Sample records for normal force applied

  1. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.

    PubMed

    Liu, Rui; Mao, Ziliang; Matthews, Dennis L; Li, Chin-Shang; Chan, James W; Satake, Noriko

    2013-07-01

    Laser tweezers Raman spectroscopy was used to characterize the oxygenation response of single normal adult, sickle, and cord blood red blood cells (RBCs) to an applied mechanical force. Individual cells were subjected to different forces by varying the laser power of a single-beam optical trap, and the intensities of several oxygenation-specific Raman spectral peaks were monitored to determine the oxygenation state of the cells. For all three cell types, an increase in laser power (or mechanical force) induced a greater deoxygenation of the cell. However, sickle RBCs deoxygenated more readily than normal RBCs when subjected to the same optical forces. Conversely, cord blood RBCs were able to maintain their oxygenation better than normal RBCs. These results suggest that differences in the chemical or mechanical properties of fetal, normal, and sickle cells affect the degree to which applied mechanical forces can deoxygenate the cell. Populations of normal, sickle, and cord RBCs were identified and discriminated based on this mechanochemical phenomenon. This study demonstrates the potential application of laser tweezers Raman spectroscopy as a single-cell, label-free analytical tool to characterize the functional (e.g., mechanical deformability, oxygen binding) properties of normal and diseased RBCs. Copyright © 2013 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  2. Stationary Apparatus Would Apply Forces of Walking to Feet

    NASA Technical Reports Server (NTRS)

    Hauss, Jessica; Wood, John; Budinoff, Jason; Correia, Michael; Albrecht, Rudolf

    2006-01-01

    A proposed apparatus would apply controlled cyclic forces to both feet for the purpose of preventing the loss of bone density in a human subject whose bones are not subjected daily to the mechanical loads of normal activity in normal Earth gravitation. The apparatus was conceived for use by astronauts on long missions in outer space; it could also be used by bedridden patients on Earth, including patients too weak to generate the necessary forces by their own efforts. The apparatus (see figure) would be a modified version of a bicycle-like exercise machine, called the cycle ergometer with vibration isolation system (CEVIS), now aboard the International Space Station. Attached to each CEVIS pedal would be a computer-controlled stress/ vibration exciter connected to the heel portion of a special-purpose pedal. The user would wear custom shoes that would amount to standard bicycle shoes equipped with cleats for secure attachment of the balls of the feet to the special- purpose pedals. If possible, prior to use of the apparatus, the human subject would wear a portable network of recording accelerometers, while walking, jogging, and running. The information thus gathered would be fed to the computer, wherein it would be used to make the exciters apply forces and vibrations closely approximating the forces and vibrations experienced by that individual during normal exercise. It is anticipated that like the forces applied to bones during natural exercise, these artificial forces would stimulate the production of osteoblasts (bone-forming cells), as needed to prevent or retard loss of bone mass. In addition to helping to prevent deterioration of bones, the apparatus could be used in treating a person already suffering from osteoporosis. For this purpose, the magnitude of the applied forces could be reduced, if necessary, to a level at which weak hip and leg bones would still be stimulated to produce osteoblasts without exposing them to the full stresses of walking and thereby risking fracture.

  3. Nanomechanical clues from morphologically normal cervical squamous cells could improve cervical cancer screening

    NASA Astrophysics Data System (ADS)

    Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong

    2015-09-01

    Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c

  4. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Inherent force activated secondary door... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force... when the door applies a 15 pound (66.7 N) or less force in the down or closing direction and when the...

  5. Regulation of reaction forces during the golf swing.

    PubMed

    McNitt-Gray, J L; Munaretto, J; Zaferiou, A; Requejo, P S; Flashner, H

    2013-06-01

    During the golf swing, the reaction forces applied at the feet control translation and rotation of the body-club system. In this study, we hypothesized that skilled players using a 6-iron would regulate shot distance by scaling the magnitude of the resultant horizontal reaction force applied to the each foot with minimal modifications in force direction. Skilled players (n = 12) hit golf balls using a 6-iron. Shot distance was varied by hitting the ball as they would normally and when reducing shot distance using the same club. During each swing, reaction forces were measured using dual force plates (1200 Hz) and three-dimensional kinematics were simultaneously captured (110 Hz). The results indicate that, on average, the peak resultant horizontal reaction forces of the target leg were significantly less than normal (5%, p < 0.05) when reducing shot distance. No significant differences in the orientation of the peak resultant horizontal reaction forces were observed. Resultant horizontal reaction force-angle relationships within leg and temporal relationships between target and rear legs during the swing were consistent within player across shot conditions. Regulation of force magnitude with minimal modification in force direction is expected to provide advantages from muscle activation, coordination, and performance points of view.

  6. Grip Forces During Object Manipulation: Experiment, Mathematical Model & Validation

    PubMed Central

    Slota, Gregory P.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2011-01-01

    When people transport handheld objects, they change the grip force with the object movement. Circular movement patterns were tested within three planes at two different rates (1.0, 1.5 Hz), and two diameters (20, 40 cm). Subjects performed the task reasonably well, matching frequencies and dynamic ranges of accelerations within expectations. A mathematical model was designed to predict the applied normal forces from kinematic data. The model is based on two hypotheses: (a) the grip force changes during movements along complex trajectories can be represented as the sum of effects of two basic commands associated with the parallel and orthogonal manipulation, respectively; (b) different central commands are sent to the thumb and virtual finger (Vf- four fingers combined). The model predicted the actual normal forces with a total variance accounted for of better than 98%. The effects of the two components of acceleration—along the normal axis and the resultant acceleration within the shear plane—on the digit normal forces are additive. PMID:21735245

  7. A soft-contact model for computing safety margins in human prehension.

    PubMed

    Singh, Tarkeshwar; Ambike, Satyajit

    2017-10-01

    The soft human digit tip forms contact with grasped objects over a finite area and applies a moment about an axis normal to the area. These moments are important for ensuring stability during precision grasping. However, the contribution of these moments to grasp stability is rarely investigated in prehension studies. The more popular hard-contact model assumes that the digits exert a force vector but no free moment on the grasped object. Many sensorimotor studies use this model and show that humans estimate friction coefficients to scale the normal force to grasp objects stably, i.e. the smoother the surface, the tighter the grasp. The difference between the applied normal force and the minimal normal force needed to prevent slipping is called safety margin and this index is widely used as a measure of grasp planning. Here, we define and quantify safety margin using a more realistic contact model that allows digits to apply both forces and moments. Specifically, we adapt a soft-contact model from robotics and demonstrate that the safety margin thus computed is a more accurate and robust index of grasp planning than its hard-contact variant. Previously, we have used the soft-contact model to propose two indices of grasp planning that show how humans account for the shape and inertial properties of an object. A soft-contact based safety margin offers complementary insights by quantifying how humans may account for surface properties of the object and skin tissue during grasp planning and execution. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Biomechanics principle of elbow joint for transhumeral prostheses: comparison of normal hand, body-powered, myoelectric & air splint prostheses.

    PubMed

    Abd Razak, Nasrul Anuar; Abu Osman, Noor Azuan; Gholizadeh, Hossein; Ali, Sadeeq

    2014-09-10

    Understanding of kinematics force applied at the elbow is important in many fields, including biomechanics, biomedical engineering and rehabilitation. This paper provides a comparison of a mathematical model of elbow joint using three different types of prosthetics for transhumeral user, and characterizes the forces required to overcome the passive mechanical of the prosthetics at the residual limb. The study modeled the elbow as a universal joint with intersecting axes of x-axis and y-axis in a plain of upper arm and lower arm. The equations of force applied, torque, weight and length of different type of prosthetics and the anthropometry of prosthetics hand are discussed in this study. The study also compares the force, torque and pressure while using all three types of prosthetics with the normal hand. The result was measured from the elbow kinematics of seven amputees, using three different types of prosthetics. The F-Scan sensor used in the study is to determine the pressure applied at the residual limb while wearing different type of prostheses. These technological advances in assessment the biomechanics of an elbow joint for three different type of prosthetics with the normal hand bring the new information for the amputees and prosthetist to choose the most suitable device to be worn daily.

  9. A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing

    PubMed Central

    Roach, Grahm C.; Edke, Mangesh

    2012-01-01

    Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion. PMID:22723628

  10. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces.

    PubMed

    Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin

    2006-12-01

    A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 microm and coated silicon oil has a very high viscosity (10,000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.

  11. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Jiwoon; Cheung, Eugene; Park, Sukho; Sitti, Metin

    2006-12-01

    A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests performed on fresh samples of pig small intestine are used to optimize the diameter of the micro-pillars to maximize the frictional forces. In addition, the effects of other factors such as the oil viscosity and applied normal forces are investigated. It is demonstrated that the proposed micro-pillar pattern based elastomer adhesive exhibits a maximal frictional force when the pillar diameter is 140 µm and coated silicon oil has a very high viscosity (10 000 cSt). It is also found that the frictional force of the micro-patterned adhesive increases nonlinearly in proportion to the applied normal force. These adhesives would be used as a robust attachment material for developing robotic capsule endoscopes inside intestines with clamping capability.

  12. Neuronal activity in somatosensory cortex related to tactile exploration

    PubMed Central

    Fortier-Poisson, Pascal

    2015-01-01

    The very light contact forces (∼0.60 N) applied by the fingertips during tactile exploration reveal a clearly optimized sensorimotor strategy. To investigate the cortical mechanisms involved with this behavior, we recorded 230 neurons in the somatosensory cortex (S1), as two monkeys scanned different surfaces with the fingertips in search of a tactile target without visual feedback. During the exploration, the monkeys, like humans, carefully controlled the finger forces. High-friction surfaces offering greater tangential shear force resistance to the skin were associated with decreased normal contact forces. The activity of one group of neurons was modulated with either the normal or tangential force, with little or no influence from the orthogonal force component. A second group responded to kinetic friction or the ratio of tangential to normal forces rather than responding to a specific parameter, such as force magnitude or direction. A third group of S1 neurons appeared to respond to particular vectors of normal and tangential force on the skin. Although 45 neurons correlated with scanning speed, 32 were also modulated by finger forces, suggesting that forces on the finger should be considered as the primary parameter encoding the skin compliance and that finger speed is a secondary parameter that co-varies with finger forces. Neurons (102) were also tested with different textures, and the activity of 62 of these increased or decreased in relation to the surface friction. PMID:26467519

  13. Comparison of the force applied on oral structures during intubation attempts by novice physicians between the Macintosh direct laryngoscope, Airway Scope and C-MAC PM: a high-fidelity simulator-based study.

    PubMed

    Nakanishi, Taizo; Shiga, Takashi; Homma, Yosuke; Koyama, Yasuaki; Goto, Tadahiro

    2016-05-23

    We examined whether the use of Airway Scope (AWS) and C-MAC PM (C-MAC) decreased the force applied on oral structures during intubation attempts as compared with the force applied with the use of Macintosh direct laryngoscope (DL). Prospective cross-over study. A total of 35 novice physicians participated. We used 6 simulation scenarios based on the difficulty of intubation and intubation devices. Our primary outcome measures were the maximum force applied on the maxillary incisors and tongue during intubation attempts, measured by a high-fidelity simulator. The maximum force applied on maxillary incisors was higher with the use of the C-MAC than with the DL and AWS in the normal airway scenario (DL, 26 Newton (N); AWS, 18 N; C-MAC, 52 N; p<0.01) and the difficult airway scenario (DL, 42 N; AWS, 24 N; C-MAC, 68 N; p<0.01). In contrast, the maximum force applied on the tongue was higher with the use of the DL than with the AWS and C-MAC in both airway scenarios (DL, 16 N; AWS, 1 N; C-MAC, 7 N; p<0.01 in the normal airway scenario; DL, 12 N; AWS, 4 N; C-MAC, 7 N; p<0.01 in the difficult airway scenario). The use of C-MAC, compared with the DL and AWS, was associated with the higher maximum force applied on maxillary incisors during intubation attempts. In contrast, the use of video laryngoscopes was associated with the lower force applied on the tongue in both airway scenarios, compared with the DL. Our study was a simulation-based study, and further research on living patients would be warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    PubMed Central

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  15. Breast compression in mammography: how much is enough?

    PubMed

    Poulos, Ann; McLean, Donald; Rickard, Mary; Heard, Robert

    2003-06-01

    The amount of breast compression that is applied during mammography potentially influences image quality and the discomfort experienced. The aim of this study was to determine the relationship between applied compression force, breast thickness, reported discomfort and image quality. Participants were women attending routine breast screening by mammography at BreastScreen New South Wales Central and Eastern Sydney. During the mammographic procedure, an 'extra' craniocaudal (CC) film was taken at a reduced level of compression ranging from 10 to 30 Newtons. Breast thickness measurements were recorded for both the normal and the extra CC film. Details of discomfort experienced, cup size, menstrual status, existing breast pain and breast problems were also recorded. Radiologists were asked to compare the image quality of the normal and manipulated film. The results indicated that 24% of women did not experience a difference in thickness when the compression was reduced. This is an important new finding because the aim of breast compression is to reduce breast thickness. If breast thickness is not reduced when compression force is applied then discomfort is increased with no benefit in image quality. This has implications for mammographic practice when determining how much breast compression is sufficient. Radiologists found a decrease in contrast resolution within the fatty area of the breast between the normal and the extra CC film, confirming a decrease in image quality due to insufficient applied compression force.

  16. Downhill Cycling Symmetry Breaking: How the Rider Foils Experiment

    ERIC Educational Resources Information Center

    Abu, Yuval Ben; Wolfson, Ira; Bran, Gil; Yizhaq, Hezi

    2017-01-01

    In high-school teaching of mechanics, we deal, among other things, with the nature of static and kinetic friction, forces that are proportional to the normal force. Under the influence of frictional forces, a body moves down a rough sloped decline at a fixed rate of acceleration that is independent of its mass. This situation does not apply to…

  17. [Study on the 3D mathematical mode of the muscle groups applied to human mandible by a linear programming method].

    PubMed

    Wang, Dongmei; Yu, Liniu; Zhou, Xianlian; Wang, Chengtao

    2004-02-01

    Four types of 3D mathematical mode of the muscle groups applied to the human mandible have been developed. One is based on electromyography (EMG) and the others are based on linear programming with different objective function. Each model contains 26 muscle forces and two joint forces, allowing simulation of static bite forces and concomitant joint reaction forces for various bite point locations and mandibular positions. In this paper, the method of image processing to measure the position and direction of muscle forces according to 3D CAD model was built with CT data. Matlab optimization toolbox is applied to solve the three modes based on linear programming. Results show that the model with an objective function requiring a minimum sum of the tensions in the muscles is reasonable and agrees very well with the normal physiology activity.

  18. 14 CFR 23.255 - Out of trim characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... apply: (a) From an initial condition with the airplane trimmed at cruise speeds up to VMO/MMO, the... speeds between VFC/MFC and VDF/MDF , the direction of the primary longitudinal control force may not... control force, flight tests must be accomplished from the normal acceleration at which a marginal...

  19. True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast.

    PubMed

    Almonte, Lisa; Colchero, Jaime

    2017-02-23

    The present work analyses how the tip-sample interaction signals critically determine the operation of an Atomic Force Microscope (AFM) set-up immersed in liquid. On heterogeneous samples, the conservative tip-sample interaction may vary significantly from point to point - in particular from attractive to repulsive - rendering correct feedback very challenging. Lipid membranes prepared on a mica substrate are analyzed as reference samples which are locally heterogeneous (material contrast). The AFM set-up is operated dynamically at low oscillation amplitude and all available experimental data signals - the normal force, as well as the amplitude and frequency - are recorded simultaneously. From the analysis of how the dissipation (oscillation amplitude) and the conservative interaction (normal force and resonance frequency) vary with the tip-sample distance we conclude that dissipation is the only appropriate feedback source for stable and correct topographic imaging. The normal force and phase then carry information about the sample composition ("chemical contrast"). Dynamic AFM allows imaging in a non-contact regime where essentially no forces are applied, rendering dynamic AFM a truly non-invasive technique.

  20. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.

  1. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance was developed that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, the aft gage location, and the balance moment center; (iv) the balance should be used in UP and DOWN orientation to get axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. Three different approaches are also reviewed that may be used to independently estimate the natural zeros of the balance. These three approaches provide gage output differences that may be used to estimate the weight of both the metric and non-metric part of the balance. Manual calibration data of NASA s MK29A balance and machine calibration data of NASA s MC60D balance are used to illustrate and evaluate different aspects of the proposed baseline load schedule design.

  2. Passive microrheology of normal and cancer cells after ML7 treatment by atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyapunova, Elena, E-mail: lyapunova@icmm.ru; Ural Federal University, Kuibyishev Str. 48, Ekaterinburg, 620000; Nikituk, Alexander, E-mail: nas@icmm.ru

    Mechanical properties of living cancer and normal thyroidal cells were investigated by atomic force microscopy (AFM). Cell mechanics was compared before and after treatment with ML7, which is known to reduce myosin activity and induce softening of cell structures. We recorded force curves with extended dwell time of 6 seconds in contact at maximum forces from 500 pN to 1 nN. Data were analyzed within different frameworks: Hertz fit was applied in order to evaluate differences in Young’s moduli among cell types and conditions, while the fluctuations of the cantilever in contact with cells were analyzed with both conventional algorithmsmore » (probability density function and power spectral density) and multifractal detrended fluctuation analysis (MF-DFA). We found that cancer cells were softer than normal cells and ML7 had a substantial softening effect on normal cells, but only a marginal one on cancer cells. Moreover, we observed that all recorded signals for normal and cancer cells were monofractal with small differences between their scaling parameters. Finally, the applicability of wavelet-based methods of data analysis for the discrimination of different cell types is discussed.« less

  3. Research on the Mechanism of In-Plane Vibration on Friction Reduction

    PubMed Central

    Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang

    2017-01-01

    A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679

  4. Normalized patellofemoral joint reaction force is greater in individuals with patellofemoral pain.

    PubMed

    Thomeer, Lucas T; Sheehan, Frances T; Jackson, Jennifer N

    2017-07-26

    Patellofemoral pain is a disabling, highly prevalent pathology. Altered patellofemoral contact forces are theorized to contribute to this pain. Musculoskeletal modeling has been employed to better understand the etiology of patellofemoral pain. Currently, there are no data on the effective quadriceps moment arm for individuals with patellofemoral pain, forcing researchers to apply normative values when modeling such individuals. In addition, the ratio of patellofemoral reaction force to quadriceps force is often used as a surrogate for patellofemoral joint contact force, ignoring the fact that the quadriceps efficiency can vary with pathology and intervention. Thus, the purposes of this study were to: (1) quantify the effective quadriceps moment arm in individuals with patellofemoral pain and compare this value to a control cohort and (2) develop a novel methodology for quantifying the normalized patellofemoral joint reaction force in vivo during dynamic activities. Dynamic MR data were captured as subjects with patellofemoral pain (30F/3M) cyclically flexed their knee from 10° to 40°. Data for control subjects (29F/9M) were taken from a previous study. The moment arm data acquired across a large cohort of individuals with patellofemoral pain should help advance musculoskeletal modeling. The primary finding of this study was an increased mean normalized patellofemoral reaction force of 14.9% (maximum values at a knee angle of 10°) in individuals with patellofemoral pain. Understanding changes in the normalized patellofemoral reaction force with pathology may lead to improvements in clinical decision making, and consequently treatments, by providing a more direct measure of altered patellofemoral joint forces. Copyright © 2017. Published by Elsevier Ltd.

  5. The Cricoid Force Necessary to Occlude the Esophageal Entrance: Is There a Gender Difference?

    PubMed

    Zeidan, Ahed M; Salem, M Ramez; Bamadhaj, Munir; Mazoit, Jean-Xavier; Sadek, Hussein; Houjairy, Hassan; Abdulkhaleq, Kamal; Bamadhaj, Nabil

    2017-04-01

    We tested the hypothesis whether gender differences exist in the applied cricoid force necessary to prevent regurgitation. Real-time visual and dynamic means were used to assess the effectiveness of different applied cricoid forces in occluding the esophageal entrance in men (group 1) and in women (group 2). In anesthetized and paralyzed patients, the glottis and esophageal entrance were visualized with a Glidescope video laryngoscope. Trained operators performed cricoid pressure (CP) and gastric tube insertion trials. Successful gastric tube insertion in the presence of CP was considered ineffective CP, whereas unsuccessful insertion was considered effective CP. The applied cricoid forces were measured with a novel instrument, the cricometer. The first patient in each group received 20 N. The applied cricoid force in successive patients was determined by the response of the previous patient within the same group, using the up-and-down sequential allocation technique. In the 30 men and 30 women who qualified for the study, the median cricoid force (cricoid force = 50) that occluded the esophageal entrance was 30.8 N (95% confidence interval = 28.15-33.5) in men, and 18.7 N in women (95% confidence interval = 17.1-20.3; P < .0001). Patency of the esophageal entrance was observed when CP was not applied and when inadequate forces that allowed successful esophageal cannulation were used. The current study provides evidence that the median force necessary to occlude the esophageal entrance to prevent regurgitation is less in women compared with men. Applying the appropriate cricoid force in women should also decrease airway-related problems that tend to occur with the use of excessive forces. The findings of the current study may only be applicable to patients with normal body habitus.

  6. Performance of an inverted pendulum model directly applied to normal human gait.

    PubMed

    Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O

    2006-03-01

    In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.

  7. What Supports an Aeroplane? Force, Momentum, Energy and Power in Flight

    ERIC Educational Resources Information Center

    Robertson, David

    2014-01-01

    Some apparently confusing aspects of Newton's laws as applied to an aircraft in normal horizontal flight are neatly resolved by a careful analysis of force, momentum, energy and power. A number of related phenomena are explained at the same time, including the lift and induced drag coefficients, used empirically in the aviation industry.

  8. Piezotronic Effect in Polarity-Controlled GaN Nanowires.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2015-08-25

    Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.

  9. Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids

    NASA Astrophysics Data System (ADS)

    Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.

    2004-03-01

    The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.

  10. Design of a lightweight, cost effective thimble-like sensor for haptic applications based on contact force sensors.

    PubMed

    Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael

    2011-01-01

    This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.

  11. Design of a Lightweight, Cost Effective Thimble-Like Sensor for Haptic Applications Based on Contact Force Sensors

    PubMed Central

    Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael

    2011-01-01

    This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation. PMID:22247677

  12. Constant strain rate experiments and constitutive modeling for a class of bitumen

    NASA Astrophysics Data System (ADS)

    Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali

    2012-08-01

    The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.

  13. Two-dimensional simulation of red blood cell motion near a wall under a lateral force

    NASA Astrophysics Data System (ADS)

    Hariprasad, Daniel S.; Secomb, Timothy W.

    2014-11-01

    The motion of a red blood cell suspended in a linear shear flow adjacent to a fixed boundary subject to an applied lateral force directed toward the boundary is simulated. A two-dimensional model is used that represents the viscous and elastic properties of normal red blood cells. Shear rates in the range of 100 to 600 s-1 are considered, and the suspending medium viscosity is 1 cP. In the absence of a lateral force, the cell executes a tumbling motion. With increasing lateral force, a transition from tumbling to tank-treading is predicted. The minimum force required to ensure tank-treading increases nonlinearly with the shear rate. Transient swinging motions occur when the force is slightly larger than the transition value. The applied lateral force is balanced by a hydrodynamic lift force resulting from the positive orientation of the long axis of the cell with respect to the wall. In the case of cyclic tumbling motions, the orientation angle takes positive values through most of the cycle, resulting in lift generation. These results are used to predict the motion of a cell close to the outer edge of the cell-rich core region that is generated when blood flows in a narrow tube. In this case, the lateral force is generated by shear-induced dispersion, resulting from cell-cell interactions in a region with a concentration gradient. This force is estimated using previous data on shear-induced dispersion. The cell is predicted to execute tank-treading motions at normal physiological hematocrit levels, with the possibility of tumbling at lower hematocrit levels.

  14. Active Flap Control of the SMART Rotor for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.

    2009-01-01

    Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.

  15. Non-contact lateral force microscopy.

    PubMed

    Weymouth, A J

    2017-08-16

    The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.

  16. Integration of a computerized two-finger gripper for robot workstation safety

    NASA Technical Reports Server (NTRS)

    Sneckenberger, John E.; Yoshikata, Kazuki

    1988-01-01

    A microprocessor-based controller has been developed that continuously monitors and adjusts the gripping force applied by a special two-finger gripper. This computerized force sensing gripper system enables the endeffector gripping action to be independently detected and corrected. The gripping force applied to a manipulated object is real-time monitored for problem situations, situations which can occur during both planned and errant robot arm manipulation. When unspecified force conditions occur at the gripper, the gripping force controller initiates specific reactions to cause dynamic corrections to the continuously variable gripping action. The force controller for this intelligent gripper has been interfaced to the controller of an industrial robot. The gripper and robot controllers communicate to accomplish the successful completion of normal gripper operations as well as unexpected hazardous situations. An example of an unexpected gripping condition would be the sudden deformation of the object being manipulated by the robot. The capabilities of the interfaced gripper-robot system to apply workstation safety measures (e.g., stop the robot) when these unexpected gripping effects occur have been assessed.

  17. Evaluation of the magnitude of hip joint deformation in subjects with avascular necrosis of the hip joint during walking with and without Scottish Rite orthosis.

    PubMed

    Karimi, Mohammad Taghi; Mohammadi, Ali; Ebrahimi, Mohammad Hossein; McGarry, Anthony

    2017-02-01

    The femoral head in subjects with leg calve perthes disease (LCPD) is generally considerably deformed. It is debatable whether this deformation is due to an increase in applied loads, a decrease in bone mineral density or a change in containment of articular surfaces. The aim of this study was to determine the influence of these factors on deformation of the femoral head. Two subjects with LCPD participated in this study. Subject motion and the forces applied on the affected leg were recorded using a motion analysis system (Qualsis TM ) and a Kistler force plate. OpenSim software was used to determine joint contact force of the hip joint whilst walking with and without a Scottish Rite orthosis. 3D Models of hip joints of both subjects were produced by Mimics software. The deformation of femoral bone was determined by Abaqus. Mean values of the force applied on the leg increased while walking with the orthosis. There was no difference between bone mineral density (BMD) of the femoral bone of normal and LCPD sides (p-value>0.05) and no difference between hip joint contact force of normal and LCPD sides. Hip joint containment appeared to decrease follow the use of the orthosis. It can be concluded that the deformation of femoral head in LCPD may not be due to change in BMD or applied load. Although the Scottish Rite orthosis is used mostly to increase hip joint containment, it appears to reduce hip joint contact area. It is recommended that a similar study is conducted using a higher number of subjects. Copyright © 2016 IPEM. All rights reserved.

  18. Normal Forces at Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Das, Ratul

    Adhesion can be defined as the tendency of dissimilar particles or surfaces to cling on to one another. Fields that require knowledge about adhesion interactions at the solid-liquid interface span over a wide spectrum from biotechnological issues such as liquid adhesion to skin tissues, insect feet adhesion to solids, or contact lenses to tear fluid adhesion; filtration issues such as membrane fouling and membrane affinity to different liquids; oil and gas extraction where one needs knowledge of the adhesion of the oil and brine to the rock; fuel cells in which droplets are formed on the electrodes and need to be considered in the system's design; classic chemical engineering industry such as drop adhesion to the mist eliminators in flash drums, or to heat exchangers; and classic surface science such as nano-structured surfaces, self cleaning surfaces, and general wetting phenomena. We execute the Young-Dupre (Y-P) gedanken experiment to establish unique values of work of adhesion rather than a work of adhesion range that the contact angle hysteresis results in. We use the Centrifugal Adhesion Balance (CAB) which allows independent manipulation of normal and lateral forces to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. The values obtained for the work of adhesion are independent of drop size and are in agreement with the Y-P estimate. Cyclically varying the normal force, just to prevent the drop flying away from the surface will also enable us to study the Contact Angle Hysteresis for a pendant drop. With this set up, the work of adhesion is not only calculated from experimental normal force measurements, but the found results are also used to provide a venue for calculating the Young equilibrium contact angle, theta0. According to Shanahan and de Gennes, a liquid drop with a non-zero contact angle is associated with a deformation of the solid surface at the three phase contact line, causing the triple line to protrude up and form a rim, this is due to the unsatisfied normal component of the surface tension. Such rims were demonstrated by Care et al, and by Extrand, and the stresses associated with the rims facilitate reorientation of solid molecules at the interface, and therefore result in stronger solid liquid interaction at the rim. This stronger interaction gives rise to retention forces (due to adhesion). Recently, Xu et al, wrote a force equation based on this understanding, we test the validity of this approach and the Furmidge - Dussan model and other, more empirical, retention force approaches. A liquid drop that partially wets a solid surface will slide along the plane when a force beyond a critical value is applied to it. We study the sliding pattern of such a drop. Experiments for identifying the pattern of motion of liquid drops under influence of different normal forces are performed. We use a centrifugal adhesion balance (CAB) to study the pattern of drop motion under different effective gravities. A drop on a solid surface only slides after a certain critical force is applied to it, which is dependent on the drop volume, surface heterogeneities and other factors, even after the application of force the drop doesn't continue to move uniformly, which is the subject matter of this discussion.

  19. The application of muscle wrapping to voxel-based finite element models of skeletal structures.

    PubMed

    Liu, Jia; Shi, Junfen; Fitton, Laura C; Phillips, Roger; O'Higgins, Paul; Fagan, Michael J

    2012-01-01

    Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action is applied in a physiologically reasonable manner. However, it is common for muscle forces to be represented as simple force vectors applied at a few nodes on the model's surface. It is certainly rare for any wrapping of the muscles to be considered, and yet wrapping not only alters the directions of muscle forces but also applies an additional compressive load from the muscle belly directly to the underlying bone surface. This paper presents a method of applying muscle wrapping to high-resolution voxel-based finite element (FE) models. Such voxel-based models have a number of advantages over standard (geometry-based) FE models, but the increased resolution with which the load can be distributed over a model's surface is particularly advantageous, reflecting more closely how muscle fibre attachments are distributed. In this paper, the development, application and validation of a muscle wrapping method is illustrated using a simple cylinder. The algorithm: (1) calculates the shortest path over the surface of a bone given the points of origin and ultimate attachment of the muscle fibres; (2) fits a Non-Uniform Rational B-Spline (NURBS) curve from the shortest path and calculates its tangent, normal vectors and curvatures so that normal and tangential components of the muscle force can be calculated and applied along the fibre; and (3) automatically distributes the loads between adjacent fibres to cover the bone surface with a fully distributed muscle force, as is observed in vivo. Finally, we present a practical application of this approach to the wrapping of the temporalis muscle around the cranium of a macaque skull.

  20. Feasibility of novel four degrees of freedom capacitive force sensor for skin interface force

    PubMed Central

    2012-01-01

    Background The objective of our study was to develop a novel capacitive force sensor that enables simultaneous measurements of yaw torque around the pressure axis and normal force and shear forces at a single point for the purpose of elucidating pressure ulcer pathogenesis and establishing criteria for selection of cushions and mattresses. Methods Two newly developed sensors (approximately 10 mm×10 mm×5 mm (10) and 20 mm×20 mm×5 mm (20)) were constructed from silicone gel and four upper and lower electrodes. The upper and lower electrodes had sixteen combinations that had the function as capacitors of parallel plate type. The full scale (FS) ranges of force/torque were defined as 0–1.5 N, –0.5-0.5 N and −1.5-1.5 N mm (10) and 0–8.7 N, –2.9-2.9 N and −16.8-16.8 N mm (20) in normal force, shear forces and yaw torque, respectively. The capacitances of sixteen capacitors were measured by an LCR meter (AC1V, 100 kHz) when displacements corresponding to four degrees of freedom (DOF) forces within FS ranges were applied to the sensor. The measurement was repeated three times in each displacement condition (10 only). Force/torque were calculated by corrected capacitance and were evaluated by comparison to theoretical values and standard normal force measured by an universal tester. Results In measurements of capacitance, the coefficient of variation was 3.23% (10). The Maximum FS errors of estimated force/torque were less than or equal to 10.1 (10) and 16.4% (20), respectively. The standard normal forces were approximately 1.5 (10) and 9.4 N (20) when pressure displacements were 3 (10) and 2 mm (20), respectively. The estimated normal forces were approximately 1.5 (10) and 8.6 N (10) in the same condition. Conclusions In this study, we developed a new four DOF force sensor for measurement of force/torque that occur between the skin and a mattress. In measurement of capacitance, the repeatability was good and it was confirmed that the sensor had characteristics that enabled the correction by linear approximation for adjustment of gain and offset. In estimation of forces/torque, we considered accuracy to be within an acceptable range. PMID:23186069

  1. Physician-applied contact pressure and table force response during unilateral thoracic manipulation.

    PubMed

    Kirstukas, S J; Backman, J A

    1999-06-01

    To measure the applied loading to human subjects during the reinforced unilateral thoracic manipulation. Biomechanical descriptive study. The National College of Chiropractic Clinical Biomechanical Laboratory in Lombard, Illinois. Seven men, ages 24 to 47, with no positive responses regarding muscle relaxants or thoracic spinal fractures, surgeries, or pain. We measured the contact pressure distribution at the physician-subject contact region and extracted three biomechanical parameters. From the measured time-dependent support force magnitudes, we extracted five additional biomechanical parameters. In the application of the reinforced unilateral manipulative treatment, the physician establishes contact and applies a near-static preload force of 250 to 350 N. The dynamic portion of the typical thrust is preceded by a 22% decrease in force magnitude, and the peak thrust magnitude is linearly related to the preload force magnitude. We estimate that the peak contact pressure beneath the chiropractor's pisiform can exceed 1000 kPa, with the highest pressures transmitted over areas as small as 3.6 cm2, depending on manipulative style. This work represents the first attempt at performing simultaneous measurements of the physician-applied loading and table force response and measuring the contact pressure distribution at the physician-patient contact region during chiropractic manipulation. This type of work will lead to a better understanding of the relationship between the dynamic physician-applied normal forces and the resulting load response at the table and gives us additional outcome parameters to quantify manipulative technique.

  2. An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface

    NASA Astrophysics Data System (ADS)

    Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga

    We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.

  3. Load estimation from photoelastic fringe patterns under combined normal and shear forces

    NASA Astrophysics Data System (ADS)

    Dubey, V. N.; Grewal, G. S.

    2009-08-01

    Recently there has been some spurt of interests to use photoelastic materials for sensing applications. This has been successfully applied for designing a number of signal-based sensors, however, there have been limited efforts to design image-based sensors on photoelasticity which can have wider applications in term of actual loading and visualisation. The main difficulty in achieving this is the infinite loading conditions that may generate same image on the material surface. This, however, can be useful for known loading situations as this can provide dynamic and actual conditions of loading in real time. This is particularly useful for separating components of forces in and out of the loading plane. One such application is the separation of normal and shear forces acting on the plantar surface of foot of diabetic patients for predicting ulceration. In our earlier work we have used neural networks to extract normal force information from the fringe patterns using image intensity. This paper considers geometric and various other statistical parameters in addition to the image intensity to extract normal as well as shear force information from the fringe pattern in a controlled experimental environment. The results of neural network output with the above parameters and their combinations are compared and discussed. The aim is to generalise the technique for a range of loading conditions that can be exploited for whole-field load visualisation and sensing applications in biomedical field.

  4. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces.

    PubMed

    Diffo Kaze, Arnaud; Maas, Stefan; Arnoux, Pierre-Jean; Wolf, Claude; Pape, Dietrich

    2017-12-07

    Results of finite element (FE) analyses can give insight into musculoskeletal diseases if physiological boundary conditions, which include the muscle forces during specific activities of daily life, are considered in the FE modelling. So far, many simplifications of the boundary conditions are currently made. This study presents an approach for FE modelling of the lower limb for which muscle forces were included. The stance phase of normal gait was simulated. Muscle forces were calculated using a musculoskeletal rigid body (RB) model of the human body, and were subsequently applied to a FE model of the lower limb. It was shown that the inertial forces are negligible during the stance phase of normal gait. The contact surfaces between the parts within the knee were modelled as bonded. Weak springs were attached to the distal tibia for numerical reasons. Hip joint reaction forces from the RB model and those from the FE model were similar in magnitude with relative differences less than 16%. The forces of the weak spring were negligible compared to the applied muscle forces. The maximal strain was 0.23% in the proximal region of the femoral diaphysis and 1.7% in the contact zone between the tibia and the fibula. The presented approach based on FE modelling by including muscle forces from inverse dynamic analysis of musculoskeletal RB model can be used to perform analyses of the lower limb with very realistic boundary conditions. In the present form, this model can be used to better understand the loading, stresses and strains of bones in the knee area and hence to analyse osteotomy fixation devices.

  5. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yu V.; Perepelkin, N. V.; Klimenko, A. A.; Harutyunyan, E.

    2012-08-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  6. The three-dimensional model for helical columns on type-J synchronous counter-current chromatography.

    PubMed

    Guan, Y H; van den Heuvel, Remco

    2011-08-05

    Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Evaluation of the Hinge Moment and Normal Force Aerodynamic Loads from a Seamless Adaptive Compliant Trailing Edge Flap in Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete

    2016-01-01

    A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.

  8. Centrifuges in gravitational physiology research

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.

    1993-01-01

    Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.

  9. Accurate calibration and uncertainty estimation of the normal spring constant of various AFM cantilevers.

    PubMed

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-03-10

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.

  10. Development and application of a perioral force measurement system for infants with cleft lip and palate.

    PubMed

    Zhang, Lixian; Zheng, Yaqi; Rong, Qiong; Wu, Guofeng

    2017-11-01

    Muscles converge or intertweave around the perioral area, and this can be treated with sequential therapy in infants with cleft lip and palate (CLP). The force of perioral muscles has a great influence on maxillary development and morphology. Perioral force in infants with CLP has not been well studied, and accurate and reliable measurement of perioral force in infants remains a challenge. This study aimed to investigate a new way to accurately and reliably measure perioral force in infants with unilateral CLP (UCLP) and explore the change before and after cheiloplasty. A perioral force measurement system was developed and applied to measure perioral force at labial frenum area and the commissures on both the normal and the cleft sides of four infants with UCLP before and after cheiloplasty. The results were analyzed using the SPSS 19.0 software. The perioral force measurement system appears to produce valid results in infants with UCLP. Before cheiloplasty, the perioral force of labial frenum area was 1.79 ± 0.94 g/cm 2 and that of commissure on the normal and cleft sides was 5.41 ± 1.01 g/cm 2 and 3.12 ± 1.55 g/cm 2 , respectively (P < 0.05). After cheiloplasty, perioral force of labial frenum area was 12.73 ± 3.51 g/cm 2 and that of commissure on the normal and cleft sides was 7.64 ± 1.64 g/cm 2 and 7.27 ± 1.89 g/cm 2 , respectively (P > 0.05). Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Human's Capability to Discriminate Spatial Forces at the Big Toe.

    PubMed

    Hagengruber, Annette; Höppner, Hannes; Vogel, Jörn

    2018-01-01

    A key factor for reliable object manipulation is the tactile information provided by the skin of our hands. As this sensory information is so essential in our daily life it should also be provided during teleoperation of robotic devices or in the control of myoelectric prostheses. It is well-known that feeding back the tactile information to the user can lead to a more natural and intuitive control of robotic devices. However, in some applications it is difficult to use the hands as natural feedback channels since they may already be overloaded with other tasks or, e.g., in case of hand prostheses not accessible at all. Many alternatives for tactile feedback to the human hand have already been investigated. In particular, one approach shows that humans can integrate uni-directional (normal) force feedback at the toe into their sensorimotor-control loop. Extending this work, we investigate the human's capability to discriminate spatial forces at the bare front side of their toe. A state-of-the-art haptic feedback device was used to apply forces with three different amplitudes-2 N, 5 N, and 8 N-to subjects' right big toes. During the experiments, different force stimuli were presented, i.e., direction of the applied force was changed, such that tangential components occured. In total the four directions up (distal), down (proximal), left (medial), and right (lateral) were tested. The proportion of the tangential force was varied corresponding to a directional change of 5° to 25° with respect to the normal force. Given these force stimuli, the subjects' task was to identify the direction of the force change. We found the amplitude of the force as well as the proportion of tangential forces to have a significant influence on the success rate. Furthermore, the direction right showed a significantly different successrate from all other directions. The stimuli with a force amplitude of 8 N achieved success rates over 89% in all directions. The results of the user study provide evidence that the subjects were able to discriminate spatial forces at their toe within defined force amplitudes and tangential proportion.

  12. Human's Capability to Discriminate Spatial Forces at the Big Toe

    PubMed Central

    Hagengruber, Annette; Höppner, Hannes; Vogel, Jörn

    2018-01-01

    A key factor for reliable object manipulation is the tactile information provided by the skin of our hands. As this sensory information is so essential in our daily life it should also be provided during teleoperation of robotic devices or in the control of myoelectric prostheses. It is well-known that feeding back the tactile information to the user can lead to a more natural and intuitive control of robotic devices. However, in some applications it is difficult to use the hands as natural feedback channels since they may already be overloaded with other tasks or, e.g., in case of hand prostheses not accessible at all. Many alternatives for tactile feedback to the human hand have already been investigated. In particular, one approach shows that humans can integrate uni-directional (normal) force feedback at the toe into their sensorimotor-control loop. Extending this work, we investigate the human's capability to discriminate spatial forces at the bare front side of their toe. A state-of-the-art haptic feedback device was used to apply forces with three different amplitudes—2 N, 5 N, and 8 N—to subjects' right big toes. During the experiments, different force stimuli were presented, i.e., direction of the applied force was changed, such that tangential components occured. In total the four directions up (distal), down (proximal), left (medial), and right (lateral) were tested. The proportion of the tangential force was varied corresponding to a directional change of 5° to 25° with respect to the normal force. Given these force stimuli, the subjects' task was to identify the direction of the force change. We found the amplitude of the force as well as the proportion of tangential forces to have a significant influence on the success rate. Furthermore, the direction right showed a significantly different successrate from all other directions. The stimuli with a force amplitude of 8 N achieved success rates over 89% in all directions. The results of the user study provide evidence that the subjects were able to discriminate spatial forces at their toe within defined force amplitudes and tangential proportion. PMID:29692718

  13. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    PubMed Central

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases. PMID:19493356

  14. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    PubMed

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases.

  15. Detecting the gravitational sensitivity of Paramecium caudatum using magnetic forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M., Jr.

    2006-03-01

    Under normal conditions, Paramecium cells regulate their swimming speed in response to the pN level mechanical force of gravity. This regulation, known as gravikinesis, is more pronounced when the external force is increased by methods such as centrifugation. Here we present a novel technique that simulates gravity fields using the interactions between strong inhomogeneous magnetic fields and cells. We are able to achieve variable gravities spanning from 10xg to -8xg; where g is earth's gravity. Our experiments show that the swimming speed regulation of Paramecium caudatum to magnetically simulated gravity is a true physiological response. In addition, they reveal a maximum propulsion force for paramecia. This advance establishes a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.

  16. Analysis of applied forces and electromyography of back and shoulders muscles when performing a simulated hand scaling task.

    PubMed

    Porter, William; Gallagher, Sean; Torma-Krajewski, Janet

    2010-05-01

    Hand scaling is a physically demanding task responsible for numerous overexertion injuries in underground mining. Scaling requires the miner to use a long pry bar to remove loose rock, reducing the likelihood of rock fall injuries. The experiments described in this article simulated "rib" scaling (scaling a mine wall) from an elevated bucket to examine force generation and electromyographic responses using two types of scaling bars (steel and fiberglass-reinforced aluminum) at five target heights ranging from floor level to 176 cm. Ten male and six female subjects were tested in separate experiments. Peak and average force applied at the scaling bar tip and normalized electromyography (EMG) of the left and right pairs of the deltoid and erectores spinae muscles were obtained. Work height significantly affected peak prying force during scaling activities with highest force capacity at the lower levels. Bar type did not affect force generation. However, use of the lighter fiberglass bar required significantly more muscle activity to achieve the same force. Results of these studies suggest that miners scale points on the rock face that are below their knees, and reposition the bucket as often as necessary to do so. Published by Elsevier Ltd.

  17. Inflatable bladder provides accurate calibration of pressure switch

    NASA Technical Reports Server (NTRS)

    Smith, N. J.

    1965-01-01

    Calibration of a pressure switch is accurately checked by a thin-walled circular bladder. It is placed in the pressure switch and applies force to the switch diaphragm when expanded by an external pressure source. The disturbance to the normal operation of the switch is minimal.

  18. Transient response of a laminated composite plate

    NASA Technical Reports Server (NTRS)

    Datta, S. K.; Ju, T. H.; Bratton, R. L.; Shah, A. H.

    1992-01-01

    Results are presented from an investigation of the effect of layering on transient wave propagation in a laminated cross-ply plate, giving attention to the case of 2D plane strain in the case where a line vertical force is applied on a free surface of the plate; the line may be either parallel or perpendicular to the fibers in a ply. The results are in both the time and frequency domains for the normal stress component in the x direction, at a point on the surface of the plate on which the force is applied. Comparative results are also presented for a homogeneous plate whose properties are the static effective ones, when the number of plies is large.

  19. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  20. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  1. Molecular dynamics study of response of liquid N,N-dimethylformamide to externally applied electric field using a polarizable force field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Weimin; Niu, Haitao; Lin, Tong

    2014-01-28

    The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform externalmore » electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.« less

  2. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy.

    PubMed

    Miall, R Chris; Kitchen, Nick M; Nam, Se-Ho; Lefumat, Hannah; Renault, Alix G; Ørstavik, Kristin; Cole, Jonathan D; Sarlegna, Fabrice R

    2018-05-19

    It is uncertain how vision and proprioception contribute to adaptation of voluntary arm movements. In normal participants, adaptation to imposed forces is possible with or without vision, suggesting that proprioception is sufficient; in participants with proprioceptive loss (PL), adaptation is possible with visual feedback, suggesting that proprioception is unnecessary. In experiment 1 adaptation to, and retention of, perturbing forces were evaluated in three chronically deafferented participants. They made rapid reaching movements to move a cursor toward a visual target, and a planar robot arm applied orthogonal velocity-dependent forces. Trial-by-trial error correction was observed in all participants. Such adaptation has been characterized with a dual-rate model: a fast process that learns quickly, but retains poorly and a slow process that learns slowly and retains well. Experiment 2 showed that the PL participants had large individual differences in learning and retention rates compared to normal controls. Experiment 3 tested participants' perception of applied forces. With visual feedback, the PL participants could report the perturbation's direction as well as controls; without visual feedback, thresholds were elevated. Experiment 4 showed, in healthy participants, that force direction could be estimated from head motion, at levels close to the no-vision threshold for the PL participants. Our results show that proprioceptive loss influences perception, motor control and adaptation but that proprioception from the moving limb is not essential for adaptation to, or detection of, force fields. The differences in learning and retention seen between the three deafferented participants suggest that they achieve these tasks in idiosyncratic ways after proprioceptive loss, possibly integrating visual and vestibular information with individual cognitive strategies.

  3. Room temperature shear properties of the strain isolator pad for the shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Waters, W. A., Jr.

    1981-01-01

    Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.

  4. Dermal Aged and Fetal Fibroblasts Realign in Response to Mechanical Strain

    NASA Technical Reports Server (NTRS)

    Sawyer, Christine; Grymes, Rose; Alvarez, Teresa (Technical Monitor)

    1994-01-01

    Integrins specifically recognize and bind extracellular matrix components, providing physical anchor points and functional setpoints. Focal adhesion complexes, containing integrin and cytoskeletal proteins, are potential mechanoreceptors, poised to distribute applied forces through the cytoskeleton. Pursuing the hypothesis that cells both perceive and respond to external force, we applied a stretch/relaxation regimen to normal human fetal and aged dermal fibroblast monolayers cultured on flexible membranes. The frequency and magnitude of the applied force is precisely controlled by the Flexercell Unit(Trademark). A protocol of stretch (20% elongation of the monolayer) at a frequency of 6 cycles/min caused a progressive change from a randomly distributed pattern of cells to a symmetric, radial distribution with cells aligned parallel to the applied force. We have coined the term 'orienteering' as the process of active alignment of cells in response to applied force. Cytochalasin D was added in graded doses to investigate the role of the actin cytoskeleton in force perception and transmission. A clear dose response was found; at high concentrations orienteering was abolished; and the drug's impact was reversible. The two cell strains used were similar in their alignment behavior and in their responses to cytochalasin D. Orienteering was influenced by cell density, and the cell strains studied differed in this respect. Fetal cells, unlike their aged counterparts, failed to orient at high cell density. In both cell strains, mid-density cultures aligned rapidly and sparse cultures lagged. These results indicate that both cell-cell adhesion and cytoskeleton integrity are critical in mediating the orienteering response. Differences between these two cell strains may relate to their expression of extracellular matrix molecules (fibronectin, collagen type 1) integrins and their relative binding affinities.

  5. The effect of normal load on polytetrafluoroethylene tribology.

    PubMed

    Barry, Peter R; Chiu, Patrick Y; Perry, Scott S; Sawyer, W Gregory; Phillpot, Simon R; Sinnott, Susan B

    2009-04-08

    The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.

  6. The effect of normal load on polytetrafluoroethylene tribology

    NASA Astrophysics Data System (ADS)

    Barry, Peter R.; Chiu, Patrick Y.; Perry, Scott S.; Sawyer, W. Gregory; Phillpot, Simon R.; Sinnott, Susan B.

    2009-04-01

    The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.

  7. Quantitative comparison of two independent lateral force calibration techniques for the atomic force microscope.

    PubMed

    Barkley, Sarice S; Deng, Zhao; Gates, Richard S; Reitsma, Mark G; Cannara, Rachel J

    2012-02-01

    Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5 % or less, but with precision limited to about 15 %, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an ≈ 4 % systematic error per μN of applied load for loads ≤ 1 μN. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.

  8. Viscous friction of hydrogen-bonded matter

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Horinek, Dominik; Netz, Roland R.

    2012-02-01

    Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.

  9. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy

    NASA Astrophysics Data System (ADS)

    Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.

    2000-05-01

    Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.

  10. Torque Control During Intrusion on Upper Central Incisor in Labial and Lingual bracket System - A 3D Finite Element Study.

    PubMed

    Pol, Tejas R; Vandekar, Meghna; Patil, Anuradha; Desai, Sanjana; Shetty, Vikram; Hazarika, Saptarshi

    2018-01-01

    The aim of present study was to investigate the difference of torque control during intrusive force on upper central incisors with normal, under and high torque in lingual and labial orthodontic systems through 3D finite element analysis. Six 3D models of an upper right central incisor with different torque were designed in Solid Works 2006. Software ANSYS Version 16.0 was used to evaluate intrusive force on upper central incisor model . An intrusive force of 0.15 N was applied to the bracket slot in different torque models and the displacements along a path of nodes in the upper central incisor was assessed. On application of Intrusive force on under torqued upper central incisor in Labial system produce labial crown movement but in Lingual system caused lingual movement in the apical and incisal parts. The same intrusive force in normal-torqued central incisor led to a palatal movement in apical and labial displacement of incisal edge in Lingual system and a palatal displacement in apical area and a labial movement in the incisal edge in Labial systemin. In overtorqued upper central incisor, the labial crown displacement in Labial system is more than Lingual system. In labial and lingual system on application of the same forces in upper central incisor with different inclinations showed different responses. The magnitudes of torque Loss during intrusive loads in incisors with normal, under and over-torque were higher in Labial system than Lingual orthodontic appliances. Key words: FEM, lingual orthodontics, intrusion, torque control, labial bracket systems.

  11. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Xueqin; Zhong, Yunxin; Ye, Ting; Wang, Dajing; Mao, Bingwei

    2015-12-01

    The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.

  12. Research on Plasma Synthetic Jet Actuator

    NASA Astrophysics Data System (ADS)

    Che, X. K.; Nie, W. S.; Hou, Z. Y.

    2011-09-01

    Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.

  13. The Comfortable Roller Coaster--on the Shape of Tracks with a Constant Normal Force

    ERIC Educational Resources Information Center

    Nordmark, Arne B.; Essen, Hanno

    2010-01-01

    A particle that moves along a smooth track in a vertical plane is influenced by two forces: gravity and normal force. The force experienced by roller coaster riders is the normal force, so a natural question to ask is, what shape of the track gives a normal force of constant magnitude? Here we solve this problem. It turns out that the solution is…

  14. Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro

    2017-07-01

    Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.

  15. Transonic aerodynamic characteristics of the 10-percent-thick NASA supercritical airfoil 31

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1975-01-01

    Refinements in a 10 percent thick supercritical airfoil (airfoil 31) have produced significant improvements in the drag characteristics compared with those for an earlier supercritical airfoil (airfoil 12) designed for the same normal force coefficient of 0.7. Drag creep was practically eliminated at normal force coefficients between about 0.4 and 0.7 and was greatly reduced at other normal force coefficients. Substantial reductions in the drag levels preceding drag divergence were also achieved at all normal force coefficients. The Mach numbers at which drag diverges were delayed for airfoil 31 at normal force coefficients up to about 0.6 (by approximately 0.01 and 0.02 at normal force coefficients of 0.4 and 0.6, respectively) but drag divergence occurred at slightly lower Mach numbers at higher normal force coefficients.

  16. Precise Determination of the Zero-Gravity Surface Figure of a Mirror without Gravity-Sag Modeling

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.; Lam, Jonathan C.; Feria, V. Alfonso; Chang, Zensheu

    2007-01-01

    The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-element analysis (FEA), and for accurate results the mount forces must be well characterized. We describe how to infer the zero-gravity surface figure very precisely using the alternative classical technique of averaging pairs of measurements made with the direction of gravity reversed. We show that mount forces as well as gravity must be reversed between the two measurements and discuss how the St. Venant principle determines when a reversed mount force may be considered to be applied at the same place in the two orientations. Our approach requires no finite-element modeling and no detailed knowledge of mount forces other than the fact that they reverse and are applied at the same point in each orientation. If mount schemes are suitably chosen, zero-gravity optical surfaces may be inferred much more simply and more accurately than with FEA.

  17. Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics, production version (SOUSSA-P 1.1). Volume 1: Theoretical manual. [Green function

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1980-01-01

    Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.

  18. Contact area of rough spheres: Large scale simulations and simple scaling laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastewka, Lars, E-mail: lars.pastewka@kit.edu; Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218; Robbins, Mark O., E-mail: mr@pha.jhu.edu

    2016-05-30

    We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the wholemore » range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.« less

  19. Traction force during vacuum extraction: a prospective observational study.

    PubMed

    Pettersson, K; Ajne, J; Yousaf, K; Sturm, D; Westgren, M; Ajne, G

    2015-12-01

    To investigate the traction force employed during vacuum extractions. Observational cross-sectional study. Obstetric Department, Karolinska University Hospital, Sweden, and the Swedish National Congress of Obstetrics and Gynaecology, 2013. Two hundred women with vacuum extraction at term and 130 obstetricians participating in a simulated setting. In a normal clinical setting, we used a specially adapted device to measure and record the force used to undertake vacuum extraction. In a subsequent part of the study, the force employed for vacuum extraction by a group of obstetricians in a fictive setting was estimated and objectively measured. Applied force during vacuum extraction in relation to the estimated level of difficulty in the delivery; perinatal diagnoses of asphyxia or head trauma; estimated force compared with objectively measured force employed in the fictive setting. The median (minimum-maximum) peak forces for minimum, average and excessive vacuum extraction in the clinical setting were 176 N (5-360 N), 225 N (115-436 N), and 241 N (164-452 N), respectively. In 34% of cases a force in excess of 216 N was employed. There was no correlation between the umbilical arterial pH at delivery and the traction force employed during extraction. Four cases of mild hypoxic ischaemic encephalopathy were observed, three of which were associated with a delivery whereby excessive traction force was employed during the vacuum extraction. In the fictive setting, the actual exerted force was twice the quantitative estimation. The measured forces in the clinical setting were four times higher than that estimated in the fictive setting. Higher than expected levels of traction force were used for vacuum extraction delivery. As obstetricians tend to underestimate the force applied during vacuum extraction, objective measurement with instantaneous feedback may be valuable in raising awareness. © 2015 Royal College of Obstetricians and Gynaecologists.

  20. Normal force and drag force in magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Miao, Chunlin; Shafrir, Shai N.; Lambropoulos, John C.; Jacobs, Stephen D.

    2009-08-01

    The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, λ, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low "coefficient of friction". The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.

  1. Normal Force and Drag Force in Magnetorheological Finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.

    2010-01-13

    The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials includingmore » optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.« less

  2. Spinal manipulation force and duration affect vertebral movement and neuromuscular responses.

    PubMed

    Colloca, Christopher J; Keller, Tony S; Harrison, Deed E; Moore, Robert J; Gunzburg, Robert; Harrison, Donald D

    2006-03-01

    Previous study in human subjects has documented biomechanical and neurophysiological responses to impulsive spinal manipulative thrusts, but very little is known about the neuromechanical effects of varying thrust force-time profiles. Ten adolescent Merino sheep were anesthetized and posteroanterior mechanical thrusts were applied to the L3 spinous process using a computer-controlled, mechanical testing apparatus. Three variable pulse durations (10, 100, 200 ms, force = 80 N) and three variable force amplitudes (20, 40, 60 N, pulse duration = 100 ms) were examined for their effect on lumbar motion response (L3 displacement, L1, L2 acceleration) and normalized multifidus electromyographic response (L3, L4) using a repeated measures analysis of variance. Increasing L3 posteroanterior force amplitude resulted in a fourfold linear increase in L3 posteroanterior vertebral displacement (p < 0.001) and adjacent segment (L1, L2) posteroanterior acceleration response (p < 0.001). L3 displacement was linearly correlated (p < 0.001) to the acceleration response over the 20-80 N force range (100 ms). At constant force, 10 ms thrusts resulted in nearly fivefold lower L3 displacements and significantly increased segmental (L2) acceleration responses compared to the 100 ms (19%, p = 0.005) and 200 ms (16%, p = 0.023) thrusts. Normalized electromyographic responses increased linearly with increasing force amplitude at higher amplitudes and were appreciably affected by mechanical excitation pulse duration. Changes in the biomechanical and neuromuscular response of the ovine lumbar spine were observed in response to changes in the force-time characteristics of the spinal manipulative thrusts and may be an underlying mechanism in related clinical outcomes.

  3. Design of tyre force excitation for tyre-road friction estimation

    NASA Astrophysics Data System (ADS)

    Albinsson, Anton; Bruzelius, Fredrik; Jacobson, Bengt; Fredriksson, Jonas

    2017-02-01

    Knowledge of the current tyre-road friction coefficient is essential for future autonomous vehicles. The environmental conditions, and the tyre-road friction in particular, determine both the braking distance and the maximum cornering velocity and thus set the boundaries for the vehicle. Tyre-road friction is difficult to estimate during normal driving due to low levels of tyre force excitation. This problem can be solved by using active tyre force excitation. A torque is added to one or several wheels in the purpose of estimating the tyre-road friction coefficient. Active tyre force excitation provides the opportunity to design the tyre force excitation freely. This study investigates how the tyre force should be applied to minimise the error of the tyre-road friction estimate. The performance of different excitation strategies was found to be dependent on both tyre model choice and noise level. Furthermore, the advantage with using tyre models with more parameters decreased when noise was added to the force and slip ratio.

  4. Biomechanical evaluation of three different fixation methods of the Chevron osteotomy of the olecranon: an analysis with Roentgen Stereophotogrammatic Analysis.

    PubMed

    Wagener, Marc L; Driesprong, Marco; Heesterbeek, Petra J C; Verdonschot, Nico; Eygendaal, Denise

    2013-08-01

    In this study three different methods for fixating the Chevron osteotomy of the olecranon are evaluated. Transcortical fixed Kirschner wires with a tension band, a large cancellous screw with a tension band, and a large cancellous screw alone are compared using Roentgen Stereophotogrammatic Analysis (RSA). The different fixation methods were tested in 17 cadaver specimens by applying increasing repetitive force to the triceps tendon. Forces applied were 200N, 350N, and 500N. Translation and rotation of the osteotomy were recorded using Roentgen Stereophotogrammatic Analysis. Both the fixations with a cancellous screw with tension band and with bi-cortical placed Kirschner wires with a tension band provide enough stability to withstand the forces of normal daily use. Since fixation with a cancellous screw with tension band is a fast and easy method and is related to minimal soft tissue damage this method can preferably be used for fixation of a Chevron osteotomy of the olecranon. © 2013.

  5. A Near-Wall Reynolds-Stress Closure Without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall-independent near-wall corrections. Moreover, only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls.

  6. Precision contact of the fingertip reduces postural sway of individuals with bilateral vestibular loss

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.; Jeka, J.; Horak, F.; Krebs, D.; Rabin, E.

    1999-01-01

    Contact of the hand with a stationary surface attenuates postural sway in normal individuals even when the level of force applied is mechanically inadequate to dampen body motion. We studied whether subjects without vestibular function would be able to substitute contact cues from the hand for their lost labyrinthine function and be able to balance as well as normal subjects in the dark without finger contact. We also studied the relative contribution of sight of the test chamber to the two groups. Subjects attempted to maintain a tandem Romberg stance for 25 s under three levels of fingertip contact: no contact; light-touch contact, up to 1 N (approximately 100 g) force; and unrestricted contact force. Both eyes open and eyes closed conditions were evaluated. Without contact, none of the vestibular loss subjects could stand for more than a few seconds in the dark without falling; all the normals could. The vestibular loss subjects were significantly more stable in the dark with light touch of the index finger than the normal subjects in the dark without touch. They also swayed less in the dark with light touch than when permitted sight of the test chamber without touch, and less with sight and touch than just sight. The normal subjects swayed less in the dark with touch than without, and less with sight and touch than sight alone. These findings show that during quiet stance light touch of the index finger with a stationary surface can be as effective or even more so than vestibular function for minimizing postural sway.

  7. Valgus-varus motion of the knee in normal level walking and stair climbing.

    PubMed

    Yu, B; Stuart, M J; Kienbacher, T; Growney, E S; An, K-N

    1997-07-01

    OBJECTIVE: The knee valgus-varus moment and the knee angles were compared between normal level walking and stair climbing. DESIGN: Ten healthy subjects were tested for ascent, descent, and level walking. BACKGROUND: An understanding of the normal valgus-varus motion of the knee during stair climbing is needed to apply biomechanical analysis of stair climbing as a evaluation tool for knee osteoarthritis patients. METHODS: A motion analysis system, three force plates, and a flight of stairs were used to collect kinematic and kinetic data. The knee angles and moments were calculated from the collected kinematic and kinetic data. RESULTS: The knee varus angle for the maximum knee valgus moments in stair climbing was significantly greater than that in level walking. The knee valgus moment was significantly correlated to ground reaction forces and knee valgus-varus angle during stair climbing and level walking. CONCLUSIONS: There is a coupling between the knee valgus-varus motion and flexion-extension motion. Ground reaction forces are the major contributors to the within-subject variation in the knee valgus-varus moment during stair climbing and level walking. The knee valgus-varus angle is a major contributor to the between-subject variation in the knee valgus moment during stair climbing and level walking.

  8. A Piezoelectric Shear Stress Sensor

    NASA Technical Reports Server (NTRS)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  9. Finger-attachment device for the feedback of gripping and pulling force in a manipulating system for brain tumor resection.

    PubMed

    Chinbe, Hiroyuki; Yoneyama, Takeshi; Watanabe, Tetsuyou; Miyashita, Katsuyoshi; Nakada, Mitsutoshi

    2018-01-01

    Development and evaluation of an effective attachment device for a bilateral brain tumor resection robotic surgery system based on the sensory performance of the human index finger in order to precisely detect gripping- and pulling-force feedback. First, a basic test was conducted to investigate the performance of the human index finger in the gripping- and pulling-force feedback system. Based on the test result, a new finger-attachment device was designed and constructed. Then, discrimination tests were conducted to assess the pulling force and the feedback on the hardness of the gripped material. The results of the basic test show the application of pulling force on the side surface of the finger has an advantage to distinguish the pulling force when the gripping force is applied on the finger-touching surface. Based on this result, a finger-attachment device that applies a gripping force on the finger surface and pulling force on the side surface of the finger was developed. By conducting a discrimination test to assess the hardness of the gripped material, an operator can distinguish whether the gripped material is harder or softer than a normal brain tissue. This will help in confirming whether the gripped material is a tumor. By conducting a discrimination test to assess the pulling force, an operator can distinguish the pulling-force resistance when attempting to pull off the soft material. Pulling-force feedback may help avoid the breaking of blood pipes when they are trapped in the gripper or attached to the gripped tissue. The finger-attachment device that was developed for detecting gripping- and pulling-force feedback may play an important role in the development of future neurosurgery robotic systems for precise and safe resection of brain tumors.

  10. Cochlear transducer operating point adaptation.

    PubMed

    Zou, Yuan; Zheng, Jiefu; Ren, Tianying; Nuttall, Alfred

    2006-04-01

    The operating point (OP) of outer hair cell (OHC) mechanotransduction can be defined as any shift away from the center position on the transduction function. It is a dc offset that can be described by percentage of the maximum transduction current or as an equivalent dc pressure in the ear canal. The change of OP can be determined from the changes of the second and third harmonics of the cochlear microphonic (CM) following a calibration of its initial value. We found that the initial OP was dependent on sound level and cochlear sensitivity. From CM generated by a lower sound level at 74 dB SPL to avoid saturation and suppression of basal turn cochlear amplification, the OHC OP was at constant 57% of the maximum transduction current (an ear canal pressure of -0.1 Pa). To perturb the OP, a constant force was applied to the bony shell of the cochlea at the 18 kHz best frequency location using a blunt probe. The force applied over the scala tympani induced an OP change as if the organ of Corti moved toward the scala vestibuli (SV) direction. During an application of the constant force, the second harmonic of the CM partially recovered toward the initial level, which could be described by two time constants. Removing the force induced recovery of the second harmonic to its normal level described by a single time constant. The force applied over the SV caused an opposite result. These data indicate an active mechanism for OHC transduction OP.

  11. HIGH SENSITIVITY ELECTROSCOPE

    DOEpatents

    Shonka, F.R.; Okleshen, A.J.

    1958-08-12

    An electrometer with dependable and rugged construction for measuring cxtremely small charges is de scribed. The electrometer arrangement comprises an electrically conducting fiber totally disposed in a single plane in the absence of electrosthtic forces and affixed at both ends to fiber support means. The fiber is provided with a plurality of adjacent bends in opposite directions along its length..An electrode is disposed between two adjacent bends to apply an electrostatic force normal to the plane of the fiber whereby the fiber is caused to twist out of its plane in proportion to the potential apptied between the fiber and the electrode.

  12. Segmented Mirror Telescope Model and Simulation

    DTIC Science & Technology

    2011-06-01

    mirror surface is treated as a grid of masses and springs. The actuators have surface normal forces applied to individual masses. The equation to...are not widely treated in the literature. The required modifications for the wavefront reconstruction algorithm of a circular aperture to correctly...Zernike polynomials, which are particularly suitable to describe the common optical character- izations of astigmatism , coma, defocus and others [9

  13. Modelling clustering of vertically aligned carbon nanotube arrays.

    PubMed

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-06

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

  14. The way from microscopic many-particle theory to macroscopic hydrodynamics.

    PubMed

    Haussmann, Rudolf

    2016-03-23

    Starting from the microscopic description of a normal fluid in terms of any kind of local interacting many-particle theory we present a well defined step by step procedure to derive the hydrodynamic equations for the macroscopic phenomena. We specify the densities of the conserved quantities as the relevant hydrodynamic variables and apply the methods of non-equilibrium statistical mechanics with projection operator techniques. As a result we obtain time-evolution equations for the hydrodynamic variables with three kinds of terms on the right-hand sides: reversible, dissipative and fluctuating terms. In their original form these equations are completely exact and contain nonlocal terms in space and time which describe nonlocal memory effects. Applying a few approximations the nonlocal properties and the memory effects are removed. As a result we find the well known hydrodynamic equations of a normal fluid with Gaussian fluctuating forces. In the following we investigate if and how the time-inversion invariance is broken and how the second law of thermodynamics comes about. Furthermore, we show that the hydrodynamic equations with fluctuating forces are equivalent to stochastic Langevin equations and the related Fokker-Planck equation. Finally, we investigate the fluctuation theorem and find a modification by an additional term.

  15. Secondary trauma from occlusion: three-dimensional analysis using the finite element method.

    PubMed

    Geramy, Allahyar; Faghihi, Sharieh

    2004-01-01

    Clinical effects of forces applied by dental occlusion on the periodontium have been evaluated for decades. Historically, trauma from occlusion has been considered as a major etiologic factor of inflammatory periodontal diseases, while some researchers have interpreted it to be of less importance or without any detectable importance in periodontics. In this study, five three-dimensional models of a maxillary central incisor were created using ANSYS 5.40. The only difference in each model was the height of the alveolar bone that showed from normal height (13 mm of alveolar bone height) to 8 mm of alveolar bone loss (5 mm of alveolar bone height). Five-point forces of 0.3 N summing up to 1.5 N were applied in a parallel line, 1 mm apical to the incisal edge on the palatal side in a palatolabial direction. The maximum (S1) and minimum (S3) principal stresses in the nodes of the labial side of the periodontal ligament (apical to the alveolar crest) were assessed. Analysis was done using the finite element method. An increase of S1 (up to 16 times in the cervical and 11.25 times in the apical area) and S3 (up to 17.13 times in the cervical and 9.9 times in the apical area) in comparison to the normal model was shown. The highest stress levels were traced in the subcervical area, except for the last model (8 mm of the alveolar bone loss). According to the results of this study, 2.5 mm of alveolar bone loss can be considered as a limit beyond which stress alterations were accelerated. Based on the FEM analysis, alveolar bone loss increases stress (S1 and S3) produced in the PDL, in spite of applying the same force vector.

  16. Dynamics of active sites in biological macromolecules using a Green-function approach: An application to heme vibrational dynamics in myoglobin

    NASA Astrophysics Data System (ADS)

    Rai, Brajesh; Prohofsky, Earl

    2003-03-01

    Dynamics of functionally active regions of biological macromolecules can be studied using a Green-function technique. This approach uses the fact that in most cases one has a good set of force constants for active sites, and rather poorly defined force field parameters for other regions of the macromolecule. The Green-function method is applied to study the iron vibrational modes of the heme active site in myoglobin. In this approach, the heme active site is viewed as a system interacting with surrounding globin, which acts as an excitation bath. The normal modes of heme and globin are separately calculated using the best available force fields for the two entities. The iron vibrational spectrum of myoglobin is then obtained using the solutions of the heme and globin, and by considering physically meaningful interactions between the two units. The refinement of the Green-function calculations to the experimental data from an x-ray synchrotron-based Nuclear Resonance Vibrational Spectroscopy provides important insights into the character of iron normal modes of myoglobin.

  17. Dynamic measurements of gear tooth friction and load

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1991-01-01

    As part of a program to study fundamental mechanisms of gear noise, static and dynamic gear tooth strain measurements were made on the NASA gear-noise rig. Tooth-fillet strains from low-contact ratio-spur gears were recorded for 28 operating conditions. A method is introduced whereby strain gage measurements taken from both the tension and compression sides of a gear tooth can be transformed into the normal and frictional loads on the tooth. This technique was applied to both the static and dynamic strain data. The static case results showed close agreement with expected results. For the dynamic case, the normal-force computation produced very good results, but the friction results, although promising, were not as accurate. Tooth sliding friction strongly affected the signal from the strain gage on the tensionside of the tooth. The compression gage was affected by friction to a much lesser degree. The potential of the method to measure friction force was demonstrated, but further refinement will be required before this technique can be used to measure friction forces dynamically with an acceptable degree of accuracy.

  18. Comparison of reaction forces on the anterior cruciate and anterolateral ligaments during internal rotation and anterior drawer forces at different flexion angles of the knee joint.

    PubMed

    Uğur, Levent

    2017-12-01

    Having a complicated anatomy, the knee joint has been further detailed and a new formation defined, the anterolateral ligament (ALL), in recent studies. While the importance of this ligament, which previously was associated with Segond fractures, was explained via clinical, radiologic and biomechanical studies, and basically, is thought to be a fixator structures for the tibia against internal rotation stress. Although in recent studies efficient surgical treatment was applied to patients who underwent anterior cruciate ligament (ACL) operation, some patients having a positive pivot test highlights the clinical importance of the ALL. The aim of this study is to evaluate reaction forces of different flexion angles on the tibia during internal rotation and anterior drawer tests on both the ALL and ACL, and to examine theimportance of this ligament in knee biomechanics by a finite element analysis method. In this study, normal anatomy knee joint was modelled using Computed Tomography images from lower extremity length in DICOM format. 0°, 15°,30°,45°,60°,75° and 90° angles of flexion were applied, respectively, to these models and reaction force vectors formed on both ligaments were examined separately and as total vector and size by applying internal rotation and anterior drawer forces on each model. Non-linear analysis was conducted using ANSYS (version 17) with the same limit conditions applied to all models. After all models were examined, in general when comparing reaction forces, those on the ACL were found to be higher. However, when vectoral directions were examined, forces on ALL increased with increased flexion ratio and internal rotation momentum. Beyond 30° flexion, the tensile force on the ALL is increased and compressive overload on the ACL occurs. The ALL plays an important role in stability, especially against internal rotation forces, and an increased knee joint flexion ratio increases the stability contribution ratio. In particular, at 30° and higher angles, ACL reflects an antagonist effect and contributes to knee joint stability for rotational and mediolateral transposition. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    NASA Astrophysics Data System (ADS)

    Deng, Zigang; Qian, Nan; Che, Tong; Jin, Liwei; Si, Shuaishuai; Zhang, Ya; Zheng, Jun

    2016-12-01

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems.

  20. Sub-cellular force microscopy in single normal and cancer cells.

    PubMed

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Ultrasonic measurements of breast viscoelasticity.

    PubMed

    Sridhar, Mallika; Insana, Michael F

    2007-12-01

    In vivo measurements of the viscoelastic properties of breast tissue are described. Ultrasonic echo frames were recorded from volunteers at 5 fps while applying a uniaxial compressive force (1-20 N) within a 1 s ramp time and holding the force constant for up to 200 s. A time series of strain images was formed from the echo data, spatially averaged viscous creep curves were computed, and viscoelastic strain parameters were estimated by fitting creep curves to a second-order Voigt model. The useful strain bandwidth from this quasi-static ramp stimulus was 10(-2) < or = omega < or = 10(0) rad/s (0.0016-0.16 Hz). The stress-strain curves for normal glandular tissues are linear when the surface force applied is between 2 and 5 N. In this range, the creep response was characteristic of biphasic viscoelastic polymers, settling to a constant strain (arrheodictic) after 100 s. The average model-based retardance time constants for the viscoelastic response were 3.2 +/- 0.8 and 42.0 +/- 28 s. Also, the viscoelastic strain amplitude was approximately equal to that of the elastic strain. Above 5 N of applied force, however, the response of glandular tissue became increasingly nonlinear and rheodictic, i.e., tissue creep never reached a plateau. Contrasting in vivo breast measurements with those in gelatin hydrogels, preliminary ideas regarding the mechanisms for viscoelastic contrast are emerging.

  2. Ultrasonic measurements of breast viscoelasticity

    PubMed Central

    Sridhar, Mallika; Insana, Michael F.

    2009-01-01

    In vivo measurements of the viscoelastic properties of breast tissue are described. Ultrasonic echo frames were recorded from volunteers at 5 fps while applying a uniaxial compressive force (1–20 N) within a 1 s ramp time and holding the force constant for up to 200 s. A time series of strain images was formed from the echo data, spatially averaged viscous creep curves were computed, and viscoelastic strain parameters were estimated by fitting creep curves to a second-order Voigt model. The useful strain bandwidth from this quasi-static ramp stimulus was 10−2 ≤ ω ≤ 100 rad/s (0.0016–0.16 Hz). The stress-strain curves for normal glandular tissues are linear when the surface force applied is between 2 and 5 N. In this range, the creep response was characteristic of biphasic viscoelastic polymers, settling to a constant strain (arrheodictic) after 100 s. The average model-based retardance time constants for the viscoelastic response were 3.2±0.8 and 42.0±28 s. Also, the viscoelastic strain amplitude was approximately equal to that of the elastic strain. Above 5 N of applied force, however, the response of glandular tissue became increasingly nonlinear and rheodictic, i.e., tissue creep never reached a plateau. Contrasting in vivo breast measurements with those in gelatin hydrogels, preliminary ideas regarding the mechanisms for viscoelastic contrast are emerging. PMID:18196803

  3. Effect of tibial positioning on the diagnosis of posterolateral rotatory instability in the posterior cruciate ligament-deficient knee.

    PubMed

    Strauss, Eric J; Ishak, Charbel; Inzerillo, Christopher; Walsh, Michael; Yildirim, Gokce; Walker, Peter; Jazrawi, Laith; Rosen, Jeffrey

    2007-08-01

    To determine whether positioning of the tibia affects the degree of tibial external rotation seen during a dial test in the posterior cruciate ligament (PCL)-posterolateral corner (PLC)-deficient knee. Laboratory investigation. Biomechanics laboratory. An anterior force applied to the tibia in the combined PCL-PLC-deficient knee will yield increased tibial external rotation during a dial test. The degree of tibial external rotation was measured with 5 Nm of external rotation torque applied to the tibia at both 30 degrees and 90 degrees of knee flexion. Before the torque was applied, an anterior force, a posterior force, or neutral (normal, reduced control) force was applied to the tibia. External rotation measurements were repeated after sequential sectioning of the PCL, the posterolateral structures and the fibular collateral ligament (FCL). Baseline testing of the intact specimens demonstrated a mean external rotation of 18.6 degrees with the knee flexed to 30 degrees (range 16.1-21.0 degrees ), and a mean external rotation of 17.3 degrees with the knee flexed to 90 degrees (range 13.8-20.0 degrees ). Sequential sectioning of the PCL, popliteus and popliteofibular ligament, and the FCL led to a significant increase in tibial external rotation compared with the intact knee for all testing scenarios. After sectioning of the popliteus and popliteofibular ligament, the application of an anterior force during testing led to a mean tibial external rotation that was 5 degrees greater than during testing in the neutral position and 7.5 degrees greater than during testing with a posterior force. In the PCL, popliteus/popliteofibular ligament and FCL-deficient knee, external rotation was 9 degrees and 12 degrees greater with the application of an anterior force during testing compared with neutral positioning and the application of a posterior force, respectively. An anterior force applied to the tibia during the dial test in a combined PCL-PLC-injured knee increased the overall amount of observed tibial external rotation during the dial test. The anterior force reduced the posterior tibial subluxation associated with PCL injury, which is analogous to what is observed when the dial test is performed with the patient in the prone position. Reducing the tibia with either an anterior force when the patient is supine or performing the dial test with the patient in the prone position increases the ability of an examiner to detect a concomitant PLC injury in the setting of a PCL-deficient knee.

  4. Modification of Turbulence Structures in a Channel Flow by Uniform Magnetic Fluxes

    NASA Astrophysics Data System (ADS)

    Lee, D.; Choi, H.; Kim, J.

    1997-11-01

    Effects of electromagnetic forcing on the near-wall turbulence are investigated by applying a uniform magnetic flux in a turbulent channel flow in the streamwise and spanwise directions, respectively. The base flow is a fully developed turbulent channel flow and the direct numerical simulation technique is used. The electromagnetic force induced from the magnetic fluxes reduces the intensity of the wall-layer structures and thus drag is significantly reduced. The wall-normal and spanwise velocity fluctuations and the Reynolds shear stress decrease with the increased magnetic flux in both directions. The streamwise velocity fluctuations increase with the streamwise magnetic flux, whereas they decrease with the spanwise magnetic flux. It is also shown that the spanwise magnetic flux is much more effective than the streamwise magnetic flux in reducing the skin-friction drag. Instantaneous Lorentz force vectors show that the flow motions by the near-wall vortices are directly inhibited by the spanwise magnetic flux, while they are less effectively inhibited by the streamwise magnetic flux. Other turbulence statistics that reveal the effects of the applied magnetic forcing will be presented. ^* Supported by KOSEF Contract No. 965-1008-003-2 and ONR Grant No. N00014-95-1-0352.

  5. Simplified TiO2 force fields for studies of its interaction with biomolecules

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  6. Comparisons Between Experimental and Semi-theoretical Cutting Forces of CCS Disc Cutters

    NASA Astrophysics Data System (ADS)

    Xia, Yimin; Guo, Ben; Tan, Qing; Zhang, Xuhui; Lan, Hao; Ji, Zhiyong

    2018-05-01

    This paper focuses on comparisons between the experimental and semi-theoretical forces of CCS disc cutters acting on different rocks. The experimental forces obtained from LCM tests were used to evaluate the prediction accuracy of a semi-theoretical CSM model. The results show that the CSM model reliably predicts the normal forces acting on red sandstone and granite, but underestimates the normal forces acting on marble. Some additional LCM test data from the literature were collected to further explore the ability of the CSM model to predict the normal forces acting on rocks of different strengths. The CSM model underestimates the normal forces acting on soft rocks, semi-hard rocks and hard rocks by approximately 38, 38 and 10%, respectively, but very accurately predicts those acting on very hard and extremely hard rocks. A calibration factor is introduced to modify the normal forces estimated by the CSM model. The overall trend of the calibration factor is characterized by an exponential decrease with increasing rock uniaxial compressive strength. The mean fitting ratios between the normal forces estimated by the modified CSM model and the experimental normal forces acting on soft rocks, semi-hard rocks and hard rocks are 1.076, 0.879 and 1.013, respectively. The results indicate that the prediction accuracy and the reliability of the CSM model have been improved.

  7. A Study of Parameters Affecting Fibroblast Morphology in Response to an Applied Mechanical Force

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.; Sawyer, Christine

    1994-01-01

    A precisely controlled stretch/relaxation regimen (20% elongation at 6.6 cycles/min) was applied to normal human fetal, neonatal and aged dermal fibroblasts cultured on flexible membranes. Culture conditions included poly (NH2) or collagen type I coated substrate membranes; control cultures were grown on the same pliable material in the absence of applied stretch. Direct observation and immunofluorescence analyses revealed a progressive change in cell body orientation limited to the stretched dermal fibroblast cultures. Monolayers gradually (over 4 days) acquired a symmetric, radial distribution equivalent to the biaxial array of the applied force. At high seeding density, alignment was inhibited in the fetal cell cultures. This cell strain required collagen type I coating for optimal attachment to the flexible membrane, preferring growth in three-dimensional cell 'balls' on the poly(NH2) coated substrate. Neonatal cells also required the collagen type I coating, but both neonatal and aged dermal fibroblasts aligned efficiently at all seeding densities examined. The randomly oriented neonatal cells on the unstretched control membranes spontaneously detached at confluence, as a single cell sheet. Their aligned counterparts did not detach until the applied stretch stimulus was removed. Low concentrations of cytochalasin D (62.5 ng/ml) disrupted the stretch-related alignment response. Rhodamine phalloidin staining visualized fewer actin stress fibers in stretched, aligned cells than in controls. Both intercellular interactions and cytoskeletal integrity mediate the response to mechanical strain. Normal rabbit corneal stroma fibroblasts (NRC) were also analyzed, and failed to orient under these conditions. This cell type may require a different regimen, or a longer time period, to demonstrate alignment behavior. Supported by NASA Space Biology RTOP 199-40-22 and the NASA-ARC Director's Discretionary Fund.

  8. Pre-Test Assessment of the Use Envelope of the Normal Force of a Wind Tunnel Strain-Gage Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2016-01-01

    The relationship between the aerodynamic lift force generated by a wind tunnel model, the model weight, and the measured normal force of a strain-gage balance is investigated to better understand the expected use envelope of the normal force during a wind tunnel test. First, the fundamental relationship between normal force, model weight, lift curve slope, model reference area, dynamic pressure, and angle of attack is derived. Then, based on this fundamental relationship, the use envelope of a balance is examined for four typical wind tunnel test cases. The first case looks at the use envelope of the normal force during the test of a light wind tunnel model at high subsonic Mach numbers. The second case examines the use envelope of the normal force during the test of a heavy wind tunnel model in an atmospheric low-speed facility. The third case reviews the use envelope of the normal force during the test of a floor-mounted semi-span model. The fourth case discusses the normal force characteristics during the test of a rotated full-span model. The wind tunnel model's lift-to-weight ratio is introduced as a new parameter that may be used for a quick pre-test assessment of the use envelope of the normal force of a balance. The parameter is derived as a function of the lift coefficient, the dimensionless dynamic pressure, and the dimensionless model weight. Lower and upper bounds of the use envelope of a balance are defined using the model's lift-to-weight ratio. Finally, data from a pressurized wind tunnel is used to illustrate both application and interpretation of the model's lift-to-weight ratio.

  9. Contribution of three nucleon force investigated in deuteron-proton breakup reaction

    NASA Astrophysics Data System (ADS)

    Parol, W.; Kozela, A.; Ciepał, I.; Bodek, K.; Jamroz, B.; Kalantar-Nayestanaki, N.; Khatri, G.; Kistryn, St.; Kłos, B.; Kuboś, J.; Kulessa, P.; Magiera, A.; Mazumdar, I.; Messchendorp, J. G.; Rozpędzik, D.; Rusnok, A.; Skwira-Chalot, I.; Stephan, E.; Wilczek, A.; Włoch, B.; Wrońska, A.; Zejma, J.

    2016-11-01

    The elastic scattering and deuteron breakup data were collected in the experiment performed at KVI (Groningen) with use of unpolarized deuteron beam with energy of 80 MeV per nucleon, impinging on hydrogen target. The procedure applied to determine total integrated luminosity is presented. The result will be used for normalization of the differential cross section for the deuteron-proton breakup reaction.

  10. In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model.

    PubMed

    Ding, Ziyun; Nolte, Daniel; Kit Tsang, Chui; Cleather, Daniel J; Kedgley, Angela E; Bull, Anthony M J

    2016-02-01

    Segment-based musculoskeletal models allow the prediction of muscle, ligament, and joint forces without making assumptions regarding joint degrees-of-freedom (DOF). The dataset published for the "Grand Challenge Competition to Predict in vivo Knee Loads" provides directly measured tibiofemoral contact forces for activities of daily living (ADL). For the Sixth Grand Challenge Competition to Predict in vivo Knee Loads, blinded results for "smooth" and "bouncy" gait trials were predicted using a customized patient-specific musculoskeletal model. For an unblinded comparison, the following modifications were made to improve the predictions: further customizations, including modifications to the knee center of rotation; reductions to the maximum allowable muscle forces to represent known loss of strength in knee arthroplasty patients; and a kinematic constraint to the hip joint to address the sensitivity of the segment-based approach to motion tracking artifact. For validation, the improved model was applied to normal gait, squat, and sit-to-stand for three subjects. Comparisons of the predictions with measured contact forces showed that segment-based musculoskeletal models using patient-specific input data can estimate tibiofemoral contact forces with root mean square errors (RMSEs) of 0.48-0.65 times body weight (BW) for normal gait trials. Comparisons between measured and predicted tibiofemoral contact forces yielded an average coefficient of determination of 0.81 and RMSEs of 0.46-1.01 times BW for squatting and 0.70-0.99 times BW for sit-to-stand tasks. This is comparable to the best validations in the literature using alternative models.

  11. Physics models of centriole replication.

    PubMed

    Cheng, Kang; Zou, Changhua

    2006-01-01

    Our previous pre-clinic experimental results have showed that the epithelialization can be enhanced by the externally applied rectangular pulsed electrical current stimulation (RPECS). The results are clinically significant for patients, especially for those difficult patients whose skin wounds need long periods to heal. However, the results also raise questions: How does the RPECS accelerate the epithelium cell proliferation? To answer these questions, we have previously developed several models for animal cells, in a view of physics, to explain mechanisms of mitosis and cytokinesis at a cellular level, and separation of nucleotide sequences and the unwinding of a double helix during DNA replication at a bio-molecular level. In this paper, we further model the mechanism of centriole replication during a natural and normal mitosis and cytokinesis to explore the mechanism of epithelialization enhanced with the externally applied RPECS at a bio-molecular level. Our models suggest: (1) Centriole replication is an information flowing. The direction of the information flowing is from centrioles to centrioles based on a cylindrical template of 9 x 3 protein microtubules (MTs) pattern. (2) A spontaneous and strong electromagnetic field (EMF) force is a pushing force that separates a mother and a daughter centrioles in centrosomes or in cells, while a pulling force of interacting fibers and pericentriolar materials delivers new babies. The newly born babies inherit the pattern information from their mother(s) and grow using microtubule fragments that come through the centrosome pores. A daughter centriole is always born and grows along stronger EMF. The EMF mostly determines centrioles positions and plays key role in centriole replication. We also hypothesize that the normal centriole replication could not been disturbed in centrosome in the epithelium cells by our RPECS, because the centrioles have two non-conducting envelope (cell and centrosome membranes), that protect the normal duplication. The induced electric field by externally applied RPECS could be mild compared with the spontaneous and natural electric field of the centrioles. Therefore, the centriole replication during the epithelium cellular proliferation may be directly, as well as indirectly (e.g., somatic reflex) accelerated by the RPECS.

  12. A single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells

    NASA Astrophysics Data System (ADS)

    Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2013-03-01

    The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d

  13. Downhill cycling symmetry breaking: how the rider foils experiment

    NASA Astrophysics Data System (ADS)

    Ben Abu, Yuval; Wolfson, Ira; Bran, Gil; Yizhaq, Hezi

    2017-11-01

    In high-school teaching of mechanics, we deal, among other things, with the nature of static and kinetic friction, forces that are proportional to the normal force. Under the influence of frictional forces, a body moves down a rough sloped decline at a fixed rate of acceleration that is independent of its mass. This situation does not apply to cases where the frictional force is dependent upon velocity, such as bodies which are moving through a streaming fluid (such as raindrops falling to the ground). In this case the body moves with a continuously decreasing acceleration, eventually reaching a terminal velocity when the frictional and gravitational forces balance out. This velocity constraint is determined by the dependence of the frictional force on velocity and geometric parameters that determine the strength of the frictional force. We show here that a similar situation takes place when bicycles descend an incline with a fixed slope. We also investigated the dependence of the velocity constraint with mass, using bicycles equipped with sophisticated sensors that metamorphose them into data-processing laboratories.

  14. Designing an experiment to measure cellular interaction forces

    NASA Astrophysics Data System (ADS)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  15. Quantifying the effects of external shear loads on arterial and venous blood flow: implications for pressure ulcer development.

    PubMed

    Manorama, Abinand; Meyer, Ronald; Wiseman, Robert; Bush, Tamara Reid

    2013-06-01

    Forces applied to the skin cause a decrease in regional blood flow. This decrease in blood flow can cause tissue necrosis and lead to the formation of deep, penetrating wounds called pressure ulcers. These wounds are detrimental to individuals with compromised health, such as the elderly and spinal-cord injured. Although surface pressure is known to be a primary risk factor for developing a pressure ulcer, a seated individual rarely experiences pressure alone but rather combined loading which includes pressure as well as shear force on the skin. However, little research has been conducted to quantify the effects of shear forces on blood flow. Fifteen men were tested in a magnetic resonance imaging scanner under no load, a normal load, and a combination of normal and shear loads. Changes in arterial and venous blood flow in the forearm were measured using magnetic resonance angiography phase-contrast imaging. The blood flow in the anterior interosseous artery and basilic vein of the forearm decreased with the application of normal loads, and decreased further with the addition of shear loads. Marginal to significant differences at a 90% confidence level (P=0.08, 0.10) were observed, and medium to high effect sizes (0.3 to 0.5) were obtained. Based on these results, shear force is an important factor to consider in relation to pressure ulcer propagation and prevention, and hence, future prevention approaches should also focus on mitigating shear loads. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Production of isometric forces during sustained acceleration.

    PubMed

    Sand, D P; Girgenrath, M; Bock, O; Pongratz, H

    2003-06-01

    The operation of high-performance aircraft requires pilots to apply finely graded forces on controls. Since they are often exposed to high levels of acceleration in flight, we investigated to what extent this ability is degraded in such an environment. Twelve healthy non-pilot volunteers were seated in the gondola of a centrifuge and their performance was tested at normal gravity (1 G) and while exposed to sustained forces of 1.5 G and 3 G oriented from head to foot (+Gz). Using an isometric joystick, they attempted to produce force vectors with specific lengths and directions commanded in random order by a visual display. Acceleration had substantial effects on the magnitude of produced force. Compared with 1 G, maximum produced force was about 2 N higher at 1.5 G and about 10 N higher at 3 G. The size of this effect was constant across the different magnitudes, but varied with the direction of the prescribed force. Acceleration degrades control of force production. This finding may indicate that the motor system misinterprets the unusual gravitoinertial environment and/or that proprioceptive feedback is degraded due to increased muscle tone. The production of excessive isometric force could affect the safe operation of high-performance aircraft.

  17. Forced Normalization: Antagonism Between Epilepsy and Psychosis.

    PubMed

    Kawakami, Yasuhiko; Itoh, Yasuhiko

    2017-05-01

    The antagonism between epilepsy and psychosis has been discussed for a long time. Landolt coined the term "forced normalization" in the 1950s to describe psychotic episodes associated with the remission of seizures and disappearance of epileptiform activity on electroencephalograms in individuals with epilepsy. Since then, neurologists and psychiatrists have been intrigued by this phenomenon. However, although collaborative clinical studies and basic experimental researches have been performed, the mechanism of forced normalization remains unknown. In this review article, we present a historical overview of the concept of forced normalization, and discuss potential pathogenic mechanisms and clinical diagnosis. We also discuss the role of dopamine, which appears to be a key factor in the mechanism of forced normalization. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Aerodynamic characteristics of the 10-percent-thick NASA supercritical airfoil 33 designed for a normal-force coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1975-01-01

    A 10-percent-thick supercritical airfoil based on an off-design sonic-pressure plateau criterion was developed and experimental aerodynamic characteristics measured. The airfoil had a design normal-force coefficient of 0.7 and was identified as supercritical airfoil 33. Results show the airfoil to have good drag rise characteristics over a wide range of normal-force coefficients with no measurable shock losses up to the Mach numbers at which drag divergence occurred for normal-force coefficients up to 0.7. Comparisons of experimental and theoretical characteristics were made and composite drag rise characteristics were derived for normal-force coefficients of 0.5 and 0.7 and a Reynolds number of 40 million.

  19. The functional status of the human vestibular analysor following 56 days in an aqueous immersion medium

    NASA Technical Reports Server (NTRS)

    Matsnev, E. I.; Shulzhenko, Y. B.

    1981-01-01

    Two male volunteers were kept hypokinetic in the immersion and physiological parameters were evaluated following the experiment. Prophylactic measures (g-forces, physical exercises, and supplementary salt and water) were applied daily. Caloric and equilibrium tests were utilized to evaluate the physiological responses. The functional changes observed after the 56 day immersion were found to be of a moderate type which normalized quite quickly.

  20. Knockdown of desmin in zebrafish larvae affects interfilament spacing and mechanical properties of skeletal muscle.

    PubMed

    Li, Mei; Andersson-Lendahl, Monika; Sejersen, Thomas; Arner, Anders

    2013-03-01

    Skeletal muscle was examined in zebrafish larvae in order to address questions related to the function of the intermediate filament protein desmin and its role in the pathogenesis of human desminopathy. A novel approach including mechanical and structural studies of 4-6-d-old larvae was applied. Morpholino antisense oligonucleotides were used to knock down desmin. Expression was assessed using messenger RNA and protein analyses. Histology and synchrotron light-based small angle x-ray diffraction were applied. Functional properties were analyzed with in vivo studies of swimming behavior and with in vitro mechanical examinations of muscle. The two desmin genes normally expressed in zebrafish could be knocked down by ~50%. This resulted in a phenotype with disorganized muscles with altered attachments to the myosepta. The knockdown larvae were smaller and had diminished swimming activity. Active tension was lowered and muscles were less vulnerable to acute stretch-induced injury. X-ray diffraction revealed wider interfilament spacing. In conclusion, desmin intermediate filaments are required for normal active force generation and affect vulnerability during eccentric work. This is related to the role of desmin in anchoring sarcomeres for optimal force transmission. The results also show that a partial lack of desmin, without protein aggregates, is sufficient to cause muscle pathology resembling that in human desminopathy.

  1. Aerodynamic characteristics of an improved 10-percent-thick NASA supercritical airfoil. [Langley 8 foot transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1974-01-01

    Refinements in a 10 percent thick supercritical airfoil produced improvements in the overall drag characteristics at normal force coefficients from about 0.30 to 0.65 compared with earlier supercritical airfoils which were developed for a normal force coefficient of 0.7. The drag divergence Mach number of the improved supercritical airfoil (airfoil 26a) varied from approximately 0.82 at a normal force coefficient to of 0.30, to 0.78 at a normal force coefficient of 0.80 with no drag creep evident. Integrated section force and moment data, surface pressure distributions, and typical wake survey profiles are presented.

  2. Measuring Rock-Fluid Adhesion Directly

    NASA Astrophysics Data System (ADS)

    Tadmor, R.

    2017-12-01

    We show how to measure directly solid-liquid adhesion. We consider the normal adhesion, the work adhesion, and the lateral adhesion. The technique at the center of the method is Centrifugal Adhesion Balance (CAB) which allows coordinated manipulation of normal and lateral forces. For example: 1. It allows to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. 2. It allows to increase the lateral force at zero normal force, mimicking zero gravity. From this one can obtain additional solid-liquid interaction parameters. When performing work of adhesion measurements, the values obtained are independent of drop size and are in agreement with theoretical predictions.

  3. The effect of ovalbumin on orthodontic induced root resorption.

    PubMed

    Aghili, Hosseinagha; Ardekani, Mohammad Danesh; Meybodi, Seyed Amir Reza Fatahi; Toodehzaeim, Mohammad Hossein; Modaresi, Jalil; Mansouri, Reza; Momeni, Ehsan

    2013-09-01

    This randomized trial was undertaken to investigate the effect of experimentally induced allergy on orthodontic induced root resorption. A total of 30 Wistar rats were divided randomly into test and control groups. Starting from the first 3 days, the rats in the test group were injected intra-peritoneally by 2 mg ovalbumin as allergen and 0.5 mg Alume as adjuvant. Afterward only allergen was injected once a week. The control group was injected by normal saline. After 21 days, Wistar immunoglobulin E was measured and peripheral matured eosinophil was counted. A total of 50 g nickel-titanium closed coil spring was ligated between right incisor and first molar. All animals were sacrificed after 14 days. The mesial root of the right and left first molar was dissected in a horizontal plane. The specimens were divided into four groups considering whether force and/or ovalbumin was applied or not. Root resorption was measured and compared among these groups. Repeated measures analysis of variance (ANOVA), and Bonferoni tests were used to analyze the data. The level of significance was determined at 0.05. In general, the differences were insignificant (P < 0.05). As the only exception, the group in which both ovalbumin and force were applied had significantly more root resorption than the group in which neither force nor ovalbumin was applied (P > 0.001). Allergy may increase the susceptibility to root resorption. Application of light force, periodical monitoring of root resorption and control of allergy are advisable.

  4. Normal and anomalous transport phenomena in two-dimensional NaCl, MoS2 and honeycomb surfaces

    NASA Astrophysics Data System (ADS)

    Mbemmo, A. M. Fopossi; Kenmoé, G. Djuidjé; Kofané, T. C.

    2018-04-01

    Understanding the effects of anisotropy and substrate shape on the stochastic processes is critically needed for the improvement of the quality of the transport information. The effect of biharmonic force on the transport phenomena of a particle in two-dimensional is investigated in the framework of three representative substrate lattices: NaCl, MoS2 and honeycomb. We focus on the particles drift velocity, to characterize the transport properties in the system. Normal and anomalous transport are identified for a particular set of the system parameters such as the biharmonic parameter, the bias force, the phase-lag of two signals, as well as the noise amplitude. According to the direction ψ where the bias force is applied, we determine the biharmonic parameter ɛ for the presence of anomalous transport and show that for the NaCl surface, the anomalous transport is observed for 2 < ɛ < 10. For the MoS2 surface, it appears at monochromatic driven (ɛ = 0) and for 3 < ɛ < 9. In particular for the honeycomb surface anomalous transport is generated for 0 ⩽ ɛ < 6 only when ψ > 30 °.

  5. A sharp interface model for void growth in irradiated materials

    NASA Astrophysics Data System (ADS)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  6. Effect of counterface roughness on the friction of bionic wall-shaped microstructures for gecko-like attachments.

    PubMed

    Kasem, Haytam; Cohen, Yossi

    2017-08-04

    Hairy adhesive systems involved in gecko locomotion have drawn the interest of many researchers regarding the development of bionic solutions for fast and reversible adhesive technologies. To date, despite extensive efforts to design gecko-inspired adhesive surfaces, adhesion and friction capacities are often evaluated using smooth and rigid counterfaces, in general glass, whereas most natural and artificial surfaces inevitably have a certain level of roughness. For that reason, in this study experiments tested the effects of the substrate roughness on the friction of bionic wale-shaped microstructures for gecko-like attachments. To this end, 12 substrates with different isotropic roughness were prepared using the same Epoxy material. Friction force was measured under various normal loads. It was concluded that classical roughness parameters, considered separately, are not appropriate to explain roughness-related variations in friction force. This has led us to develop a new integrative roughness parameter that combines characteristics of the surface. The parameter is capable of classifying the obtained experimental results in a readable way. An analytical model based on the experimental results has been developed to predict the variation of the friction force as a function of counterface roughness and applied normal load.

  7. Inverse Magnus force in free molecular flow

    NASA Astrophysics Data System (ADS)

    Herczynski, A.; Weidman, P.

    2003-11-01

    The sidewise force on a spinning sphere translating in a rarified gas is calculated assuming that the flow can be treated as a stream of free molecules. This approach was first introduced by Newton in his investigation of the drag force. While it is not fruitful at subsonic flows in normal conditions, it gives remarkably accurate results at hypersonic speeds. Here it is applied to the high Knudsen number flow over spinning spheres, cylinders, cubes and more generally any spinning parallelepiped. In all cases, the force is in the opposite direction to that of the classical Magnus effect in continuum flow. The simple calculation for a sphere reproduces the isothermal result obtained recently by Borg, et al. (Phys. Fluids, 15, 2003) using Maxwellian distribution functions. For any parallelepiped, including the cube, just like for the sphere and the cylinder, the force is shown to be steady. In each of these, the magnitude of the inverse Magnus force is proprtional to the product of the angular speed, translational speed, and the mas of the gas displaced by the object.

  8. Influence of different abutment diameter of implants on the peri-implant stress in the crestal bone: A three-dimensional finite element analysis--In vitro study.

    PubMed

    Aradya, Anupama; Kumar, U Krishna; Chowdhary, Ramesh

    2016-01-01

    The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the crestal region measuring 1.5 mm surrounding dense trabecular bone. The implant will be modulated at 5 mm restorative platform and tapering down to 4.5 mm wide at the threads, 13 mm long with an abutment 3 mm in height. The models will be designed for two situations: (1) An implant with a 5 mm diameter abutment representing a standard platform in the posterior mandible region. (2) An implant with a 4.5 mm diameter abutment representing platform switching in the posterior mandible region. Force application was performed in both oblique and vertical conditions using 100 N as a representative masticatory force. For oblique loading, a force of 100 N was applied at 15° from the vertical axis. von Mises stress analysis was evaluated. The results of the study showed cortical stress in the conventional and platform switching model under oblique forces were 59.329 MPa and 39.952 MPa, respectively. Cortical stress in the conventional and platform switching model under vertical forces was 13.914 MPa and 12.793 MPa, respectively. Results from this study showed the platform switched abutment led to relative decrease in von Mises stress in transcortical section of bone compared to normal abutment under vertical and oblique forces in posterior mandible region.

  9. Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: a finite element case study.

    PubMed

    Liao, Zhipeng; Chen, Junning; Li, Wei; Darendeliler, M Ali; Swain, Michael; Li, Qing

    2016-06-01

    This paper aimed to precisely locate centres of resistance (CRe) of maxillary teeth and investigate optimal orthodontic force by identifying the effective zones of orthodontic tooth movement (OTM) from hydrostatic stress thresholds in the periodontal ligament (PDL). We applied distally-directed tipping and bodily forces ranging from 0.075 N to 3 N (7.5 g to 300 g) onto human maxillary teeth. The hydrostatic stress was quantified from nonlinear finite element analysis (FEA) and compared with normal capillary and systolic blood pressure for driving the tissue remodelling. Two biomechanical stimuli featuring localised and volume-averaged hydrostatic stresses were introduced to describe OTM. Locations of CRe were determined through iterative FEA simulation. Accurate locations of CRes of teeth and ranges of optimal orthodontic forces were obtained. By comparing with clinical results in literature, the volume average of hydrostatic stress in PDL was proved to describe the process of OTM more indicatively. The optimal orthodontic forces obtained from the in-silico modelling study echoed with the clinical results in vivo. A universal moment to force (M/F) ratio is not recommended due to the variation in patients and loading points. Accurate computational determination of CRe location can be applied in practice to facilitate orthodontic treatment. Global measurement of hydrostatic pressure in the PDL better characterised OTM, implying that OTM occurs only when the majority of PDL volume is critically stressed. The FEA results provide new insights into relevant orthodontic biomechanics and help establish optimal orthodontic force for a specific patient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. What do a foam film and a real gas have in common?

    PubMed

    Stubenrauch, Cosima

    2005-01-01

    The stability of well-drained quasistatic foam films (thickness <100 nm) is usually discussed in terms of surface forces, which create an excess pressure normal to the film interfaces, called the disjoining pressure pi The disjoining pressure is the sum of repulsive electrostatic (pi(elec)), attractive van der Waals (pi(vdW)), and repulsive steric (pi(sr)) forces on the assumption that structural forces can be neglected. On the basis of these forces two different types of thin foam films are distinguished, namely common black films (CBF), which are mainly stabilized by pi(elec), and Newton black films (NBF), the stability of which is determined by pi(sr),With a thin-film pressure balance (TFPB) the thickness h of a foam film can be measured as a function of the applied pressure from which the disjoining pressure pi can be calculated. A thorough analysis of the results published so far reveals that the pi-h curves of nonionic surfactants measured at different surfactant concentrations resemble p-V(m) isotherms of a real gas measured at different temperatures. On the basis of these observations the van der Waals description of a real gas can be applied to foam films and a phase diagram for a foam film was constructed using the Maxwell construction.

  11. A biomechanical model of the craniomandibular complex and cervical spine based on the inverted pendulum.

    PubMed

    Gillies, G T; Broaddus, W C; Stenger, J M; Taylor, A G

    1998-01-01

    The head and neck constitute an inverted pendulum that is stabilized during consciousness by neuromuscular restoring forces. An analysis of the dynamics of this inverted pendulum suggests that the mechanics of the mandible and temporomandibular joint might couple into those of the pendulum's stabilization process. In this article, physical principles of the inverted pendulum model as these apply to the head and neck are explored, and the authors describe implications of mandibular mechanics for the forces acting on the head and neck at equilibrium. This novel application of the inverted pendulum model predicts that alteration or pathology of temporomandibular mechanics would lead to perturbations of the normal forces acting in the head and neck. Under certain circumstances, these perturbations could be expected to contribute to symptoms and result in additional or accelerated degenerative effects.

  12. Analysis of Instantaneous Attractive-Normal Force and Vertical Vibration Control of Combined-Levitation-and-Propulsion SLIM Vehicle

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi

    Combined-levitation-and-propulsion single-sided linear induction motor (SLIM) vehicle can be levitated without any additional levitation system. When the vehicle runs, the attractive-normal force varies depending on the phase of primary current because of the short primary end effect. The ripple of the attractive-normal force causes the vertical vibration of the vehicle. In this paper, instantaneous attractive-normal force is analyzed by using space harmonic analysis method. And based on the analysis, vertical vibration control is proposed. The validity of the proposed control method is verified by numerical simulation.

  13. A Managerial Assessment of the Productivity Investment Fund

    DTIC Science & Technology

    1988-09-26

    normally are applied as specific reductions in manpower and budget dollar requirements. Cost-Avoidance Savings: benefits from actions that obviate the...choices. The savings occur by avoiding the loss of an opportunity to enhance productivity and accrue benefits by choosing one course of action over another...Marine Corps, and Air Force. 4i i1 ARMY The Army manages PECI with three programs administered through the Office of the Comptroller ( DACA -RPM). The fast

  14. Neuroprosthetics and Solutions for Restoring Sensorimotor Functions

    DTIC Science & Technology

    2009-01-01

    in the stab wound control (A, C) and the 1-week implantation of the electrode (B, D). Striking neurofilament loss occurred surrounding both the stab...force. (Like in heel strike and toe of in normal gait cycle). (B) The Proof Test is a static test for foot ankle unit in which maximum load is...applied on heel and forefoot in one single time successively. Project 1. Develop a somatosensory neural interface (SSNI) -Completed pilot testing of

  15. Dynamics of static friction between steel and silicon

    PubMed Central

    Yang, Zhiping; Zhang, H. P.; Marder, M.

    2008-01-01

    We conducted experiments in which steel and silicon or quartz are clamped together. Even with the smallest tangential forces we could apply, we always found reproducible sliding motions on the nanometer scale. The velocities we study are thousands of times smaller than in previous investigations. The samples first slide and then lock up even when external forces hold steady. One might call the result “slip-stick” friction. We account for the results with a phenomenological theory that results from considering the rate and state theory of dynamic friction at low velocities. Our measurements lead us to set the instantaneous coefficient of static friction that normally enters rate and state theories to zero. PMID:18768792

  16. Stability derivatives for bodies of revolution at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Liu, D. D.; Platzer, M. F.; Ruo, S. Y.

    1976-01-01

    The paper considers a rigid pointed body of revolution in a steady uniform subsonic flow. The body performs harmonic small-amplitude pitching oscillations around its zero angle of attack position. The body is assumed to be smooth and sufficiently slender so that the small perturbation concept can be applied. The basis of the method used, following Revell (1960), is the relation of a body-fixed perturbation potential to the general velocity potential. Normal force distributions as well as total force and moment coefficients are calculated for parabolic spindles and the numerical results show good agreement between Revell's second-order slender body theory and the present theory for the static stability derivatives of the parabolic spindles.

  17. Estimating surface temperature in forced convection nucleate boiling - A simplified method

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Papell, S. S.

    1977-01-01

    A simplified expression to estimate surface temperatures in forced convection boiling was developed using a liquid nitrogen data base. Using the principal of corresponding states and the Kutateladze relation for maximum pool boiling heat flux, the expression was normalized for use with other fluids. The expression was applied also to neon and water. For the neon data base, the agreement was acceptable with the exclusion of one set suspected to be in the transition boiling regime. For the water data base at reduced pressure greater than 0.05 the agreement is generally good. At lower reduced pressures, the water data scatter and the calculated temperature becomes a function of flow rate.

  18. [Epileptic encephalopathy associated with forced normalization after administration of levetiracetam].

    PubMed

    Kikuchi, Takahiro; Kato, Mitsuhiro; Takahashi, Nobuya; Nakamura, Kazuyuki; Hayasaka, Kiyoshi

    2013-09-01

    Here we report a case of a 10-year-old female with unclassified epileptic encephalopathy who showed forced normalization after administration of levetiracetam (LEV). She initially presented with intractable tonic and myoclonic seizures that were observed about 10 times a day along with frequent multifocal sharp and slow wave complexes on electroencephalography (EEG). We were forced to decrease the topiramate dose because of the appearance of nystagmus, and her myoclonic seizures became worse. We added LEV (250 mg/day) and her tonic and myoclonic seizures disappeared one day after initiation of LEV administration. However, she showed hyporesponsiveness and akinesia. The disappearance of paroxysmal discharges on EEG confirmed the diagnosis of forced normalization. Despite continuous administration of LEV, tonic and myoclonic seizures relapsed within a month but her psychotic symptoms resolved simultaneously. To the best of our knowledge, this is the first reported case of forced normalization after LEV administration. It should be noted that LEV may cause forced normalization although it can be started at an adequate dosage.

  19. Sub-cellular force microscopy in single normal and cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer andmore » significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.« less

  20. Development of a novel precision instrument for high-resolution simultaneous normal and shear force measurements between small planar samples

    NASA Astrophysics Data System (ADS)

    Lundstrom, Troy; Clark, William; Jalili, Nader

    2017-05-01

    In the design and development of end effector pads for silicon wafer handling robots, it is imperative that the static friction/adhesion force properties of the pads with respect to a variety of planar surfaces be characterized. In this work, the overall design, calibration, and data acquisition procedure of an instrument developed for performing these measurements on small (<10 mm × 10 mm) planar samples is presented. This device was used to perform adhesion/maximum shear force measurements on polydimethylsiloxane, a silicon wafer, and custom carbon nanotubes forest surfaces. The device was successfully able to measure an effective, mean profile adhesion force of 715 μN between a silicon wafer and a polydimethylsiloxane (2.768 × 10-6 m2) sample. In addition, a nonlinear maximum shear over normal force relationship was also measured between custom carbon nanotubes forest and the silicon wafer surfaces. The maximum shear over a normal force coefficient was found to decrease with increasing initial normal force. Currently, there are numerous devices for measuring normal/shear forces at the nano/micro- and macroscales; however, this device allows for the consistent measurement of these same types of forces on components with surface dimensions ranging from 0.1 mm to 10 mm.

  1. The Indeterminate Case of Classical Static Friction When Coupled with Tension

    NASA Astrophysics Data System (ADS)

    Hahn, Kenneth D.; Russell, Jacob M.

    2018-02-01

    It has been noted that the static friction force poses challenges for students and, at times, even their instructors. Unlike the gravitational force, which has a precise and unambiguous magnitude (FG = mg), the magnitude and direction of the static friction force depend on other forces at play. Friction can be understood rather well in terms of complicated atomic-scale interactions between surfaces. Ringlein and Robbins survey aspects of the atomic origins of friction, and Folkerts explores factors that affect the value of static friction. However, what students typically encounter in an introductory course ignores the atomic origins of friction (beyond perhaps a brief overview of the atomic model). The rules of dry friction (i.e., non-lubricated surfaces in contact) taught in introductory physics were originally published in 1699 by Guillaume Amontons. Amontons's first law states that the force of friction is directly proportional to the applied load, i.e., f = μFN, where FN is the normal force and μ is the coefficient of friction. His second law states that the force of friction is independent of the macroscopic area of contact. These laws were verified by Coulomb in 1781.

  2. Measurement of Vehicle-Bridge-Interaction force using dynamic tire pressure monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Zhao; Xie, Zhipeng; Zhang, Jian

    2018-05-01

    The Vehicle-Bridge-Interaction (VBI) force, i.e., the normal contact force of a tire, is a key component in the VBI mechanism. The VBI force measurement can facilitate experimental studies of the VBI as well as input-output bridge structural identification. This paper introduces an innovative method for calculating the interaction force by using dynamic tire pressure monitoring. The core idea of the proposed method combines the ideal gas law and a basic force model to build a relationship between the tire pressure and the VBI force. Then, unknown model parameters are identified by the Extended Kalman Filter using calibration data. A signal filter based on the wavelet analysis is applied to preprocess the effect that the tire rotation has on the pressure data. Two laboratory tests were conducted to check the proposed method's validity. The effects of different road irregularities, loads and forward velocities were studied. Under the current experiment setting, the proposed method was robust to different road irregularities, and the increase in load and velocity benefited the performance of the proposed method. A high-speed test further supported the use of this method in rapid bridge tests. Limitations of the derived theories and experiment were also discussed.

  3. The force synergy of human digits in static and dynamic cylindrical grasps.

    PubMed

    Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin

    2013-01-01

    This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.

  4. The Force Synergy of Human Digits in Static and Dynamic Cylindrical Grasps

    PubMed Central

    Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin

    2013-01-01

    This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions. PMID:23544151

  5. Potential roles of force cues in human stance control.

    PubMed

    Cnyrim, Christian; Mergner, Thomas; Maurer, Christoph

    2009-04-01

    Human stance is inherently unstable. A small deviation from upright body orientation is enough to yield a gravitational component in the ankle joint torque, which tends to accelerate the body further away from upright ('gravitational torque'; magnitude is related to body-space lean angle). Therefore, to maintain a given body lean position, a corresponding compensatory torque must be generated. It is well known that subjects use kinematic sensory information on body-space lean from the vestibular system for this purpose. Less is known about kinetic cues from force/torque receptors. Previous work indicated that they are involved in compensating external contact forces such as a pull or push having impact on the body. In this study, we hypothesized that they play, in addition, a role when the vestibular estimate of the gravitational torque becomes erroneous. Reasons may be sudden changes in body mass, for instance by a load, or an impairment of the vestibular system. To test this hypothesis, we mimicked load effects on the gravitational torque in normal subjects and in patients with chronic bilateral vestibular loss (VL) with eyes closed. We added/subtracted extra torque to the gravitational torque by applying an external contact force (via cable winches and a body harness). The extra torque was referenced to body-space lean, using different proportionality factors. We investigated how it affected body-space lean responses that we evoked using sinusoidal tilts of the support surface (motion platform) with different amplitudes and frequencies (normals +/-1 degrees, +/-2 degrees, and +/-4 degrees at 0.05, 0.1, 0.2, and 0.4 Hz; patients +/-1 degrees and +/-2 degrees at 0.05 and 0.1 Hz). We found that added/subtracted extra torque scales the lean response in a systematic way, leading to increase/decrease in lean excursion. Expressing the responses in terms of gain and phase curves, we compared the experimental findings to predictions obtained from a recently published sensory feedback model. For the trials in which the extra torque tended to endanger stance control, predictions in normals were better when the model included force cues than without these cues. This supports our notion that force cues provide an automatic 'gravitational load compensation' upon changes in body mass in normals. The findings in the patients support our notion that the presumed force cue mechanism provides furthermore vestibular loss compensation. Patients showed a body-space stabilization that cannot be explained by ankle angle proprioception, but must involve graviception, most likely by force cues. Our findings suggest that force cues contribute considerably to the redundancy and robustness of the human stance control system.

  6. A Girl with Idiopathic Epilepsy Showing Forced Normalization after Levetiracetam Administration.

    PubMed

    Kawakami, Yasuhiko; Okazaki, Tetsuya; Takase, Masato; Fujino, Osamu; Itoh, Yasuhiko

    2015-01-01

    Forced normalization has been reported in association with almost all anti-epileptic drugs. We report on a 9-year-old girl with idiopathic epilepsy who showed forced normalization after administration of levetiracetam (LEV). She initially presented with generalized tonic-clonic seizures when she was 4 years old. Diffuse sharp and slow wave complexes (SWCs) were observed on electroencephalography (EEG). We prescribed sodium valproate (VPA) and benzodiazepines, but the seizures and EEG findings worsened gradually. Although subsequent administration of LEV stopped the seizures, the patient became subject to episodes of rage and violent behavior. Forced normalization was confirmed by the disappearance of SWCs on EEG. We reduced the dose of LEV and tried in various ways to resolve the situation, but finally we had to abandon LEV. To the best of our knowledge, this is the first report of a patient with idiopathic epilepsy but without disabilities in everyday life showing forced normalization associated with LEV administration.

  7. Theoretical study on the vibrational spectra of methoxy- and formyl-dihydroxy- trans-stilbenes and their hydrolytic equilibria

    NASA Astrophysics Data System (ADS)

    Molnár, Viktor; Billes, Ferenc; Tyihák, Ernő; Mikosch, Hans

    2008-02-01

    Compounds formed by exchanging one of the resveratrol hydroxy groups to methoxy or formyl groups are biologically important. Quantum chemical DFT calculations were applied for the simulation of some of their properties. Their optimized structures and charge distributions were computed. Based on the calculated vibrational force constants and optimized molecular structure infrared and Raman spectra were calculated. The characteristics of the vibrational modes were determined by normal coordinate analysis. Applying the calculated thermodynamic functions also for resveratrol, methanol, formaldehyde and water, thermodynamic equilibria were calculated for the equilibria between resveratrol and its methyl and formyl substituted derivatives, respectively.

  8. The synergic control of multi-finger force production: Stability of explicit and implicit task components

    PubMed Central

    Reschechtko, Sasha; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2016-01-01

    Manipulating objects with the hands requires the accurate production of resultant forces including shear forces; effective control of these shear forces also requires the production of internal forces normal to the surface of the object(s) being manipulated. In the present study, we investigated multi-finger synergies stabilizing shear and normal components of force, as well as drifts in both components of force, during isometric pressing tasks requiring a specific magnitude of shear force production. We hypothesized that shear and normal forces would evolve similarly in time, and also show similar stability properties as assessed by the decomposition of inter-trial variance within the uncontrolled manifold hypothesis. Healthy subjects were required to accurately produce total shear and total normal forces with four fingers of the hand during a steady-state force task (with and without visual feedback) and a self-paced force pulse task. The two force components showed similar time profiles during both shear force pulse production and unintentional drift induced by turning the visual feedback off. Only the explicitly instructed components of force, however, were stabilized with multi-finger synergies. No force-stabilizing synergies and no anticipatory synergy adjustments were seen for the normal force in shear force production trials. These unexpected qualitative differences in the control of the two force components – which are produced by some of the same muscles and show high degree of temporal coupling – are interpreted within the theory of control with referent coordinates for salient variables. These observations suggest the existence of two classes of neural variables: one that translates into shifts of referent coordinates and defines changes in magnitude of salient variables, and the other controlling gains in back-coupling loops that define stability of the salient variables. Only the former are shared between the explicit and implicit task components. PMID:27601252

  9. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking

    PubMed Central

    Serrancolí, Gil; Kinney, Allison L.; Fregly, Benjamin J.; Font-Llagunes, Josep M.

    2016-01-01

    Though walking impairments are prevalent in society, clinical treatments are often ineffective at restoring lost function. For this reason, researchers have begun to explore the use of patient-specific computational walking models to develop more effective treatments. However, the accuracy with which models can predict internal body forces in muscles and across joints depends on how well relevant model parameter values can be calibrated for the patient. This study investigated how knowledge of internal knee contact forces affects calibration of neuromusculoskeletal model parameter values and subsequent prediction of internal knee contact and leg muscle forces during walking. Model calibration was performed using a novel two-level optimization procedure applied to six normal walking trials from the Fourth Grand Challenge Competition to Predict In Vivo Knee Loads. The outer-level optimization adjusted time-invariant model parameter values to minimize passive muscle forces, reserve actuator moments, and model parameter value changes with (Approach A) and without (Approach B) tracking of experimental knee contact forces. Using the current guess for model parameter values but no knee contact force information, the inner-level optimization predicted time-varying muscle activations that were close to experimental muscle synergy patterns and consistent with the experimental inverse dynamic loads (both approaches). For all the six gait trials, Approach A predicted knee contact forces with high accuracy for both compartments (average correlation coefficient r = 0.99 and root mean square error (RMSE) = 52.6 N medial; average r = 0.95 and RMSE = 56.6 N lateral). In contrast, Approach B overpredicted contact force magnitude for both compartments (average RMSE = 323 N medial and 348 N lateral) and poorly matched contact force shape for the lateral compartment (average r = 0.90 medial and −0.10 lateral). Approach B had statistically higher lateral muscle forces and lateral optimal muscle fiber lengths but lower medial, central, and lateral normalized muscle fiber lengths compared to Approach A. These findings suggest that poorly calibrated model parameter values may be a major factor limiting the ability of neuromusculoskeletal models to predict knee contact and leg muscle forces accurately for walking. PMID:27210105

  10. FORCED NORMALIZATION: Epilepsy and Psychosis Interaction

    PubMed Central

    Loganathan, Muruga A.; Enja, Manasa

    2015-01-01

    Forced normalization is the emergence of psychoses following the establishment of seizure control in an uncontrolled epilepsy patient. Two illustrative clinical vignettes are provided about people with epilepsy that was newly controlled and followed by emergence of a psychosis; symptoms appeared only after attaining ictal control. For recognition and differential diagnosis purposes, understanding forced normalization is important in clinical practice. PMID:26155377

  11. Effect of reduced gravity on the preferred walk-run transition speed

    NASA Technical Reports Server (NTRS)

    Kram, R.; Domingo, A.; Ferris, D. P.

    1997-01-01

    We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.

  12. Statokinesigram normalization method.

    PubMed

    de Oliveira, José Magalhães

    2017-02-01

    Stabilometry is a technique that aims to study the body sway of human subjects, employing a force platform. The signal obtained from this technique refers to the position of the foot base ground-reaction vector, known as the center of pressure (CoP). The parameters calculated from the signal are used to quantify the displacement of the CoP over time; there is a large variability, both between and within subjects, which prevents the definition of normative values. The intersubject variability is related to differences between subjects in terms of their anthropometry, in conjunction with their muscle activation patterns (biomechanics); and the intrasubject variability can be caused by a learning effect or fatigue. Age and foot placement on the platform are also known to influence variability. Normalization is the main method used to decrease this variability and to bring distributions of adjusted values into alignment. In 1996, O'Malley proposed three normalization techniques to eliminate the effect of age and anthropometric factors from temporal-distance parameters of gait. These techniques were adopted to normalize the stabilometric signal by some authors. This paper proposes a new method of normalization of stabilometric signals to be applied in balance studies. The method was applied to a data set collected in a previous study, and the results of normalized and nonnormalized signals were compared. The results showed that the new method, if used in a well-designed experiment, can eliminate undesirable correlations between the analyzed parameters and the subjects' characteristics and show only the experimental conditions' effects.

  13. Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.

    PubMed

    Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu

    2016-11-14

    Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.

  14. The Complexity of Human Walking: A Knee Osteoarthritis Study

    PubMed Central

    Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.

    2014-01-01

    This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more variability in the two-dimensional principal component space. PMID:25232949

  15. Maintaining rotational equilibrium during object manipulation: linear behavior of a highly non-linear system

    PubMed Central

    Gao, Fan; Latash, Mark L.

    2010-01-01

    We address issues of simultaneous control of the grasping force and the total moment of forces applied to a handheld object during its manipulation. Six young healthy male subjects grasped an instrumented handle and performed its cyclic motion in the vertical direction. The handle allowed for setting different clockwise (negative) or counterclockwise torques. Three movement frequencies: 1, 1.5 and 2 Hz, and five different torques: −1/3, −1/6, 0, 1/6 and 1/3 Nm, were used. The rotational equilibrium was maintained by two means: (1) Concerted changes of the moments produced by the normal and tangential forces, specifically anti-phase changes of the moments during the tasks with zero external torque and in-phase changes during the non-zero-torque tasks, and (2) Redistribution of the normal forces among individual fingers such that the agonist fingers—the fingers that resist external torque—increased the force in phase with the acceleration, while the forces of the antagonist fingers—those that assist the external torque—especially, the fingers with the large moment arms, the index and little fingers, stayed unchanged. The observed effects agree with the principle of superposition—according to which some complex actions, for example, prehension, can be decomposed into elemental actions controlled independently—and the mechanical advantage hypothesis according to which in moment production the fingers are activated in proportion to their moment arms with respect to the axis of rotation. We would like to emphasize the linearity of the observed relations, which was not prescribed by the task mechanics and seems to be produced by specific neural control mechanisms. PMID:16328302

  16. Biomechanical comparison of effects of the Dynesys and Coflex dynamic stabilization systems on range of motion and loading characteristics in the lumbar spine: a finite element study.

    PubMed

    Kulduk, Ahmet; Altun, Necdet S; Senkoylu, Alpaslan

    2015-12-01

    The primary purpose of dynamic stabilization is to preserve the normal range of motion (ROM) by restricting abnormal movement in the spine. Our aim was to analyze the effects of two different dynamic stabilization systems using finite element modeling (FEM). Coflex and Dynesys dynamic devices were modeled and implanted at the L4-L5 segment using virtual FEM. A 400 N compressive force combined with 6 N flexion, extension, bending and axial rotation forces was applied to the L3-4 and L4-5 segments. ROM and disc loading forces were analyzed. Both systems reduced ROM and disc loading forces at the implanted lumbar segment, with the exception of the Coflex interspinous device, which increased ROM by 19% and did not change disc-loading forces in flexion. The Coflex device prevented excessive disc loading, but increased ROM abnormally in flexion. Neither device provided satisfactory motion preservation or load sharing in other directions. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Sensor tip for a robotic gripper and method of manufacture

    NASA Technical Reports Server (NTRS)

    Lorenz, Robert D. (Inventor); Jackson, Gregory T. (Inventor)

    1991-01-01

    A sensor tip (10) for use in a robotic hand has a three-dimensional compliant elastomeric body (12) with an outer boundary (22) having a circular base (24) and a convex surface (26) extending therefrom. Four strain transducers (14, 16, 18, and 20) produce electrical signals indicative of the strain at various positions near the boundary of the elastomeric body (12) resulting from forces exerted upon the sensor tip (10) by an object which the robotic hand is manipulating. The transducers (14, 16, 18, and 20) are positioned about the convex surface (26) so as to produce signals that may be decoupled to determine the normal and tangential forces and the applied torque. A buffer amplifier circuit (34), one for each of the transducers (14, 16, 18, and 20), receives the signals and provides quasi-steady state force information. The circuit (34) connects the respective transducer (40) in a feedback loop around an amplifier (36) and has desirable attributes for static charge buffering. The sensor tip (10) is calibrated to determine proportionality constants for the decoupling algorithm for use of a force delivering system (60), which uses voice coils (74) to apply a force that is linearly related to the current introduced to each of the coils (74). A method of manufacture of the sensor tip (10) results in improved bonding between the transducers (14, 16, 18, and 20) and the elastomeric body (12) for better performance and longer life of the sensor tip (10).

  18. Sensor tip for a robotic gripper and method of manufacture

    NASA Technical Reports Server (NTRS)

    Lorenz, Robert D. (Inventor); Jackson, Gregory T. (Inventor)

    1993-01-01

    A sensor tip (10) for use in a robotic hand has a three-dimensional compliant elastomeric body (12) with an outer boundary (22) having a circular base (24) and a convex surface (26) extending therefrom. Four strain transducers (14, 16, 18, and 20) produce electrical signals indicative of the strain at various positions near the boundary of the elastomeric body (12) resulting from forces exerted upon the sensor tip (10) by an object which the robotic hand is manipulating. The transducers (14, 16, 18, and 20) are positioned about the convex surface (26) so as to produce signals that may be decoupled to determine the normal and tangential forces and the applied torque. A buffer amplifier circuit (34), one for each of the transducers (14, 16, 18, and 20), receives the signals and provides quasi-steady state force information. The circuit (34) connects the respective transducer (40) in a feedback loop around an amplifier (36) and has desirable attributes for static charge buffering. The sensor tip (10) is calibrated to determine proportionality constants for the decoupling algorithm for use of a force delivering system (60), which uses voice coils (74) to apply a force that is linearly related to the current introduced to each of the coils (74). A method of manufacture of the sensor tip (10) results in improved bonding between the transducers (14, 16, 18, and 20) and the elastomeric body (12) for better performance and longer life of the sensor tip (10).

  19. Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jun; Gao, Feng; Pan, Yang

    2017-09-01

    Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.

  20. Improved force prediction model for grinding Zerodur based on the comprehensive material removal mechanism.

    PubMed

    Sun, Guoyan; Zhao, Lingling; Zhao, Qingliang; Gao, Limin

    2018-05-10

    There have been few investigations dealing with the force model on grinding brittle materials. However, the dynamic material removal mechanisms have not yet been sufficiently explicated through the grain-workpiece interaction statuses while considering the brittle material characteristics. This paper proposes an improved grinding force model for Zerodur, which contains ductile removal force, brittle removal force, and frictional force, corresponding to the ductile and brittle material removal phases, as well as the friction process, respectively. The critical uncut chip thickness a gc of brittle-ductile transition and the maximum uncut chip thickness a gmax of a single abrasive grain are calculated to identify the specified material removal mode, while the comparative result between a gmax and a gc can be applied to determine the selection of effective grinding force components. Subsequently, indentation fracture tests are carried out to acquire accurate material mechanical properties of Zerodur in establishing the brittle removal force model. Then, the experiments were conducted to derive the coefficients in the grinding force prediction model. Simulated through this model, correlations between the grinding force and grinding parameters can be predicted. Finally, three groups of grinding experiments are carried out to validate the mathematical grinding force model. The experimental results indicate that the improved model is capable of predicting the realistic grinding force accurately with the relative mean errors of 6.04% to the normal grinding force and 7.22% to the tangential grinding force, respectively.

  1. Statistical analysis of sperm sorting

    NASA Astrophysics Data System (ADS)

    Koh, James; Marcos, Marcos

    2017-11-01

    The success rate of assisted reproduction depends on the proportion of morphologically normal sperm. It is possible to use an external field for manipulation and sorting. Depending on their morphology, the extent of response varies. Due to the wide distribution in sperm morphology even among individuals, the resulting distribution of kinematic behaviour, and consequently the feasibility of sorting, should be analysed statistically. In this theoretical work, Resistive Force Theory and Slender Body Theory will be applied and compared. Full name is Marcos.

  2. The effect of spatial discretization upon traveling wave body forcing of a turbulent wall-bounded flow

    NASA Astrophysics Data System (ADS)

    You, Soyoung; Goldstein, David

    2015-11-01

    DNS is employed to simulate turbulent channel flow subject to a traveling wave body force field near the wall. The regions in which forces are applied are made progressively more discrete in a sequence of simulations to explore the boundaries between the effects of discrete flow actuators and spatially continuum actuation. The continuum body force field is designed to correspond to the ``optimal'' resolvent mode of McKeon and Sharma (2010), which has the L2 norm of σ1. That is, the normalized harmonic forcing that gives the largest disturbance energy is the first singular mode with the gain of σ1. 2D and 3D resolvent modes are examined at a modest Reτ of 180. For code validation, nominal flow simulations without discretized forcing are compared to previous work by Sharma and Goldstein (2014) in which we find that as we increase the forcing amplitude there is a decrease in the mean velocity and an increase in turbulent kinetic energy. The same force field is then sampled into isolated sub-domains to emulate the effect of discrete physical actuators. Several cases will be presented to explore the dependencies between the level of discretization and the turbulent flow behavior.

  3. Mechanism analysis of Magnetohydrodynamic heat shield system and optimization of externally applied magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-04-01

    As a novel thermal protection technique for hypersonic vehicles, Magnetohydrodynamic (MHD) heat shield system has been proved to be of great intrinsic value in the hypersonic field. In order to analyze the thermal protection mechanisms of such a system, a physical model is constructed for analyzing the effect of the Lorentz force components in the counter and normal directions. With a series of numerical simulations, the dominating Lorentz force components are analyzed for the MHD heat flux mitigation in different regions of a typical reentry vehicle. Then, a novel magnetic field with variable included angle between magnetic induction line and streamline is designed, which significantly improves the performance of MHD thermal protection in the stagnation and shoulder areas. After that, the relationships between MHD shock control and MHD thermal protection are investigated, based on which the magnetic field above is secondarily optimized obtaining better performances of both shock control and thermal protection. Results show that the MHD thermal protection is mainly determined by the Lorentz force's effect on the boundary layer. From the stagnation to the shoulder region, the flow deceleration effect of the counter-flow component is weakened while the flow deflection effect of the normal component is enhanced. Moreover, there is no obviously positive correlation between the MHD shock control and thermal protection. But once a good Lorentz force's effect on the boundary layer is guaranteed, the thermal protection performance can be further improved with an enlarged shock stand-off distance by strengthening the counter-flow Lorentz force right after shock.

  4. Shaping metallic glasses by electromagnetic pulsing

    PubMed Central

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  5. Testing the efficacy of existing force-endurance models to account for the prevalence of obesity in the workforce.

    PubMed

    Pajoutan, Mojdeh; Cavuoto, Lora A; Mehta, Ranjana K

    2017-10-01

    This study evaluates whether the existing force-endurance relationship models are predictive of endurance time for overweight and obese individuals, and if not, provide revised models that can be applied for ergonomics practice. Data was collected from 141 participants (49 normal weight, 50 overweight, 42 obese) who each performed isometric endurance tasks of hand grip, shoulder flexion, and trunk extension at four levels of relative workload. Subject-specific fatigue rates and a general model of the force-endurance relationship were determined and compared to two fatigue models from the literature. There was a lack of fit between previous models and the current data for the grip (ICC = 0.8), with a shift toward lower endurance times for the new data. Application of the revised models can facilitate improved workplace design and job evaluation to accommodate the capacities of the current workforce.

  6. Ice Action on Pairs of Cylindrical and Conical Structures,

    DTIC Science & Technology

    1983-09-01

    correlation because the forces generated ficult to pick a distinct peak in the autospectra for between the structure and the ice sheet are af- the...against two conical structures ...... 20 24. Normalized maximum ice force versus ice velocity ................. 20 25. Normalized initial peak force...versus ice velocity .................. 21 26. Ratio of initial peak ice force to theoretical ice force versus ratio of center-to-center distance

  7. A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction

    PubMed Central

    Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-01-01

    This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs. PMID:27213374

  8. Comprehensive Aeroelastic Analysis of Helicopter Rotor with Trailing-Edge Flap for Primary Control and Vibration Control

    DTIC Science & Technology

    2003-01-01

    183 3.34 5/rev fixed system hub normal force with 4/rev open loop trailing-edge flap input...184 3.35 5/rev fixed system hub normal force with 5/rev open loop trailing-edge flap input...185 3.36 5/rev fixed system hub normal force with 6/rev open loop trailing-edge flap

  9. A cohesive-frictional force field (CFFF) for colloidal calcium-silicate-hydrates

    NASA Astrophysics Data System (ADS)

    Palkovic, Steven D.; Yip, Sidney; Büyüköztürk, Oral

    2017-12-01

    Calcium-silicate-hydrate (C-S-H) gel is a cohesive-frictional material that exhibits strength asymmetry in compression and tension and normal-stress dependency of the maximum shear strength. Experiments suggest the basic structural component of C-S-H is a colloidal particle with an internal layered structure. These colloids form heterogeneous assemblies with a complex pore network at the mesoscale. We propose a cohesive-frictional force field (CFFF) to describe the interactions in colloidal C-S-H materials that incorporates the strength anisotropy fundamental to the C-S-H molecular structure that has been omitted from recent mesoscale models. We parameterize the CFFF from reactive force field simulations of an internal interface that controls mechanical performance, describing the behavior of thousands of atoms through a single effective pair interaction. We apply the CFFF to study the mesoscale elastic and Mohr-Coulomb strength properties of C-S-H with varying polydispersity and packing density. Our results show that the consideration of cohesive-frictional interactions lead to an increase in stiffness, shear strength, and normal-stress dependency, while also changing the nature of local deformation processes. The CFFF and our coarse-graining approach provide an essential connection between nanoscale molecular interactions and macroscale continuum behavior for hydrated cementitious materials.

  10. Limitations to maximum running speed on flat curves.

    PubMed

    Chang, Young-Hui; Kram, Rodger

    2007-03-01

    Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.

  11. Computed tomography arthrography with traction in the human hip for three-dimensional reconstruction of cartilage and the acetabular labrum

    PubMed Central

    Henak, C.R.; Abraham, C.L.; Peters, C.L.; Sanders, R.K.; Weiss, J.A.; Anderson, A.E.

    2014-01-01

    AIM To develop and demonstrate the efficacy of a computed tomography arthrography (CTA) protocol for the hip that enables accurate three-dimensional reconstructions of cartilage and excellent visualization of the acetabular labrum. MATERIALS AND METHODS Ninety-three subjects were imaged (104 scans); 68 subjects with abnormal anatomy, 11 patients after periacetabular osteotomy surgery, and 25 subjects with normal anatomy. Fifteen to 25 ml of contrast agent diluted with lidocaine was injected using a lateral oblique approach. A Hare traction splint applied traction during CT. The association between traction force and intra-articular joint space was assessed qualitatively under fluoroscopy. Cartilage geometry was reconstructed from the CTA images for 30 subjects; the maximum joint space under traction was measured. RESULTS Using the Hare traction splint, the intra-articular space and boundaries of cartilage could be clearly delineated throughout the joint; the acetabular labrum was also visible. Dysplastic hips required less traction (~5 kg) than normal and retroverted hips required (>10 kg) to separate the cartilage. An increase in traction force produced a corresponding widening of the intra-articular joint space. Under traction, the maximum width of the intra-articular joint space during CT ranged from 0.98–6.7 mm (2.46 ± 1.16 mm). CONCLUSIONS When applied to subjects with normal and abnormal hip anatomy, the CTA protocol presented yields clear delineation of the cartilage and the acetabular labrum. Use of a Hare traction splint provides a simple, cost-effective method to widen the intra-articular joint space during CT, and provides flexibility to vary the traction as required. PMID:25070373

  12. An in vitro biomechanical comparison of two fixation methods for transverse osteotomies of the medial proximal forelimb sesamoid bones in horses.

    PubMed

    Wilson, D A; Keegan, K G; Carson, W L

    1999-01-01

    This study compared the mechanical properties of the normal intact suspensory apparatus and two methods of fixation for repair of transverse, midbody fractures of the proximal sesamoid bones of adult horses: transfixation wiring (TW) and screws placed in lag fashion (LS). An in vitro, paired study using equine cadaver limbs mounted in a loading apparatus was used to test the mechanical properties of TW and LS. Seventeen paired (13 repaired, 4 normal) equine cadaver limbs consisting of the suspensory apparatus third metacarpal bone, and first and second phalanges. The two methods of repair and normal intact specimens were evaluated in single cycle-to-failure loading. Yield failure was defined to occur at the first notable discontinuity (>50 N) in the load-displacement curve, the first visible failure as evident on the videotape, or a change in the slope of the moment-fetlock angle curve. Ultimate failure was defined to occur at the highest load resisted by the specimen. Corresponding resultant force and force per kg of body weight on the suspensory apparatus, fetlock joint moment, and angle of fetlock dorsiflexion were calculated by use of specimen dimensions and applied load. These were compared along with specimen stiffness, and ram displacement. Load on the suspensory apparatus, load on the suspensory apparatus per kg of body weight, moment, applied load, and angle of fetlock dorsiflexion at yield failure were significantly greater for the TW-repaired than for the LS-repaired specimens. A 3 to 5 mm gap was observed before yield failure in most TW-repaired osteotomies. Transfixation wiring provided greater strength to yield failure than screws placed in lag fashion in single cycle load-to-failure mechanical testing of repaired transverse osteotomized specimens of the medial proximal forelimb sesamoid bone.

  13. Mechanical Rectification of Oscillatory Motion for High Torque Microactuators

    NASA Astrophysics Data System (ADS)

    You, Liang; Tabib-Azar, Massood

    2004-03-01

    High-torque and scalable rotational micromotors were designed, microfabricated using a 3 mask LPCVD polysilicon process, and characterized. Oscillatory motions generated by comb-drive actuators were rectified by a rotor with fins. The actuator periodically deforms the fins generating forces with tangential and normal components in the rotor. Tangential forces generate rotation. In comparison to the electrostatic side-drive micromotor (torque pN-m), the measured torques for these micromotors were much larger and reached 4.5 µN-m at 200Vpp applied to the comb-drive at 1 KHz. Both the comb-drive and the finned rotor are second-order resonant structures that, when coupled, result in interesting dynamic that manifests itself as different excitation (forward, reverse, stepping, and chaotic) modes of the rotor.

  14. Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: Implications for preclinical testing.

    PubMed

    Li, Junyan; Redmond, Anthony C; Jin, Zhongmin; Fisher, John; Stone, Martin H; Stewart, Todd D

    2014-08-01

    Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement. Copyright © 2014. Published by Elsevier Ltd.

  15. Prehension synergies: A study of digit force adjustments to the continuously varied load force exerted on a partially constrained hand-held object

    PubMed Central

    Friedman, Jason; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2009-01-01

    We examined how the digit forces adjust when a load force acting on a hand-held object continuously varies. The subjects were required to hold the handle still while a linearly increasing and then decreasing force was applied to the handle. The handle was constrained, such that it could only move up and down, and rotate about a horizontal axis. In addition the moment arm of the thumb tangential force was 1.5 times the moment arm of the virtual finger (VF, an imagined finger with the mechanical action equal to that of the four fingers) force. Unlike the situation when there are equal moment arms, the experimental setup forced the subjects to choose between (a) sharing equally the increase in load force between the thumb and virtual finger but generating a moment of tangential force, which had to be compensated by negatively covarying the moment due to normal forces, or (b) sharing unequally the load force increase between the thumb and VF but preventing generation of a moment of tangential forces. We found that different subjects tended to use one of these two strategies. These findings suggest that the selection by the CNS of prehension synergies at the VF-thumb level with respect to the moment of force are non-obligatory and reflect individual subject preferences. This unequal sharing of the load by the tangential forces, in contrast to the previously observed equal sharing, suggests that the invariant feature of prehension may be a correlated increase in tangential forces rather than an equal increase. PMID:19554319

  16. Assessment of semi-active friction dampers

    NASA Astrophysics Data System (ADS)

    dos Santos, Marcelo Braga; Coelho, Humberto Tronconi; Lepore Neto, Francisco Paulo; Mafhoud, Jarir

    2017-09-01

    The use of friction dampers has been widely proposed for a variety of mechanical systems for which applying viscoelastic materials, fluid based dampers or other viscous dampers is impossible. An important example is the application of friction dampers in aircraft engines to reduce the blades' vibration amplitudes. In most cases, friction dampers have been studied in a passive manner, but significant improvements can be achieved by controlling the normal force in the contact region. The aim of this paper is to present and study five control strategies for friction dampers based on three different hysteresis cycles by using the Harmonic Balance Method (HBM), a numerical and experimental analysis. The first control strategy uses the friction force as a resistance when the system is deviating from its equilibrium position. The second control strategy maximizes the energy removal in each harmonic oscillation cycle by calculating the optimal normal force based on the last displacement peak. The third control strategy combines the first strategy with the homogenous modulation of the friction force. Finally, the last two strategies attempt to predict the system's movement based on its velocity and acceleration and our knowledge of its physical properties. Numerical and experimental studies are performed with these five strategies, which define the performance metrics. The experimental testing rig is fully identified and its parameters are used for numerical simulations. The obtained results show the satisfactory performance of the friction damper and selected strategy and the suitable agreement between the numerical and experimental results.

  17. Improving tenderness of normal and callipyge lambs with calcium chloride.

    PubMed

    Clare, T L; Jackson, S P; Miller, M F; Elliott, C T; Ramsey, C B

    1997-02-01

    Effects of CaCl2 injection on meat quality traits of 10 normal and 10 callipyge phenotype crossbred lambs were studied. Primal cuts from one side of each carcass served as the control and cuts from the other side were injected. After storage for 14 d at 2 degrees C, chops were evaluated by Warner-Bratzler shear (WBS) force, trained sensory panel, and consumer sensory panel. Treatment of the muscles with 200 mM CaCl2 increased (P < .05) tenderness and lamb flavor intensity scores by the trained sensory panel and decreased (P < .05) WBS force in both normal and callipyge phenotypes. When callipyge muscles were not injected, consumers rated 94% of leg chops, 60% of loin chops, and 89.4% of shoulder chops acceptable in tenderness. However, when callipyge muscles were CaCl2-injected, consumers rated 96.5% of leg chops, 85.4% of loin chips, and 93.5% of shoulder chops acceptable in tenderness. Normal phenotype carcasses had more marbling (P < .05) in a firmer, finer-textured, brighter cherry red longissimus muscle. Injection of CaCl2 did not affect visual lean color or L, a or b values during retail display of the chops. However, CaCl2 injection decreased color uniformity, increased discoloration, and increased browning at d 2. Therefore, a 5% (wt/wt) injection of 200 mM CaCl2 solution can be applied to improve normal and callipyge lamb tenderness and reduce tenderness and juiciness variation without detrimental effects on other palatability traits when evaluated by trained sensory panelists or consumers.

  18. Force Plate Gait Analysis in Doberman Pinschers with and without Cervical Spondylomyelopathy

    PubMed Central

    Foss, K.; da Costa, R.C.; Rajala-Shultz, P.J.; Allen, M.J.

    2014-01-01

    Background The most accepted means of evaluating the response of a patient with cervical spondylomyelopathy (CSM) to treatment is subjective and based on the owner and clinician's perception of the gait. Objective To establish and compare kinetic parameters based on force plate gait analysis between normal and CSM-affected Dobermans. Animals Nineteen Doberman Pinschers: 10 clinically normal and 9 with CSM. Methods Force plate analysis was prospectively performed in all dogs. At least 4 runs of ipsilateral limbs were collected from each dog. Eight force platform parameters were evaluated, including peak vertical force (PVF) and peak vertical impulse (PVI), peak mediolateral force (PMLF) and peak mediolateral impulse, peak braking force and peak braking impulse, and peak propulsive force (PPF) and peak propulsive impulse. In addition, the coefficient of variation (CV) for each limb was calculated for each parameter. Data analysis was performed by a repeated measures approach. Results PMLF (P = .0062), PVI (P = .0225), and PPF (P = .0408) were found to be lower in CSM-affected dogs compared with normal dogs. Analysis by CV as the outcome indicated more variability in PVF in CSM-affected dogs (P = 0.0045). The largest difference in the CV of PVF was seen in the thoracic limbs of affected dogs when compared with the thoracic limbs of normal dogs (P = 0.0019). Conclusions and Clinical Importance The CV of PVF in all 4 limbs, especially the thoracic limbs, distinguished clinically normal Dobermans from those with CSM. Other kinetic parameters less reliably distinguished CSM-affected from clinically normal Dobermans. PMID:23278957

  19. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    NASA Technical Reports Server (NTRS)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  20. Intelligent tuning method of PID parameters based on iterative learning control for atomic force microscopy.

    PubMed

    Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang

    2018-01-01

    Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Weight, the Normal Force and Newton's Third Law: Dislodging a Deeply Embedded Misconception

    ERIC Educational Resources Information Center

    Low, David; Wilson, Kate

    2017-01-01

    On entry to university, high-achieving physics students from all across Australia struggle to identify Newton's third law force pairs. In particular, less than one in ten can correctly identify the Newton's third law reaction pair to the weight of (gravitational force acting on) an object. Most students incorrectly identify the normal force on the…

  2. Vibrational spectra and normal coordinate analysis of diazepam, phenytoin and phenobarbitone

    NASA Astrophysics Data System (ADS)

    Gunasekaran, S.; Thilak Kumar, R.; Ponnusamy, S.

    2006-12-01

    Vibrational spectroscopy is an important tool for the structural investigation of the organic molecules. In the present investigation, a normal coordinate analysis has been carried out on some anti-epileptic drugs, viz. diazepam, phenytoin and phenobarbitone. Diazepam is a derivative of benzodiazepine, phenytoin is a derivative of hydanation and pheonobarbitone is a barbiturate. The infrared spectra of the compounds are recorded in the region 4000-400 cm -1 and Raman spectra are recorded in the region 3500-50 cm -1. From the structural point of view, diazepam, phenytoin and phenobarbitone have been assumed to C s point group. A systematic set of symmetry coordinates has been constructed for these compounds and Wilson's FG matrix method has been applied for the normal coordinate analysis using general quadratic valance force field. The potential energy distribution is also calculated to check the vibrational band assignments.

  3. Alternative methods to model frictional contact surfaces using NASTRAN

    NASA Technical Reports Server (NTRS)

    Hoang, Joseph

    1992-01-01

    Elongated (slotted) holes have been used extensively for the integration of equipment into Spacelab racks. In the past, this type of interface has been modeled assuming that there is not slippage between contact surfaces, or that there is no load transfer in the direction of the slot. Since the contact surfaces are bolted together, the contact friction provides a load path determined by the normal applied force (bolt preload) and the coefficient of friction. Three alternate methods that utilize spring elements, externally applied couples, and stress dependent elements are examined to model the contacted surfaces. Results of these methods are compared with results obtained from methods that use GAP elements and rigid elements.

  4. Sprint Start Kinetics of Amputee and Non-Amputee Sprinters

    PubMed Central

    Willwacher, Steffen; Herrmann, Volker; Heinrich, Kai; Funken, Johannes; Strutzenberger, Gerda; Goldmann, Jan-Peter; Braunstein, Björn; Brazil, Adam; Irwin, Gareth; Potthast, Wolfgang; Brüggemann, Gert-Peter

    2016-01-01

    The purpose of this study was to explore the relationship between the forces applied to the starting blocks and the start performances (SPs) of amputee sprinters (ASs) and non-amputee sprinters (NASs). SPs of 154 male and female NASs (100-m personal records [PRs], 9.58–14.00 s) and 7 male ASs (3 unilateral above knee, 3 unilateral below knee, 1 bilateral below knee; 100 m PRs, 11.70–12.70 s) with running specific prostheses (RSPs) were analysed during full-effort sprint starts using instrumented starting blocks that measured the applied forces in 3D. Using the NAS dataset and a combination of factor analysis and multiple regression techniques, we explored the relationship between force characteristics and SP (quantified by normalized average horizontal block power). Start kinetics were subsequently compared between ASs and NASs who were matched based on their absolute 100 m PR and their 100 m PR relative to the world record in their starting class. In NASs, 86% of the variance in SP was shared with five latent factors on which measured parameters related to force application to the rear and front blocks and the respective push-off directions in the sagittal plane of motion were loaded. Mediolateral force application had little influence on SP. The SP of ASs was significantly reduced compared to that of NASs matched on the basis of relative 100-m PR (−33.8%; d = 2.11, p < 0.001), while a non-significant performance reduction was observed when absolute 100-m PRs were used (−17.7%; d = 0.79, p = 0.09). These results are at least partially explained by the fact that force application to the rear block was clearly impaired in the affected legs of ASs. PMID:27846241

  5. Sprint Start Kinetics of Amputee and Non-Amputee Sprinters.

    PubMed

    Willwacher, Steffen; Herrmann, Volker; Heinrich, Kai; Funken, Johannes; Strutzenberger, Gerda; Goldmann, Jan-Peter; Braunstein, Björn; Brazil, Adam; Irwin, Gareth; Potthast, Wolfgang; Brüggemann, Gert-Peter

    2016-01-01

    The purpose of this study was to explore the relationship between the forces applied to the starting blocks and the start performances (SPs) of amputee sprinters (ASs) and non-amputee sprinters (NASs). SPs of 154 male and female NASs (100-m personal records [PRs], 9.58-14.00 s) and 7 male ASs (3 unilateral above knee, 3 unilateral below knee, 1 bilateral below knee; 100 m PRs, 11.70-12.70 s) with running specific prostheses (RSPs) were analysed during full-effort sprint starts using instrumented starting blocks that measured the applied forces in 3D. Using the NAS dataset and a combination of factor analysis and multiple regression techniques, we explored the relationship between force characteristics and SP (quantified by normalized average horizontal block power). Start kinetics were subsequently compared between ASs and NASs who were matched based on their absolute 100 m PR and their 100 m PR relative to the world record in their starting class. In NASs, 86% of the variance in SP was shared with five latent factors on which measured parameters related to force application to the rear and front blocks and the respective push-off directions in the sagittal plane of motion were loaded. Mediolateral force application had little influence on SP. The SP of ASs was significantly reduced compared to that of NASs matched on the basis of relative 100-m PR (-33.8%; d = 2.11, p < 0.001), while a non-significant performance reduction was observed when absolute 100-m PRs were used (-17.7%; d = 0.79, p = 0.09). These results are at least partially explained by the fact that force application to the rear block was clearly impaired in the affected legs of ASs.

  6. Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Cowles, M. K.; Buckley, J. M.; Richardson, K.; Cowles, B. A.; Baicu, C. F.; Cooper G, I. V.; Gharpuray, V.

    1998-01-01

    Diastolic dysfunction is an important cause of congestive heart failure; however, the basic mechanisms causing diastolic congestive heart failure are not fully understood, especially the role of the cardiac muscle cell, or cardiocyte, in this process. Before the role of the cardiocyte in this pathophysiology can be defined, methods for measuring cardiocyte constitutive properties must be developed and validated. Thus this study was designed to evaluate a new method to characterize cardiocyte constitutive properties, the gel stretch method. Cardiocytes were isolated enzymatically from normal feline hearts and embedded in a 2% agarose gel containing HEPES-Krebs buffer and laminin. This gel was cast in a shape that allowed it to be placed in a stretching device. The ends of the gel were held between a movable roller and fixed plates that acted as mandibles. Distance between the right and left mandibles was increased using a stepper motor system. The force applied to the gel was measured by a force transducer. The resultant cardiocyte strain was determined by imaging the cells with a microscope, capturing the images with a CCD camera, and measuring cardiocyte and sarcomere length changes. Cardiocyte stress was characterized with a finite-element method. These measurements of cardiocyte stress and strain were used to determine cardiocyte stiffness. Two variables affecting cardiocyte stiffness were measured, the passive elastic spring and viscous damping. The passive spring was assessed by increasing the force on the gel at 1 g/min, modeling the resultant stress vs. strain relationship as an exponential [sigma = A/k(ekepsilon - 1)]. In normal cardiocytes, A = 23.0 kN/m2 and k = 16. Viscous damping was assessed by examining the loop area between the stress vs. strain relationship during 1 g/min increases and decreases in force. Normal cardiocytes had a finite loop area = 1.39 kN/m2, indicating the presence of viscous damping. Thus the gel stretch method provided accurate measurements of cardiocyte constitutive properties. These measurements have allowed the first quantitative assessment of passive elastic spring properties and viscous damping in normal mammalian cardiocytes.

  7. Vibration Control in Turbomachinery Using Active Magnetic Journal Bearings

    NASA Technical Reports Server (NTRS)

    Knight, Josiah D.

    1996-01-01

    The effective use of active magnetic bearings for vibration control in turbomachinery depends on an understanding of the forces available from a magnetic bearing actuator. The purpose of this project was to characterize the forces as functions shaft position. Both numerical and experimental studies were done to determine the characteristics of the forces exerted on a stationary shaft by a magnetic bearing actuator. The numerical studies were based on finite element computations and included both linear and nonlinear magnetization functions. Measurements of the force versus position of a nonrotating shaft were made using two separate measurement rigs, one based on strain gage measurement of forces, the other based on deflections of a calibrated beam. The general trends of the measured principal forces agree with the predictions of the theory while the magnitudes of forces are somewhat smaller than those predicted. Other aspects of theory are not confirmed by the measurements. The measured forces in the normal direction are larger than those predicted by theory when the rotor has a normal eccentricity. Over the ranges of position examined, the data indicate an approximately linear relationship between the normal eccentricity of the shaft and the ratio of normal to principal force. The constant of proportionality seems to be larger at lower currents, but for all cases examined its value is between 0.14 and 0.17. The nonlinear theory predicts the existence of normal forces, but has not predicted such a large constant of proportionality for the ratio. The type of coupling illustrated by these measurements would not tend to cause whirl, because the coupling coefficients have the same sign, unlike the case of a fluid film bearing, where the normal stiffness coefficients often have opposite signs. They might, however, tend to cause other self-excited behavior. This possibility must be considered when designing magnetic bearings for flexible rotor applications, such as gas turbines and other turbomachinery.

  8. Acromioclavicular joint dislocation: a Dog Bone button fixation alone versus Dog Bone button fixation augmented with acromioclavicular repair-a finite element analysis study.

    PubMed

    Sumanont, Sermsak; Nopamassiri, Supachoke; Boonrod, Artit; Apiwatanakul, Punyawat; Boonrod, Arunnit; Phornphutkul, Chanakarn

    2018-03-20

    Suspension suture button fixation was frequently used to treat acromioclavicular joint (ACJ) dislocation. However, there were many studies reporting about complications and residual horizontal instability after fixation. Our study compared the stability of ACJ after fixation between coracoclavicular (CC) fixation alone and CC fixation combined with ACJ repair by using finite element analysis (FEA). A finite element model was created by using CT images from the normal shoulder. The model 1 was CC fixation with suture button alone, and the model 2 was CC fixation with suture button combined with ACJ repair. Three different forces (50, 100, 200 N) applied to the model in three planes; inferior, anterior and posterior direction load to the acromion. The von Mises stress of the implants and deformation at ACJs was recorded. The ACJ repair in the model 2 could reduce the peak stress on the implant after applying the loading forces to the acromion which the ACJ repair could reduce the peak stress of the FiberWire at suture button about 90% when compared to model 1. And, the ACJ repair could reduce the deformation of the ACJ after applying the loading forces to the acromion in both vertical and horizontal planes. This FEA supports that the high-grade injuries of the ACJ should be treated with CC fixation combined with ACJ repair because this technique provides excellent stability in both vertical and horizontal planes and reduces stress to the suture button.

  9. Estimation of motion fields by non-linear registration for local lung motion analysis in 4D CT image data.

    PubMed

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz

    2010-11-01

    Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.

  10. Effect of the tidal-seismic resonance

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zheng, Y.

    2017-12-01

    For a moon spiraling inward to its planet, the tidal force frequency of a moon is increasing. When the distance of the moon to the planet is close enough, the tidal force frequency can intrude into the frequency range of planet normal modes. Usually the football mode, also known as 0S2, has the lowest frequency. This mode is most likely to be excited and coupled first. When the tidal force has the same frequency with the normal modes, the resonance can happen. The existence of the topography or internal heterogeneities of the planet can have mode coupling. So the energy of gravity force with higher spatial frequencies can be transferred to the low spatial 0S2 mode. The resonant mode 0S2 can exert a negative torque to the rotating moon so its orbit decays. With our 3D numerical boundary element method which takes into account planet surface topography (i.e., Mars as example), we found that the closer the moon is to the planet, the greater falling rate of the moon would be. We applied our method to a planet with equal size of Mars and elastic constants in possible range. The vibration amplitude on the planet surface can reach to the scale of meters when as the moon drop down to about 1.04 radius of the planet to achieve resonance with the 0S2 mode. Our modeling showed that the influence of tidal force caused resonance could not be neglected in the process of moon falling. On the other hand, the resonance may also be able to speed up the accretion of the early forming planet by absorbing the dust of small asteroid nearby by the tidal-seismic resonance.

  11. Kinematic and EMG Comparison of Gait in Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Edwards, W. Brent; Perusek, Gail P.; Lewandowski, Beth E.; Samorezov, Sergey

    2009-01-01

    Astronauts regularly perform treadmill locomotion as a part of their exercise prescription while onboard the International Space Station. Although locomotive exercise has been shown to be beneficial for bone, muscle, and cardiovascular health, astronauts return to Earth after long duration missions with net losses in all three areas [1]. These losses might be partially explained by fundamental differences in locomotive performance between normal gravity (NG) and microgravity (MG) environments. During locomotive exercise in MG, the subject must wear a waist and shoulder harness that is attached to elastomer bungees. The bungees are attached to the treadmill, and provide forces that are intended to replace gravity. However, unlike gravity, which provides a constant force upon all body parts, the bungees provide a spring force only to the harness. Therefore, subjects are subjected to two fundamental differences in MG: 1) forces returning the subject to the treadmill are not constant, and 2) forces are only applied to the axial skeleton at the waist and shoulders. The effectiveness of the exercise may also be affected by the magnitude of the gravity replacement load. Historically, astronauts have difficulty performing treadmill exercise with loads that approach body weight (BW) due to comfort and inherent stiffness in the bungee system. Although locomotion can be executed in MG, the unique requirements could result in performance differences as compared to NG. These differences may help to explain why long term training effects of treadmill exercise may differ from those found in NG. The purpose of this investigation was to compare locomotion in NG and MG to determine if kinematic or muscular activation pattern differences occur between gravitational environments.

  12. An investigation into the placement of force delivery systems and the initial forces applied by clinicians during space closure.

    PubMed

    Nattrass, C; Ireland, A J; Sherriff, M

    1997-05-01

    This in vitro investigation was designed to establish not only how clinicians apply forces for space closure when using the straight wire appliance and sliding mechanics, but also to quantify the initial force levels produced. A single typodont, with residual extraction space in each quadrant, was set up to simulate space closure using sliding mechanics. On two occasions, at least 2 months apart, 18 clinicians were asked to apply three force delivery systems to the typodont, in the manner in which they would apply it in a clinical situation. The three types of force delivery system investigated were elastomeric chain, an elastomeric module on a steel ligature, and a nickel-titanium closed coil spring. A choice of spaced or unspaced elastomeric chain produced by a single manufacturer was provided. The amount of stretch which was placed on each type of system was measured and, using an Instron Universal Testing Machine, the initial force which would be generated by each force delivery system was established. Clinicians were assessed to examine their consistency in the amount of stretch which each placed on the force delivery systems, their initial force application and their ability to apply equivalent forces with the different types of force delivery system. The clinicians were found to be consistent in their method of application of the force delivery systems and, therefore, their force application, as individuals, but there was a wide range of forces applied as a group. However, most clinicians applied very different forces when using different force delivery systems. When using the module on a ligature the greatest force was applied, whilst the nickel titanium coil springs provided the least force.

  13. The effect of spin in swing bowling in cricket: model trajectories for spin alone

    NASA Astrophysics Data System (ADS)

    Robinson, Garry; Robinson, Ian

    2015-02-01

    In ‘swing’ bowling, as employed by fast and fast-medium bowlers in cricket, back-spin along the line of the seam is normally applied in order to keep the seam vertical and to provide stability against ‘wobble’ of the seam. Whilst spin is normally thought of as primarily being the slow bowler's domain, the spin applied by the swing bowler has the side-effect of generating a lift or Magnus force. This force, depending on the orientation of the seam and hence that of the back-spin, can have a side-ways component as well as the expected vertical ‘lift’ component. The effect of the spin itself, in influencing the trajectory of the fast bowler's delivery, is normally not considered, presumably being thought of as negligible. The purpose of this paper is to investigate, using calculated model trajectories, the amount of side-ways movement due to the spin and to see how this predicted movement compares with the total observed side-ways movement. The size of the vertical lift component is also estimated. It is found that, although the spin is an essential part of the successful swing bowler's delivery, the amount of side-ways movement due to the spin itself amounts to a few centimetres or so, and is therefore small, but perhaps not negligible, compared to the total amount of side-ways movement observed. The spin does, however, provide a considerable amount of lift compared to the equivalent delivery bowled without spin, altering the point of pitching by up to 3 m, a very large amount indeed. Thus, for example, bowling a ball with the seam pointing directly down the pitch and not designed to swing side-ways at all, but with the amount of back-spin varied, could provide a very powerful additional weapon in the fast bowler's arsenal. So-called ‘sling bowlers’, who use a very low arm action, can take advantage of spin since effectively they can apply side-spin to the ball, giving rise to a large side-ways movement, ˜ 20{}^\\circ cm or more, which certainly is significant. For a given amount of spin the amount of side-ways movement increases as the bowler's delivery arm becomes more horizontal. This technique could also be exploited by normal spin bowlers as well as swing bowlers.

  14. Effect of Applying Force to Self-Adhesive Electrodes on Transthoracic Impedance: Implications for Electrical Cardioversion.

    PubMed

    Ramirez, F Daniel; Fiset, Sandra L; Cleland, Mark J; Zakutney, Timothy J; Nery, Pablo B; Nair, Girish M; Redpath, Calum J; Sadek, Mouhannad M; Birnie, David H

    2016-10-01

    Current guidelines disagree on the role for applying force to electrodes during electrical cardioversion (ECV) for atrial fibrillation, particularly when using self-adhesive pads. We evaluated the impact of this practice on transthoracic impedance (TTI) with varying force and in individuals with differing body mass indices (BMI). We additionally assessed whether specific prompts could improve physicians' ECV technique. The study comprised three parts: (1) TTI was measured in 11 participants throughout the respiratory cycle and with variable force applied to self-adhesive electrodes in anteroposterior (AP) and anterolateral (AL) configurations. (2) Three participants in different BMI classes then had TTI measured with prespecified incremental force applied. (3) Ten blinded cardiology trainees simulated ECV on one participant with and without prompting (guideline reminders and force analogies) while force applied and TTI were measured. The AP approach was associated with 13% lower TTI than AL (P < 0.001). Strongly negative correlations were observed between force applied and TTI in the AL position, irrespective of BMI (P ≤ 0.003). In all cases, 80% of the total reduction in TTI observed was achieved with 8 kg-force (∼80 N). All prompts resulted in significantly greater force applied and modest reductions in TTI. Applying force to self-adhesive electrodes reduces TTI and should be considered as a means of improving ECV success. Numerically greater mean force applied with a "push-up" force analogy suggests that "concrete" cues may be useful in improving ECV technique. © 2016 Wiley Periodicals, Inc.

  15. Evidence of protein-free homology recognition in magnetic bead force-extension experiments

    NASA Astrophysics Data System (ADS)

    O'Lee, D. J.; Danilowicz, C.; Rochester, C.; Kornyshev, A. A.; Prentiss, M.

    2016-07-01

    Earlier theoretical studies have proposed that the homology-dependent pairing of large tracts of dsDNA may be due to physical interactions between homologous regions. Such interactions could contribute to the sequence-dependent pairing of chromosome regions that may occur in the presence or the absence of double-strand breaks. Several experiments have indicated the recognition of homologous sequences in pure electrolytic solutions without proteins. Here, we report single-molecule force experiments with a designed 60 kb long dsDNA construct; one end attached to a solid surface and the other end to a magnetic bead. The 60 kb constructs contain two 10 kb long homologous tracts oriented head to head, so that their sequences match if the two tracts fold on each other. The distance between the bead and the surface is measured as a function of the force applied to the bead. At low forces, the construct molecules extend substantially less than normal, control dsDNA, indicating the existence of preferential interaction between the homologous regions. The force increase causes no abrupt but continuous unfolding of the paired homologous regions. Simple semi-phenomenological models of the unfolding mechanics are proposed, and their predictions are compared with the data.

  16. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prajapati, R. P., E-mail: prajapati-iter@yahoo.co.in; Bhakta, S.; Chhajlani, R. K.

    2016-05-15

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss,more » but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.« less

  17. Development of a multicomponent force and moment balance for water tunnel applications, volume 1

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Malcolm, Gerald N.; Kramer, Brian R.; Smith, Brooke C.; Ayers, Bert F.

    1994-01-01

    The principal objective of this research effort was to develop a multicomponent strain gauge balance to measure forces and moments on models tested in flow visualization water tunnels. An internal balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The five-components to applied loads, low interactions between the sections and no hysteresis. Static experiments (which are discussed in this Volume) were conducted in the Eidetics water tunnel with delta wings and a model of the F/A-18. Experiments with the F/A-18 model included a thorough baseline study and investigations of the effect of control surface deflections and of several Forebody Vortex Control (FVC) techniques. Results were compared to wind tunnel data and, in general, the agreement is very satisfactory. The results of the static tests provide confidence that loads can be measured accurately in the water tunnel with a relatively simple multicomponent internal balance. Dynamic experiments were also performed using the balance, and the results are discussed in detail in Volume 2 of this report.

  18. Friction Reduction through Ultrasonic Vibration Part 2: Experimental Evaluation of Intermittent Contact and Squeeze Film Levitation.

    PubMed

    Sednaoui, Thomas; Vezzoli, Eric; Dzidek, Brygida; Lemaire-Semail, Betty; Chappaz, Cedrick; Adams, Michael

    2017-01-01

    In part 1 of the current study of haptic displays, a finite element (FE) model of a finger exploring a plate vibrating out-of-plane at ultrasonic frequencies was developed as well as a spring-frictional slider model. It was concluded that the reduction in friction induced by the vibrations could be ascribed to ratchet mechanism as a result of intermittent contact. The relative reduction in friction calculated using the FE model could be superimposed onto an exponential function of a dimensionless group defined from relevant parameters. The current paper presents measurements of the reduction in friction, involving real and artificial fingertips, as a function of the vibrational amplitude and frequency, the applied normal force and the exploration velocity. The results are reasonably similar to the calculated FE values and also could be superimposed using the exponential function provided that the intermittent contact was sufficiently well developed, which for the frequencies examined correspond to a minimum vibrational amplitude of  ∼ 1 µm P-P. It was observed that the reduction in friction depends on the exploration velocity and is independent of the applied normal force and ambient air pressure, which is not consistent with the squeeze film mechanism. However, the modelling did not incorporate the influence of air and the effect of ambient pressure was measured under a limited range of conditions, Thus squeeze film levitation may be synergistic with the mechanical interaction.

  19. Time to consider the contact force during photoplethysmography measurement during pediatric anesthesia: A prospective, nonrandomized interventional study.

    PubMed

    Lee, Ji-Hyun; Yang, Seungman; Park, Jonghyun; Kim, Hee Chan; Kim, Eun-Hee; Jang, Young-Eun; Kim, Jin-Tae; Kim, Hee-Soo

    2018-06-19

    Respiratory variations in photoplethysmography amplitude enable volume status assessment. However, the contact force between the measurement site and sensor can affect photoplethysmography waveforms. We aimed to evaluate contact force effects on respiratory variations in photoplethysmography waveforms in children under general anesthesia. Children aged 3-5 years were enrolled. After anesthetic induction, mechanical ventilation commenced at a tidal volume of 10 mL/kg. Photoplethysmographic signals were obtained in the supine position from the index finger using a force sensor-integrated clip-type photoplethysmography sensor that increased the contact force from 0-1.4 N for 20 respiratory cycles at each force. The AC amplitude (pulsatile component), DC amplitude (nonpulsatile component), AC/DC ratio, and respiratory variations in photoplethysmography amplitude were calculated. Data from 34 children were analyzed. Seven contact forces at 0.2-N increments were evaluated for each patient. The normalized AC amplitude increased maximally at a contact force of 0.4-0.6 N and decreased with increasing contact force. However, the normalized DC amplitude increased with a contact force exceeding 0.4 N. ΔPOP decreased slightly and increased from the point when the AC amplitude started to decrease as contact force increased. In a 0.2-1.2 N contact force range, significant changes in the normalized AC amplitude, normalized DC amplitude, AC/DC ratio, and respiratory variations in photoplethysmography amplitude were observed. Respiratory variations in photoplethysmography amplitude changed according to variable contact forces; therefore, these measurements may not reflect respiration-induced stroke volume variations. Clinicians should consider contact force bias when interpreting morphological data from photoplethysmography signals. © 2018 John Wiley & Sons Ltd.

  20. Calculating intensities using effective Hamiltonians in terms of Coriolis-adapted normal modes.

    PubMed

    Karthikeyan, S; Krishnan, Mangala Sunder; Carrington, Tucker

    2005-01-15

    The calculation of rovibrational transition energies and intensities is often hampered by the fact that vibrational states are strongly coupled by Coriolis terms. Because it invalidates the use of perturbation theory for the purpose of decoupling these states, the coupling makes it difficult to analyze spectra and to extract information from them. One either ignores the problem and hopes that the effect of the coupling is minimal or one is forced to diagonalize effective rovibrational matrices (rather than diagonalizing effective rotational matrices). In this paper we apply a procedure, based on a quantum mechanical canonical transformation for deriving decoupled effective rotational Hamiltonians. In previous papers we have used this technique to compute energy levels. In this paper we show that it can also be applied to determine intensities. The ideas are applied to the ethylene molecule.

  1. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion.

    PubMed

    Derrick, Timothy R; Edwards, W Brent; Fellin, Rebecca E; Seay, Joseph F

    2016-02-08

    The purpose of this research was to utilize a series of models to estimate the stress in a cross section of the tibia, located 62% from the proximal end, during walking. Twenty-eight male, active duty soldiers walked on an instrumented treadmill while external force data and kinematics were recorded. A rigid body model was used to estimate joint moments and reaction forces. A musculoskeletal model was used to gather muscle length, muscle velocity, moment arm and orientation information. Optimization procedures were used to estimate muscle forces and finally internal bone forces and moments were applied to an inhomogeneous, subject specific bone model obtained from CT scans to estimate stress in the bone cross section. Validity was assessed by comparison to stresses calculated from strain gage data in the literature and sensitivity was investigated using two simplified versions of the bone model-a homogeneous model and an ellipse approximation. Peak compressive stress occurred on the posterior aspect of the cross section (-47.5 ± 14.9 MPa). Peak tensile stress occurred on the anterior aspect (27.0 ± 11.7 MPa) while the location of peak shear was variable between subjects (7.2 ± 2.4 MPa). Peak compressive, tensile and shear stresses were within 0.52 MPa, 0.36 MPa and 3.02 MPa respectively of those calculated from the converted strain gage data. Peak values from a inhomogeneous model of the bone correlated well with homogeneous model (normal: 0.99; shear: 0.94) as did the normal ellipse model (r=0.89-0.96). However, the relationship between shear stress in the inhomogeneous model and ellipse model was less accurate (r=0.64). The procedures detailed in this paper provide a non-invasive and relatively quick method of estimating cross sectional stress that holds promise for assessing injury and osteogenic stimulus in bone during normal physical activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Forces and moments on a slender, cavitating body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with thismore » code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.« less

  3. The effects of the sagittal plane malpositioning of the patella and concomitant quadriceps hypotrophy on the patellofemoral joint: a finite element analysis.

    PubMed

    Aksahin, Ertugrul; Kocadal, Onur; Aktekin, Cem N; Kaya, Defne; Pepe, Murad; Yılmaz, Serdar; Yuksel, H Yalcin; Bicimoglu, Ali

    2016-03-01

    Anterior knee pain is a common symptom after intramedullary nailing in tibia shaft fracture. Moreover, patellofemoral malalignment is also known to be a major reason for anterior knee pain. Patellofemoral malalignment predisposes to increased loading in patellar cartilage. In the previous study, we have demonstrated the quadriceps atrophy and patellofemoral malalignment after intramedullary nailing due to tibia shaft fracture. In this study, our aim was to clarify the effects of quadriceps atrophy and patellofemoral malalignment with the pathologic loading on the joint cartilage. Mesh models of patellofemoral joint were constructed with CT images and integrated with soft tissue components such as menisci and ligaments. Physiological and sagittal tilt models during extension and flexion at 15°, 30° and 60° were created generating eight models. All the models were applied with 137 N force to present the effects of normal loading and 115.7 N force for the simulation of quadriceps atrophy. Different degrees of loading were applied to evaluate the joint contact area and pressure value with the finite element analysis. There was increased patellofemoral contact area in patellar tilt models with respect to normal models. The similar loading patterns were diagnosed in all models at 0° and 15° knee flexion when 137 N force was applied. Higher loading values were obtained at 30° and 60° knee flexions in sagittal tilt models. Furthermore, in the sagittal tilt models, in which the quadriceps atrophy was simulated, the loadings at 30° and 60° knee flexion were higher than in the physiological ones. Sagittal malalignment of the patellofemoral joint is a new concept that results in different loading patterns in the patellofemoral joint biomechanics. This malalignment in sagittal plane leads to increased loading values on the patellofemoral joint at 30° and 60° of the knee flexions. This new concept should be kept in mind during the course of diagnosis and treatment in patients with anterior knee pain. Definition of the exact biomechanical effects of the sagittal tilting will lead to the development of new treatment modalities.

  4. Push-off forces in elite short-track speed skating.

    PubMed

    van der Kruk, Eline; Reijne, Marco M; de Laat, Bjorn; Veeger, DirkJan H E J

    2018-05-30

    This study performed an analysis of the push-off forces of elite-short-track speed skaters using a new designed instrumented short-track speed skate with the aim to improve short-track skating performance. Four different skating strokes were distinguished for short-track speed skaters at speed. The strokes differed in stroke time, force level in both normal and lateral directions, and the centre of pressure (COP) on the blade. Within the homogeneous group of male elite speed skaters (N = 6), diversity of execution of the force patterns in the four phases of skating was evident, while skating at the same velocities. The male participants (N = 6) with a better personal record (PR) kept the COP more to the rear of their blades while hanging into the curve (r = 0.82, p < 0.05), leaving the curve (r = 0.86, p < 0.05), and entering the straight (r = 0.76, p < 0.10). Furthermore, the male skaters with a better PR showed a trend of a lower lateral peak force while entering the curve (r = 0.74, p < 0.10). Females showed a trend towards applying higher body weight normalised lateral forces than the males, while skating at imposed lower velocities.

  5. Factors affecting the transverse force measurements of an optical trap: I

    NASA Astrophysics Data System (ADS)

    Wood, Tiffany A.; Wright, Amanda; Gleeson, Helen F.; Dickenson, Mark; Mullin, Tom; Murray, Andrew

    2002-03-01

    The transverse force of an optical trap is usually measured by equating the trapping force to the viscous drag force applied to the trapped particle according to Stokes' Law. Under normal conditions, the viscous drag force on a trapped particle is proportional to the fluid velocity of the medium. In this paper we show that an increase of particle concentration within the medium affects force measurements. In order to trap the particle, 1064 nm light from a Nd:YVO4 laser was brought to a focus in a sample slide, of thickness around 380 microns, by using an inverted Zeiss microscope objective, with NA equals 1.3. The slide was filled with distilled water containing 6 micron diameter polystyrene spheres. Measurements were taken at a fluid velocity of 0.75 microns/sec, achieved by moving the sample stage with a piezo-electric transducer whilst a particle was held stationary in the trap. The laser power required to hold a sphere at different trap depths for various concentrations was measured. Significant weakening of the trap was found for concentrations >0.03% solids by weight, becoming weaker for higher trap depths. These results are explained in terms of aberrations, particle-particle interactions and distortion of the beam due to particle-light interactions.

  6. Full-Scale Linear Cutting Tests in Chongqing Sandstone to Study the Influence of Confining Stress on Rock Cutting Forces by TBM Disc Cutter

    NASA Astrophysics Data System (ADS)

    Pan, Yucong; Liu, Quansheng; Liu, Jianping; Peng, Xingxin; Kong, Xiaoxuan

    2018-06-01

    In order to study the influence of confining stress on rock cutting forces by tunnel boring machine (TBM) disc cutter, full-scale linear cutting tests are conducted in Chongqing Sandstone (uniaxial compressive strength 60.76 MPa) using five equal biaxial confining stressed conditions, i.e. 0-0, 5-5, 10-10, 15-15 and 20-20 MPa; disc cutter normal force, rolling force, cutting coefficient and normalized resultant force are analysed. It is found that confining stress can greatly affect disc cutter resultant force, its proportion in normal and rolling directions and its acting point for the hard Chongqing Sandstone and the confining stress range used in this study. For every confining stressed condition, as cutter penetration depth increases, disc cutter normal force increases with decreasing speed, rolling force and cutting coefficient both increase linearly, and acting point of the disc cutter resultant force moves downward at some extent firstly and then upward back to its initial position. For same cutter penetration depth, as confining stress increases, disc cutter normal force, rolling force, cutting coefficient and normalized resultant force all increase at some extent firstly and then decrease rapidly to very small values (quite smaller than those obtained under the non-stressed condition) after some certain confining stress thresholds. The influence of confining stress on rock cutting by TBM disc cutter can be generally divided into three stages as confining stress increases, i.e. strengthening effect stage, damaging effect stage and rupturing effect stage. In the former two stages (under low confining stress), rock remains intact and rock cutting forces are higher than those obtained under the non-stressed condition, and thus rock cutting by TBM disc cutter is restrained; in the last stage (under high confining stress), rock becomes non-intact and rock slabbing failure is induced by confining stress before disc cutting, and thus rock cutting by TBM disc cutter is facilitated. Meanwhile, some critical values of confining stress and cutter penetration depth are identified to represent the changes of rock cutting state. This study provides better understanding of the influence of confining stress on disc cutter performance and can guide to optimize the TBM operation under stressed condition.

  7. Theoretical analysis of evaporative cooling of classic heat stroke patients

    NASA Astrophysics Data System (ADS)

    Alzeer, Abdulaziz H.; Wissler, E. H.

    2018-05-01

    Heat stroke is a serious health concern globally, which is associated with high mortality. Newer treatments must be designed to improve outcomes. The aim of this study is to evaluate the effect of variations in ambient temperature and wind speed on the rate of cooling in a simulated heat stroke subject using the dynamic model of Wissler. We assume that a 60-year-old 70-kg female suffers classic heat stroke after walking fully exposed to the sun for 4 h while the ambient temperature is 40 °C, relative humidity is 20%, and wind speed is 2.5 m/s-1. Her esophageal and skin temperatures are 41.9 and 40.7 °C at the time of collapse. Cooling is accomplished by misting with lukewarm water while exposed to forced airflow at a temperature of 20 to 40 °C and a velocity of 0.5 or 1 m/s-1. Skin blood flow is assumed to be either normal, one-half of normal, or twice normal. At wind speed of 0.5 m/s-1 and normal skin blood flow, the air temperature decreased from 40 to 20 °C, increased cooling, and reduced time required to reach to a desired temperature of 38 °C. This relationship was also maintained in reduced blood flow states. Increasing wind speed to 1 m/s-1 increased cooling and reduced the time to reach optimal temperature both in normal and reduced skin blood flow states. In conclusion, evaporative cooling methods provide an effective method for cooling classic heat stroke patients. The maximum heat dissipation from the simulated model of Wissler was recorded when the entire body was misted with lukewarm water and applied forced air at 1 m/s at temperature of 20 °C.

  8. Fertility of male adult rats submitted to forced swimming stress.

    PubMed

    Mingoti, G Z; Pereira, R N; Monteiro, C M R

    2003-05-01

    We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment) were forced to swim for 3 min in water at 32 degrees C daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group) were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a significant increase in the latency of the pain response in the hot-plate test (14.6 +/- 1.25 s for control males vs 26.0 +/- 1.53 s for stressed males, P = 0.0004). No changes were observed in body weight, testicular weight, seminal vesicle weight, ventral prostate weight or gross histological features of the testes of stressed males. Similarly, no changes were observed in fertility rate, measured by counting live fetuses in the uterus of normal females mated with control and stressed males; no dead or incompletely developed fetuses were observed in the uterus of either group. In contrast, there was a statistically significant decrease in spermatid production demonstrated by histometric evaluation (154.96 +/- 5.41 vs 127.02 +/- 3.95 spermatids per tubular section for control and stressed rats, respectively, P = 0.001). These data demonstrate that 15 days of forced swimming stress applied to adult male rats did not impair fertility, but significantly decreased spermatid production. This suggests that the effect of stress on fertility should not be assessed before at least the time required for one cycle of spermatogenesis.

  9. The Effects of Partial Mechanical Loading and Ibandronate on Skeletal Tissues in the Adult Rat Hindquarter Suspension Model for Microgravity

    NASA Technical Reports Server (NTRS)

    Schultheis, Lester W.

    1999-01-01

    We report initial data from a suspended rat model that quantitatively relates chronic partial weightbearing to bone loss. Chronic partial weightbearing is our simulation of the effect of limited artificial gravity aboard spacecraft or reduced planetary gravity. Preliminary analysis of bone by PQCT, histomorphometry, mechanical testing and biochemistry suggest that chronic exposure to half of Earth gravity is insufficient to prevent severe bone loss. The effect of episodic full weightbearing activity (Earth Gravity) on rats otherwise at 50% weightbearing was also explored. This has similarity to treatment by an Earth G-rated centrifuge on a spacecraft that normally maintained artificial gravity at half of Earth G. Our preliminary evidence, using the above techniques to analyze bone, indicate that 2 hours daily of full weightbearing was insufficient to prevent the bone loss observed in 50% weightbearing animals. The effectiveness of partial weightbearing and episodic full weightbearing as potential countermeasures to bone loss in spaceflight was compared with treatment by ibandronate. Ibandronate, a long-acting potent bisphosphonate proved more effective in preventing bone loss and associated functionality based upon structure than our first efforts at mechanical countermeasures. The effectiveness of ibandronate was notable by each of the testing methods we used to study bone from gross structure and strength to tissue and biochemistry. These results appear to be independent of generalized systemic stress imposed by the suspension paradigm. Preliminary evidence does not suggest that blood levels of vitamin D were affected by our countermeasures. Despite the modest theraputic benefit of mechanical countermeasures of partial weightbearing and episodic full weightbearing, we know that some appropriate mechanical signal maintains bone mass in Earth gravity. Moreover, the only mechanism that correctly assigns bone mass and strength to oppose regionally specific force applied to bone is mechanical, a process based upon bone strain. Substantial evidence indicates that the specifics of dynamic loading i.e. time-varying forces are critical. Bone strain history is a predictor of the effect that mechanical conditions have on bone structure mass and strength. Using servo-controlled force plates on suspended rats with implanted strain gauges we manipulated impact forces of ambulation in the frequency (Fourier) domain. Our results indicate that high frequency components of impact forces are particularly potent in producing bone strain independent of the magnitude of the peak force or peak energy applied to the leg. Because a servo-system responds to forces produced by the rat's own muscle activity during ambulation, the direction of ground-reaction loads act on bone through the rat's own musculature. This is in distinction to passive vibration of the floor where forces reach bone through the natural filters of soft tissue and joints. Passive vibration may also be effective, but it may or may not increase bone in the appropriate architectural pattern to oppose the forces of normal ambulatory activity. Effectiveness of high frequency mechanical stimulation in producing regional (muscle directed) bone response will be limited by 1. the sensitivity of bone to a particular range of frequencies and 2. the inertia of the muscles, limiting their response to external forces by increasing tension along insertions. We have begun mathematical modeling of normal ambulatory activity. Effectiveness of high frequency mechanical stimulation in producing regional (muscle directed) bone response will be limited by 1. the sensitivity of bone to a particular range of frequencies and 2. the inertia of the muscles, limiting their response to external forces by increasing tension along insertions. We have begun mathematical modeling of the rat forelimb as a transfer function between impact force and bone strain to predict optimal dynamic loading conditions for this system. We plan additional studies of mechanical counter-measures that incorporate improved dynamic loading, features relevant to anticipated evaluation of artificial gravity, exercise regimens and exposure to Martian gravity, The combination of mechanical countermeasures with ibandronate will also be investigated for signs of synergy.

  10. Self-force calculations with matched expansions and quasinormal mode sums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casals, Marc; Dolan, Sam; Ottewill, Adrian C.

    2009-06-15

    Accurate modeling of gravitational wave emission by extreme-mass ratio inspirals is essential for their detection by the LISA mission. A leading perturbative approach involves the calculation of the self-force acting upon the smaller orbital body. In this work, we present the first application of the Poisson-Wiseman-Anderson method of 'matched expansions' to compute the self-force acting on a point particle moving in a curved spacetime. The method employs two expansions for the Green function, which are, respectively, valid in the 'quasilocal' and 'distant past' regimes, and which may be matched together within the normal neighborhood. We perform our calculation in amore » static region of the spherically symmetric Nariai spacetime (dS{sub 2}xS{sup 2}), in which scalar-field perturbations are governed by a radial equation with a Poeschl-Teller potential (frequently used as an approximation to the Schwarzschild radial potential) whose solutions are known in closed form. The key new ingredients in our study are (i) very high order quasilocal expansions and (ii) expansion of the distant past Green function in quasinormal modes. In combination, these tools enable a detailed study of the properties of the scalar-field Green function. We demonstrate that the Green function is singular whenever x and x{sup '} are connected by a null geodesic, and apply asymptotic methods to determine the structure of the Green function near the null wave front. We show that the singular part of the Green function undergoes a transition each time the null wave front passes through a caustic point, following a repeating fourfold sequence {delta}({sigma}), 1/{pi}{sigma}, -{delta}({sigma}), -1/{pi}{sigma}, etc., where {sigma} is Synge's world function. The matched-expansion method provides insight into the nonlocal properties of the self-force. We show that the self-force generated by the segment of the worldline lying outside the normal neighborhood is not negligible. We apply the matched-expansion method to compute the scalar self-force acting on a static particle on the Nariai spacetime, and validate against an alternative method, obtaining agreement to six decimal places. We conclude with a discussion of the implications for wave propagation and self-force calculations. On black hole spacetimes, any expansion of the Green function in quasinormal modes must be augmented by a branch-cut integral. Nevertheless, we expect the Green function in Schwarzschild spacetime to inherit certain key features, such as a fourfold singular structure manifesting itself through the asymptotic behavior of quasinormal modes. In this way, the Nariai spacetime provides a fertile testing ground for developing insight into the nonlocal part of the self-force on black hole spacetimes.« less

  11. A multifunctional force microscope for soft matter with in situ imaging

    NASA Astrophysics Data System (ADS)

    Roberts, Paul; Pilkington, Georgia A.; Wang, Yumo; Frechette, Joelle

    2018-04-01

    We present the multifunctional force microscope (MFM), a normal and lateral force-measuring instrument with in situ imaging. In the MFM, forces are calculated from the normal and lateral deflection of a cantilever as measured via fiber optic sensors. The motion of the cantilever is controlled normally by a linear micro-translation stage and a piezoelectric actuator, while the lateral motion of the sample is controlled by another linear micro-translation stage. The micro-translation stages allow for travel distances that span 25 mm with a minimum step size of 50 nm, while the piezo has a minimum step size of 0.2 nm, but a 100 μm maximum range. Custom-designed cantilevers allow for the forces to be measured over 4 orders of magnitude (from 50 μN to 1 N). We perform probe tack, friction, and hydrodynamic drainage experiments to demonstrate the sensitivity, versatility, and measurable force range of the instrument.

  12. The origin and development of malocclusions. When, where and how dental malocclusions develop.

    PubMed

    Loudon, Merle E

    2013-01-01

    This article describes the forces of the muscles from the stomatonathic system and how they interact in many children to change the normal forces of growth. Because of this change in muscle forces there is a change from normal teeth and bone growth positions to abnormal positions. These normal and/or abnormal changes in muscle forces are the basis for development into class one, class two and class three occlusions. This is very valuable information for the orthodontic clinician because these muscle forces are the fundamental basis for all orthodontic treatment. By knowing this an orthodontic clinician will be more able to diagnose and treat a malocclusion. This is exceptionally important for the dentist who is just starting to learn diagnosis, treatment planning, functional and fixed orthodontic treatment.

  13. Comprehension of handwriting development: Pen-grip kinetics in handwriting tasks and its relation to fine motor skills among school-age children.

    PubMed

    Lin, Yu-Chen; Chao, Yen-Li; Wu, Shyi-Kuen; Lin, Ho-Hsio; Hsu, Chieh-Hsiang; Hsu, Hsiao-Man; Kuo, Li-Chieh

    2017-10-01

    Numerous tools have been developed to evaluate handwriting performances by analysing written products. However, few studies have directly investigated kinetic performances of digits when holding a pen. This study thus attempts to investigate pen-grip kinetics during writing tasks of school-age children and explore the relationship between the kinetic factors and fine motor skills. This study recruited 181 children aged from 5 to 12 years old and investigated the effects of age on handwriting kinetics and the relationship between these and fine motor skills. The forces applied from the digits and pen-tip were measured during writing tasks via a force acquisition pen, and the children's fine motor performances were also evaluated. The results indicate that peak force and average force might not be direct indicators of handwriting performance for normally developing children at this age. Younger children showed larger force variation and lower adjustment frequency during writing, which might indicate they had poorer force control than the older children. Force control when handling a pen is significantly correlated with fine motor performance, especially in relation to the manual dexterity. A novel system is proposed for analysing school-age children's force control while handwriting. We observed the development of force control in relation to pen grip among the children with different ages in this study. The findings suggested that manipulation skill may be crucial when children are establishing their handwriting capabilities. © 2017 Occupational Therapy Australia.

  14. Bracing of pectus carinatum: A quantitative analysis.

    PubMed

    Bugajski, Tomasz; Murari, Kartikeya; Lopushinsky, Steven; Schneider, Marc; Ronsky, Janet

    2018-05-01

    Primary treatment of pectus carinatum (PC) is performed with an external brace that compresses the protrusion. Patients are 'prescribed' a brace tightening force. However, no visual guides exist to display this force magnitude. The purpose of this study was to determine the repeatability of patients in applying their prescribed force over time and to determine whether the protrusion stiffness influences the patient-applied forces and the protrusion correction rate. Twenty-one male participants (12-17years) with chondrogladiolar PC were recruited at the time of brace fitting. Participants were evaluated on three visits: fitting, one month postfitting, and two months postfitting. Differences between prescribed force and patient-applied force were evaluated. Relationships of patient-applied force and correction rate with protrusion stiffness were assessed. Majority of individuals followed for two months (75%) had a significantly different patient-applied force (p<0.05) from their prescribed force. Protrusion stiffness had a positive relationship with patient-applied force, but no relationship with correction rate. Patients did not follow their prescribed force. Magnitudes of these differences require further investigation to determine clinical significance. Patient-applied forces were influenced by protrusion stiffness, but correction rate was not. Other factors may influence these variables, such as patient compliance. Treatment Study - Level IV. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Asymptotic co- and post-seismic displacements in a homogeneous Maxwell sphere

    NASA Astrophysics Data System (ADS)

    Tang, He; Sun, Wenke

    2018-07-01

    The deformations of the Earth caused by internal and external forces are usually expressed through Green's functions or the superposition of normal modes, that is, via numerical methods, which are applicable for computing both co- and post-seismic deformations. It is difficult to express these deformations in an analytical form, even for a uniform viscoelastic sphere. In this study, we present a set of asymptotic solutions for computing co- and post-seismic displacements; these solutions can be further applied to solving co- and post-seismic geoid, gravity and strain changes. Expressions are derived for a uniform Maxwell Earth by combining the reciprocity theorem, which links earthquake, tidal, shear and loading deformations, with the asymptotic solutions of these three external forces (tidal, shear and loading) and analytical inverse Laplace transformation formulae. Since the asymptotic solutions are given in a purely analytical form without series summations or extra convergence skills, they can be practically applied in an efficient way, especially when computing post-seismic deformations and glacial isotactic adjustments of the Earth over long timescales.

  16. Asymptotic Co- and Post-seismic displacements in a homogeneous Maxwell sphere

    NASA Astrophysics Data System (ADS)

    Tang, He; Sun, Wenke

    2018-05-01

    The deformations of the Earth caused by internal and external forces are usually expressed through Green's functions or the superposition of normal modes, i.e. via numerical methods, which are applicable for computing both co- and post-seismic deformations. It is difficult to express these deformations in an analytical form, even for a uniform viscoelastic sphere. In this study, we present a set of asymptotic solutions for computing co- and post-seismic displacements; these solutions can be further applied to solving co- and post-seismic geoid, gravity, and strain changes. Expressions are derived for a uniform Maxwell Earth by combining the reciprocity theorem, which links earthquake, tidal, shear and loading deformations, with the asymptotic solutions of these three external forces (tidal, shear and loading) and analytical inverse Laplace transformation formulae. Since the asymptotic solutions are given in a purely analytical form without series summations or extra convergence skills, they can be practically applied in an efficient way, especially when computing post-seismic deformations and glacial isotactic adjustments of the Earth over long timescales.

  17. Virtual surface characteristics of a tactile display using magneto-rheological fluids.

    PubMed

    Lee, Chul-Hee; Jang, Min-Gyu

    2011-01-01

    Virtual surface characteristics of tactile displays are investigated to characterize the feeling of human touch for a haptic interface application. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, friction, and topography of the surface. Thus, the tactile display can provide information on the surface of an organic tissue to the surgeon in virtual reality. In order to investigate the compliance feeling of a human finger's touch, normal force responses of a tactile display under various magnetic fields have been assessed. Also, shearing friction force responses of the tactile display are investigated to simulate the action of finger dragging on the surface. Moreover, different matrix arrays of magnetic poles are applied to form the virtual surface topography. From the results, different tactile feelings are observed according to the applied magnetic field strength as well as the arrays of magnetic poles combinations. This research presents a smart tactile display technology for virtual surfaces.

  18. Simultaneous calibration of ensemble river flow predictions over an entire range of lead times

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Fundel, F.; Zappa, M.

    2013-10-01

    Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.

  19. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    PubMed Central

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  20. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    PubMed

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  1. Development of a New Method to Investigate the Dynamic Friction Behavior of Interfaces Using a Kolsky Tension Bar

    DOE PAGES

    Sanborn, B.; Song, B.; Nishida, E.

    2017-11-02

    In order to understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steelmore » and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. Additionally, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.« less

  2. Rehabilitation of the Overhead Athlete’s Elbow

    PubMed Central

    Wilk, Kevin E.; Macrina, Leonard C.; Cain, E. Lyle; Dugas, Jeffrey R.; Andrews, James R.

    2012-01-01

    The activities required during overhead sports, particularly during baseball pitching, produce large forces at the elbow joint. Injuries to the elbow joint frequently occur in the overhead athlete because of the large amount of forces observed during the act of throwing, playing tennis, or playing golf. Injuries may result because of repetitive overuse, leading to tissue failure. Rehabilitation following injury or surgery to the throwing elbow is vital to fully restore normal function and return the athlete to competition as quickly and safely as possible. Rehabilitation of the elbow, whether following injury or postsurgical, must follow a progressive and sequential order, building on the previous phase, to ensure that healing tissues are not compromised. Emphasis is placed on restoring full motion, muscular strength, and neuromuscular control while gradually applying loads to healing tissue. In addition, when one is creating a rehabilitation plan for athletes, it is imperative to treat the entire upper extremity, core, and legs to create and dissipate the forces generated at each joint. PMID:23016113

  3. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  4. Apparatus for enhancing tissue repair in mammals

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2007-01-01

    An apparatus is disclosed for enhancing tissue repair in mammals, with the apparatus comprising: a sleeve for encircling a portion of a mammalian body part, said sleeve comprising an electrically conductive coil capable of generating an electromagnetic field when an electrical current is applied thereto, means for supporting the sleeve on the mammalian body part; and means for supplying the electrically conductive coil with a square wave time varying electrical current sufficient to create a time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss within the interior of the coil in order that when the sleeve is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss is generated on the mammalian body part for an extended period of time, tissue regeneration within the mammalian body part is increased to a rate in excess of the normal tissue regeneration rate that would occur without application of the time varying electromagnetic force.

  5. An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibaev, M.; Crittenden, D. L., E-mail: deborah.crittenden@canterbury.ac.nz

    In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear coordinates with naturally limited mode-mode coupling, and then transforming between coordinate sets analytically. The optimal balance between accuracy and efficiency is achieved by transforming from 3 mode representation quartic force fields in curvilinear normal mode coordinates to 4 mode representation sextic force fields in rectilinear normal modes. Using this reduced mode-representation strategy introduces an error of only 1 cm{sup −1} in fundamental frequencies, on average, across a sizable testmore » set of molecules. We demonstrate that if it is feasible to generate an initial semi-quartic force field in curvilinear normal mode coordinates from ab initio data, then the subsequent coordinate transformation procedure will be relatively fast with modest memory demands. This procedure facilitates solving the nuclear vibrational problem, as all required integrals can be evaluated analytically. Our coordinate transformation code is implemented within the extensible PyPES library program package, at http://sourceforge.net/projects/pypes-lib-ext/.« less

  6. The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy.

    PubMed

    Huang, Jen-Ching; Weng, Yung-Jin

    2014-01-01

    This study focused on the nanomachining property and cutting model of single-crystal sapphire during nanomachining. The coated diamond probe is used to as a tool, and the atomic force microscopy (AFM) is as an experimental platform for nanomachining. To understand the effect of normal force on single-crystal sapphire machining, this study tested nano-line machining and nano-rectangular pattern machining at different normal force. In nano-line machining test, the experimental results showed that the normal force increased, the groove depth from nano-line machining also increased. And the trend is logarithmic type. In nano-rectangular pattern machining test, it is found when the normal force increases, the groove depth also increased, but rather the accumulation of small chips. This paper combined the blew by air blower, the cleaning by ultrasonic cleaning machine and using contact mode probe to scan the surface topology after nanomaching, and proposed the "criterion of nanomachining cutting model," in order to determine the cutting model of single-crystal sapphire in the nanomachining is ductile regime cutting model or brittle regime cutting model. After analysis, the single-crystal sapphire substrate is processed in small normal force during nano-linear machining; its cutting modes are ductile regime cutting model. In the nano-rectangular pattern machining, due to the impact of machined zones overlap, the cutting mode is converted into a brittle regime cutting model. © 2014 Wiley Periodicals, Inc.

  7. Performance evaluation of a six-axis generalized force-reflecting teleoperator

    NASA Technical Reports Server (NTRS)

    Hannaford, B.; Wood, L.; Guggisberg, B.; Mcaffee, D.; Zak, H.

    1989-01-01

    Work in real-time distributed computation and control has culminated in a prototype force-reflecting telemanipulation system having a dissimilar master (cable-driven, force-reflecting hand controller) and a slave (PUMA 560 robot with custom controller), an extremely high sampling rate (1000 Hz), and a low loop computation delay (5 msec). In a series of experiments with this system and five trained test operators covering over 100 hours of teleoperation, performance was measured in a series of generic and application-driven tasks with and without force feedback, and with control shared between teleoperation and local sensor referenced control. Measurements defining task performance included 100-Hz recording of six-axis force/torque information from the slave manipulator wrist, task completion time, and visual observation of predefined task errors. The task consisted of high precision peg-in-hole insertion, electrical connectors, velcro attach-de-attach, and a twist-lock multi-pin connector. Each task was repeated three times under several operating conditions: normal bilateral telemanipulation, forward position control without force feedback, and shared control. In shared control, orientation was locally servo controlled to comply with applied torques, while translation was under operator control. All performance measures improved as capability was added along a spectrum of capabilities ranging from pure position control through force-reflecting teleoperation and shared control. Performance was optimal for the bare-handed operator.

  8. The influence of aminotransferase levels on liver stiffness assessed by Acoustic Radiation Force Impulse Elastography: a retrospective multicentre study.

    PubMed

    Bota, Simona; Sporea, Ioan; Peck-Radosavljevic, Markus; Sirli, Roxana; Tanaka, Hironori; Iijima, Hiroko; Saito, Hidetsugu; Ebinuma, Hirotoshi; Lupsor, Monica; Badea, Radu; Fierbinteanu-Braticevici, Carmen; Petrisor, Ana; Friedrich-Rust, Mireen; Sarrazin, Christoph; Takahashi, Hirokazu; Ono, Naofumi; Piscaglia, Fabio; Marinelli, Sara; D'Onofrio, Mirko; Gallotti, Anna; Salzl, Petra; Popescu, Alina; Danila, Mirela

    2013-09-01

    Acoustic Radiation Force Impulse Elastography is a new method for non-invasive evaluation of liver fibrosis. To evaluate the impact of elevated alanine aminotransferase levels on liver stiffness assessment by Acoustic Radiation Force Impulse Elastography. A multicentre retrospective study including 1242 patients with chronic liver disease, who underwent liver biopsy and Acoustic Radiation Force Impulse. Transient Elastography was also performed in 512 patients. The best Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis was 1.29 m/s in cases with normal alanine aminotransferase levels and 1.44 m/s in patients with alanine aminotransferase levels>5 × the upper limit of normal. The best cut-off for predicting liver cirrhosis were 1.59 and 1.75 m/s, respectively. Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis and cirrhosis were relatively similar in patients with normal alanine aminotransferase and in those with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal: 1.29 m/s vs. 1.36 m/s and 1.59 m/s vs. 1.57 m/s, respectively. For predicting cirrhosis, the Transient Elastography cut-offs were significantly higher in patients with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal compared to those with normal alanine aminotransferase: 12.3 kPa vs. 9.1 kPa. Liver stiffness values assessed by Acoustic Radiation Force Impulse and Transient Elastography are influenced by high aminotransferase levels. Transient Elastography was also influenced by moderately elevated aminotransferase levels. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  9. Spatial differences of cellular origins and in vivo hypoxia modify contractile properties of pulmonary artery smooth muscle cells: lessons for arterial tissue engineering.

    PubMed

    Hall, S M; Soueid, A; Smith, T; Brown, R A; Haworth, S G; Mudera, V

    2007-01-01

    Tissue engineering of functional arteries is challenging. Within the pulmonary artery wall, smooth muscle cells (PASMCs) have site-specific developmental and functional phenotypes, reflecting differing contractile roles. The force generated by PASMCs isolated from the inner 25% and outer 50% of the media of intrapulmonary elastic arteries from five normal and eight chronically hypoxic (hypertensive) 14 day-old piglets was quantified in a three-dimensional (3D) collagen construct, using a culture force monitor. Outer medial PASMCs from normal piglets exerted more force (528 +/- 50 dynes) than those of hypoxic piglets (177 +/- 42 dynes; p < 0.01). Force generation by inner medial PASMCs from normal and hypoxic piglets was similar (349 +/- 35 and 239 +/- 60 dynes). In response to agonist (thromboxane) stimulation, all PASMCs from normal and hypoxic piglets contracted, but the increase in force generated by outer and inner hypoxic PASMCs (ranges 13-72 and 14-56 dynes) was less than by normal PASMCs (ranges 27-154 and 34-159 dynes, respectively; p < 0.05 for both). All hypoxic PASMCs were unresponsive to antagonist (sodium nitroprusside) stimulation, all normal PASMCs relaxed (range - 87 to - 494 dynes). Myosin heavy chain expression by both hypoxic PASMC phenotypes was less than normal (p < 0.05 for both), as was the activity of focal adhesion kinase, regulating contraction, in hypoxic inner PASMCs (p < 0.01). Chronic hypoxia resulted in the development of abnormal PASMC phenotypes, which in collagen constructs exhibited a reduction in contractile force and reactivity to agonists. Characterization of the mechanical response of spatially distinct cells and modification of their behaviour by hypoxia is critical for successful tissue engineering of major blood vessels.

  10. Object Imaging Accomplished with an Integrated Circuit Robotic Tactile Sensor Incorporating a Piezoelectric Polyvinylidene Fluoride Thin Film

    DTIC Science & Technology

    1993-12-01

    sensor response. That is, the tactile sensor’s response to a temperature change could be interpreted as the sensor’s response solely to an externally...is a vector quantity. A force acting on a surface can be interpreted in terms of a normal and a tangential component. Often, these components are...polarization [12]: 3-16 h K" + (3.34) Similarly, the stress in a material due to an applied strain and polarization is [12]: T = cS- hTP (3.35) The electric

  11. Vortex creep and the internal temperature of neutron stars. I - General theory

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Pines, D.; Anderson, P. W.; Shaham, J.

    1984-01-01

    The theory of a neutron star superfluid coupled to normal matter via thermal creep against pinning forces is developed in some detail. General equations of motion for a pinned rotating superfluid and their form for vortex creep are given. Steady state creep and the way in which the system approaches the steady state are discussed. The developed formalism is applied to the postglitch relaxation of a pulsar, and detailed models are developed which permit explicit calculation of the postglitch response. The energy dissipation associated with creep and glitches is considered.

  12. Computer Vision Tracking Using Particle Filters for 3D Position Estimation

    DTIC Science & Technology

    2014-03-27

    the United States Air Force, the Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is...probability distribution (unless otherwise noted) π proposal distribution ω importance weight i index of normalized weights δ Dirac -delta function x...p(x) and the importance weights, where δ is the Dirac delta function [2, p. 178]. p(x) = N∑ n=1 ωnδ (x − xn) (2.14) ωn ∝ p(x) π(x) (2.15) Applying

  13. Alternating method applied to edge and surface crack problems

    NASA Technical Reports Server (NTRS)

    Hartranft, R. J.; Sih, G. C.

    1972-01-01

    The Schwarz-Neumann alternating method is employed to obtain stress intensity solutions to two crack problems of practical importance: a semi-infinite elastic plate containing an edge crack which is subjected to concentrated normal and tangential forces, and an elastic half space containing a semicircular surface crack which is subjected to uniform opening pressure. The solution to the semicircular surface crack is seen to be a significant improvement over existing approximate solutions. Application of the alternating method to other crack problems of current interest is briefly discussed.

  14. Quantifying force application to a newborn manikin during simulated cardiopulmonary resuscitation.

    PubMed

    Solevåg, Anne Lee; Cheung, Po-Yin; Li, Elliott; Aziz, Khalid; O'Reilly, Megan; Fu, Bo; Zheng, Bin; Schmölzer, Georg

    2016-01-01

    To assess utility of the FingerTPS™ system in measuring chest compression (CC) rate and force. Five minutes of CC was performed in a neonatal manikin without (n = 29) and with (n = 30) a metronome. The FingerTPS™ force (lbs.) was compared to pressure (mmHg) in a 50-mL normal-saline bag inside the manikin. FingerTPS™ CC rate and the time until a 20% decline from baseline force and pressure were calculated. The normal-saline pressure declined earlier than the FingerTPS™ force. Metronome use did not influence CC rate, force or pressure. The FingerTPS™ can be used to measure CC rate and force.

  15. Cervical spine mobilisation forces applied by physiotherapy students.

    PubMed

    Snodgrass, Suzanne J; Rivett, Darren A; Robertson, Val J; Stojanovski, Elizabeth

    2010-06-01

    Postero-anterior (PA) mobilisation is commonly used in cervical spine treatment and included in physiotherapy curricula. The manual forces that students apply while learning cervical mobilisation are not known. Quantifying these forces informs the development of strategies for learning to apply cervical mobilisation effectively and safely. This study describes the mechanical properties of cervical PA mobilisation techniques applied by students, and investigates factors associated with force application. Physiotherapy students (n=120) mobilised one of 32 asymptomatic subjects. Students applied Grades I to IV central and unilateral PA mobilisation to C2 and C7 of one asymptomatic subject. Manual forces were measured in three directions using an instrumented treatment table. Spinal stiffness of mobilised subjects was measured at C2 and C7 using a device that applied a standard oscillating force while measuring this force and its concurrent displacement. Analysis of variance was used to determine differences between techniques and grades, intraclass correlation coefficients (ICC) were used to calculate the inter- and intrastudent repeatability of forces, and linear regression was used to determine the associations between applied forces and characteristics of students and mobilised subjects. Mobilisation forces increased from Grades I to IV (highest mean peak force, Grade IV C7 central PA technique: 63.7N). Interstudent reliability was poor [ICC(2,1)=0.23, 95% confidence interval (CI) 0.14 to 0.43], but intrastudent repeatability of forces was somewhat better (0.83, 95% CI 0.81 to 0.86). Higher applied force was associated with greater C7 stiffness, increased frequency of thumb pain, male gender of the student or mobilised subject, and a student being earlier in their learning process. Lower forces were associated with greater C2 stiffness. This study describes the cervical mobilisation forces applied by students, and the characteristics of the student and mobilised subject associated with these forces. These results form a basis for the development of strategies to provide objective feedback to students learning to apply cervical mobilisation. Copyright 2009 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  16. Regional aerosol radiative and hydrological effects over the mid-Atlantic corridor

    NASA Astrophysics Data System (ADS)

    Creekmore, Torreon N.

    A thorough assessment of direct, indirect, and semi-direct influences of aerosols on Earth's energy budget is required to better understand climate and estimate how it may change in the future. Clear-sky surface broadband (measured and modeled) irradiance, spectral aerosol optical depth, heating rate profiles, and non-radiative flux measurements were conducted at a state-of-the-art site, developed by the NOAA-Howard University Center for Atmospheric Sciences (NCAS) program, providing a best estimate of aerosol radiative atmosphere-surface interactions. Methods developed by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program were applied to: (1) temporally quantify regional aerosol forcing, (2) to derive an empirical equation describing a relationship between aerosol optical depth and normalized diffuse ratio, (3) evaluate aerosol impacts on atmospheric heating, and (4) evaluate how aerosol forcing impacts may possibly reduce latent and sensible fluxes. Measurements were obtained during the period of May--September for the years of 2005, 2006, and 2007. Atmospheric aerosols are among the key uncertainties affecting the Earth's climate and atmospheric radiative processes. Present-day increases in aerosol concentrations directly, indirectly, and semi-directly impact the Earth's energy budget (i.e., cooling the surface and heating the atmosphere), thereby contributing to climate change. The Howard University Beltsville Site (HUBS) has experienced a greater loss in mean normalized aerosol radiative forcing with time, as observations show a decrease from --0.9 in 2005 to --3.1 and --3.4 W/m2 for 2006 and 2007 respectively, in mean net surface irradiance. The mean normalized aerosol radiative forcing estimated for the period considered was --2.5 W/m2. The reduction in surface solar insolation is due to increased scattering and absorption related to increased aerosol burdens v for the period, promoting surface cooling and atmospheric heating. Calculation of radiative flux and heating rates profiles, which are constrained by HUBS observations, were performed by the 1-D Fu-Liou radiative transfer model to investigate the effect of polluted and pristine aerosol conditions on the surface energy budget and hydrological cycle. For HUBS the surface forcing (--14.2 W/m2) and atmospheric forcing (9.9 W/m2) were significantly larger than the TOA (--4.3 W/m2) radiative forcing. Associated aerosol heating, as well as reduced surface insolation, may lead to increasing near surface static stability, and reduced vertical transport of moisture into the atmospheric boundary layer, and over time, a possible spin-down of the hydrological cycle. It is shown that HUBS provides an ideal opportunity for improving measurements and datasets, thus allowing for both the study and understanding of aerosol impacts on the climate system. Further, results show that in order to provide reference quality data and constrain aerosol radiative effects over land, ground-based research sites must conform to HUBS standards of: (1) instrumentation (e.g. passive and active sensors); (2) operational protocols (e.g. calibration and routine cleaning); (3) rigorous cloud screening protocols; and (4) incorporation of ARM QC and modified FFA algorithms. HUBS surface measurements provides the reference quality data necessary and capability required to help enhance measurements and constrain current uncertainties in estimates of aerosol direct effects over land. Incorporating a combined technique of both active and passive instruments reduced the direct radiative forcing estimates by ˜82 W/m2. The analysis of aerosol effects over HUBS helps continue in bridging the gap of applying measurements for improvement of climate simulations by generating observational products, which describes aerosol and radiation field characteristics in detail.

  17. Hydrodynamic impeller stiffness, damping, and inertia in the rotordynamics of centrifugal flow pumps

    NASA Technical Reports Server (NTRS)

    Jery, S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1984-01-01

    The lateral hydrodynamic forces experienced by a centrifugal pump impeller performing circular whirl motions within several volute geometries were measured. The lateral forces were decomposed into: (1) time averaged lateral forces and (2) hydrodynamic force matrices representing the variation of the lateral forces with position of the impeller center. It is found that these force matrices essentially consist of equal diagonal terms and skew symmetric off diagonal terms. One consequence of this is that during its whirl motion the impeller experiences forces acting normal and tangential to the locus of whirl. Data on these normal and tangential forces are presented; it is shown that there exists a region of positive reduced whirl frequencies, within which the hydrodynamic forces can be destablizing with respect to whirl.

  18. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation - A first step to create reliable customized simulators.

    PubMed

    Favier, Valentin; Zemiti, Nabil; Caravaca Mora, Oscar; Subsol, Gérard; Captier, Guillaume; Lebrun, Renaud; Crampette, Louis; Mondain, Michel; Gilles, Benjamin

    2017-01-01

    Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training. Four 3D-printed consumer-grade materials were compared to human cadaver bone: calcium sulfate hemihydrate (named Multicolor), polyamide, resin and polycarbonate. We compared the geometric accuracy, forces required to break thin walls of materials and forces required during drilling. All materials had an acceptable global geometric accuracy (from 0.083mm to 0.203mm of global error). Local accuracy was better in polycarbonate (0.09mm) and polyamide (0.15mm) than in Multicolor (0.90mm) and resin (0.86mm). Resin and polyamide thin walls were not broken at 200N. Forces needed to break Multicolor thin walls were 1.6-3.5 times higher than in bone. For polycarbonate, forces applied were 1.6-2.5 times higher. Polycarbonate had a mode of fracture similar to the cadaver bone. Forces applied on materials during drilling followed a normal distribution except for the polyamide which was melted. Energy spent during drilling was respectively 1.6 and 2.6 times higher on bone than on PC and Multicolor. Polycarbonate is a good substitute of human cadaver bone for skull base surgery simulation. Thanks to short lead times and reasonable production costs, patient-specific 3D printed models can be used in clinical practice for pre-operative training, improving patient safety.

  19. Separation of traveling and standing waves in a finite dispersive string with partial or continuous viscoelastic foundation

    NASA Astrophysics Data System (ADS)

    Cheng, Xiangle; Blanchard, Antoine; Tan, Chin An; Lu, Huancai; Bergman, Lawrence A.; McFarland, D. Michael; Vakakis, Alexander F.

    2017-12-01

    The free and forced vibrations of a linear string with a local spring-damper on a partial elastic foundation, as well as a linear string on a viscoelastic foundation conceptualized as a continuous distribution of springs and dampers, are studied in this paper. Exact, analytical results are obtained for the free and forced response to a harmonic excitation applied at one end of the string. Relations between mode complexity and energy confinement with the dispersion in the string system are examined for the steady-state forced vibration, and numerical methods are applied to simulate the transient evolution of energy propagation. Eigenvalue loci veering and normal mode localization are observed for weakly coupled subsystems, when the foundation stiffness is sufficiently large, for both the spatially symmetric and asymmetric systems. The forced vibration results show that nonproportional damping-induced mode complexity, for which there are co-existing regions of purely traveling waves and standing waves, is attainable for the dispersive string system. However, this wave transition phenomenon depends strongly on the location of the attached discrete spring-damper relative to the foundation and whether the excitation frequency Ω is above or below the cutoff frequency ωc. When Ω<ωc, the wave transition cannot be attained for a string on an elastic foundation, but is possible if the string is on a viscoelastic foundation. Although this study is primarily formulated for a harmonic boundary excitation at one end of the string, generalization of the mode complexity can be deduced for the steady-state forced response of the string-foundation system to synchronous end excitations and is confirmed numerically. This work represents a novel study to understand the wave transitions in a dispersive structural system and lays the groundwork for potentially effective passive vibration control strategies.

  20. Coordination strategies for limb forces during weight-bearing locomotion in normal rats, and in rats spinalized as neonates

    PubMed Central

    Giszter, Simon F; Davies, Michelle R; Graziani, Virginia

    2010-01-01

    Some rats spinally transected as neonates (ST rats) achieve weight-supporting independent locomotion. The mechanisms of coordinated hindlimb weight support in such rats are not well understood. To examine these in such ST rats and normal rats, rats with better than 60% of weight supported steps on a treadmill as adults were trained to cross an instrumented runway. Ground reaction forces, coordination of hindlimb and forelimb forces and the motions of the center of pressure were assessed. Normal rats crossed the runway with a diagonal trot. On average hindlimbs bore about 80% of the vertical load carried by forelimbs, although this varied. Forelimbs and hindlimb acted synergistically to generate decelerative and propulsive rostrocaudal forces, which averaged 15% of body weight with maximums of 50% . Lateral forces were very small (<8% of body weight). Center of pressure progressed in jumps along a straight line with mean lateral deviations <1 cm. ST rats hindlimbs bore about 60% of the vertical load of forelimbs, significantly less compared to intact (p<0.05). ST rats showed similar mean rostrocaudal forces, but with significantly larger maximum fluctuations of up to 80% of body weight (p<0.05). Joint force-plate recordings showed forelimbs and hindlimb rostrocaudal forces in ST rats were opposing and significantly different from intact rats (p<0.05). Lateral forces were ~20% of body weight and significantly larger than in normal rats (p<0.05). Center of pressure zig-zagged, with mean lateral deviations of ~ 2cm and a significantly larger range (p<0.05). The haunches were also observed to roll more than normal rats. The locomotor strategy of injured rats using limbs in opposition was presumably less efficient but their complex gait was statically stable. Because forelimbs and hindlimbs acted in opposition, the trunk was held compressed. Force coordination was likely managed largely by the voluntary control in forelimbs and trunk. PMID:18612631

  1. Robot-Applied Resistance Augments the Effects of Body Weight-Supported Treadmill Training on Stepping and Synaptic Plasticity in a Rodent Model of Spinal Cord Injury.

    PubMed

    Hinahon, Erika; Estrada, Christina; Tong, Lin; Won, Deborah S; de Leon, Ray D

    2017-08-01

    The application of resistive forces has been used during body weight-supported treadmill training (BWSTT) to improve walking function after spinal cord injury (SCI). Whether this form of training actually augments the effects of BWSTT is not yet known. To determine if robotic-applied resistance augments the effects of BWSTT using a controlled experimental design in a rodent model of SCI. Spinally contused rats were treadmill trained using robotic resistance against horizontal (n = 9) or vertical (n = 8) hind limb movements. Hind limb stepping was tested before and after 6 weeks of training. Two control groups, one receiving standard training (ie, without resistance; n = 9) and one untrained (n = 8), were also tested. At the terminal experiment, the spinal cords were prepared for immunohistochemical analysis of synaptophysin. Six weeks of training with horizontal resistance increased step length, whereas training with vertical resistance enhanced step height and movement velocity. None of these changes occurred in the group that received standard (ie, no resistance) training or in the untrained group. Only standard training increased the number of step cycles and shortened cycle period toward normal values. Synaptophysin expression in the ventral horn was highest in rats trained with horizontal resistance and in untrained rats and was positively correlated with step length. Adding robotic-applied resistance to BWSTT produced gains in locomotor function over BWSTT alone. The impact of resistive forces on spinal connections may depend on the nature of the resistive forces and the synaptic milieu that is present after SCI.

  2. The effect of aircraft control forces on pilot performance during instrument landings in a flight simulator.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2001-07-01

    Pilots may have difficulty controlling aircraft at both high and low force levels due to larger variability in force production at these force levels. The aim of this study was to measure the force variability and landing performance of pilots during an instrument landing in a flight simulator. There were 12 pilots who were tested while performing 5 instrument landings in a flight simulator, each of which required different control force inputs. Pilots can produce the least force when pushing the control column to the right, therefore the force levels for the landings were set relative to each pilot's maximum aileron-right force. The force levels for the landings were 90%, 60%, and 30% of maximal aileron-right force, normal force, and 25% of normal force. Variables recorded included electromyographic activity (EMG), aircraft control forces, aircraft attitude, perceived exertion and deviation from glide slope and heading. Multivariate analysis of variance was used to test for differences between landings. Pilots were least accurate in landing performance during the landing at 90% of maximal force (p < 0.05). There was also a trend toward decreased landing performance during the landing at 25% of normal force. Pilots were more variable in force production during the landings at 60% and 90% of maximal force (p < 0.05). Pilots are less accurate at performing instrument landings when control forces are high due to the increased variability of force production. The increase in variability at high force levels is most likely associated with motor unit recruitment, rather than rate coding. Aircraft designers need to consider the reduction in pilot performance at high force levels, as well as pilot strength limits when specifying new standards.

  3. Application of a system for measuring foot plantar pressure for evaluation of human mobility

    NASA Astrophysics Data System (ADS)

    Klimiec, Ewa; Jasiewicz, Barbara; Zaraska, Krzysztof; Piekarski, Jacek; Guzdek, Piotr; Kołaszczyński, Grzegorz

    2016-11-01

    The paper presents evaluation of human mobility by gait analysis, carried out in natural conditions (outside laboratory). Foot plantar pressure is measured using a shoe insole with 8 sensors placed in different anatomical zones of the foot, and placed inside a sports footwear. Polarized PVDF foil is used as a sensor material. A wireless transmission system is used to transmit voltage values to the computer. Due to linear relationship between force and transducer voltage, energy released during walking in arbitrary units can be calculated as integral of the square of transducer voltage over time. Gait measurements have been done over the next few days on healthy person during normal walking and slow walking. Performed measurements allow determination of walking speed (number of steps per second), gait rhythm and manner of walking (applying force to inside versus outside part of the sole). It is found that switching from normal to slow walk increases gait energy by 25% while the pressure distribution across the anatomical regions of the foot remains unchanged. The results will be used for developing a programme for evaluation of patients with cardiac failure and future integration of actimetry with pulse and spirometry measurements.

  4. Effect of force fields on pool boiling flow patterns in normal and reduced gravity

    NASA Astrophysics Data System (ADS)

    di Marco, P.; Grassi, W.

    2009-05-01

    This paper reports the observations of boiling flow patterns in FC-72, performed during a microgravity experiment, recently flown aboard of Foton-M2 satellite, in some instances with the additional aid of an electrostatic field to replace the buoyancy force. The heater consisted of a flat plate, 20 × 20 mm2, directly heated by direct current. Several levels of liquid subcooling (from 20 to 6 K) and heat fluxes up to 200 kW/m2 were tested. A complete counterpart test, carried out on ground before the mission, allowed direct comparison with terrestrial data. The void fraction in microgravity revealed much larger than in normal gravity condition: this may be attributed to increased bubble coalescence that hinders vapor condensation in the bulk of the subcooled fluid. In several cases, an oscillatory boiling behavior was detected, leading to periodical variation of average wall overheating of some degrees. The electric field confirmed to be very effective, even at low values of applied voltage, in reducing bubble size, thus improving their condensation rate in the bulk fluid, and in enhancing heat transfer performance, suppressing the boiling oscillations and preventing surface dryout.

  5. Frictional families in 2D experimental disks under periodic gravitational compaction

    NASA Astrophysics Data System (ADS)

    Hubard, Aline; Shattuck, Mark; O'Hern, Corey

    2014-03-01

    We studied a bidisperse system with diameter ratio 1.2 consisting of four 1.26cm and three 1.57cm stainless steel cylinders confined between two glass plates separated 1.05 times their thickness with the cylinder axis perpendicular to gravity. The particles initially resting on a movable piston are thrown upward and allowed to come to rest. In general this frictional state is stabilized by both normal and tangential (frictional) forces. We then apply short (10ms) small amplitude bursts of 440Hz vibration, temporarily breaking tangential forces and then allow the system to re-stabilize. After N of these compaction steps the number of contacts will increase to an isostatic friction-less state and additional steps do not change the system. Many frictional states reach the same final friction-less state. We find that this evolution is determined by the projection of the gravity vector on the null space of the dynamical matrix of a normal spring network formed from the contacts of the frictional state. Thus each frictional contact network follow a one-dimensional path (or family) through phase space under gravitational compaction. PREM-DMR0934206.

  6. Statistical-Dynamical Seasonal Forecasts of Central-Southwest Asian Winter Precipitation.

    NASA Astrophysics Data System (ADS)

    Tippett, Michael K.; Goddard, Lisa; Barnston, Anthony G.

    2005-06-01

    Interannual precipitation variability in central-southwest (CSW) Asia has been associated with East Asian jet stream variability and western Pacific tropical convection. However, atmospheric general circulation models (AGCMs) forced by observed sea surface temperature (SST) poorly simulate the region's interannual precipitation variability. The statistical-dynamical approach uses statistical methods to correct systematic deficiencies in the response of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-west Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically significant, cross-validated simulation skill in the northeast part of the domain for the period from 1951 to 1998. The statistical-dynamical method is also applied to recent (winter 1998/99 to 2002/03) multimodel, two-tier December-March precipitation forecasts initiated in October. This period includes 4 yr (winter of 1998/99 to 2001/02) of severe drought. Tercile probability forecasts are produced using ensemble-mean forecasts and forecast error estimates. The statistical-dynamical forecasts show enhanced probability of below-normal precipitation for the four drought years and capture the return to normal conditions in part of the region during the winter of 2002/03.May Kabul be without gold, but not without snow.—Traditional Afghan proverb

  7. On the Normal Force Mechanotransduction of Human Umbilical Vein Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Vahabikashi, Amir; Wang, Qiuyun; Wilson, James; Wu, Qianhong; Vucbmss Team

    2016-11-01

    In this paper, we report a cellular biomechanics study to examine the normal force mechanotransduction of Human Umbilical Vein Endothelial Cells (HUVECs) with their implications on hypertension. Endothelial cells sense mechanical forces and adjust their structure and function accordingly. The mechanotransduction of normal forces plays a vital role in hypertension due to the higher pressure buildup inside blood vessels. Herein, HUVECs were cultured to full confluency and then exposed to different mechanical loadings using a novel microfluidic flow chamber. One various pressure levels while keeps the shear stress constant inside the flow chamber. Three groups of cells were examined, the control group (neither shear nor normal stresses), the normal pressure group (10 dyne/cm2 of shear stress and 95 mmHg of pressure), and the hypertensive group (10 dyne/cm2 of shear stress and 142 mmHg of pressure). Cellular response characterized by RT-PCR method indicates that, COX-2 expressed under normal pressure but not high pressure; Mn-SOD expressed under both normal and high pressure while this response was stronger for normal pressure; FOS and e-NOS did not respond under any condition. The differential behavior of COX-2 and Mn-SOD in response to changes in pressure, is instrumental for better understanding the pathogenesis of hypertensive cardiovascular diseases. This research was supported by the National Science Foundation under Award #1511096.

  8. Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis.

    PubMed

    Zhou, Hao; White, Lee R; Tilton, Robert D

    2005-05-01

    Colloidal particles and biological cells are patterned and separated laterally adjacent to a micropatterned electrode array by applying AC electric fields that are principally oriented normally to the electrode array. This is demonstrated for yeast cells, red blood cells, and colloidal polystyrene particles of different sizes and zeta-potentials. The separation mechanism is observed experimentally to depend on the applied field frequency and voltage. At high frequencies, particles position themselves in a manner that is consistent with dielectrophoresis, while at low frequencies, the positioning is explained in terms of a strong coupling between gravity, the vertical component of the dielectrophoretic force, and the Stokes drag on particles induced by AC electroosmotic flow. Compared to high frequency dielectrophoretic separations, the low frequency separations are faster and require lower applied voltages. Furthermore, the AC electroosmosis coupling with dielectrophoresis may enable cell separations that are not feasible based on dielectrophoresis alone.

  9. Simulation of IR and Raman spectra of p-hydroxyanisole and p-nitroanisole based on scaled DFT force fields and their vibrational assignments.

    PubMed

    Krishnakumar, V; Prabavathi, N

    2009-09-15

    This work deals with the vibrational spectroscopy of p-hydroxyanisole (PHA) and p-nitroanisole (PNA) by means of quantum chemical calculations. The mid and far FT-IR and FT-Raman spectra were recorded in the condensed state. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6-31G* method and basis set combination and were scaled using various scale factors which yield a good agreement between observed and calculated frequencies. The vibrational spectra were interpreted with the aid of normal coordinate analysis based on scaled density functional force field. The results of the calculations were applied to simulate infrared and Raman spectra of the title compounds, which showed excellent agreement with the observed spectra.

  10. To Believe the Past or to Trust the Future

    ERIC Educational Resources Information Center

    Jin, Fengtao; Zhou, Zhaoyan

    2012-01-01

    A small ball rolls down from a quarter-circle to a frictionless plane. What will be the magnitude of the normal force when the ball arrives at the tangent point of the circle and the plane? According to the centripetal force formula, the normal force will be 3 "mg" when the curvature radius of the circle is considered, but will be "mg" instead…

  11. Forced normalization at the interface between epilepsy and psychiatry.

    PubMed

    Krishnamoorthy, E S.; Trimble, M R.; Sander, J W.A.S.; Kanner, Andres M.

    2002-08-01

    In 1953, Landolt described a group of patients with poorly controlled epilepsy who had psychotic episodes associated with remission of their seizures and disappearance of epileptiform activity on their EEGs. He called this phenomenon "forced normalization." Since then, neurologists and psychiatrists have been intrigued by this phenomenon, and although it has been also reported by others, its existence continues to be the source of much debate. In this article, we review the clinical characteristics and potential pathogenic mechanisms of forced normalization and illustrate the complexities inherent in reaching this diagnosis, as well as its differential diagnosis in two representative cases.

  12. [A five-year-old girl with epilepsy showing forced normalization due to zonisamide].

    PubMed

    Hirose, Mieko; Yokoyama, Hiroyuki; Haginoya, Kazuhiro; Iinuma, Kazuie

    2003-05-01

    A case of forced normalization in childhood is presented. When zonisamide was administered to a five-year-old girl with intractable epilepsy, disappearance of seizures was accompanied by severe psychotic episodes such as communication disturbance, personal relationship failure, and stereotyped behavior, which continued after the withdrawal of zonisamide. These symptoms gradually improved by administration of fluvoxamine, however epileptic attacks reappeared. Although most patients with forced normalization are adult and teenager, attention should be paid to this phenomenon as adverse psychotic effects of zonisamide even in young children. Fluvoxamine may be effective for the symptoms.

  13. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.

    PubMed

    Fox, Aaron S; Carty, Christopher P; Modenese, Luca; Barber, Lee A; Lichtwark, Glen A

    2018-03-01

    Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald

    2003-01-01

    Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.

  15. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  16. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    NASA Astrophysics Data System (ADS)

    Ni, P. A.; Lund, S. M.; McGuffey, C.; Alexander, N.; Aurand, B.; Barnard, J. J.; Beg, F. N.; Bellei, C.; Bieniosek, F. M.; Brabetz, C.; Cohen, R. H.; Kim, J.; Neumayer, P.; Roth, M.; Logan, B. G.

    2013-08-01

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure ("lens") consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a "passive environment," i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt "PHELIX" laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the "Helmholtzzentrum für Schwerionenforschung-GSI" in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  17. Calculation of Resistive Loads for Elastic Resistive Exercises.

    PubMed

    Picha, Kelsey; Uhl, Tim

    2018-03-14

    What is the correct resistive load to start resistive training with elastic resistance to gain strength? This question is typically answered by the clinician's best estimate and patient's level of discomfort without objective evidence. To determine the average level of resistance to initiate a strengthening routine with elastic resistance following isometric strength testing. Cohort. Clinical. 34 subjects (31 ± 13 y, 73 ± 17 kg, 170 ± 12 cm). The force produced was measured in Newtons (N) with an isometric dynamometer. The force distance was the distance from center of joint to location of force applied was measured in meters to calculate torque that was called "Test Torque" for the purposes of this report. This torque data was converted to "Exercise Load" in pounds based on the location where the resistance was applied, specifically the distance away from the center of rotation of the exercising limb. The average amount of exercise load as percentage of initial Test Torque for each individual for each exercise was recorded to determine what the average level of resistance that could be used for elastic resistance strengthening program. The percentage of initial test torque calculated for the exercise was recorded for each exercise and torque produced was normalized to body weight. The average percentage of maximal isometric force that was used to initiate exercises was 30 ± 7% of test torque. This provides clinicians with an objective target load to start elastic resistance training. Individual variations will occur but utilization of a load cell during elastic resistance provides objective documentation of exercise progression.

  18. Three-dimensional touch interface for medical education.

    PubMed

    Panchaphongsaphak, Bundit; Burgkart, Rainer; Riener, Robert

    2007-05-01

    We present the technical principle and evaluation of a multimodal virtual reality (VR) system for medical education, called a touch simulator. This touch simulator comes with an innovative three-dimensional (3-D) touch sensitive input device. The device comprises a six-axis force-torque sensor connected to a tangible object representing the shape of an anatomical structure. Information related to the point of contact is recorded by the sensor, processed, and audiovisually displayed. The touch simulator provides a high level of user-friendliness and fidelity compared to other purely graphically oriented simulation environments. In this paper, the touch simulator has been realized as an interactive neuroanatomical training simulator. The user can visualize and manipulate graphical information of the brain surface or different cross-sectional slices by a finger-touch on a brain-like shaped tangible object. We evaluated the system by theoretical derivations, experiments, and subjective questionnaires. In the theoretical analysis, we could show that the contact point estimation error mainly depends on the accuracy and the noise of the sensor, the amount and direction of the applied force, and the geometry of the tangible object. The theoretical results could be validated by experiments: applying a normal force of 10 N on a 120 mm x 120 mm x 120 mm cube causes a maximum error of 2.5 +/- 0.7 mm. This error becomes smaller when increasing the contact force. Based on the survey results, the touch simulator may be a useful tool for assisting medical schools in the visualization of brain image data and the study of neuroanatomy.

  19. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.

    PubMed

    Purevsuren, Tserenchimed; Dorj, Ariunzaya; Kim, Kyungsoo; Kim, Yoon Hyuk

    2016-04-01

    The computational modeling approach has commonly been used to predict knee joint contact forces, muscle forces, and ligament loads during activities of daily living. Knowledge of these forces has several potential applications, for example, within design of equipment to protect the knee joint from injury and to plan adequate rehabilitation protocols, although clinical applications of computational models are still evolving and one of the limiting factors is model validation. The objective of this study was to extend previous modeling technique and to improve the validity of the model prediction using publicly available data set of the fifth "Grand Challenge Competition to Predict In Vivo Knee Loads." A two-stage modeling approach, which combines conventional inverse dynamic analysis (the first stage) with a multi-body subject-specific lower limb model (the second stage), was used to calculate medial and lateral compartment contact forces. The validation was performed by direct comparison of model predictions and experimental measurement of medial and lateral compartment contact forces during normal and turning gait. The model predictions of both medial and lateral contact forces showed strong correlations with experimental measurements in normal gait (r = 0.75 and 0.71) and in turning gait trials (r = 0.86 and 0.72), even though the current technique over-estimated medial compartment contact forces in swing phase. The correlation coefficient, Sprague and Geers metrics, and root mean squared error indicated that the lateral contact forces were predicted better than medial contact forces in comparison with the experimental measurements during both normal and turning gait trials. © IMechE 2016.

  20. Axial force measurement for esophageal function testing

    PubMed Central

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the “golden standard” for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  1. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.

    PubMed

    Wang, Ji-Peng

    2017-08-31

    This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples.

  2. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State

    PubMed Central

    2017-01-01

    This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples. PMID:28858238

  3. The effect of applied transducer force on acoustic radiation force impulse quantification within the left lobe of the liver.

    PubMed

    Porra, Luke; Swan, Hans; Ho, Chien

    2015-08-01

    Introduction: Acoustic Radiation Force Impulse (ARFI) Quantification measures shear wave velocities (SWVs) within the liver. It is a reliable method for predicting the severity of liver fibrosis and has the potential to assess fibrosis in any part of the liver, but previous research has found ARFI quantification in the right lobe more accurate than in the left lobe. A lack of standardised applied transducer force when performing ARFI quantification in the left lobe of the liver may account for some of this inaccuracy. The research hypothesis of this present study predicted that an increase in applied transducer force would result in an increase in SWVs measured. Methods: ARFI quantification within the left lobe of the liver was performed within a group of healthy volunteers (n = 28). During each examination, each participant was subjected to ARFI quantification at six different levels of transducer force applied to the epigastric abdominal wall. Results: A repeated measures ANOVA test showed that ARFI quantification was significantly affected by applied transducer force (p = 0.002). Significant pairwise comparisons using Bonferroni correction for multiple comparisons showed that with an increase in applied transducer force, there was a decrease in SWVs. Conclusion: Applied transducer force has a significant effect on SWVs within the left lobe of the liver and it may explain some of the less accurate and less reliable results in previous studies where transducer force was not taken into consideration. Future studies in the left lobe of the liver should take this into account and control for applied transducer force.

  4. Honeybees consolidate navigation memory during sleep.

    PubMed

    Beyaert, Lisa; Greggers, Uwe; Menzel, Randolf

    2012-11-15

    Sleep is known to support memory consolidation in animals, including humans. Here we ask whether consolidation of novel navigation memory in honeybees depends on sleep. Foragers were exposed to a forced navigation task in which they learned to home more efficiently from an unexpected release site by acquiring navigational memory during the successful homing flight. This task was quantified using harmonic radar tracking and applied to bees that were equipped with a radio frequency identification device (RFID). The RFID was used to record their outbound and inbound flights and continuously monitor their behavior inside the colony, including their rest during the day and sleep at night. Bees marked with the RFID behaved normally inside and outside the hive. Bees slept longer during the night following forced navigation tasks, but foraging flights of different lengths did not lead to different rest times during the day or total sleep time during the night. Sleep deprivation before the forced navigation task did not alter learning and memory acquired during the task. However, sleep deprivation during the night after forced navigation learning reduced the probability of returning successfully to the hive from the same release site. It is concluded that consolidation of novel navigation memory is facilitated by night sleep in bees.

  5. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer.

    PubMed

    Asano, Sho; Muroyama, Masanori; Nakayama, Takahiro; Hata, Yoshiyuki; Nonomura, Yutaka; Tanaka, Shuji

    2017-10-25

    This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively.

  6. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer †

    PubMed Central

    Asano, Sho; Nakayama, Takahiro; Hata, Yoshiyuki; Tanaka, Shuji

    2017-01-01

    This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively. PMID:29068429

  7. Forces acting between polishing tool and workpiece surface in magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Schinhaerl, Markus; Vogt, Christian; Geiss, Andreas; Stamp, Richard; Sperber, Peter; Smith, Lyndon; Smith, Gordon; Rascher, Rolf

    2008-08-01

    Magnetorheological finishing is a computer-controlled polishing technique that is used mainly in the field of high-quality optical lens production. The process is based on the use of a magnetorheological polishing fluid that is able, in a reversible manner, to change its viscosity from a liquid state to a solid state under the control of a magnetic field. This outstanding characteristic facilitates rapid control (in milliseconds) of the yield stress, and thus the pressure applied to the workpiece surface to be polished. A three-axis dynamometer was used to measure the forces acting between the magnetorheological fluid and the workpiece surface during determination of the material removal characteristic of the polishing tool (influence function). The results of a testing series using a QED Q22-X MRF polishing machine with a 50 mm wheel assembly show that the normal forces range from about 2 to 20 N. Knowledge of the forces is essential, especially when thin workpieces are to be polished and distortion becomes significant. This paper discusses, and gives examples of, the variation in the parameters experienced during a programme of experiments, and provides examples of the value of this work.

  8. Size-weight illusion and anticipatory grip force scaling following unilateral cortical brain lesion.

    PubMed

    Li, Yong; Randerath, Jennifer; Goldenberg, Georg; Hermsdörfer, Joachim

    2011-04-01

    The prediction of object weight from its size is an important prerequisite of skillful object manipulation. Grip and load forces anticipate object size during early phases of lifting an object. A mismatch between predicted and actual weight when two different sized objects have the same weight results in the size-weight illusion (SWI), the small object feeling heavier. This study explores whether lateralized brain lesions in patients with or without apraxia alter the size-weight illusion and impair anticipatory finger force scaling. Twenty patients with left brain damage (LBD, 10 with apraxia, 10 without apraxia), ten patients with right brain damage (RBD), and matched control subjects lifted two different-sized boxes in alternation. All subjects experienced a similar size-weight illusion. The anticipatory force scaling of all groups was in correspondence with the size cue: higher forces and force rates were applied to the big box and lower forces and force rates to the small box during the first lifts. Within few lifts, forces were scaled to actual object weight. Despite the lack of significant differences at group level, 5 out of 20 LBD patients showed abnormal predictive scaling of grip forces. They differed from the LBD patients with normal predictive scaling by a greater incidence of posterior occipito-parietal lesions but not by a greater incidence of apraxia. The findings do not support a more general role for the motor-dominant left hemisphere, or an influence of apraxia per se, in the scaling of finger force according to object properties. However, damage in the vicinity of the parietal-occipital junction may be critical for deriving predictions of weight from size. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California

    NASA Astrophysics Data System (ADS)

    Xue, L.; Burgmann, R.; Shelly, D. R.

    2017-12-01

    The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.

  10. Instrument for the application of controlled mechanical loads to tissues in sterile culture

    DOEpatents

    Lintilhac, Phillip M.; Vesecky, Thompson B.

    1995-01-01

    Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto by a series of guideways and sliders. The sliders, which contact the test subject are in force transmitting relation to a forcing frame. Tension, compression and bending forces can be applied to the test subject. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. Substantially uniaxial stretching is achieved by placing the test subject on an elastic membrane stretched by an arrangement of members securing the elastic member to the forcing frame.

  11. The Erosion of Public Trust: Normalization of Deviance In The Air Force

    DTIC Science & Technology

    2016-02-13

    to forge, and building a reputation of professionalism and trustworthiness requires significant effort and investment. And, public trust grows ...clearly a special trust between society and the military profession . Normalization of Deviance Now that military professionalism and the special...their armed forces will operate in a competent, professional , and ethical manner. In the case of the United States Air Force, there has been an

  12. Electric field induced self-assembly of monolayers of gold nanoparticles for surface enhanced Raman scattering applications

    NASA Astrophysics Data System (ADS)

    Das, Suchandra; Musunuri, Naga; Kucheryavy, Pavel; Lockard, Jenny; Fischer, Ian; Singh, Pushpendra; New Jersey Institute of Technology Collaboration; Rutgers University Newark Collaboration

    2017-11-01

    We present a technique that uses an electric field in the direction normal to the interface for self-assembling monolayers of gold nanoparticles on fluid-liquid interfaces and freezing these monolayers onto the surface of a flexible thin film. The electric field gives rise to dipole-dipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another fluid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film. We are using these films for surface enhanced Raman scattering (SERS) applications. Initial measurements indicate improved performance over commercially available SERS substrates.

  13. Design, analysis, and fabrication of a piezoelectric force plate

    NASA Astrophysics Data System (ADS)

    Hoummadi, Elias; Safaei, Mohsen; Anton, Steven R.

    2017-04-01

    Force plates are used to detect static and dynamic reaction forces due to presence of stationary or moving objects as well as the location of applied forces. The application of force plates in various biomechanical fields, such as gait analysis, has been widely suggested and investigated in the past. Several sensor technologies like piezoelectrics, capacitance gauges, and piezoresistive sensors are utilized to develop force plates with special characteristics. Among the technologies employed in force plate designs, piezoelectrics present the ability of providing a self-powered sensory system. Recently, it has been suggested to implement piezoelectric transducers as sensors in the tibial bearing of total knee replacement (TKR) implants in order to transform the knee bearing into a force plate with the ability to detect force and contact point location for in vivo knee load analysis. Considering this application, a simplified design of a force plate instrumented with six piezoelectric transducers is presented in this study. The force plate is modeled using a finite element (FE) model to investigate the sensing performance of the system. In order to validate the simulation, a prototype force plate is fabricated and tested under the same loading condition applied on the FE model. The results are presented in terms of measured location and amplitude of applied force measured by the piezoelectric transducers. For the FE simulation, the deviation of the measured location of the applied force from the actual location is obtained as 0.62 mm in the x-direction and 0.13 mm in the y-direction, and the error in the amplitude of the measured force is 0.03% of the applied force. On the other hand, the deviation in the measured location of the force from the experimental test is 0.53 mm in the x-direction and 0.1 mm in the y-direction, while the error in force is 3.6% of the applied force. The small quantities of error in both sensed location and amplitude of applied force obtained from the FE simulation and experimental test results demonstrates the potential of the proposed design to be utilized as the sensor in the knee bearing of TKR implants.

  14. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

    PubMed

    Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W

    2014-05-27

    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.

  15. Nonequilibrium Tuning of the Thermal Casimir Effect.

    PubMed

    Dean, David S; Lu, Bing-Sui; Maggs, A C; Podgornik, Rudolf

    2016-06-17

    In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.

  16. Defining forces that are associated with shoulder dystocia: the use of a mathematic dynamic computer model.

    PubMed

    Gonik, Bernard; Zhang, Ning; Grimm, Michele J

    2003-04-01

    A computer model was modified to study the impact of maternal endogenous and clinician-applied exogenous delivery loads on the contact force between the anterior fetal shoulder and the maternal symphysis pubis. Varying endogenous and exogenous loads were applied, and the contact force was determined. Experiments also examined the effect of pelvic orientation and the direction of load application on contact force behind the symphysis pubis. Exogenous loading forces (50-100 N) resulted in anterior shoulder contact forces of 107 to 127 N, with delivery accomplished at 100 N of applied load. Higher contact forces (147-272 N) were noted for endogenously applied loads (100-400 N), with delivery occurring at 400 N of maternal force. Pelvic rotation from lithotomy to McRoberts' positioning resulted in reduced contact forces. Downward lateral flexion of the fetal head led to little difference in contact force but required 30% more exogenous load to achieve delivery. Compared with clinician-applied exogenous force, larger maternally derived endogenous forces are needed to clear the impacted anterior fetal shoulder. This is associated with >2 times more contact force by the obstructing symphysis pubis. McRoberts' positioning reduces shoulder-symphysis pubis contact force. Lateral flexion of the fetal head results in the larger forces that are needed for delivery but has little effect on contact force. Model refinements are needed to examine delivery forces and brachial plexus stretching more specifically.

  17. Instrument for the application of controlled mechanical loads to tissues in sterile culture

    DOEpatents

    Lintilhac, P.M.; Vesecky, T.B.

    1995-04-18

    Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto by a series of guideways and sliders. The sliders, which contact the test subject are in force transmitting relation to a forcing frame. Tension, compression and bending forces can be applied to the test subject. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. Substantially uniaxial stretching is achieved by placing the test subject on an elastic membrane stretched by an arrangement of members securing the elastic member to the forcing frame. 8 figs.

  18. 5 CFR 1639.4 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... additional withholding; (3) Health insurance premiums; (4) Normal retirement contributions as explained in 5 CFR 581.105(e); (5) Normal life insurance premiums, excluding optional life insurance premiums; and (6... employee of an agency, including a current member of the Armed Forces or Reserve of the Armed Forces of the...

  19. Topography-coupled resonance between Mars normal-modes and the tidal force of the Phobos

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zheng, Y.

    2016-12-01

    Phobos is the largest moon of Mars. The gravity attraction of Phobos to Mars is a periodic force, which may excite seismic waves inside Mars. Since Phobos is below the synchronous orbit, its orbit is continuously decreasing due to the tidal effect. This will result in a monotonic increase in its orbital frequency, which may eventually intrude into the seismic normal-mode frequency range to cause resonance. The objective of this research is to investigate whether such a resonance phenomenon can occur and what the consequence is. As we know, resonance happens when the periodic tidal force has a similar frequency as that of martian normal modes. It can be shown that such a resonance will not occur if Mars is perfectly spherical because the tidal force can only excite modes of the same angular order. For the same angular order, the tidal force frequencies are always smaller than those of the normal modes. However, when we consider the effect of topography of Mars, the resonance can occur because of coupling of normal modes. We use numerical method to calculate when the resonance will occur. We firstly solve for the normal modes of Mars by idealizing it as a solid elastic sphere. At the second step, we calculate the excitation effect of gravitational force from Phobos on each individual normal mode. For example, the gravity tidal force F at L=5, m=5 F55 can excite a normal mode 0S5 which can be coupled to 0T2. The third step is to calculate the frequency that the resonance will happen. For example, when the rotation frequency of Phobos increase to 0.8 mRad/s, the tidal force at L=5, m=5 can reach 4mRad/s which is the eigen-frequency of 0T2. Since we have calculated the coupling factors between each individual mode, the amplitude coefficients can be solved by a linear equation. We can observe a 100 times of amplitude increase of mode 0T2, which convince us the resonance will happen. The resonance may cause large amplitude of ground vibration of Mars. From our calculation, when the resonance happen, the energy dissipation rate will be greatly increased, which will make Phobos falling much faster. Eventually, Phobos will hit Mars in a very short time. Our research may give us a new prospective on early formation of planets.

  20. Validity and reliability of the abdominal test and evaluation systems tool (ABTEST) to accurately measure abdominal force.

    PubMed

    Glenn, Jordan M; Galey, Madeline; Edwards, Abigail; Rickert, Bradley; Washington, Tyrone A

    2015-07-01

    Ability to generate force from the core musculature is a critical factor for sports and general activities with insufficiencies predisposing individuals to injury. This study evaluated isometric force production as a valid and reliable method of assessing abdominal force using the abdominal test and evaluation systems tool (ABTEST). Secondary analysis estimated 1-repetition maximum on commercially available abdominal machine compared to maximum force and average power on ABTEST system. This study utilized test-retest reliability and comparative analysis for validity. Reliability was measured using test-retest design on ABTEST. Validity was measured via comparison to estimated 1-repetition maximum on a commercially available abdominal device. Participants applied isometric, abdominal force against a transducer and muscular activation was evaluated measuring normalized electromyographic activity at the rectus-abdominus, rectus-femoris, and erector-spinae. Test, re-test force production on ABTEST was significantly correlated (r=0.84; p<0.001). Mean electromyographic activity for the rectus-abdominus (72.93% and 75.66%), rectus-femoris (6.59% and 6.51%), and erector-spinae (6.82% and 5.48%) were observed for trial-1 and trial-2, respectively. Significant correlations for the estimated 1-repetition maximum were found for average power (r=0.70, p=0.002) and maximum force (r=0.72, p<0.001). Data indicate the ABTEST can accurately measure rectus-abdominus force isolated from hip-flexor involvement. Negligible activation of erector-spinae substantiates little subjective effort among participants in the lower back. Results suggest ABTEST is a valid and reliable method of evaluating abdominal force. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Analytical investigation for Lorentz forces effect on nanofluid Marangoni boundary layer hydrothermal behavior using HAM

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Ganji, D. D.

    2017-12-01

    In this paper, semi analytical approach is applied to investigate nanofluid Marangoni convection in presence of magnetic field. Koo-Kleinstreuer-Li model is taken into account to simulate nanofluid properties. Homotopy analysis method is utilized to solve the final ordinary equations which are obtained from similarity transformation. Roles of Hartmann number and nanofluid volume fraction are presented graphically. Results show that temperature augments with rise of nanofluid volume fraction. Impact of nanofluid volume fraction on normal velocity is more than tangential velocity. Temperature gradient enhances with rise of magnetic number.

  2. Real-time feedback enhances forward propulsion during walking in old adults.

    PubMed

    Franz, Jason R; Maletis, Michela; Kram, Rodger

    2014-01-01

    Reduced propulsive function during the push-off phase of walking plays a central role in the deterioration of walking ability with age. We used real-time propulsive feedback to test the hypothesis that old adults have an underutilized propulsive reserve available during walking. 8 old adults (mean [SD], age: 72.1 [3.9] years) and 11 young adults (age: 21.0 [1.5] years) participated. For our primary aim, old subjects walked: 1) normally, 2) with visual feedback of their peak propulsive ground reaction forces, and 3) with visual feedback of their medial gastrocnemius electromyographic activity during push-off. We asked those subjects to match a target set to 20% and 40% greater propulsive force or push-off muscle activity than normal walking. We tested young subjects walking normally only to provide reference ground reaction force values. Walking normally, old adults exerted 12.5% smaller peak propulsive forces than young adults (P<0.01). However, old adults significantly increased their propulsive forces and push-off muscle activities when we provided propulsive feedback. Most notably, force feedback elicited propulsive forces that were equal to or 10.5% greater than those of young adults (+20% target, P=0.87; +40% target, P=0.02). With electromyographic feedback, old adults significantly increased their push-off muscle activities but without increasing their propulsive forces. Old adults with propulsive deficits have a considerable and underutilized propulsive reserve available during level walking. Further, real-time propulsive feedback represents a promising therapeutic strategy to improve the forward propulsion of old adults and thus maintain their walking ability and independence. © 2013.

  3. Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2015-07-01

    Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.

  4. Force and displacement measurements of the distal fibula during simulated ankle loading tests for high ankle sprains.

    PubMed

    Markolf, Keith L; Jackson, Steven; McAllister, David R

    2012-09-01

    Syndesmosis (high ankle) sprains produce disruption of the distal tibiofibular ligaments. Forces on the distal fibula that produce these injuries are unknown. Twenty-seven fresh-frozen lower extremities were used for this study. A load cell recorded forces acting on the distal fibula from forced ankle dorsiflexion and applied external foot torque; medial-lateral and anterior-posterior displacements of the distal fibula were recorded. Fibular forces and axial displacements were also recorded with applied axial force. During forced ankle dorsiflexion and external foot torque tests, the distal fibula always displaced posteriorly with respect to the tibia with no measurable medial-lateral displacement. With 10 Nm dorsiflexion moment, cutting the tibiofibular ligaments approximately doubled fibular force and displacement values. Cutting the tibiofibular ligaments significantly increased fibular displacement from applied external foot torque. Fibular forces and axial displacements from applied axial weight-bearing force were highest with the foot dorsiflexed. The highest mean fibular force in the study (271.9 N) occurred with 10 Nm external foot torque applied to a dorsiflexed foot under 1000 N axial force. Two important modes of loading that could produce high ankle sprains were identified: forced ankle dorsiflexion and external foot torque applied to a dorsiflexed ankle loaded with axial force. The distal tibiofibular ligaments restrained fibular displacement during these tests. Residual mortise widening observed at surgery may be the result of tibiofibular ligament injuries caused by posterior displacement of the fibula. Therefore, a syndesmosis screw used to fix the fibula would be subjected to posterior bending forces from these loading modes. Ankle bracing to prevent extreme ankle dorsiflexion during rehabilitation may be advisable to prevent excessive fibular motions that could affect syndesmosis healing.

  5. Performance evaluation of a dental handpiece in simulation of clinical finishing using a novel 2DOF in vitro apparatus.

    PubMed

    Yin, L; Song, X F; Qu, S F; Huang, T; Mei, J P; Yang, Z Y; Li, J

    2006-11-01

    This paper reports on the performance evaluation of a dental handpiece in simulation of clinical finishing using a novel two-degrees-of-freedom (2DOF) in vitro apparatus. The instrumented apparatus consisted of a two-dimensional computer-controlled coordinate worktable carrying a dental handpiece, a piezoelectric force dynamometer, and a high-speed data acquisition and signal conditioning system for simulating the clinical operations and monitoring the dental finishing processes. The performance of the dental handpiece was experimentally evaluated with respect to rotational speed, torque, and specific finishing energy under the applied clinical finishing conditions. The results show that the rotational speeds of the dental handpiece decreased by increasing either the depth of cut or the feed rate at a constant clinically applied air pressure and water flowrate. They also decreased when increasing both the tangential and normal finishing forces. The specific finishing energy decreased with an increase in either depth of cut or feed rate, while the finishing torque increased as either the depth of cut or the feed rate was increased. Implications of these results were to provide guidance for proper applications of dental handpieces in clinical practice.

  6. An unscaled quantum mechanical harmonic force field for p-benzoquinone

    NASA Astrophysics Data System (ADS)

    Nonella, Marco; Tavan, Paul

    1995-10-01

    Structure and harmonic vibrational frequencies of p-benzoquinone have been calculated using quantum chemical ab initio and density functional methods. Our calculations show that a satisfactory description of fundamentals and normal mode compositions is achieved upon consideration of correlation effects by means of Møller-Plesset perturbation expansion (MP2) or by density functional theory (DFT). Furthermore, for correct prediction of CO bondlength and force constant, basis sets augmented by polarization functions are required. Applying such basis sets, MP2 and DFT calculations both give results which are generally in reasonable agreement with experimental data. The quantitatively better agreement, however, is achieved with the computationally less demanding DFT method. This method particularly allows very precise prediction of the experimentally important absorptions in the frequency region between 1500 and 1800 cm -1 and of the isotopic shifts of these vibrations due to 13C or 18O substitution.

  7. Numerical Simulation of Parachute Inflation Process by IB Method

    NASA Astrophysics Data System (ADS)

    Miyoshi, Masaya; Mori, Koichi; Nakamura, Yoshiaki

    In the present study the deformation and motion of a parachute in the process of inflation are simulated by applying the immersed boundary technique in a fluid-structure coupling solver. It was found from simulated results that the canopy is first inflated in the normal direction to the uniform flow (in the lateral direction), and then its apex is pulled by a vortex ring generated near the canopy's outer surface due to its negative pressure. After the end of this inflation process, the canopy moves in the tangential direction to the spherical surface, the center of which is located at the payload location. This motion is caused by the breakup of an initial axisymmetric vortex, where many vortices are generated from the shear layer. The predicted maximum parachute opening force is twice as large as the payload force in the steady state, which is in good agreement with experiment.

  8. Elastic-plastic cube model for ultrasonic friction reduction via Poisson's effect.

    PubMed

    Dong, Sheng; Dapino, Marcelo J

    2014-01-01

    Ultrasonic friction reduction has been studied experimentally and theoretically. This paper presents a new elastic-plastic cube model which can be applied to various ultrasonic lubrication cases. A cube is used to represent all the contacting asperities of two surfaces. Friction force is considered as the product of the tangential contact stiffness and the deformation of the cube. Ultrasonic vibrations are projected onto three orthogonal directions, separately changing contact parameters and deformations. Hence, the overall change of friction forces. Experiments are conducted to examine ultrasonic friction reduction using different materials under normal loads that vary from 40 N to 240 N. Ultrasonic vibrations are generated both in longitudinal and vertical (out-of-plane) directions by way of the Poisson effect. The tests show up to 60% friction reduction; model simulations describe the trends observed experimentally. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Psychophysical evaluation of a variable friction tactile interface

    NASA Astrophysics Data System (ADS)

    Samur, Evren; Colgate, J. Edward; Peshkin, Michael A.

    2009-02-01

    This study explores the haptic rendering capabilities of a variable friction tactile interface through psychophysical experiments. In order to obtain a deeper understanding of the sensory resolution associated with the Tactile Pattern Display (TPaD), friction discrimination experiments are conducted. During the experiments, subjects are asked to explore the glass surface of the TPaD using their bare index fingers, to feel the friction on the surface, and to compare the slipperiness of two stimuli, displayed in sequential order. The fingertip position data is collected by an infrared frame and normal and translational forces applied by the finger are measured by force sensors attached to the TPaD. The recorded data is used to calculate the coefficient of friction between the fingertip and the TPaD. The experiments determine the just noticeable difference (JND) of friction coefficient for humans interacting with the TPaD.

  10. Ab Initio Investigation of Frictional Properties of Graphene on SiC Surfaces

    NASA Astrophysics Data System (ADS)

    Sayin, Ceren; Gülseren, Oğuz

    The exact origin and nature of various nanotribological observations on graphene such as dependence of friction on layer thickness, direction and surface morphology are yet to be fully understood. In this talk, we report on the frictional properties of graphene on 4H-SiC{0001} surfaces obtained from first principles calculations. We investigate sliding of graphene layers of various thickness along different directions on both the Si- and C-terminated faces including van-der Waals interactions. We observe that upon sliding under certain conditions, the interaction between the surface and graphene layers alternates between van-der Waals and covalent forces which dramatically affects friction. We examine the relation of frictional force to applied normal load, small out-of-plane geometric deformations of graphene and electronic structure of the systems. This work is supported by TUBITAK Project No:114F162.

  11. A study of the nonlinear aerodynamics of bodies in nonplanar motion. Ph.D. Thesis - Stanford Univ., Calif.; [numerical analysis of aerodynamic force and moment systems during large amplitude, arbitrary motions

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.

    1974-01-01

    Concepts from the theory of functionals are used to develop nonlinear formulations of the aerodynamic force and moment systems acting on bodies in large-amplitude, arbitrary motions. The analysis, which proceeds formally once the functional dependence of the aerodynamic reactions upon the motion variables is established, ensures the inclusion, within the resulting formulation, of pertinent aerodynamic terms that normally are excluded in the classical treatment. Applied to the large-amplitude, slowly varying, nonplanar motion of a body, the formulation suggests that the aerodynamic moment can be compounded of the moments acting on the body in four basic motions: steady angle of attack, pitch oscillations, either roll or yaw oscillations, and coning motion. Coning, where the nose of the body describes a circle around the velocity vector, characterizes the nonplanar nature of the general motion.

  12. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    PubMed

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  13. Two-dimensional aerodynamic characteristics of several polygon-shaped cross-sectional models applicable to helicopter fuselages

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.; Crowell, Cynthia A.; Wilson, John C.

    1992-01-01

    A wind-tunnel investigation was conducted to determine 2-D aerodynamic characteristics of nine polygon-shaped models applicable to helicopter fuselages. The models varied from 1/2 to 1/5 scale and were nominally triangular, diamond, and rectangular in shape. Side force and normal force were obtained at increments of angle of flow incidence from -45 to 90 degrees. The data were compared with results from a baseline UH-60 tail-boom cross-section model. The results indicate that the overall shapes of the plots of normal force and side force were similar to the characteristic shape of the baseline data; however, there were important differences in magnitude. At a flow incidence of 0 degrees, larger values of normal force for the polygon models indicate an increase in fuselage down load of 1 to 2.5 percent of main-rotor thrust compared with the baseline value. Also, potential was indicated among some of the configurations to produce high fuselage side forces and yawing moments compared with the baseline model.

  14. Amorphous ribbon transducers

    NASA Astrophysics Data System (ADS)

    Meydan, T.; Overshott, K. J.

    1984-02-01

    Amorphous ribbon transducers have been investigated which consist of toroidally wound amorphous ribbon with a primary (magnetizing) winding and secondary (search coil) windings. The application of a force to the ribbon gives a linear search coil voltage against applied force characteristic. The positioning of the windings with respect to the applied force has been studied, and it is shown that the effect of the applied force is localized. Domain studies have shown that the applied force produces domain wall motion which can be correlated to the performance. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.

  15. Is optimal paddle force applied during paediatric external defibrillation?

    PubMed

    Bennetts, Sarah H; Deakin, Charles D; Petley, Graham W; Clewlow, Frank

    2004-01-01

    Optimal paddle force minimises transthoracic impedance; a factor associated with increased defibrillation success. Optimal force for the defibrillation of children < or =10 kg using paediatric paddles has previously been shown to be 2.9 kgf, and for children >10 kg using adult paddles is 5.1 kgf. We compared defibrillation paddle force applied during simulated paediatric defibrillation with these optimal values. 72 medical and nursing staff who would be expected to perform paediatric defibrillation were recruited from a University teaching hospital. Participants, blinded to the nature of the study, were asked to simulate defibrillation of an infant manikin (9 months of age) and a child manikin (6 years of age) using paediatric or adult paddles, respectively, according to guidelines. Paddle force (kgf) was measured at the time of simulated shock and compared with known optimal values. Median paddle force applied to the infant manikin was 2.8 kgf (max 9.6, min 0.6), with only 47% operators attaining optimal force. Median paddle force applied to the child manikin was 3.8 kgf (max 10.2, min 1.0), with only 24% of operators attaining optimal force. Defibrillation paddle force applied during paediatric defibrillation often falls below optimal values.

  16. Shear-induced partial translational ordering of a colloidal solid

    NASA Astrophysics Data System (ADS)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a <111> direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  17. Critical Casimir effect for colloids close to chemically patterned substrates.

    PubMed

    Tröndle, M; Kondrat, S; Gambassi, A; Harnau, L; Dietrich, S

    2010-08-21

    Colloids immersed in a critical or near-critical binary liquid mixture and close to a chemically patterned substrate are subject to normal and lateral critical Casimir forces of dominating strength. For a single colloid, we calculate these attractive or repulsive forces and the corresponding critical Casimir potentials within mean-field theory. Within this approach we also discuss the quality of the Derjaguin approximation and apply it to Monte Carlo simulation data available for the system under study. We find that the range of validity of the Derjaguin approximation is rather large and that it fails only for surface structures which are very small compared to the geometric mean of the size of the colloid and its distance from the substrate. For certain chemical structures of the substrate, the critical Casimir force acting on the colloid can change sign as a function of the distance between the particle and the substrate; this provides a mechanism for stable levitation at a certain distance which can be strongly tuned by temperature, i.e., with a sensitivity of more than 200 nm/K.

  18. TGF-β regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion

    PubMed Central

    Osborne, Lukas D.; Li, George Z.; How, Tam; O'Brien, E. Tim; Blobe, Gerard C.; Superfine, Richard; Mythreye, Karthikeyan

    2014-01-01

    Recent studies implicate a role for cell mechanics in cancer progression. The epithelial-to-mesenchymal transition (EMT) regulates the detachment of cancer cells from the epithelium and facilitates their invasion into stromal tissue. Although classic EMT hallmarks include loss of cell–cell adhesions, morphology changes, and increased invasion capacity, little is known about the associated mechanical changes. Previously, force application on integrins has been shown to initiate cytoskeletal rearrangements that result in increased cell stiffness and a stiffening response. Here we demonstrate that transforming growth factor β (TGF-β)–induced EMT results in decreased stiffness and loss of the normal stiffening response to force applied on integrins. We find that suppression of the RhoA guanine nucleotide exchange factors (GEFs) LARG and GEF-H1 through TGF-β/ALK5–enhanced proteasomal degradation mediates these changes in cell mechanics and affects EMT-associated invasion. Taken together, our results reveal a functional connection between attenuated stiffness and stiffening response and the increased invasion capacity acquired after TGF-β–induced EMT. PMID:25143398

  19. A modal aeroelastic analysis scheme for turbomachinery blading. M.S. Thesis - Case Western Reserve Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Smith, Todd E.

    1991-01-01

    An aeroelastic analysis is developed which has general application to all types of axial-flow turbomachinery blades. The approach is based on linear modal analysis, where the blade's dynamic response is represented as a linear combination of contributions from each of its in-vacuum free vibrational modes. A compressible linearized unsteady potential theory is used to model the flow over the oscillating blades. The two-dimensional unsteady flow is evaluated along several stacked axisymmetric strips along the span of the airfoil. The unsteady pressures at the blade surface are integrated to result in the generalized force acting on the blade due to simple harmonic motions. The unsteady aerodynamic forces are coupled to the blade normal modes in the frequency domain using modal analysis. An iterative eigenvalue problem is solved to determine the stability of the blade when the unsteady aerodynamic forces are included in the analysis. The approach is demonstrated by applying it to a high-energy subsonic turbine blade from a rocket engine turbopump power turbine. The results indicate that this turbine could undergo flutter in an edgewise mode of vibration.

  20. Mechanical properties of DNA-like polymers

    PubMed Central

    Peters, Justin P.; Yelgaonkar, Shweta P.; Srivatsan, Seergazhi G.; Tor, Yitzhak; James Maher, L.

    2013-01-01

    The molecular structure of the DNA double helix has been known for 60 years, but we remain surprisingly ignorant of the balance of forces that determine its mechanical properties. The DNA double helix is among the stiffest of all biopolymers, but neither theory nor experiment has provided a coherent understanding of the relative roles of attractive base stacking forces and repulsive electrostatic forces creating this stiffness. To gain insight, we have created a family of double-helical DNA-like polymers where one of the four normal bases is replaced with various cationic, anionic or neutral analogs. We apply DNA ligase-catalyzed cyclization kinetics experiments to measure the bending and twisting flexibilities of these polymers under low salt conditions. Interestingly, we show that these modifications alter DNA bending stiffness by only 20%, but have much stronger (5-fold) effects on twist flexibility. We suggest that rather than modifying DNA stiffness through a mechanism easily interpretable as electrostatic, the more dominant effect of neutral and charged base modifications is their ability to drive transitions to helical conformations different from canonical B-form DNA. PMID:24013560

  1. Ultrasonic investigation of granular materials subjected to compression and crushing.

    PubMed

    Gheibi, Amin; Hedayat, Ahmadreza

    2018-07-01

    Ultrasonic wave propagation measurement has been used as a suitable technique for studying the granular materials and investigating the soil fabric structure, the grain contact stiffness, frictional strength, and inter-particle contact area. Previous studies have focused on the variations of shear and compressional wave velocities with effective stress and void ratio, and lesser effort has been made in understanding the variation of amplitude and dominant frequency of transmitted compressional waves with deformation of soil packing. In this study, continuous compressional wave transmission measurements during compaction of unconsolidated quartz sand are used to investigate the impact of soil layer deformation on ultrasonic wave properties. The test setup consisted of a loading machine to apply constant loading rate to a sand layer (granular quartz) of 6 mm thickness compressed between two forcing blocks, and an ultrasonic wave measurement system to continuously monitor the soil layer during compression up to 48 MPa normal stress. The variations in compressional wave attributes such as wave velocity, transmitted amplitude, and dominant frequency were studied as a function of the applied normal stress and the measured normal strain as well as void ratio and particle size. An increasing trend was observed for P-wave velocity, transmitted amplitude and dominant frequency with normal stress. In specimen with the largest particle size (D 50  = 0.32 mm), the wave velocity, amplitude and dominant frequency were found to increase about 230%, 4700% and 320% as the normal stress reached the value of 48 MPa. The absolute values of transmitted wave amplitude and dominant frequency were greater for specimens with smaller particle sizes while the normalized values indicate an opposite trend. The changes in the transmitted amplitude were linked to the changes in the true contact area between the particles with a transitional point in the slope of normalized amplitude, coinciding with the yield stress of the granular soil layer. The amount of grain crushing as a result of increase in the normal stress was experimentally measured and a linear correlation was found between the degree of grain crushing and the changes in the normalized dominant frequency of compressional waves. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Opening of DNA chain due to force applied on different locations.

    PubMed

    Singh, Amar; Modi, Tushar; Singh, Navin

    2016-09-01

    We consider a homogeneous DNA molecule and investigate the effect of random force applied on the unzipping profile of the molecule. How the critical force varies as a function of the chain length or number of base pairs is the objective of this study. In general, the ratio of the critical forces that is applied on the middle of the chain to that which is applied on one of the ends is two. Our study shows that this ratio depends on the length of the chain. This means that the force which is applied to a point can be experienced by a section of the chain. Beyond a length, the base pairs have no information about the applied force. In the case when the chain length is shorter than this length, this ratio may vary. Only in the case when the chain length exceeds a critical length, this ratio is found to be two. Based on the de Gennes formulation, we developed a method to calculate these forces at zero temperature. The exact results at zero temperature match numerical calculations.

  3. Preliminary Results of Stability and Control Investigation of the Bell X-5 Research Airplane

    NASA Technical Reports Server (NTRS)

    Finch, Thomas W; Briggs, Donald W

    1953-01-01

    During the acceptance tests of the Bell X-5 airplane, measurements of the static stability and control characteristics and horizontal-tail loads were obtained by the NACA High-Speed Flight Research Station. The results of the stability and control measurements are presented in this paper. A change in sweep angle between 20 deg and 59 deg had a minor effect on the longitudinal trim, with a maximum change of about 2.5 deg in elevator deflection being required at a Mach number near 0.85; however, sweeping the wings produced a total stick-force change of about 40 pounds. At low Mach numbers there was a rapid increase in stability at high normal-force coefficients for both 20 0 and 1100 sweepback, whereas a condition of neutral stability existed for 58 0 sweepback at high normal-force coefficients. At Mach numbers near 0.8 there was an instability at normal-force coefficients above 0.5 for all sweep angles tested. In the low normal-force-coefficient range a high degree of stability resulted in high stick forces which limited the maximum load factors attainable in the demonstration flights to values under 5g for all sweep angles at a Mach number near 0.8 and an altitude of 12,000 feet. The aileron effectiveness at 200 sweepback was found to be low over the Mach number range tested.

  4. Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method

    PubMed Central

    Wu, Fengyuan; Fan, Yunyun; Liang, Li; Wang, Chao

    2016-01-01

    This paper presents a clump model based on Discrete Element Method. The clump model was more close to the real particle than a spherical particle. Numerical simulations of several tests of dry granular flow impacting a rigid wall flowing in an inclined chute have been achieved. Five clump models with different sphericity have been used in the simulations. By comparing the simulation results with the experimental results of normal force on the rigid wall, a clump model with better sphericity was selected to complete the following numerical simulation analysis and discussion. The calculation results of normal force showed good agreement with the experimental results, which verify the effectiveness of the clump model. Then, total normal force and bending moment of the rigid wall and motion process of the granular flow were further analyzed. Finally, comparison analysis of the numerical simulations using the clump model with different grain composition was obtained. By observing normal force on the rigid wall and distribution of particle size at the front of the rigid wall at the final state, the effect of grain composition on the force of the rigid wall has been revealed. It mainly showed that, with the increase of the particle size, the peak force at the retaining wall also increase. The result can provide a basis for the research of relevant disaster and the design of protective structures. PMID:27513661

  5. Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma

    2018-06-01

    When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.

  6. Fluid Dynamics of Coarctation of the Aorta and Effect of Bicuspid Aortic Valve

    PubMed Central

    Keshavarz-Motamed, Zahra; Garcia, Julio; Kadem, Lyes

    2013-01-01

    Up to 80% of patients with coarctation of the aorta (COA) have a bicuspid aortic valve (BAV). Patients with COA and BAV have elevated risks of aortic complications despite successful surgical repair. The development of such complications involves the interplay between the mechanical forces applied on the artery and the biological processes occurring at the cellular level. The focus of this study is on hemodynamic modifications induced in the aorta in the presence of a COA and a BAV. For this purpose, numerical investigations and magnetic resonance imaging measurements were conducted with different configurations: (1) normal: normal aorta and normal aortic valve; (2) isolated COA: aorta with COA (75% reduction by area) and normal aortic valve; (3) complex COA: aorta with the same severity of COA (75% reduction by area) and BAV. The results show that the coexistence of COA and BAV significantly alters blood flow in the aorta with a significant increase in the maximal velocity, secondary flow, pressure loss, time-averaged wall shear stress and oscillatory shear index downstream of the COA. These findings can contribute to a better understanding of why patients with complex COA have adverse outcome even following a successful surgery. PMID:24015239

  7. Contractile properties of single permeabilized muscle fibers from congenital cleft palates and normal palates of Spanish goats.

    PubMed

    Hanes, Michael C; Weinzweig, Jeffrey; Kuzon, William M; Panter, Kip E; Buchman, Steven R; Faulkner, John A; Yu, Deborah; Cederna, Paul S; Larkin, Lisa M

    2007-05-01

    Analysis of the composition of muscle fibers constituent to a cleft palate could provide significant insight into the cause of velopharyngeal inadequacy. The authors hypothesized that levator veli palatini muscle dysfunction inherent to cleft palates could affect the timing and outcome of cleft palate repair. Single, permeabilized muscle fibers from levator veli palatini muscles of three normal (n = 19 fibers) and three chemically induced congenital cleft palates (n = 21 fibers) of 14-month-old goats were isolated, and contractile properties were evaluated. The maximum isometric force and rate constants of tension redevelopment (ktr) were measured, and the specific force and normalized power were calculated for each fiber. The ktr measures indicate that cleft fibers are predominantly fast-fatigable; normal fibers are slow fatigue-resistant: after a 10-minute isometric contraction, fibers from cleft palates had a loss of force 16 percent greater than that from normal palates (p = 0.0001). The cross-sectional areas of the fibers from cleft palates (2750 +/- 209 microm2) were greater (p = 0.05) than those from normal palates (2226 +/- 143 microm2). Specific forces did not differ between the two groups. Maximum normalized power of fibers from cleft palates (11.05 +/- 1.82 W/l) was greater (p = 0.0001) than fibers from normal palates (1.60 +/- 0.12 W/l). There are clear physiologic differences in single muscle fibers from cleft palates and normal palates: cleft palate fibers are physiologically fast, have greater fatigability, and have greater power production. Detection of functional and/or fiber type differences in muscles of cleft palates may provide preoperative identification of a patient's susceptibility to velopharyngeal inadequacy and permit early surgical intervention to correct this clinical condition.

  8. Forced oscillometry track sites of airway obstruction in bronchial asthma.

    PubMed

    Hafez, Manal Refaat; Abu-Bakr, Samiha Mohamed; Mohamed, Alyaa Abdelnaser

    2015-07-01

    Spirometry is the most commonly used method for assessment of airway function in bronchial asthma but has several limitations. Forced oscillometry was developed as a patient-friendly test that requires passive cooperation of the patient breathing normally through the mouth. To compare spirometry with forced oscillometry to assess the role of forced oscillometry in the detection of the site of airway obstruction. This case-and-control study included 50 patients with known stable asthma and 50 age- and sex-matched healthy subjects. All participants underwent spirometry (ratio of force expiration volume in 1 second to forced vital capacity, percentage predicted for forced expiration volume in 1 second, percentage predicted for forced vital capacity, percentage predicted for vital capacity, and forced expiratory flow at 25-75%) and forced oscillometry (resistance at 5, 20, and 5-20 Hz). By spirometry, all patients with asthma had airway obstruction, 8% had isolated small airway obstruction, 10% had isolated large airway obstruction, and 82% had large and small airway obstruction. By forced oscillometry, 12% had normal airway resistance, 50% had isolated small airway obstruction with frequency-dependent resistance, and 38% had large and small airway obstruction with frequency-independent resistance. There was significant difference between techniques for the detection of the site of airway obstruction (P = .012). Forced oscillometry indices were negatively correlated with spirometric indices (P < .01). Forced oscillometry as an effortless test, conducted during quiet tidal breathing, and does not alter airway caliber; thus, it can detect normal airway function better than spirometry in patients with asthma. Forced oscillometry detects isolated small airway obstruction better than spirometry in bronchial asthma. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. A quantitative method for measuring forces applied by nail braces.

    PubMed

    Erdogan, Fatma G

    2011-01-01

    Nail bracing is a conservative method used for ingrown nails; however, lack of objective measurements limits its use for various nails. Double-string nail braces with extra metal springs were applied to 12 patients with 21 chronic, thick, and overcurved ingrown nails. Force was measured with a force gauge meter. Treatment was stopped once patients stood on their tiptoes and walked in shoes pain free without braces. A force gauge meter was also used on a model nail to show the forces applied by various nail braces and to compare their pulling forces. After 6 to 10 months of treatment, all of the patients were pain free; 600 to 1,000 centi Newtons of force were applied to the nails. As the width of the nail increased, so did the force. Braces exert more force on larger nails, which may shorten treatment durations. By measuring forces, it may be possible to standardize force and duration of treatment according to variables such as nail thickness, nail width, angle of ingrown nail, and duration of symptoms.

  10. Mechanical stability of the subtalar joint after lateral ligament sectioning and ankle brace application: a biomechanical experimental study.

    PubMed

    Kamiya, Tomoaki; Kura, Hideji; Suzuki, Daisuke; Uchiyama, Eiichi; Fujimiya, Mineko; Yamashita, Toshihiko

    2009-12-01

    The roles of each ligament supporting the subtalar joint have not been clarified despite several biomechanical studies. The effects of ankle braces on subtalar instability have not been shown. The ankle brace has a partial effect on restricting excessive motion of the subtalar joint. Controlled laboratory study. Ten normal fresh-frozen cadaveric specimens were used. The angular motions of the talus were measured via a magnetic tracking system. The specimens were tested while inversion and eversion forces, as well as internal and external rotation torques, were applied. The calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament were sectioned sequentially, and the roles of each ligament, as well as the stabilizing effects of the ankle brace, were examined. Complete sectioning of the ligaments increased the angle between the talus and calcaneus in the frontal plane to 51.7 degrees + or - 11.8 degrees compared with 35.7 degrees + or - 6.0 degrees in the intact state when inversion force was applied. There was a statistically significant difference in the angles between complete sectioning of the ligaments and after application of the brace (34.1 degrees + or - 7.3 degrees ) when inversion force was applied. On the other hand, significant differences in subtalar rotation were not found between complete sectioning of the ligaments and application of the brace when internal and external rotational torques were applied. The ankle brace limited inversion of the subtalar joint, but it did not restrict motion after application of internal or external rotational torques. In cases of severe ankle sprains involving the calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament injuries, application of an ankle brace might be less effective in limiting internal-external rotational instabilities than in cases of inversion instabilities in the subtalar joint. An improvement in the design of the brace is needed to restore better rotational stability in the subtalar joint.

  11. 49 CFR 178.338-3 - Structural integrity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... a decelerative force applied independently to each suspension assembly at the road surface using... the axial load resulting from an accelerative force applied to the horizontal pivot of the fifth wheel... or compressive stress generated by the axial load resulting from a decelerative force applied...

  12. 49 CFR 178.338-3 - Structural integrity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... a decelerative force applied independently to each suspension assembly at the road surface using... the axial load resulting from an accelerative force applied to the horizontal pivot of the fifth wheel... or compressive stress generated by the axial load resulting from a decelerative force applied...

  13. 49 CFR 178.338-3 - Structural integrity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... a decelerative force applied independently to each suspension assembly at the road surface using... the axial load resulting from an accelerative force applied to the horizontal pivot of the fifth wheel... or compressive stress generated by the axial load resulting from a decelerative force applied...

  14. Intra-operative measurement of applied forces during anterior scoliosis correction.

    PubMed

    Fairhurst, H; Little, J P; Adam, C J

    2016-12-01

    Spinal instrumentation and fusion for the treatment of scoliosis is primarily a mechanical intervention to correct the deformity and halt further progression. While implant-related complications remain a concern, little is known about the magnitudes of the forces applied to the spine during surgery, which may affect post-surgical outcomes. In this study, the compressive forces applied to each spinal segment during anterior instrumentation were measured in a series of patients with Adolescent Idiopathic Scoliosis. A force transducer was designed and retrofit to a routinely used surgical tool, and compressive forces applied to each segment during surgery were measured for 15 scoliosis patients. Cobb angle correction achieved by each force was measured on intra-operative fluoroscope images. Relative changes in orientation of the screw within the vertebra were also measured to detect intra-operative screw plough. Intra-operative forces were measured for a total of 95 spinal segments. The mean applied compressive force was 540N (SD 230N, range 88N-1019N). There was a clear trend for higher forces to be applied at segments toward the apex of the scoliosis. Fluoroscopic evidence of screw plough was detected at 10 segments (10.5%). The magnitude of forces applied during anterior scoliosis correction vary over a broad range. These forces do reach magnitudes capable of causing intra-operative vertebral body screw plough. Surgeons should be aware there is a risk for tissue overload during correction, however the clinical implications of intra-operative screw plough remain unclear. The dataset presented here is valuable for providing realistic input parameters for in silico surgical simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structures. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville Distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  16. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  17. Analytical and Experimental Vibration Analysis of a Faulty Gear System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-01-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  18. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  19. Evaluation of eye injury risk from projectile shooting toys using the focus headform - biomed 2009.

    PubMed

    Bisplinghoff, Jill A; Duma, Stefan M

    2009-01-01

    Half of eye injuries in the United States are caused by a blunt impact and more specifically, eye injuries effecting children often result from projectile shooting toys. The purpose of this study is to evaluate the risk of eye injuries of currently available projectile shooting toys. In order to assess the risk of each toy, a Facial and Ocular Countermeasure Safety (FOCUS) headform was used to measure the force applied to the eye during each hit for a total of 18 tests. The selected toys included a dart gun, a foam launcher, and a ball launcher. The force ranged from 4-93 N and was analyzed using the injury risk function for globe rupture for the FOCUS headform. Projectile characteristics were also examined using normalized energy to determine risk of corneal abrasion, hyphema, lens dislocation, retinal damage and globe rupture. It was found that the three toys tested produced peak loads corresponding with risk of globe rupture between 0% and 17.3%. The normalized energy results show no risk of hyphema, lens dislocation, retinal damage or globe rupture and a maximum risk of corneal abrasion of 5.9%. This study concludes that although there are many eye injuries caused by projectiles, the selected toys show a very low risk of eye injury.

  20. Theoretical analysis of evaporative cooling of classic heat stroke patients.

    PubMed

    Alzeer, Abdulaziz H; Wissler, E H

    2018-05-18

    Heat stroke is a serious health concern globally, which is associated with high mortality. Newer treatments must be designed to improve outcomes. The aim of this study is to evaluate the effect of variations in ambient temperature and wind speed on the rate of cooling in a simulated heat stroke subject using the dynamic model of Wissler. We assume that a 60-year-old 70-kg female suffers classic heat stroke after walking fully exposed to the sun for 4 h while the ambient temperature is 40 °C, relative humidity is 20%, and wind speed is 2.5 m/s -1 . Her esophageal and skin temperatures are 41.9 and 40.7 °C at the time of collapse. Cooling is accomplished by misting with lukewarm water while exposed to forced airflow at a temperature of 20 to 40 °C and a velocity of 0.5 or 1 m/s -1 . Skin blood flow is assumed to be either normal, one-half of normal, or twice normal. At wind speed of 0.5 m/s -1 and normal skin blood flow, the air temperature decreased from 40 to 20 °C, increased cooling, and reduced time required to reach to a desired temperature of 38 °C. This relationship was also maintained in reduced blood flow states. Increasing wind speed to 1 m/s -1 increased cooling and reduced the time to reach optimal temperature both in normal and reduced skin blood flow states. In conclusion, evaporative cooling methods provide an effective method for cooling classic heat stroke patients. The maximum heat dissipation from the simulated model of Wissler was recorded when the entire body was misted with lukewarm water and applied forced air at 1 m/s at temperature of 20 °C.

  1. Development of a 5-Component Balance for Water Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.

    1999-01-01

    The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a wider range of quantitative and qualitative experiments, especially during the preliminary phase of aircraft design.

  2. In-Shoe Plantar Pressures and Ground Reaction Forces during Overweight Adults' Overground Walking

    ERIC Educational Resources Information Center

    de Castro, Marcelo P.; Abreu, Sofia C.; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo

    2014-01-01

    Purpose: Because walking is highly recommended for prevention and treatment of obesity and some of its biomechanical aspects are not clearly understood for overweight people, we compared the absolute and normalized ground reaction forces (GRF), plantar pressures, and temporal parameters of normal-weight and overweight participants during…

  3. Detection of cancerous cervical cells using physical adhesion of fluorescent silica particles and centripetal force

    PubMed Central

    Gaikwad, Ravi M.; Dokukin, Maxim E.; Iyer, K. Swaminathan; Woodworth, Craig D.; Volkov, Dmytro O.; Sokolov, Igor

    2012-01-01

    Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical interaction between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. PMID:21305062

  4. Interpersonal synergies: static prehension tasks performed by two actors.

    PubMed

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-08-01

    We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.

  5. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach

    NASA Astrophysics Data System (ADS)

    Gerstmayr, Johannes; Irschik, Hans

    2008-12-01

    In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.

  6. Processing of probabilistic information in weight perception and motor prediction.

    PubMed

    Trampenau, Leif; van Eimeren, Thilo; Kuhtz-Buschbeck, Johann

    2017-02-01

    We studied the effects of probabilistic cues, i.e., of information of limited certainty, in the context of an action task (GL: grip-lift) and of a perceptual task (WP: weight perception). Normal subjects (n = 22) saw four different probabilistic visual cues, each of which announced the likely weight of an object. In the GL task, the object was grasped and lifted with a pinch grip, and the peak force rates indicated that the grip and load forces were scaled predictively according to the probabilistic information. The WP task provided the expected heaviness related to each probabilistic cue; the participants gradually adjusted the object's weight until its heaviness matched the expected weight for a given cue. Subjects were randomly assigned to two groups: one started with the GL task and the other one with the WP task. The four different probabilistic cues influenced weight adjustments in the WP task and peak force rates in the GL task in a similar manner. The interpretation and utilization of the probabilistic information was critically influenced by the initial task. Participants who started with the WP task classified the four probabilistic cues into four distinct categories and applied these categories to the subsequent GL task. On the other side, participants who started with the GL task applied three distinct categories to the four cues and retained this classification in the following WP task. The initial strategy, once established, determined the way how the probabilistic information was interpreted and implemented.

  7. Simulated impact damage in a thick graphite/epoxy laminate using spherical indenters

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    A study was made to determine the extent of fiber damage caused by low-velocity impact of spherical impactors to a very thick graphite/epoxy laminate. The laminate was cut from a filament wound case being developed for the Space Shuttle solid rocket motors. The case was wound using a wet process with AS4W graphite fiber and HBRF-55A epoxy. Impacts were simulated under quasi-static conditions by pressing hemispherically shaped indenters against the laminate at different locations. The contact force and indenter diameter were varied from location to location. The forces were chosen for each indenter diameter to produce contact pressures below and above that required to initiate damage. After the forces were applied, the laminate was cut into smaller pieces so that each piece contained a test site. The pieces were then deplied and the individual plies examined to determine the extent of fiber damage. Broken fibers were found in the outer layers directly beneath the contact site. The locus of broken fibers in each layer resembled a crack normal to the direction of the fibers. The maximum length and depth of the cracks increased with increasing contact pressure and indenter diameter. The internal stresses in the laminate were calculated using Hertz's law and Love's solution for pressure applied on part of the boundary of a semi-infinite body. The maximum length and depth of the cracks were predicted using a maximum shear stress criterion. Predictions and measurements were in good agreement.

  8. Early detection of lung function decrements in children and adolescents with cystic fibrosis using new reference values.

    PubMed

    Zacharasiewicz, Angela; Renner, Sabine; Haderer, Flora; Weber, Michael; Dehlink, Eleonore; Szepfalusi, Zsolt; Frischer, Thomas

    2017-08-01

    Interpretation of lung function values in children with cystic fibrosis (CF) depends on the applied reference values. We hypothesize that differences between the new global lung function initiative (GLI) values and the formerly used Zapletal et al. values produce significantly different clinical results. We analyzed 3719 lung function measurements of 108 children and adolescents (n = 54 male; aged 6-18 years) with CF treated between September 1991 and July 2009. Data were analyzed in milliliters (ml) and % predicted (pred.) and interpreted using Zapletal and GLI reference values. Applying GLI compared to Zapletal resulted in significantly lower mean forced expiratory volume in 1s (FEV1)% pred. Zapletal 86.6% (SD 20.6), GLI 79.9% (SD 20.3) and 32% (n = 497/1543) were misclassified as normal when using Zapletal. Despite showing no overall differences in FEV1 and forced vital capacity (FVC) between concomitant Pseudomonas detection (PA+) in n = 938 and Pseudomonas negative (PA-) (n = 2781) using either reference PA+ resulted in lower FEV1 and FVC values with increasing age; however, measurement of small airway obstruction with forced expiratory flow at 75% of FVC (FEF75) values - available for Zapletal -showed significant differences. Reassurance regarding lung function when using old reference values may occur with potential clinical significance. Discrepancies in lung function interpretation underline the importance of using uniform and best available reference values.

  9. Influence of G-forces on the blood vessels in the nervous system of the rabbit

    NASA Technical Reports Server (NTRS)

    Zotova, N. I.; Muratikova, V. A.; Preobrazhenskaya, I. N.

    1975-01-01

    Arteries in the brain are constricted by g-forces applied in the head-pelvis direction. Transversely applied g-forces have less effect. Appropriate conditioning can reduce the severity of all g-force applications.

  10. Calculations of current-induced forces on moored tankers, using the theory of manoeuvring ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirza, S.

    1996-12-31

    The knowledge of current induced loads on moored tankers is important in the design of mooring lines. Normally, these current loads are determined from controlled laboratory experiments and field tests or from the Oil Companies International Marine Forum (OCIMF) data (1977). Chakrabarti (1995) mentions that the validity of some of this data is doubtful, and he conducted some tank tests. To save time involved in preparation of elaborate tank tests, it will be useful to have some analytical tools to calculate the current induced loads. In this paper, an attempt has been made to calculate the lateral forces in currentmore » only conditions, using the theory of manoeuvring ships. The manoeuvring model was developed by Wellicome (1981). The sway forces on the hull are modelled by conformal transformation of the hull into a circle plane and applying the flow field. The forces on the bilge keel are modelled by vortex panel method. The results for the simulation are compared with the test results of Chakrabarti (1995). There is good correlation between the experimental and theoretical results for the case of hull with bilge keels. This is true for the streaming flow velocity up to an angle of 45 to the longitudinal direction of the hull. For the case of bare hull, the computational model grossly underpredicts the sway forces. This may be due to the dominance of viscous forces than the potential ones.« less

  11. Manipulating Light and Matter with Photonic Structures: Numerical Investigations on Photonic Crystals and Optical Forces

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    The highly developed nano-fabrication techniques allow light to be modulated with photonic structures in a more intensive way. These photonic structures involve photonic crystals, metals supporting surface plasmon polaritons, metamaterials, etc. In this thesis work, three different ways for light manipulation are numerically investigated. First, the light propagation is modulated using a photonic crystal with Dirac cones. It is demonstrated that the zero-index behavior of this photonic crystal which happens for normal incident waves, is lost at oblique incidence. A new method combining complex-k band calculations and absorbing boundary conditions for Bloch modes is developed to analyze the Bloch mode interaction in details. Second, the mechanic states of graphene are modulated through the optical gradient force. This force is induced by the coupled surface plasmons on the double graphene sheets and is greatly enhanced in comparison to the regular waveguides. By applying different strengths of forces in accordance to the input power, the mechanic state transition is made possible, accompanied by an abrupt change in the transmission and reflection spectra. Third, the helicity/chirality of light is studied to modulate the lateral force on a small particle. A left-hand material slab which supports coherent TE ad TM plasmons simultaneously is introduced. By mixing the TE and TM surface plasmons with different relative phases, the lateral force on a chiral particle can be changed, which will be beneficial for chiral particle sorting.

  12. Influence of the Reynolds number on normal forces of slender bodies of revolution

    NASA Technical Reports Server (NTRS)

    Hartmann, K.

    1982-01-01

    Comprehensive force, moment, and pressure distribution measurements as well as flow visualization experiments were carried out to determine the influence of the Reynolds number on nonlinear normal forces of slender bodies of revolution. Experiments were performed in transonic wind tunnels at angles of attack up to 90 deg in the Mach number range 0.5 to 2.2 at variable Reynolds numbers. The results were analysed theoretically and an empirical theory was developed which describes the test results satisfactory.

  13. Inhibitors of SOD1 Interaction as an Approach to Slow the Progressive Spread of ALS Symptoms

    DTIC Science & Technology

    2016-07-01

    luciferase enzyme can be split into 2 halves. These 2 halves can be forced to reconstitute an active enzyme if they are brought together by some...force. In our assay, this force is the normal interaction that occurs when 2 individual SOD1 proteins come together to form a normal active enzyme ...Using recombinant DNA, we create fusion proteins of SOD1 and each half of the luciferase enzyme . In the past year, we have characterized and optimized

  14. Effects of exercise on biomechanical properties of the superficial digital flexor tendon in foals.

    PubMed

    Cherdchutham, W; Meershoek, L S; van Weeren, P R; Barneveld, A

    2001-12-01

    To determine the effects of exercise on biomechanical properties of the superficial digital flexor tendon (SDFT) in foals. 43 Dutch Warmblood foals. From 1 week until 5 months of age, 14 foals were housed in stalls and not exercised, 14 foals were housed in stalls and exercised daily, and 15 foals were maintained at pasture. Eight foals in each group were euthanatized at 5 months, and remaining foals were housed together in a stall and paddock until euthanatized at 11 months. After euthanasia, SDFT were isolated and fit in a material testing system. Mean cross-sectional area (CSA) was measured and traction forces recorded. Normalized force at rupture (force(rup)), normalized force at 4% strain, strain at rupture, stress at 4% strain (stress(4%stain)), and stress at rupture were compared among and within groups. At 5 months, mean CSA and normalized force(rup) were significantly greater and stress(4%strain) significantly less in the pastured group, compared with the other groups. At 11 months, CSA and normalized force(rup) were not significantly different among groups, because force(rup) increased significantly from 5 to 11 months in the nonexercised group and decreased significantly in the pastured group. Exercise significantly affected the biomechanical properties of the SDFT in foals. Evenly distributed moderate- and low-intensity exercise at a young age may be more effective for development of strong, flexible tendons in horses than single episodes of high-intensity exercise superimposed on stall rest. This effect may impact later susceptibility to SDFT injury.

  15. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.

    PubMed

    Hsu, Chao-Jung; Kim, Janis; Tang, Rongnian; Roth, Elliot J; Rymer, William Z; Wu, Ming

    2017-10-01

    To determine whether applying a mediolateral corrective force to the pelvis during treadmill walking would enhance muscle activity of the paretic leg and improve gait symmetry in individuals with post-stroke hemiparesis. Fifteen subjects with post-stroke hemiparesis participated in this study. A customized cable-driven robotic system based over a treadmill generated a mediolateral corrective force to the pelvis toward the paretic side during early stance phase. Three different amounts of corrective force were applied. Electromyographic (EMG) activity of the paretic leg, spatiotemporal gait parameters and pelvis lateral displacement were collected. Significant increases in integrated EMG of hip abductor, medial hamstrings, soleus, rectus femoris, vastus medialis and tibialis anterior were observed when pelvic corrective force was applied, with pelvic corrective force at 9% of body weight inducing greater muscle activity than 3% or 6% of body weight. Pelvis lateral displacement was more symmetric with pelvic corrective force at 9% of body weight. Applying a mediolateral pelvic corrective force toward the paretic side may enhance muscle activity of the paretic leg and improve pelvis displacement symmetry in individuals post-stroke. Forceful weight shift to the paretic side could potentially force additional use of the paretic leg and improve the walking pattern. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  16. Brain-Stimulation Induced Blindsight: Unconscious Vision or Response Bias?

    PubMed Central

    Lloyd, David A.; Abrahamyan, Arman; Harris, Justin A.

    2013-01-01

    A dissociation between visual awareness and visual discrimination is referred to as “blindsight”. Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the “gate” of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects’ performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious. PMID:24324837

  17. Brain-stimulation induced blindsight: unconscious vision or response bias?

    PubMed

    Lloyd, David A; Abrahamyan, Arman; Harris, Justin A

    2013-01-01

    A dissociation between visual awareness and visual discrimination is referred to as "blindsight". Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the "gate" of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects' performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious.

  18. Evaluation of the influences of various force magnitudes and configurations on scoliotic curve correction using finite element analysis.

    PubMed

    Karimi, Mohammad Taghi; Ebrahimi, Mohammad Hossein; Mohammadi, Ali; McGarry, Anthony

    2017-03-01

    Scoliosis is a lateral curvature in the normally straight vertical line of the spine, and the curvature can be moderate to severe. Different treatment can be used based on severity and age of subjects, but most common treatment for this disease is using orthosis. To design orthosis types of force arrangement can be varied, from transverse loads to vertical loads or combination of them. But it is not well introduced how orthoses control scoliotic curve and how to achieve the maximum correction based on force configurations and magnitude. Therefore, it was aimed to determine the effect of various loads configurations and magnitudes on curve correction of a degenerative scoliotic subject. A scoliotic subject participated in this study. The CT-Scan of the subject was used to produce 3D model of spine. The 3D model of spine was produced by Mimics software and the finite element analysis and deformation of scoliotic curve of the spine under seven different forces and in three different conditions was determined by ABAQUS software. The Cobb angle in scoliosis curve decreased significantly by applying forces. In each condition depends on different forces, different corrections have been achieved. It can be concluded that the configurations of the force application mentioned in this study is effective to decrease the scoliosis curve. Although it is a case study, it can be used for a vast number of subjects to predict the correction of scoliosis curve before orthotic treatment. Moreover, it is recommended that this method and the outputs can be compared with clinical findings.

  19. Single-limb force data for two lemur species while vertically clinging.

    PubMed

    Johnson, Laura E; Hanna, Jandy; Schmitt, Daniel

    2015-11-01

    Vertical clinging and climbing have been integral to hypotheses about primate origins, yet little is known about how an animal with nails instead of claws resists gravity while on large, vertical, and cylindrical substrates. Here we test models of how force is applied to maintain posture, predicting (1) the shear component force (Fs ) at the hands will be higher than the feet; (2) the normal component force (Fn ) at the feet will be relatively high compared to the hands; (3) the component force resisting gravity (Fg ) at the feet will be relatively high compared to the hands; (4) species with a high frequency of vertical clinging postures will have low Fg at the hands due to relatively short forelimbs. Using a novel instrumented support, single-limb force data were collected during clinging postures for the hands and feet and compared across limbs and species for Propithecus verreauxi (N = 2), a habitual vertical clinger and leaper, and Varecia variegata (N = 3), a habitual above-branch arboreal quadruped. For both species, hand Fs were significantly higher than at the feet and Fn and Fg at the feet were significantly higher than at the hands. Between species, P. verreauxi has relatively low Fg at the hands and Fn at the feet than V. vareigata. These results support previous models and show that hindlimb loading dominance, characteristic of primate locomotion, is found during clinging behaviors and may allow the forelimbs to be used for foraging while clinging. These findings provide insight into selective pressures on force distribution in primates and primate locomotor evolution. © 2015 Wiley Periodicals, Inc.

  20. Static Prehension of a Horizontally Oriented Object in Three Dimensions

    PubMed Central

    Wu, Yen-Hsun; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2011-01-01

    We studied static prehension of a horizontally oriented object. Specific hypotheses were explored addressing such issues as the sharing patterns of the total moment of force across the digits, presence of mechanically unnecessary digit forces, and trade-off between multi-digit synergies at the two levels of the assumed control hierarchy. Within the assumed hierarchy, at the upper level, the task is shared between the thumb and virtual finger (an imagined finger producing a wrench equal to the sum of the wrenches of individual fingers). At the lower level, action of the virtual finger is shared among the four actual fingers. The subjects held statically a horizontally oriented handle instrumented with six-component force/torque sensors with different loads and torques acting about the long axis of the handle. The thumb acted from above while the four fingers supported the weight of the object. When the external torque was zero, the thumb produced mechanically unnecessary force of about 2.8 N, which did not depend on the external load magnitude. When the external torque was not zero, tangential forces produced over 80% of the total moment of force. The normal forces by the middle and ring fingers produced consistent moments against the external torque, while the normal forces of the index and little fingers did not. Force and moment variables at both hierarchical levels were stabilized by co-varied across trials adjustments of forces/moments produced by individual digits with the exception of the normal force analyzed at the lower level of the hierarchy. There was a trade-off between synergy indices computed at the two levels of the hierarchy for the three components of the total force vector, but not for the moment of force components. Overall, the results have shown that task mechanics are only one factor that defines forces produced by individual digits. Other factors, such as loading sensory receptors may lead to mechanically unnecessary forces. There seems to be no single rule (for example, ensuring similar safety margin values) that would describe sharing of the normal and tangential forces and be valid across tasks. Fingers that are traditionally viewed as less accurate (e.g., the ring finger) may perform more consistently in certain tasks. The observations of the trade-off between the synergy indices computed at two levels for the force variables but not for the moment of force variables suggest that the degree of redundancy (the number of excessive elemental variables) at the higher level is an important factor. PMID:22071684

  1. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption-Desorption Transition.

    PubMed

    Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G

    2018-05-23

    The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.

  2. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption–Desorption Transition

    PubMed Central

    2018-01-01

    The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430

  3. Prehension Synergies in the Grasps With Complex Friction Patterns: Local Versus Synergic Effects and the Template Control

    PubMed Central

    Niu, Xun; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2010-01-01

    We studied adjustments of digit forces to changes in the friction. The subjects held a handle statically in a three-digit grasp. The friction under each digit was either high or low, resulting in eight three-element friction sets (such grasps were coined the grasps with complex friction pattern). The total load was also manipulated. It was found that digit forces were adjusted not only to the supported load and local friction, but also to friction at other digits (synergic effects). When friction under a digit was low, its tangential force decreased and the normal force increased (local effects). The synergic effects were directed to maintain the equilibrium of the handle. The relation between the individual digit forces and loads agreed with the triple-product model: fin=ki(2)ki(1)L, where fin is normal force of digit i, L is the load (newtons), ki(1) is a dimensionless coefficient representing sharing the total tangential force among the digits (Σki(1)=1.0), and ki(2) is a coefficient representing the relation between the tangential and normal forces of digit i (the overall friction equivalent, OFE). At each friction set, the central controller selected the grasping template—a three-element array of ki(2)ki(1) products—and then scaled the template with the load magnitude. PMID:17493928

  4. Force-induced desorption of 3-star polymers: a self-avoiding walk model

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Whittington, S. G.

    2018-05-01

    We consider a simple cubic lattice self-avoiding walk model of 3-star polymers adsorbed at a surface and then desorbed by pulling with an externally applied force. We determine rigorously the free energy of the model in terms of properties of a self-avoiding walk, and show that the phase diagram includes four phases, namely a ballistic phase where the extension normal to the surface is linear in the length, an adsorbed phase and a mixed phase, in addition to the free phase where the model is neither adsorbed nor ballistic. In the adsorbed phase all three branches or arms of the star are adsorbed at the surface. In the ballistic phase two arms of the star are pulled into a ballistic phase, while the remaining arm is in a free phase. In the mixed phase two arms in the star are adsorbed while the third arm is ballistic. The phase boundaries separating the ballistic and mixed phases, and the adsorbed and mixed phases, are both first order phase transitions. The presence of the mixed phase is interesting because it does not occur for pulled, adsorbed self-avoiding walks. In an atomic force microscopy experiment it would appear as an additional phase transition as a function of force.

  5. Incremental Aerodynamic Coefficient Database for the USA2

    NASA Technical Reports Server (NTRS)

    Richardson, Annie Catherine

    2016-01-01

    In March through May of 2016, a wind tunnel test was conducted by the Aerosciences Branch (EV33) to visually study the unsteady aerodynamic behavior over multiple transition geometries for the Universal Stage Adapter 2 (USA2) in the MSFC Aerodynamic Research Facility's Trisonic Wind Tunnel (TWT). The purpose of the test was to make a qualitative comparison of the transonic flow field in order to provide a recommended minimum transition radius for manufacturing. Additionally, 6 Degree of Freedom force and moment data for each configuration tested was acquired in order to determine the geometric effects on the longitudinal aerodynamic coefficients (Normal Force, Axial Force, and Pitching Moment). In order to make a quantitative comparison of the aerodynamic effects of the USA2 transition geometry, the aerodynamic coefficient data collected during the test was parsed and incorporated into a database for each USA2 configuration tested. An incremental aerodynamic coefficient database was then developed using the generated databases for each USA2 geometry as a function of Mach number and angle of attack. The final USA2 coefficient increments will be applied to the aerodynamic coefficients of the baseline geometry to adjust the Space Launch System (SLS) integrated launch vehicle force and moment database based on the transition geometry of the USA2.

  6. Evidence of protein-free homology recognition in magnetic bead force–extension experiments

    PubMed Central

    (O’) Lee, D. J.; Danilowicz, C.; Rochester, C.; Prentiss, M.

    2016-01-01

    Earlier theoretical studies have proposed that the homology-dependent pairing of large tracts of dsDNA may be due to physical interactions between homologous regions. Such interactions could contribute to the sequence-dependent pairing of chromosome regions that may occur in the presence or the absence of double-strand breaks. Several experiments have indicated the recognition of homologous sequences in pure electrolytic solutions without proteins. Here, we report single-molecule force experiments with a designed 60 kb long dsDNA construct; one end attached to a solid surface and the other end to a magnetic bead. The 60 kb constructs contain two 10 kb long homologous tracts oriented head to head, so that their sequences match if the two tracts fold on each other. The distance between the bead and the surface is measured as a function of the force applied to the bead. At low forces, the construct molecules extend substantially less than normal, control dsDNA, indicating the existence of preferential interaction between the homologous regions. The force increase causes no abrupt but continuous unfolding of the paired homologous regions. Simple semi-phenomenological models of the unfolding mechanics are proposed, and their predictions are compared with the data. PMID:27493568

  7. Single-Vector Calibration of Wind-Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2003-01-01

    An improved method of calibrating a wind-tunnel force balance involves the use of a unique load application system integrated with formal experimental design methodology. The Single-Vector Force Balance Calibration System (SVS) overcomes the productivity and accuracy limitations of prior calibration methods. A force balance is a complex structural spring element instrumented with strain gauges for measuring three orthogonal components of aerodynamic force (normal, axial, and side force) and three orthogonal components of aerodynamic torque (rolling, pitching, and yawing moments). Force balances remain as the state-of-the-art instrument that provide these measurements on a scale model of an aircraft during wind tunnel testing. Ideally, each electrical channel of the balance would respond only to its respective component of load, and it would have no response to other components of load. This is not entirely possible even though balance designs are optimized to minimize these undesirable interaction effects. Ultimately, a calibration experiment is performed to obtain the necessary data to generate a mathematical model and determine the force measurement accuracy. In order to set the independent variables of applied load for the calibration 24 NASA Tech Briefs, October 2003 experiment, a high-precision mechanical system is required. Manual deadweight systems have been in use at Langley Research Center (LaRC) since the 1940s. These simple methodologies produce high confidence results, but the process is mechanically complex and labor-intensive, requiring three to four weeks to complete. Over the past decade, automated balance calibration systems have been developed. In general, these systems were designed to automate the tedious manual calibration process resulting in an even more complex system which deteriorates load application quality. The current calibration approach relies on a one-factor-at-a-time (OFAT) methodology, where each independent variable is incremented individually throughout its full-scale range, while all other variables are held at a constant magnitude. This OFAT approach has been widely accepted because of its inherent simplicity and intuitive appeal to the balance engineer. LaRC has been conducting research in a "modern design of experiments" (MDOE) approach to force balance calibration. Formal experimental design techniques provide an integrated view to the entire calibration process covering all three major aspects of an experiment; the design of the experiment, the execution of the experiment, and the statistical analyses of the data. In order to overcome the weaknesses in the available mechanical systems and to apply formal experimental techniques, a new mechanical system was required. The SVS enables the complete calibration of a six-component force balance with a series of single force vectors.

  8. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation – A first step to create reliable customized simulators

    PubMed Central

    Zemiti, Nabil; Caravaca Mora, Oscar; Subsol, Gérard; Captier, Guillaume; Lebrun, Renaud; Crampette, Louis; Mondain, Michel; Gilles, Benjamin

    2017-01-01

    Introduction Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training. Methods Four 3D-printed consumer-grade materials were compared to human cadaver bone: calcium sulfate hemihydrate (named Multicolor), polyamide, resin and polycarbonate. We compared the geometric accuracy, forces required to break thin walls of materials and forces required during drilling. Results All materials had an acceptable global geometric accuracy (from 0.083mm to 0.203mm of global error). Local accuracy was better in polycarbonate (0.09mm) and polyamide (0.15mm) than in Multicolor (0.90mm) and resin (0.86mm). Resin and polyamide thin walls were not broken at 200N. Forces needed to break Multicolor thin walls were 1.6–3.5 times higher than in bone. For polycarbonate, forces applied were 1.6–2.5 times higher. Polycarbonate had a mode of fracture similar to the cadaver bone. Forces applied on materials during drilling followed a normal distribution except for the polyamide which was melted. Energy spent during drilling was respectively 1.6 and 2.6 times higher on bone than on PC and Multicolor. Conclusion Polycarbonate is a good substitute of human cadaver bone for skull base surgery simulation. Thanks to short lead times and reasonable production costs, patient-specific 3D printed models can be used in clinical practice for pre-operative training, improving patient safety. PMID:29252993

  9. Influence of fluids on the abrasion of silicon by diamond

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1982-01-01

    Silicon wafers ((100)-p-type) were abraded at room temperature in acetone, absolute ethanol and water by a pyramid diamond and the resulting groove depth was measured as a function of normal force on the diamond and the absorbed fluids, while all other experimental conditions were held constant. The groove depth rates are in the ratio of 1:2:3 for water, absolute ethanol, and acetone, respectively, for a constant normal force. The groove depth rate is lower when the normal force is decreased. The silicon abraded in the presence of water was chipped as expected for a classical brittle material while the surfaces abraded in the other two fluids showed ductile ploughing as the main mechanism for silicon removal.

  10. Instrument for controlling the application of mechanical loads to biological and bicompatible test subjects

    DOEpatents

    Lintilhac, Phillip M.; Vesecky, Thompson B.

    1995-01-01

    Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user.

  11. Instrument for controlling the application of mechanical loads to biological and bicompatible test subjects

    DOEpatents

    Lintilhac, P.M.; Vesecky, T.B.

    1995-09-19

    An apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user. 8 figs.

  12. Functional Brace in ACL Surgery: Force Quantification in an In Vivo Study

    PubMed Central

    LaPrade, Robert F.; Venderley, Melanie B.; Dahl, Kimi D.; Dornan, Grant J.; Turnbull, Travis Lee

    2017-01-01

    Background: A need exists for a functional anterior cruciate ligament (ACL) brace that dynamically supports the knee joint to match the angle-dependent forces of a native ACL, especially in the early postoperative period. Purpose/Hypothesis: The purpose of this study was to quantify the posteriorly directed external forces applied to the anterior proximal tibia by both a static and a dynamic force ACL brace. The proximal strap forces applied by the static force brace were hypothesized to remain relatively constant regardless of knee flexion angle compared with those of the dynamic force brace. Study Design: Controlled laboratory study. Methods: Seven healthy adult males (mean age, 27.4 ± 3.4 years; mean height, 1.8 ± 0.1 m; mean body mass, 84.1 ± 11.3 kg) were fitted with both a static and a dynamic force ACL brace. Participants completed 3 functional activities: unloaded extension, sit-to-stand, and stair ascent. Kinematic data were collected using traditional motion-capture techniques while posteriorly directed forces applied to the anterior aspect of both the proximal and distal tibia were simultaneously collected using a customized pressure-mapping technique. Results: The mean posteriorly directed forces applied to the proximal tibia at 30° of flexion by the dynamic force brace during unloaded extension (80.2 N), sit-to-stand (57.5 N), and stair ascent (56.3 N) activities were significantly larger, regardless of force setting, than those applied by the static force brace (10.1 N, 9.5 N, and 11.9 N, respectively; P < .001). Conclusion: The dynamic force ACL brace, compared with the static force brace, applied significantly larger posteriorly directed forces to the anterior proximal tibia in extension, where the ACL is known to experience larger in vivo forces. Further studies are required to determine whether the physiological behavior of the brace will reduce anterior knee laxity and improve long-term patient outcomes. Clinical Relevance: ACL braces that dynamically restrain the proximal tibia in a manner similar to physiological ACL function may improve pre- and postoperative treatment. PMID:28748195

  13. Splice assembly tool and method of splicing

    DOEpatents

    Silva, Frank A.

    1980-01-01

    A splice assembly tool for assembling component parts of an electrical conductor while producing a splice connection between electrical cables therewith, comprises a first structural member adaptable for supporting force applying means thereon, said force applying means enabling a rotary force applied manually thereto to be converted to a longitudinal force for subsequent application against a first component part of said electrical connection, a second structural member adaptable for engaging a second component part in a manner to assist said first structural member in assembling the component parts relative to one another and transmission means for conveying said longitudinal force between said first and said second structural members, said first and said second structural members being coupled to one another by said transmission means, wherein at least one of said component parts comprises a tubular elastomeric sleeve and said force applying means provides a relatively high mechanical advantage when said rotary force is applied thereto so as to facilitate assembly of said at least one tubular elastomeric sleeve about said other component part in an interference fit manner.

  14. Locomotor Adaptation to an Asymmetric Force on the Human Pelvis Directed Along the Right Leg.

    PubMed

    Vashista, Vineet; Martelli, Dario; Agrawal, Sunil

    2015-09-11

    In this work, we study locomotor adaptation in healthy adults when an asymmetric force vector is applied to the pelvis directed along the right leg. A cable-driven Active Tethered Pelvic Assist Device (A-TPAD) is used to apply an external force on the pelvis, specific to a subject's gait pattern. The force vector is intended to provide external weight bearing during walking and modify the durations of limb supports. The motivation is to use this paradigm to improve weight bearing and stance phase symmetry in individuals with hemiparesis. An experiment with nine healthy subjects was conducted. The results show significant changes in the gait kinematics and kinetics while the healthy subjects developed temporal and spatial asymmetry in gait pattern in response to the applied force vector. This was followed by aftereffects once the applied force vector was removed. The adaptation to the applied force resulted in asymmetry in stance phase timing and lower limb muscle activity. We believe this paradigm, when extended to individuals with hemiparesis, can show improvements in weight bearing capability with positive effects on gait symmetry and walking speed.

  15. Reduced G tolerance associated with supplement use.

    PubMed

    Barker, Patrick D

    2011-02-01

    High G forces encountered in tactical military aviation and aerobatic flight produce a host of physiologic responses aimed at preserving cerebral perfusion. The military has instituted measures to augment the physiologic response in order to avoid G-induced loss of consciousness (G-LOC) because of its potential to cause a catastrophic mishap. The case presented here details a Naval Aviator who experienced reduced G tolerance over two successive flights with a temporal relationship of starting a new supplement. Two components of the supplement, coenzyme Q10 and niacin, are highlighted here for their hemodynamic effects. After stopping the supplement the aviator regained his normal G tolerance and had no further issues in flight. There are several factors that can reduce G tolerance and supplement use has to be considered here because of the potential for altering the normal physiological response to increased G force. Our discussion reviews the physiological effects of increased G force, the spectrum of signs of decompensation under the stress of G force, and the potential effects this supplement had on the normal physiological response to increased G force, thus reducing the aviator's G tolerance.

  16. ALTERED PHALANX FORCE DIRECTION DURING POWER GRIP FOLLOWING STROKE

    PubMed Central

    Enders, Leah R.

    2015-01-01

    Many stroke survivors with severe impairment can grasp only with a power grip. Yet, little knowledge is available on altered power grip after stroke, other than reduced power grip strength. This study characterized stroke survivors’ static power grip during 100% and 50% maximum grip. Each phalanx force’s angular deviation from the normal direction and its contribution to total normal force was compared for 11 stroke survivors and 11 age-matched controls. Muscle activities and skin coefficient of friction (COF) were additionally compared for another 20 stroke and 13 age-matched control subjects. The main finding was that stroke survivors gripped with a 34% greater phalanx force angular deviation of 19±2° compared to controls of 14±1° (p<.05). Stroke survivors’ phalanx force angular deviation was closer to the 23° threshold of slippage between the phalanx and grip surface, which may explain increased likelihood of object dropping in stroke survivors. In addition, this altered phalanx force direction decreases normal grip force by tilting the force vector, indicating a partial role of phalanx force angular deviation in reduced grip strength post stroke. Greater phalanx force angular deviation may biomechanically result from more severe underactivation of stroke survivors’ first dorsal interosseous (FDI) and extensor digitorum communis (EDC) muscles compared to their flexor digitorum superficialis (FDS) or somatosensory deficit. While stroke survivors’ maximum power grip strength was approximately half of the controls’, the distribution of their remaining strength over the fingers and phalanges did not differ, indicating evenly distributed grip force reduction over the entire hand. PMID:25795079

  17. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  18. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  19. Mechanical and tribological properties of inorganic fullerene-like (IF) nanoparticles

    NASA Astrophysics Data System (ADS)

    Tevet, Ofer

    Layered materials like graphite, tungsten disulfide (WS2) and molybdenum disulfide (MoS2) are known for their ability to reduce friction and wear either as a pure solid lubricant or as additive for liquid lubricants. The synthesis of closed-cage inorganic nanostructures, made of tungsten disulfide (WS2) was first reported in 1992 [1,2]. These inorganic nanostructures have two forms: Inorganic fullerene-like (IF) nanoparticles (NP) [3] and nanotubes (INT) [4]. The mechanical properties of individual INT-WS2 have been studied extensively [5,6,7,8]. The objective of the current research was to measure the mechanical properties of individual fullerene-like nanoparticles made of tungsten disulfide (IF-WS 2) and molybdenum disulfide (IF-MoS2). The size of those multilayered, polyhedral, hollow, nanoparticles varies from 80 to 300 nm with mean value of about 120 nm. In order to conduct the research, experimental set-up for dispersion the IF and for in-situ nanopressing of the IF in a high resolution scanning electron microscope (HRSEM), was constructed. Nanomanipulator with an atomic force microscope (AFM) cantilever probe was used for applying the load. The stress, sigma, is defined as the load applied to a specimen divided by the contact area between the AFM tip and the specimen. The contact area was estimated from the contact length between the NP and the probe as seen in the HRSEM image. The deformation of the nanoparticle under load and shear was estimated from the HRSEM images taken during the compression test. The stress and the deformation of the individual IF NP enable us to measure the (critical) fracture stress and their elastic properties. The representative value (median) of the fracture stress, sigma50, of IF-WS2 and IF-MoS2 was 1.78 GPa and 2.50 GPa, respectively. Finite element analysis (FEA) simulation of the uniaxial compression on hollow polyhedral WS2 particles gives a good approximation to the experiments. The model was designed to emphasize the effect of the faceted and layered structure of the hollow nanoparticle on the stress concentration and their fracture mechanism. The experimental set-up was unable to elucidate three main tribological mechanisms of individual IF: rolling, sliding and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, normal stress and subsequently shear forces were applied on the NP. It is clear that rolling of individual NP of IF-WS2 is a valid and dominant mechanism under low shear rates and normal stress of 0.96+/-0.38 GPa. Sliding occurs at higher normal stress 1.65+/-0.54 GPa, and exfoliation predominates under high normal stress 1.82+/-0.59 GPa. For IF-MoS2 rolling was not observed. Sliding was the dominant mechanism under low shear rates and normal stress of 0.5+/-0.19 GPa, and exfoliation predominates under high normal stress of 1.89+/-0.78 GPa. The lack of rolling in the case of the IF-MoS2 nanoparticles could be attributed to its highly asymmetric oval shape, which is not favorable for such motion.

  20. Effects of Jaw Clenching and Jaw Alignment Mouthpiece Use on Force Production During Vertical Jump and Isometric Clean Pull.

    PubMed

    Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C

    2018-01-01

    Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.

  1. On the flow generated by rotating flat plates of low aspect ratio

    NASA Astrophysics Data System (ADS)

    DeVoria, Adam C.

    Low-aspect-ratio propulsors typically allow for high maneuverability at low-to-moderate speeds. This has made them the subject of much recent research aimed at employing such appendages on autonomous vehicles which are required to navigate tumultuous environments. This experimental investigation focuses on the fluid dynamic aspects associated with overly-simplified versions of such biologically-inspired propulsors. In doing so, fundamental contributions are made to the research area. The unsteady, three-dimensional flow of a low-aspect-ratio, trapezoidal flat plate undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103) is investigated experimentally. The objectives are to develop a straightforward protocol for vortex saturation, and to understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a glass-walled tank, and digital particle image velocimetry is used to obtain planar velocity measurements. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. The flow in the region near the tip is relatively insensitive to Reynolds number over the range studied. The component normal to the plate is unaffected by total rotational amplitude while the tangential component has dependence on this angle. Also, an estimate of the first tip-vortex pinch-off time is obtained from the near-tip velocity data and agrees very well with values estimated using circulation. The angle of incidence of the bulk root-to-tip flow relative to the plate normal becomes more oblique with increasing rotational amplitude. Accordingly, the peak magnitude of the tangential velocity is also increased and as a result advects fluid momentum away from the plate at a higher rate. The more oblique impingement of the root-to-tip flow for increasing rotational amplitude is shown to have a distinct effect on the associated fluid dynamic force normal to the plate. For impulsive plate deceleration the time that a non-negligible force exists decreases, while for non-impulsive plate deceleration both this time and the relative force magnitude decrease for larger rotational amplitudes. In a separate set of experiments, force measurements are conducted on a similar plate that performs an advancing stroke from rest followed by a returning stroke. The parameters varied are the rotational amplitude of the motion and the rest time between the advancing and returning strokes. The unsteady normal forces track with the angular acceleration of the plate, with the added mass force peak in the returning stroke being larger than that in the advancing stroke. However, as the rest time is increased, the normal forces generated in each stroke become dynamically similar. The maximum total impulse is calculated from the force measurements and rapidly decays from its largest value at zero rest time and asymptotes to a constant with increased rest time. The direction of this impulse is also calculated and quickly approaches the direction about which the plate motion is symmetric. The largest additional impulse contribution obtained from executing a returning stroke within a finite time is approximately 18%. Increases in rotational amplitude initially increase the maximum total impulse, but it then plateaus at an amplitude of around 90 degrees. For non-zero rest times, any maxima of the impulse in a fixed direction are weak and necessarily reduced from the maximum possible impulse. For a nearly 100 degrees range of directions, the impulse is largest for rotational amplitudes between 75--90 degrees. The results are also applied to three types of propulsive configurations.

  2. Sarcomere length dependence of rat skinned cardiac myocyte mechanical properties: dependence on myosin heavy chain

    PubMed Central

    Korte, F Steven; McDonald, Kerry S

    2007-01-01

    The effects of sarcomere length (SL) on sarcomeric loaded shortening velocity, power output and rates of force development were examined in rat skinned cardiac myocytes that contained either α-myosin heavy chain (α-MyHC) or β-MyHC at 12 ± 1°C. When SL was decreased from 2.3 μm to 2.0 μm submaximal isometric force decreased ∼40% in both α-MyHC and β-MyHC myocytes while peak absolute power output decreased 55% in α-MyHC myocytes and 70% in β-MyHC myocytes. After normalization for the fall in force, peak power output decreased about twice as much in β-MyHC as in α-MyHC myocytes (41%versus 20%). To determine whether the fall in normalized power was due to the lower force levels, [Ca2+] was increased at short SL to match force at long SL. Surprisingly, this led to a 32% greater peak normalized power output at short SL compared to long SL in α-MyHC myocytes, whereas in β-MyHC myocytes peak normalized power output remained depressed at short SL. The role that interfilament spacing plays in determining SL dependence of power was tested by myocyte compression at short SL. Addition of 2% dextran at short SL decreased myocyte width and increased force to levels obtained at long SL, and increased peak normalized power output to values greater than at long SL in both α-MyHC and β-MyHC myocytes. The rate constant of force development (ktr) was also measured and was not different between long and short SL at the same [Ca2+] in α-MyHC myocytes but was greater at short SL in β-MyHC myocytes. At short SL with matched force by either dextran or [Ca2+], ktr was greater than at long SL in both α-MyHC and β-MyHC myocytes. Overall, these results are consistent with the idea that an intrinsic length component increases loaded crossbridge cycling rates at short SL and β-MyHC myocytes exhibit a greater sarcomere length dependence of power output. PMID:17347271

  3. The prototype of high stiffness load cell for Rockwell hardness testing machine calibration according to ISO 6508-2:2015

    NASA Astrophysics Data System (ADS)

    Pakkratoke, M.; Sanponpute, T.

    2017-09-01

    The penetrated depth of the Rockwell hardness testing machine is normally not more than 0.260 mm. Using commercial load cell cannot achieve the proposed force calibration according to ISO 6508-2[1]. For these reason, the high stiffness load cell (HSL) was fabricated. Its obvious advantage is deformation less than 0.020 mm at 150 kgf maximum load applied. The HSL prototype was designed in concept of direct compression and then confirmed with finite element analysis, FEA. The results showed that the maximum deformation was lower than 0.012 mm at capacity.

  4. Disk in a groove with friction: An analysis of static equilibrium and indeterminacy

    NASA Astrophysics Data System (ADS)

    Donolato, Cesare

    2018-05-01

    This note studies the statics of a rigid disk placed in a V-shaped groove with frictional walls and subjected to gravity and a torque. The two-dimensional equilibrium problem is formulated in terms of the angles that contact forces form with the normal to the walls. This approach leads to a single trigonometric equation in two variables whose domain is determined by Coulomb's law of friction. The properties of solutions (existence, uniqueness, or indeterminacy) as functions of groove angle, friction coefficient and applied torque are derived by a simple geometric representation. The results modify some of the conclusions by other authors on the same problem.

  5. Molecular origin of limiting shear stress of elastohydrodynamic lubrication oil film studied by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Washizu, Hitoshi; Ohmori, Toshihide; Suzuki, Atsushi

    2017-06-01

    All-atom molecular dynamics simulations of an elastohydrodynamic lubrication oil film are performed to study the effect of pressure. Fluid molecules of n-hexane are confined between two solid plates under a constant normal force of 0.1-8.0 GPa. Traction simulations are performed by applying relative sliding motion to the solid plates. A transition in the traction behavior is observed around 0.5-2.0 GPa, which corresponds to the viscoelastic region to the plastic-elastic region, which are experimentally observed. This phase transition is related to the suppression of the fluctuation in molecular motion.

  6. Near real-time measurement of forces applied by an optical trap to a rigid cylindrical object

    NASA Astrophysics Data System (ADS)

    Glaser, Joseph; Hoeprich, David; Resnick, Andrew

    2014-07-01

    An automated data acquisition and processing system is established to measure the force applied by an optical trap to an object of unknown composition in real time. Optical traps have been in use for the past 40 years to manipulate microscopic particles, but the magnitude of applied force is often unknown and requires extensive instrument characterization. Measuring or calculating the force applied by an optical trap to nonspherical particles presents additional difficulties which are also overcome with our system. Extensive experiments and measurements using well-characterized objects were performed to verify the system performance.

  7. Local vibrational modes of the water dimer - Comparison of theory and experiment

    NASA Astrophysics Data System (ADS)

    Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D.

    2012-12-01

    Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory. The local H-bond stretching frequency is 528 cm-1 compared to a normal mode stretching frequency of just 143 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-bond strength.

  8. Automated force controller for amplitude modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollablemore » drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.« less

  9. Bipedal distribution of human vestibular-evoked postural responses during asymmetrical standing

    PubMed Central

    Marsden, J F; Castellote, J; Day, B L

    2002-01-01

    Galvanic vestibular stimulation (GVS) evokes responses in muscles of both legs when bilateral stimuli are applied during normal stance. We have used this technique to assess whether asymmetrical standing alters the distribution of responses in the two legs. Subjects stood either asymmetrically with 75 % of their body weight on one leg or symmetrically with each leg taking 50 % of their body weight. The net response in each leg was taken from changes in ground reaction force measured from separate force plates under each foot. The net force profile consisted of a small initial force change that peaked at ∼200 ms followed by an oppositely directed larger component that peaked at ∼450 ms. We analysed the second force component since it was responsible for the kinematic response of lateral body sway and tilt towards the anode. In the horizontal plane, both legs produced lateral force responses that were in the same direction but larger in the leg ipsilateral to the cathodal ear. There were also vertical force responses that were of equal size in both legs but acted in opposite directions. When subjects stood asymmetrically the directions of the force responses remained the same but their magnitudes changed. The lateral force response became 2-3 times larger for the more loaded leg and the vertical forces increased 1.5 times on average for both legs. Control experiments showed that these changes could not be explained by either the consistent (< 5 deg) head tilt towards the side of the loaded leg or the changes in background muscle activity associated with the asymmetrical posture. We conclude that the redistribution of force responses in the two legs arises from a load-sensing mechanism. We suggest there is a central interaction between load-related afferent input from the periphery and descending motor signals from balance centres. PMID:12096073

  10. Single cell active force generation under dynamic loading - Part I: AFM experiments.

    PubMed

    Weafer, P P; Reynolds, N H; Jarvis, S P; McGarry, J P

    2015-11-01

    A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Measured forces for the untreated cells are dramatically different to cytochalasin-D (cyto-D) treated cells, indicating that the contractile actin cytoskeleton plays a critical role in the response of cells to dynamic loading. Following a change in applied strain magnitude, while maintaining a constant applied strain rate, the compression force for contractile cells recovers to 88.9±7.8% of the steady state force. In contrast, cyto-D cell compression forces recover to only 38.0±6.7% of the steady state force. Additionally, untreated cells exhibit strongly negative (pulling) forces during unloading half-cycles when the probe is retracted. In comparison, negligible pulling forces are measured for cyto-D cells during probe retraction. The current study demonstrates that active contractile forces, generated by actin-myosin cross-bridge cycling, dominate the response of single cells to dynamic loading. Such active force generation is shown to be independent of applied strain magnitude. Passive forces generated by the applied deformation are shown to be of secondary importance, exhibiting a high dependence on applied strain magnitude, in contrast to the active forces in untreated cells. A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Contractile cells, which contain the active force generation machinery of the actin cytoskeleton, are shown to be insensitive to applied strain magnitude, exhibiting high resistance to dynamic compression and stretching. Such trends are not observed for cells in which the actin cytoskeleton has been chemically disrupted. These biomechanical insights have not been previously reported. This detailed characterisation of single cell active and passive stress during dynamic loading has important implications for tissue engineering strategies, where applied deformation has been reported to significantly affect cell mechanotransduction and matrix synthesis. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. 49 CFR 570.5 - Service brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... force applied by the brake on a front wheel or a rear wheel shall not differ by more than 20 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i... Pounds or Less § 570.5 Service brake system. Unless otherwise noted, the force to be applied during...

  12. 49 CFR 570.5 - Service brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... force applied by the brake on a front wheel or a rear wheel shall not differ by more than 20 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i... Pounds or Less § 570.5 Service brake system. Unless otherwise noted, the force to be applied during...

  13. 49 CFR 570.5 - Service brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... force applied by the brake on a front wheel or a rear wheel shall not differ by more than 20 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i... Pounds or Less § 570.5 Service brake system. Unless otherwise noted, the force to be applied during...

  14. Human grasp assist device and method of use

    NASA Technical Reports Server (NTRS)

    Linn, Douglas Martin (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor)

    2012-01-01

    A grasp assist device includes a glove portion having phalange rings, contact sensors for measuring a grasping force applied by an operator wearing the glove portion, and a tendon drive system (TDS). The device has flexible tendons connected to the phalange rings for moving the rings in response to feedback signals from the sensors. The TDS is connected to each of the tendons, and applies an augmenting tensile force thereto via a microcontroller adapted for determining the augmenting tensile force as a function of the grasping force. A method of augmenting a grasping force of an operator includes measuring the grasping force using the sensors, encoding the grasping force as the feedback signals, and calculating the augmenting tensile force as a function of the feedback signals using the microcontroller. The method includes energizing at least one actuator of a tendon drive system (TDS) to thereby apply the augmenting tensile force.

  15. Maximal Voluntary Static Force Production Characteristics of Skeletal Muscle in Children 8-11 Years of Age.

    ERIC Educational Resources Information Center

    Going, Scott B.; And Others

    1987-01-01

    A study of maximal voluntary isometric muscle contraction force-time curves among 32 normal, healthy 8- to 11-year-olds performing tasks involving separate muscle groups found that force and maximal rate of force increase were quite reproducible, but time to selected force levels reflected considerable variations. (Author/CB)

  16. Detection of cancerous cervical cells using physical adhesion of fluorescent silica particles and centripetal force.

    PubMed

    Gaikwad, Ravi M; Dokukin, Maxim E; Iyer, K Swaminathan; Woodworth, Craig D; Volkov, Dmytro O; Sokolov, Igor

    2011-04-07

    Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical adhesion between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. © The Royal Society of Chemistry 2011

  17. The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle

    PubMed Central

    Baweja, Harsimran S.; Patel, Bhavini K.; Neto, Osmar P.; Christou, Evangelos A.

    2011-01-01

    The purpose of this study was to compare force variability and the neural activation of the agonist muscle during constant isometric contractions at different force levels when the amplitude of respiration and visual feedback were varied. Twenty young adults (20–32 years, 10 men and 10 women) were instructed to accurately match a target force at 15 and 50% of their maximal voluntary contraction (MVC) with abduction of the index finger while controlling their respiration at different amplitudes (85, 100 and 125% normal) in the presence and absence of visual feedback. Each trial lasted 22 s and visual feedback was removed from 8–12 to 16–20 s. Each subject performed 3 trials with each respiratory condition at each force level. Force variability was quantified as the standard deviation of the detrended force data. The neural activation of the first dorsal interosseus (FDI) was measured with bipolar surface electrodes placed distal to the innervation zone. Relative to normal respiration, force variability increased significantly only during high-amplitude respiration (~63%). The increase in force variability from normal- to high-amplitude respiration was strongly associated with amplified force oscillations from 0–3 Hz (R2 ranged from .68 – .84; p < .001). Furthermore, the increase in force variability was exacerbated in the presence of visual feedback at 50% MVC (vision vs. no-vision: .97 vs. .87 N) and was strongly associated with amplified force oscillations from 0–1 Hz (R2 = .82) and weakly associated with greater power from 12–30 Hz (R2 = .24) in the EMG of the agonist muscle. Our findings demonstrate that high-amplitude respiration and visual feedback of force interact and amplify force variability in young adults during moderate levels of effort. PMID:21546109

  18. Applying extrusive orthodontic force without compromising the obturated canal space.

    PubMed

    Keinan, David; Szwec, Jerard; Matas, Avital; Moshonov, Joshua; Yitschaky, Oded

    2013-08-01

    Complicated tooth fractures can be the unfortunate result of orofacial trauma and can offer a therapeutic challenge for the dentist. A conservative solution for gaining supragingival sound tooth structure often includes orthodontic forced eruption. Usually, this procedure is carried out by applying extrusive force after placing a provisional acrylic Richmond crown on the tooth. However, this long-lasting dental treatment may jeopardize the coronal seal of the root canal space, leading to microleakage and endodontic failure. Orthodontic forced eruption demands application of force to an attachment connected to the remaining short clinical crown. In this article, the authors describe a case in which they used a new technique for orthodontic forced eruption of a traumatized tooth, using an extracanal attachment to apply extrusion force, and discuss its possible advantages and limitations. An extracanal attachment approach for orthodontic forced eruption without compromising the obturated canal space can be a solution for posttraumatic crown fracture. Practical Implications. The described procedure for forced eruption by using an extracanal pin attachment is efficient and convenient and does not require the clinician to apply force directly to the provisional crown. Therefore, during the application of force, there is less risk of loosening the provisional crown, and the canal space is kept intact with either the final restoration or dressing material.

  19. Predicting guar seed splitting by compression between two plates using Hertz theory of contact stresses.

    PubMed

    Vishwakarma, R K; Shivhare, U S; Nanda, S K

    2012-09-01

    Hertz's theory of contact stresses was applied to predict the splitting of guar seeds during uni-axial compressive loading between 2 rigid parallel plates. The apparent modulus of elasticity of guar seeds varied between 296.18 and 116.19 MPa when force was applied normal to hilum joint (horizontal position), whereas it varied between 171.86 and 54.18 MPa when force was applied in the direction of hilum joint (vertical position) with in moisture content range of 5.16% to 15.28% (d.b.). At higher moisture contents, the seeds yielded after considerable deformation, thus showing ductile nature. Distribution of stresses below the point of contact were plotted to predict the location of critical point, which was found at 0.44 to 0.64 mm and 0.37 to 0.53 mm below the contact point in vertical and horizontal loading, respectively, depending upon moisture content. The separation of cotyledons from each other initiated before yielding of cotyledons and thus splitting of seed took place. The relationships between apparent modulus of elasticity, principal stresses with moisture content were described using second-order polynomial equations and validated experimentally. Manufacture of guar gum powder requires dehulling and splitting of guar seeds. This article describes splitting behavior of guar seeds under compressive loading. Results of this study may be used for design of dehulling and splitting systems of guar seeds. © 2012 Institute of Food Technologists®

  20. Quantification of functional brace forces for posterior cruciate ligament injuries on the knee joint: an in vivo investigation.

    PubMed

    LaPrade, Robert F; Smith, Sean D; Wilson, Katharine J; Wijdicks, Coen A

    2015-10-01

    Counteracting posterior translation of the tibia with an anterior force on the posterior proximal tibia has been demonstrated clinically to improve posterior knee laxity following posterior cruciate ligament (PCL) injury. This study quantified forces applied to the posterior proximal tibia by two knee braces designed for treatment of PCL injuries. The forces applied by two knee braces to the posterior proximal tibia and in vivo three-dimensional knee kinematics of six adult, male, healthy volunteer subjects (mean ± standard deviation: height, 182.5 ± 5.2 cm; body mass, 83.2 ± 9.3 kg; body mass index, 24.9 ± 1.5 kg/m(2); age, 25.8 ± 2.9 years) were measured using a custom pressure mapping technique and traditional surface marker motion capture techniques, while subjects performed three functional activities. The activities included seated unloaded knee flexion, squatting, and stair descent in a new generation dynamic force (DF) PCL brace and a static force (SF) PCL brace. During unloaded flexion at the lowest force level setting, the force applied by the DF brace increased as a function of flexion angle (slope = 0.7 N/°; p < 0.001) compared to the SF brace effect. Force applied by the SF brace did not significantly change as a function of flexion angle (slope = 0.0 N/°; n.s.). By 45° of flexion, the average force applied by the DF brace (48.1 N) was significantly larger (p < 0.001) than the average force applied by the SF brace (25.0 N). The difference in force continued to increase as flexion angle increased. During stair descent, average force (mean ± standard deviation) at toe off was significantly higher (p = 0.013) for the DF brace (78.7 ± 21.6 N) than the SF brace (37.3 ± 7.2 N). Similar trends were observed for squatting and for the higher force level settings. The DF brace applied forces to the posterior proximal tibia that dynamically increased with increased flexion angle. Additionally, the DF brace applied significantly larger forces at higher flexion angles compared to the SF brace where the PCL is known to experience larger in situ forces. Clinical studies are necessary to determine whether the loading characteristics of the DF brace, which more closely replicated the in situ loading profile of the native PCL, results in long-term improved posterior knee laxity following PCL injury. II.

  1. A Novel Approach to Apply Gait Synchronized External Forces on the Pelvis using A-TPAD to Reduce Walking Effort

    PubMed Central

    Vashista, Vineet; Khan, Moiz; Agrawal, Sunil K.

    2017-01-01

    In this paper, we develop an intervention to apply external gait synchronized forces on the pelvis to reduce the user’s effort during walking. A cable-driven robot was used to apply the external forces and an adaptive frequency oscillator scheme was developed to adapt the timing of force actuation to the gait frequency during walking. The external forces were directed in the sagittal plane to assist the trailing leg during the forward propulsion and vertical deceleration of the pelvis during the gait cycle. A pilot experiment with five healthy subjects was conducted. The results showed that the subjects applied lower ground reaction forces in the vertical and anterior-posterior directions during the late stance phase. In summary, the current work provides a novel approach to study the role of external pelvic forces in altering the walking effort. These studies can provide better understanding for designing exoskeletons and prosthetic devices to reduce the overall walking effort. PMID:29623294

  2. Applying a Force and Motion Learning Progression over an Extended Time Span Using the Force Concept Inventory

    ERIC Educational Resources Information Center

    Fulmer, Gavin W.; Liang, Ling L.; Liu, Xiufeng

    2014-01-01

    This exploratory study applied a proposed force and motion learning progression (LP) to high-school and university students and to content involving both one- and two-dimensional force and motion situations. The Force Concept Inventory (FCI) was adapted, based on a previous content analysis and coding of the questions in the FCI in terms of the…

  3. Homeostatic maintenance via degradation and repair of elastic fibers under tension

    NASA Astrophysics Data System (ADS)

    Alves, Calebe; Araújo, Ascanio D.; Oliveira, Cláudio L. N.; Imsirovic, Jasmin; Bartolák-Suki, Erzsébet; Andrade, José S.; Suki, Béla

    2016-06-01

    Cellular maintenance of the extracellular matrix requires an effective regulation that balances enzymatic degradation with the repair of collagen fibrils and fibers. Here, we investigate the long-term maintenance of elastic fibers under tension combined with diffusion of general degradative and regenerative particles associated with digestion and repair processes. Computational results show that homeostatic fiber stiffness can be achieved by assuming that cells periodically probe fiber stiffness to adjust the production and release of degradative and regenerative particles. However, this mechanism is unable to maintain a homogeneous fiber. To account for axial homogeneity, we introduce a robust control mechanism that is locally governed by how the binding affinity of particles is modulated by mechanical forces applied to the ends of the fiber. This model predicts diameter variations along the fiber that are in agreement with the axial distribution of collagen fibril diameters obtained from scanning electron microscopic images of normal rat thoracic aorta. The model predictions match the experiments only when the applied force on the fiber is in the range where the variance of local stiffness along the fiber takes a minimum value. Our model thus predicts that the biophysical properties of the fibers play an important role in the long-term regulatory maintenance of these fibers.

  4. Adaptive form-finding method for form-fixed spatial network structures

    NASA Astrophysics Data System (ADS)

    Lan, Cheng; Tu, Xi; Xue, Junqing; Briseghella, Bruno; Zordan, Tobia

    2018-02-01

    An effective form-finding method for form-fixed spatial network structures is presented in this paper. The adaptive form-finding method is introduced along with the example of designing an ellipsoidal network dome with bar length variations being as small as possible. A typical spherical geodesic network is selected as an initial state, having bar lengths in a limit group number. Next, this network is transformed into the ellipsoidal shape as desired by applying compressions on bars according to the bar length variations caused by transformation. Afterwards, the dynamic relaxation method is employed to explicitly integrate the node positions by applying residual forces. During the form-finding process, the boundary condition of constraining nodes on the ellipsoid surface is innovatively considered as reactions on the normal direction of the surface at node positions, which are balanced with the components of the nodal forces in a reverse direction induced by compressions on bars. The node positions are also corrected according to the fixed-form condition in each explicit iteration step. In the serial results of time history, the optimal solution is found from a time history of states by properly choosing convergence criteria, and the presented form-finding procedure is proved to be applicable for form-fixed problems.

  5. Circadian rhythms in sports performance--an update.

    PubMed

    Drust, B; Waterhouse, J; Atkinson, G; Edwards, B; Reilly, T

    2005-01-01

    We discuss current knowledge on the description, impact, and underlying causes of circadian rhythmicity in sports performance. We argue that there is a wealth of information from both applied and experimental work, which, when considered together, suggests that sports performance is affected by time of day in normal entrained conditions and that the variation has at least some input from endogenous mechanisms. Nevertheless, precise information on the relative importance of endogenous and exogenous factors is lacking. No single study can answer both the applied and basic research questions that are relevant to this topic, but an appropriate mixture of real-world research on rhythm disturbances and tightly controlled experiments involving forced desynchronization protocols is needed. Important issues, which should be considered by any chronobiologist interested in sports and exercise, include how representative the study sample and the selected performance tests are, test-retest reliability, as well as overall design of the experiment.

  6. Adaptation of reach-to-grasp movement in response to force perturbations.

    PubMed

    Rand, M K; Shimansky, Y; Stelmach, G E; Bloedel, J R

    2004-01-01

    This study examined how reach-to-grasp movements are modified during adaptation to external force perturbations applied on the arm during reach. Specifically, we examined whether the organization of these movements was dependent upon the condition under which the perturbation was applied. In response to an auditory signal, all subjects were asked to reach for a vertical dowel, grasp it between the index finger and thumb, and lift it a short distance off the table. The subjects were instructed to do the task as fast as possible. The perturbation was an elastic load acting on the wrist at an angle of 105 deg lateral to the reaching direction. The condition was modified by changing the predictability with which the perturbation was applied in a given trial. After recording unperturbed control trials, perturbations were applied first on successive trials (predictable perturbations) and then were applied randomly (unpredictable perturbations). In the early predictable perturbation trials, reach path length became longer and reaching duration increased. As more predictable perturbations were applied, the reach path length gradually decreased and became similar to that of control trials. Reaching duration also decreased gradually as the subjects adapted by exerting force against the perturbation. In addition, the amplitude of peak grip aperture during arm transport initially increased in response to repeated perturbations. During the course of learning, it reached its maximum and thereafter slightly decreased. However, it did not return to the normal level. The subjects also adapted to the unpredictable perturbations through changes in both arm transport and grasping components, indicating that they can compensate even when the occurrence of the perturbation cannot be predicted during the inter-trial interval. Throughout random perturbation trials, large grip aperture values were observed, suggesting that a conservative aperture level is set regardless of whether the reaching arm is perturbed or not. In addition, the results of the predictable perturbations showed that the time from movement onset to the onset of grip aperture closure changed as adaptation occurred. However, the spatial location where the onset of finger closure occurred showed minimum changes with perturbation. These data suggest that the onset of finger closure is dependent upon distance to target rather than the temporal relationship of the grasp relative to the transport phase of the movement.

  7. Effect of changes of femoral offset on abductor and joint reaction forces in total hip arthroplasty.

    PubMed

    Rüdiger, Hannes A; Guillemin, Maïka; Latypova, Adeliya; Terrier, Alexandre

    2017-11-01

    Anatomical reconstruction in total hip arthroplasty (THA) allows for physiological muscle function, good functional outcome and implant longevity. Quantitative data on the effect of a loss or gain of femoral offset (FO) are scarce. The aim of this study was to quantitatively describe the effect of FO changes on abductor moment arms, muscle and joint reactions forces. THA was virtually performed on 3D models built from preoperative CT scans of 15 patients undergoing THA. Virtual THA was performed with a perfectly anatomical reconstruction, a loss of 20% of FO (-FO), and a gain of 20% of FO (+FO). These models were combined with a generic musculoskeletal model (OpenSim) to predict moment arms, muscle and joint reaction forces during normal gait cycles. In average, with -FO reconstructions, muscle moment arms decreased, while muscle and hip forces increased significantly (p < 0.001). We observed the opposite with +FO reconstructions. Gluteus medius was more affected than gluteus minimus. -FO had more effect than +FO. A change of 20% of FO induced an average change 8% of abductor moment arms, 16% of their forces, and 6% of the joint reaction force. To our knowledge, this is the first report providing quantitative data on the effect of FO changes on muscle and joint forces during normal gait. A decrease of FO necessitates an increase of abductor muscle force to maintain normal gait, which in turn increases the joint reaction force. This effect underscores the importance of an accurate reconstruction of the femoral offset.

  8. In vivo epicardial force and strain characterisation in normal and MLP-knockout murine hearts.

    PubMed

    Michaelides, M; Georgiadou, S; Constantinides, C

    2015-07-01

    The study's objective is to quantify in vivo epicardial force and strain in the normal and transgenic myocardium using microsensors.Male mice (n = 39), including C57BL/6 (n = 26), 129/Sv (n = 5), wild-type (WT) C57  ×  129Sv (n = 5), and muscle LIM protein (MLP) knock-out (n = 3), were studied under 1.5% isoflurane anaesthesia. Microsurgery allowed the placement of two piezoelectric crystals at longitudinal epicardial loci at the basal, middle, and apical LV regions, and the independent (and/or concurrent) placement of a cantilever force sensor. The findings demonstrate longitudinal contractile and relaxation strains that ranged between 4.8-9.3% in the basal, middle, and apical regions of C57BL/6 mice, and in the mid-ventricular regions of 129/Sv, WT, and MLP mice. Measured forces ranged between 3.1-8.9 mN. The technique's feasibility is also demonstrated in normal mice following afterload, occlusion-reperfusion challenges.Furthermore, the total mid-ventricular forces developed in MLP mice were significantly reduced compared to the WT controls (5.9  ±  0.4 versus 8.9  ±  0.2 mN, p < 0.0001), possibly owing to the fibrotic and stiffer myocardium. No significant strain differences were noted between WT and MLP mice.The possibility of quantifying in vivo force and strain from the normal murine heart is demonstrated with a potential usefulness in the characterisation of transgenic and diseased mice, where regional myocardial function may be significantly altered.

  9. Optimization of robotic welding procedures for maintenance repair of hydraulic turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamarche, L.; Galopin, M.; Simoneau, R.

    1996-12-31

    A six axes super-compact robot is used for field repair of cavitation damages found on the discharge ring of hydraulic turbines. Optimization of overlay welding procedures to minimize surface distortion and reduce tearing forces on anchors in concrete, were studied through experimentation and FEM modelling. Planned experimentation has been used to develop optimum pulsed GMAW schedules of stainless steel overlays in 2G position. Best welding sequence was resolved through over lay welding of free plates. Each overlay consisted in one or two layers which were welded in the longitudinal and/or transverse direction of the rectangular plate. A bidirectional welding mode,more » a longitudinal layer followed by a transverse layer position and no cooling between the two layers, were found to be most effective in reducing distortion. The optimized 2G welding procedure was applied to a simulated field repair. Plate was anchored on a massive iron bracket with a set of instrumented bolts, to understand how normal tearing forces in anchors evolve. Preliminary results on FEM modelling of lateral force on anchors indicate good correlation with experiments, for an elementary design.« less

  10. Investigating ultraflexible freestanding graphene by scanning tunneling microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Breitwieser, R.; Hu, Yu-Cheng; Chao, Yen Cheng; Tzeng, Yi Ren; Liou, Sz-Chian; Lin, Keng Ching; Chen, Chih Wei; Pai, Woei Wu

    2017-08-01

    A strictly two-dimensional (2D) material such as freestanding graphene (FSG) is rarely investigated at the atomic scale by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). A basic difficulty in probing FSG by STM and STS is the mechanical instability when a highly compliant 2D atomic layer interacts with a proximal tip. Here we report a detailed method to conduct reliable STM and STS on FSG with atomic precision. We found that FSG is intrinsically rippled and exhibits a nonlinear strain-stress relation under applied normal forces; it shows a very soft region of bending strain and stiffer regions of in-plane tensile strain once the nanoscale ripples of FSG are eliminated. The elimination of the nanoripples can be controlled by tip-induced pulling or pushing force through the so-called closed-loop Z-V STS mode which can monitor the FSG deformation. A key factor for controllable STM and STS measurements is to select tunneling set points to place FSG in metastable configurations, as determined from stress-strain (i.e., Z-V) response. Atomic imaging and electronic states thus measured must be interpreted by considering the dynamical deformation of FSG as tunneling parameters, and therefore tip-FSG forces, are varied.

  11. Magnetic field influences on the lateral dose response functions of photon-beam detectors: MC study of wall-less water-filled detectors with various densities.

    PubMed

    Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2017-06-21

    The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.

  12. Modeling and simulation of normal and hemiparetic gait

    NASA Astrophysics Data System (ADS)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  13. The role of visual and direct force feedback in robotics-assisted mitral valve annuloplasty.

    PubMed

    Currie, Maria E; Talasaz, Ali; Rayman, Reiza; Chu, Michael W A; Kiaii, Bob; Peters, Terry; Trejos, Ana Luisa; Patel, Rajni

    2017-09-01

    The objective of this work was to determine the effect of both direct force feedback and visual force feedback on the amount of force applied to mitral valve tissue during ex vivo robotics-assisted mitral valve annuloplasty. A force feedback-enabled master-slave surgical system was developed to provide both visual and direct force feedback during robotics-assisted cardiac surgery. This system measured the amount of force applied by novice and expert surgeons to cardiac tissue during ex vivo mitral valve annuloplasty repair. The addition of visual (2.16 ± 1.67), direct (1.62 ± 0.86), or both visual and direct force feedback (2.15 ± 1.08) resulted in lower mean maximum force applied to mitral valve tissue while suturing compared with no force feedback (3.34 ± 1.93 N; P < 0.05). To achieve better control of interaction forces on cardiac tissue during robotics-assisted mitral valve annuloplasty suturing, force feedback may be required. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Protective effects of forced exercise against methylphenidate-induced anxiety, depression and cognition impairment in rat.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Larijani, Setare Farokhi; Khajehamedi, Zohreh

    2015-01-01

    Methylphenidate (MPH), a neural stimulant, can cause damages to brain; the chronic neurochemical and behavioral effects of MPH remain unclear. Exercise lowers stress and anxiety and can act as non-pharmacologic neuroprotective agent. In this study protective effects of exercise in MPH-induced anxiety, depression and cognition impairment were investigated. Seventy adult male rats were divided randomly into five groups. Group 1 served as negative control, received normal saline (0.2 ml/rat) for 21 days, group 2 and 3 (as positive controls) received MPH (10 and 20 mg/kg) for 21 days. Groups 4 and 5 concurrently were treated with MPH (10 and 20 mg/kg) and forced exercise for 21 days. On day 21, Elevated Plus Maze (EPM), Open Field Test (OFT), Forced Swim Test (FST) and Tail Suspension Test (TST) were used to investigate the level of anxiety and depression in animals. In addition between 17(th) and 21(th) days, Morris Water Maze (MWM) was applied to evaluate the effect of MPH on spatial learning and memory. MPH-treated animals indicated a reflective depression and anxiety in a dose-dependent manner in FST, EPM and TST which were significantly different from the control group and also can significantly attenuate the motor activity and anxiety in OFT. Forced exercise by treadmill can attenuate MPH-induced anxiety, depression and motor activity alteration in OFT. MPH also can disturb learning and memory in MWM and forced exercise can neutralize this effect of MPH. We conclude that forced exercise can be protective in brain against MPH-induced anxiety, depression and cognition alteration.

  15. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.

    PubMed

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Shamdani, Amir Hossein; Smith, Julian; Zhong, Yongmin

    2014-03-01

    Robotic-assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic instruments but also have other important advantages, including restoring the surgeon's hand-eye coordination and improving the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Various solutions for restoring this feature have been proposed. An actuated modular force feedback-enabled laparoscopic instrument was proposed that is able to measure tip-tissue lateral interaction forces as well as normal grasping forces. The instrument has also the capability to adjust the grasping direction inside the patient body. In order to measure the interaction forces, strain gauges were employed. A series of finite element analyses were performed to gain an understanding of the actual magnitude of surface strains where gauges are applied. The strain gauge bridge configurations were calibrated. A series of experiments was conducted and the results were analysed. The modularity feature of the proposed instrument makes it interchangeable between various tip types of different functionalities (e.g. cutter, grasper, dissector). Calibration results of the strain gauges incorporated into the tube and at the base of the instrument presented the monotonic responses for these strain gauge configurations. Experimental results from tissue probing and tissue characterization experiments verified the capability of the proposed instrument in measuring lateral probing forces and characterizing artificial tissue samples of varying stiffness. The proposed instrument can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Mathematical formulation of biomechanical parameters used in orthodontic treatment

    NASA Astrophysics Data System (ADS)

    Balakrishna, A.; Vamsi, Ch. Raghu; Rao, V. D. Prasad; Swamy, Ch. Kishore; Kuladeep, B.

    2015-05-01

    Orthodontic Treatment is being widely practiced around the world for teeth straightening and extraction to improve alignment of remaining teeth. Here, forces are applied to correct the position of teeth. The force applied on the teeth isn't calibrated and applied arbitrarily based on the recommendations from scientific research and experience of the orthodontist. The number of settings and the total time required for the completion of treatment also remains arbitrary. So, there is a need for determining the force which is actually acting on the teeth and determining the optimal force required for the treatment of each and every individual case. In this paper a mathematical relation is derived between the force applied on the tooth and tooth displacement by considering a 2nd order non-homogeneous linear differential equation. As the tooth displacement is not a direct function of force applied, Biomechanical parameters like mass of tooth, stiffness and damping coefficient of periodontal ligament & alveolar bone are involved in the differential equation. By solving the equation, tooth displacement thereby, tooth velocity can be obtained for a particular force. On the other hand, based on the dimensions of the model, orthodontist could determine the total tooth displacement required for each setting of the treatment, so that, the total displacement is covered. The orthodontist uses the data and applies the required force on to the teeth, based on which the orthodontist can plan his treatment procedure and reduce the number of settings, total treatment time and also increases the success rate of the treatment.

  17. Learning to push and learning to move: the adaptive control of contact forces

    PubMed Central

    Casadio, Maura; Pressman, Assaf; Mussa-Ivaldi, Ferdinando A.

    2015-01-01

    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in “compatible pairs” connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions. PMID:26594163

  18. Force measurements in the medial meniscus posterior horn attachment: effects of anterior cruciate ligament removal.

    PubMed

    Markolf, Keith L; Jackson, Steven R; McAllister, David R

    2012-02-01

    Tears of the medial meniscus posterior horn attachment (PHA) occur clinically, and an anterior cruciate ligament (ACL)-deficient knee may be more vulnerable to this injury. The PHA forces from applied knee loadings will increase after removal of the ACL. Controlled laboratory study. A cap of bone containing the medial meniscus PHA was attached to a load cell that measured PHA tensile force. Posterior horn attachment forces were recorded before and after ACL removal during anteroposterior (AP) laxity testing at ±200 N and during passive knee extension tests with 5 N·m tibial torque and varus-valgus moment. Selected tests were also performed with 500 N joint load. For AP tests with no joint load, ACL removal increased laxity between 0° and 90° and increased PHA force generated by applied anterior tibial force between 30° and 90°. For AP tests with an intact ACL, application of joint load approximately doubled PHA forces. Anteroposterior testing of ACL-deficient knees was not possible with joint load because of bone cap failures from high PHA forces. Removal of the ACL during knee extension tests under joint load significantly increased PHA forces between 20° and 90° of flexion. For unloaded tests with applied tibial torque and varus-valgus moment, ACL removal had no significant effect on PHA forces. Applied anterior tibial force and external tibial torque were loading modes that produced relatively high PHA forces, presumably by impingement of the medial femoral condyle against the medial meniscus posterior horn rim. Under joint load, an ACL-deficient knee was particularly susceptible to PHA injury from applied anterior tibial force. Because tensile forces developed in the PHA are also borne by meniscus tissue near the attachment site, loading mechanisms that produce high PHA forces could also produce complete or partial radial tears near the posterior horn, a relatively common clinical observation.

  19. Analysis of sitting forces on stationary chairs for daily activities.

    PubMed

    Hu, Lingling; Tackett, Bob; Tor, Onder; Zhang, Jilei

    2016-04-01

    No literature related to the study of sitting forces on chairs sat on by people who weighed over 136 kg was found. The Business Institutional Furniture Manufactures Association needs force data for development of performance test standards to test chairs for users who weigh up to 181 kg. 20 participants who weighed from 136 to 186 kg completed 6 tasks on an instrumented chair in the sequence of sitting down, remaining seated and rising. Effects of sitting motion, armrest use and seat cushion thickness on vertical sitting forces and centre-of-force were investigated. Results indicated hard sitting down yielded the highest sitting force of 213% in terms of participants' body weights. Armrest use affected sitting forces of normal sitting down, but not of rising and hard sitting down. Cushion thickness affected sitting forces of normal and hard sitting down and shifting, but not of rising, static seating or stretching backward situations. Practitioner Summary: Results of the sitting force and centre-of-force data obtained for this research can help furniture manufacturers develop new product performance test standards for creating reliable engineering design and manufacturing quality and durable products to meet a niche market need.

  20. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald

    2004-01-01

    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  1. Parameter identification of pedestrian's spring-mass-damper model by ground reaction force records through a particle filter approach

    NASA Astrophysics Data System (ADS)

    Wang, Haoqi; Chen, Jun; Brownjohn, James M. W.

    2017-12-01

    The spring-mass-damper (SMD) model with a pair of internal biomechanical forces is the simplest model for a walking pedestrian to represent his/her mechanical properties, and thus can be used in human-structure-interaction analysis in the vertical direction. However, the values of SMD stiffness and damping, though very important, are typically taken as those measured from stationary people due to lack of a parameter identification methods for a walking pedestrian. This study adopts a step-by-step system identification approach known as particle filter to simultaneously identify the stiffness, damping coefficient, and coefficients of the SMD model's biomechanical forces by ground reaction force (GRF) records. After a brief introduction of the SMD model, the proposed identification approach is explained in detail, with a focus on the theory of particle filter and its integration with the SMD model. A numerical example is first provided to verify the feasibility of the proposed approach which is then applied to several experimental GRF records. Identification results demonstrate that natural frequency and the damping ratio of a walking pedestrian are not constant but have a dependence of mean value and distribution on pacing frequency. The mean value first-order coefficient of the biomechanical force, which is expressed by the Fourier series function, also has a linear relationship with pacing frequency. Higher order coefficients do not show a clear relationship with pacing frequency but follow a logarithmic normal distribution.

  2. Procedures for offline grid nesting in regional ocean models

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Molemaker, Jeroen; Shchepetkin, Alexander F.; Colas, Francois; McWilliams, James C.; Sangrà, Pablo

    One-way offline nesting of a primitive-equation regional ocean numerical model (ROMS) is investigated, with special attention to the boundary forcing file creation process. The model has a modified open boundary condition which minimises false wave reflections, and is optimised to utilise high-frequency boundary updates. The model configuration features a previously computed solution which supplies boundary forcing data to an interior domain with an increased grid resolution. At the open boundaries of the interior grid (the child) the topography is matched to that of the outer grid (the parent), over a narrow transition region. A correction is applied to the normal baroclinic and barotropic velocities at the open boundaries of the child to ensure volume conservation. It is shown that these steps, together with a carefully constructed interpolation of the parent data, lead to a high-quality child solution, with minimal artifacts such as persistent rim currents and wave reflections at the boundaries. Sensitivity experiments provide information about the robustness of the model open boundary condition to perturbations in the surface wind stress forcing field, to the perturbation of the volume conservation enforcement in the boundary forcing, and to perturbation of the vertical density structure in the boundary forcing. This knowledge is important when extending the nesting technique to include external data from alien sources, such as ocean models with physics and/or numerics different from ROMS, or from observed climatologies of temperature, salinity and sea level.

  3. Relating constrained motion to force through Newton's second law

    NASA Astrophysics Data System (ADS)

    Roithmayr, Carlos M.

    When a mechanical system is subject to constraints its motion is in some way restricted. In accordance with Newton's second law, motion is a direct result of forces acting on a system; hence, constraint is inextricably linked to force. The presence of a constraint implies the application of particular forces needed to compel motion in accordance with the constraint; absence of a constraint implies the absence of such forces. The objective of this thesis is to formulate a comprehensive, consistent, and concise method for identifying a set of forces needed to constrain the behavior of a mechanical system modeled as a set of particles and rigid bodies. The goal is accomplished in large part by expressing constraint equations in vector form rather than entirely in terms of scalars. The method developed here can be applied whenever constraints can be described at the acceleration level by a set of independent equations that are linear in acceleration. Hence, the range of applicability extends to servo-constraints or program constraints described at the velocity level with relationships that are nonlinear in velocity. All configuration constraints, and an important class of classical motion constraints, can be expressed at the velocity level by using equations that are linear in velocity; therefore, the associated constraint equations are linear in acceleration when written at the acceleration level. Two new approaches are presented for deriving equations governing motion of a system subject to constraints expressed at the velocity level with equations that are nonlinear in velocity. By using partial accelerations instead of the partial velocities normally employed with Kane's method, it is possible to form dynamical equations that either do or do not contain evidence of the constraint forces, depending on the analyst's interests.

  4. Corticomuscular synchronization with small and large dynamic force output

    PubMed Central

    Andrykiewicz, Agnieszka; Patino, Luis; Naranjo, Jose Raul; Witte, Matthias; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana

    2007-01-01

    Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC) during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study [1] that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic) generated by a manipulandum. The CMC, the cortical EEG spectral power (SP), the EMG SP and the errors in motor performance (as the difference between target and exerted force) were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz) over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz) occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors) no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no effect on the gamma CMC in the low force range investigated. We suggest that gamma CMC is rather associated with the internal state of the sensorimotor system as supported by the unchanged relative error between both dynamic conditions. PMID:18042289

  5. Initial development of a device for controlling manually applied forces.

    PubMed

    Waddington, Gordon S; Adams, Roger D

    2007-05-01

    In both simulation and manual therapy studies, substantial variability has been shown when therapists attempt to replicate an applied force. Knowledge about the forces employed during treatment could reduce this variability. In the current project, a prototype for a mobilizing device incorporating a dynamometer was constructed. The prototype device was built around a conventional "hand-grip" dynamometer to give dial visibility during application of mobilizing forces and a moulded handle was used to increase the hand contact surface during force application. The variability of the mobilization forces produced was measured, and ratings of comfort during a simulated spinal mobilization technique were obtained from therapists. Thirty physiotherapists were randomly allocated to apply either: (i) their own estimate of a grade III mobilization force using their hands in a pisiform grip or (ii) a 100N force with the manual therapy dynamometer, and to rate comfort during the performance of both techniques on a 100mm visual analogue scale. Variance in dynamometer-dial-guided force application was always significantly less than the variance in therapist-concept-guided force application. Repeated-measures tests showed that the mean force produced at grade III was not significantly different from 100N, but physiotherapist comfort ratings were found to be significantly greater (P<0.01) when the manual therapy dynamometer was used. Manually applied force variability was significantly less and therapist comfort greater when using a device with visual access to a dial giving immediate force readout.

  6. Bilateral neuromuscular and force differences during a plyometric task.

    PubMed

    Ball, Nick B; Scurr, Joanna C

    2009-08-01

    The purpose of this article is to compare the bilateral neuromuscular and force contribution during a plyometric bounce drop jump task and to assess the affects of nonsimultaneous foot placement. Sixteen male participants performed bounce drop jumps from a height of 0.4 m. Mean peak electromyography activity of the soleus, medial, and lateral gastrocnemius of both legs was recorded from each phase of the drop jump and normalized to a reference dynamic muscle action. Resultant ground reaction force, ground contact time, and duration of the drop jumps were recorded from each leg. Multivariate analysis of variance was used to compare bilateral electromyographic activity, resultant peak ground reaction force, and contact duration. Pearson's correlations (r) ascertained relationships between normalized electromyographic activity and contact time. Significant differences were shown between left and right triceps surae normalized electromyography during precontact and contact40ms (p < 0.01). No significant differences were present in the contactpost40ms phase (p > 0.01). Significant differences were found between normalized soleus electromyography and both gastrocnemii for both legs during precontact (p < 0.01). No significant differences were found for within-leg normalized electromyography for the contact40ms phases and contactpost40ms phase (p > 0.01). Weak relationships were found between normalized electromyographic activity and nonsimultaneous foot contact (r < 0.2). This study showed differences between left and right triceps surae in neuromuscular strategies engaged in the early stages of a drop jump task. Differences in contact time initiation were present; however, they are not significant enough to cause neuromuscular differences in the plantar flexor muscles.

  7. Long Term Functional Outcome of Tibial Tuberosity Advancement vs. Tibial Plateau Leveling Osteotomy and Extracapsular Repair in a Heterogeneous Population of Dogs.

    PubMed

    Krotscheck, Ursula; Nelson, Samantha A; Todhunter, Rory J; Stone, Marisa; Zhang, Zhiwu

    2016-02-01

    To determine a long term function of tibial tuberosity advancement (TTA) for treatment of ruptured cranial cruciate ligament (CCL) in dogs, and to compare this to the long term function of previously reported tibial plateau leveling osteotomy (TPLO), extracapsular reconstruction (ECR), and a population of normal dogs. Prospective clinical trial. Dogs with unilateral ruptured CCL treated with TTA (n = 14), TPLO (n = 15), and ECR (n = 23), and normal adult dogs (control, n = 80). Force plate gait analysis was performed at 1 time point for the normal control group and preoperatively, and at 2 and 8 weeks and 6 and 12 months postoperatively for the treatment groups. Using serial force plates, symmetry indices (SI) were calculated between the operated and unoperated pelvic limbs for peak vertical force (PVF), contact time (CT), and vertical impulse (VI). Ground reaction forces (GRF) of the treatment and control group were compared using a general linear model. Walk SI for dogs with TTA were not significantly different from the control group at 12 months postoperatively. At the trot, neither TTA nor ECR achieved normal GRF. SI of the TPLO group were not different from the normal control group by 6-12 months postoperatively. At the walk, TTA achieves normal function by 12 months; however, at the trot TTA is indistinguishable from ECR. TPLO resulted in operated limb function that was similar to the control population by 6-12 months postoperatively at the walk and the trot. © Copyright 2016 by The American College of Veterinary Surgeons.

  8. Active transport of vesicles in neurons is modulated by mechanical tension.

    PubMed

    Ahmed, Wylie W; Saif, Taher A

    2014-03-27

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics.

  9. Active transport of vesicles in neurons is modulated by mechanical tension

    PubMed Central

    Ahmed, Wylie W.; Saif, Taher A.

    2014-01-01

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics. PMID:24670781

  10. Spinomotive force induced by a transverse displacement current in a thin metal or doped-semiconductor sheet: Classical and quantum views.

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Ren

    2004-03-01

    We present classical macroscopic, microscopic, and quantum mechanical arguments to show that in a metallic or electron/hole-doped semiconducting sheet thinner than the screening length, a displacement current applied normal to it can induce a spinomotive force along it. The magnitude is weak but clearly detectable. The classical arguments are purely electromagnetic. The quantum argument, based on the Dirac equation, shows that the predicted effect originates from the spin-orbit interaction, but not of the usual kind. That is, it relies on an external electric field, whereas the usual S-O interaction involves the electric field generated by the ions. Because the Dirac equation incorporatesThomas precession, which is due to relativistic kinematics, the quantum prediction is a factor of two smaller than the classical prediction. Replacing the displacement current by a charge current, and one obtains a new source for the spin-Hall effect. Classical macroscopic argument also predicts its existence, but the other two views are controversial.

  11. Tumor evolution in space: the effects of competition colonization tradeoffs on tumor invasion dynamics.

    PubMed

    Orlando, Paul A; Gatenby, Robert A; Brown, Joel S

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.

  12. Tumor Evolution in Space: The Effects of Competition Colonization Tradeoffs on Tumor Invasion Dynamics

    PubMed Central

    Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890

  13. Use of tactile feedback to control exploratory movements to characterize object compliance.

    PubMed

    Su, Zhe; Fishel, Jeremy A; Yamamoto, Tomonori; Loeb, Gerald E

    2012-01-01

    Humans have been shown to be good at using active touch to perceive subtle differences in compliance. They tend to use highly stereotypical exploratory strategies, such as applying normal force to a surface. We developed similar exploratory and perceptual algorithms for a mechatronic robotic system (Barrett arm/hand system) equipped with liquid-filled, biomimetic tactile sensors (BioTac(®) from SynTouch LLC). The distribution of force on the fingertip was measured by the electrical resistance of the conductive liquid trapped between the elastomeric skin and a cluster of four electrodes on the flat fingertip surface of the rigid core of the BioTac. These signals provided closed-loop control of exploratory movements, while the distribution of skin deformations, measured by more lateral electrodes and by the hydraulic pressure, were used to estimate material properties of objects. With this control algorithm, the robot plus tactile sensor was able to discriminate the relative compliance of various rubber samples.

  14. Measuring of foot plantar pressure—possible applications in quantitative analysis of human body mobility

    NASA Astrophysics Data System (ADS)

    Klimiec, E.; Jasiewicz, B.; Piekarski, J.; Zaraska, K.; Guzdek, P.; Kołaszczyński, G.

    2017-04-01

    The paper presents an evaluation of human mobility by gait analysis, carried out in natural conditions (outside of the laboratory). Foot plantar pressure is measured using a shoe insole with 8 sensors placed in different anatomical zones of the foot, and placed inside a sports shoe. Polarized polyvinylidene fluoride (PVDF) foil is used as a sensor material. A wireless transmission system is used to transmit voltage values to the computer. Miniaturization was the priority during the design of the system. Due to the linear relationship between force and transducer voltage, energy and power released during walking in arbitrary units can be calculated as an integral of the square of the transducer voltage over time. Gait measurements were carried out over several days on healthy persons during normal walking and slow walking. The performed measurements allowed for the determination of walking speed (number of steps per second), gait rhythm and manner of walking (applying force to inside versus outside part of the sole). It was found that switching from normal to slow walk increases gait energy by 25% while the pressure distribution across the anatomical regions of the foot remains unchanged. The results will be used to develop a programme for the evaluation of patients with orthopedic diseases or even with cardiac failures, for an estimation of the results of health recovery and training efficiency in many sports activities.

  15. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model

    PubMed Central

    Baghirov, Habib; Snipstad, Sofie; Sulheim, Einar; Berg, Sigrid; Hansen, Rune; Thorsen, Frits; Mørch, Yrr; Åslund, Andreas K. O.

    2018-01-01

    The treatment of brain diseases is hindered by the blood-brain barrier (BBB) preventing most drugs from entering the brain. Focused ultrasound (FUS) with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate) nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma. PMID:29338016

  16. Functional sensibility assessment. Part I: develop a reliable apparatus to assess momentary pinch force control.

    PubMed

    Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chang, Jer-Hao; Su, Fong-Chin

    2009-08-01

    A precise magnitude and timing control of pinch performance is based on accurate feed-forward and feedback control mechanisms. Ratio of peak pinch force and maximum load force during a functional performance is a sensitive parameter to reflect the ability to scale pinch force output according to actual loads. A pinch apparatus was constructed to detect momentary pinch force modulation of 20 subjects with normal hand sensation. The results indicated high intra-class correlation coefficient and small coefficient of variation of the detected force ratio among three repeated tests, which represented that the stability test of the measured response confirmed the feasibility of this apparatus. The force ratio for a 480 g object with a steel surface ranged between 1.77 and 1.98. Normal subjects were able to scale and contribute pinch force precisely to a pinch-holding-up test. This study may provide clinicians a reliable apparatus and method to analyze the recovery of functional sensibility in patients with nerve injuries. Copyright 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Assessment of dual-point drag reduction for an executive-jet modified airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1996-01-01

    This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.

  18. An Objective Measure of Noseband Tightness and Its Measurement Using a Novel Digital Tightness Gauge.

    PubMed

    Doherty, Orla; Conway, Thomas; Conway, Richard; Murray, Gerard; Casey, Vincent

    2017-01-01

    Noseband tightness is difficult to assess in horses participating in equestrian sports such as dressage, show jumping and three-day-eventing. There is growing concern that nosebands are commonly tightened to such an extent as to restrict normal equine behaviour and possibly cause injury. In the absence of a clear agreed definition of noseband tightness, a simple model of the equine nose-noseband interface environment was developed in order to guide further studies in this area. The normal force component of the noseband tensile force was identified as the key contributor to sub-noseband tissue compression. The model was used to inform the design of a digital tightness gauge which could reliably measure the normal force component of the noseband tensile force. A digital tightness gauge was developed to measure this parameter under nosebands fitted to bridled horses. Results are presented for field tests using two prototype designs. Prototype version three was used in field trial 1 (n = 15, frontal nasal plane sub-noseband site). Results of this trial were used to develop an ergonomically designed prototype, version 4, which was tested in a second field trial (n = 12, frontal nasal plane and lateral sub-noseband site). Nosebands were set to three tightness settings in each trial as judged by a single rater using an International Society for Equitation Science (ISES) taper gauge. Normal forces in the range 7-95 N were recorded at the frontal nasal plane while a lower range 1-28 N was found at the lateral site for the taper gauge range used in the trials. The digital tightness gauge was found to be simple to use, reliable, and safe and its use did not agitate the animals in any discernable way. A simple six point tightness scale is suggested to aid regulation implementation and the control of noseband tightness using normal force measurement as the objective tightness discriminant.

  19. Friction on a granular-continuum interface: Effects of granular media

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Geller, Drew

    We consider the frictional interactions of two soft plates with interposed granular material subject to normal and shear forces. The plates are soft photo-elastic material, have length 50 cm, and are separated by a gap of variable width from 0 to 20 granular particle diameters. The granular materials are two-dimensional rods that are bi-dispersed in size to prevent crystallization. Different rod materials with frictional coefficients between 0 . 04 < μ < 0 . 5 are used to explore the effects of inter-granular friction on the effective friction of a granular medium. The gap is varied to test the dependence of the friction coefficient on the thickness of the granular layer. Because the soft plates absorb most of the displacement associated with the compressional normal force, the granular packing fractions are close to a jamming threshold, probably a shear jamming criterion. The overall shear and normal forces are measured using force sensors and the local strain tensor over a central portion of the gap is obtained using relative displacements of fiducial markers on the soft elastic material. These measurements provide a good characterization of the global and local forces giving rise to an effective friction coefficient. Funded by US DOE LDRD Program.

  20. Quantification of intrusive/retraction force and moment generated during en-masse retraction of maxillary anterior teeth using mini-implants: A conceptual approach.

    PubMed

    Felicita, A Sumathi

    2017-01-01

    The aim of the present study was to clarify the biomechanics of en-masse retraction of the upper anterior teeth and attempt to quantify the different forces and moments generated using mini-implants and to calculate the amount of applied force optimal for en-masse intrusion and retraction using mini-implants. The optimum force required for en-masse intrusion and retraction can be calculated by using simple mathematical formulae. Depending on the position of the mini-implant and the relationship of the attachment to the center of resistance of the anterior segment, different clinical outcomes are encountered. Using certain mathematical formulae, accurate measurements of the magnitude of force and moment generated on the teeth can be calculated for each clinical outcome. Optimum force for en-masse intrusion and retraction of maxillary anterior teeth is 212 grams per side. Force applied at an angle of 5o to 16o from the occlusal plane produce intrusive and retraction force components that are within the physiologic limit. Different clinical outcomes are encountered depending on the position of the mini-implant and the length of the attachment. It is possible to calculate the forces and moments generated for any given magnitude of applied force. The orthodontist can apply the basic biomechanical principles mentioned in this study to calculate the forces and moments for different hypothetical clinical scenarios.

  1. An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement.

    PubMed

    Gilbertson, Matthew W; Anthony, Brian W

    2013-01-01

    An ergonomic, instrumented ultrasound probe has been developed for medical imaging applications. The device, which fits compactly in the hand of sonographers and permits rapid attachment & removal of the ultrasound probe, measures ultrasound probe-to-patient contact forces and torques in all six axes. The device was used to measure contact forces and torques applied by ten professional sonographers on five patients during thirty-six abdominal exams. Of the three contact forces, those applied along the probe axis were found to be largest, averaging 7.0N. Measurement noise was quantified for each axis, and found to be small compared with the axial force. Understanding the range of forces applied during ultrasound imaging enables the design of more accurate robotic imaging systems and could also improve understanding of the correlation between contact force and sonographer fatigue and injury.

  2. A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.

    2018-03-01

    Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.

  3. Compliant tactile sensor that delivers a force vector

    NASA Technical Reports Server (NTRS)

    Torres-Jara, Eduardo (Inventor)

    2010-01-01

    Tactile Sensor. The sensor includes a compliant convex surface disposed above a sensor array, the sensor array adapted to respond to deformation of the convex surface to generate a signal related to an applied force vector. The applied force vector has three components to establish the direction and magnitude of an applied force. The compliant convex surface defines a dome with a hollow interior and has a linear relation between displacement and load including a magnet disposed substantially at the center of the dome above a sensor array that responds to magnetic field intensity.

  4. Force approach to radiation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, Gustavo V., E-mail: gulopez@udgserv.cencar.udg.mx

    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion ofmore » a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.« less

  5. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1985-01-01

    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  6. A Comparison of a Maximum Exertion Method and a Model-Based, Sub-Maximum Exertion Method for Normalizing Trunk EMG

    PubMed Central

    Cholewicki, Jacek; van Dieën, Jaap; Lee, Angela S.; Reeves, N. Peter

    2011-01-01

    The problem with normalizing EMG data from patients with painful symptoms (e.g. low back pain) is that such patients may be unwilling or unable to perform maximum exertions. Furthermore, the normalization to a reference signal, obtained from a maximal or sub-maximal task, tends to mask differences that might exist as a result of pathology. Therefore, we presented a novel method (GAIN method) for normalizing trunk EMG data that overcomes both problems. The GAIN method does not require maximal exertions (MVC) and tends to preserve distinct features in the muscle recruitment patterns for various tasks. Ten healthy subjects performed various isometric trunk exertions, while EMG data from 10 muscles were recorded and later normalized using the GAIN and MVC methods. The MVC method resulted in smaller variation between subjects when tasks were executed at the three relative force levels (10%, 20%, and 30% MVC), while the GAIN method resulted in smaller variation between subjects when the tasks were executed at the three absolute force levels (50 N, 100 N, and 145 N). This outcome implies that the MVC method provides a relative measure of muscle effort, while the GAIN-normalized EMG data gives an estimate of the absolute muscle force. Therefore, the GAIN-normalized EMG data tends to preserve the EMG differences between subjects in the way they recruit their muscles to execute various tasks, while the MVC-normalized data will tend to suppress such differences. The appropriate choice of the EMG normalization method will depend on the specific question that an experimenter is attempting to answer. PMID:21665489

  7. Difference of motor overflow depending on the impaired or unimpaired hand in stroke patients.

    PubMed

    Kim, Yushin; Kim, Woo-Sub; Shim, Jae Kun; Suh, Dong Won; Kim, TaeYeong; Yoon, BumChul

    2015-02-01

    The aim of this study was to investigate the patterns of contralateral motor overflow (i.e. mirror movement) between the homologous body parts on the right and left side, in stroke patients during single-finger and multi-finger maximum force production tasks. Forty subjects, including stroke (n=20) and normal subjects (n=20), participated in this study. The stroke subjects maximally pressed force sensors with their fingers in a flexed position using a single (index, middle, ring, or little) or all fingers (all 4 fingers) using the impaired (IH) or unimpaired (UIH) hand, while the non-patient subjects used their right hands for the same tasks. The maximal voluntary forces in the ipsilateral and unintended pressing forces of each contralateral finger were recorded during the tasks. The magnitude of motor overflow to the contralateral side was calculated using the index of contralateral independence (CI). During the single finger tasks, the finger CI was significantly decreased in the UIH (91%) compared with that in the IH (99%) or normal hands (99%). Likewise, the multiple finger tasks showed that the CI was significantly lower in the UIH (84%) compared with that in the IH (96%) or normal hands (99%). However, the maximal forces were significantly lower in the IH relative to those in the UIH and normal hands. These data demonstrate that stroke patients have greater motor overflow from the UIH to the IH. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Theory of orthodontic motions

    NASA Technical Reports Server (NTRS)

    Pepe, S.; Pepe, W. D.; Strauss, A. M.

    1976-01-01

    A general theory of orthodontic motion is developed that can be applied to determine the forces necessary to induce a given tooth to move to the predetermined desirable position. It is assumed that the natural (nonorthodontic) forces may be represented by a periodic function and the orthodontic forces may be superimposed upon the natural forces. A simple expression is derived for the applied stress.

  9. In vitro rapid intraoral adjustment of porcelain prostheses using a high-speed dental handpiece.

    PubMed

    Song, Xiao-Fei; Yin, Ling; Han, Yi-Gang; Wang, Hui

    2008-03-01

    In vitro rapid intraoral adjustment of porcelain prostheses was conducted using a high-speed dental handpiece and diamond bur. The adjustment process was characterized by measurement of removal forces and energy, with scanning electron microscopic (SEM) observation of porcelain debris, surfaces and subsurface damage produced as a function of operational feed rate. Finite element analysis (FEA) was applied to evaluate subsurface stress distributions and degrees of subsurface damage. The results show that an increase in feed rate resulted in increases in both tangential and normal forces (analysis of variance (ANOVA), P<0.01). When the feed rate approached the highest rate of 60mm min(-1) at a fixed depth of cut of 100microm, the tangential force was nearly seven times that at the lowest feed rate of 15mm min(-1). Consequently, the specific removal energy increased significantly (ANOVA, P<0.01), and the maximum depth of subsurface damage obtained was approximately 110 and 120microm at the highest feed rate of 60mm min(-1) using SEM and FEA, respectively. The topographies of both the adjusted porcelain surfaces and the debris demonstrate microscopically that porcelain was removed via brittle fracture and plastic deformation. Clinicians must be cautious when pursuing rapid dental adjustments, because high operational energy, larger forces and severe surface and subsurface damage can be induced.

  10. Analysis of human postural responses to recoverable falls

    NASA Technical Reports Server (NTRS)

    Bortolami, S. B.; DiZio, P.; Rabin, E.; Lackner, J. R.

    2003-01-01

    We studied the kinematics and kinetics of human postural responses to "recoverable falls." To induce brief falling we used a Hold and Release (H&R) paradigm. Standing subjects actively resisted a force applied to their sternum. When this force was quickly released they were suddenly off balance. For a brief period, approximately 125 ms, until restoring forces were generated to shift the center of foot pressure in front of the center of mass, the body was in a forward fall acted on by gravity and ground support forces. We were able to describe the whole-body postural behavior following release using a multilink inverted pendulum model in a regime of "small oscillations." A three-segment model incorporating upper body, upper leg, and lower leg, with active stiffness and damping at the joints was fully adequate to fit the kinematic data from all conditions. The significance of our findings is that in situations involving recoverable falls or loss of balance the earliest responses are likely dependent on actively-tuned, reflexive mechanisms yielding stiffness and damping modulation of the joints. We demonstrate that haptic cues from index fingertip contact with a stationary surface lead to a significantly smaller angular displacement of the torso and a more rapid recovery of balance. Our H&R paradigm and associated model provide a quantifiable approach to studying recovery from potential falling in normal and clinical subjects.

  11. A Split Forcing Technique to Reduce Log-layer Mismatch in Wall-modeled Turbulent Channel Flows

    NASA Astrophysics Data System (ADS)

    Deleon, Rey; Senocak, Inanc

    2016-11-01

    The conventional approach to sustain a flow field in a periodic channel flow seems to be the culprit behind the log-law mismatch problem that has been reported in many studies hybridizing Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) techniques, commonly referred to as hybrid RANS-LES. To address this issue, we propose a split-forcing approach that relies only on the conservation of mass principle. We adopt a basic hybrid RANS-LES technique on a coarse mesh with wall-stress boundary conditions to simulate turbulent channel flows at friction Reynolds numbers of 2000 and 5200 and demonstrate good agreement with benchmark data. We also report a duality in velocity scale that is a specific consequence of the split forcing framework applied to hybrid RANS-LES. The first scale is the friction velocity derived from the wall shear stress. The second scale arises in the core LES region, a value different than at the wall. Second-order turbulence statistics agree well with the benchmark data when normalized by the core friction velocity, whereas the friction velocity at the wall remains the appropriate scale for the mean velocity profile. Based on our findings, we suggest reevaluating more sophisticated hybrid RANS-LES approaches within the split-forcing framework. Work funded by National Science Foundation under Grant No. 1056110 and 1229709. First author acknowledges the University of Idaho President's Doctoral Scholars Award.

  12. The Effect of Muscle Direction on the Predictions of Finite Element Model of Human Lumbar Spine

    PubMed Central

    Wang, Zhi-peng; Pei, Xiao-long

    2018-01-01

    The normal physiological loads from muscles experienced by the spine are largely unknown due to a lack of data. The aim of this study is to investigate the effects of varying muscle directions on the outcomes predicted from finite element models of human lumbar spine. A nonlinear finite element model of L3–L5 was employed. The force of the erector spinae muscle, the force of the rectus abdominis muscle, follower loads, and upper body weight were applied. The model was fixed in a neural standing position and the direction of the force of the erector spinae muscle and rectus abdominis muscle was varied in three directions. The intradiscal pressure, reaction moments, and intervertebral rotations were calculated. The intradiscal pressure of L4-L5 was 0.56–0.57 MPa, which agrees with the in vivo pressure of 0.5 MPa from the literatures. The models with the erector spinae muscle loaded in anterior-oblique direction showed the smallest reaction moments (less than 0.6 Nm) and intervertebral rotations of L3-L4 and L4-L5 (less than 0.2 degrees). In comparison with loading in the vertical direction and posterior-oblique direction, the erector spinae muscle loaded in the anterior-oblique direction required lower external force or moment to keep the lumbar spine in the neutral position. PMID:29511680

  13. The Effect of Muscle Direction on the Predictions of Finite Element Model of Human Lumbar Spine.

    PubMed

    Zhu, Rui; Niu, Wen-Xin; Wang, Zhi-Peng; Pei, Xiao-Long; He, Bin; Zeng, Zhi-Li; Cheng, Li-Ming

    2018-01-01

    The normal physiological loads from muscles experienced by the spine are largely unknown due to a lack of data. The aim of this study is to investigate the effects of varying muscle directions on the outcomes predicted from finite element models of human lumbar spine. A nonlinear finite element model of L3-L5 was employed. The force of the erector spinae muscle, the force of the rectus abdominis muscle, follower loads, and upper body weight were applied. The model was fixed in a neural standing position and the direction of the force of the erector spinae muscle and rectus abdominis muscle was varied in three directions. The intradiscal pressure, reaction moments, and intervertebral rotations were calculated. The intradiscal pressure of L4-L5 was 0.56-0.57 MPa, which agrees with the in vivo pressure of 0.5 MPa from the literatures. The models with the erector spinae muscle loaded in anterior-oblique direction showed the smallest reaction moments (less than 0.6 Nm) and intervertebral rotations of L3-L4 and L4-L5 (less than 0.2 degrees). In comparison with loading in the vertical direction and posterior-oblique direction, the erector spinae muscle loaded in the anterior-oblique direction required lower external force or moment to keep the lumbar spine in the neutral position.

  14. Accuracy of State-of-the-Art Actuator-Line Modeling for Wind Turbine Wakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Pankaj; Churchfield, Matthew; Moriarty, Patrick

    The current actuator line method (ALM) within an OpenFOAM computational fluid dynamics (CFD) solver was used to perform simulations of the NREL Phase VI rotor under rotating and parked conditions, two fixed-wing designs both with an elliptic spanwise loading, and the NREL 5-MW turbine. The objective of this work is to assess and improve the accuracy of the state-of-the-art ALM in predicting rotor blade loads, particularly by focusing on the method used to project the actuator forces onto the flow field as body forces. Results obtained for sectional normal and tangential force coefficients were compared to available experimental data andmore » to the in-house performance code XTurb-PSU. It was observed that the ALM results agree well with measured data and results obtained from XTurb-PSU except in the root and tip regions if a three-dimensional Gaussian of width, ε, constant along the blade span is used to project the actuator force onto the flow field. A new method is proposed where the Gaussian width, ε, varies along the blade span following an elliptic distribution. A general criterion is derived that applies to any planform shape. It is found that the new criterion for ε leads to improved prediction of blade tip loads for a variety of blade planforms and rotor conditions considered.« less

  15. Probing the surface profile and friction behavior of heterogeneous polymers: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Dai, L.; Sorkin, V.; Zhang, Y. W.

    2017-04-01

    We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.

  16. Function of the medial meniscus in force transmission and stability.

    PubMed

    Walker, Peter S; Arno, Sally; Bell, Christopher; Salvadore, Gaia; Borukhov, Ilya; Oh, Cheongeun

    2015-06-01

    We studied the combined role of the medial meniscus in distributing load and providing stability. Ten normal knees were loaded in combinations of compressive and shear loading as the knee was flexed over a full range. A digital camera tracked the motion, from which femoral-tibial contacts were determined by computer modelling. Load transmission was determined from the Tekscan for the anterior horn, central body, posterior horn, and the uncovered cartilage in the centre of the meniscus. For the three types of loading; compression only, compression and anterior shear, compression and posterior shear; between 40% and 80% of the total load was transmitted through the meniscus. The overall average was 58%, the remaining 42% being transmitted through the uncovered cartilage. The anterior horn was loaded only up to 30 degrees flexion, but played a role in controlling anterior femoral displacement. The central body was loaded 10-20% which would provide some restraint to medial femoral subluxation. Overall the posterior horn carried the highest percentage of the shear load, especially after 30 degrees flexion when a posterior shear force was applied, where the meniscus was estimated to carry 50% of the shear force. This study added new insights into meniscal function during weight bearing conditions, particularly its role in early flexion, and in transmitting shear forces. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Description of a Normal-Force In-Situ Turbulence Algorithm for Airplanes

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    2003-01-01

    A normal-force in-situ turbulence algorithm for potential use on commercial airliners is described. The algorithm can produce information that can be used to predict hazardous accelerations of airplanes or to aid meteorologists in forecasting weather patterns. The algorithm uses normal acceleration and other measures of the airplane state to approximate the vertical gust velocity. That is, the fundamental, yet simple, relationship between normal acceleration and the change in normal force coefficient is exploited to produce an estimate of the vertical gust velocity. This simple approach is robust and produces a time history of the vertical gust velocity that would be intuitively useful to pilots. With proper processing, the time history can be transformed into the eddy dissipation rate that would be useful to meteorologists. Flight data for a simplified research implementation of the algorithm are presented for a severe turbulence encounter of the NASA ARIES Boeing 757 research airplane. The results indicate that the algorithm has potential for producing accurate in-situ turbulence measurements. However, more extensive tests and analysis are needed with an operational implementation of the algorithm to make comparisons with other algorithms or methods.

  18. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    PubMed

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG-force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The "Normalization" of Intersex Bodies and "Othering" of Intersex Identities in Australia.

    PubMed

    Carpenter, Morgan

    2018-05-07

    Once described as hermaphrodites and later as intersex people, individuals born with intersex variations are routinely subject to so-called "normalizing" medical interventions, often in childhood. Opposition to such practices has been met by attempts to discredit critics and reasserted clinical authority over the bodies of women and men with "disorders of sex development." However, claims of clinical consensus have been selectively constructed and applied and lack evidence. Limited transparency and lack of access to justice have helped to perpetuate forced interventions. At the same time, associated with the diffusion of distinct concepts of sex and gender, intersex has been constructed as a third legal sex classification, accompanied by pious hopes and unwarranted expectations of consequences. The existence of intersex has also been instrumentalized for the benefit of other, intersecting, populations. The creation of gender categories associated with intersex bodies has created profound risks: a paradoxically narrowed and normative gender binary, maintenance of medical authority over the bodies of "disordered" females and males, and claims that transgressions of social roles ascribed to a third gender are deceptive. Claims that medicalization saves intersex people from "othering," or that legal othering saves intersex people from medicalization, are contradictory and empty rhetoric. In practice, intersex bodies remain "normalized" or eliminated by medicine, while society and the law "others" intersex identities. That is, medicine constructs intersex bodies as either female or male, while law and society construct intersex identities as neither female nor male. Australian attempts at reforms to recognize the rights of intersex people have either failed to adequately comprehend the population affected or lacked implementation. An emerging human rights consensus demands an end to social prejudice, stigma, and forced medical interventions, focusing on the right to bodily integrity and principles of self-determination.

  20. Measuring lip force by oral screens. Part 1: Importance of screen size and individual variability.

    PubMed

    Wertsén, Madeleine; Stenberg, Manne

    2017-06-01

    To reduce drooling and facilitate food transport in rehabilitation of patients with oral motor dysfunction, lip force can be trained using an oral screen. Longitudinal studies evaluating the effect of training require objective methods. The aim of this study was to evaluate a method for measuring lip strength, to investigate normal values and fluctuation of lip force in healthy adults on 1 occasion and over time, to study how the size of the screen affects the force, to evaluate the most appropriate measure of reliability, and to identify force performed in relation to gender. Three different sizes of oral screens were used to measure the lip force for 24 healthy adults on 3 different occasions, during a period of 6 months, using an apparatus based on strain gauge. The maximum lip force as evaluated with this method depends on the area of the screen size. By calculating the projected area of the screen, the lip force could be normalized to an oral screen pressure quantity expressed in kPa, which can be used for comparing measurements from screens with different sizes. Both the mean value and standard deviation were shown to vary between individuals. The study showed no differences regarding gender and only small variation with age. Normal variation over time (months) may be up to 3 times greater than the standard error of measurement at a certain occasion. The lip force increases in relation to the projected area of the screen. No general standard deviation can be assigned to the method and all measurements should be analyzed individually based on oral screen pressure to compensate for different screen sizes.

  1. A Retrospective Analysis of Post-Stroke Berg Balance Scale Scores: How Should Normal and At-Risk Scores Be Interpreted?

    PubMed Central

    Inness, Elizabeth; McIlroy, William E.; Mansfield, Avril

    2017-01-01

    Purpose: The Berg Balance Scale (BBS) is a performance-based measure of standing balance commonly used by clinicians working with individuals post-stroke. Performance on the BBS can be influenced by compensatory strategies, but measures derived from two force plates can isolate compensatory strategies and thus better indicate balance impairment. This study examined BBS scores that reflect “normal” and disordered balance with respect to dual force-plate measures of standing balance in individuals post-stroke. Methods: BBS and force-plate measures were extracted from 75 patient charts. Individuals were classified by BBS score with respect to (1) age-matched normative values and (2) values that suggested increased risk of falls. Multiple analysis of variance was used to examine the effect of group assignment on force-plate measures of standing balance. Results: Individuals with BBS scores within and below normative values did not differ in force-plate measures. Individuals with BBS scores below the falls risk cutoff loaded their affected leg less than individuals with BBS scores above the cutoff. There were no other differences in force-plate measures between these two groups. Conclusions: BBS scores indicating either normal or disordered balance function are not necessarily associated with normal or disordered quiet standing-balance control measured by two force plates. This finding suggests that the BBS may reflect a capacity for compensation rather than any underlying impairments. PMID:28539694

  2. Modeling the forces of cutting with scissors.

    PubMed

    Mahvash, Mohsen; Voo, Liming M; Kim, Diana; Jeung, Kristin; Wainer, Joshua; Okamura, Allison M

    2008-03-01

    Modeling forces applied to scissors during cutting of biological materials is useful for surgical simulation. Previous approaches to haptic display of scissor cutting are based on recording and replaying measured data. This paper presents an analytical model based on the concepts of contact mechanics and fracture mechanics to calculate forces applied to scissors during cutting of a slab of material. The model considers the process of cutting as a sequence of deformation and fracture phases. During deformation phases, forces applied to the scissors are calculated from a torque-angle response model synthesized from measurement data multiplied by a ratio that depends on the position of the cutting crack edge and the curve of the blades. Using the principle of conservation of energy, the forces of fracture are related to the fracture toughness of the material and the geometry of the blades of the scissors. The forces applied to scissors generally include high-frequency fluctuations. We show that the analytical model accurately predicts the average applied force. The cutting model is computationally efficient, so it can be used for real-time computations such as haptic rendering. Experimental results from cutting samples of paper, plastic, cloth, and chicken skin confirm the model, and the model is rendered in a haptic virtual environment.

  3. Vertical and lateral forces applied to the bar during the bench press in novice lifters.

    PubMed

    Duffey, Michael J; Challis, John H

    2011-09-01

    The purpose of this study was to determine the vertical and lateral forces applied to the bar during a maximal and a submaximal effort bench press lifts. For this study, 10 male and 8 female recreational lifters were recruited (mean height: 1.71 ± 0.08 m; mass: 73.7 ± 13.6 kg) and were asked to perform a maximal and submaximal (80% of maximal lift) bench press. These lifts were performed with a bar instrumented to record forces applied to it, via the hands, in the vertical direction and along the long axis of the bar. To determine the position of the bar and timing of events, 3D kinematic data were recorded and analyzed for both lifts. The subjects in this study averaged a maximal lift of 63 ± 29 kg (90 ± 31% bodyweight). The peak vertical force was 115 ± 22% (percentage of load), whereas for the submaximal condition it was 113 ± 20%; these forces were statistically different between conditions; they were not when expressed as a percentage of the load (p > 0.05). During all the lifts, the lateral forces were always outward along the bar. The lateral force profile was similar to that of the vertical force, albeit at a lesser magnitude. During the lift phase, the peak lateral force was on average 26.3 ± 3.9% of the vertical force for the maximal lift and 23.7 ± 3.9% of the vertical force for the submaximal lift. Given that the amount of force applied laterally to the bar was a similar percentage of vertical force irrespective of load, it appears that the generation of lateral forces during the bench press is a result of having the muscles engaged in generating vertical force.

  4. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns.

    PubMed

    Zhao, Dong; Banks, Scott A; Mitchell, Kim H; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J

    2007-06-01

    The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. This study uses in vivo data collected from a single subject with an instrumented knee implant to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe-out) with simultaneous collection of instrumented implant, video motion, and ground reaction data. For each trial, the knee adduction torque was measured externally while the total axial force applied to the tibial insert was measured internally. Based on data collected from the same subject performing treadmill gait under fluoroscopic motion analysis, a regression equation was developed to calculate medial contact force from the implant load cell measurements. Correlation analyses were performed for the stance phase and entire gait cycle to quantify the relationship between the knee adduction torque and both the medial contact force and the medial to total contact force ratio. When the entire gait cycle was analyzed, R(2) for medial contact force was 0.77 when all gait trials were analyzed together and between 0.69 and 0.93 when each gait trial was analyzed separately (p < 0.001 in all cases). For medial to total force ratio, R(2) was 0.69 for all trials together and between 0.54 and 0.90 for each trial separately (p < 0.001 in all cases). When only the stance phase was analyzed, R(2) values were slightly lower. These results support the hypothesis that the knee adduction torque is highly correlated with medial compartment contact force and medial to total force ratio during gait. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Tooth eruption results from bone remodelling driven by bite forces sensed by soft tissue dental follicles: a finite element analysis.

    PubMed

    Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans

    2013-01-01

    Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true 'eruptive force' is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, 'biological response units' in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth.

  6. Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: does a stronger acid make a stiffer hydrogen bond?

    PubMed

    Houjou, Hirohiko

    2011-10-21

    Using theory of harmonic normal-mode vibration analysis, we developed a procedure for evaluating the anisotropic stiffness of intermolecular forces. Our scheme for coarse-graining of molecular motions is modified so as to account for intramolecular vibrations in addition to relative translational/rotational displacement. We applied this new analytical scheme to four carboxylic acid dimers, for which coupling between intra- and intermolecular vibrations is crucial for determining the apparent stiffness of the intermolecular double hydrogen bond. The apparent stiffness constant was analyzed on the basis of a conjunct spring model, which defines contributions from true intermolecular stiffness and molecular internal stiffness. Consequently, the true intermolecular stiffness was in the range of 43-48 N m(-1) for all carboxylic acids studied, regardless of the molecules' acidity. We concluded that the difference in the apparent stiffness can be attributed to differences in the internal stiffness of the respective molecules. © 2011 American Institute of Physics

  7. Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: Does a stronger acid make a stiffer hydrogen bond?

    NASA Astrophysics Data System (ADS)

    Houjou, Hirohiko

    2011-10-01

    Using theory of harmonic normal-mode vibration analysis, we developed a procedure for evaluating the anisotropic stiffness of intermolecular forces. Our scheme for coarse-graining of molecular motions is modified so as to account for intramolecular vibrations in addition to relative translational/rotational displacement. We applied this new analytical scheme to four carboxylic acid dimers, for which coupling between intra- and intermolecular vibrations is crucial for determining the apparent stiffness of the intermolecular double hydrogen bond. The apparent stiffness constant was analyzed on the basis of a conjunct spring model, which defines contributions from true intermolecular stiffness and molecular internal stiffness. Consequently, the true intermolecular stiffness was in the range of 43-48 N m-1 for all carboxylic acids studied, regardless of the molecules' acidity. We concluded that the difference in the apparent stiffness can be attributed to differences in the internal stiffness of the respective molecules.

  8. Stereophotogrammetrie Mass Distribution Parameter Determination Of The Lower Body Segments For Use In Gait Analysis

    NASA Astrophysics Data System (ADS)

    Sheffer, Daniel B.; Schaer, Alex R.; Baumann, Juerg U.

    1989-04-01

    Inclusion of mass distribution information in biomechanical analysis of motion is a requirement for the accurate calculation of external moments and forces acting on the segmental joints during locomotion. Regression equations produced from a variety of photogrammetric, anthropometric and cadaeveric studies have been developed and espoused in literature. Because of limitations in the accuracy of predicted inertial properties based on the application of regression equation developed on one population and then applied on a different study population, the employment of a measurement technique that accurately defines the shape of each individual subject measured is desirable. This individual data acquisition method is especially needed when analyzing the gait of subjects with large differences in their extremity geo-metry from those considered "normal", or who may possess gross asymmetries in shape in their own contralateral limbs. This study presents the photogrammetric acquisition and data analysis methodology used to assess the inertial tensors of two groups of subjects, one with spastic diplegic cerebral palsy and the other considered normal.

  9. Preliminary Results on the Feasibility of Using ARFI/SWEI to Assess Cutaneous Sclerotic Diseases

    PubMed Central

    Lee, Seung Yun; Cardones, Adela; Doherty, Joshua; Nightingale, Kathryn; Palmeri, Mark

    2015-01-01

    In this study, Acoustic Radiation Force Impulse (ARFI) and Shear Wave Elasticity Imaging (SWEI) were applied to the skin to investigate the feasibility of their use in assessing sclerotic skin diseases. Our motivation was to develop a non-invasive imaging technology with real-time feedback of sclerotic skin disease diagnosis. This paper shows representative results from an ongoing study recruiting subjects with and without sclerosis. The stiffness of the imaged site was evaluated using two metrics: mean ARFI displacement magnitude and bulk shear wave speed inside the region of interest (ROI). In a subject with localized Graft versus Host Disease (GVHD), the mean ARFI displacement inside sclerotic skin was 61% lower (p<0.01) and shear wave speed 128% higher (p<0.005) compared to those in normal skin— indicating stiffer mechanical properties in the sclerotic skin. This trend persisted through disease types. We conclude ARFI and SWEI can successfully differentiate sclerotic lesions from normal dermis. PMID:26259888

  10. The transverse force experienced by the radial head during axial loading of the forearm: A cadaveric study.

    PubMed

    Orbay, Jorge L; Mijares, Michael R; Berriz, Cecilia G

    2016-01-01

    When designing a radial head replacement, the magnitude and direction of forces applied across the proximal radio-ulnar joint (PRUJ) and the radiocapitellar joint must be included. These designs often focus on axial loads transmitted to the radial head by the capitellum; however, the radial head also bears a significant transverse force at the PRUJ. Load transmission by the central band of the interosseous ligament induces a force component in a lateral direction perpendicular to the axis of the limb, which is borne by the articular surfaces of the proximal and distal radio-ulnar joints. The objective of this study is to establish the relationship between distally applied axial forces and proximal transverse reaction forces. Five cadaveric, human forearms with intact interosseous membranes were used to measure the magnitude of transversely-directed forces experienced by the radial head during axial loading of the forearm at the lunate fossa. A Mark-10 test stand applied a gradual and continuous axial load on the articular surface of the distal radius. A Mark-10 force gauge measured the resultant transverse force experienced by the radial head in the proximal radioulnar joint. Classical mechanics and static force analysis were applied in order to predict lateral force values that would occur when the interosseous ligament is treated as the major load transmitter between the radius and ulna. Acquired data show that the radial head bears a force in the transverse direction that averages 18% (SD 3.89%) in magnitude of the axial force applied at the wrist. This figure is in close accordance with the predicted value of 22% that was calculated by way of free-body plotting. Physiologic forearm loading results in a clinically significant transverse force component transmitted through the interosseous ligament complex. The existence of transverse forces in the human forearm may explain clinical problems seen after radial head resection and suggest that radial head implants be designed to sustain substantial transverse forces. Basic science study, anatomical. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  12. Control of a Glove-Based Grasp Assist Device

    NASA Technical Reports Server (NTRS)

    Bergelin, Bryan J (Inventor); Ihrke, Chris A. (Inventor); Davis, Donald R. (Inventor); Linn, Douglas Martin (Inventor); Sanders, Adam M (Inventor); Askew, R. Scott (Inventor); Laske, Evan (Inventor); Ensley, Kody (Inventor)

    2015-01-01

    A grasp assist system includes a glove and sleeve. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. The glove contains a tendon connected at a first end to the digit. The sleeve has an actuator assembly connected to a second end of the tendon and a controller in communication with the sensor. The controller includes a configuration module having selectable operating modes and a processor that calculates a tensile force to apply to the tendon for each of the selectable operating modes to assist the grasping force in a manner that differs for each of the operating modes. A method includes measuring the grasping force, selecting the mode, calculating the tensile force, and applying the tensile force to the tendon using the actuator assembly.

  13. Is the Control of Applied Digital Forces During Natural Five-digit Grasping Affected by Carpal Tunnel Syndrome?

    PubMed

    Chen, Po-Tsun; Jou, I-Ming; Lin, Chien-Ju; Chieh, Hsiao-Feng; Kuo, Li-Chieh; Su, Fong-Chin

    2015-07-01

    The impaired sensory function of the hand induced by carpal tunnel syndrome (CTS) is known to disturb dexterous manipulations. However, force control during daily grasping configuration among the five digits has not been a prominent focus of study. Because grasping is so important to normal function and use of a hand, it is important to understand how sensory changes in CTS affect the digit force of natural grasp. We therefore examined the altered patterns of digit forces applied during natural five-digit grasping in patients with CTS and compared them with those seen in control subjects without CTS. We hypothesized that the patients with CTS will grasp by applying larger forces with lowered pair correlations and more force variability of the involved digits than the control subjects. Specifically, we asked: (1) Is there a difference between patients with CTS and control subjects in applied force by digits during lift-hold-lower task? (2) Is there a difference in force correlation coefficient of the digit pairs? (3) Are there force variability differences during the holding phase? We evaluated 15 female patients with CTS and 15 control subjects matched for age, gender, and hand dominance. The applied radial forces (Fr) of the five digits were recorded by respective force transducers on a cylinder simulator during the lift-hold-lower task with natural grasping. The movement phases of the task were determined by a video-based motion capture system. The applied forces of the thumb in patients with CTS (7 ± 0.8 N; 95% CI, 7.2-7.4 N) versus control subjects (5 ± 0.8 N; 95% CI, 5.1-5.3 N) and the index finger in patients with CTS (3 ± 0.3 N; 95% CI, 3.2-3.3 N) versus control subjects (2 ± 0.3 N; 95% CI, 2.2-2.3 N) observed throughout most of the task were larger in the CTS group (p ranges 0.035-0.050 for thumb and 0.016-0.050 for index finger). In addition, the applied force of the middle finger in patients with CTS (1 ± 0.1 N; 95% CI, 1.3-1.4 N) versus the control subjects (2 ± 0.2 N; 95% CI, 1.9-2.0 N) during the lowering phase was larger in CTS group (p ranges 0.039-0.050). The force correlations of the thumb-middle finger observed during the lowering phase in the patients with CTS (0.8 ± 0.2; 95% CI, 0.6-0.9) versus the control subjects (0.9 ± 0.1; 95% CI, 0.8-1.0; p = 0.04) were weaker in the CTS group. The thumb-little finger during holding in the patients with CTS (0.5 ± 0.2; 95% CI, 0.3-0.7) versus the control subjects (0.8 ± 0.2; 95% CI, 0.6-0.9; p = 0.02), and the lowering phase in the patients with CTS (0.6 ± 0.2; 95% CI, 0.3-0.8) versus the control subjects (0.9 ± 0.1; 95% CI, 0.8-1.0; p = 0.01) also were weaker. The force variabilities of patients with CTS were greater in the CTS group than in the control subjects: in the thumb ([0.26 ± 0.11 N, 95% CI, 0.20-0.32 N] versus [0.19 ± 0.06 N; 95% CI, 0.16-0.22 N], p = 0.03); index finger ([0.09 ± 0.07 N; 95% CI, 0.05-0.13 N] versus [0.05 ± 0.03 N; 95% CI, 0.04-0.07 N], p = 0.03); middle finger ([0.06 ± 0.04 N; 95% CI, 0.04-0.08 N] versus [0.03 ± 0.01 N; 95% CI, 0.02-0.04 N], p = 0.02), and ring finger ([0.04 ± 0.03 N; 95% CI, 0.20-0.06 N] versus [0.02 ± 0.01 N; 95% CI, 0.02-0.02 N], p = 0.01). Patients with CTS grasped with greater digit force associated with weaker correlation and higher variability on specific digits in different task demands. These altered patterns in daily grasping may lead to secondary problems, which will need to be assessed in future studies with this model to see if they are reversible in patients undergoing carpal tunnel release. The current results helped to identify altered patterns of grasping force during simulated daily function in patients with CTS and to provide the clinician with potential information that might help guide the rehabilitation of grasp in these patients.

  14. Force-Velocity, Impulse-Momentum Relationships: Implications for Efficacy of Purposefully Slow Resistance Training

    PubMed Central

    Schilling, Brian K.; Falvo, Michael J.; Chiu, Loren Z.F.

    2008-01-01

    The purpose of this brief review is to explain the mechanical relationship between impulse and momentum when resistance exercise is performed in a purposefully slow manner (PS). PS is recognized by ~10s concentric and ~4-10s eccentric actions. While several papers have reviewed the effects of PS, none has yet explained such resistance training in the context of the impulse-momentum relationship. A case study of normal versus PS back squats was also performed. An 85kg man performed both normal speed (3 sec eccentric action and maximal acceleration concentric action) and PS back squats over a several loads. Normal speed back squats produced both greater peak and mean propulsive forces than PS action when measured across all loads. However, TUT was greatly increased in the PS condition, with values fourfold greater than maximal acceleration repetitions. The data and explanation herein point to superior forces produced by the neuromuscular system via traditional speed training indicating a superior modality for inducing neuromuscular adaptation. Key pointsAs velocity approaches zero, propulsive force approaches zero, therefore slow moving objects only require force approximately equal to the weight of the resistance.As mass is constant during resistance training, a greater impulse will result in a greater velocity.The inferior propulsive forces accompanying purposefully slow training suggest other methods of resistance training have a greater potential for adaptation. PMID:24149464

  15. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  16. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2011-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.

  17. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2012-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  18. Prediction of Bubble Diameter at Detachment from a Wall Orifice in Liquid Cross Flow Under Reduced and Normal Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2003-01-01

    Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.

  19. Adaptive neuron-to-EMG decoder training for FES neuroprostheses

    NASA Astrophysics Data System (ADS)

    Ethier, Christian; Acuna, Daniel; Solla, Sara A.; Miller, Lee E.

    2016-08-01

    Objective. We have previously demonstrated a brain-machine interface neuroprosthetic system that provided continuous control of functional electrical stimulation (FES) and restoration of grasp in a primate model of spinal cord injury (SCI). Predicting intended EMG directly from cortical recordings provides a flexible high-dimensional control signal for FES. However, no peripheral signal such as force or EMG is available for training EMG decoders in paralyzed individuals. Approach. Here we present a method for training an EMG decoder in the absence of muscle activity recordings; the decoder relies on mapping behaviorally relevant cortical activity to the inferred EMG activity underlying an intended action. Monkeys were trained at a 2D isometric wrist force task to control a computer cursor by applying force in the flexion, extension, ulnar, and radial directions and execute a center-out task. We used a generic muscle force-to-endpoint force model based on muscle pulling directions to relate each target force to an optimal EMG pattern that attained the target force while minimizing overall muscle activity. We trained EMG decoders during the target hold periods using a gradient descent algorithm that compared EMG predictions to optimal EMG patterns. Main results. We tested this method both offline and online. We quantified both the accuracy of offline force predictions and the ability of a monkey to use these real-time force predictions for closed-loop cursor control. We compared both offline and online results to those obtained with several other direct force decoders, including an optimal decoder computed from concurrently measured neural and force signals. Significance. This novel approach to training an adaptive EMG decoder could make a brain-control FES neuroprosthesis an effective tool to restore the hand function of paralyzed individuals. Clinical implementation would make use of individualized EMG-to-force models. Broad generalization could be achieved by including data from multiple grasping tasks in the training of the neuron-to-EMG decoder. Our approach would make it possible for persons with SCI to grasp objects with their own hands, using near-normal motor intent.

  20. Wing motion measurement and aerodynamics of hovering true hoverflies.

    PubMed

    Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao

    2011-09-01

    Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.

  1. Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas

    NASA Astrophysics Data System (ADS)

    Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta

    2018-04-01

    Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.

  2. Sensitivity of estimated muscle force in forward simulation of normal walking

    PubMed Central

    Xiao, Ming; Higginson, Jill

    2009-01-01

    Generic muscle parameters are often used in muscle-driven simulations of human movement estimate individual muscle forces and function. The results may not be valid since muscle properties vary from subject to subject. This study investigated the effect of using generic parameters in a muscle-driven forward simulation on muscle force estimation. We generated a normal walking simulation in OpenSim and examined the sensitivity of individual muscle to perturbations in muscle parameters, including the number of muscles, maximum isometric force, optimal fiber length and tendon slack length. We found that when changing the number muscles included in the model, only magnitude of the estimated muscle forces was affected. Our results also suggest it is especially important to use accurate values of tendon slack length and optimal fiber length for ankle plantarflexors and knee extensors. Changes in force production one muscle were typically compensated for by changes in force production by muscles in the same functional muscle group, or the antagonistic muscle group. Conclusions regarding muscle function based on simulations with generic musculoskeletal parameters should be interpreted with caution. PMID:20498485

  3. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.

    PubMed

    Toro-Ibacache, Viviana; O'Higgins, Paul

    2016-07-01

    Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Variable Acceleration Force Calibration System (VACS)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will present the development and testing of the VASC concept.

  5. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    PubMed

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-07-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.

  6. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall actuate...

  7. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall actuate...

  8. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall actuate...

  9. Vibrational spectra for uric acid and its D- and 15N-substituted analogues. Assignments for its normal modes from ab initio 3-21G force field.

    NASA Astrophysics Data System (ADS)

    Majoube, M.; Vergoten, G.

    1993-03-01

    FTR, Raman, FTIR spectra are obtained for polycrystalline uric acid and seven of its D-and 15N-substituted analogues. Assignments are given from a normal coordinate analysis carried out using a 3-21G ab initio force field. These are discussed by considering observed and calculated frequencies and D- and 15N-isotopic shifts.

  10. A validated computational model for the design of surface textures in full-film lubricated sliding

    NASA Astrophysics Data System (ADS)

    Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy

    2016-11-01

    Our recent experimental work showed that asymmetry is needed for surface textures to decrease friction in full-film lubricated sliding (thrust bearings) with Newtonian fluids; textures reduce the shear load and produce a separating normal force. The sign of the separating normal force is not predicted by previous 1-D theories. Here we model the flow with the Reynolds equation in cylindrical coordinates, numerically implemented with a pseudo-spectral method. The model predictions match experiments, rationalize the sign of the normal force, and allow for design of surface texture geometry. To minimize sliding friction with angled cylindrical textures, an optimal angle of asymmetry β exists. The optimal angle depends on the film thickness but not the sliding velocity within the applicable range of the model. The model has also been used to optimize generalized surface texture topography while satisfying manufacturability constraints.

  11. Effect of walking velocity on ground reaction force variables in the hind limb of clinically normal horses.

    PubMed

    Khumsap, S; Clayton, H M; Lanovaz, J L

    2001-06-01

    To measure the effect of subject velocity on hind limb ground reaction force variables at the walk and to use the data to predict the force variables at different walking velocities in horses. 5 clinically normal horses. Kinematic and force data were collected simultaneously. Each horse was led over a force plate at a range of walking velocities. Stance duration and force data were recorded for the right hind limb. To avoid the effect of horse size on the outcome variables, the 8 force variables were standardized to body mass and height at the shoulders. Velocity was standardized to height at the shoulders and expressed as velocity in dimensionless units (VDU). Stance duration was also expressed in dimensionless units (SDU). Simple regression analysis was performed, using stance duration and force variables as dependent variables and VDU as the independent variable. Fifty-six trials were recorded with velocities ranging from 0.24 to 0.45 VDU (0.90 to 1.72 m/s). Simple regression models between measured variables and VDU were significant (R2 > 0.69) for SDU, first peak of vertical force, dip between the 2 vertical force peaks, vertical impulse, and timing of second peak of vertical force. Subject velocity affects vertical force components only. In the future, differences between the forces measured in lame horses and the expected forces calculated for the same velocity will be studied to determine whether the equations can be used as diagnostic criteria.

  12. Effect of the callipyge phenotype and cooking method on tenderness of several major lamb muscles.

    PubMed

    Shackelford, S D; Wheeler, T L; Koohmaraie, M

    1997-08-01

    We conducted three experiments to determine the effects of the callipyge phenotype on the tenderness of several major lamb muscles and to determine the effect of method of cookery on the tenderness of callipyge lamb at 7 d postmortem. In Exp. 1, chops from normal (n = 23) and callipyge (n = 16) carcasses were open-hearth-broiled. Warner-Bratzler shear force values of longissimus, gluteus medius, semimembranosus, biceps femoris, semitendinosus, adductor, and quadriceps femoris were 123, 44, 28, 26, 19, 16, and 13% greater, respectively, for callipyge (P < .05). In Exp. 2, muscles from normal (n = 18) and callipyge (n = 18) carcasses were oven-roasted. Shear force of triceps brachii was 11% greater for callipyge (P < .001); however, phenotype did not affect shear force of supraspinatus (P = .87) or psoas major (P = .64). In Exp. 3, a trained sensory panel evaluated leg roasts and open-hearth-broiled leg chops from normal (n = 60) and callipyge lamb carcasses (n = 60). Callipyge chops were less tender than normal chops (P < .05). Regardless of callipyge phenotype, muscles were more (P < .05) tender when roasted; however, the effect of method of cookery on tenderness scores was greater for callipyge muscles than for normal muscles. Callipyge roasts and normal roasts had similar tenderness (P = .58), and callipyge roasts were more tender than normal chops (P < .05). Regardless of cooking method, callipyge samples were less juicy than normal samples (P < .05). These data demonstrate that the callipyge phenotype will likely reduce consumer satisfaction due to reduced tenderness and juiciness; however, reduced tenderness in callipyge leg muscles could be prevented by ovenroasting.

  13. Calculation of contact angles at triple phase boundary in solid oxide fuel cell anode using the level set method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaojun; Hasegawa, Yosuke; CREST, JST

    2014-10-15

    A level set method is applied to characterize the three dimensional structures of nickel, yttria stabilized zirconia and pore phases in solid oxide fuel cell anode reconstructed by focused ion beam-scanning electron microscope. A numerical algorithm is developed to evaluate the contact angles at the triple phase boundary based on interfacial normal vectors which can be calculated from the signed distance functions defined for each of the three phases. Furthermore, surface tension force is estimated from the contact angles by assuming the interfacial force balance at the triple phase boundary. The average contact angle values of nickel, yttria stabilized zirconiamore » and pore are found to be 143°–156°, 83°–138° and 82°–123°, respectively. The mean contact angles remained nearly unchanged after 100 hour operation. However, the contact angles just after reduction are different for the cells with different sintering temperatures. In addition, standard deviations of the contact angles are very large especially for yttria stabilized zirconia and pore phases. The calculated surface tension forces from mean contact angles were close to the experimental values found in the literature. Slight increase of surface tensions of nickel/pore and nickel/yttria stabilized zirconia were observed after operation. Present data are expected to be used not only for the understanding of the degradation mechanism, but also for the quantitative prediction of the microstructural temporal evolution of solid oxide fuel cell anode. - Highlights: • A level set method is applied to characterize the 3D structures of SOFC anode. • A numerical algorithm is developed to evaluate the contact angles at the TPB. • Surface tension force is estimated from the contact angles. • The average contact angle values are found to be 143o-156o, 83o-138o and 82o-123o. • Present data are expected to understand degradation and predict evolution of SOFC.« less

  14. Assessment of hindlimb locomotor strength in spinal cord transected rats through animal-robot contact force.

    PubMed

    Nessler, Jeff A; Moustafa-Bayoumi, Moustafa; Soto, Dalziel; Duhon, Jessica; Schmitt, Ryan

    2011-12-01

    Robotic locomotor training devices have gained popularity in recent years, yet little has been reported regarding contact forces experienced by the subject performing automated locomotor training, particularly in animal models of neurological injury. The purpose of this study was to develop a means for acquiring contact forces between a robotic device and a rodent model of spinal cord injury through instrumentation of a robotic gait training device (the rat stepper) with miniature force/torque sensors. Sensors were placed at each interface between the robot arm and animal's hindlimb and underneath the stepping surface of both hindpaws (four sensors total). Twenty four female, Sprague-Dawley rats received mid-thoracic spinal cord transections as neonates and were included in the study. Of these 24 animals, training began for 18 animals at 21 days of age and continued for four weeks at five min/day, five days/week. The remaining six animals were untrained. Animal-robot contact forces were acquired for trained animals weekly and untrained animals every two weeks while stepping in the robotic device with both 60 and 90% of their body weight supported (BWS). Animals that received training significantly increased the number of weight supported steps over the four week training period. Analysis of raw contact forces revealed significant increases in forward swing and ground reaction forces during this time, and multiple aspects of animal-robot contact forces were significantly correlated with weight bearing stepping. However, when contact forces were normalized to animal body weight, these increasing trends were no longer present. Comparison of trained and untrained animals revealed significant differences in normalized ground reaction forces (both horizontal and vertical) and normalized forward swing force. Finally, both forward swing and ground reaction forces were significantly reduced at 90% BWS when compared to the 60% condition. These results suggest that measurement of animal-robot contact forces using the instrumented rat stepper can provide a sensitive and reliable measure of hindlimb locomotor strength and control of flexor and extensor muscle activity in neurologically impaired animals. Additionally, these measures may be useful as a means to quantify training intensity or dose-related functional outcomes of automated training.

  15. Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng

    2016-12-01

    Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.

  16. Nonlinear normal modes modal interactions and isolated resonance curves

    DOE PAGES

    Kuether, Robert J.; Renson, L.; Detroux, T.; ...

    2015-05-21

    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweepmore » excitations of increasing amplitudes.« less

  17. Evaluation and validation of musculoskeletal force feasible set indices: Application to manual wheelchair propulsion.

    PubMed

    Hernandez, Vincent; Gorce, Philippe; Rezzoug, Nasser

    2018-02-08

    The aim of this work was to assess handrim wheelchair propulsion effectiveness, related to the applied forces on the handrim, through the force feasible set. For a given posture of the upper-limb, it represents the set of isometric forces that can be applied on the handrim in any direction. The force feasible set was predicted from a musculoskeletal model of the upper-limb and trunk (10 degrees of freedom and 56 muscles). The aim of the first part of the study was to compare the force feasible set prediction and the force currently applied on the handrim. The second part proposes the creation of a new index called "Musculoskeletal Postural Performance Index" (MPPI) derived from the force feasible set and its comparison with the Mechanical Efficiency Force (MEF). These comparisons were conducted at 60, 80, 100, 120 and 140% of the Freely Chosen Frequency at submaximal and maximal conditions on 5 different phases of the push phase. The values of the MPPI were significantly correlated with those of the MEF. During the course of the push phase, the orientation of the force feasible set main axis approached that of the measured force and the force effectiveness evaluated through the MPPI increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors

    NASA Astrophysics Data System (ADS)

    Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.

    2018-01-01

    The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.

  19. Prediction of static friction coefficient in rough contacts based on the junction growth theory

    NASA Astrophysics Data System (ADS)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.

  20. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  1. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  2. The relationship between facial skeleton morphology and bite force in people with a normal relation of the bases of jaws and skull.

    PubMed

    Sidorowicz, Ł; Szymańska, J

    2015-01-01

    Better knowledge on the relationship between craniofacial structure and bite force may serve as a reference point for prophylactic and therapeutic activities targeted at developmental age patients. The aim of the study was to assess the correlation between facial skeletal morphology and bite force. The study included 54 subjects aged 7-16 years with a normal relation of the bases of jaws and skull, according to Segner's and Hasund's analysis standards (ML-NL and ML-NSL angles values were 20.0 ± 7.0° and 28.0 ± 5.0°, respectively). The study group included patients who volunteered to diagnosis and possible orthodontic treatment. Bite force was tested with a digital dynamometer calibrated in Newtons. The measurement was performed at the level of the first permanent molars. Cephalometric analysis was based on lateral cephalometric radiographs. The vertical relations were assessed using the following measurements: ML-NSL, ML-NL, NL-NSL, N-Me, Sp-Me, SpMe:NMe, ms-NL, SGo:NMe. Bite force does not depend on the following factors: lower anterior face height (Sp-Me), lower anterior face height to total anterior face height ratio (SpMe:NMe), posterior to anterior face height ratio (SG0:NMe), and the value of ML-NL, ML-NSL and NL-NSL angles. The posterior height of the maxilla alveolar process (ms-NL) exerts the greatest influence on bite force in people with a normal relation of the bases of jaws and skull: with an increase in ms-NL value bite force is reduced.

  3. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of... with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds...

  4. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of... with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds...

  5. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of... with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds...

  6. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of... with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds...

  7. 49 CFR 570.55 - Hydraulic brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... under a 125-pound force applied to the brake pedal and by no illumination of the brake system failure indicator lamp. The brake system shall withstand the application of force to the pedal without failure of... with power brake systems and the ignition turned to “on” in other vehicles, apply a force of 125 pounds...

  8. Tooth Eruption Results from Bone Remodelling Driven by Bite Forces Sensed by Soft Tissue Dental Follicles: A Finite Element Analysis

    PubMed Central

    Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans

    2013-01-01

    Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth. PMID:23554928

  9. Transport of particles by magnetic forces and cellular blood flow in a model microvessel

    NASA Astrophysics Data System (ADS)

    Freund, J. B.; Shapiro, B.

    2012-05-01

    The transport of particles (diameter 0.56 μm) by magnetic forces in a small blood vessel (diameter D = 16.9 μm, mean velocity U = 2.89 mm/s, red cell volume fraction Hc = 0.22) is studied using a simulation model that explicitly includes hydrodynamic interactions with realistically deformable red blood cells. A biomedical application of such a system is targeted drug or hyperthermia delivery, for which transport to the vessel wall is essential for localizing therapy. In the absence of magnetic forces, it is seen that interactions with the unsteadily flowing red cells cause lateral particle velocity fluctuations with an approximately normal distribution with variance σ = 140 μm/s. The resulting dispersion is over 100 times faster than expected for Brownian diffusion, which we neglect. Magnetic forces relative to the drag force on a hypothetically fixed particle at the vessel center are selected to range from Ψ = 0.006 to 0.204. The stronger forces quickly drive the magnetic particles to the vessel wall, though in this case the red cells impede margination; for weaker forces, many of the particles are marginated more quickly than might be predicted for a homogeneous fluid by the apparently chaotic stirring induced by the motions of the red cells. A corresponding non-dimensional parameter Ψ', which is based on the characteristic fluctuation velocity σ rather than the centerline velocity, explains the switch-over between these behaviors. Forces that are applied parallel to the vessel are seen to have a surprisingly strong effect due to the streamwise-asymmetric orientation of the flowing blood cells. In essence, the cells act as low-Reynolds number analogs of turning vanes, causing streamwise accelerated particles to be directed toward the vessel center and streamwise decelerated particles to be directed toward the vessel wall.

  10. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.

    PubMed

    Doorenbosch, Caroline A M; Joosten, Annemiek; Harlaar, Jaap

    2005-08-01

    In this study, the influence of using submaximal isokinetic contractions about the knee compared to maximal voluntary contractions as input to obtain the calibration of an EMG-force model for knee muscles is investigated. Isokinetic knee flexion and extension contractions were performed by healthy subjects at five different velocities and at three contraction levels (100%, 75% and 50% of MVC). Joint angle, angular velocity, joint moment and surface EMG of five knee muscles were recorded. Individual calibration values were calculated according to [C.A.M. Doorenbosch, J. Harlaar, A clinically applicable EMG-force model to quantify active stabilization of the knee after a lesion of the anterior cruciate ligament, Clinical Biomechanics 18 (2003) 142-149] for each contraction level. First, the output of the model, calibrated with the 100% MVC was compared to the actually exerted net knee moment at the dynamometer. Normalized root mean square errors were calculated [A.L. Hof, C.A.N. Pronk, J.A. van Best, Comparison between EMG to force processing and kinetic analysis for the calf muscle moment in walking and stepping, Journal of Biomechanics 20 (1987) 167-187] to compare the estimated moments with the actually exerted moments. Mean RMSD errors ranged from 0.06 to 0.21 for extension and from 0.12 to 0.29 for flexion at the 100% trials. Subsequently, the calibration results of the 50% and 75% MVC calibration procedures were used. A standard signal, representing a random EMG level was used as input in the EMG force model, to compare the three models. Paired samples t-tests between the 100% MVC and the 75% MVC and 50% MVC, respectively, showed no significant differences (p>0.05). The application of submaximal contractions of larger than 50% MVC is suitable to calibrate a simple EMG to force model for knee extension and flexion. This means that in clinical practice, the EMG to force model can be applied by patients who cannot exert maximal force.

  11. A kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces.

    PubMed

    Koontz, Alicia M; Cooper, Rory A; Boninger, Michael L; Yang, Yusheng; Impink, Bradley G; van der Woude, Lucas H V

    2005-01-01

    The objective of this study was to conduct a kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces. Eleven manual wheelchairs were fitted with a SMART(Wheel) and their users were asked to push on a course consisting of high- and low-pile carpet, indoor tile, interlocking concrete pavers, smooth level concrete, grass, hardwood flooring, and a sidewalk with a 5-degree grade. Peak resultant force, wheel torque, mechanical effective force, and maximum resultant force rate of rise were analyzed during start-up for each surface and normalized relative to their steady-state values on the smooth level concrete. Additional variables included peak velocity, distance traveled, and number of strokes in the first 5 s of the trial. We compared biomechanical data between surfaces using repeated-measures mixed models and paired comparisons with a Bonferroni adjustment. Applied resultant force (p = 0.0154), wheel torque (p < 0.0001), and mechanical effective force (p = 0.0047) were significantly different between surfaces. The kinetic values for grass, interlocking pavers, and ramp ascent were typically higher compared with tile, wood, smooth level concrete, and high- and low-pile carpet. Users were found to travel shorter distances up the ramp and across grass (p < 0.0025) and had a higher stroke count on the ramp (p = 0.0124). While peak velocity was not statistically different, average velocity was slower for the ramp and grass, which indicates greater wheelchair/user deceleration between strokes. The differences noted between surfaces highlight the importance of evaluating wheelchair propulsion ability over a range of surfaces.

  12. A new model for force generation by skeletal muscle, incorporating work-dependent deactivation

    PubMed Central

    Williams, Thelma L.

    2010-01-01

    A model is developed to predict the force generated by active skeletal muscle when subjected to imposed patterns of lengthening and shortening, such as those that occur during normal movements. The model is based on data from isolated lamprey muscle and can predict the forces developed during swimming. The model consists of a set of ordinary differential equations, which are solved numerically. The model's first part is a simplified description of the kinetics of Ca2+ release from sarcoplasmic reticulum and binding to muscle protein filaments, in response to neural activation. The second part is based on A. V. Hill's mechanical model of muscle, consisting of elastic and contractile elements in series, the latter obeying known physiological properties. The parameters of the model are determined by fitting the appropriate mathematical solutions to data recorded from isolated lamprey muscle activated under conditions of constant length or rate of change of length. The model is then used to predict the forces developed under conditions of applied sinusoidal length changes, and the results compared with corresponding data. The most significant advance of this model is the incorporation of work-dependent deactivation, whereby a muscle that has been shortening under load generates less force after the shortening ceases than otherwise expected. In addition, the stiffness in this model is not constant but increases with increasing activation. The model yields a closer prediction to data than has been obtained before, and can thus prove an important component of investigations of the neural—mechanical—environmental interactions that occur during natural movements. PMID:20118315

  13. Alterations in knee contact forces and centers in stance phase of gait: A detailed lower extremity musculoskeletal model.

    PubMed

    Marouane, H; Shirazi-Adl, A; Adouni, M

    2016-01-25

    Evaluation of contact forces-centers of the tibiofemoral joint in gait has crucial biomechanical and pathological consequences. It involves however difficulties and limitations in in vitro cadaver and in vivo imaging studies. The goal is to estimate total contact forces (CF) and location of contact centers (CC) on the medial and lateral plateaus using results computed by a validated finite element model simulating the stance phase of gait for normal as well as osteoarthritis, varus-valgus and posterior tibial slope altered subjects. Using foregoing contact results, six methods commonly used in the literature are also applied to estimate and compare locations of CC at 6 periods of stance phase (0%, 5%, 25%, 50%, 75% and 100%). TF joint contact forces are greater on the lateral plateau very early in stance and on the medial plateau thereafter during 25-100% stance periods. Large excursions in the location of CC (>17mm), especially on the medial plateau in the mediolateral direction, are computed. Various reported models estimate quite different CCs with much greater variations (~15mm) in the mediolateral direction on both plateaus. Compared to our accurately computed CCs taken as the gold standard, the centroid of contact area algorithm yielded least differences (except in the mediolateral direction on the medial plateau at ~5mm) whereas the contact point and weighted center of proximity algorithms resulted overall in greatest differences. Large movements in the location of CC should be considered when attempting to estimate TF compartmental contact forces in gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. An overview of vertebrate mineralization with emphasis on collagen-mineral interaction

    NASA Technical Reports Server (NTRS)

    Landis, W. J.

    1999-01-01

    The nucleation, growth, and development of mineral crystals through their interaction principally with collagen in normal bone and calcifying tendon have been elaborated by applying a number of different techniques for analysis of the inorganic and organic constituents of these tissues. The methods have included conventional and high voltage electron microscopy, electron diffraction, microscopic tomography and 3D image reconstruction, and atomic force microscopy. This summary presents results of these studies that have now characterized the size, shape, and aspects of the chemical nature of the crystals as well as their orientation, alignment, location, and distribution with respect to collagen. These data have provided the means for understanding more completely the formation and strength of the collagen-mineral composite present in most vertebrate calcifying tissues and, from that information, a basis for the adaptation of such tissues under mechanical constraints. In the context of the latter point, other data are given showing effects on collagen in bone cell cultures subjected to the unloading parameters of spaceflight. Implications of these results may be particularly relevant to explaining loss of bone by humans and other vertebrate animals during missions in space, during situations of extended fracture healing, long-term bedrest, physical immobilization, and related conditions. In a broader sense, the data speak to the response of bone and mineralized vertebrate tissues to changes in gravitational loading and applied mechanical forces in general.

  15. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application.

    PubMed

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-08-30

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T(-1)), which is very effective as compared to other previously reported works for a single device.

  16. Numerical approach in defining milling force taking into account curved cutting-edge of applied mills

    NASA Astrophysics Data System (ADS)

    Bondarenko, I. R.

    2018-03-01

    The paper tackles the task of applying the numerical approach to determine the cutting forces of carbon steel machining with curved cutting edge mill. To solve the abovementioned task the curved surface of the cutting edge was subject to step approximation, and the chips section was split into discrete elements. As a result, the cutting force was defined as the sum of elementary forces observed during the cut of every element. Comparison and analysis of calculations with regard to the proposed method and the method with Kienzle dependence showed its sufficient accuracy, which makes it possible to apply the method in practice.

  17. From Animals to Animats: Proceedings of the International Conference on Simulation of Adaptive Behavior (1st) Held in Paris, France on 24-28 September 1990

    DTIC Science & Technology

    1991-08-31

    was a great boost. Ecole Normale Sup~rieure The Rowland Institute for Science Ministbre de la Recherche et de la Technologie AFOSR (U. S. Air Force...551 Acknowledgments The organizers acknowledge financial support from the following public...and private institutions to which they are especially grateful: Ecole Normale Sup~rioure The Rowland Institute for Science AFOSR (US Air Force) C2V

  18. Dynamic effect of the tibialis posterior muscle on the arch of the foot during cyclic axial loading.

    PubMed

    Kamiya, Tomoaki; Uchiyama, Eiichi; Watanabe, Kota; Suzuki, Daisuke; Fujimiya, Mineko; Yamashita, Toshihiko

    2012-11-01

    The most common cause of acquired flatfoot deformity is tibialis posterior tendon dysfunction. The present study compared the change in medial longitudinal arch height during cyclic axial loading with and without activated tibialis posterior tendon force. Fourteen normal, fresh frozen cadaveric legs were used. A total of 10,000 cyclic axial loadings of 500 N were applied to the longitudinal axis of the tibia. The 32-N tibialis posterior tendon forces were applied to the specimens of the active group (n=7). Specimens of another group (non-active group, n=7) were investigated without the tibialis posterior tendon force. The bony arch index was calculated from the displacement of the navicular height. The mean initial bony arch indexes with maximal weightbearing were 0.239 (SD 0.009) in active group and 0.239 (SD 0.014) in non-active group. After 7000 cycles, the bony arch indexes with maximal weightbearing were significantly greater in the active group (mean 0.214, SD 0.013) than in the non-active group (mean 0.199, SD 0.013). The mean bony arch indexes with maximal weightbearing after 10,000 cycles were 0.212 (SD 0.011) in the active group and 0.196 (SD 0.015) in the non-active group. The passive supportive structures were inadequate, and the tibialis posterior muscle was essential to maintain the medial longitudinal arch of the foot in the dynamic weightbearing condition. The findings underscore that physical therapy and arch supportive equipments are important to prevent flatfoot deformity in the condition of weakness or dysfunction of the tibialis posterior muscle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Biomechanical performance of rigid compared to dynamic anterior cervical plating: analysis of adjacent upper and lower level compressive forces.

    PubMed

    Connor, David E; Shamieh, Khader Samer; Ogden, Alan L; Mukherjee, Debi P; Sin, Anthony; Nanda, Anil

    2012-12-01

    Dynamic anterior cervical plating is well established as a means of enhancing graft loading and subsequent arthrodesis. Current concerns center on the degree of adjacent-level stress induced by these systems. The aim of this study was to evaluate and compare the load transferred to adjacent levels for single-level anterior cervical discectomy and fusion utilizing rigid compared to dynamic anterior plating systems. Nine cadaveric adult human cervical spine specimens were subjected to range-of-motion testing prior to and following C5-C6 anterior cervical discectomy and fusion procedures. Interbody grafting was performed with human fibula tissue. Nondestructive biomechanical testing included flexion/extension and lateral bending loading modes. A constant displacement of 5mm was applied in each direction and the applied load was measured in newtons (N). Specimens were tested in the following order: intact, following discectomy, after rigid plating, then after dynamic plating. Adjacent level (C4-C5 [L(S)] and C6-C7 [L(I)]) compressive forces were measured using low profile load cells inserted into each disc space. The measured load values for plating systems were then normalized using values measured for the intact specimens. Mean loads transferred to L(S) and L(I) during forced flexion in specimens with rigid plating were 23.47 N and 8.76 N, respectively; while the corresponding values in specimens with dynamic plating were 18.55 N and 1.03 N, respectively. Dynamic plating yielded no significant change at L(I) and a 21.0% decrease in load at L(S) when compared with rigid plating, although the difference was not significant. The observed trend suggests that dynamic plating may diminish superior adjacent level compressive stresses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. New insights into the passive force enhancement in skeletal muscles.

    PubMed

    Lee, Eun-Jeong; Joumaa, Venus; Herzog, Walter

    2007-01-01

    The steady-state isometric force following active stretching of a muscle is always greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This phenomenon has been termed "residual force enhancement" and it is associated with an active and a passive component. The origin of these components remains a matter of scientific debate. The purpose of this work was to test the hypothesis that the passive component of the residual force enhancement is caused by a passive structural element. In order to achieve this purpose, single fibers (n=6) from the lumbrical muscles of frog (Rana pipiens) were isolated and attached to a force transducer and a motor that could produce computer-controlled length changes. The passive force enhancement was assessed for three experimental conditions: in a normal Ringer's solution, and after the addition of 5 and 15mM 2,3-butanedione monoxime (BDM) which inhibits force production in a dose-dependent manner. If our hypothesis was correct, one would expect the passive force enhancement to be unaffected following BDM application. However, we found that increasing concentrations of BDM decreased the isometric forces, increased the normalized residual force enhancement, and most importantly for this study, increased the passive force enhancement. Furthermore, BDM decreased the rate of force relaxation after deactivation following active stretching of fibers, passive stretching in the Ringer's and BDM conditions produced the same passive force-sarcomere length relationship, and passive force enhancement required activation and force production. These results led to the conclusion that the passive force enhancement cannot be caused by a structural component exclusively as had been assumed up to date, but must be associated, directly or indirectly, with cross-bridge attachments upon activation and the associated active force.

Top