing engine life while improving operational safety. The research results for NASA's Rocket Engine life extending control program are also briefly described. Major building blocks of the Engine Life Extending Control architecture are examined. These blocks include: life prediction models, engine operation models, stress and thermal analysis tools, control schemes, and intelligent control systems. The technology areas that would likely impact the successful implementation of an aircraft engine life extending control are also briefly described. Near, intermediate, and long term goals of NASA's activities are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominick, F.; Lockwood, R.A.
1986-07-01
The US Army Aviation Engineering Flight Activity conducted an evaluation of Flight Management Calculator for the UH-1H. The calculator was a Hewlett-Packard HP-41CV. The performance calculator was evaluated for flight planning and in-flight use during 14 mission flights simulating operational conditions. The calculator was much easier to use in-flight than the operator's manual data. The calculator program needs improvement in the areas of pre-flight planning and execution speed. The mission flights demonstrated a 19% fuel saving using optimum over normal flight profiles in warm temperatures (15/sup 0/C above standard). Savings would be greater at colder temperatures because of increasing compressibilitymore » effects. Acceptable accuracy for individual aircraft under operational conditions may require a regressive analog model in which individual aircraft data are used to update the program. The performance data base for the UH-1H was expanded with level flight and hover data to thrust coefficients and Mach numbers to the practical limits of aircraft operation.« less
Boyle, Peter A.; Christ, Norman H.; Gara, Alan; Mawhinney, Robert D.; Ohmacht, Martin; Sugavanam, Krishnan
2012-12-11
A prefetch system improves a performance of a parallel computing system. The parallel computing system includes a plurality of computing nodes. A computing node includes at least one processor and at least one memory device. The prefetch system includes at least one stream prefetch engine and at least one list prefetch engine. The prefetch system operates those engines simultaneously. After the at least one processor issues a command, the prefetch system passes the command to a stream prefetch engine and a list prefetch engine. The prefetch system operates the stream prefetch engine and the list prefetch engine to prefetch data to be needed in subsequent clock cycles in the processor in response to the passed command.
CERTS Microgrid Laboratory Test Bed - PIER Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert
2008-07-25
The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on highmore » fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.« less
Engine Throat/Nozzle Optics for Plume Spectroscopy
1991-02-01
independent of the external plume characteristics so operation can be achieved on diffuser test stands and with the engine exhausting to a variable... combustion chamber operates at 205 atmospheres during 109% power conditions with a mixture ratio of 6:1. The engine is overexpanded at sea level and...LeRC/500-219. 16. Abstract The throat and combustion chamber of an operating rocket engine provide a preferred signal source for optical spectroscopy
High variable mixture ratio oxygen/hydrogen engine
NASA Technical Reports Server (NTRS)
Erickson, C. M.; Tu, W. H.; Weiss, A. H.
1988-01-01
The ability of an O2/H2 engine to operate over a range of high-propellant mixture ratios was previously shown to be advantageous in single stage to orbit (SSTO) vehicles. The results are presented for the analysis of high-performance engine power cycles operating over propellant mixture ratio ranges of 12 to 6 and 9 to 6. A requirement to throttle up to 60 percent of nominal thrust was superimposed as a typical throttle range to limit vehicle acceleration as propellant is expended. The object of the analysis was to determine areas of concern relative to component and engine operability or potential hazards resulting from the operating requirements and ranges of conditions that derive from the overall engine requirements. The SSTO mission necessitates a high-performance, lightweight engine. Therefore, staged combustion power cycles employing either dual fuel-rich preburners or dual mixed (fuel-rich and oxygen-rich) preburners were examined. Engine mass flow and power balances were made and major component operating ranges were defined. Component size and arrangement were determined through engine layouts for one of the configurations evaluated. Each component is being examined to determine if there are areas of concern with respect to component efficiency, operability, reliability, or hazard. The effects of reducing the maximum chamber pressure were investigated for one of the cycles.
14 CFR 25.119 - Landing climb: All-engines-operating.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing climb: All-engines-operating. 25... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.119 Landing climb: All-engines-operating. In the landing configuration, the steady gradient of climb may not be less than...
14 CFR 25.119 - Landing climb: All-engines-operating.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing climb: All-engines-operating. 25... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.119 Landing climb: All-engines-operating. In the landing configuration, the steady gradient of climb may not be less than...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... Operations (ETOPS) of Multi-Engine Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION...-0718. Title: Extended Operations (ETOPS) of Multi-Engine Airplanes. Form Numbers: There are no FAA... that permitted certificated air carriers to operate two-engine airplanes over long-range routes and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... Operations (ETOPS) of Multi-Engine Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Number: 2120-0718 Title: Extended Operations (ETOPS) of Multi-Engine Airplanes Form Numbers: There are no... operate two-engine airplanes over these long-range routes and extended the procedures for extended...
Conversion of methanol-fueled 16-valve, 4-cylinder engine to operation on gaseous 2H2/CO fuel
NASA Astrophysics Data System (ADS)
Schaefer, Ronald M.; Hamady, Fakhart J.; Martin, James C.
1992-09-01
The report describes progress to date on a project to convert a Nissan CA18DE engine previously modified for operation on M100 neat methanol to operation on dissociated methanol (2H2/CO) gaseous fuel. This engine was operated on both M100 and simulated dissociated methanol (67 percent hydrocarbon and 33 percent carbon monoxide) fuels. This report describes recent modifications made to the engine and fuel delivery system and summarizes the results from recent testing.
Factors Associated With Smoking Behavior Among Operating Engineers
Choi, Seung Hee; Pohl, Joanne M.; Terrell, Jeffrey E.; Redman, Richard W.
2016-01-01
Although disparities in smoking prevalence between white collar workers and blue collar workers have been documented, reasons for these disparities have not been well studied. The objective of this study was to determine variables associated with smoking among Operating Engineers, using the Health Promotion Model as a guide. With cross-sectional data from a convenience sample of 498 Operating Engineers, logistic regression was used to determine personal and health behaviors associated with smoking. Approximately 29% of Operating Engineers currently smoked cigarettes. Multivariate analyses showed that younger age, unmarried, problem drinking, physical inactivity, and a lower body mass index were associated with smoking. Operating Engineers were at high risk of smoking, and smokers were more likely to engage in other risky health behaviors, which supports bundled health behavior interventions. PMID:23957830
Factors associated with smoking among operating engineers.
Choi, Seung Hee; Pohl, Joanne M; Terrell, Jeffrey E; Redman, Richard W; Duffy, Sonia A
2013-09-01
Although disparities in smoking prevalence between white collar workers and blue collar workers have been documented, reasons for these disparities have not been well studied. The objective of this study was to determine variables associated with smoking among Operating Engineers, using the Health Promotion Model as a guide. With cross-sectional data from a convenience sample of 498 Operating Engineers, logistic regression was used to determine personal and health behaviors associated with smoking. Approximately 29% of Operating Engineers currently smoked cigarettes. Multivariate analyses showed that younger age, unmarried, problem drinking, physical inactivity, and a lower body mass index were associated with smoking. Operating Engineers were at high risk of smoking, and smokers were more likely to engage in other risky health behaviors, which supports bundled health behavior interventions. Copyright 2013, SLACK Incorporated.
18 CFR 367.80 - Supervision and engineering.
Code of Federal Regulations, 2014 CFR
2014-04-01
... engineering. 367.80 Section 367.80 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... ACT Operating Expense Instructions § 367.80 Supervision and engineering. (a) The supervision and engineering includible in the operating expense accounts must consist of the pay and expenses of...
18 CFR 367.80 - Supervision and engineering.
Code of Federal Regulations, 2013 CFR
2013-04-01
... engineering. 367.80 Section 367.80 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... ACT Operating Expense Instructions § 367.80 Supervision and engineering. (a) The supervision and engineering includible in the operating expense accounts must consist of the pay and expenses of...
18 CFR 367.80 - Supervision and engineering.
Code of Federal Regulations, 2011 CFR
2011-04-01
... engineering. 367.80 Section 367.80 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... ACT Operating Expense Instructions § 367.80 Supervision and engineering. (a) The supervision and engineering includible in the operating expense accounts must consist of the pay and expenses of...
18 CFR 367.80 - Supervision and engineering.
Code of Federal Regulations, 2010 CFR
2010-04-01
... engineering. 367.80 Section 367.80 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... ACT Operating Expense Instructions § 367.80 Supervision and engineering. (a) The supervision and engineering includible in the operating expense accounts must consist of the pay and expenses of...
18 CFR 367.80 - Supervision and engineering.
Code of Federal Regulations, 2012 CFR
2012-04-01
... engineering. 367.80 Section 367.80 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... ACT Operating Expense Instructions § 367.80 Supervision and engineering. (a) The supervision and engineering includible in the operating expense accounts must consist of the pay and expenses of...
Health behaviors of Operating Engineers.
Duffy, Sonia A; Missel, Amanda L; Waltje, Andrea H; Ronis, David L; Fowler, Karen E; Hong, OiSaeng
2011-07-01
Operating Engineers (heavy equipment operators in construction) may be at particular risk for heart disease and cancer related to their exposure to environmental dust and smoking, the sedentary nature of their job, and long hours of exposure to the sun. The aim of this study was to characterize the health behaviors of Operating Engineers. This cross-sectional survey from a convenience sample of Operating Engineers (N = 498) used validated instruments to measure smoking, drinking, diet, exercise, sleep, and sun exposure. Univariate and bivariate analyses to detect differences by age were conducted. The sample scored significantly worse on all five health behaviors compared to population norms. Those who were older were less likely to smoke and chew tobacco and more likely to eat fruits and vegetables. Many were interested in services to improve their health behaviors. Health behavior interventions are needed and wanted by Operating Engineers. Copyright 2011, SLACK Incorporated.
Health Behaviors of Operating Engineers
Duffy, Sonia A.; Missel, Amanda L.; Waltje, Andrea H.; Ronis, David L.; Fowler, Karen E.; Hong, OiSaeng
2013-01-01
RESEARCH ABSTRACT Operating Engineers (heavy equipment operators in construction) may be at particular risk for heart disease and cancer related to their exposure to environmental dust and smoking, the sedentary nature of their job, and long hours of exposure to the sun. The aim of this study was to characterize the health behaviors of Operating Engineers. This cross-sectional survey from a convenience sample of Operating Engineers (N = 498) used validated instruments to measure smoking, drinking, diet, exercise, sleep, and sun exposure. Univariate and bivariate analyses to detect differences by age were conducted. The sample scored significantly worse on all five health behaviors compared to population norms. Those who were older were less likely to smoke and chew tobacco and more likely to eat fruits and vegetables. Many were interested in services to improve their health behaviors. Health behavior interventions are needed and wanted by Operating Engineers. PMID:21688764