Uemura, Osamu; Iwata, Naoyuki; Nagai, Takuhito; Yamakawa, Satoshi; Hibino, Satoshi; Yamamoto, Masaki; Nakano, Masaru; Tanaka, Kazuki
2018-05-01
To determine the optimal method of evaluating kidney function in patients with thyroid dysfunction, this study compared the estimated glomerular filtration rate derived from serum creatinine, cystatin C, or β2-microglobulin with inulin or creatinine clearance in two pediatric patients, one with hypothyroidism and the other with hyperthyroidism. It was observed that the kidney function decreased in a hypothyroid child and enhanced in a hyperthyroid child, with their kidney function becoming normalized by treatment with drugs, which normalized their thyroid function. Kidney function cannot be accurately evaluated using cystatin C-based or β2-microglobulin-based estimated glomerular filtration rate in patients with thyroid dysfunction, as these tests overestimated glomerular filtration rate in a patient with hypothyroidism and underestimated glomerular filtration rate in a patient with hyperthyroidism, perhaps through a metabolic rate-mediated mechanism. In both our patients, 24-h urinary creatinine secretion was identical before and after treatment, suggesting that creatinine production is not altered in patients with thyroid dysfunction. Therefore, kidney function in patients with thyroid dysfunction should be evaluated using creatinine-based estimated glomerular filtration rate.
Kanasaki, Keizo; Kanda, Yoshiko; Palmsten, Kristin; Tanjore, Harikrishna; Lee, Soo Bong; Lebleu, Valerie S; Gattone, Vincent H; Kalluri, Raghu
2008-01-15
The human kidneys filter 180 l of blood every day via about 2.5 million glomeruli. The three layers of the glomerular filtration apparatus consist of fenestrated endothelium, specialized extracellular matrix known as the glomerular basement membrane (GBM) and the podocyte foot processes with their modified adherens junctions known as the slit diaphragm (SD). In this study we explored the contribution of podocyte beta1 integrin signaling for normal glomerular function. Mice with podocyte specific deletion of integrin beta1 (podocin-Cre beta1-fl/fl mice) are born normal but cannot complete postnatal renal development. They exhibit detectable proteinuria on day 1 and die within a week. The kidneys of podocin-Cre beta1-fl/fl mice exhibit normal glomerular endothelium but show severe GBM defects with multilaminations and splitting including podocyte foot process effacement. The integrin linked kinase (ILK) is a downstream mediator of integrin beta1 activity in epithelial cells. To further explore whether integrin beta1-mediated signaling facilitates proper glomerular filtration, we generated mice deficient of ILK in the podocytes (podocin-Cre ILK-fl/fl mice). These mice develop normally but exhibit postnatal proteinuria at birth and die within 15 weeks of age due to renal failure. Collectively, our studies demonstrate that podocyte beta1 integrin and ILK signaling is critical for postnatal development and function of the glomerular filtration apparatus.
Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie
2016-01-01
Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies.
Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie
2016-01-01
Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet contributes to improving the understanding of normal glomerular function and will be useful for detecting target cytoskeleton molecules of interest that may be involved in glomerular diseases in future studies. PMID:27227331
Genetic Ablation of Calcium-independent Phospholipase A2γ Induces Glomerular Injury in Mice*
Elimam, Hanan; Papillon, Joan; Kaufman, Daniel R.; Guillemette, Julie; Aoudjit, Lamine; Gross, Richard W.; Takano, Tomoko; Cybulsky, Andrey V.
2016-01-01
Glomerular visceral epithelial cells (podocytes) play a critical role in the maintenance of glomerular permselectivity. Podocyte injury, manifesting as proteinuria, is the cause of many glomerular diseases. We reported previously that calcium-independent phospholipase A2γ (iPLA2γ) is cytoprotective against complement-mediated glomerular epithelial cell injury. Studies in iPLA2γ KO mice have demonstrated an important role for iPLA2γ in mitochondrial lipid turnover, membrane structure, and metabolism. The aim of the present study was to employ iPLA2γ KO mice to better understand the role of iPLA2γ in normal glomerular and podocyte function as well as in glomerular injury. We show that deletion of iPLA2γ did not cause detectable albuminuria; however, it resulted in mitochondrial structural abnormalities and enhanced autophagy in podocytes as well as loss of podocytes in aging KO mice. Moreover, after induction of anti-glomerular basement membrane nephritis in young mice, iPLA2γ KO mice exhibited significantly increased levels of albuminuria, podocyte injury, and loss of podocytes compared with wild type. Thus, iPLA2γ has a protective functional role in the normal glomerulus and in glomerulonephritis. Understanding the role of iPLA2γ in glomerular pathophysiology provides opportunities for the development of novel therapeutic approaches to glomerular injury and proteinuria. PMID:27226532
Harris, David P.; Vogel, Peter; Wims, Marie; Moberg, Karen; Humphries, Juliane; Jhaver, Kanchan G.; DaCosta, Christopher M.; Shadoan, Melanie K.; Xu, Nianhua; Hansen, Gwenn M.; Balakrishnan, Sanjeevi; Domin, Jan; Powell, David R.; Oravecz, Tamas
2011-01-01
An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function. PMID:20974805
aPKCλ/ι and aPKCζ Contribute to Podocyte Differentiation and Glomerular Maturation
Hartleben, Björn; Widmeier, Eugen; Suhm, Martina; Worthmann, Kirstin; Schell, Christoph; Helmstädter, Martin; Wiech, Thorsten; Walz, Gerd; Leitges, Michael; Schiffer, Mario
2013-01-01
Precise positioning of the highly complex interdigitating podocyte foot processes is critical to form the normal glomerular filtration barrier, but the molecular programs driving this process are unknown. The protein atypical protein kinase C (aPKC)—a component of the Par complex, which localizes to tight junctions and interacts with slit diaphragm proteins—may play a role. Here, we found that the combined deletion of the aPKCλ/ι and aPKCζ isoforms in podocytes associated with incorrectly positioned centrosomes and Golgi apparatus and mislocalized molecules of the slit diaphragm. Furthermore, aPKC-deficient podocytes failed to form the normal network of foot processes, leading to defective glomerular maturation with incomplete capillary formation and mesangiolysis. Our results suggest that aPKC isoforms orchestrate the formation of the podocyte processes essential for normal glomerular development and kidney function. Defective aPKC signaling results in a dramatically simplified glomerular architecture, causing severe proteinuria and perinatal death. PMID:23334392
Distribution of endogenous albumin in the glomerular wall of proteinuric patients.
Russo, P. A.; Bendayan, M.
1990-01-01
Glomerular proteinuria seems to be related, in part, to loss or impairment of the normal barrier function of the glomerular capillary wall. To investigate the functional properties of this barrier, endogenous albumin was revealed in the glomerular wall of proteinuric patients and compared with a nonproteinuric control by immunoelectron microscopy using the protein A-gold method. In the control biopsy, peaks of albumin accumulation were noted in the subendothelial area and in the inner portion of the lamina densa, with gradual tapering of the distribution toward the epithelial side of the basement membrane. The urinary space and epithelial cells were weakly labeled. In tissues from proteinuric patients, albumin was distributed throughout the entire width of the glomerular basement membrane, although the pattern of accumulation varied between patients. The urinary space showed significant labeling associated with some flocculent material. Mesangial areas were heavily labeled in tissues from both control and proteinuric patients. In the latter, lysozomes in glomerular and tubular epithelial cells also accumulated albumin, which is evidence of reabsorption. These results reveal the existence, in normal conditions, of a barrier located in the subendothelial area of the glomerular basement membrane, the loss of which, as in the idiopathic nephrotic syndrome, leads to diffuse distribution of albumin in the glomerular capillary wall. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2260634
Validation of serum free light chain reference ranges in primary care.
Galvani, Luca; Flanagan, Jane; Sargazi, Mansour; Neithercut, William D
2016-05-01
The demand for measurement of serum immunoglobulin free kappa (κ) and lambda (λ) light chains has increased. The κ:λ ratio is used to assist in diagnosis/monitoring of plasma cell disorders. The binding site reference range for serum-free light chain κ:λ ratios of 0.26-1.65 was derived from healthy volunteers. Subsequently, a reference range of 0.37-3.1 for patients with chronic kidney disease has been proposed. Elevated free light chain concentrations and borderline raised free light chain ratios also may be found in polyclonal gammopathies and with other non-renal illnesses. This assessment was conducted to validate the established free light chain reference ranges in individuals from primary care. A total of 130 samples were identified from routine blood samples collected in primary care for routine biochemistry testing and estimated glomerular filtration rate calculation. The median and range of κ:λ ratios found in each estimated glomerular filtration rate group used for chronic kidney disease classification were higher than previously described. This was the case for individuals with normal or essentially normal renal function with estimated glomerular filtration rates>90, (0.58-1.76) and estimated glomerular filtration rate of 60-90 mL/min/1.73 m(2), (0.71-1.93). Individuals with estimated glomerular filtration rate 15-30, (0.72-4.50) and estimated glomerular filtration rate <15 ml/min/1.73 m(2) (0.71-4.95) also had higher values when compared to the current renal reference range of 0.37-3.10. Elevation of free light chain-κ:λ ratios may occur in the absence of a reduced renal function shown by a normal estimated glomerular filtration rate and in the presence of reduced renal function by estimated glomerular filtration rate when comparing results with the established reference ranges. Explanations include choice of analytical systems or the presence of other concurrent non-plasma cell illness. © The Author(s) 2016.
Excess Podocyte Semaphorin-3A Leads to Glomerular Disease Involving PlexinA1–Nephrin Interaction
Reidy, Kimberly J.; Aggarwal, Pardeep K.; Jimenez, Juan J.; Thomas, David B.; Veron, Delma; Tufro, Alda
2014-01-01
Semaphorin-3A (Sema3a), a guidance protein secreted by podocytes, is essential for normal kidney patterning and glomerular filtration barrier development. Here, we report that podocyte-specific Sema3a gain-of-function in adult mice leads to proteinuric glomerular disease involving the three layers of the glomerular filtration barrier. Reversibility of the glomerular phenotype upon removal of the transgene induction provided proof-of-principle of the cause-and-effect relationship between podocyte Sema3a excess and glomerular disease. Mechanistically, excess Sema3a induces dysregulation of nephrin, matrix metalloproteinase 9, and αvβ3 integrin in vivo. Sema3a cell-autonomously disrupts podocyte shape. We identified a novel direct interaction between the Sema3a signaling receptor plexinA1 and nephrin, linking extracellular Sema3a signals to the slit-diaphragm signaling complex. We conclude that Sema3a functions as an extracellular negative regulator of the structure and function of the glomerular filtration barrier in the adult kidney. Our findings demonstrate a crosstalk between Sema3a and nephrin signaling pathways that is functionally relevant both in vivo and in vitro. PMID:23954273
Different methods of hilar clamping during partial nephrectomy: Impact on renal function.
Lee, Jeong Woo; Kim, Hwanik; Choo, Minsoo; Park, Yong Hyun; Ku, Ja Hyeon; Kim, Hyeon Hoe; Kwak, Cheol
2014-03-01
To evaluate the impact of different hilar clamping methods on changes in renal function after partial nephrectomy. We analyzed the clinical data of 369 patients who underwent partial nephrectomy for a single renal tumor of size ≤4.0 cm and a normal contralateral kidney. Patients were separated into three groups depending on hilar clamping method: non-clamping, cold ischemia and warm ischemia. Estimated glomerular filtration rate was examined at preoperative, nadir and 1 year postoperatively. Percent change in estimated glomerular filtration rate was used as the parameter to assess the renal functional outcome. Percent change in nadir estimated glomerular filtration rate in the non-clamping group was significantly less compared with the cold ischemia and warm ischemia groups (P < 0.001). However, no significant differences among the groups were noted in percent change of estimated glomerular filtration rate at 1 year (P = 0.348). The cold ischemia group had a similar serial change of postoperative renal function compared with the warm ischemia group. Percent change in 1-year estimated glomerular filtration rate increased with increasing ischemia time in the cold ischemia (P for trend = 0.073) and warm ischemia groups (P for trend = 0.010). On multivariate analysis, hilar clamping (both warm ischemia and cold ischemia) were significantly associated with percent change in nadir estimated glomerular filtration rate, but not in 1-year estimated glomerular filtration rate. Non-clamping partial nephrectomy results in a lower percent change in nadir estimated glomerular filtration rate, whereas it carries an estimated glomerular filtration rate change at 1 year that is similar to partial nephrectomy with cold ischemia and warm ischemia. Cold ischemia and warm ischemia provide a similar effect on renal function. Therefore, when hilar clamping is required, minimization of ischemia time is necessary. © 2013 The Japanese Urological Association.
Gu, Liubao; Huang, Liji; Wu, Haidi; Lou, Qinglin; Bian, Rongwen
2017-05-01
Serum uric acid has shown to be a predictor of renal disease progression in most but not all studies. This study aims to test whether renal function-normalized serum uric acid is superior to serum uric acid as the predictor of incident chronic kidney disease in type 2 diabetes mellitus patients. In this study, 1339 type 2 diabetes mellitus patients with estimated glomerular filtration rate ⩾60 mL/min/1.73 m 2 and normouricemia were included. Renal function-normalized serum uric acid was calculated using serum uric acid/creatinine. Cox regression analysis was used to estimate the association between serum uric acid, renal function-normalized serum uric acid and incident chronic kidney disease. In total, 74 (5.53%) patients developed to chronic kidney disease 3 or greater during a median follow-up of 4 years, with older ages, longer diabetes duration and lower estimated glomerular filtration rate at baseline. The decline rate of estimated glomerular filtration rate was positively correlated with serum uric acid/creatinine ( r = 0.219, p < 0.001), but not serum uric acid ( r = 0.005, p = 0.858). Moreover, multivariate analysis revealed that serum uric acid was not an independent risk factor for incident chronic kidney disease ( p = 0.055), whereas serum uric acid to creatinine ratio was significantly associated with incident chronic kidney disease independently of potential confounders including baseline estimated glomerular filtration rate. serum uric acid to creatinine ratio might be a better predictor of incident chronic kidney disease in type 2 diabetes mellitus patients.
Garg, Puneet
2018-05-31
Podocyte biology is a developing science that promises to help improve understanding of the mechanistic nature of multiple diseases associated with proteinuria. Proteinuria in nephrotic syndrome has been linked to mechanistic dysfunctions in the renal glomerulus involving the function of podocyte epithelial cells, including podocyte foot process effacement. Developments in imaging technology are improving knowledge of the detailed structure of the human renal glomerulus and cortex. Podocyte foot processes attach themselves to the glomerular capillaries at the glomerular basement membrane (GBM) forming intercellular junctions that form slit diaphragm filtration barriers that help maintain normal renal function. Damage in this area has been implicated in glomerular disease. Injured podocytes undergo effacement whereby they lose their structure and spread out, leading to a reduction in filtration barrier function. Effacement is typically associated with the presence of proteinuria in focal segmental glomerulosclerosis, minimal change disease, and diabetes. It is thought to be due to a breakdown in the actin cytoskeleton of the foot processes, complex contractile apparatuses that allow podocytes to dynamically reorganize according to changes in filtration requirements. The process of podocyte depletion correlates with the development of glomerular sclerosis and chronic kidney disease. Focal adhesion complexes that interact with the underlying GBM bind the podocytes within the glomerular structure and prevent their detachment. Key Messages: Knowledge of glomerular podocyte biology is helping to advance our understanding of the science and mechanics of the glomerular filtering process, opening the way to a variety of new potential applications for clinical targeting. © 2018 S. Karger AG, Basel.
Feasibility of Repairing Glomerular Basement Membrane Defects in Alport Syndrome
Lin, Xiaobo; Suh, Jung Hee; Go, Gloriosa
2014-01-01
Alport syndrome is a hereditary glomerular disease that leads to kidney failure. It is caused by mutations affecting one of three chains of the collagen α3α4α5(IV) heterotrimer, which forms the major collagen IV network of the glomerular basement membrane (GBM). In the absence of the α3α4α5(IV) network, the α1α1α2(IV) network substitutes, but it is insufficient to maintain normal kidney function. Inhibition of angiotensin-converting enzyme slows progression to kidney failure in patients with Alport syndrome but is not a cure. Restoration of the normal collagen α3α4α5(IV) network in the GBM, by either cell- or gene-based therapy, is an attractive and logical approach toward a cure, but whether or not the abnormal GBM can be repaired once it has formed and is functioning is unknown. Using a mouse model of Alport syndrome and an inducible transgene system, we found that secretion of α3α4α5(IV) heterotrimers by podocytes into a preformed, abnormal, filtering Alport GBM is effective at restoring the missing collagen IV network, slowing kidney disease progression, and extending life span. This proof-of-principle study demonstrates the plasticity of the mature GBM and validates the pursuit of therapeutic approaches aimed at normalizing the GBM to prolong kidney function. PMID:24262794
Feasibility of repairing glomerular basement membrane defects in Alport syndrome.
Lin, Xiaobo; Suh, Jung Hee; Go, Gloriosa; Miner, Jeffrey H
2014-04-01
Alport syndrome is a hereditary glomerular disease that leads to kidney failure. It is caused by mutations affecting one of three chains of the collagen α3α4α5(IV) heterotrimer, which forms the major collagen IV network of the glomerular basement membrane (GBM). In the absence of the α3α4α5(IV) network, the α1α1α2(IV) network substitutes, but it is insufficient to maintain normal kidney function. Inhibition of angiotensin-converting enzyme slows progression to kidney failure in patients with Alport syndrome but is not a cure. Restoration of the normal collagen α3α4α5(IV) network in the GBM, by either cell- or gene-based therapy, is an attractive and logical approach toward a cure, but whether or not the abnormal GBM can be repaired once it has formed and is functioning is unknown. Using a mouse model of Alport syndrome and an inducible transgene system, we found that secretion of α3α4α5(IV) heterotrimers by podocytes into a preformed, abnormal, filtering Alport GBM is effective at restoring the missing collagen IV network, slowing kidney disease progression, and extending life span. This proof-of-principle study demonstrates the plasticity of the mature GBM and validates the pursuit of therapeutic approaches aimed at normalizing the GBM to prolong kidney function.
Parietal cells-new perspectives in glomerular disease.
Miesen, Laura; Steenbergen, Eric; Smeets, Bart
2017-07-01
In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman's capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and podocytes have a common mesenchymal origin and are the result of divergent differentiation during embryogenesis. Podocytes and PTECs are highly differentiated cells with well-established functions pertaining to the maintenance of the filtration barrier and transport, respectively. For PECs, no specific function other than a structural one has been known until recently. Possible important functions for PECs in the fate of the glomerulus in glomerular disease have now become apparent: (1) PECs may be involved in the replacement of lost podocytes; (2) PECs form the basis of extracapillary proliferative lesions and subsequent sclerosis in glomerular disease. In addition to the acknowledgement that PECs are crucial in glomerular disease, knowledge has been gained regarding the molecular processes driving the phenotypic changes and behavior of PECs. Understanding these molecular processes is important for the development of specific therapeutic approaches aimed at either stimulation of the regenerative function of PECs or inhibition of the pro-sclerotic action of PECs. In this review, we discuss recent advances pertaining to the role of PECs in glomerular regeneration and disease and address the major molecular processes involved.
Micropuncture studies of the recovery phase of myohemoglobinuric acute renal failure in the rat
Oken, Donald E.; DiBona, Gerald F.; McDonald, Franklin D.
1970-01-01
Micropuncture studies of the recovery phase of glycerol-induced myohemoglobinuric acute renal failure were performed in rats whose blood urea nitrogen (BUN) had fallen at least 20% below its peak value. The glomerular filtration rate (GFR) of individual nephrons in a single kidney in the recovery period generally either was in the normal range or minimal. Each animal's BUN concentration at the time of the study was inversely related to the proportion of functioning surface nephrons, but did not correlate with individual nephron GFR values. Proximal tubule fractional water absorption was significantly depressed as manifested by both depressed inulin (TF/P) values and supernormal volumes of collections, a finding which, in the absence of a urea-induced osmotic diuresis, suggests impaired sodium transport by the damaged nephron. The mean proximal tubule hydrostatic pressure in recovery was normal and there was little variation in pressure among functioning nephrons. It is concluded that recovery from this model of acute renal failure reflects the progressive recruitment of increasing numbers of functioning nephrons. The recovery of individual nephron glomerular filtration, once begun, was rapid and complete. No evidence could be adduced that the gradual return of renal function towards normal reflects a slow release of tubular obstruction or repair of disrupted tubular epithelium. Rather, recovery appeared to be directly attributable to the return of an adequate effective glomerular filtration pressure. Significant limitation in proximal tubule water absorption persisted after individual nephron GFR had returned to normal or supernormal values in this model of experimental acute renal failure in the rat, a finding which readily accounts for the diuresis associated with the recovery phase of this syndrome. PMID:5443173
USDA-ARS?s Scientific Manuscript database
Background: Anticoagulation management is difficult in chronic kidney disease, with frequent supratherapeutic international normalized ratios (INRs >/= 4) increasing hemorrhagic risk. We evaluated whether the interaction of INR and lower estimated glomerular filtration rate (eGFR) increases hemorrha...
Cancho Gil, Ma J; Díz Rodríguez, R; Vírseda Chamorro, M; Alpuente Román, C; Cabrera Cabrera, J A; Paños Lozano, P
2005-04-01
The Extracorporeal shock waves lithotripsy (ESWL) is fundamental in the treatment of lithiasis. However, there are evidences that it can produce renal damage. The objective of our study is to determine the degree of affectation of the glomerular and tubular function after ESWL, and the influence of the lithiasis location on the type of renal damage. A prospective longitudinal study was carried out in 14 patients with normal renal function subjected to ESWL. We determined the basal level, and the levels at the 24 hours, at the 4th and the 10th day post ESWL of: microalbuminuria (MA) (that values the glomerular function), and N-acetyl glucosamide (NAG) and alanine aminopeptidase (AAP), (that value the tubular function). The basal levels of of MA, NAG and AAP didn't show significant differences in connection with the localization of the stones. A significant increase was observed of the three parameters only 24 hours post ESWL. No significant differences were observed between the variation of the microalbuminuria levels, AAP and NAG and the treatment in relation to the localization of the stones. It exists a glomerular and tubular damage after ESWL. This damage is not related with the pelvic or calicial location of the stones. In patient with previous normal renal function, the renal damage recovers at the 4th day post ESWL.
Shikanov, Sergey; Clark, Melanie A; Raman, Jay D; Smith, Benjamin; Kaag, Matthew; Russo, Paul; Wheat, Jeffrey C; Wolf, J Stuart; Huang, William C; Shalhav, Arieh L; Eggener, Scott E
2010-11-01
A novel equation, the Chronic Kidney Disease Epidemiology Collaboration, has been proposed to replace the Modification of Diet in Renal Disease for estimated glomerular filtration rate due to higher accuracy, particularly in the setting of normal renal function. We compared these equations in patients with 2 functioning kidneys undergoing partial nephrectomy. We assembled a cohort of 1,158 patients from 5 institutions who underwent partial nephrectomy between 1991 and 2009. Only subjects with 2 functioning kidneys were included in the study. The end points were baseline estimated glomerular filtration rate, last followup estimated glomerular filtration rate (3 to 18 months), absolute and percent change estimated glomerular filtration rate ([absolute change/baseline] × 100%), and proportion of newly developed chronic kidney disease stage III. The agreement between the equations was evaluated using Bland-Altman plots and the McNemar test for paired observations. Mean baseline estimated glomerular filtration rate derived from the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations were 73 and 77 ml/minute/1.73 m(2), respectively, and following surgery were 63 and 67 ml/minute/1.73 m(2), respectively. Mean percent change estimated glomerular filtration rate was -12% for both equations (p = 0.2). The proportion of patients with newly developed chronic kidney disease stage III following surgery was 32% and 25%, according to the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations, respectively (p = 0.001). For patients with 2 functioning kidneys undergoing partial nephrectomy the Chronic Kidney Disease Epidemiology Collaboration equation provides slightly higher glomerular filtration rate estimates compared to the Modification of Diet in Renal Disease equation, with 7% fewer patients categorized as having chronic kidney disease stage III or worse. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Aging and physiological changes of the kidneys including changes in glomerular filtration rate.
Musso, Carlos G; Oreopoulos, Dimitrios G
2011-01-01
In addition to the structural changes in the kidney associated with aging, physiological changes in renal function are also found in older adults, such as decreased glomerular filtration rate, vascular dysautonomia, altered tubular handling of creatinine, reduction in sodium reabsorption and potassium secretion, and diminished renal reserve. These alterations make aged individuals susceptible to the development of clinical conditions in response to usual stimuli that would otherwise be compensated for in younger individuals, including acute kidney injury, volume depletion and overload, disorders of serum sodium and potassium concentration, and toxic reactions to water-soluble drugs excreted by the kidneys. Additionally, the preservation with aging of a normal urinalysis, normal serum urea and creatinine values, erythropoietin synthesis, and normal phosphorus, calcium and magnesium tubular handling distinguishes decreased GFR due to normal aging from that due to chronic kidney disease. Copyright © 2011 S. Karger AG, Basel.
Renal function in urinary schistosomiasis in the Natal Province of South Africa.
Coopan, R M; Naidoo, K; Jialal, I
1987-11-01
Renal function was assessed in 101 schoolchildren with active urinary schistosomiasis by measuring serum creatinine, urate, urea, and B2-microglobulin, urinary B2 microglobulin, and the glomerular filtration rate. Glomerular function in all subjects was normal as were serum creatinine, urate, and urea levels. Serum B2-microglobulin was elevated in only 8% of subjects while urinary B2-microglobulin only was raised in 7% of subjects, indicating proximal tubular dysfunction, a previously unreported feature in urinary schistosomiasis. Urinary tract abnormalities were found in 43% of subjects consenting to an excretory urogram but no correlation with biochemical parameters of renal function was noted. Serum angiotensin converting enzyme level measured in 70 subjects was elevated in 11% of subjects and was regarded as a possible measure of increased granulomatous activity.
Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo
2017-01-01
This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.
Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli.
Ballermann, B J; Hoover, R L; Karnovsky, M J; Brenner, B M
1985-01-01
Isolated rat renal glomeruli and cultured glomerular mesangial and epithelial cells were examined for atrial natriuretic peptide (ANP) receptors, and for ANP-stimulated cyclic guanosine monophosphate (cGMP) generation. In glomeruli from normal rats, human (1-28) 125I-ANP bound to a single population of high affinity receptors with a mean equilibrium dissociation constant of 0.46 nM. Human (1-28) ANP markedly stimulated cGMP generation, but not cAMP generation in normal rat glomeruli. Analogues of ANP that bound to the glomerular ANP receptor with high affinity stimulated cGMP accumulation, whereas the (13-28) ANP fragment, which failed to bind to the receptor, was devoid of functional activity. Cell surface receptors for ANP were expressed on cultured glomerular mesangial but not epithelial cells, and appreciable ANP-stimulated cGMP accumulation was elicited only in mesangial cells. Approximately 12,000 ANP receptor sites were present per mesangial cell, with an average value for the equilibrium dissociation constant of 0.22 nM. Feeding of a low-salt diet to rats for 2 wk resulted in marked up regulation of the glomerular ANP receptor density to a mean of 426 fmol/mg protein, compared with 116 fmol/mg in rats given a high-salt diet. A modest reduction in the affinity of glomerular ANP receptors was also observed in rats fed the low-salt diet. ANP-stimulated cGMP generation in glomeruli did not change with alterations in salt intake. We conclude that high salt feeding in the rat results in reduced glomerular ANP receptor density relative to values in salt restricted rats. Furthermore, the mesangial cell is a principal target for ANP binding in the glomerulus. Images PMID:3001139
Distinct Contributions of TNF Receptor 1 and 2 to TNF-Induced Glomerular Inflammation in Mice
Taubitz, Anela; Schwarz, Martin; Eltrich, Nuru; Lindenmeyer, Maja T.; Vielhauer, Volker
2013-01-01
TNF is an important mediator of glomerulonephritis. The two TNF-receptors TNFR1 and TNFR2 contribute differently to glomerular inflammation in vivo, but specific mechanisms of TNFR-mediated inflammatory responses in glomeruli are unknown. We investigated their expression and function in murine kidneys, isolated glomeruli ex vivo, and glomerular cells in vitro. In normal kidney TNFR1 and TNFR2 were preferentially expressed in glomeruli. Expression of both TNFRs and TNF-induced upregulation of TNFR2 mRNA was confirmed in murine glomerular endothelial and mesangial cell lines. In vivo, TNF exposure rapidly induced glomerular accumulation of leukocytes. To examine TNFR-specific inflammatory responses in intrinsic glomerular cells but not infiltrating leukocytes we performed microarray gene expression profiling on intact glomeruli isolated from wildtype and Tnfr-deficient mice following exposure to soluble TNF ex vivo. Most TNF-induced effects were exclusively mediated by TNFR1, including induced glomerular expression of adhesion molecules, chemokines, complement factors and pro-apoptotic molecules. However, TNFR2 contributed to TNFR1-dependent mRNA expression of inflammatory mediators in glomeruli when exposed to low TNF concentrations. Chemokine secretion was absent in TNF-stimulated Tnfr1-deficient glomeruli, but also significantly decreased in glomeruli lacking TNFR2. In vivo, TNF-induced glomerular leukocyte infiltration was abrogated in Tnfr1-deficient mice, whereas Tnfr2-deficiency decreased mononuclear phagocytes infiltrates, but not neutrophils. These data demonstrate that activation of intrinsic glomerular cells by soluble TNF requires TNFR1, whereas TNFR2 is not essential, but augments TNFR1-dependent effects. Previously described TNFR2-dependent glomerular inflammation may therefore require TNFR2 activation by membrane-bound, but not soluble TNF. PMID:23869211
Adler, S; Baker, P; Pritzl, P; Couser, W G
1985-07-01
Reduction of the negative charge of the glomerular capillary wall alters its charge- and size-selective properties. To investigate the effect of alteration in glomerular charge properties on antibody localization, we prepared cationic and anionic fractions of antibodies to subepithelial and glomerular basement membrane (GBM) antigens, and compared their deposition in normal rats and rats treated with protamine sulfate or aminonucleoside of puromycin to reduce capillary wall charge. IgG antibodies were eluted from kidneys of rats with active Heymann's nephritis (AICN), passive Heymann's nephritis (PHN), or anti-GBM nephritis (NTN), separated into cationic and anionic fractions, and radiolabeled with iodine 125 or iodine 131. Relative antibody content of each fraction was determined by incubation with an excess of glomerular antigen. Varying amounts of cationic and anionic IgG eluted from kidneys of rats with AICN or PHN were injected into 24 normal or protamine sulfate-treated rats. Glomerular binding of all antibodies was highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 4 hours was 1.08 +/- 0.07 for AICN eluate and 0.37 +/- 0.04 for PHN eluate. The ratios were not significantly different in animals pretreated with protamine sulfate (1.15 +/- 0.06 and 0.44 +/- 0.06, respectively; P greater than 0.05). Varying amounts of cationic and anionic IgG eluted from kidneys of rats with NTN were injected into 10 normal rats and four rats treated with aminonucleoside of puromycin. Glomerular binding of antibody was again highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 1 hour was 1.03 +/- 0.06, and was not significantly altered in rats treated with aminonucleoside of puromycin (1.05 +/- 0.03, P greater than 0.5). Proteinuria in PHN rats was also unaffected by treatment with protamine sulfate for 5 days (controls: 68 +/- 21 mg/day; protamine sulfate-treated: 65 +/- 14 mg/day; n = 25, P greater than 0.08). These results demonstrate that treatment to reduce glomerular polyanion does not significantly alter the ratio of cationic to anionic antibodies to fixed glomerular antigens that deposit in the glomerulus, or reduce proteinuria caused by deposition of antibody to a fixed subepithelial antigen.
Cavarretta, Francesco; Marasco, Addolorata; Hines, Michael L; Shepherd, Gordon M; Migliore, Michele
2016-01-01
The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli.
Macconi, Daniela; Bonomelli, Maria; Benigni, Ariela; Plati, Tiziana; Sangalli, Fabio; Longaretti, Lorena; Conti, Sara; Kawachi, Hiroshi; Hill, Prue; Remuzzi, Giuseppe; Remuzzi, Andrea
2006-01-01
Changes in podocyte number or density have been suggested to play an important role in renal disease progression. Here, we investigated the temporal relationship between glomerular podocyte number and development of proteinuria and glomerulosclerosis in the male Munich Wistar Fromter (MWF) rat. We also assessed whether changes in podocyte number affect podocyte function and focused specifically on the slit diaphragm-associated protein nephrin. Age-matched Wistar rats were used as controls. Estimation of podocyte number per glomerulus was determined by digital morphometry of WT1-positive cells. MWF rats developed moderate hypertension, massive proteinuria, and glomerulosclerosis with age. Glomerular hypertrophy was already observed at 10 weeks of age and progressively increased thereafter. By contrast, mean podocyte number per glomerulus was lower than normal in young animals and further decreased with time. As a consequence, the capillary tuft volume per podocyte was more than threefold increased in older rats. Electron microscopy showed important changes in podocyte structure of MWF rats, with expansion of podocyte bodies surrounding glomerular filtration membrane. Glomerular nephrin expression was markedly altered in MWF rats and inversely correlated with both podocyte loss and proteinuria. Our findings suggest that reduction in podocyte number is an important determinant of podocyte dysfunction and progressive impairment of the glomerular permselectivity that lead to the development of massive proteinuria and ultimately to renal scarring. PMID:16400008
[Effect of fasting-dietary therapy in patients with arterial hypertension and obesity].
Murav'ev, S A; Okonechnikova, N S; Dmitrieva, O A; Makarova, G A
2010-01-01
35 patients with arterial hypertension and obesity against the background of fasting-diet therapy and after 1 and 6 months after treatment conducted daily monitoring of blood pressure, microalbuminuria and glomerular filtration rate, the study of color and contrast sensitivity of retinal eyes. Fasting-diet therapy within 11 days results in reliable reduced daily average AD and stabilization of load pressure indicators; reduction originally pathological microalbuminurii at 18%, increase in the number of patients with normal speed glomerular filtering 48%; improving of eyes function, these changes are saved within 1-6 months after treatment without the using of antihypertensive therapy.
Sarrab, Ramadan M; Lennon, Rachel; Ni, Lan; Wherlock, Matthew D; Welsh, Gavin I; Saleem, Moin A
2011-11-01
The aim of this study was to establish an immortalized human mesangial cell line similar to mesangial cells in vivo for use as a tool for understanding glomerular cell function. Mesangial cells were isolated from glomerular outgrowths from a normal human kidney, then retrovirally transfected with a temperature-sensitive SV40T antigen+human telomerase (hTERT). Mesangial cells exhibited features of compact cells with small bodies in a confluent monolayer at 33°C, but the cell shape changed to flat and stellate after 5 days in growth-restrictive conditions (37°C). Western blot and immunofluorescence analysis showed that podocyte markers (nephrin, CD2AP, podocin, Wilms' tumor-1) and an endothelial-specific molecule (VE-cadherin) were not detectable in this cell line, whereas markers characteristic of mesangial cells (α-SMA, fibronectin, and PDGFβ-R) were strongly expressed. In migration assays, a significant reduction in wound surface was observed in podocyte and endothelial cells as soon as 12 h (75 and 62%, respectively) and complete wound closure after 24 h. In contrast, no significant change was observed in mesangial cells after 12 h, and even after 48 h the wounds were not completely closed. Until now, conditionally immortalized podocyte and endothelial cell lines derived from mice and humans have been described, and this has greatly boosted research on glomerular physiology and pathology. We have established the first conditionally immortalized human glomerular mesangial cell line, which will be an important adjunct in studies of representative glomerular cells, as well as in coculture studies. Unexpectedly, mesangial cells' ability to migrate seems to be slower than for other glomerular cells, suggesting this line will demonstrate functional properties distinct from previously available mesangial cell cultures. This conditionally immortalized human mesangial cell line represents a new tool for the study of human mesangial cell biology in vitro.
Becker, Joshua; Babb, James; Serrano, Manuel
2013-04-01
The purpose of this study was to use measured glomerular filtration rate (GFR), the reference standard of renal function, to assess the deleterious effect of iodinated contrast media on renal function. Such an effect has been traditionally defined as a greater than 0.5-mg/dL increase in serum creatinine concentration or a 25% or greater increase 24-72 hours after the injection of iodinated contrast medium. This pilot investigation was focused on the consequences of clinically indicated IV injection of iodinated contrast media; intraarterial injection was excluded. One hundred thirteen patients with normal serum creatinine concentrations were enrolled in an approved protocol. At random, as chosen by one of the investigators, patients underwent imaging with one of three monomeric agents (iopamidol 300, iopromide 300, iohexol 300) and one dimeric agent (iodixanol 320). Measured GFR was determined immediately before CT and approximately 3 and 72 hours after the contrast injection for the CT examination. Iodinated contrast medium, a glomerular filtrate with no tubular excretion or reabsorption, was the GFR marker. Measured GFR was determined by x-ray fluorescence analysis with nonisotopic iodinated contrast media. Monomeric and dimeric contrast agents in diagnostic CT volumes (based on bodyweight and imaging protocol) did not induce a significant change in measured GFR (95% confidence by Wilcoxon test), suggesting that use of the evaluated contrast media will not lead to more than a 12% variation. The three monomeric agents studied and the one dimeric agent were equivalent in terms of lack of a significant effect on measured GFR when administered to patients with a normal GFR.
Nocturnal polyuria is related to absent circadian rhythm of glomerular filtration rate.
De Guchtenaere, A; Vande Walle, C; Van Sintjan, P; Raes, A; Donckerwolcke, R; Van Laecke, E; Hoebeke, P; Vande Walle, J
2007-12-01
Monosymptomatic nocturnal enuresis is frequently associated with nocturnal polyuria and low urinary osmolality during the night. Initial studies found decreased vasopressin levels associated with low urinary osmolality overnight. Together with the documented desmopressin response, this was suggestive of a primary role for vasopressin in the pathogenesis of enuresis in the absence of bladder dysfunction. Recent studies no longer confirm this primary role of vasopressin. Other pathogenetic factors such as disordered renal sodium handling, hypercalciuria, increased prostaglandins and/or osmotic excretion might have a role. So far, little attention has been given to abnormalities in the circadian rhythm of glomerular filtration rate. We evaluated the circadian rhythm of glomerular filtration rate and diuresis in children with desmopressin resistant monosymptomatic nocturnal enuresis and nocturnal polyuria. We evaluated 15 children (9 boys) 9 to 14 years old with monosymptomatic nocturnal enuresis and nocturnal polyuria resistant to desmopressin treatment. The control group consisted of 25 children (12 boys) 9 to 16 years old with monosymptomatic nocturnal enuresis without nocturnal polyuria. Compared to the control population, children with nocturnal polyuria lost their circadian rhythm not only for diuresis and sodium excretion but also for glomerular filtration rate. Patients with monosymptomatic nocturnal enuresis and nocturnal polyuria lack a normal circadian rhythm for diuresis and sodium excretion, and the circadian rhythm of glomerular filtration rate is absent. This absence of circadian rhythm of glomerular filtration rate and/or sodium handling cannot be explained by a primary role of vasopressin, but rather by a disorder in circadian rhythm of renal glomerular and/or tubular functions.
Mauer, S. Michael; Sutherland, David E. R.; Howard, Richard J.; Fish, Alfred J.; Najarian, John S.; Michael, Alfred F.
1973-01-01
A mechanism of immune glomerular injury is described based on the fixation of antibody (Ab) to an antigen (Ag) that has localized in the glomerular mesangium. Rabbits were given, intravenously (i.v.), aggregated human IgG (AHIgG) or albumin (AHSA) and 10 h later, when the Ag by immunofluorescent microscopy was present in the mesangium, a kidney was removed and transplanted into a normal rabbit. The recipient then received, i.v., rabbit anti-HIgG or anti-HSA. Within minutes of Ab infusion, glomeruli of the donor kidney had polymorphonuclear (PMN) infiltration that over the next few hours became marked and was associated with glomerular cell swelling. At 24 h a decrease in PMN's and early mesangial proliferation was seen. By 3 days there was marked mesangial hypercellularity and increased mesangial matrix. Within minutes after Ab administration rabbit IgG, C3, and fibrin were seen in the glomerular mesangium. There was a fall in complement titer by 1 min after Ab infusion that was due to complement consumption by the donor kidney. Complement then returned to normal levels by 48 h. Significant glomerular injury did not occur (a) in the recipient's own kidney, (b) from Ag administration and transplantation without recipient Ab administration, or (c) from transplantation and Ab administration without prior Ag administration. These studies demonstrated that Ag localized in the glomerular mesangium can react with circulating Ab and complement resulting in severe glomerular injury. PMID:4570015
Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease
Dufek, Brianna; Meehan, Daniel; Delimont, Duane; Cheung, Linda; Gratton, Michael Anne; Phillips, Grady; Song, Wenping; Liu, Shiguang; Cosgrove, Dominic
2016-01-01
Recent work demonstrates that Alport glomerular disease is mediated through a biomechanical strain-sensitive activation of mesangial actin dynamics. This occurs through a Rac1/CDC42 cross-talk mechanism that results in the invasion of the sub-capillary spaces by mesangial filopodia. The filopodia deposit mesangial matrix proteins in the glomerular basement membrane, including laminin 211, which activates focal adhesion kinase in podocytes culminating in the up-regulation of pro-inflammatory cytokines and metalloproteinases. These events drive the progression of glomerulonephritis. Here we test whether endothelial cell-derived endothelin-1 is upregulated in Alport glomeruli, and further elevated by hypertension. Treatment of cultured mesangial cells with endothelin-1 activates the formation of drebrin-positive actin microspikes. These microspikes do not form when cells are treated with the endothelin A receptor antagonist sitaxentan, or under conditions of siRNA knockdown of endothelin A receptor mRNA. Treatment of Alport mice with sitaxentan results in delayed onset of proteinuria, normalized glomerular basement membrane morphology, inhibition of mesangial filopodial invasion of the glomerular capillaries, normalization of glomerular expression of metalloproteinases and pro-inflammatory cytokines, increased lifespan, and prevention of glomerulosclerosis and interstitial fibrosis. Thus endothelin A receptor activation on mesangial cells is a key event in initiation of Alport glomerular disease in this model. PMID:27165837
Simultaneous assessment of glomerular filtration and barrier function in live zebrafish
Kotb, Ahmed M.; Müller, Tobias; Xie, Jing; Anand-Apte, Bela; Endlich, Nicole
2014-01-01
The zebrafish pronephros is a well-established model to study glomerular development, structure, and function. A few methods have been described to evaluate glomerular barrier function in zebrafish larvae so far. However, there is a need to assess glomerular filtration as well. In the present study, we extended the available methods by simultaneously measuring the intravascular clearances of Alexa fluor 647-conjugated 10-kDa dextran and FITC-conjugated 500-kDa dextran as indicators of glomerular filtration and barrier function, respectively. After intravascular injection of the dextrans, mean fluorescence intensities of both dextrans were measured in the cardinal vein of living zebrafish (4 days postfertilization) by confocal microscopy over time. We demonstrated that injected 10-kDa dextran was rapidly cleared from the circulation, became visible in the lumen of the pronephric tubule, quickly accumulated in tubular cells, and was detectably excreted at the cloaca. In contrast, 500-kDa dextran could not be visualized in the tubule at any time point. To check whether alterations in glomerular function can be quantified by our method, we injected morpholino oligonucleotides (MOs) against zebrafish nonmuscle myosin heavy chain IIA (zMyh9) or apolipoprotein L1 (zApol1). While glomerular filtration was reduced in zebrafish nonmuscle myosin heavy chain IIA MO-injected larvae, glomerular barrier function remained intact. In contrast, in zebrafish apolipoprotein L1 MO-injected larvae, glomerular barrier function was compromised as 500-kDa dextran disappeared from the circulation and became visible in tubular cells. In summary, we present a novel method that allows to simultaneously assess glomerular filtration and barrier function in live zebrafish. PMID:25298528
An unusual case of crescentic lupus nephritis presenting with normal renal function.
Manohar, Sandhya; Subramanian, Chamundeswari; Lakshmi, Kameswari
2015-11-01
Lupus nephritis is a life-threatening manifestation of systemic lupus erythematosus (SLE). This is commonly suspected when lupus patients present with elevated serum creatinine levels. But it is important to be aware that even patients with advanced disease in the kidney from SLE can have normal renal function, thus requiring a high index of suspicion. We present the case of a patient who presented with nonspecific musculoskeletal symptoms and was diagnosed with SLE. He also had nephrotic range proteinuria but his serum creatinine was normal. A renal biopsy revealed diffuse proliferative crescentic lupus nephritis. We have reviewed the literature for correlation between crescents; a sign of severe glomerular damage and creatinine levels.
Drummond, I A; Majumdar, A; Hentschel, H; Elger, M; Solnica-Krezel, L; Schier, A F; Neuhauss, S C; Stemple, D L; Zwartkruis, F; Rangini, Z; Driever, W; Fishman, M C
1998-12-01
The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and ducts. Nephron formation occurs after the differentiation of the pronephric duct with both the glomeruli and tubules being derived from a nephron primordium. Fluorescent dextran injection experiments demonstrate that vascularization of the zebrafish pronephros and the onset of glomerular filtration occurs between 40 and 48 hpf. We isolated fifteen recessive mutations that affect development of the pronephros. All have visible cysts in place of the pronephric tubule at 2-2.5 days of development. Mutants were grouped in three classes: (1) a group of twelve mutants with defects in body axis curvature and manifesting the most rapid and severe cyst formation involving the glomerulus, tubule and duct, (2) the fleer mutation with distended glomerular capillary loops and cystic tubules, and (3) the mutation pao pao tang with a normal glomerulus and cysts limited to the pronephric tubules. double bubble was analyzed as a representative of mutations that perturb the entire length of the pronephros and body axis curvature. Cyst formation begins in the glomerulus at 40 hpf at the time when glomerular filtration is established suggesting a defect associated with the onset of pronephric function. Basolateral membrane protein targeting in the pronephric duct epithelial cells is also severely affected, suggesting a failure in terminal epithelial cell differentiation and alterations in electrolyte transport. These studies reveal the similarity of normal pronephric development to kidney organogenesis in all vertebrates and allow for a genetic dissection of genes needed to establish the earliest renal function.
Choi, Don Kyoung; Jung, Se Bin; Park, Bong Hee; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun
2015-10-01
We investigated structural hypertrophy and functional hyperfiltration as compensatory adaptations after radical nephrectomy in patients with renal cell carcinoma according to the preoperative chronic kidney disease stage. We retrospectively identified 543 patients who underwent radical nephrectomy for renal cell carcinoma between 1997 and 2012. Patients were classified according to preoperative glomerular filtration rate as no chronic kidney disease--glomerular filtration rate 90 ml/minute/1.73 m(2) or greater (230, 42.4%), chronic kidney disease stage II--glomerular filtration rate 60 to less than 90 ml/minute/1.73 m(2) (227, 41.8%) and chronic kidney disease stage III--glomerular filtration rate 30 to less than 60 ml/minute/1.73 m(2) (86, 15.8%). Computerized tomography performed within 2 months before surgery and 1 year after surgery was used to assess functional renal volume for measuring the degree of hypertrophy of the remnant kidney, and the preoperative and postoperative glomerular filtration rate per unit volume of functional renal volume was used to calculate the degree of hyperfiltration. Among all patients (mean age 56.0 years) mean preoperative glomerular filtration rate, functional renal volume and glomerular filtration rate/functional renal volume were 83.2 ml/minute/1.73 m(2), 340.6 cm(3) and 0.25 ml/minute/1.73 m(2)/cm(3), respectively. The percent reduction in glomerular filtration rate was statistically significant according to chronic kidney disease stage (no chronic kidney disease 31.2% vs stage II 26.5% vs stage III 12.8%, p <0.001). However, the degree of hypertrophic functional renal volume in the remnant kidney was not statistically significant (no chronic kidney disease 18.5% vs stage II 17.3% vs stage III 16.5%, p=0.250). The change in glomerular filtration rate/functional renal volume was statistically significant (no chronic kidney disease 18.5% vs stage II 20.1% vs stage III 45.9%, p <0.001). Factors that increased glomerular filtration rate/functional renal volume above the mean value were body mass index (p=0.012), diabetes mellitus (p=0.023), hypertension (p=0.015) and chronic kidney disease stage (p <0.001). Patients with a lower preoperative glomerular filtration rate had a smaller reduction in postoperative renal function than those with a higher preoperative glomerular filtration rate due to greater degrees of functional hyperfiltration. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Biophysical properties of normal and diseased renal glomeruli.
Wyss, Hans M; Henderson, Joel M; Byfield, Fitzroy J; Bruggeman, Leslie A; Ding, Yaxian; Huang, Chunfa; Suh, Jung Hee; Franke, Thomas; Mele, Elisa; Pollak, Martin R; Miner, Jeffrey H; Janmey, Paul A; Weitz, David A; Miller, R Tyler
2011-03-01
The mechanical properties of tissues and cells including renal glomeruli are important determinants of their differentiated state, function, and responses to injury but are not well characterized or understood. Understanding glomerular mechanics is important for understanding renal diseases attributable to abnormal expression or assembly of structural proteins and abnormal hemodynamics. We use atomic force microscopy (AFM) and a new technique, capillary micromechanics, to measure the elastic properties of rat glomeruli. The Young's modulus of glomeruli was 2,500 Pa, and it was reduced to 1,100 Pa by cytochalasin and latunculin, and to 1,400 Pa by blebbistatin. Cytochalasin or latrunculin reduced the F/G actin ratios of glomeruli but did not disrupt their architecture. To assess glomerular biomechanics in disease, we measured the Young's moduli of glomeruli from two mouse models of primary glomerular disease, Col4a3(-/-) mice (Alport model) and Tg26(HIV/nl) mice (HIV-associated nephropathy model), at stages where glomerular injury was minimal by histopathology. Col4a3(-/-) mice express abnormal glomerular basement membrane proteins, and Tg26(HIV/nl) mouse podocytes have multiple abnormalities in morphology, adhesion, and cytoskeletal structure. In both models, the Young's modulus of the glomeruli was reduced by 30%. We find that glomeruli have specific and quantifiable biomechanical properties that are dependent on the state of the actin cytoskeleton and nonmuscle myosins. These properties may be altered early in disease and represent an important early component of disease. This increased deformability of glomeruli could directly contribute to disease by permitting increased distension with hemodynamic force or represent a mechanically inhospitable environment for glomerular cells.
Periodontitis associated with chronic kidney disease among Mexican Americans.
Ioannidou, Effie; Hall, Yoshio; Swede, Helen; Himmelfarb, Jonathan
2013-01-01
In comparison to non-Hispanic whites, a number of health-care disparities, including poor oral health, have been identified among Hispanics in general and Mexican Americans in particular. We hypothesized that Mexican Americans with chronic kidney disease (CKD) would have higher prevalence of chronic periodontitis compared with Mexican Americans with normal kidney function, and that the level of kidney function would be inversely related to the prevalence of periodontal disease. We examined this hypothesis using the National Health and Nutrition Examination Survey 1988-1994 (NHANES III) data set. We followed the American Academy of Periodontology/Center for Disease Control and Prevention case definition for periodontitis. Glomerular filtration rate was estimated using the CKD-Epidemiology equation for Hispanic populations. The classification to CKD stages was based on the National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Periodontitis prevalence increased across the kidney function groups showing a statistically significant dose-response association (P<0.001). Mexican Americans with reduced kidney function were twofold more likely to have periodontitis compared with Mexican Americans with normal kidney function after adjusting for potential confounders such as smoking, diabetes, and socioeconomic status. Multivariate adjusted odds ratio for periodontitis significantly increased with 1, 5, and 10 mL/minute estimated glomerular filtration rate reduction from the mean. This is the first report, to the best our knowledge, that showed an increase of periodontitis prevalence with decreased kidney function in this population. © 2012 American Association of Public Health Dentistry.
Lane, Brian R; Demirjian, Sevag; Weight, Christopher J; Larson, Benjamin T; Poggio, Emilio D; Campbell, Steven C
2010-03-01
Accurate renal function determination before and after nephrectomy is essential for proper prevention and management of chronic kidney disease due to nephron loss and ischemic injury. We compared the estimated glomerular filtration rate using several serum creatinine based formulas against the measured rate based on (125)I-iothalamate clearance to determine which most accurately reflects the rate in this setting. Of 7,611 patients treated at our institution since 1975 the measured glomerular filtration rate was selectively determined before and after nephrectomy in 268 and 157, respectively. Performance of the Cockcroft-Gault, Modification of Diet in Renal Disease Study, re-expressed Modification of Diet in Renal Disease Study and Chronic Kidney Disease-Epidemiology Study equations, each of which estimates the glomerular filtration rate, were determined using serum creatinine, age, gender, weight and body surface area. The performance of serum creatinine, reciprocal serum creatinine and the 4 formulas was compared with the measured rate using Pearson's correlation, Lin's concordance coefficient and residual plots. Median serum creatinine was 1.4 mg/dl and the median measured glomerular filtration rate was 50 ml per minute per 1.73 m(2). The correlation between serum creatinine and the measured rate was poor (-0.66) compared with that of reciprocal serum creatinine (0.78) and the 4 equations (0.82 to 0.86). The Chronic Kidney Disease-Epidemiology Study equation performed with greatest precision and accuracy, and least bias of all equations. Stage 3 or greater chronic kidney disease ((125)I-iothalamate glomerular filtration rate 60 ml per minute per 1.73 m(2) or less) was present in 44% of patients with normal serum creatinine (1.4 mg/dl or less) postoperatively. Such missed diagnoses of chronic kidney disease decreased 42% using the Chronic Kidney Disease-Epidemiology Study equation. Glomerular filtration rate estimation equations outperform serum creatinine and better identify patients with perinephrectomy compromised renal function. The newly developed, serum creatinine based, Chronic Kidney Disease-Epidemiology Study equation has sufficient accuracy to render direct glomerular filtration rate measurement unnecessary before and after nephrectomy for cause in most circumstances. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Kamkuemah, Monika; Kaplan, Richard; Bekker, Linda-Gail; Little, Francesca; Myer, Landon
2015-04-01
Long-term use of tenofovir disoproxil fumarate is associated with declines in glomerular function and chronic kidney disease in HIV-infected patients. We aimed to assess the prevalence and incidence of renal impairment in a primary care setting in sub-Saharan Africa. We analysed data from 1092 HIV-infected patients initiating tenofovir at a primary care clinic in Cape Town, South Africa. Renal function was assessed for the first 12 months on ART by estimating glomerular filtration rate (eGFR) calculated using the Cockroft-Gault equation categorised into normal, mild, moderate and severe reduction in renal function based on values >90, 60-89, 30-59 and <30 ml/min/1.73 m(2) , respectively. Associations were assessed using logistic regression, and average GFR trajectory over time was modelled using linear mixed-effects models. The cohort consisted of 62% women; median age was 34 years (IQR 29; 41 years). The majority had normal renal function pre-ART (79%), 19% had mildly reduced GFR, and 2% had moderate renal impairment. Older age, more advanced WHO stage and anaemia were independently associated with prevalent renal impairment. On average, estimated glomerular function improved over the first year on tenofovir [1.10 ml/min/1.73 m(2) average increase over 12 months (95% CI: 0.80; 1.40)]. Male gender, anaemia and immunosuppression (WHO Stage III/IV and CD4 cell counts <100 cells/mm(3) ) were associated with lower average eGFR levels over time. Overall, 3% developed eGFR <50 ml/min/1.73 m(2) during this period. Serum creatinine tests conducted before 4 months on ART had low predictive value for predicting change in eGFR after a year on ART. Generally, renal function improved in HIV-infected adults initiating ART in this primary healthcare setting during the first year on ART. While monitoring of renal function is recommended in the first 4 months on ART, renal impairment appears uncommon during the first 12 months of tenofovir-containing ART in primary care populations. © 2014 John Wiley & Sons Ltd.
The mesangial matrix in the normal and sclerotic glomerulus.
Rosenblum, N D
1994-02-01
Mesangial sclerosis is a final common pathway to glomerular destruction in a variety of glomerular diseases. The expression of several classes of extracellular matrix (ECM) molecules has been defined in the normal and diseased mesangial matrix (MM). However, the manner in which these ECM components determine the three dimensional structure and function of the MM remains to be defined. Structural studies of the MM suggest that its constituent molecules are regionally organized into subcompartments with different three dimensional structures. The diversity of matrix molecules expressed within the MM as well as the organization of these components in nonrenal ECM's, such as the cornea, provides further support for this organizational model. The study of the cornea has also revealed that novel short chain collagenous proteins partially determine the three dimensional structure of the matrix. Recently, a novel collagen, type VIII collagen, has been described in mesangial cells and in the intact glomerulus. It is hypothesized that type VIII collagen is expressed both as a polymer and as a monomer within the glomerulus, and depending on its conformation, may serve unique functions. In the chronically diseased MM, normal MM components are overexpressed and fibrillar collagens are expressed de novo in a delayed fashion. Enhanced proteoglycan expression, observed early in disease, may determine increased volume of the mesangium. This, in turn, may stimulate the production of fibrillar collagens by mesangial cells resulting in a fibrillar noncompliant mesangial matrix.
Bueters, Ruud R G; Jeronimus-Klaasen, Annelies; Maicas, Nuria; Florquin, Sandrine; van den Heuvel, Lambertus P; Schreuder, Michiel F
2016-01-01
Diuretics are administered to neonates to control fluid balance. We studied whether clinical doses affected kidney development and function and whether extrauterine growth retardation (EUGR) could be a modulator. Wistar rats were cross-fostered in normal food or food restricted litters at postnatal day (PND) 2 and treated daily with 0.9% NaCl, 5 mg/kg furosemide or 5 mg/kg hydrochlorothiazide (HCTZ) up to PND 8. Kidneys were evaluated on proliferation, apoptosis and a set of mRNA target genes at PND 8, glomerular- and glomerular generation count at PND 35, clinical pathology parameters at 3- and 9 months, neutrophil gelatinase-associated lipocalin at PND 8, 3 and 6 months, monthly blood pressure from 3 months onward and histopathology at study end. Treatment with furosemide or HCTZ did not have relevant effects on measured parameters. EUGR resulted in lower body weight from day 3 onwards (-29% at weaning; p < 0.001, -10% at necropsy; p < 0.001), less glomerular generations (4.4 ± 0.32 vs. 5.0 ± 0.423; p = 0.025, males only), decreased glomerular numbers (27,861 ± 3,468 vs. 30,527 ± 4,096; p = 0.026), higher creatinine clearance (0.84 ± 0.1 vs. 0.77 ± 0.09 ml/min/kg; p = 0.047) at 3 months and lower plasma creatinine (25.7 ± 1.8 vs. 27.5 ± 2.8 µmol/l; p = 0.043) at 9 months. Furosemide and HCTZ did not influence kidney development or function when administered in a clinically relevant dose to rat pups at a stage of ongoing nephrogenesis. EUGR led to impaired kidney development but did not modify furosemide or HCTZ findings. © 2016 S. Karger AG, Basel.
Bolin, Greta; Dubansky, Benjamin; Burggren, Warren W
2017-02-01
The metanephric kidneys of the chicken embryo, along with the chorioallantoic membrane, process water and ions to maintain osmoregulatory homeostasis. We hypothesized that changes in relative humidity (RH) and thus osmotic conditions during embryogenesis would alter the developmental trajectory of embryonic kidney function. White leghorn chicken eggs were incubated at one of 25-30% relative humidity, 55-60% relative humidity, and 85-90% relative humidity. Embryos were sampled at days 10, 12, 14, 16, and 18 to examine embryo and kidney mass, glomerular characteristics, body fluid osmolalities, hematological properties, and whole embryo oxygen consumption. Low and especially high RH elevated mortality, which was reflected in a 10-20% lower embryo mass on D18. Low RH altered several glomerular characteristics by day 18, including increased numbers of glomeruli per kidney, increased glomerular perfusion, and increased total glomerular volume, all indicating potentially increased functional kidney capacity. Hematological variables and plasma and amniotic fluid osmolalities remained within normal physiological values. However, the allantoic, amniotic and cloacal fluids had a significant increase in osmolality at most developmental points sampled. Embryonic oxygen consumption increased relative to control at both low and high relative humidities on Day 18, reflecting the increased metabolic costs of osmotic stress. Major differences in both renal structure and performance associated with changes in incubation humidity occurred after establishment of the metanephric kidney and persisted into late development, and likely into the postnatal period. These data indicate that the avian embryo deserves to be further investigated as a promising model for fetal programming of osmoregulatory function, and renal remodeling during osmotic stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Aloni, Michel Ntetani; Ngiyulu, René Makwala; Nsibu, Célestin Ndosimao; Ekulu, Pépé Mfutu; Makulo, Jean Robert; Gini-Ehungu, Jean-Lambert; Nseka, Nazaire Mangani; Lepira, François Bompeka
2017-11-01
The prevalence of sickle cell trait is extremely high in sub-Saharan Africa. Recent studies have reported the impact of sickle cell carriers on renal function. However, data on renal abnormalities in children with sickle cell trait in this part of the world are unknown. In this report, we assess the glomerular function of children with sickle cell trait (SCT). A case control study was conducted to assess the glomerular function in 43 Congolese children with sickle cell trait (Hb-AS) matched for age to 65 children with sickle cell anemia in steady state (Hb-SS) and 67 normal controls (Hb-AA). There was a significant difference in the blood pressure levels between the Hb-AS group vs Hb-SS group (P<.05). The estimated glomerular filtration rate (eGFR) corrected for body surface area was increased in Hb-AS group compared to Hb-AA group, but there was no significant difference between the two groups (P=.48). At the same time, the eGFR was decreased, but no significantly so, in the Hb-AS group compared to the Hb-SS group (P=.19). The proportion of children with Hb-AS (16.3%) who had hyperfiltration was higher compared to the proportion (6.1%) found in the Hb-AA group, but lower compared to the proportion found in the Hb-SS group (30%). However, in both situations, the difference was not statistically significant. No case of proteinuria was detected in children with Hb-AS. It appears that at least one of six children with SCT had hyperfiltration. The findings could form a basis for further studies on this renal physiology among SCT individuals in Africa. © 2017 Wiley Periodicals, Inc.
Cell biology of mesangial cells: the third cell that maintains the glomerular capillary.
Kurihara, Hidetake; Sakai, Tatsuo
2017-03-01
The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.
Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury
Blattner, Simone M.; Hodgin, Jeffrey B.; Nishio, Masashi; Wylie, Stephanie; Saha, Jharna; Soofi, Abdul; Vining, Courtenay; Randolph, Ann; Herbach, Nadja; Wanke, Ruediger; Atkins, Kevin B.; Kang, Hee Gyung; Henger, Anna; Brakebusch, Cord; Holzman, Lawrence B.; Kretzler, Matthias
2013-01-01
Podocytes are highly specialized epithelial cells with complex actin cytoskeletal architecture crucial for maintenance of the glomerular filtration barrier. The mammalian Rho GTPases Rac1 and Cdc42 are molecular switches that control many cellular processes, but are best known for their roles in the regulation of actin cytoskeleton dynamics. Here we employed podocyte-specific Cre-lox technology and found that mice with deletion of Rac1 display normal podocyte morphology without glomerular dysfunction well into adulthood. Using the protamine sulfate model of acute podocyte injury, podocyte-specific deletion of Rac1 prevented foot process effacement. In a long-term model of chronic hypertensive glomerular damage, however, loss of Rac1 led to an exacerbation of albuminuria and glomerulosclerosis. In contrast, mice with podocyte-specific deletion of Cdc42 had severe proteinuria, podocyte foot process effacement, and glomerulosclerosis beginning as early as 10 days of age. In addition, slit diaphragm proteins nephrin and podocin were redistributed and cofilin was de-phosphorylated. Cdc42 is necessary for the maintenance of podocyte structure and function, but Rac1 is entirely dispensable in physiologic steady state. However, Rac1 has either beneficial or deleterious effects depending on the context of podocyte impairment. Thus, our study highlights the divergent roles of Rac1 and Cdc42 function in podocyte maintenance and injury. PMID:23677246
Abboud, Salim E; Soriano, Stephanie; Abboud, Rayan; Patel, Indravadan; Davidson, Jon; Azar, Nami R; Nakamoto, Dean A
Preprocedural evaluation of patients in an interventional radiology (IR) clinic is a complex synthesis of physical examination and imaging findings, and as IR transitions to an independent clinical specialty, such evaluations will become an increasingly critical component of a successful IR practice and quality patient care. Prior research suggests that preprocedural evaluations increased patient's perceived quality of care and may improve procedural technical success rates. Appropriate documentation of a preprocedural evaluation in the medical record is also paramount for an interventional radiologist to add value and function as an effective member of a larger IR service and multidisciplinary health care team. The purpose of this study is to examine the quality of radiology resident notes for patients seen in an outpatient IR clinic at a single academic medical center before and after the adoption of clinic note template with reminders to include platelet count, international normalized ratio, glomerular filtration rate, and plan for periprocedural coagulation status. Before adoption of the template, platelet count, international normalized ratio, glomerular filtration rate and an appropriate plan for periprocedural coagulation status were documented in 72%, 82%, 42%, and 33% of patients, respectively. After adoption of the template, appropriate documentation of platelet count, international normalized ratio, and glomerular filtration rate increased to 96%, and appropriate plan for periprocedural coagulation status was documented in 83% of patients. Patient evaluation and clinical documentation skills may not be adequately practiced during radiology residency, and tools such as templates may help increase documentation quality by radiology residents. Copyright © 2017 Elsevier Inc. All rights reserved.
Nyengaard, J R; Chang, K; Berhorst, S; Reiser, K M; Williamson, J R; Tilton, R G
1997-01-01
We examined the effects of aminoguanidine and methylguanidine on vascular dysfunction, glomerular structural changes, and indexes of early and late nonenzymatic glycation in 7-month streptozotocin-induced diabetic rats. Kidney weight, glomerular volume, fractional mesangial volume, glomerular capillary basement membrane width, and urinary albumin excretion were increased in diabetic rats. Diabetes also 1) increased vascular albumin permeation twofold in retina, sciatic nerve, aorta, skin, and kidney; 2) decreased renal collagenase-soluble collagen; 3) increased collagen-associated fluorescence in kidney and skin but not in aorta; and 4) increased glycated hemoglobin levels and aortic pentosidine levels. Aminoguanidine reduced albuminuria by 70% after 4 months, and both guanidines 1) normalized aortic pentosidine levels and renal collagenase-soluble collagen, 2) had no effect on glycated hemoglobin levels or collagen-associated fluorescence (in aorta, kidney, or skin), and 3) had little or no effect on regional albumin permeation. These discordant effects of aminoguanidine on diabetes-induced vascular changes versus parameters of nonenzymatic glycation are consistent with a multifactorial pathogenesis of diabetic complications, including roles for metabolic imbalances independent of nonenzymatic glycation. To the extent that glomerular matrix accumulation and increased regional albumin permeation in chronically diabetic rats are sequelae of nonenzymatic glycation, these findings point to an important role for early glycation reactions and products.
Glomerular hemodynamic alterations during acute hyperinsulinemia in normal and diabetic rats
NASA Technical Reports Server (NTRS)
Tucker, B. J.; Anderson, C. M.; Thies, R. S.; Collins, R. C.; Blantz, R. C.
1992-01-01
Treatment of insulin dependent diabetes invariably requires exogenous insulin to control blood glucose. Insulin treatment, independent of other factors associated with insulin dependent diabetes, may induce changes that affect glomerular function. Due to exogenous delivery of insulin in insulin dependent diabetes entering systemic circulation prior to the portal vein, plasma levels of insulin are often in excess of that observed in non-diabetics. The specific effects of hyperinsulinemia on glomerular hemodynamics have not been previously examined. Micropuncture studies were performed in control (non-diabetic), untreated diabetic and insulin-treated diabetic rats 7 to 10 days after administration of 65 mg/kg body weight streptozotocin. After the first period micropuncture measurements were obtained, 5 U of regular insulin (Humulin-R) was infused i.v., and glucose clamped at euglycemic values (80 to 120 mg/dl). Blood glucose concentration in non-diabetic controls was 99 +/- 6 mg/dl. In control rats, insulin infusion and glucose clamp increased nephron filtration rate due to decreases in both afferent and efferent arteriolar resistance (afferent greater than efferent) resulting in increased plasma flow and increased glomerular hydrostatic pressure gradient. However, insulin infusion and glucose clamp produced the opposite effect in both untreated and insulin-treated diabetic rats with afferent arteriolar vasoconstriction resulting in decreases in plasma flow, glomerular hydrostatic pressure gradient and nephron filtration rate. Thromboxane A2 (TX) synthetase inhibition partially decreased the vasoconstrictive response due to acute insulin infusion in diabetic rats preventing the decrease in nephron filtration rate.(ABSTRACT TRUNCATED AT 250 WORDS).
ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus.
Heimlich, J B; Speed, J S; Bloom, C J; O'Connor, P M; Pollock, J S; Pollock, D M
2015-03-01
This study was designed to determine whether ET-1 derived from endothelial cells contributes to oxidative stress in the glomerulus of mice subjected to a high-salt diet and/or hypoxia. C57BL6/J control mice or vascular endothelial cell ET-1 knockout (VEET KO) mice were subjected to 3-h exposure to hypoxia (8% O₂) and/or 2 weeks of high-salt diet (4% NaCl) prior to metabolic cage assessment of renal function and isolation of glomeruli for the determination of reactive oxygen species (ROS). In control mice, hypoxia significantly increased urinary protein excretion during the initial 24 h, but only in animals on a high-salt diet. Hypoxia increased glomerular ET-1 mRNA expression in control, but not in vascular endothelial cell ET-1 knockout (VEET KO) mice. Under normoxic conditions, mice on a high-salt diet had approx. 150% higher glomerular ET-1 mRNA expression compared with a normal-salt diet (P < 0.05). High-salt diet administration significantly increased glomerular ROS production in flox control, but not in glomeruli isolated from VEET KO mice. In C57BL6/J mice, the ETA receptor-selective antagonist, ABT-627, significantly attenuated the increase in glomerular ROS production produced by high-salt diet. In addition, chronic infusion of C57BL6/J mice with a subpressor dose of ET-1 (osmotic pumps) significantly increased the levels of glomerular ROS that were prevented by ETA antagonist treatment. These data suggest that both hypoxia and a high-salt diet increase glomerular ROS production via endothelial-derived ET-1-ETA receptor activation and provide a potential mechanism for ET-1-induced nephropathy. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Raats, C J; van den Born, J; Bakker, M A; Oppers-Walgreen, B; Pisa, B J; Dijkman, H B; Assmann, K J; Berden, J H
2000-05-01
The dystrophin-glycoprotein complex, which comprises alpha- and beta-dystroglycan, sarcoglycans, and utrophin/dystrophin, links the cytoskeleton to agrin and laminin in the basal lamina in muscle and epithelial cells. Recently, agrin was identified as a major heparan sulfate proteoglycan in the glomerular basement membrane. In the present study, we found mRNA expression for agrin, dystroglycan, and utrophin in kidney cortex, isolated glomeruli, and cultured podocytes and mesangial cells. In immunofluorescence, agrin was found in the glomerular basement membrane. The antibodies against alpha- and beta-dystroglycan and utrophin revealed a granular podocyte-like staining pattern along the glomerular capillary wall. With immunoelectron microscopy, agrin was found in the glomerular basement membrane, dystroglycan was diffusely found over the entire cell surface of the podocytes, and utrophin was localized in the cytoplasm of the podocyte foot processes. In adriamycin nephropathy, a decrease in the glomerular capillary wall staining for dystroglycan was observed probably secondary to the extensive fusion of foot processes. Immunoelectron microscopy showed a different distribution pattern as compared to the normal kidney, with segmentally enhanced expression of dystroglycan at the basal side of the extensively fused podocyte foot processes. In passive Heymann nephritis we observed no changes in the staining intensity and distribution of the dystrophin-glycoprotein complex by immunofluorescence and immunoelectron microscopy. From these data, we conclude that agrin, dystroglycan, and utrophin are present in the glomerular capillary wall and their ultrastructural localization supports the concept that these molecules are involved in linking the podocyte cytoskeleton to the glomerular basement membrane.
Raats, C. J. Ilse; van den Born, Jacob; Bakker, Marinka A. H.; Oppers-Walgreen, Birgitte; Pisa, Brenda J. M.; Dijkman, Henry B. P. M.; Assmann, Karel J. M.; Berden, Jo H. M.
2000-01-01
The dystrophin-glycoprotein complex, which comprises α- and β-dystroglycan, sarcoglycans, and utrophin/dystrophin, links the cytoskeleton to agrin and laminin in the basal lamina in muscle and epithelial cells. Recently, agrin was identified as a major heparan sulfate proteoglycan in the glomerular basement membrane. In the present study, we found mRNA expression for agrin, dystroglycan, and utrophin in kidney cortex, isolated glomeruli, and cultured podocytes and mesangial cells. In immunofluorescence, agrin was found in the glomerular basement membrane. The antibodies against α- and β-dystroglycan and utrophin revealed a granular podocyte-like staining pattern along the glomerular capillary wall. With immunoelectron microscopy, agrin was found in the glomerular basement membrane, dystroglycan was diffusely found over the entire cell surface of the podocytes, and utrophin was localized in the cytoplasm of the podocyte foot processes. In adriamycin nephropathy, a decrease in the glomerular capillary wall staining for dystroglycan was observed probably secondary to the extensive fusion of foot processes. Immunoelectron microscopy showed a different distribution pattern as compared to the normal kidney, with segmentally enhanced expression of dystroglycan at the basal side of the extensively fused podocyte foot processes. In passive Heymann nephritis we observed no changes in the staining intensity and distribution of the dystrophin-glycoprotein complex by immunofluorescence and immunoelectron microscopy. From these data, we conclude that agrin, dystroglycan, and utrophin are present in the glomerular capillary wall and their ultrastructural localization supports the concept that these molecules are involved in linking the podocyte cytoskeleton to the glomerular basement membrane. PMID:10793086
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geyskes, G.G.; Oei, H.Y.; Puylaert, C.B.
Radioisotope renography was performed in 21 patients with hypertension and unilateral renal artery stenosis with and without premedication with 25 mg of captopril, and the results were compared with the effect of percutaneous transluminal angioplasty on the blood pressure, assessed 6 weeks after angioplasty. Angioplasty caused a considerable decrease in blood pressure in 15 of the 21 patients. In 12 of these 15 patients, captopril induced changes in the time-activity curves of the affected kidney only, suggesting deterioration of the excretory function of that kidney, while the function of the contralateral kidney remained normal. After angioplasty the asymmetry in themore » time-activity curves diminished despite identical pretreatment with captopril. Such captopril-induced unilateral impairment of the renal function was not seen in the six patients with unilateral renal artery stenosis whose blood pressure did not change after percutaneous transluminal angioplasty or in 13 patients with hypertension and normal renal arteries. The functional impairment of the affected kidneys was characterized by a decrease of /sup 99m/Tc-diethylenetriamine pentaacetic acid uptake and a delay of /sup 131/I-hippurate excretion, while the /sup 131/I-hippurate uptake remained unaffected. These data are in agreement with a reduced glomerular filtration rate and diuresis during preservation of the renal blood flow, changes that can be expected after converting enzyme inhibition in a kidney with low perfusion and an active, renin-mediated autoregulation of the glomerular filtration rate. These data suggest that functional captopril-induced unilateral changes, shown by split renal function studies with noninvasive gamma camera scintigraphy, can be used as a diagnostic test for renovascular hypertension caused by unilateral renal artery stenosis.« less
The effects of environmental chemicals on renal function.
Kataria, Anglina; Trasande, Leonardo; Trachtman, Howard
2015-10-01
The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease.
The effects of environmental chemicals on renal function
Kataria, Anglina; Trasande, Leonardo; Trachtman, Howard
2015-01-01
The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease. PMID:26100504
Charest, P M; Roth, J
1985-12-01
Sialic acid residues were localized by electron microscopy in renal glomeruli of normal and puromycin-treated rats with a cytochemical technique that utilized the Limax flavus lectin. In Lowicryl K4M thin sections from normal rats, sialic acid residues were found along the plasma membrane of the various glomerular cell types and in the glomerular basement membrane as well as the mesangial matrix. In NaDodSO4/PAGE, sialic acid residues of normal glomeruli were mainly confined to a 140-kDa protein previously identified as podocalyxin. The distribution of sialic acid residues in the podocyte plasma membrane was found to be remarkably regionalized. Based on the differential labeling intensity, three plasma membrane domains could be defined: the foot process base, the foot process region above the slit diaphragm, and the body of podocytes. Cytochemical and biochemical analysis of glomeruli from puromycin-treated rats showed a loss of sialic acid residues from glomerular sialoglycoconjugates indicating a perturbated glycosylation.
Saint-Andre, J P; Touzard, D; Houssin, A; Simard, C
1982-01-01
This communication presents three cases of prolonged macroscopic hematuria in young subjects. Complementary explorations eliminated urologic or vascular causes. Renal biopsies showed minimal glomerular lesions with light microscopy, normal basement membranes in electron microscopy and mesangial deposits of C3 and properdine in immunofluorescence. Although the mesangial deposits of C3 lack specificity and the number of observations is small, it appears useful to report such cases so as to indicate their frequency and perhaps their autonomy, in glomerular hematuric nephropathies.
High Prolactin Excretion in Patients with Diabetes Mellitus and Impaired Renal Function.
Triebel, Jakob; Moreno-Vega, Aura Ileana; Vázquez-Membrillo, Miguel; Nava, Gabriel; García-Franco, Renata; López-Star, Ellery; Baldivieso-Hurtado, Olivia; Ochoa, Daniel; Macotela, Yazmín; Bertsch, Thomas; Martinez de la Escalera, Gonzalo; Clapp, Carmen
2015-01-01
The metabolic clearance of prolactin (PRL) is partially executed by the kidney. Here, we investigate the urine excretion of PRL in patients with Diabetes Mellitus and renal impairment. Serum and urine samples were collected from male, mestizo patients in central Mexico employing a cross-sectional study design. Ninety-eight individuals had either no diabetes and normal renal function (control), diabetes and normal renal function, or diabetes with impaired renal function. PRL was determined by a chemiluminescent immunometric assay; protein, albumin, and creatinine were evaluated using quantitative colorimetric assays. The results were analyzed using ANOVA-testing. Patients with Diabetes Mellitus and renal impairment had significantly higher urine PRL levels than patients with Diabetes Mellitus and normal renal function and control patients. Higher urine PRL levels were associated with lower glomerular filtration rates, higher serum creatinine, and higher urinary albumin-to-creatinine ratios (UACR). Urine PRL levels correlated positively with UACR. Serum PRL levels were similar among groups. Patients with Diabetes Mellitus and impaired renal function demonstrate a high urinary PRL excretion. Urinary PRL excretion in the context of proteinuria could contribute to PRL dysregulation in renal impairment.
Ovbiagele, Bruce; Schwamm, Lee H; Smith, Eric E; Grau-Sepulveda, Maria V; Saver, Jeffrey L; Bhatt, Deepak L; Hernandez, Adrian F; Peterson, Eric D; Fonarow, Gregg C
2014-10-01
There is a paucity of information on clinical characteristics, care patterns, and clinical outcomes for hospitalized intracerebral hemorrhage (ICH) patients with chronic kidney disease (CKD). We assessed characteristics, care processes, and in-hospital outcome among ICH patients with CKD in the Get With the Guidelines-Stroke (GWTG-Stroke) program. We analyzed 113,059 ICH patients hospitalized at 1472 US centers participating in the GWTG-Stroke program between January 2009 and December 2012. In-hospital mortality and use of 2 predefined ICH performance measures were examined based on glomerular filtration rate. Renal dysfunction was categorized as a dichotomous (+CKD = estimated glomerular filtration rate <60) or rank ordered variable as CKD (<60), and by clinical stage: (normal [≥90], mild [≥60-<90], moderate [≥30-<60], severe [≥15-<30], and/or kidney failure [<15 or dialysis]). There were 33,219 (29%) ICH patients with CKD. Patients with CKD were more likely to be older, female, and with comorbid conditions such as diabetes. Compared with patients with normal kidney function, those with CKD were slightly less likely to receive deep venous thrombosis (DVT) prophylaxis but similarly received discharge smoking cessation intervention. Inpatient mortality was also higher for those with CKD (adjusted odds ratio [OR], 1.47; 95% confidence interval [CI], 1.42-1.52), mild dysfunction (adjusted OR, 1.12; 95% CI, 1.08-1.16), moderate dysfunction (adjusted OR, 1.46; 95% CI, 1.39-1.53), severe dysfunction (adjusted OR, 1.96; 95% CI, 1.81-2.12), and kidney failure (adjusted OR, 2.22; 95% CI, 2.04-2.43) relative to those with normal renal function. Chronic kidney disease is present in nearly a third of patients hospitalized with ICH and is associated with slightly worse care and substantially higher mortality than those with normal renal function. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Pihl, Liselotte; Persson, Patrik; Fasching, Angelica; Hansell, Peter; DiBona, Gerald F; Palm, Fredrik
2012-07-01
Glomerular filtration rate (GFR) and renal blood flow (RBF) are normally kept constant via renal autoregulation. However, early diabetes results in increased GFR and the potential mechanisms are debated. Tubuloglomerular feedback (TGF) inactivation, with concomitantly increased RBF, is proposed but challenged by the finding of glomerular hyperfiltration in diabetic adenosine A(1) receptor-deficient mice, which lack TGF. Furthermore, we consistently find elevated GFR in diabetes with only minor changes in RBF. This may relate to the use of a lower streptozotocin dose, which produces a degree of hyperglycemia, which is manageable without supplemental suboptimal insulin administration, as has been used by other investigators. Therefore, we examined the relationship between RBF and GFR in diabetic rats with (diabetes + insulin) and without suboptimal insulin administration (untreated diabetes). As insulin can affect nitric oxide (NO) release, the role of NO was also investigated. GFR, RBF, and glomerular filtration pressures were measured. Dynamic RBF autoregulation was examined by transfer function analysis between arterial pressure and RBF. Both diabetic groups had increased GFR (+60-67%) and RBF (+20-23%) compared with controls. However, only the diabetes + insulin group displayed a correlation between GFR and RBF (R(2) = 0.81, P < 0.0001). Net filtration pressure was increased in untreated diabetes compared with both other groups. The difference between untreated and insulin-treated diabetic rats disappeared after administering N(ω)-nitro-l-arginine methyl ester to inhibit NO synthase and subsequent NO release. In conclusion, mechanisms causing diabetes-induced glomerular hyperfiltration are animal model-dependent. Supplemental insulin administration results in a RBF-dependent mechanism, whereas elevated GFR in untreated diabetes is mediated primarily by a tubular event. Insulin-induced NO release partially contributes to these differences.
Boubred, Farid; Jamin, Agnes; Buffat, Christophe; Daniel, Laurent; Borel, Patrick; Boudry, Gaëlle; Le Huëron-Luron, Isabelle; Simeoni, Umberto
2017-05-01
In humans, early high protein (HP) intake has been recommended to prevent postnatal growth restriction and complications of intrauterine growth restriction (IUGR). However, the impact of such a strategy on the kidneys remains unknown, while significant renal hypertrophy, proteinuria, and glomerular sclerosis have been demonstrated in few experimental studies. The objective of this study was to evaluate the effects of a neonatal HP formula on renal structure in IUGR piglets. Spontaneous IUGR piglets were randomly allocated to normal protein (NP, n = 10) formula or to HP formula (+50% protein content, n = 10) up to day 28 after birth. Body weight, body composition, renal functions, and structure were assessed at the end of the neonatal period. While birth weights were similar, 28-day-old HP piglets were 18% heavier than NP piglets ( P < 0.01). Carcass protein content was 22% higher in HP than in NP offspring ( P < 0.01). Despite a HP intake, kidney weight and glomerular fibrosis were unaltered in HP piglets. Only a 20% increase in glomerular volume was noted in HP piglets ( P < 0.05) and restricted to the inner cortical area nephrons ( P = 0.03). Plasma urea/creatinine ratio and proteinuria were unchanged in HP piglets. In conclusion, neonatal HP feeding in IUGR piglets significantly enhanced neonatal growth and tissue protein deposition but mildly affected glomerular volume. It can be speculated that a sustained tissue protein anabolism in response to HP intake have limited single nephron glomerular hyperfiltration. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Low Insulin-Like Growth Factor-1 Level in Obesity Nephropathy: A New Risk Factor?
Bancu, Ioana; Navarro Díaz, Maruja; Serra, Assumpta; Granada, Marisa; Lopez, Dolores; Romero, Ramon; Bonet, Josep
2016-01-01
Introduction IGF-1 (insulin-like growth factor-1) is a hormone involved in cell growth and other important processes. In the kidney, IGF-1 has a stimulating effect, increasing the blood flow and glomerular filtration rate. Although many experimental animal studies regarding the role of IGF-1 in the kidney have been conducted, few human studies are available in the literature. Obesity is a cause of renal failure, and several glomerular lesions associated with obesity have been described. However, no studies regarding the levels of IGF-1 in morbidly obese patients with renal injury associated with obesity have been conducted. Aim To determine the serum IGF-1 concentrations in morbidly obese patients with normal renal function but with different types of early obesity-related glomerular lesions and to evaluate the possible relationship between IGF-1 and the presence of renal lesions. Methods Eighty morbidly obese patients with renal biopsy, including 11 patients with no evidence of renal lesion, 17 patients with single glomerulomegaly, 21 patients with single podocyte hypertrophy, 10 patients with glomerulomegaly and podocyte hypertrophy, 5 patients with focal segmental hyalinosis, and 16 patients with increased mesangial matrix and/or mesangial proliferation, participated in this study. Biological parameters, including serum IGF-1 concentrations with the standard deviation score for age (SDS-IGF-1), were determined for all patients. Results Eighty patients (50 women and 30 men) with a mean BMI of 52.63 ± 8.71 and a mean age of 42.40 ± 9.45 years were included in this study. IGF-1, IGF-1 SDS and IGF-1BP3 levels according to the renal injury were compared (normal glomeruli: IGF-1 = 190.17 ± 72.46; glomerulomegaly: IGF-1 = 122.3 ± 50.05; podocyte hypertrophy: IGF-1 = 119.81 ± 60.34; focal segmental hyalinosis: IGF-1 170.98 ± 100.83, increased mesangial matrix and/or mesangial proliferation: IGF-1 117.73 ± 63.87). Statistically significant differences were observed between serum levels of IGF-1 and between the levels of SDS-IGF-1 by comparing the group without glomerular lesion with the group formed by patients with any type of glomerular injury. Logistic regression analysis was performed, with the dependent variable defined as the glomerular injury. In the multivariate analysis, only SDS-IGF-1 was associated with glomerular injury, and low levels of IGF-1 SDS were a risk factor for kidney injury. Conclusions Our study demonstrates that low IGF-1 serum levels are associated with renal lesions in morbidly obese patients without overt clinical renal manifestations. PMID:27138941
O'Hagan, Emma; Mallett, Tamara; Convery, Mairead; McKeever, Karl
2015-01-01
Antiglomerular basement membrane (anti-GBM) antibody disease is uncommon in the pediatric population. There are no cases in the literature describing the development of anti-GBM disease following XGP or nephrectomy. We report the case of a 7-year-old boy with no past history of urological illness, treated with antimicrobials and nephrectomy for diffuse, unilateral xanthogranulomatous pyelonephritis (XGP). Renal function and ultrasound scan of the contralateral kidney postoperatively were normal. Three months later, the child represented in acute renal failure with rapidly progressive glomerulonephritis requiring hemodialysis. Renal biopsy showed severe crescentic glomerulonephritis with 95% of glomeruli demonstrating circumferential cellular crescents. Strong linear IgG staining of the glomerular basement membranes was present, in keeping with anti-GBM disease. Circulating anti-GBM antibodies were positive. Treatment with plasma exchange, methylprednisolone, and cyclophosphamide led to normalization of anti-GBM antibody titers. Frequency of hemodialysis was reduced as renal function improved, and he is currently independent of dialysis with estimated glomerular filtration rate 20.7 mls/min/1.73 m 2 . Case studies in the adult literature have reported the development of a rapidly progressive anti-GBM antibody-induced glomerulonephritis following renal surgery where patients expressed HLA DR2/HLA DR15 major histocompatibility (MHC) antigens. Of note, our patient also expresses the HLA DR15 MHC antigen.
Xiao, Zhijie; He, Liqun; Takemoto, Minoru; Jalanko, Hannu; Chan, Guy C.; Storm, Daniel R.; Betsholtz, Christer; Tryggvason, Karl; Patrakka, Jaakko
2011-01-01
Background/Aims The organization of actin cytoskeleton in podocyte foot processes plays a critical role in the maintenance of the glomerular filtration barrier. The cAMP pathway is an important regulator of the actin network assembly in cells. However, the role of the cAMP pathway in podocytes is not well understood. Type 1 adenylate cyclase (Adcy1), previously thought to be specific for neuronal tissue, is a member of the family of enzymes that catalyses the formation of cAMP. In this study, we characterized the expression and role of Adcy1 in the kidney. Methods Expression of Adcy1 was studied by RT-PCR, Northern blotting and in situ hybridization. The role of Adcy1 in podocytes was investigated by analyzing Adcy1 knockout mice (Adcy1–/–). Results and Conclusion: Adcy1 is expressed in the kidney specifically by podocytes. In the kidney, Adcy1 does not have a critical role in normal physiological functioning as kidney histology and function are normal in Adcy1–/– mice. However, albumin overload resulted in severe albuminuria in Adcy1–/– mice, whereas wild-type control mice showed only mild albumin leakage to urine. In conclusion, we have identified Adcy1 as a novel podocyte signaling protein that seems to have a role in compensatory physiological processes in the glomerulus. PMID:21196775
Glomerulopathy Associated with Parasitic Infections
van Velthuysen, M.-L. F.; Florquin, S.
2000-01-01
Although parasitic infections do not usually present with disturbance in renal function, glomerular lesions can be seen in most of these infections. The glomerular lesions observed in parasitic infections cover the whole range of glomerular lesions known, but most of them are proliferative. Little is known of the exact pathogenic mechanisms. In this review, we try to explain the glomerular lesions associated with parasitic infections in terms of the specific immunologic events observed during these diseases against the background of recent developments in the general knowledge of the pathogenesis of glomerular disease. PMID:10627491
Zou, Rongjun; Tao, Jun; Shi, Wanting; Yang, Minglei; Li, Hongmu; Lin, Xifeng; Yang, Songran; Hua, Ping
2017-12-01
We performed a meta-analysis of the safety and efficacy of anticoagulation treatment for atrial fibrillation (AF) in relation to renal function. We also examined the change in estimated glomerular filtration rate (eGFR) from baseline and compared the outcomes for patients with stable and worsening renal function. We selected studies that used randomized controlled trials in which outcomes for direct oral anticoagulants (DOACs) (dabigatran, rivaroxaban, apixaban, or edoxaban) were compared with those for warfarin in AF patients with normal, mild or moderate renal function, except the severe one (creatinine clearance<30). We assessed five clinical trials, involving 72,608 patients. Pooled analysis indicated that the risk of stroke was lower for DOACs than for warfarin among patients with mild renal impairment (Risk ratio, 0.79; 95% confidence interval, 0.68-0.91) and moderate renal impairment (0.80, 0.69-0.92). No major differences were found in patients with normal renal function. Additionally, DOACs were associated with fewer major bleeds among patients with normal (0.77, 0.70-0.84), mild (0.86, 0.77-0.95), and moderate renal impairment (0.73, 0.65-0.82). Among those treated with DOACs, a lower dosage was associated with lower risk of major bleeding (0.75, 0.68-0.83) and higher risk of stroke or systemic embolism (1.28, 1.12-1.47). Further, DOACs tended to be associated with a lower estimated glomerular filtration rate (eGFR) than warfarin even after 30months. Finally, we found significant differences in the risk of stroke (2.09, 1.64-2.68) and major bleeding (2.01, 1.66-2.42) between patients with stable and worsening renal function. DOACs have a greater clinical benefit than warfarin with respect to renal function. They are associated with a comparatively lower risk of stroke and major bleeding, as well lower eGFR. This suggests these agents are a better choice in patients with renal disease. Copyright © 2017. Published by Elsevier Ltd.
Collagen IV Diseases: A Focus on the Glomerular Basement Membrane in Alport Syndrome
Cosgrove, Dominic; Liu, Shiguang
2016-01-01
Alport syndrome is the result of mutations in any of three type IV collagen genes, COL4A3, COL4A4, or COL4A5. Because the three collagen chains form heterotrimers, there is an absence of all three proteins in the basement membranes where they are expressed. In the glomerulus, the mature glomerular basement membrane type IV collagen network, normally comprised of two separate networks, α3(IV)/α4(IV)/α5(IV) and α1(IV)/α2(IV), is comprised entirely of collagen α1(IV)/α2. This review addresses the current state of our knowledge regarding the consequence of this change in basement membrane composition, including both the direct, via collagen receptor binding, and indirect, regarding influences on glomerular biomechanics. The state of our current understanding regarding mechanisms of glomerular disease initiation and progression will be examined, as will the current state of the art regarding emergent therapeutic approaches to slow or arrest glomerular disease in Alport patients. PMID:27576055
Wang, Cuifang; He, Bing; Piao, Dongxu; Han, Ping
2016-07-01
Roux-en-Y bariatric surgery has been shown to have a remarkable and sustainable improvement in type 2 diabetes. Recent clinical studies have shown that bariatric surgery can improve or halt the development of diabetic microvascular complications such as nephropathy. However, the exact underlying mechanisms of surgical procedures are unknown. Here, we have investigated the effects of Roux-en-Y esophagojejunostomy (RYEJ) on renal function and inflammation and fibrosis biomarkers for renal injury in type 2 diabetic rats. Sprague-Dawley rats with high fat diet and streptozotocin (STZ)-induced diabetes were randomly assigned into four groups: diabetic nephropathy (DN), DN treated with food restriction (DN-FR), DN treated with RYEJ surgery (DN-RYEJ), and DN-RYEJ sham (n = 6/group). Age-matched normal rats were assigned as control group. RYEJ and sham surgeries were performed. Hyperinsulinemic-euglycemic clamps with tracer infusion were completed to assess insulin sensitivity. Twenty-four hour urine albumin excretion rate (UAER) and glomerular filtration rate (GFR) were measured. The renal pathological injury was assessed by hematoxylin and eosin (HE) staining. Kidney messenger RNA (mRNA) and/or protein content/distribution of phospho-c-Jun NH2-terminal kinase (JNK), monocyte chemoattractant protein (MCP)-1, transforming growth factor (TGF)-β1, and mitogen-activated protein kinase phosphatase 5 (MKP5) were evaluated by real-time PCR and/or Western blotting/immunohistochemistry. Roux-en-Y esophagojejunostomy improved insulin sensitivity. RYEJ ameliorated renal function by improving UAER and GFR and attenuated glomerular hypertrophy after surgery. RYEJ also significantly downregulated the levels of JNK-mediated inflammatory response and upregulated the level of the anti-inflammatory mediator MKP5. Roux-en-Y esophagojejunostomy alleviates insulin resistance. RYEJ surgery ameliorated renal function and attenuated glomerular hypertrophy in a DN rat model. The considerable nephroprotective function may be mainly attributed to the reduced inflammatory and fibrotic biomarkers after RYEJ. The improvements in renal function and inflammation are not wholly dependent on the magnitude of weight loss.
Assessment of glomerular filtration rate measurement with plasma sampling: a technical review.
Murray, Anthony W; Barnfield, Mark C; Waller, Michael L; Telford, Tania; Peters, A Michael
2013-06-01
This article reviews available radionuclide-based techniques for glomerular filtration rate (GFR) measurement, focusing on clinical indications for GFR measurement, ideal GFR radiopharmaceutical tracer properties, and the 2 most common tracers in clinical use. Methods for full, 1-compartment, and single-sample renal clearance characterization are discussed. GFR normalization and the role of GFR measurement in chemotherapy dosing are also considered.
Podocyte-Specific VEGF-A Gain of Function Induces Nodular Glomerulosclerosis in eNOS Null Mice
Veron, Delma; Aggarwal, Pardeep K.; Velazquez, Heino; Kashgarian, Michael; Moeckel, Gilbert
2014-01-01
VEGF-A and nitric oxide are essential for glomerular filtration barrier homeostasis and are dysregulated in diabetic nephropathy. Here, we examined the effect of excess podocyte VEGF-A on the renal phenotype of endothelial nitric oxide synthase (eNOS) knockout mice. Podocyte-specific VEGF164 gain of function in eNOS−/− mice resulted in nodular glomerulosclerosis, mesangiolysis, microaneurysms, and arteriolar hyalinosis associated with massive proteinuria and renal failure in the absence of diabetic milieu or hypertension. In contrast, podocyte-specific VEGF164 gain of function in wild-type mice resulted in less pronounced albuminuria and increased creatinine clearance. Transmission electron microscopy revealed glomerular basement membrane thickening and podocyte effacement in eNOS−/− mice with podocyte-specific VEGF164 gain of function. Furthermore, glomerular nodules overexpressed collagen IV and laminin extensively. Biotin-switch and proximity ligation assays demonstrated that podocyte-specific VEGF164 gain of function decreased glomerular S-nitrosylation of laminin in eNOS−/− mice. In addition, treatment with VEGF-A decreased S-nitrosylated laminin in cultured podocytes. Collectively, these data indicate that excess glomerular VEGF-A and eNOS deficiency is necessary and sufficient to induce Kimmelstiel-Wilson–like nodular glomerulosclerosis in mice through a process that involves deposition of laminin and collagen IV and de-nitrosylation of laminin. PMID:24578128
Subramanian, Balajikarthick; Sun, Hua; Yan, Paul; Charoonratana, Victoria T; Higgs, Henry N; Wang, Fang; Lai, Ka-Man V; Valenzuela, David M; Brown, Elizabeth J; Schlöndorff, Johannes S; Pollak, Martin R
2016-08-01
Mutations in the INF2 (inverted formin 2) gene, encoding a diaphanous formin family protein that regulates actin cytoskeleton dynamics, cause human focal segmental glomerulosclerosis (FSGS). INF2 interacts directly with certain other mammalian diaphanous formin proteins (mDia) that function as RhoA effector molecules. FSGS-causing INF2 mutations impair these interactions and disrupt the ability of INF2 to regulate Rho/Dia-mediated actin dynamics in vitro. However, the precise mechanisms by which INF2 regulates and INF2 mutations impair glomerular structure and function remain unknown. Here, we characterize an Inf2 R218Q point-mutant (knockin) mouse to help answer these questions. Knockin mice have no significant renal pathology or proteinuria at baseline despite diminished INF2 protein levels. INF2 mutant podocytes do show impaired reversal of protamine sulfate-induced foot process effacement by heparin sulfate perfusion. This is associated with persistent podocyte cytoplasmic aggregation, nephrin phosphorylation, and nephrin and podocin mislocalization, as well as impaired recovery of mDia membrane localization. These changes were partially mimicked in podocyte outgrowth cultures, in which podocytes from knockin mice show altered cellular protrusions compared to those from wild-type mice. Thus, in mice, normal INF2 function is not required for glomerular development but normal INF2 is required for regulation of the actin-based behaviors necessary for response to and/or recovery from injury. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Spaleniak, Sebastian; Korzeniewska-Dyl, Irmina; Moczulski, Dariusz
2014-10-01
The early loss of renal function in patients with type 1 diabetes may begin before proteinuria. Only 30% of patients with diabetes manifest overt proteinuria. According to the previous studies, increased urinary albumin excretion, which is considered a classic marker of progression of diabetic kidney disease, can regress to normal urine albumin excretion. The current studies conducted in patients with type 1 diabetes without increased urine albumin excretion showed that the uric acid concentration was an independent factor for the development of diabetic kidney disease. The aim of study was to assess the impact of uric acid concentration and to identify risk factors of the early glomerular filtration loss in patients with type 1 diabetes and normal urinary albumin excretion. 147 patients (61 women and 86 men) with type 1 diabetes without increased urine albumin excretion were analysed. GFR (gromerular filtration rate) was estimated based on the serum cystatin C concentration. Centile charts were used to determine the variation of uric acid concentration depending on GFR and gender. The mean value of the filtration rate for the study group was 117 ml/min/m2. The uric acid level above 90th percentile in relation to GFR was diagnosed in 8.2% of women and 0% of men, between 90th and 50th percentile in 44.3 % of women and 5.8% of men and below 50th percentile in 47.5% of women and 94.2% of men. Contrary to men in women higher serum acid concentration was strongly associated with higher glomerular filtration rate. Hyperfiltraion was diagnosed in 15 of women and 19 of men. The high normal uric acid concentration in women with type 1 diabetes might play a crucial role in development of hyperfiltration.
Hoy, W E; Hughson, M D; Zimanyi, M; Samuel, T; Douglas-Denton, R; Holden, L; Mott, S; Bertram, J F
2010-11-01
Glomerular hypertrophy occurs in a number of normal and pathological states. Glomerular volume in kidneys at autopsy is usually indirectly derived from estimates of total glomerular mass and nephron number, and provides only a single value per kidney, with no indication of the range of volumes of glomeruli within the kidney of any given subject. We review findings of the distribution of volumes of different glomeruli within subjects without kidney disease, and their correlations with age, nephron number, birth weight and body mass index (BMI). The study describes findings from autopsy kidneys of selected adult white males from the Southeast USA who had unexpected deaths, and who did not have renal scarring or renal disease. Total glomerular (nephron) number and total glomerular volume were estimated using the disector/fractionator combination, and mean glomerular volume (Vglom) was derived. The volumes of 30 individual glomeruli (IGV) in each subject were determined using the disector/Cavalieri method. IGV values were compared by categories of age, nephron number, birth weight and BMI. There was substantial variation in IGV within subjects. Older age, lower nephron number, lower birth weight and gross obesity were associated with higher mean IGV and with greater IGV heterogeneity. High Vglom and high IGVs were associated with more glomerulosclerosis. However, amongst the generally modest numbers of sclerosed glomeruli, the pattern was uniformly of ischemic collapse of the glomerular tuft. There was no detectable focal segmental glomerular tuft injury. In this series of people without overt renal disease, greater age, nephron deficit, lower birth weight and obesity were marked by glomerular enlargement and greater glomerular volume heterogeneity within individuals.
Yossepowitch, Ofer; Eggener, Scott E; Serio, Angel; Huang, William C; Snyder, Mark E; Vickers, Andrew J; Russo, Paul
2006-10-01
The emergence of laparoscopic nephron sparing surgery has rekindled interest in the impact of warm renal ischemia on renal function. To provide data with which warm renal ischemia can be compared we analyzed short-term and long-term changes in the glomerular filtration rate after temporary cold renal ischemia. In patients undergoing open nephron sparing surgery the estimated glomerular filtration rate was assessed preoperatively, early in the postoperative hospital stay, and 1 and 12 months after surgery using the abbreviated Modification of Diet in Renal Disease Study equation. We separately analyzed 70 patients with a solitary kidney and 592 with 2 functioning kidneys. The end point was the percent change from the baseline glomerular filtration rate. A linear regression model was used to test the association between the glomerular filtration rate change, and ischemia time, patient age, tumor size, estimated blood loss and intraoperative fluid administration. Median cold ischemia time was 31 minutes in patients with a solitary kidney and 35 minutes in those with 2 kidneys. Compared to patients with 2 kidneys those with a solitary kidney had a significantly lower preoperative estimated glomerular filtration rate (p < 0.001), which decreased a median of 30% during the early postoperative period, and 15% and 32% 1 and 12 months after surgery, respectively. In patients with 2 kidneys the corresponding glomerular filtration rate decreases were 16%, 13% and 14%, respectively. On multivariate analyses in each group cold ischemia duration and intraoperative blood loss were significantly associated with early glomerular filtration rate changes. However, 12 months after surgery age was the only independent predictor of a glomerular filtration rate decrease in patients with 2 kidneys. Cold renal ischemia during nephron sparing surgery is a significant determinant of the short-term postoperative glomerular filtration rate. Longer clamping time is particularly detrimental in patients with a solitary kidney but it does not appear to influence long-term renal function. Patients of advanced age may be less likely to recover from acute ischemic renal injury.
Role of mTOR in podocyte function and diabetic nephropathy in humans and mice
Gödel, Markus; Hartleben, Björn; Herbach, Nadja; Liu, Shuya; Zschiedrich, Stefan; Lu, Shun; Debreczeni-Mór, Andrea; Lindenmeyer, Maja T.; Rastaldi, Maria-Pia; Hartleben, Götz; Wiech, Thorsten; Fornoni, Alessia; Nelson, Robert G.; Kretzler, Matthias; Wanke, Rüdiger; Pavenstädt, Hermann; Kerjaschki, Dontscho; Cohen, Clemens D.; Hall, Michael N.; Rüegg, Markus A.; Inoki, Ken; Walz, Gerd; Huber, Tobias B.
2011-01-01
Chronic glomerular diseases, associated with renal failure and cardiovascular morbidity, represent a major health issue. However, they remain poorly understood. Here we have reported that tightly controlled mTOR activity was crucial to maintaining glomerular podocyte function, while dysregulation of mTOR facilitated glomerular diseases. Genetic deletion of mTOR complex 1 (mTORC1) in mouse podocytes induced proteinuria and progressive glomerulosclerosis. Furthermore, simultaneous deletion of both mTORC1 and mTORC2 from mouse podocytes aggravated the glomerular lesions, revealing the importance of both mTOR complexes for podocyte homeostasis. In contrast, increased mTOR activity accompanied human diabetic nephropathy, characterized by early glomerular hypertrophy and hyperfiltration. Curtailing mTORC1 signaling in mice by genetically reducing mTORC1 copy number in podocytes prevented glomerulosclerosis and significantly ameliorated the progression of glomerular disease in diabetic nephropathy. These results demonstrate the requirement for tightly balanced mTOR activity in podocyte homeostasis and suggest that mTOR inhibition can protect podocytes and prevent progressive diabetic nephropathy. PMID:21606591
Ybarra, Juan; Sánchez-Hernández, Joan; Vilallonga, Ramon; Romeo, June H
2016-07-01
A robust and consistent association between increasing body mass index (BMI) and chronic kidney disease (CKD) has been reported in several observational studies. Obesity remains the main preventable risk factor for CKD because it largely mediates diabetes and hypertension, the 2 most common etiologies for end-stage kidney disease (ESKD). Obesity is associated weakly with early stages of kidney disease but strongly with kidney progression to ESKD, even after adjustment for hypertension and diabetes. To assess the relationship between estimated glomerular filtration rate (eGFR) and trans-thoracic echocardiography left ventricular function parameters in a cohort of patients with obesity. Cross-sectional study involving 324 obese (BMI=44.0±2.2Kg/m(2)) apparently healthy asymptomatic patients with an eGFR >60ml/min/1.73m(2). Each patient underwent transthoracic echocardiography and a blood testing. The eGFR was addressed by the CKD-EPI formula. All patients had a normal systolic function whereas 24.5% disclosed diastolic dysfunction (DD). Hypertension and type 2 diabetes mellitus prevalence were 34.5% and 4.5% (respectively). All patients disclosed an eGFR >60ml/min while none of them disclosed hyperfiltration (eGFR >120ml/min). eGFR correlated inversely with BMI and the duration of obesity and positively with diastolic function parameters (P<0.001 for all, respectively). Patients with diastolic dysfunction displayed lower eGFR (P<0.0005) and longer duration of obesity (P<0.0005). Obesity and its duration are likely to impose hemodynamic changes affecting simultaneously both heart (diastolic dysfunction) and kidney (decreased glomerular filtration rate). Larger prospective studies are warranted. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Strauss, J; Pardo, V; Koss, M N; Griswold, W; McIntosh, R M
1975-03-01
The nature of the glomerular-bound antibody and the putative antigen was investigated in one of the patients with sickle cell disease and immune deposit membranoproliferative glomerulonephritis by immunohistologic and glomerular antibody elution. Renal proximal tubular epithelial antigen was localized in association with immunoglobulins G (IgG), M (IgM), Clq fraction of the first component of complement (Clq) and the third component of complement (C3) in a granular pattern along the glomerular basement membrane of the patient's kidney. IgG and IgM were eluted from glomeruli. These immunoglobulins fixed to the proximal tubules of normal human kidney by direct immunofluorescence. This localization was abolished by absorption of the eluted immunoglobulins with renal tubular epithelial (RTE) antigen. The IgG eluted from the glomeruli blocked the fixation of rabbit anti-RTE antigen to normal proximal tubular brush border. These studies suggest that the nephritis in this patient was due to deposition of complexes or RTE antigen and specific antibody. An autologous immune complex nephritis may develop in some patients with sickle cell anemia secondary to RTE antigen released possibly after renal ischemia or some other phenomenon causing renal tubular damage.
Using the Drosophila Nephrocyte to Model Podocyte Function and Disease
Helmstädter, Martin; Huber, Tobias B.; Hermle, Tobias
2017-01-01
Glomerular disorders are a major cause of end-stage renal disease and effective therapies are often lacking. Nephrocytes are considered to be part of the Drosophila excretory system and form slit diaphragms across cellular membrane invaginations. Nehphrocytes have been shown to share functional, morphological, and molecular features with podocytes, which form the glomerular filter in vertebrates. Here, we report the progress and the evolving tool-set of this model system. Combining a functional, accessible slit diaphragm with the power of the genetic tool-kit in Drosophila, the nephrocyte has the potential to greatly advance our understanding of the glomerular filtration barrier in health and disease. PMID:29270398
Albumin contributes to kidney disease progression in Alport syndrome
Knutsen, Russell H.; Mecham, Robert P.
2016-01-01
Alport syndrome is a familial kidney disease caused by defects in the collagen type IV network of the glomerular basement membrane. Lack of collagen-α3α4α5(IV) changes the glomerular basement membrane morphologically and functionally, rendering it leaky to albumin and other plasma proteins. Filtered albumin has been suggested to be a cause of the glomerular and tubular injuries observed at advanced stages of Alport syndrome. To directly investigate the role that albumin plays in the progression of disease in Alport syndrome, we generated albumin knockout (Alb−/−) mice to use as a tool for removing albuminuria as a component of kidney disease. Mice lacking albumin were healthy and indistinguishable from control littermates, although they developed hypertriglyceridemia. Dyslipidemia was observed in Alb+/− mice, which displayed half the normal plasma albumin concentration. Alb mutant mice were bred to collagen-α3(IV) knockout (Col4a3−/−) mice, which are a model for human Alport syndrome. Lack of circulating and filtered albumin in Col4a3−/−;Alb−/− mice resulted in dramatically improved kidney disease outcomes, as these mice lived 64% longer than did Col4a3−/−;Alb+/+ and Col4a3−/−;Alb+/− mice, despite similar blood pressures and serum triglyceride levels. Further investigations showed that the absence of albumin correlated with reduced transforming growth factor-β1 signaling as well as reduced tubulointerstitial, glomerular, and podocyte pathology. We conclude that filtered albumin is injurious to kidney cells in Alport syndrome and perhaps in other proteinuric kidney diseases, including diabetic nephropathy. PMID:27147675
Albumin contributes to kidney disease progression in Alport syndrome.
Jarad, George; Knutsen, Russell H; Mecham, Robert P; Miner, Jeffrey H
2016-07-01
Alport syndrome is a familial kidney disease caused by defects in the collagen type IV network of the glomerular basement membrane. Lack of collagen-α3α4α5(IV) changes the glomerular basement membrane morphologically and functionally, rendering it leaky to albumin and other plasma proteins. Filtered albumin has been suggested to be a cause of the glomerular and tubular injuries observed at advanced stages of Alport syndrome. To directly investigate the role that albumin plays in the progression of disease in Alport syndrome, we generated albumin knockout (Alb(-/-)) mice to use as a tool for removing albuminuria as a component of kidney disease. Mice lacking albumin were healthy and indistinguishable from control littermates, although they developed hypertriglyceridemia. Dyslipidemia was observed in Alb(+/-) mice, which displayed half the normal plasma albumin concentration. Alb mutant mice were bred to collagen-α3(IV) knockout (Col4a3(-/-)) mice, which are a model for human Alport syndrome. Lack of circulating and filtered albumin in Col4a3(-/-);Alb(-/-) mice resulted in dramatically improved kidney disease outcomes, as these mice lived 64% longer than did Col4a3(-/-);Alb(+/+) and Col4a3(-/-);Alb(+/-) mice, despite similar blood pressures and serum triglyceride levels. Further investigations showed that the absence of albumin correlated with reduced transforming growth factor-β1 signaling as well as reduced tubulointerstitial, glomerular, and podocyte pathology. We conclude that filtered albumin is injurious to kidney cells in Alport syndrome and perhaps in other proteinuric kidney diseases, including diabetic nephropathy. Copyright © 2016 the American Physiological Society.
Augmenting kidney mass at transplantation abrogates chronic renal allograft injury in rats.
Mackenzie, H S; Azuma, H; Troy, J L; Rennke, H G; Tilney, N L; Brenner, B M
1996-03-01
Conventional renal transplantation, which substitutes a single allograft for two native kidneys, imposes an imbalance between nephron supply and the metabolic and excretory demands of the recipient. This discrepancy, which stimulates hyperfunction and hypertrophy of viable allograft nephrons, may be intensified by nephron loss through ischemia-reperfusion injury or acute rejection episodes occurring soon after transplantation. In other settings where less than 50% of the total renal mass remains, progressive glomerular injury develops through mechanisms associated with compensatory nephron hyperfiltration and hypertrophy. To determine whether responses to nephron loss contribute to chronic injury in renal allografts, nephron supply was restored to near-normal levels by transplanting Lewis recipients with two Fisher 344 kidneys (group 2A) compared with the standard single allograft F344 --> LEW rat model of late renal allograft failure (group 1A). At 20 weeks, indices of injury were observed in 1A but not 2A rats. These indices included proteinuria (1A: 45 +/- 13; 2A: 4.0 +/- 0.29 mg/day) and glomerulosclerosis (1A: 23 +/- 4.9%, 2A: 0.7 +/- 0.3%) (p < .05). Double-allograft recipients maintained near normal renal structure and function, whereas 1A rats showed evidence of compensatory hyperfiltration (single-nephron glomerular filtration rate of 63 +/- 10 versus 44 +/- 2.0 nl/min in 2A rats) and hypertrophy (mean glomerular volume of 2.64 +/- 0.15 versus 1.52 +/- 0.05 microns3 x 10(6) in 2A rats) (p < .05). Thus, we conclude that a major component of late allograft injury is attributable to processes associated with inadequate transplanted renal mass, a finding that has major implications for kidney transplantation biology and policy.
Wu, Wei; Hu, Wei; Han, Wen-Bei; Liu, Ying-Lu; Tu, Yue; Yang, Hai-Ming; Fang, Qi-Jun; Zhou, Mo-Yi; Wan, Zi-Yue; Tang, Ren-Mao; Tang, Hai-Tao; Wan, Yi-Gang
2018-01-01
Huangkui capsule (HKC), a Chinese modern patent medicine extracted from Abelmoschus manihot (L.) medic, has been widely applied to clinical therapy in the early diabetic nephropathy (DN) patients. However, it remains elusive whether HKC can ameliorate the inchoate glomerular injuries in hyperglycemia. Recently the activation of phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling and its downstream regulator, 70-kDa ribosomal protein S6 kinase (p70S6K), play important roles in the early glomerular pathological changes of DN including glomerular hypertrophy, glomerular basement membrane (GBM) thickening and mild mesangial expansion. This study thereby aimed to clarify therapeutic effects of HKC during the initial phase of DN and its underlying mechanisms. Fifteen rats were randomly divided into 3 groups: the normal group, the model group and the HKC group. The early DN model rats were induced by unilateral nephrectomy combined with intraperitoneal injection of streptozotocin, and administered with either HKC suspension or vehicle after modeling and for a period of 4 weeks. Changes in the incipient glomerular lesions-related parameters in urine and blood were analyzed. Kidneys were isolated for histomorphometry, immunohistochemistry, immunofluorescence and Western blotting (WB) at sacrifice. In vitro , murine mesangial cells (MCs) were used to investigate inhibitory actions of hyperoside (HYP), a bioactive component of HKC, on cellular hypertrophy-associated signaling pathway by WB, compared with rapamycin (RAP). For the early DN model rats, HKC ameliorated micro-urinary albumin, body weight and serum albumin, but had no significant effects on renal function and liver enzymes; HKC improved renal shape, kidney weight and kidney hypertrophy index; HKC attenuated glomerular hypertrophy, GBM thickening and mild mesangial expansion; HKC inhibited the phosphorylation of Akt, mTOR and p70S6K, and the protein over-expression of transforming growth factor-β1 in kidneys. In vitro , the phosphorylation of PI3K, Akt, mTOR and p70S6K in MCs induced by high-glucose was abrogated by treatment of HYP or RAP. On the whole, this study further demonstrated HKC safely and efficiently alleviates the early glomerular pathological changes of DN, likely by inhibiting Akt/mTOR/p70S6K signaling activity in vivo and in vitro , and provided the first evidence that HKC directly contributes to the prevention of the early DN.
History of Childhood Kidney Disease and Risk of Adult End-Stage Renal Disease.
Calderon-Margalit, Ronit; Golan, Eliezer; Twig, Gilad; Leiba, Adi; Tzur, Dorit; Afek, Arnon; Skorecki, Karl; Vivante, Asaf
2018-02-01
The long-term risk associated with childhood kidney disease that had not progressed to chronic kidney disease in childhood is unclear. We aimed to estimate the risk of future end-stage renal disease (ESRD) among adolescents who had normal renal function and a history of childhood kidney disease. We conducted a nationwide, population-based, historical cohort study of 1,521,501 Israeli adolescents who were examined before compulsory military service in 1967 through 1997; data were linked to the Israeli ESRD registry. Kidney diseases in childhood included congenital anomalies of the kidney and urinary tract, pyelonephritis, and glomerular disease; all participants included in the primary analysis had normal renal function and no hypertension in adolescence. Cox proportional-hazards models were used to estimate the hazard ratio for ESRD associated with a history of childhood kidney disease. During 30 years of follow-up, ESRD developed in 2490 persons. A history of any childhood kidney disease was associated with a hazard ratio for ESRD of 4.19 (95% confidence interval [CI], 3.52 to 4.99). The associations between each diagnosis of kidney disease in childhood (congenital anomalies of the kidney and urinary tract, pyelonephritis, and glomerular disease) and the risk of ESRD in adulthood were similar in magnitude (multivariable-adjusted hazard ratios of 5.19 [95% CI, 3.41 to 7.90], 4.03 [95% CI, 3.16 to 5.14], and 3.85 [95% CI, 2.77 to 5.36], respectively). A history of kidney disease in childhood was associated with younger age at the onset of ESRD (hazard ratio for ESRD among adults <40 years of age, 10.40 [95% CI, 7.96 to 13.59]). A history of clinically evident kidney disease in childhood, even if renal function was apparently normal in adolescence, was associated with a significantly increased risk of ESRD, which suggests that kidney injury or structural abnormality in childhood has long-term consequences.
Ogawara, Aoi; Harada, Makoto; Ichikawa, Tohru; Fujii, Kazuaki; Ehara, Takashi; Kobayashi, Mamoru
2017-12-01
Renal prognosis for anti-glomerular basement membrane (GBM) glomerulonephritis is poor. The greater the amount of anti-GBM antibody binding the antigen (type IV collagen of the glomerular basement membrane), the greater the number of crescents that develop in glomeruli, resulting in progression of renal impairment. Immunofluorescence staining reveals linear IgG depositions on glomerular capillary walls. Membranous nephropathy (MN) is one of the most common causes of nephrotic syndrome in middle-aged to elderly patients. Immune complex is deposited in the sub-epithelial space of the glomerulus resulting in the development of a membranous lesion. Immunofluorescence staining reveals granular IgG depositions on glomerular capillary walls. Coexisting anti-GBM glomerulonephritis and MN are rare and, here we report a case of coexisting anti-GBM glomerulonephritis and MN with preserved renal function. There are some cases of coexisting anti-GBM glomerulonephritis and MN do not show severely decreased renal function. A 76-year-old Japanese woman presented with nephrotic syndrome, microscopic hematuria, and was positive for anti-GBM antibody. Kidney biopsy revealed linear and granular IgG depositions in glomerular capillary walls, crescent formations, and electron-dense deposits in the sub-epithelial space. She was diagnosed with anti-GBM glomerulonephritis and MN. Steroid and cyclosporine therapy achieved complete remission, and kidney function was preserved. In conclusion, coexisting anti-GBM glomerulonephritis and MN can have preserved renal function. IgG subclass of deposited anti-GBM antibody may be associated with the severity of anti-GBM glomerulonephritis. In addition, in the case of nephrotic syndrome with hematuria, we should consider the possibility of coexisting anti-GBM glomerulonephritis and MN.
Glomerular function in sickle cell disease patients during crisis.
Aderibigbe, A; Arije, A; Akinkugbe, O O
1994-06-01
An 8 month prospective study was carried out in 20 adult sickle cell disease (SCD) patients 16 sickle cell anaemia (Hbss) and 4 sickle cell Hbc disease (Hbsc); who had vaso-occlusive crises within the study period to determine the extent of the effect of sickle cell crisis on glomerular function in SCD patients during crisis. The male: female ratio was 1:57 and their mean age was 21.1 +/- 7.9 years. Creatinine clearance (CCr), as an index of glomerular function, was determined at the pre-crisis, crisis, 2 and 4 weeks post-crisis and at the end of the study period. The mean values of their CCr dropped from 113.37 +/- 33.80mls/min at pre-crisis stage to 96.39 +/- 30.13mls/min during crisis (p < 0.001) indicating glomerular dysfunction. It improved significantly to 107.75 +/- 30.20mls/min at 4 weeks post-crisis (p < 0.001). There was no significant differences in the mean values of CCr at the end of the study (116.20 +/- 31.43mls/min) compared to the pre-crisis stage (p > 0.05). It is concluded that glomerular dysfunction in SCD patients during crisis is potentially reversible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jiayao; Medical College of NanKai University, Tianjin; Li, Qinggang
2012-05-11
Highlights: Black-Right-Pointing-Pointer Overexpression of Robo2 caused reduced UB branching and glomerular number. Black-Right-Pointing-Pointer Fewer MM cells surrounding the UB after overexpression of Robo2 in vitro. Black-Right-Pointing-Pointer No abnormal Epithelial Morphology of UB or apoptosis of mm cells in the kidney. Black-Right-Pointing-Pointer Overexpression of Robo2 affected MM cells migration and caused UB deficit. Black-Right-Pointing-Pointer The reduced glomerular number can also be caused by fewer MM cells. -- Abstract: Roundabout 2 (Robo2) is a member of the membrane protein receptor family. The chemorepulsive effect of Slit2-Robo2 signaling plays vital roles in nervous system development and neuron migration. Slit2-Robo2 signaling is also importantmore » for maintaining the normal morphogenesis of the kidney and urinary collecting system, especially for the branching of the ureteric bud (UB) at the proper site. Slit2 or Robo2 mouse mutants exhibit multilobular kidneys, multiple ureters, and dilatation of the ureter, renal pelvis, and collecting duct system, which lead to vesicoureteral reflux. To understand the effect of Robo2 on kidney development, we used microinjection and electroporation to overexpress GFP-Robo2 in an in vitro embryonic kidney model. Our results show reduced UB branching and decreased glomerular number after in vitro Robo2 overexpression in the embryonic kidneys. We found fewer metanephric mesenchymal (MM) cells surrounding the UB but no abnormal morphology in the branching epithelial UB. Meanwhile, no significant change in MM proliferation or apoptosis was observed. These findings indicate that Robo2 is involved in the development of embryonic kidneys and that the normal expression of Robo2 can help maintain proper UB branching and glomerular morphogenesis. Overexpression of Robo2 leads to reduced UB branching caused by fewer surrounding MM cells, but MM cell apoptosis is not involved in this effect. Our study demonstrates that overexpression of Robo2 by microinjection in embryonic kidneys is an effective approach to study the function of Robo2.« less
Stevens, Megan; Neal, Christopher R; Salmon, Andrew H J; Bates, David O; Harper, Steven J; Oltean, Sebastian
2018-01-01
Genetic cell ablation using the human diphtheria toxin receptor (hDTR) is a new strategy used for analysing cellular function. Diphtheria toxin (DT) is a cytotoxic protein that leaves mouse cells relatively unaffected, but upon binding to hDTR it ultimately leads to cell death. We used a podocyte-specific hDTR expressing (Pod-DTR) mouse to assess the anti-permeability and cyto-protective effects of the splice isoform vascular endothelial growth factor (VEGF-A165b). The Pod-DTR mouse was crossed with a mouse that over-expressed VEGF-A165b specifically in the podocytes (Neph-VEGF-A165b). Wild type (WT), Pod-DTR, Neph-VEGF-A165b and Pod-DTR X Neph-VEGF-A165b mice were treated with several doses of DT (1, 5, 100, and 1,000 ng/g bodyweight). Urine was collected and the glomerular water permeability (LpA/Vi) was measured ex vivo after 14 days. Structural analysis and podocyte marker expression were also assessed. Pod-DTR mice developed an increased glomerular LpA/Vi 14 days after administration of DT (all doses), which was prevented when the mice over-expressed VEGF-A165b. No major structural abnormalities, podocyte ablation or albuminuria was observed in Pod-DTR mice, indicating this to be a mild model of podocyte disease. However, a change in expression and localisation of nephrin within the podocytes was observed, indicating disruption of the slit diaphragm in the Pod-DTR mice. This was prevented in the Pod-DTR X Neph-VEGF-A165b mice. Although only a mild model of podocyte injury, over-expression of the anti-permeability VEGF-A165b isoform in the podocytes of Pod-DTR mice had a protective effect. Therefore, this study further highlights the therapeutic potential of VEGF-A165b in glomerular disease. © 2018 The Author(s) Published by S. Karger AG, Basel.
Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix
Byron, Adam; Humphries, Jonathan D.; Randles, Michael J.; Carisey, Alex; Murphy, Stephanie; Knight, David; Brenchley, Paul E.; Zent, Roy; Humphries, Martin J.
2014-01-01
The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456. PMID:24436468
Zabor, Emily C; Furberg, Helena; Lee, Byron; Campbell, Steven; Lane, Brian R; Thompson, R Houston; Antonio, Elvis Caraballo; Noyes, Sabrina L; Zaid, Harras; Jaimes, Edgar A; Russo, Paul
2018-04-01
We sought to confirm the findings from a previous single institution study of 572 patients from Memorial Sloan Kettering Cancer Center in which we found that 49% of patients recovered to the preoperative estimated glomerular filtration rate within 2 years following radical nephrectomy for renal cell carcinoma. A multicenter retrospective study was performed in 1,928 patients using data contributed from 3 independent centers. The outcome of interest was postoperative recovery to the preoperative estimated glomerular filtration rate. Data were analyzed using cumulative incidence and competing risks regression with death from any cause treated as a competing event. This study demonstrated that 45% of patients had recovered to the preoperative estimated glomerular filtration rate by 2 years following radical nephrectomy. Furthermore, this study confirmed that recovery of renal function differed according to preoperative renal function such that patients with a lower preoperative estimated glomerular filtration rate had an increased chance of recovery. This study also suggested that larger tumor size and female gender were significantly associated with an increased chance of renal function recovery. In this multicenter retrospective study we confirmed that in the long term a large proportion of patients recover to preoperative renal function following radical nephrectomy for kidney tumors. Recovery is more likely among those with a lower preoperative estimated glomerular filtration rate. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Risk factors associated with the deterioration of renal function after kidney transplantation.
Serón, Daniel; Fulladosa, Xavier; Moreso, Francesc
2005-12-01
Renal function early after transplantation is associated with a large number of risk factors, including donor age and acute rejection. During the 1990s, donor age increased and the incidence of acute rejection decreased. Renal function between the third and sixth month improved slightly, while renal function deterioration between the third or sixth month and the 12th month improved significantly. This modification coincides with the introduction of mycophenolate mofetil and tacrolimus. The tendency for sustained renal improvement early after transplantation became more evident after the introduction of anti-calcineurin-free regimens. Studies of protocol biopsies have shown that there is an increase of glomerular volume after transplantation and that a larger glomerular volume at 4 months is associated with a better glomerular filtration rate. This adaptation mechanism is impaired in patients with chronic allograft nephropathy or in patients with high cyclosporin levels. Taken together, these data suggest that the steady improvement of renal allograft function may be partly explained by a better glomerular adaptation after transplantation because of the avoidance of the vasoconstrictive effect of anti-calcineurinic agents, and a significant decrease in the prevalence of chronic allograft nephropathy early after transplantation.
A unique evolution of the kidney phenotype in a patient with autosomal recessive Alport syndrome.
Vischini, Gisella; Kapp, Meghan E; Wheeler, Ferrin C; Hopp, Laszlo; Fogo, Agnes B
2018-03-09
Alport syndrome is due to mutations in one of the genes encoding (α3,4,5) type IV collagen resulting in defective type IV collagen, a key component of the glomerular basement membrane (GBM). The GBM is initially thin, and with ongoing remodeling, develops a thickened basket-woven appearance. We report a unique case of a 9-year-old boy who was biopsied for hematuria and proteinuria, diagnosed as IgA nephropathy, with normal GBM appearance and thickness. Due to a family history of hematuria and chronic kidney disease, he subsequently underwent genetic evaluation and a mutation of α3 type IV collagen (COL4A3) was detected. Additional studies of the initial biopsy demonstrated abnormal type IV collagen immunostaining. A repeat biopsy 4years later showed characteristic glomerular basement membrane morphology of Alport syndrome, and scarring consistent with sequelae of IgA nephropathy. This is the first description of this unusual transition from an initial normal appearance of the glomerular basement membrane to the classic Alport phenotype. Copyright © 2018. Published by Elsevier Inc.
Robson, A M; Cole, B R; Kienstra, R A; Kissane, J M; Alkjaersig, N; Fletcher, A P
1977-06-01
Serial determinations, using plasma fibrinogen gel chromatography as well as standard methodology, demonstrated that six children with severe glomerulonephritis, characterized on renal biopsy by glomerular necrosis and crescent formation, had persistent evidence of intravascular coagulation. Based on these observations, therapy with anticoagulants and azathicoagulants and azathioprine was instituted for one year; treatment with anticoagulants was continued for a second year. Anticoagulant therapy was initiated with heparin, followed by oral anticoagulation with phenindione and dipyridamole. In contrast to our earlier experience with similar patients, each of the present patients improved. Urinalyses returned to normal and glomerular filtration rates to near normal values in all patients at the end of the treatment period and have remained so for up to 3.9 years since treatment has been completed. Post-treatment biopsies showed remarkable improvement, with virtually no glomerulosclerosis even in patients who had had a high incidence of glomerular crescents before treatment. It is suggested that the therapeutic regimen favorably influenced the natural history of disease and that plasma fibrinogen chromatographic findings may be helpful in selecting patients likely to benefit from the use of anticoagulant therapy.
The Gne M712T mouse as a model for human glomerulopathy.
Kakani, Sravan; Yardeni, Tal; Poling, Justin; Ciccone, Carla; Niethamer, Terren; Klootwijk, Enriko D; Manoli, Irini; Darvish, Daniel; Hoogstraten-Miller, Shelley; Zerfas, Patricia; Tian, E; Ten Hagen, Kelly G; Kopp, Jeffrey B; Gahl, William A; Huizing, Marjan
2012-04-01
Pathological glomerular hyposialylation has been implicated in certain unexplained glomerulopathies, including minimal change nephrosis, membranous glomerulonephritis, and IgA nephropathy. We studied our previously established mouse model carrying a homozygous mutation in the key enzyme of sialic acid biosynthesis, N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Mutant mice died before postnatal day 3 (P3) from severe glomerulopathy with podocyte effacement and segmental glomerular basement membrane splitting due to hyposialylation. Administration of the sialic acid precursor N-acetylmannosamine (ManNAc) led to improved sialylation and survival of mutant pups beyond P3. We determined the onset of the glomerulopathy in the embryonic stage. A lectin panel, distinguishing normally sialylated from hyposialylated glycans, used WGA, SNA, PNA, Jacalin, HPA, and VVA, indicating glomerular hyposialylation of predominantly O-linked glycoproteins in mutant mice. The glomerular glycoproteins nephrin and podocalyxin were hyposialylated in this unique murine model. ManNAc treatment appeared to ameliorate the hyposialylation status of mutant mice, indicated by a lectin histochemistry pattern similar to that of wild-type mice, with improved sialylation of both nephrin and podocalyxin, as well as reduced albuminuria compared with untreated mutant mice. These findings suggest application of our lectin panel for categorizing human kidney specimens based on glomerular sialylation status. Moreover, the partial restoration of glomerular architecture in ManNAc-treated mice highlights ManNAc as a potential treatment for humans affected with disorders of glomerular hyposialylation. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Angiotensin converting enzyme inhibition and the kidney
NASA Technical Reports Server (NTRS)
Hollenberg, N. K.
1988-01-01
Angiotensin II (Ang II) induces a marked reduction in renal blood flow at doses well below those required to induce a pressor response, and as blood flow falls there is a decline in glomerular filtration rate and sodium excretion. This striking sensitivity of the renal blood supply led many workers to consider the possibility that angiotensin functions as a local renal hormone. As angiotensin converting enzyme (ACE) was found in particular abundance in the lung, it seemed reasonable to suspect that most of the conversion occurred there, and that the function of Ang II would be primarily systemic, rather than intrarenal. In this review, I will explore the evidence that has accumulated on these two possibilities, since they have important implications for our current understanding of normal kidney function and derangements of kidney function in disease.
Geraci, Stefania; Chacon-Caldera, Jorge; Cullen-McEwen, Luise; Schad, Lothar R; Sticht, Carsten; Puelles, Victor G; Bertram, John F; Gretz, Norbert
2017-09-01
Recently, new methods for assessing renal function in conscious mice (transcutaneous assessment) and for counting and sizing all glomeruli in whole kidneys (MRI) have been described. In the present study, these methods were used to assess renal structure and function in aging mice, and in mice born with a congenital low-nephron endowment. Age-related nephron loss was analyzed in adult C57BL/6 mice (10-50 wk of age), and congenital nephron deficit was assessed in glial cell line-derived neurotrophic factor heterozygous (GDNF HET)-null mutant mice. Renal function was measured through the transcutaneous quantitation of fluorescein isothiocyanate-sinistrin half-life ( t 1/2 ) in conscious mice. MRI was used to image, count, and size cationic-ferritin labeled glomeruli in whole kidneys ex vivo. Design-based stereology was used to validate the MRI measurements of glomerular number and mean volume. In adult C57BL/6 mice, older age was associated with fewer and larger glomeruli, and a rightward shift in the glomerular size distribution. These changes coincided with a decrease in renal function. GNDF HET mice had a congenital nephron deficit that was associated with glomerular hypertrophy and exacerbated by aging. These findings suggest that glomerular hypertrophy and hyperfiltration are compensatory processes that can occur in conjunction with both age-related nephron loss and congenital nephron deficiency. The combination of measurement of renal function in conscious animals and quantitation of glomerular number, volume, and volume distribution provides a powerful new tool for investigating aspects of renal aging and functional changes. Copyright © 2017 the American Physiological Society.
Wong, Craig S.; Pierce, Christopher B.; Cole, Stephen R.; Warady, Bradley A.; Mak, Robert H.K.; Benador, Nadine M.; Kaskel, Fredrick; Furth, Susan L.; Schwartz, George J.
2009-01-01
Background and objectives: Proteinuria is associated with chronic kidney disease (CKD), and heavy proteinuria predicts a rapid decline in kidney function. However, the epidemiologic distribution of this important biomarker study is not well described in the pediatric CKD population. Design, setting, participants & measurements: This cross-sectional study of North American children with CKD examined the association of proteinuria among the baseline clinical variables in the cohort. Urinary protein-to-creatinine ratios (Up/c) were used to measure level of proteinuria. Results: Of the 419 subjects studied, the median GFR as measured by iohexol disappearance (iGFR) was 42 ml/min per 1.73 m2, median duration of CKD was six yr, and glomerular diseases accounted for 22% of the CKD diagnoses. Twenty-four percent of children had normal range (Up/c <0.2), 62% had significant, and 14% had nephrotic-range proteinuria (Up/c >2.0). A decrease in iGFR was associated with an increase in Up/c. At any level of GFR, a higher Up/c was associated with a glomerular cause of CKD and non-Caucasian race. Among subjects with a glomerular cause of CKD, Up/c was lower in subjects reporting utilization of renin-angiotensin system (RAS) antagonists (median Up/c = 0.93) compared with those who did not (median Up/c = 3.78). Conclusions: Proteinuria is associated with level of iGFR, cause of CKD, and race. The longitudinal study design of Chronic Kidney Disease in Children (CKiD) cohort study and the large number of subjects being studied has created an opportunity to better define the association between proteinuria and CKD progression. PMID:19297612
Ding, Fangrui; Wickman, Larysa; Wang, Su Q; Zhang, Yanqin; Wang, Fang; Afshinnia, Farsad; Hodgin, Jeffrey; Ding, Jie; Wiggins, Roger C
2017-12-01
Podocyte depletion is a common mechanism driving progression in glomerular diseases. Alport Syndrome glomerulopathy, caused by defective α3α4α5 (IV) collagen heterotrimer production by podocytes, is associated with an increased rate of podocyte detachment detectable in urine and reduced glomerular podocyte number suggesting that defective podocyte adherence to the glomerular basement membrane might play a role in driving progression. Here a genetically phenotyped Alport Syndrome cohort of 95 individuals [urine study] and 41 archived biopsies [biopsy study] were used to test this hypothesis. Podocyte detachment rate (measured by podocin mRNA in urine pellets expressed either per creatinine or 24-hour excretion) was significantly increased 11-fold above control, and prior to a detectably increased proteinuria or microalbuminuria. In parallel, Alport Syndrome glomeruli lose an average 26 podocytes per year versus control glomeruli that lose 2.3 podocytes per year, an 11-fold difference corresponding to the increased urine podocyte detachment rate. Podocyte number per glomerulus in Alport Syndrome biopsies is projected to be normal at birth (558/glomerulus) but accelerated podocyte loss was projected to cause end-stage kidney disease by about 22 years. Biopsy data from two independent cohorts showed a similar estimated glomerular podocyte loss rate comparable to the measured 11-fold increase in podocyte detachment rate. Reduction in podocyte number and density in biopsies correlated with proteinuria, glomerulosclerosis, and reduced renal function. Thus, the podocyte detachment rate appears to be increased from birth in Alport Syndrome, drives the progression process, and could potentially help predict time to end-stage kidney disease and response to treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Nowak, Natalia; Skupien, Jan; Niewczas, Monika A.; Yamanouchi, Masayuki; Major, Melissa; Croall, Stephanie; Smiles, Adam; Warram, James H.; Bonventre, Joseph V.; Krolewski, Andrzej S.
2015-01-01
Progressively decreasing glomerular filtration rate (GFR), or renal decline, is seen in patients with type 1 diabetes (T1D) and normoalbuminuria or microalbuminuria. Here we examined the associations of kidney injury molecule-1 (KIM-1) in plasma and urine with the risk of renal decline and determine whether those associations are independent of markers of glomerular damage. The study group comprised patients with T1D from the 2nd Joslin Kidney Study of which 259 had normoalbuminuria and 203 had microalbuminuria. Serial measurements over 4 to 10 years of follow-up (median 8 years) of serum creatinine and cystatin C were used jointly to estimate eGFRcr-cys slopes and time of onset of CKD stage 3 or higher. Baseline urinary excretion of IgG2 and albumin were used as markers of glomerular damage, and urinary excretion of KIM-1 and its plasma concentration were used as markers of proximal tubular damage. All patients had normal renal function at baseline. During follow-up, renal decline (eGFRcr-cys loss 3.3% or more per year) developed in 96 patients and 62 progressed to CKD stage 3. For both outcomes, the risk rose with increasing baseline levels of plasma KIM-1. In multivariable models, elevated baseline plasma KIM-1 was strongly associated with risk of early progressive renal decline, regardless of baseline clinical characteristics, serum TNFR1 or markers of glomerular damage. Thus, damage to proximal tubules may play an independent role in the development of early progressive renal decline in non-proteinuric patients with T1D. PMID:26509588
[Why? How? What for? We must measure the glomerular filtration].
Treviño-Becerra, Alejandro
2010-01-01
The measurement of the glomerular filtration shows the degree of the functional qualities and the proficiency of the renal system. Despite new technologies, at present the best accepted technique for measuring the glomerular filtration in most countries is the clearance of creatinine in 24 hour urine. The clearance of creatinine has the advantage that it is confident, easy to reproduce, without technical limitations and low cost.
Müller-Deile, Janina; Dannenberg, Jan; Schroder, Patricia; Lin, Meei-Hua; Miner, Jeffrey H; Chen, Rongjun; Bräsen, Jan-Hinrich; Thum, Thomas; Nyström, Jenny; Staggs, Lynne Beverly; Haller, Hermann; Fiedler, Jan; Lorenzen, Johan M; Schiffer, Mario
2017-10-01
The pathophysiology of many proteinuric kidney diseases is poorly understood, and microRNAs (miRs) regulation of these diseases has been largely unexplored. Here, we tested whether miR-378a-3p is a novel regulator of glomerular diseases. MiR-378a-3p has two predicted targets relevant to glomerular function, the glomerular basement membrane matrix component, nephronectin (NPNT), and vascular endothelial growth factor VEGF-A. In zebrafish (Danio rerio), miR-378a-3p mimic injection or npnt knockdown by a morpholino oligomer caused an identical phenotype consisting of edema, proteinuria, podocyte effacement, and widening of the glomerular basement membrane in the lamina rara interna. Zebrafish vegf-A protein could not rescue this phenotype. However, mouse Npnt constructs containing a mutated 3'UTR region prevented the phenotype caused by miR-378a-3p mimic injection. Overexpression of miR-378a-3p in mice confirmed glomerular dysfunction in a mammalian model. Biopsies from patients with focal segmental glomerulosclerosis and membranous nephropathy had increased miR-378a-3p expression and reduced glomerular levels of NPNT. Thus, miR-378a-3p-mediated suppression of the glomerular matrix protein NPNT is a novel mechanism for proteinuria development in active glomerular diseases. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Nerpin, Elisabet; Risérus, Ulf; Ingelsson, Erik; Sundström, Johan; Jobs, Magnus; Larsson, Anders; Basu, Samar; Ärnlöv, Johan
2008-01-01
OBJECTIVE—To investigate the association between insulin sensitivity and glomerular filtration rate (GFR) in the community, with prespecified subgroup analyses in normoglycemic individuals with normal GFR. RESEARCH DESIGN AND METHODS—We investigated the cross-sectional association between insulin sensitivity (M/I, assessed using euglycemic clamp) and cystatin C–based GFR in a community-based cohort of elderly men (Uppsala Longitudinal Study of Adult Men [ULSAM], n = 1,070). We also investigated whether insulin sensitivity predicted the incidence of renal dysfunction at a follow-up examination after 7 years. RESULTS—Insulin sensitivity was directly related to GFR (multivariable-adjusted regression coefficient for 1-unit higher M/I 1.19 [95% CI 0.69–1.68]; P < 0.001) after adjusting for age, glucometabolic variables (fasting plasma glucose, fasting plasma insulin, and 2-h glucose after an oral glucose tolerance test), cardiovascular risk factors (hypertension, dyslipidemia, and smoking), and lifestyle factors (BMI, physical activity, and consumption of tea, coffee, and alcohol). The positive multivariable-adjusted association between insulin sensitivity and GFR also remained statistically significant in participants with normal fasting plasma glucose, normal glucose tolerance, and normal GFR (n = 443; P < 0.02). In longitudinal analyses, higher insulin sensitivity at baseline was associated with lower risk of impaired renal function (GFR <50 ml/min per 1.73 m2) during follow-up independently of glucometabolic variables (multivariable-adjusted odds ratio for 1-unit higher of M/I 0.58 [95% CI 0.40–0.84]; P < 0.004). CONCLUSIONS—Our data suggest that impaired insulin sensitivity may be involved in the development of renal dysfunction at an early stage, before the onset of diabetes or prediabetic glucose elevations. Further studies are needed in order to establish causality. PMID:18509205
New optical probes for the continuous monitoring of renal function
NASA Astrophysics Data System (ADS)
Dorshow, Richard B.; Asmelash, Bethel; Chinen, Lori K.; Debreczeny, Martin P.; Fitch, Richard M.; Freskos, John N.; Galen, Karen P.; Gaston, Kimberly R.; Marzan, Timothy A.; Poreddy, Amruta R.; Rajagopalan, Raghavan; Shieh, Jeng-Jong; Neumann, William L.
2008-02-01
The ability to continuously monitor renal function via the glomerular filtration rate (GFR) in the clinic is currently an unmet medical need. To address this need we have developed a new series of hydrophilic fluorescent probes designed to clear via glomerular filtration for use as real time optical monitoring agents at the bedside. The ideal molecule should be freely filtered via the glomerular filtration barrier and be neither reabsorbed nor secreted by the renal tubule. In addition, we have hypothesized that a low volume of distribution into the interstitial space could also be advantageous. Our primary molecular design strategy employs a very small pyrazine-based fluorophore as the core unit. Modular chemistry for functionalizing these systems for optimal pharmacokinetics (PK) and photophysical properties have been developed. Structure-activity relationship (SAR) and pharmacokinetic (PK) studies involving hydrophilic pyrazine analogues incorporating polyethylene glycol (PEG), carbohydrate, amino acid and peptide functionality have been a focus of this work. Secondary design strategies for minimizing distribution into the interstitium while maintaining glomerular filtration include enhancing molecular volume through PEG substitution. In vivo optical monitoring experiments with advanced candidates have been correlated with plasma PK for measurement of clearance and hence GFR.
Tiong, H Y; Goldfarb, D A; Kattan, M W; Alster, J M; Thuita, L; Yu, C; Wee, A; Poggio, E D
2009-03-01
We developed nomograms that predict transplant renal function at 1 year (Modification of Diet in Renal Disease equation [estimated glomerular filtration rate]) and 5-year graft survival after living donor kidney transplantation. Data for living donor renal transplants were obtained from the United Network for Organ Sharing registry for 2000 to 2003. Nomograms were designed using linear or Cox regression models to predict 1-year estimated glomerular filtration rate and 5-year graft survival based on pretransplant information including demographic factors, immunosuppressive therapy, immunological factors and organ procurement technique. A third nomogram was constructed to predict 5-year graft survival using additional information available by 6 months after transplantation. These data included delayed graft function, any treated rejection episodes and the 6-month estimated glomerular filtration rate. The nomograms were internally validated using 10-fold cross-validation. The renal function nomogram had an r-square value of 0.13. It worked best when predicting estimated glomerular filtration rate values between 50 and 70 ml per minute per 1.73 m(2). The 5-year graft survival nomograms had a concordance index of 0.71 for the pretransplant nomogram and 0.78 for the 6-month posttransplant nomogram. Calibration was adequate for all nomograms. Nomograms based on data from the United Network for Organ Sharing registry have been validated to predict the 1-year estimated glomerular filtration rate and 5-year graft survival. These nomograms may facilitate individualized patient care in living donor kidney transplantation.
Progression of renal fibrosis in congenital CKD model rats with reduced number of nephrons.
Yasuda, Hidenori; Tochigi, Yuki; Katayama, Kentaro; Suzuki, Hiroetsu
2017-06-14
A congenital reduction in the number of nephrons is a critical risk factor for both onset of chronic kidney disease (CKD) and its progression to end-stage kidney disease (ESKD). Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and show progressive CKD. This study used an immunohistological method to assess glomerular and interstitial pathogenesis in male HPK rats aged 35-210days. CD68 positive-macrophages were found to infiltrate into glomeruli in HPK rats aged 35 and 70days and to infiltrate into interstitial tissue in rats aged 140 and 210days. HPK rats aged 35 and 70days showed glomerular hypertrophy, loss of normal linear immunostaining of podocine, and increased expression of PDGFr-β, TGF-β, collagens, and fibronectin, with all of these alterations gradually deteriorating with age. α-SMA-positive myofibroblasts were rarely detected in glomerular tufts, whereas α-SMA-positive glomerular parietal epithelium (GPE) cells were frequently observed along Bowman's capsular walls. The numbers of PDGFr-β-positive fibroblasts in interstitial tissue were increased in rats aged 35days and older, whereas interstitial fibrosis, characterized by the increased expression of tubular PDGF-BB, the appearance of myofibroblasts doubly positive for PDGFr-β and α-SMA, and increased expression of collagens and fibronectin, were observed in rats aged 70 and older. These results clearly indicate that congenital CKD with only 20% of nephrons cause renal fibrosis in rats. Copyright © 2017 Elsevier GmbH. All rights reserved.
Kitamura, M; Kawachi, H
1997-09-15
Automatic control over exogenous gene expression in response to the activity of disease is a crucial hurdle for gene transfer-based therapies. Towards achieving this goal, we created a "cytosensor" that perceives local inflammatory states and subsequently regulates foreign gene expression. alpha-Smooth muscle actin is known to be expressed in glomerular mesangial cells exclusively in pathologic situations. CArG box element, the crucial regulatory sequence of the alpha-smooth muscle actin promoter, was used as a sensor for glomerular inflammation. Rat mesangial cells were stably transfected with an expression plasmid that introduces a beta-galactosidase gene under the control of CArG box elements. In vitro, the established cells expressed beta-galactosidase exclusively after stimulation with serum. To examine whether the cells are able to automatically control transgene activity in vivo, serum-stimulated or unstimulated cells were transferred into normal rat glomeruli or glomeruli subjected to anti-Thy 1 glomerulonephritis. When stimulated cells were transferred into the normal glomeruli, beta-galactosidase expression was switched off in vivo within 3 d. In contrast, when unstimulated cells were transferred into the nephritic glomeruli, transgene expression was substantially induced. These data indicate the feasibility of using the CArG box element as a molecular sensor for glomerular injury. In the context of advanced forms of gene therapy, this approach provides a novel concept for automatic regulation of local transgene expression where the transgene is required to be activated during inflammation and deactivated when the inflammation has subsided.
Functional recovery of odor representations in regenerated sensory inputs to the olfactory bulb
Cheung, Man C.; Jang, Woochan; Schwob, James E.; Wachowiak, Matt
2014-01-01
The olfactory system has a unique capacity for recovery from peripheral damage. After injury to the olfactory epithelium (OE), olfactory sensory neurons (OSNs) regenerate and re-converge on target glomeruli of the olfactory bulb (OB). Thus far, this process has been described anatomically for only a few defined populations of OSNs. Here we characterize this regeneration at a functional level by assessing how odor representations carried by OSN inputs to the OB recover after massive loss and regeneration of the sensory neuron population. We used chronic imaging of mice expressing synaptopHluorin in OSNs to monitor odor representations in the dorsal OB before lesion by the olfactotoxin methyl bromide and after a 12 week recovery period. Methyl bromide eliminated functional inputs to the OB, and these inputs recovered to near-normal levels of response magnitude within 12 weeks. We also found that the functional topography of odor representations recovered after lesion, with odorants evoking OSN input to glomerular foci within the same functional domains as before lesion. At a finer spatial scale, however, we found evidence for mistargeting of regenerated OSN axons onto OB targets, with odorants evoking synaptopHluorin signals in small foci that did not conform to a typical glomerular structure but whose distribution was nonetheless odorant-specific. These results indicate that OSNs have a robust ability to reestablish functional inputs to the OB and that the mechanisms underlying the topography of bulbar reinnervation during development persist in the adult and allow primary sensory representations to be largely restored after massive sensory neuron loss. PMID:24431990
Measuring residual renal function for hemodialysis adequacy: Is there an easier option?
Davenport, Andrew
2017-10-01
Most patients starting hemodialysis (HD) have residual renal function. As such, there has been increased interest in starting patients with less frequent and shorter dialysis session times. However, for this incremental approach to be successful, patients require regular monitoring of residual renal function, so that as residual renal function declines, the amount of HD is appropriately increased. Currently most dialysis centers rely on interdialytic urine collections. However, many patients find these inconvenient and there may be marked intrapatient variability due to compliance issues. Thus, alternative markers of residual renal function are required for routine clinical practice. Currently three middle sized molecules; cystatin C, β2 microglobulin, and βtrace protein have been investigated as potential endogenous markers of glomerular filtration. Although none is ideal, combinations of these markers have been proposed to provide a more accurate estimation of glomerular clearance, and in particular cut offs for minimal residual renal function. However, in patients with low levels of residual renal function it remains unclear as to whether the benefits of residual renal function equally apply to glomerular filtration or tubular function. © 2017 International Society for Hemodialysis.
Estimation of total glomerular number in stable renal transplants.
Fulladosa, Xavier; Moreso, Francesc; Narváez, Jose A; Grinyó, Josep M; Serón, Daniel
2003-10-01
Glomerular number (N(g)) is considered a major determinant of renal function and outcome. In the dog, it has been shown that Ng can be estimated with reasonable precision in vivo by means of a renal biopsy and magnetic resonance imaging (MRI). Thus, this method was applied to study anatomoclinical correlations in stable human renal transplants. Thirty-nine stable renal transplants were included. A protocol renal allograft biopsy was done at 4 mo. Biopsies were evaluated according to Banff criteria. Glomerular volume fraction (Vv(glom/cortex)) was measured by means of a point-counting method, and mean glomerular volume (V(g)) was estimated by means of Weibel and Gomez (V(g)-W&G) and maximal profile area (V(g)-MPA) methods. MRI was used to estimate renal cortical volume (V(cortex)). N(g) was calculated as (Vv(glom/cortex) x V(cortex))/V(g). GFR was estimated by the inulin clearance. Ten age-matched donor biopsies served as controls for V(g). Histologic diagnosis was as follows: normal (n = 20), borderline (n = 7), acute rejection (n = 1), and chronic allograft nephropathy (n = 11). Vv(glom/cortex) was 3.4 +/- 1.1%, V(cortex) was 167 +/- 46 cm(3), V(g)-W&G was 3.2 +/- 1.2 x 10(6) micro m(3), and V(g)-MPA was 3.3 +/- 1.0 x 10(6) micro m(3). V(g)-W&G in donor and recipient biopsies was not different (3.6 +/- 1.1 versus 3.2 +/- 1.2 x 10(6) micro m(3)). Total glomerular number estimated by means of V(g)-W&G (N(g)-W&G) was 0.73 +/- 0.33 x 10(6) and by V(g)-MPA (N(g)-MPA) was 0.74 +/- 0.31 x 10(6). A positive correlation between GFR and N(g)-W&G (r = 0.47, P = 0.002) was observed. Furthermore, the older the donor, the higher V(g)-W&G (r = 0.37, P = 0.01) and the lower N(g)-W&G (r = -0.40, P = 0.01). Total glomerular number can be estimated in stable renal allografts by means of a renal biopsy and MRI. Our data show that N(g) depends on donor age and positively correlates with GFR.
Which routine test for kidney function?
Parkin, A; Smith, H C; Brocklebank, J T
1989-01-01
Eighty measurements of plasma creatinine concentration, height:creatinine ratio, and plasma beta 2 microglobulin concentration were made on 72 children (age 4 months-18.5 years) with known renal disease. Results were compared with simultaneous measurements of glomerular filtration rate using plasma clearance of 51Cr edetic acid to assess the performance of each test as an initial screening procedure of renal insufficiency. Height:creatinine index less than 2.1 was found to have a higher sensitivity and predictive value of a normal result than the other tests and is therefore the preferred test for a screening procedure. PMID:2510609
[Impaired renal function: be aware of exogenous factors].
van der Meijden, Wilbert A G; Smak Gregoor, Peter J H
2013-01-01
Renal function is currently estimated using the Modification of Diet in Renal Disease (MDRD) formula, which is partly based on the serum creatinine level. Patients with impaired renal function are referred to nephrologists in accordance with the Dutch national transmural agreement for 'Chronic renal impairment'. A 54-year-old woman without significant history was referred to analyse a coincidentally found decline in the estimated glomerular filtration rate (eGFR). The patient had no complaints and used no medication except creatine supplements. Additional diagnostic testing showed no abnormalities. After cessation of creatine supplementation, the calculated renal function normalized. Serum creatinine is a reflection of muscle mass. The use of creatine-containing dietary supplements, such as creatine ethyl ester, can influence serum creatinine levels and therefore the eGFR as calculated with the MDRD formula. The use of supplements deserves attention when taking the history.
Novel routes of albumin passage across the glomerular filtration barrier.
Castrop, H; Schießl, I M
2017-03-01
Albuminuria is a hallmark of kidney diseases of various aetiologies and an unambiguous symptom of the compromised integrity of the glomerular filtration barrier. Furthermore, there is increasing evidence that albuminuria per se aggravates the development and progression of chronic kidney disease. This review covers new aspects of the movement of large plasma proteins across the glomerular filtration barrier in health and disease. Specifically, this review focuses on the role of endocytosis and transcytosis of albumin by podocytes, which constitutes a new pathway of plasma proteins across the filtration barrier. Thus, we summarize what is known about the mechanisms of albumin endocytosis by podocytes and address the fate of the endocytosed albumin, which is directed to lysosomal degradation or transcellular movement with subsequent vesicular release into the urinary space. We also address the functional consequences of overt albumin endocytosis by podocytes, such as the formation of pro-inflammatory cytokines, which might eventually result in a deterioration of podocyte function. Finally, we consider the diagnostic potential of podocyte-derived albumin-containing vesicles in the urine as an early marker of a compromised glomerular barrier function. In terms of new technical approaches, the review covers how our knowledge of the movement of albumin across the glomerular filtration barrier has expanded by the use of new intravital imaging techniques. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Kato, Takashi; Mizuno, Shinya; Ito, Akihiko
2014-01-01
The ICR-derived glomerulonephritis (ICGN) mouse is a unique model of nephrotic syndrome, and albuminuria becomes evident in a neonatal stage, due to a genetic mutation of tensin2. We previously provided evidence that an apparent decrease in nephrin, caused by tensin2-deficiencient states, leads to podocytopathy, albuminuria and eventually, chronic renal failure. In general, glomerular endothelial cells (ECs) function as a barrier through tight attachment of glomerular basement membrane to podocytes, while decreased ECs can worsen renal failure. Nevertheless, it is still unknown whether glomerular ECs are altered under the tensin-2-deficient states during the manifestation of chronic renal failure. Herein, we examined the changes of glomerular ECs, with focus on the expression of PECAM-1 and VE-cadherin (EC-specific markers), or of α-SMA (myofibroblast marker) in this mouse model by histological methods. Compared with the non-nephrotic (+/nep) mice, the nephrotic (nep/nep) mice exhibited the reduced expression of PECAM-1, or of VE-cadherin, in glomerular area. Notably, some glomerular ECs showed the positive stainings for both PECAM-1 and α-SMA, suggesting endothelial-to-mesenchymal transition (EndoMT) during progression of glomerular sclerosis. This is the first report showing that a decrease in glomerular ECs, at least in part, via EndoMT is involved in tensin2-deficient pathological conditions.
Activation of Hypoxia-Inducible Factors Prevents Diabetic Nephropathy
Nordquist, Lina; Friederich-Persson, Malou; Fasching, Angelica; Liss, Per; Shoji, Kumi; Nangaku, Masaomi; Hansell, Peter
2015-01-01
Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glomerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharmacologic activation of the HIF system may prevent development of diabetic nephropathy. PMID:25183809
Nezhad, Simin Torabi; Momeni, Babak; Basiratnia, Mitra
2010-09-01
Minimal change disease (MCD) and focal and segmental glomerulosclerosis (FSGS) are often studied together, because both present with heavy proteinuria and the nephrotic syndrome. The precise distinction between MCD and FSGS is sometimes difficult because of inadequate number of glomeruli for definite diagnosis. Some evidence suggests that markers of lipid peroxidation, such as malondialdehyde (MDA) is an index of free radical mediated injury and may be involved in the pathogenesis of FSGS. In this study, we assessed the immunoreactivity of MDA, the end product of lipid peroxidation in glomeruli of patients with idiopathic FSGS, MCD as well as normal controls (NC). Our results showed that the immunostaining level of MDA was significantly higher in patients with FSGS (mean = 1.5) than in either patients with MCD (mean = 0.16) or normal controls (mean = 0.11) with P value < 0.001. Glomerular MDA level correlated well with the degree of glomerulosclerosis in patients with idiopathic FSGS. Our data demonstrates that the glomerular level of MDA is higher in idiopathic FSGS than MCD. We suggest that MDA immunostaining can be helpful in differentiating between FSGS and MCD in problematic cases and when we do not have enough glomeruli for definite and correct diagnosis.
Hijazi, Ziad; Hohnloser, Stefan H; Andersson, Ulrika; Alexander, John H; Hanna, Michael; Keltai, Matyas; Parkhomenko, Alexander; López-Sendón, José L; Lopes, Renato D; Siegbahn, Agneta; Granger, Christopher B; Wallentin, Lars
2016-07-01
Renal impairment confers an increased risk of stroke, bleeding, and death in patients with atrial fibrillation. Little is known about the efficacy and safety of apixaban in relation to renal function changes over time. To evaluate changes of renal function over time and their interactions with outcomes during a median of 1.8 years of follow-up in patients with atrial fibrillation randomized to apixaban vs warfarin treatment. The prospective, randomized, double-blind Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) clinical trial randomized 18 201 patients with atrial fibrillation to apixaban or warfarin. Serial creatinine measurements were available in 16 869 patients. Worsening of renal function was defined as an annual decrease in estimated glomerular filtration more than 20%. The relations between treatment, outcomes, and renal function were investigated using Cox regression models, with renal function as a time-dependent covariate. Stroke or systemic embolism (primary outcome), major bleeding (safety outcome), and mortality were examined in relation to renal function over time estimated with both the Cockcroft-Gault and Chronic Kidney Disease Epidemiology Collaboration equations. Among 16 869 patients, the median age was 70 years and 65.2% of patients were men. Worsening in estimated glomerular filtration more than 20% was observed in 2294 patients (13.6%) and was associated with older age and more cardiovascular comorbidities. The risks of stroke or systemic embolism, major bleeding, and mortality were higher in patients with worsening renal function (HR, 1.53; 95% CI, 1.17-2.01 for stroke or systemic embolism; HR, 1.56; 95% CI, 1.27-1.93 for major bleeding; and HR, 2.31; 95% CI, 1.98-2.68 for mortality). The beneficial effects of apixaban vs warfarin on rates of stroke or systemic embolism and major bleeding were consistent in patients with normal or poor renal function over time and also in those with worsening renal function. In patients with atrial fibrillation, declining renal function was more common in elderly patients and those with cardiovascular comorbidities. Worsening renal function was associated with a higher risk of subsequent cardiovascular events and bleeding. The superior efficacy and safety of apixaban as compared with warfarin were similar in patients with normal, poor, and worsening renal function. clinicaltrials.gov Identifier: NCT00412984.
NASA Astrophysics Data System (ADS)
Dorshow, Richard B.; Debreczeny, Martin P.; Dowling, Thomas C.
2015-03-01
The fluorescent tracer agent 2,5-bis[N-(1-carboxy-2-hydroxy)]carbamoyl-3,6-diaminopyrazine, designated MB-102, has been developed with properties and attributes necessary for use as a direct measure of glomerular filtration rate (GFR). Comparison to known standard exogenous GFR agents in animal models has demonstrated an excellent correlation. A clinical trial to demonstrate this same correlation in humans is in progress. This clinical trial is the first in a series of trials necessary to obtain regulatory clearance from the FDA. We report herein the comparison of plasma pharmacokinetics between MB-102 and the known standard exogenous GFR agent Iohexol in healthy subjects with normal renal function. Post simultaneous administration of both agents, blood samples over a period of 12 hours were collected from each subject to assess pharmacokinetic parameters including GFR. Urine samples were collected over this same period to assess percent injected dose recovered in the urine. Results indicate MB-102 is a GFR agent in humans from the comparison to the standard agent.
Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed
2015-01-01
Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819
Hyperfiltration-mediated injury in the remaining kidney of a transplant donor.
Srivastava, Tarak; Hariharan, Sundaram; Alon, Uri S; McCarthy, Ellen T; Sharma, Ram; El-Meanawy, Ashraf; Savin, Virginia J; Sharma, Mukut
2018-05-29
Kidney donors face a small but definite risk of end-stage renal disease 15-30 years postdonation. The development of proteinuria, hypertension with gradual decrease in kidney function in the donor after surgical resection of 1 kidney has been attributed to hyperfiltration. Genetic variations, physiological adaptations, and co-morbidities exacerbate the hyperfiltration-induced loss of kidney function in the years following donation. A focus on glomerular hemodynamics and capillary pressure has led to the development of drugs that target the renin-angiotensin-aldosterone system (RAAS), but these agents yield mixed results in transplant recipients and donors. Recent work on glomerular biomechanical forces highlights the differential effects of tensile stress and fluid flow shear stress (FFSS) from hyperfiltration. Capillary wall stretch due to glomerular capillary pressure increases tensile stress on podocyte foot processes that cover the capillary. In parallel, increased flow of the ultrafiltrate due to single nephron glomerular filtration rate elevates FFSS on the podocyte cell body. While tensile stress invokes the RAAS, FFSS predominantly activates the COX2-PGE2-EP2 axis. Distinguishing these 2 mechanisms is critical, as current therapeutic approaches focus on the RAAS system. A better understanding of the biomechanical forces can lead to novel therapeutic agents to target FFSS through the COX2-PGE2-EP2 axis in hyperfiltration-mediated injury. We present an overview of several aspects of the risk to transplant donors and discuss the relevance of FFSS in podocyte injury, loss of glomerular barrier function leading to albuminuria and gradual loss of renal function, and potential therapeutic strategies to mitigate hyperfiltration-mediated injury to the remaining kidney.
Muscarinic Receptors Modulate Dendrodendritic Inhibitory Synapses to Sculpt Glomerular Output
Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus
2015-01-01
Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. PMID:25855181
Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.
Liu, Shaolin; Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus; Shipley, Michael T
2015-04-08
Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. Copyright © 2015 the authors 0270-6474/15/355680-13$15.00/0.
Triiodothyronine and thyroxine in urine. II. Renal handling, and effect of urinary protein.
Burke, C W; Shakespear, R A
1976-03-01
Mean urinary clearances of T3 were 164 ml/min in normal subjects, 177 in pregnancy, 221 in thyrotoxicosis, 174 in hypothyroidism, and 194 in 3 persons with undetectable T4 but normal T3 levels. T4 clearances were 38 ml/min in normal subjects, 48 in thyrotoxicosis, and 138 in hypothyroidism. Low creatinine clearance was associated with low clearances of T4 and T3. The data suggest urinary excretion of T3 by glomerular filtration of serum unbound T3 with added tubular excretion; and T4 excretion by glomerular filtration of unbound T4 and tubular reabsorption. However, 3-9% of urinary T3 and 5-12% of urinary T4 were bound to urinary proteins, and increased protein excretion caused markedly increased T4 excretion. In addition, 52% of urinary T3 and 68% of urinary T4 were bound to other substances of approximate mol wt 500-2,000, which may influence tubular handling of T3 or T4.
Puelles, Victor G.; Douglas-Denton, Rebecca N.; Cullen-McEwen, Luise A.; Li, Jinhua; Hughson, Michael D.; Hoy, Wendy E.; Kerr, Peter G.
2015-01-01
Increases in glomerular size occur with normal body growth and in many pathologic conditions. In this study, we determined associations between glomerular size and numbers of glomerular resident cells, with a particular focus on podocytes. Kidneys from 16 male Caucasian-Americans without overt renal disease, including 4 children (≤3 years old) to define baseline values of early life and 12 adults (≥18 years old), were collected at autopsy in Jackson, Mississippi. We used a combination of immunohistochemistry, confocal microscopy, and design-based stereology to estimate individual glomerular volume (IGV) and numbers of podocytes, nonepithelial cells (NECs; tuft cells other than podocytes), and parietal epithelial cells (PECs). Podocyte density was calculated. Data are reported as medians and interquartile ranges (IQRs). Glomeruli from children were small and contained 452 podocytes (IQR=335–502), 389 NECs (IQR=265–498), and 146 PECs (IQR=111–206). Adult glomeruli contained significantly more cells than glomeruli from children, including 558 podocytes (IQR=431–746; P<0.01), 1383 NECs (IQR=998–2042; P<0.001), and 367 PECs (IQR=309–673; P<0.001). However, large adult glomeruli showed markedly lower podocyte density (183 podocytes per 106 µm3) than small glomeruli from adults and children (932 podocytes per 106 µm3; P<0.001). In conclusion, large adult glomeruli contained more podocytes than small glomeruli from children and adults, raising questions about the origin of these podocytes. The increased number of podocytes in large glomeruli does not match the increase in glomerular size observed in adults, resulting in relative podocyte depletion. This may render hypertrophic glomeruli susceptible to pathology. PMID:25568174
Abrahamson, Dale R; St John, Patricia L; Isom, Kathryn; Robert, Barry; Miner, Jeffrey H
2007-08-01
Both endothelial cells and podocytes are sources for laminin alpha1 at the inception of glomerulogenesis and then for laminin alpha5 during glomerular maturation. Why glomerular basement membranes (GBM) undergo laminin transitions is unknown, but this may dictate glomerular morphogenesis. In mice that genetically lack laminin alpha5, laminin alpha5beta2gamma1 is not assembled, vascularized glomeruli fail to form, and animals die at midgestation with neural tube closure and placental deficits. It was previously shown that renal cortices of newborn mice contain endothelial progenitors (angioblasts) and that when embryonic day 12 kidneys are transplanted into newborn kidney, hybrid glomeruli (host-derived endothelium and donor-derived podocytes) result. Reasoning that host endothelium may correct the glomerular phenotype that is seen in laminin alpha5 mutants, alpha5 null embryonic day 12 metanephroi were grafted into wild-type newborn kidney. Hybrid glomeruli were identified in grafts by expression of a host-specific LacZ lineage marker. Labeling of glomerular hybrid GBM with chain-specific antibodies showed a markedly stratified distribution of laminins: alpha5 was found only on the inner endothelial half of GBM, whereas alpha1 located to outer layers beneath mutant podocytes. For measurement of the contribution of host endothelium to hybrid GBM, immunofluorescent signals for laminin alpha5 were quantified: Hybrid GBM contained approximately 50% the normal alpha5 complement as wild-type GBM. Electron microscopy of glomerular hybrids showed vascularization, but podocyte foot processes were absent. It was concluded that (1) endothelial and podocyte-derived laminins remain tethered to their cellular origin, (2) developing endothelial cells contribute large amounts of GBM laminins, and (3) podocyte foot process differentiation may require direct exposure to laminin alpha5.
Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis--a review.
Löwik, M M; Groenen, P J; Levtchenko, E N; Monnens, L A; van den Heuvel, L P
2009-11-01
This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of glomerular proteinuria and/or focal segmental glomerulosclerosis. Here, we describe already well-characterized genetic diseases due to mutations in nephrin, podocin, CD2AP, alpha-actinin-4, WT1, and laminin beta2 chain, as well as more recently identified genetic abnormalities in TRPC6, phospholipase C epsilon, and the proteins encoded by the mitochondrial genome. In addition, the role of the proteins which have shown to be important for the structure and functions by gene knockout studies in mice, are also discussed. Furthermore, some rare syndromes with glomerular involvement, in which molecular defects have been recently identified, are briefly described. In summary, this review updates the current knowledge of genetic causes of congenital and childhood nephrotic syndrome and provides new insights into mechanisms of glomerular dysfunction.
In vivo imaging of kidney glomeruli transplanted into the anterior chamber of the mouse eye
Kistler, Andreas D.; Caicedo, Alejandro; Abdulreda, Midhat H.; Faul, Christian; Kerjaschki, Dontscho; Berggren, Per-Olof; Reiser, Jochen; Fornoni, Alessia
2014-01-01
Multiphoton microscopy enables live imaging of the renal glomerulus. However, repeated in vivo imaging of the same glomerulus over extended periods of time and the study of glomerular function independent of parietal epithelial and proximal tubular cell effects has not been possible so far. Here, we report a novel approach for non-invasive imaging of acapsular glomeruli transplanted into the anterior chamber of the mouse eye. After microinjection, glomeruli were capable of engrafting on the highly vascularized iris. Glomerular structure was preserved, as demonstrated by podocyte specific expression of cyan fluorescent protein and by electron microscopy. Injection of fluorescence-labeled dextrans of various molecular weights allowed visualization of glomerular filtration and revealed leakage of 70 kDa dextran in an inducible model of proteinuria. Our findings demonstrate functionality and long-term survival of glomeruli devoid of Bowman's capsule and provide a novel approach for non-invasive longitudinal in vivo study of glomerular physiology and pathophysiology. PMID:24464028
DiBona, G F; Sawin, L L
2001-08-01
Sympathetic nerve activity, including that in the kidney, is increased in heart failure with increased plasma concentrations of norepinephrine and the vasoconstrictor cotransmitter neuropeptide Y (NPY). We examined the contribution of NPY to sympathetically mediated alterations in kidney function in normal and heart failure rats. Heart failure rats were created by left coronary ligation and myocardial infarction. In anesthetized normal rats, the NPY Y(1) receptor antagonist, H 409/22, at two doses, had no effect on heart rate, arterial pressure, or renal hemodynamic and excretory function. In conscious severe heart failure rats, high-dose H 409/22 decreased mean arterial pressure by 8 +/- 2 mm Hg but had no effect in normal and mild heart failure rats. During graded frequency renal sympathetic nerve stimulation (0 to 10 Hz), high-dose H 409/22 attenuated the decreases in renal blood flow only at 10 Hz (-36% +/- 5%, P <.05) in normal rats but did so at both 4 (-29% +/- 4%, P <.05) and 10 Hz (-33% +/- 5%, P <.05) in heart failure rats. The glomerular filtration rate, urinary flow rate, and sodium excretion responses to renal sympathetic nerve stimulation were not affected by high-dose H 409/22 in either normal or heart failure rats. NPY does not participate in the regulation of kidney function and arterial pressure in normal conscious or anesthetized rats. When sympathetic nervous system activity is increased, as in heart failure and intense renal sympathetic nerve stimulation, respectively, a small contribution of NPY to maintenance of arterial pressure and to sympathetic renal vasoconstrictor responses may be identified.
Bueters, Ruud R G; Jeronimus-Klaasen, Annelies; Brüggemann, Roger J M; van den Heuvel, Lambertus P; Schreuder, Michiel F
2017-09-01
Up to two-thirds of premature born neonates are treated for infections with aminoglycosides such as gentamicin. Although acute toxicities are well described, there is uncertainty on developmental changes after treatment of premature born neonates. We studied the effect of gentamicin and ceftazidime on kidney development in the rat. Additionally, we evaluated the modulating effect of extrauterine growth restriction. On postnatal day (PND) 2, Wistar rats were cross-fostered into normal sized litters (12 pups) or large litters (20 pups) to create normal food (NF) or food restricted (FR) litters to simulate growth restriction and dosed daily intraperitoneally with placebo, 4 mg/kg of gentamicin or 50 mg/kg ceftazidime until PND 8. Gentamicin pharmacokinetics were studied in a separate group of animals. Kidneys were weighed. Renal expression of 18 developmental genes was evaluated by quantitative PCR on PND 8. On PND 35, glomerular number was assessed by stereology and glomerular generations were counted. Food restricted litters showed 22% less body weight compared with controls by day 35 (p < 0.001), 1.4- to 1.5-fold down regulation of Renin, Oat1, and Agtr1a (p < 0.05) expression and a 12% reduction in glomerular numbers (mean 30841 vs. 35187, p < 0.001), whereas glomerular generation count was unaffected. Gentamicin pharmacokinetic parameters were found to be in a human clinical range (mean maximum concentration in plasma of 4.88 mg/L and mean area under the plasma-concentration time curve up to the last measured concentration after 4 hr of 10.71 mg.h/L for sexes combined) and all endpoints were unaffected. Ceftazidime reduced Renin expression by 1.7-fold (p < 0.01). Our experiments showed that gentamicin at clinical levels did not disturb kidney development, ceftazidime can affect Renin expression, and extrauterine growth restriction impairs kidney development, but did not modulate potential drug toxicity. Birth Defects Research 109:1228-1235, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Cicero, Arrigo F G; Kuwabara, Masanari; Johnson, Richard; Bove, Marilisa; Fogacci, Federica; Rosticci, Martina; Giovannini, Marina; D'Addato, Sergio; Borghi, Claudio
2018-06-15
Serum uric acid (SUA) and oxidized LDL (oxLDL) may be associated with arterial aging. The aim of our study was to evaluate the relationship between SUA, oxLDL and arterial stiffness in subjects with normal renal function and in patients with mild or moderate renal impairment. From the database of the 2012 Brisighella Heart Study, we compared age-matched adult, non-smoker subjects without cardiovascular disease and with normal renal function (n = 205), subjects with stage II chronic kidney disease (CKD) (n = 118) and subjects with stage III CKD (n = 94). All subjects underwent a determination of the LDL oxidative susceptibility, oxLDL levels, SUA and Pulse Wave Velocity (PWV). By univariate analysis, PWV correlated with a large number of clinical, haemodynamic and metabolic parameters, including estimated glomerular filtration rate (eGFR) in subjects with normal renal function and in those with stage II or III CKD. Stepwise multiple regression analyses showed that in the presence of normal renal function or stage II CKD, the main predictors of PWV were age, systolic blood pressure (SBP), ox-LDL, apolipoprotein B and SUA (p < 0.05), while in the presence of stage III CKD only age, SBP and apolipoprotein B remained significant (p < 0.05). Both ox-LDL and SUA independently predicts PWV only in subjects with normal or mildly reduced renal function, but not in the subjects with more compromised eGFR. This study confirms the complex relationship of SUA with cardiovascular and metabolic disease in the patient with established renal disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Fluid and electrolyte disturbances in cirrhosis.
Papper, S
1976-01-01
Glomerular filtration rate and renal plasma flow may be normal, reduced or increased in cirrhosis. The mechanism of departures from normal is not known. Other renal functional changes in cirrhosis include avid sodium reabsorption, impaired concentrating and diluting abilities, and partial renal tubular acidosis. Fluid and electrolyte disorders are common. Sodium retention with edema and ascites should generally be treated conservatively because they tend to disappear as the liver heals and because forced diuresis has hazards. The indications for diuretics are (1) incipient or overt atelectasis; (2) abdominal distress; and (3) possibility of skin breakdown. Hyponatremia is common and its mechanism and treatment must be assessed in each patient. Hypokalemia occurs and requires treatment. Respiratory alkalosis and renal tubular acidosis seldom need therapy. The hepatorenal syndrome is defined as functional renal failure in the absence of other known causes of renal functional impairment. The prognosis is terrible and therapy is unsatisfactory. The best approach is not to equate the occurrence of renal failure in cirrhosis with the hepatorenal syndrome. Rather the physician should first explore all treatable causes of renal failure, eg, dehydration, obstruction, infection, heart failure, potassium depletion, and others.
Muntner, Paul; Vupputuri, Suma; Coresh, Josef; Uribarri, Jaime; Fox, Caroline S.
2011-01-01
Elevated serum cystatin C may represent an early stage of kidney disease. It is unclear whether metabolic abnormalities typically seen in advanced chronic kidney disease are present in adults with estimated glomerular filtration rate ≥60 ml/min/1.73m2 and elevated cystatin C. Participants of the Third National Health and Nutrition Examination Survey (n=6722) were categorized into three groups: estimated glomerular filtration rate ≥ 60 ml/min/1.73m2 and cystatin C <1.09 mg/L (normal cystatin C); estimated glomerular filtration rate ≥60 ml/min/1.73m2 and cystatin C ≥1.09 mg/L (elevated cystatin C); and estimated glomerular filtration rate of 15-59 ml/min/1.73m2 (stage 3 or 4 chronic kidney disease). Among those with normal cystatin C, elevated cystatin C, and stage 3 or 4 chronic kidney disease, the age, race-ethnicity, sex standardized prevalence of serum hemoglobin <12 g/dL (<13 g/dL for men) was 4.3%, 8.2%, and 13.8%; serum uric acid ≥ 5.9 mg/dL (≥7.4 mg/dL for men) was 12.6%, 30.0%, and 45.0%; serum homocysteine ≥13 μmol/L was 12.1%, 25.1%, and 41.0%; serum phosphorus ≥3.9 mg/dL was 17.2%, 23.2%, and 25.8%; serum albumin <3.8 mg/dL was 14.5%, 20.0%, and 20.4%; plasma fibrinogen ≥352 mg/dL was 10.5%, 21.7%, and 23.2%; and C-reactive protein ≥1.0 g/dL was 7.5%, 22.5%, and 21.6% (each p-trend<0.001). Among adults with estimated glomerular filtration rate ≥60 ml/min/1.73m2, elevated serum cystatin C is associated with an increased prevalence of several metabolic abnormalities. PMID:19295502
Kerjaschki, D; Poczewski, H; Dekan, G; Horvat, R; Balzar, E; Kraft, N; Atkins, R C
1986-01-01
Glomerular visceral epithelial cells are endowed with a sialic acid-rich surface coat (the "glomerular epithelial polyanion"), which in rat tissue contains the sialoprotein podocalyxin. We have identified a major membrane sialoprotein in human glomeruli that is similar to rat podocalyxin in its sialic acid-dependent binding of wheat germ agglutinin and in its localization on the surface of glomerular epithelial and endothelial cells, as shown by immunoelectron microscopy, using the monoclonal antibody PHM5. Differences in the sialoproteins of the two species are indicated by the discrepancy of their apparent molecular weights in sodium dodecyl sulfate gels, by the lack of cross reactivity of their specific antibodies, and by the lack of homology of their proteolytic peptide maps. It is therefore possible that the human glomerular sialoprotein and rat podocalyxin are evolutionarily distinct, but have similar functions. Images PMID:3533998
Serum Creatinine: Not So Simple!
Delanaye, Pierre; Cavalier, Etienne; Pottel, Hans
2017-01-01
Measuring serum creatinine is cheap and commonly done in daily practice. However, interpretation of serum creatinine results is not always easy. In this review, we will briefly remind the physiological limitations of serum creatinine due notably to its tubular secretion and the influence of muscular mass or protein intake on its concentration. We mainly focus on the analytical limitations of serum creatinine, insisting on important concept such as reference intervals, standardization (and IDMS traceability), analytical interferences, analytical coefficient of variation (CV), biological CV and critical difference. Because the relationship between serum creatinine and glomerular filtration rate is hyperbolic, all these CVs will impact not only the precision of serum creatinine but still more the precision of different creatinine-based equations, especially in low or normal-low creatinine levels (or high or normal-high glomerular filtration rate range). © 2017 S. Karger AG, Basel.
Diabetes mellitus with normal renal function is associated with anaemia.
Grossman, Chagai; Dovrish, Zamir; Koren-Morag, Nira; Bornstein, Gil; Leibowitz, Avshalom
2014-05-01
Anaemia is a common complication of diabetes mellitus (DM), usually related to renal failure. There is scarce information as to the levels of haemoglobin (Hb) and the rate of anaemia in diabetic patients with normal renal function. We, therefore, evaluated haemoglobin levels and the rate of anaemia in diabetic subjects with normal renal functions [estimated glomerular filtration rate (eGFR) > 60 mL/min]. The charts of 9250 subjects who attended the Institute of Periodic Medical Examinations at the Chaim Sheba Medical Center for a routine yearly check-up were reviewed. Four hundred and forty-five subjects with type 2 DM and normal renal function were indentified and compared with those without DM who were routinely examined at the same time. Subjects' electronic records were used to build a biochemical and clinical database. Mean haemoglobin levels were lower in subjects with DM than in those without (14.2 vs. 14.7 g/dL, respectively; p < 0.001). Anaemia was observed in 48 (10.8%) subjects in the diabetic group and in only 12 (2.7%) in the nondiabetic group (p < 0.001). Multivariate analysis revealed that age, gender, history of gastrointestinal disease, use of beta blockers, renal function and DM were independent determinants of haemoglobin levels. After adjustment for age, gender, history of gastrointestinal tract diseases and renal function, DM remained a significant determinant of anaemia with an odds ratio of 2.15 (confidence interval: 1.07-4.31). Anaemia is more common in diabetic patients even when eGFR > 60 mL/min. Copyright © 2013 John Wiley & Sons, Ltd.
Park, Walter D; Larson, Timothy S; Griffin, Matthew D; Stegall, Mark D
2012-11-15
After the first year after kidney transplantation, 3% to 5% of grafts fail each year but detailed studies of how grafts progress to failure are lacking. This study aimed to analyze the functional stability of kidney transplants between 1 and 5 years after transplantation and to identify initially well-functioning grafts with progressive decline in allograft function. The study included 788 adult conventional kidney transplants performed at the Mayo Clinic Rochester between January 2000 and December 2005 with a minimum graft survival and follow-up of 2.6 years. The modification of diet in renal disease equation for estimating glomerular filtration rate (eGFR(MDRD)) was used to calculate the slope of renal function over time using all available serum creatinine values between 1 and 5 years after transplantation. Most transplants demonstrated good function (eGFR(MDRD) ≥40 mL/min) at 1 year with positive eGFR(MDRD) slope between 1 and 5 years after transplantation. However, a subset of grafts with 1-year eGFR(MDRD) ≥40 mL/min exhibited strongly negative eGFR(MDRD) slope between 1 and 5 years suggestive of progressive loss of graft function. Forty-one percent of this subset reached graft failure during follow-up, accounting for 69% of allograft failures occurring after 2.5 years after transplantation. This pattern of progressive decline in estimated glomerular filtration rate despite good early function was associated with but not fully attributable to factors suggestive of enhanced antidonor immunity. Longitudinal analysis of serial estimated glomerular filtration ratemeasurements identifies initially well-functioning kidney transplants at high risk for subsequent graft loss. For this subset, further studies are needed to identify modifiable causes of functional decline.
Wu, Xi-li; Sun, Wan-sen; Zhang, Wang-gang; Qiao, Cheng-lin; Wang, Zhu; Wang, Juan
2007-11-01
To explore the effect of Yishen capsule on the serum vascular endothelial growth factor (VEGF), the cell immunity and the theraphic. Serum VEGF and T cell subsets were studied in 30 normal subjects and 83 patients before and after treatment. Compare with normal subjects, CD3, CD4, CD4/CD8 were decreased, CD8 and serum VEGF were increased obviously (P <0. 05 or P <0. 01). After three months treatment with YiShen capsule, CD4/CD8 was increased, CD8 and serum VEGF were decreased significantly (P <0.05 or P <0.01). Yishen capsule can reduce the proteinuria, increase the function of immunity and improve the clinical symptom of patients with chronic glomerulonephritis, achieved the effects of allevating chronic glomerular sclerosis ultimately.
Assessment of glomerular filtration rate and effective renal plasma flow in cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spino, M.; Chai, R.P.; Isles, A.F.
1985-07-01
A study was conducted to examine renal function in 10 healthy control subjects and eight patients with cystic fibrosis in stable condition. Sequential bolus injections of /sup 99m/Tc-DTPA and /sup 125/I-OIH were administered to assess glomerular filtration rate and effective renal plasma flow, respectively. Blood was subsequently collected for 3 hours, and urine for 24 hours. Renal clearances of both radioisotope markers were virtually identical in patients and controls. Inasmuch as neither glomerular filtration rate nor effective renal plasma flow was enhanced in patients with cystic fibrosis, increased clearance of drugs in these patients is unlikely to be the resultmore » of enhanced glomerular filtration or tubular secretion.« less
Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H
2004-12-01
The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.
Zhu, Ran; Allingstrup, Matilde J; Perner, Anders; Doig, Gordon S
2018-05-15
We investigated whether preexisting kidney function determines if ICU patients may benefit from increased (2.0 g/kg/d) protein intake. Post hoc, hypothesis-generating, subgroup analysis of a multicenter, phase 2, randomized clinical trial. All analyses were conducted by intention to treat and maintained group allocation. Ninety-day mortality was the primary outcome. ICUs of 16 hospitals throughout Australia and New Zealand. Adult critically ill patients expected to remain in the study ICU for longer than 2 days. Random allocation to receive a daily supplement of up to 100 g of IV amino acids to achieve a total protein intake of 2.0 g/kg/d or standard nutrition care. A total of 474 patients were randomized: 235 to standard care and 239 to IV amino acid supplementation. There was a statistically significant interaction between baseline kidney function and supplementation with study amino acids (p value for interaction = 0.026). Within the subgroup of patients with normal kidney function at randomization, patients who were allocated to receive the study amino acid supplement were less likely to die before study day 90 (covariate-adjusted risk difference, -7.9%; 95% CI, -15.1 to -0.7; p = 0.034). Furthermore, amino acid supplementation significantly increased estimated glomerular filtration rate in these patients (repeated-measures treatment × time interaction p = 0.009). Within the subgroup of patients with baseline kidney dysfunction and/or risk of progression of acute kidney injury, a significant effect of the study intervention on mortality was not found (covariate-adjusted risk difference, -0.6%; 95% CI, -16.2 to 15.2; p = 0.95). In this post hoc, hypothesis-generating, subgroup analysis, we observed reduced mortality and improved estimated glomerular filtration rate in ICU patients with normal kidney function who were randomly allocated to receive increased protein intake (up to 2.0 g/kg/d). We strongly recommend confirmation of these results in trials with low risk of bias before this treatment is recommended for routine care.
Determination of glomerular function in advanced renal failure.
Manz, F; Alatas, H; Kochen, W; Lutz, P; Rebien, W; Schärer, K
1977-01-01
In 15 children with advanced chronic renal failure, glomerular filtration rate was determined by different methods. Inulin clearance correlated well with the mean of creatinine and urea clearance, and also with 51-chromium edetic acid (EDTA) clearance measured over 24 hours. The absolute values of creatinine clearance and of 51Cr-EDTA clearance measured up to 8 hours were higher than inulin clearance. In advanced renal failure both the 51Cr-EDTA clearance measured over 24 hours, and the mean of creatinine and urea clearance, provide acceptable estimates of true glomerular filtration rate. PMID:411426
Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease
Majumder, Syamantak; Thieme, Karina; Batchu, Sri N.; Alghamdi, Tamadher A.; Bowskill, Bridgit B.; Kabir, M. Golam; Liu, Youan; Advani, Suzanne L.; White, Kathryn E.; Geldenhuys, Laurette; Tennankore, Karthik K.; Poyah, Penelope; Siddiqi, Ferhan S.
2017-01-01
Histone protein modifications control fate determination during normal development and dedifferentiation during disease. Here, we set out to determine the extent to which dynamic changes to histones affect the differentiated phenotype of ordinarily quiescent adult glomerular podocytes. To do this, we examined the consequences of shifting the balance of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark in podocytes. Adriamycin nephrotoxicity and subtotal nephrectomy (SNx) studies indicated that deletion of the histone methylating enzyme EZH2 from podocytes decreased H3K27me3 levels and sensitized mice to glomerular disease. H3K27me3 was enriched at the promoter region of the Notch ligand Jag1 in podocytes, and derepression of Jag1 by EZH2 inhibition or knockdown facilitated podocyte dedifferentiation. Conversely, inhibition of the Jumonji C domain–containing demethylases Jmjd3 and UTX increased the H3K27me3 content of podocytes and attenuated glomerular disease in adriamycin nephrotoxicity, SNx, and diabetes. Podocytes in glomeruli from humans with focal segmental glomerulosclerosis or diabetic nephropathy exhibited diminished H3K27me3 and heightened UTX content. Analogous to human disease, inhibition of Jmjd3 and UTX abated nephropathy progression in mice with established glomerular injury and reduced H3K27me3 levels. Together, these findings indicate that ostensibly stable chromatin modifications can be dynamically regulated in quiescent cells and that epigenetic reprogramming can improve outcomes in glomerular disease by repressing the reactivation of developmental pathways. PMID:29227285
Laminin α2-Mediated Focal Adhesion Kinase Activation Triggers Alport Glomerular Pathogenesis
Delimont, Duane; Dufek, Brianna M.; Meehan, Daniel T.; Zallocchi, Marisa; Gratton, Michael Anne; Phillips, Grady; Cosgrove, Dominic
2014-01-01
It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM) of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK) on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages. PMID:24915008
Schwarz, Anke; Merkel, Saskia; Leitolf, Holger; Haller, Hermann
2011-03-15
Parathyroidectomy is associated with renal functional losses in transplant patients; cinacalcet offers an attractive alternative. We performed a prospective observational study in 58 patients with persisting hyperparathyroidism after renal transplantation (Ca≥2.6 mmol/L) and impaired renal transplant function (estimated glomerular filtration rate [eGFR] <50 mL/min). The patients received 30 to 90 mg cinacalcet for 12 months with the target to normalize serum Ca. We measured parathyroid hormone (PTH), serum Ca, serum phosphorus, alkaline phosphatase, bone-specific alkaline phosphatase, osteocalcin, and telopeptide at 0, 1, 2, 3, 6, 9, and 12 months of cinacalcet treatment. Fractional excretion of calcium and phosphorus (n=24) were monitored at 0 and 1 month. At inclusion, creatinine was 181±70 μmol/L, eGFR 43±19 mL/min, PTH 371±279 pg/mL, and Ca 2.73±0.22 mmol/L. We observed nephrocalcinosis in 58% of biopsied patients at enrollment. After cinacalcet, Ca decreased significantly and normalized at nearly any measurement. Phosphorus increased significantly at months 1, 9, and 12. PTH decreased significantly, but only at months 9 and 12 and did not normalize. Bone-specific alkaline phosphatase increased significantly (>normal) by month 12. eGFR decreased and serum creatinine increased at all time points. The Δ(creatinine) % increase correlated significantly with the Δ(PTH) % decrease at month 1 and 12. Telopeptide and alkaline phosphatase correlated with PTH and telopeptide also correlated with serum creatinine. Calcium-phosphorus homeostasis in hypercalcemic renal transplant patients normalizes under cinacalcet and PTH decreases, albeit not to normal. The renal functional decline could be PTH mediated, analogous to the effects observed after parathyroidectomy.
Bulum, Tomislav; Tomić, Martina; Duvnjak, Lea
2018-06-01
Previous studies suggested that total serum bilirubin levels are negatively associated with diabetic retinopathy (DR) and nephropathy in patients with diabetes mellitus. The objective of this study was to explore the relationship between serum total bilirubin levels and prevalence of DR in patients with type 1 diabetes (T1DM) and normal renal function. Study included 163 T1DM with normal renal function (urinary albumin excretion rate <30 mg/24 h, estimated glomerular filtration rate (eGFR) >60 ml min -1 1.73 m -2 ). Photo-documented retinopathy status was made according to the EURODIAB protocol. Patients with DR were older (49 vs 42 years, p = 0.001), had higher systolic blood pressure (130 vs 120 mmHg, p = 0.001), triglycerides (0.89 vs 0.77 mmol/L, p = 0.01), and lower serum total bilirubin (12 vs 15 U/L, p = 0.02) and eGFR (100 vs 106 ml min -1 1.73 m -2 , p = 0.03). In multivariate logistic regression analysis, only total serum bilirubin was significantly associated with risk of DR in our subjects (OR 0.88, CI 0.81-0.96, p = 0.006). These data suggest that serum total bilirubin levels are independently negatively associated with DR in T1DM with normal renal function. Prospective studies are needed to confirm whether lower serum total bilirubin has predictive value for the development of DR in T1DM with normal renal function.
Viazzi, Francesca; Piscitelli, Pamela; Ceriello, Antonio; Fioretto, Paola; Giorda, Carlo; Guida, Pietro; Russo, Giuseppina; De Cosmo, Salvatore; Pontremoli, Roberto
2017-09-22
Apparent treatment resistant hypertension (aTRH) is highly prevalent in patients with type 2 diabetes mellitus (T2D) and entails worse cardiovascular prognosis. The impact of aTRH and long-term achievement of recommended blood pressure (BP) values on renal outcome remains largely unknown. We assessed the role of aTRH and BP on the development of chronic kidney disease in patients with T2D and hypertension in real-life clinical practice. Clinical records from a total of 29 923 patients with T2D and hypertension, with normal baseline estimated glomerular filtration rate and regular visits during a 4-year follow-up, were retrieved and analyzed. The association between time-updated BP control (ie, 75% of visits with BP <140/90 mm Hg) and the occurrence of estimated glomerular filtration rate <60 and/or a reduction ≥30% from baseline was assessed. At baseline, 17% of patients had aTRH. Over the 4-year follow-up, 19% developed low estimated glomerular filtration rate and 12% an estimated glomerular filtration rate reduction ≥30% from baseline. Patients with aTRH showed an increased risk of developing both renal outcomes (adjusted odds ratio, 1.31 and 1.43; P <0.001 respectively), as compared with those with non-aTRH. No association was found between BP control and renal outcomes in non-aTRH, whereas in aTRH, BP control was associated with a 30% ( P =0.036) greater risk of developing the renal end points. ATRH entails a worse renal prognosis in T2D with hypertension. BP control is not associated with a more-favorable renal outcome in aTRH. The relationship between time-updated BP and renal function seems to be J-shaped, with optimal systolic BP values between 120 and 140 mm Hg. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Eirin, Alfonso; Zhu, Xiang-Yang; Ferguson, Christopher M; Riester, Scott M; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O
2015-01-19
Percutaneous transluminal renal angioplasty (PTRA) fails to fully improve cardiac injury and dysfunction in patients with renovascular hypertension (RVH). Mesenchymal stem cells (MSCs) restore renal function, but their potential for attenuating cardiac injury after reversal of RVH has not been explored. We hypothesized that replenishment of MSCs during PTRA would improve cardiac function and oxygenation, and decrease myocardial injury in porcine RVH. Pigs were studied after 16 weeks of RVH, RVH treated 4 weeks earlier with PTRA with or without adjunct intra-renal delivery of MSC (10^6 cells), and controls. Cardiac structure, function (fast-computed tomography (CT)), and myocardial oxygenation (Blood-Oxygen-Level-Dependent- magnetic resonance imaging) were assessed in-vivo. Myocardial microvascular density (micro-CT) and myocardial injury were evaluated ex-vivo. Kidney venous and systemic blood levels of inflammatory markers were measured and their renal release calculated. PTRA normalized blood pressure, yet stenotic-kidney glomerular filtration rate, similarly blunted in RVH and RVH + PTRA, normalized only in PTRA + MSC-treated pigs. PTRA attenuated left ventricular remodeling, whereas myocardial oxygenation, subendocardial microvascular density, and diastolic function remained decreased in RVH + PTRA, but normalized in RVH + PTRA-MSC. Circulating isoprostane levels and renal release of inflammatory cytokines increased in RVH and RVH + PTRA, but normalized in RVH + PTRA-MSC, as did myocardial oxidative stress, inflammation, collagen deposition, and fibrosis. Intra-renal MSC delivery during PTRA preserved stenotic-kidney function, reduced systemic oxidative stress and inflammation, and thereby improved cardiac function, oxygenation, and myocardial injury four weeks after revascularization, suggesting a therapeutic potential for adjunctive MSC delivery to preserve cardiac function and structure after reversal of experimental RVH.
Laboratory signs of aspirin response in haemodialysis patients.
Kilickesmez, Kadriye O; Kocas, Cuneyt; Okcun, Baris; Abaci, Okay; Kaya, Aysem; Arat, Alev; Gorcin, Bilal; Gurmen, Tevfik
2011-09-01
Aspirin is effective in the secondary prevention and high-risk primary prevention of cardiovascular events. However, clinical and laboratory evidence demonstrates diminished or no response to aspirin in some patients. This study was designed to assess aspirin response in haemodialysis patients. We prospectively enrolled 78 haemodialysis patients (28 female; 58.4 ± 12.6 years old) and 79 patients (29 female; 58.4 ± 10.6 years old) with normal renal function (glomerular filtration rate (GFR) >60 mL/min/1.73 m(2)). All subjects in both the haemodialysis patient group and the control group were taking aspirin (80-300 mg) for at least 30 days and were not taking other antiplatelet agents. Platelet function was assessed by arachidonic acid-induced aggregometry with a Multiplate analyser (Dynabyte Medical, Munich, Germany). Multiplate electrode aggregometry values below 300 AU were applied as a cut-off for response to aspirin. Aspirin non-response was two-fold more prevalent in haemodialysis patients (42.3%) than in patients with normal renal function (21.5%), and this difference was statistically significant (p = 0.005). The two groups were similar in terms of sex, age, tobacco use, the presence of diabetes mellitus, and platelet count. The frequency of aspirin non-response as defined in this study was higher in haemodialysis patients than in patients with normal renal function. However, larger subsets of patients are needed to confirm the present study.
IgA antibasement membrane nephritis with pulmonary hemorrhage.
Border, W A; Baehler, R W; Bhathena, D; Glassock, R J
1979-07-01
Goodpasture's syndrome has characteristically been described as being mediated by IgG antibodies. We have recently seen a 55-year-old man who developed renal failure and hemoptysis; a renal biopsy showed linear deposits of IgA and C3 involving glomerular and tubular basement membrane. Serologic tests for detecting (IgG) antiglomerular basement membrane antibodies were negative. Elution studies of kidney and lung showed the presence of an IgA antibasement membrane antibody only. The patient's serum contained IgA, but not IgG, antibodies reactive with glomerular and tubular basement membrane of normal human kidney and alveolar basement membrane of normal human lung. Attempts to transfer disease with the patient's IgA antibody to a monkey and to Lewis and Brown-Norway rats were unsuccessful. Immunoglobulin A antibasement membrane antibody must be considered in the design of immunoserologic procedures for the diagnosis of Goodpasture's syndrome.
Renal atrial natriuretic factor receptors in hamster cardiomyopathy.
Mukaddam-Daher, S; Jankowski, M; Dam, T V; Quillen, E W; Gutkowska, J
1995-12-01
Hamsters with cardiomyopathy (CMO), an experimental model of congestive heart failure, display stimulated renin-angiotensin-aldosterone and enhanced sympathetic nervous activity, all factors that lead to sodium retention, volume expansion and subsequent elevation of plasma atrial natriuretic factor (ANF) by the cardiac atria. However, sodium and water retention persist in CMO, indicating hyporesponsiveness to endogenous ANF. These studies were undertaken to fully characterize renal ANF receptor subtypes in normal hamsters and to evaluate whether alterations in renal ANF receptors may contribute to renal resistance to ANF in cardiomyopathy. Transcripts of the guanylyl cyclase-A (GC-A) and guanylyl cyclase B (GC-B) receptors were detected by quantitative polymerase chain reaction (PCR) in renal cortex, and outer and inner medullas. Compared to normal controls, the cardiomyopathic hamster's GC-A mRNA was similar in cortex but significantly increased in outer and inner medulla. Levels of GC-B mRNA were not altered by the disease. On the other hand, competitive binding studies, autoradiography, and affinity cross-linking demonstrated the absence of functional GC-B receptors in the kidney glomeruli and inner medulla. Also, C-type natriuretic peptide (CNP), the natural ligand for the GC-B receptors, failed to stimulate glomerular production of its second messenger cGMP. In CMO, sodium and water excretion were significantly reduced despite elevated plasma ANF (50.5 +/- 11.1 vs. 309.4 +/- 32.6 pg/ml, P < 0.001). Competitive binding studies of renal glomerular ANF receptors revealed no change in total receptor density, Bmax (369.6 +/- 27.4 vs. 282.8 +/- 26.2 fmol/mg protein), nor in dissociation constant, Kd (647.4 +/- 79.4 vs. 648.5 +/- 22.9 pM). Also, ANF-C receptor density (254.3 +/- 24.8 vs. 233.8 +/- 23.5 fmol/mg protein), nor affinity were affected by heart failure. Inner medullary receptors were exclusively of the GC-A subtype with Bmax (153.2 +/- 26.4 vs. 134.5 +/- 21.2 fmol/mg protein) and Kd (395.7 +/- 148.0 vs. 285.8 +/- 45.0 pM) not altered by cardiomyopathy. The increase in ANF-stimulated glomerular cGMP production was similar in normal and CMO hamsters (94- vs. 75-fold). These results demonstrate that renal ANF receptors do not contribute to the attenuated renal responses to ANF in hamster cardiomyopathy.
Cobalt treatment does not prevent glomerular morphological alterations in type 1 diabetic rats.
Singh, Gaaminepreet; Krishan, Pawan
2018-06-02
Early renal morphological alterations including glomerular hypertrophy and mesangial expansion occur in diabetic kidney disease and correlate with various clinical manifestations of diabetes. The present study was designed to investigate the influence of pharmacological modulation of HIF-1α (hypoxia inducible factor-1 alpha) protein levels, on these glomerular changes in rodent model of type 1 diabetes. Male wistar rats were made diabetic (Streptozotocin 45 mg/kg; i.p.) and afterwards treated with HIF activator cobalt chloride for 4 weeks. Renal function was assessed by serum creatinine, albumin, proteinuria levels, oxidative stress: reduced glutathione levels and catalase activity, and renal tissue HIF-1α protein levels were determined by ELISA assay. Histological analysis of kidney sections was done by haematoxylin and eosin (glomeruli diameter), periodic acid Schiff (mesangial expansion and glomerulosclerosis) and sirius red (fibrosis, tubular dilation) staining. Diabetes rats displayed reduced serum albumin levels, marked proteinuria, lower kidney reduced glutathione content, glomerular hypertrophy, glomerulosclerosis, mesangial expansion, tubular dilation and renal fibrosis. Cobalt chloride treatment normalised renal HIF-1α protein levels, reduced development of proteinuria and tubulo-interstitial fibrosis, but the glomerular morphological alterations such as glomerulosclerosis, mesangial expansion, increased glomerular diameter and tubular vacoulations were not abrogated in diabetic kidneys. Glomerular morphological abnormalities might precede the development of proteinuria and renal fibrosis in experimental model of type 1 diabetes. Pharmacological modulation of renal HIF-1α protein levels does not influence glomerular and tubular dilatory changes in diabetic kidney disease.
Musah, Samira; Mammoto, Akiko; Ferrante, Thomas C.; Jeanty, Sauveur S. F.; Hirano-Kobayashi, Mariko; Mammoto, Tadanori; Roberts, Kristen; Chung, Seyoon; Novak, Richard; Ingram, Miles; Fatanat-Didar, Tohid; Koshy, Sandeep; Weaver, James C.; Church, George M.; Ingber, Donald E.
2017-01-01
An in vitro model of the human kidney glomerulus — the major site of blood filtration — could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes — the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (> 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers of the mature phenotype (nephrin+, WT1+, podocin+, Pax2−) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue/tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications. PMID:29038743
Estimation of single-kidney glomerular filtration rate without exogenous contrast agent.
He, Xiang; Aghayev, Ayaz; Gumus, Serter; Ty Bae, K
2014-01-01
Measurement of single-kidney filtration fraction and glomerular filtration rate (GFR) without exogenous contrast is clinically important to assess renal function and pathophysiology, especially for patients with comprised renal function. The objective of this study is to develop a novel MR-based tool for noninvasive quantification of renal function using conventional MR arterial spin labeling water as endogenous tracer. The regional differentiation of the arterial spin labeling water between the glomerular capsular space and the renal parenchyma was characterized and measured according to their MR relaxation properties (T1ρ or T2 ), and applied to the estimation of filtration fraction and single-kidney GFR. The proposed approach was tested to quantify GFR in healthy volunteers at baseline and after a protein-loading challenge. Biexponential decay of the cortical arterial spin labeling water MR signal was observed. The major component decays the same as parenchyma water; the minor component decays much slower as expected from glomerular ultra-filtrates. The mean single-kidney GFR was estimated to be 49 ± 9 mL/min at baseline and increased by 28% after a protein-loading challenge. We developed an arterial spin labeling-based MR imaging method that allows us to estimate renal filtration fraction and singe-kidney GFR without use of exogenous contrast. Copyright © 2013 Wiley Periodicals, Inc.
Prevalence of and risk factors for reduced serum bicarbonate in chronic kidney disease.
Raphael, Kalani L; Zhang, Yingying; Ying, Jian; Greene, Tom
2014-10-01
The prevalence of metabolic acidosis increases as glomerular filtration rate falls. However, most patients with stage 4 chronic kidney disease have normal serum bicarbonate concentration while some with stage 3 chronic kidney disease have low serum bicarbonate, suggesting that other factors contribute to generation of acidosis. The purpose of this study is to identify risk factors, other than reduced glomerular filtration rate, for reduced serum bicarbonate in chronic kidney disease. This is a cross-sectional analysis of baseline data from the Chronic Renal Insufficiency Cohort Study. Multivariable logistic and linear regression models were used to relate predictor variables to the odds of low serum bicarbonate (< 22 mM) compared with normal serum bicarbonate (22-30 mM) and the coefficients of Δ serum bicarbonate concentration. The prevalence of low serum bicarbonate at baseline was 17.3%. Lower estimated glomerular filtration rate had the strongest relationship with low serum bicarbonate. Factors associated with higher odds of low serum bicarbonate, independent of estimated glomerular filtration rate, were urinary albumin/creatinine ≥ 10 mg/g, smoking, anaemia, hyperkalaemia, non-diuretic use and higher serum albumin. These and younger age, higher waist circumference, and use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers associated with negative Δ serum bicarbonate in linear regression models. Several factors not typically considered to associate with reduced serum bicarbonate in chronic kidney disease were identified including albuminuria ≥ 10 mg/g, anaemia, smoking, higher serum albumin, higher waist circumference, and use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers. Future studies should explore the longitudinal effect of these factors on serum bicarbonate concentration. © 2014 Asian Pacific Society of Nephrology.
Salt sensitivity of children with low birth weight.
Simonetti, Giacomo D; Raio, Luigi; Surbek, Daniel; Nelle, Mathias; Frey, Felix J; Mohaupt, Markus G
2008-10-01
Compromised intrauterine fetal growth leading to low birth weight (<2500 g) is associated with adulthood renal and cardiovascular disease. The aim of this study was to assess the effect of salt intake on blood pressure (salt sensitivity) in children with low birth weight. White children (n=50; mean age: 11.3+/-2.1 years) born with low (n=35) or normal (n=15) birth weight and being either small or appropriate for gestational age (n=25 in each group) were investigated. The glomerular filtration rate was calculated using the Schwartz formula, and renal size was measured by ultrasound. Salt sensitivity was assigned if mean 24-hour blood pressure increased by >or=3 mm Hg on a high-salt diet as compared with a controlled-salt diet. Baseline office blood pressure was higher and glomerular filtration rate lower in children born with low birth weight as compared with children born at term with appropriate weight (P<0.05). Salt sensitivity was present in 37% and 47% of all of the low birth weight and small for gestational age children, respectively, higher even than healthy young adults from the same region. Kidney length and volume (both P<0.0001) were reduced in low birth weight children. Salt sensitivity inversely correlated with kidney length (r(2)=0.31; P=0.005) but not with glomerular filtration rate. We conclude that a reduced renal mass in growth-restricted children poses a risk for a lower renal function and for increased salt sensitivity. Whether the changes in renal growth are causative or are the consequence of the same abnormal "fetal programming" awaits clarification.
Hyperkalemia in young children: blood pressure checked?
Hollander, Richard; Mortier, Geert; van Hoeck, Koen
2016-12-01
Hyperkalemia in young children is a rare phenomenon and in many cases caused by hemolysis in the specimen due to difficulties in obtaining a sample. However, hyperkalemia can also be a sign of a rare Mendelian syndrome known as familial hyperkalemic hypertension or pseudohypoaldosteronism type II. This disease is characterized by hyperkalemia, hypertension, and mild hyperchloremic metabolic acidosis (with normal anion gap) despite normal glomerular filtration. Full recovery of these abnormalities with thiazide diuretics is essential not to miss the diagnosis of this syndrome. We describe two young patients with hyperkalemia as an incidental finding who were subsequently diagnosed with this rare endocrine disorder. Genetic testing revealed mutations in two recently discovered genes, the study of which has helped to unravel the pathophysiologic pathways. In patients with hyperkalemia and a normal glomerular filtration rate, the clinician should actively search for abnormalities in blood pressure since recognizing this condition can lead to simple, cheap, and effective treatment. What is Known: • True Hyperkalemia is rare in pediatrics and can be a sign of FHHt. What is New: • KLHL3 & CUL3 are recently discovered genes helping unravel the pathophysiologic pathway of FHHt.
Anatomic and physiologic changes of the aging kidney.
Karam, Zeina; Tuazon, Jennifer
2013-08-01
Aging is associated with structural and functional changes in the kidney. Structural changes include glomerulosclerosis, thickening of the basement membrane, increase in mesangial matrix, tubulointerstitial fibrosis and arteriosclerosis. Glomerular filtration rate is maintained until the fourth decade of life, after which it declines. Parallel reductions in renal blood flow occur with redistribution of blood flow from the cortex to the medulla. Other functional changes include an increase in glomerular basement permeability and decreased ability to dilute or concentrate urine. Copyright © 2013 Elsevier Inc. All rights reserved.
Hippo signaling in the kidney: the good and the bad.
Wong, Jenny S; Meliambro, Kristin; Ray, Justina; Campbell, Kirk N
2016-08-01
The Hippo signaling pathway is an evolutionarily conserved kinase cascade, playing multiple roles in embryonic development that controls organ size, cell proliferation, and apoptosis. At the center of this network lie the Hippo kinase target and downstream pathway effector Yes-associated protein (YAP) and its paralog TAZ. In its phosphorylated form, cytoplasmic YAP is sequestered in an inactive state. When it is dephosphorylated, YAP, a potent oncogene, is activated and relocates to the nucleus to interact with a number of transcription factors and signaling regulators that promote cell growth, differentiation, and survival. The identification of YAP activation in human cancers has made it an attractive target for chemotherapeutic drug development. Little is known to date about the function of the Hippo pathway in the kidney, but that is rapidly changing. Recent studies have shed light on the role of Hippo-YAP signaling in glomerular and lower urinary tract embryonic development, maintenance of podocyte homeostasis, the integrity of the glomerular filtration barrier, regulation of renal tubular cyst growth, renal epithelial injury in diabetes, and renal fibrogenesis. This review summarizes the current knowledge of the Hippo-YAP signaling axis in the kidney under normal and disease conditions. Copyright © 2016 the American Physiological Society.
Chronic Kidney Disease Is Associated With White Matter Hyperintensity Volume
Khatri, Minesh; Wright, Clinton B.; Nickolas, Thomas L.; Yoshita, Mitsuhiro; Paik, Myunghee C.; Kranwinkel, Grace; Sacco, Ralph L.; DeCarli, Charles
2010-01-01
Background and Purpose White matter hyperintensities have been associated with increased risk of stroke, cognitive decline, and dementia. Chronic kidney disease is a risk factor for vascular disease and has been associated with inflammation and endothelial dysfunction, which have been implicated in the pathogenesis of white matter hyperintensities. Few studies have explored the relationship between chronic kidney disease and white matter hyperintensities. Methods The Northern Manhattan Study is a prospective, community-based cohort of which a subset of stroke-free participants underwent MRIs. MRIs were analyzed quantitatively for white matter hyperintensities volume, which was log-transformed to yield a normal distribution (log-white matter hyperintensity volume). Kidney function was modeled using serum creatinine, the Cockcroft-Gault formula for creatinine clearance, and the Modification of Diet in Renal Disease formula for estimated glomerular filtration rate. Creatinine clearance and estimated glomerular filtration rate were trichotomized to 15 to 60 mL/min, 60 to 90 mL/min, and >90 mL/min (reference). Linear regression was used to measure the association between kidney function and log-white matter hyperintensity volume adjusting for age, gender, race–ethnicity, education, cardiac disease, diabetes, homocysteine, and hypertension. Results Baseline data were available on 615 subjects (mean age 70 years, 60% women, 18% whites, 21% blacks, 62% Hispanics). In multivariate analysis, creatinine clearance 15 to 60 mL/min was associated with increased log-white matter hyperintensity volume (β 0.322; 95% CI, 0.095 to 0.550) as was estimated glomerular filtration rate 15 to 60 mL/min (β 0.322; 95% CI, 0.080 to 0.564). Serum creatinine, per 1-mg/dL increase, was also positively associated with log-white matter hyperintensity volume (β 1.479; 95% CI, 1.067 to 2.050). Conclusions The association between moderate–severe chronic kidney disease and white matter hyperintensity volume highlights the growing importance of kidney disease as a possible determinant of cerebrovascular disease and/or as a marker of microangiopathy. PMID:17962588
Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.
Salmon, Andrew H J; Satchell, Simon C
2012-03-01
Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function/dysfunction, such as mechanotransduction, leukocyte-endothelial interactions and the development of atherosclerosis, indicate that alterations in the endothelial glycocalyx may also be playing a role in the dysfunction of other organs observed in these disease states. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of apixaban.
Chang, Ming; Yu, Zhigang; Shenker, Andrew; Wang, Jessie; Pursley, Janice; Byon, Wonkyung; Boyd, Rebecca A; LaCreta, Frank; Frost, Charles E
2016-05-01
This open-label study evaluated apixaban pharmacokinetics, pharmacodynamics, and safety in subjects with mild, moderate, or severe renal impairment and in healthy subjects following a single 10-mg oral dose. The primary analysis determined the relationship between apixaban AUC∞ and 24-hour creatinine clearance (CLcr ) as a measure of renal function. The relationships between 24-hour CLcr and iohexol clearance, estimated CLcr (Cockcroft-Gault equation), and estimated glomerular filtration rate (modification of diet in renal disease [MDRD] equation) were also assessed. Secondary objectives included assessment of safety and tolerability as well as international normalized ratio (INR) and anti-factor Xa activity as pharmacodynamic endpoints. The regression analysis showed that decreasing renal function resulted in modestly increased apixaban exposure (AUC∞ increased by 44% in severe impairment with a 24-hour CLcr of 15 mL/min, compared with subjects with normal renal function), but it did not affect Cmax or the direct relationship between apixaban plasma concentration and anti-factor Xa activity or INR. The assessment of renal function measured by iohexol clearance, Cockcroft-Gault, and MDRD was consistent with that determined by 24-hour CLcr . Apixaban was well tolerated in this study. These results suggest that dose adjustment of apixaban is not required on the basis of renal function alone. © 2015, The American College of Clinical Pharmacology.
Neural control of renal function: cardiovascular implications.
DiBona, G F
1989-06-01
The innervation of the kidney serves to function of its component parts, for example, the blood vessels, the nephron (glomerulus, tubule), and the juxtaglomerular apparatus. Alterations in efferent renal sympathetic nerve activity produce significant changes in renal blood flow, glomerular filtration rate, the reabsorption of water, sodium, and other ions, and the release of renin, prostaglandins, and other vasoactive substances. These functional effects contribute significantly to the renal regulation of total body sodium and fluid volumes with important implications for the control of arterial pressure. The renal nerves, both efferent and afferent, are known to be important contributors to the pathogenesis of hypertension. In addition, the efferent renal nerves participate in the mediation of the excessive renal sodium retention, which characterizes edema-forming states such as congestive heart failure. Thus, the renal nerves play an important role in overall cardiovascular homeostasis in both normal and pathological conditions.
α1β1 Integrin/Rac1-Dependent Mesangial Invasion of Glomerular Capillaries in Alport Syndrome
Zallocchi, Marisa; Johnson, Brianna M.; Meehan, Daniel T.; Delimont, Duane; Cosgrove, Dominic
2014-01-01
Alport syndrome, hereditary glomerulonephritis with hearing loss, results from mutations in type IV collagen COL4A3, COL4A4, or COL4A5 genes. The mechanism for delayed glomerular disease onset is unknown. Comparative analysis of Alport mice and CD151 knockout mice revealed progressive accumulation of laminin 211 in the glomerular basement membrane. We show mesangial processes invading the capillary loops of both models as well as in human Alport glomeruli, as the likely source of this laminin. l-NAME salt–induced hypertension accelerated mesangial cell process invasion. Cultured mesangial cells showed reduced migratory potential when treated with either integrin-linked kinase inhibitor or Rac1 inhibitor, or by deletion of integrin α1. Treatment of Alport mice with Rac1 inhibitor or deletion of integrin α1 reduced mesangial cell process invasion of the glomerular capillary tuft. Laminin α2–deficient Alport mice show reduced mesangial process invasion, and cultured laminin α2–null cells showed reduced migratory potential, indicating a functional role for mesangial laminins in progression of Alport glomerular pathogenesis. Collectively, these findings predict a role for biomechanical insult in the induction of integrin α1β1–dependent Rac1-mediated mesangial cell process invasion of the glomerular capillary tuft as an initiation mechanism of Alport glomerular pathology. PMID:23911822
Renal function in the fetus and neonate - the creatinine enigma.
Kastl, Justin T
2017-04-01
The use of serum creatinine levels to estimate glomerular function in infants is admittedly fraught with inherent inaccuracies which are both physiological and methodological in nature. This characteristic can understandably reduce the neonatal clinician's confidence in the ability of serum creatinine levels to provide useful information relevant to their patients' medical care. The aim of this review is to provide further insight into the peculiarities of serum creatinine trends in both premature and term infants with special focus on the maturational and developmental changes occurring in the kidney during this crucial time-period. Though newer markers of glomerular function are gaining increasing traction in the clinical realm, the most prominent of which is currently cystatin C, creatinine nonetheless remains an important player in the scientific evolution of glomerular filtration rate (GFR) estimation. Not only do its limitations provide a level of distinction for newer markers of GFR, but its advantages persist in refining the precision of newer GFR formulae which incorporate multiple patient characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Functional organization of glomerular maps in the mouse accessory olfactory bulb
Hammen, Gary F.; Turaga, Diwakar; Holy, Timothy E.; Meeks, Julian P.
2014-01-01
Summary The mammalian accessory olfactory system (AOS) extracts information about species, sex, and individual identity from social odors, but its functional organization remains unclear. We imaged presynaptic Ca2+ signals in vomeronasal inputs to the accessory olfactory bulb (AOB) during peripheral stimulation using light sheet microscopy. Urine- and steroid-responsive glomeruli densely innervated the anterior AOB. Glomerular activity maps for sexually mature female mouse urine overlapped maps for juvenile and/or gonadectomized urine of both sexes, whereas maps for sexually mature male urine were highly distinct. Further spatial analysis revealed a complicated organization involving selective juxtaposition and dispersal of functionally-grouped glomerular classes. Glomeruli that were similarly tuned to urines were often closely associated, whereas more disparately tuned glomeruli were selectively dispersed. Maps to a panel of sulfated steroid odorants identified tightly-juxtaposed groups that were disparately tuned and dispersed groups that were similarly tuned. These results reveal a modular, non-chemotopic spatial organization in the AOB. PMID:24880215
Weir, Matthew A; Gomes, Tara; Mamdani, Muhammad; Juurlink, David N; Hackam, Daniel G; Mahon, Jeffrey L; Jain, Arsh K; Garg, Amit X
2011-06-01
Little evidence justifies the avoidance of glyburide in patients with impaired renal function. We aimed to determine if renal function modifies the risk of hypoglycaemia among patients using glyburide. We conducted a nested case-control study using administrative records and laboratory data from Ontario, Canada. We included outpatients 66 years of age and older with diabetes mellitus and prescriptions for glyburide, insulin or metformin. We ascertained hypoglycaemic events using administrative records and estimated glomerular filtration rates (eGFR) using serum creatinine concentrations. From a cohort of 19,620 patients, we identified 204 cases whose eGFR was ≥ 60 mL/min/1.73 m(2) (normal renal function) and 354 cases whose eGFR was < 60 mL/min/1.73 m(2) (impaired renal function). Compared to metformin, glyburide is associated with a greater risk of hypoglycaemia in patients with both normal [adjusted odds ratio (OR) 9.0, 95% confidence interval (95% CI) 4.9-16.4] and impaired renal function (adjusted OR 6.0, 95% CI 3.8-9.5). We observed a similar relationship when comparing insulin to metformin; the risk was greater in patients with normal renal function (adjusted OR 18.7, 95% CI 10.5-33.5) compared to those with impaired renal function (adjusted OR 7.9, 95% CI 5.0-12.4). Tests of interaction showed that among glyburide users, renal function did not significantly modify the risk of hypoglycaemia, but among insulin users, impaired renal function is associated with a lower risk. In this population-based study, impaired renal function did not augment the risk of hypoglycaemia associated with glyburide use.
[Morphology of basement membrane and associated matrix proteins in normal and pathological tissues].
Nerlich, A
1995-01-01
Basement membranes (BM) are specialized structures of the extracellular matrix. Their composition is of particular importance for the maintenance of normal morphological and functional properties of a multitude of organs and tissue systems and it is thus required for regular homeostasis of body function. Generally, they possess three main functions, i.e. participation in the maintenance of tissue structure, control of fluid and substrate exchange, and regulation of cell growth and differentiation. BMs are made up by various components which are in part specifically localized within the BM zone, or which represent ubiquitous matrix constituents with specific quantitative and/or qualitative differences in their localization. On the basis of a thorough immunohistochemical analysis of normal and diseased tissues, we provide here a concept of "functional morphology/pathomorphology" of the different BM components analyzed: 1.) The ubiquitous BM-constituent collagen IV primarily stabilizes the BM-zone and thus represents the "backbone" of the BM providing mechanical strength. Its loss leads to cystic tissue transformation as it is evidenced from the analysis of polycystic nephropathies. Thus, in other cystic tissue transformations a similar formal pathogenesis may be present. 2.) The specific localization of collagen VII as the main structural component of anchoring fibrils underlines the mechanical anchoring function of this collagenous protein. Defects in this protein lead to hereditary epidermolysis. The rapid re-occurrence of epidermal collagen VII during normal human wound healing indicates a quick reconstitution of the mechanical tensile strength of healing wounds. 3.) The BM-specific heparan sulfate proteoglycan (HSPG, Perlecan) with its highly negative anionic charge can be assumed to exert filter control. This assumption is corroborated by the localizatory findings of a preferential deposition of HSPG in endothelial and particularly in glomerular BM. Similarly, the lack of HSPG in the BM of lymph capillaries can be regarded as the correlate for a free fluid influx into lymphatic capillaries. The relative reduction in HSPG-staining in the developing glomerular BM also explains the still immature filter function. Furthermore, the low content of HSPG in placental chorionic capillaries can be regarded as morphological correlate for the required free fluid exchange between maternal and fetal blood systems. In diabetic glomerulopathy, the loss of HSPG coincides with a reduced filter function providing further support for the function of the HSPG. In further analyses of diabetic glomerulopathy, we provide evidence for an extensive matrix dysregulation resulting in either the overexpression of certain BM-components (diffuse glomerulosclerosis) or microfibrillar collagen VI (nodular glomerulosclerosis) indicating changes in cell function and possibly also cellular "differentiation". The analysis of congenital nephropathies additionally indicates that also the HSPG side chains with their negative charges may be involved in certain diseases with filter impairment. 4.) Furthermore, HSPG serves as a binding site for growth factors, particularly for the basic fibroblast growth factor (bFGF). It is of particular interest that the localization of HSPG and bFGF is not completely identical indicating some tissue specific differences in the receptor-ligand interaction. The functional importance of the bFGF-HSPG-interaction is exemplified by arteriosclerotic intima lesions where in highly cellular lesions high amounts of bFGF and HSPG coincide and low levels of both appear in poorly cellular lesions. Similarly, the granulation tissue in wound healing contains large amounts of bFGF-positive mesenchymal cells. 5.) The role of individual matrix components can be deduced from the normal human wound healing process, where epithelial cells migrate on a fibronectin matrix without complete BM.
Crescentic glomerular nephritis associated with rheumatoid arthritis: a case report.
Balendran, K; Senarathne, L D S U; Lanerolle, R D
2017-07-21
Rheumatoid arthritis is a systemic disorder where clinically significant renal involvement is relatively common. However, crescentic glomerular nephritis is a rarely described entity among the rheumatoid nephropathies. We report a case of a patient with rheumatoid arthritis presenting with antineutrophil cytoplasmic antibody-negative crescentic glomerular nephritis. A 54-year-old Sri Lankan woman who had recently been diagnosed with rheumatoid arthritis was being treated with methotrexate 10 mg weekly and infrequent nonsteroidal anti-inflammatory drugs. She presented to our hospital with worsening generalized body swelling and oliguria of 1 month's duration. Her physical examination revealed that she had bilateral pitting leg edema and periorbital edema. She was not pale or icteric. She had evidence of mild synovitis of the small joints of the hand bilaterally with no deformities. No evidence of systemic vasculitis was seen. Her blood pressure was 170/100 mmHg, and her jugular venous pressure was elevated to 7 cm with an undisplaced cardiac apex. Her urine full report revealed 2+ proteinuria with active sediment (dysmorphic red blood cells [17%] and granular casts). Her 24-hour urinary protein excretion was 2 g. Her serum creatinine level was 388 μmol/L. Abdominal ultrasound revealed normal-sized kidneys with acute parenchymal changes and mild ascites. Her renal biopsy showed renal parenchyma containing 20 glomeruli showing diffuse proliferative glomerular nephritis, with 14 of 20 glomeruli showing cellular crescents, and the result of Congo red staining was negative. Her rheumatoid factor was positive with a high titer (120 IU/ml), but results for antinuclear antibody, double-stranded deoxyribonucleic acid, and antineutrophil cytoplasmic antibody (perinuclear and cytoplasmic) were negative. Antistreptolysin O titer <200 U/ml and cryoglobulins were not detected. The results of her hepatitis serology, retroviral screening, and malignancy screening were negative. Her erythrocyte sedimentation rate was 110 mm in the first hour, and her C-reactive protein level was 45 mg/dl. Her liver profile showed hypoalbuminemia of 28 g/dl. She was treated with immunomodulators and had a good recovery of her renal function. This case illustrates a rare presentation of antineutrophil cytoplasmic antibody-negative crescentic glomerular nephritis in a patient with rheumatoid arthritis, awareness of which would facilitate early appropriate investigations and treatment.
Sivritas, Sema-Hayriye; Ploth, David W.; Fitzgibbon, Wayne R.
2008-01-01
The present study was performed to test the hypothesis that under normal physiological conditions and/or during augmentation of kinin levels, intrarenal kinins act on medullary bradykinin B2 (BKB2) receptors to acutely increase papillary blood flow (PBF) and therefore Na+ excretion. We determined the effect of acute inner medullary interstitial (IMI) BKB2 receptor blockade on renal hemodynamics and excretory function in rats fed either a normal (0.23%)- or a low (0.08%)-NaCl diet. For each NaCl diet, two groups of rats were studied. Baseline renal hemodynamic and excretory function were determined during IMI infusion of 0.9% NaCl into the left kidney. The infusion was then either changed to HOE-140 (100 μg·kg−1·h−1, treated group) or maintained with 0.9% NaCl (time control group), and the parameters were again determined. In rats fed a normal-salt diet, HOE-140 infusion decreased left kidney Na+ excretion (urinary Na+ extraction rate) and fractional Na+ excretion by 40 ± 5% and 40 ± 4%, respectively (P < 0.01), but did not alter glomerular filtration rate, inner medullary blood flow (PBF), or cortical blood flow. In rats fed a low-salt diet, HOE-140 infusion did not alter renal regional hemodynamics or excretory function. We conclude that in rats fed a normal-salt diet, kinins act tonically via medullary BKB2 receptors to increase Na+ excretion independent of changes in inner medullary blood flow. PMID:18632797
Boini, Krishna M.; Xia, Min; Li, Caixia; Zhang, Chun; Payne, Lori P.; Abais, Justine M.; Poklis, Justin L.; Hylemon, Philip B.; Li, Pin-Lan
2011-01-01
Hyperhomocysteinemia (hHcys) enhances ceramide production, leading to the activation of NADPH oxidase and consequent glomerular oxidative stress and sclerosis. The present study was performed to determine whether acid sphingomyelinase (Asm), a ceramide-producing enzyme, is implicated in the development of hHcys-induced glomerular oxidative stress and injury. Uninephrectomized Asm-knockout (Asm−/−) and wild-type (Asm+/+) mice, with or without Asm short hairpin RNA (shRNA) transfection, were fed a folate-free (FF) diet for 8 weeks, which significantly elevated the plasma Hcys level compared with mice fed normal chow. By using in vivo molecular imaging, we found that transfected shRNAs were expressed in the renal cortex starting on day 3 and continued for 24 days. The FF diet significantly increased renal ceramide production, Asm mRNA and activity, urinary total protein and albumin excretion, glomerular damage index, and NADPH-dependent superoxide production in the renal cortex from Asm+/+ mice compared with that from Asm−/− or Asm shRNA-transfected wild-type mice. Immunofluorescence analysis showed that the FF diet decreased the expression of podocin but increased desmin and ceramide levels in glomeruli from Asm+/+ mice but not in those from Asm−/− and Asm shRNA-transfected wild-type mice. In conclusion, our observations reveal that Asm plays a pivotal role in mediating podocyte injury and glomerular sclerosis associated with NADPH oxidase–associated local oxidative stress during hHcys. PMID:21893018
The Players: Cells Involved in Glomerular Disease.
Kitching, A Richard; Hutton, Holly L
2016-09-07
Glomerular diseases are common and important. They can arise from systemic inflammatory or metabolic diseases that affect the kidney. Alternately, they are caused primarily by local glomerular abnormalities, including genetic diseases. Both intrinsic glomerular cells and leukocytes are critical to the healthy glomerulus and to glomerular dysregulation in disease. Mesangial cells, endothelial cells, podocytes, and parietal epithelial cells within the glomerulus all play unique and specialized roles. Although a specific disease often primarily affects a particular cell type, the close proximity, and interdependent functions and interactions between cells mean that even diseases affecting one cell type usually indirectly influence others. In addition to those cells intrinsic to the glomerulus, leukocytes patrol the glomerulus in health and mediate injury in disease. Distinct leukocyte types and subsets are present, with some being involved in different ways in an individual glomerular disease. Cells of the innate and adaptive immune systems are important, directing systemic immune and inflammatory responses, locally mediating injury, and potentially dampening inflammation and facilitating repair. The advent of new genetic and molecular techniques, and new disease models means that we better understand both the basic biology of the glomerulus and the pathogenesis of glomerular disease. This understanding should lead to better diagnostic techniques, biomarkers, and predictors of prognosis, disease severity, and relapse. With this knowledge comes the promise of better therapies in the future, directed toward halting pathways of injury and fibrosis, or interrupting the underlying pathophysiology of the individual diseases that lead to significant and progressive glomerular disease. Copyright © 2016 by the American Society of Nephrology.
Heterogeneous targeting of centrifugal inputs to the glomerular layer of the main olfactory bulb.
Gómez, C; Briñón, J G; Barbado, M V; Weruaga, E; Valero, J; Alonso, J R
2005-06-01
The centrifugal systems innervating the olfactory bulb are important elements in the functional regulation of the olfactory pathway. In this study, the selective innervation of specific glomeruli by serotonergic, noradrenergic and cholinergic centrifugal axons was analyzed. Thus, the morphology, distribution and density of positive axons were studied in the glomerular layer of the main olfactory bulb of the rat, using serotonin-, serotonin transporter- and dopamine-beta-hydroxylase-immunohistochemistry and acetylcholinesterase histochemistry in serial sections. Serotonin-, serotonin transporter-immunostaining and acetylcholinesterase-staining revealed a higher heterogeneity in the glomerular layer of the main olfactory bulb than previously reported. In this sense, four types of glomeruli could be identified according to their serotonergic innervation. The main distinctive feature of these four types of glomeruli was their serotonergic fibre density, although they also differed in their size, morphology and relative position throughout the rostro-caudal main olfactory bulb. In this sense, some specific regions of the glomerular layer were occupied by glomeruli with a particular morphology and a characteristic serotonergic innervation pattern that was consistent from animal to animal. Regarding the cholinergic system, we offer a new subclassification of glomeruli based on the distribution of cholinergic fibres in the glomerular structure. Finally, the serotonergic and cholinergic innervation patterns were compared in the glomerular layer. Sexual differences concerning the density of serotonergic fibres were observed in the atypical glomeruli (characterized by their strong cholinergic innervation). The present report provides new data on the heterogeneity of the centrifugal innervation of the glomerular layer that constitutes the morphological substrate supporting the existence of differential modulatory levels among the entire glomerular population.
Impaired Urine Dilution Capability in HIV Stable Patients
Belloso, Waldo H.; de Paz Sierra, Mariana; Navarro, Matilde; Sanchez, Marisa L.; Perelsztein, Ariel G.; Musso, Carlos G.
2014-01-01
Renal disease is a well-recognized complication among patients with HIV infection. Viral infection itself and the use of some antiretroviral drugs contribute to this condition. The thick ascending limb of Henle's loop (TALH) is the tubule segment where free water clearance is generated, determining along with glomerular filtration rate the kidney's ability to dilute urine. Objective. We analyzed the function of the proximal tubule and TALH in patients with HIV infection receiving or not tenofovir-containing antiretroviral treatment in comparison with healthy seronegative controls, by applying a tubular physiological test, hyposaline infusion test (Chaimowitz' test). Material & Methods. Chaimowitz' test was performed on 20 HIV positive volunteers who had normal renal functional parameters. The control group included 10 healthy volunteers. Results. After the test, both HIV groups had a significant reduction of serum sodium and osmolarity compared with the control group. Free water clearance was lower and urine osmolarity was higher in both HIV+ groups. Proximal tubular function was normal in both studied groups. Conclusion. The present study documented that proximal tubule sodium reabsorption was preserved while free water clearance and maximal urine dilution capability were reduced in stable HIV patients treated or not with tenofovir. PMID:24800076
Kwiatkowska, Ewa; Domański, Leszek; Bober, Joanna; Safranow, Krzysztof; Pawlik, Andrzej; Ciechanowski, Kazimierz; Wiśniewska, Magda; Kędzierska, Karolina
2017-08-01
Organs from brain-dead donors are the main source of allografts for transplant. Comparisons between living-donor and brain-dead donor kidneys show that the latter are more likely to demonstrate delayed graft function and lower long-term survival. This study aimed to assess the effects of various clinical and biochemical factors of donors on early- and long-term renal function after transplant. We analyzed data from kidney recipients treated between 2006 and 2008 who received organs from brain-dead donors. Data from 54 donors and 89 recipients were analyzed. No relation was observed between donor sodium concentration and the presence of delayed graft function. Donor height was positively correlated with creatinine clearance in recipients in the 1 to 3 months after renal transplant. Donor diastolic blood pressure was negatively correlated with estimated glomerular filtration rate throughout the observation period. Donor age was negatively correlated with the allograft recipient's estimated glomerular filtration rate throughout 4 years of observation. Donor estimated glomerular filtration rate was positively correlated with that of the recipient throughout 3 years of observation. The results of this study indicate that various factors associated with allograft donors may influence graft function.
Mechanisms responsible for decreased glomerular filtration in hibernation and hypothermia
NASA Technical Reports Server (NTRS)
Tempel, G. E.; Musacchia, X. J.; Jones, S. B.
1977-01-01
Measurements of blood pressure, heart rate, red blood cell and plasma volumes, and relative distribution of cardiac output were made on hibernating and hypothermic adult male and female golden hamsters weighing 120-140 g to study the mechanisms underlying the elimination or marked depression of renal function in hibernation and hypothermia. The results suggest that the elimination or marked depression in renal function reported in hibernation and hypothermia may partly be explained by alterations in cardiovascular system function. Renal perfusion pressure which decreases nearly 60% in both hibernation and hypothermia and a decrease in plasma volume of roughly 35% in the hypothermic animal might both be expected to markedly alter glomerular function.
ERIC Educational Resources Information Center
Lin, Jin-Ding; Lin, Lan-Ping; Hsieh, Molly; Lin, Pei-Ying
2010-01-01
The present study aimed to describe the kidney function profile--serum creatinine and estimated glomerular filtration rate (eGFR), and to examine the relationships of predisposing factors to abnormal serum creatinine in people with intellectual disabilities (ID). Data were collected by a cross-sectional study of 827 aged 15-18 years adolescents…
Faisal, Nabiha; Bilodeau, Marc; Aljudaibi, Bandar; Hirch, Geri; Yoshida, Eric M; Hussaini, Trana; Ghali, Maged P; Congly, Stephen E; Ma, Mang M; Lilly, Leslie B
2018-04-04
We assessed the impact of sofosbuvir-based regimens on renal function in liver transplant recipients with recurrent hepatitis C virus and the role of renal function on the efficacy and safety of these regimens. In an expanded pan-Canadian cohort, 180 liver transplant recipients were treated with sofosbuvir-based regimens for hepatitis C virus recurrence from January 2014 to May 2015. Mean age was 58 ± 6.85 years, and 50% had F3/4 fibrosis. Patients were stratified into 4 groups based on baseline estimated glomerular filtration rate (calculated by the Modification of Diet in Renal Disease formula): < 30, 30 to 45, 46 to 60, and > 60 mL/min/173 m2. The primary outcome was posttreatment changes in renal function from baseline. Secondary outcomes included sustained virologic response at 12 weeks posttreatment and anemia-related and serious adverse events. Posttreatment renal function was improved in most patients (58%). Renal function declined in 22% of patients, which was more marked in those with estimated glomerular filtration rate < 30 mL/min/173 m2, advanced cirrhosis (P = .05), and aggressive hepatitis C virus/fibrosing cholestatic hepatitis (P < .05). High rates (80%-88%) of sustained virologic response at 12 weeks posttreatment were seen across all renal function strata. Cirrhotic patients with glomerular filtration rates < 30 mL/min/173 m2 had sustained virologic response rates at 12 weeks posttreatment comparable to the overall patient group. Rates of anemia-related adverse events and transfusion requirements increased across decreasing estimated glomerular filtration rate groups, with notably more occurrences with ribavirin-based regimens. Sofosbuvir-based regimens improved overall renal function in liver transplant recipients, with sustained virologic response, suggesting an association of subclinical hepatitis C virus-related renal disease. Sustained virologic response rates at 12 weeks posttreatment (80%-88%) were comparable regardless of baseline renal function but lower in cirrhosis.
Cluster Analysis of Rat Olfactory Bulb Responses to Diverse Odorants
Falasconi, Matteo; Leon, Michael; Johnson, Brett A.; Marco, Santiago
2012-01-01
In an effort to deepen our understanding of mammalian olfactory coding, we have used an objective method to analyze a large set of odorant-evoked activity maps collected systematically across the rat olfactory bulb to determine whether such an approach could identify specific glomerular regions that are activated by related odorants. To that end, we combined fuzzy c-means clustering methods with a novel validity approach based on cluster stability to evaluate the significance of the fuzzy partitions on a data set of glomerular layer responses to a large diverse group of odorants. Our results confirm the existence of glomerular response clusters to similar odorants. They further indicate a partial hierarchical chemotopic organization wherein larger glomerular regions can be subdivided into smaller areas that are rather specific in their responses to particular functional groups of odorants. These clusters bear many similarities to, as well as some differences from, response domains previously proposed for the glomerular layer of the bulb. These data also provide additional support for the concept of an identity code in the mammalian olfactory system. PMID:22459165
Fernandez-Prado, Raul; Castillo-Rodriguez, Esmeralda; Velez-Arribas, Fernando Javier; Gracia-Iguacel, Carolina; Ortiz, Alberto
2016-12-01
Direct oral anticoagulants (DOACs) may require dose reduction or avoidance when glomerular filtration rate is low. However, glomerular filtration rate is not usually measured in routine clinical practice. Rather, equations that incorporate different variables use serum creatinine to estimate either creatinine clearance in mL/min or glomerular filtration rate in mL/min/1.73 m 2 . The Cockcroft-Gault equation estimates creatinine clearance and incorporates weight into the equation. By contrast, the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations estimate glomerular filtration rate and incorporate ethnicity but not weight. As a result, an individual patient may have very different renal function estimates, depending on the equation used. We now highlight these differences and discuss the impact on routine clinical care for anticoagulation to prevent embolization in atrial fibrillation. Pivotal DOAC clinical trials used creatinine clearance as a criterion for patient enrollment, and dose adjustment and Federal Drug Administration recommendations are based on creatinine clearance. However, clinical biochemistry laboratories provide CKD-EPI glomerular filtration rate estimations, resulting in discrepancies between clinical trial and routine use of the drugs. Copyright © 2016 Elsevier Inc. All rights reserved.
Tsuji, Kenji; Suleiman, Hani; Miner, Jeffrey H; Daley, James M; Capen, Diane E; Păunescu, Teodor G; Lu, Hua A Jenny
2017-09-15
The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus consisting of podocyte foot processes, glomerular basement membrane and endothelial cells. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction, frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to identify and classify various glomerular diseases. Here we report the application of newly developed helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes. Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies and processes, and presence of unique bridging processes that connect the primary processes and foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex, three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the glomerulopathy in Col4a3 mutant mice.
Nutritional effect of nandrolone decanoate in predialysis patients with chronic kidney disease.
Eiam-Ong, Somchai; Buranaosot, Somphon; Eiam-Ong, Somchit; Wathanavaha, Arpar; Pansin, Pongsuk
2007-05-01
The study objective was to examine the nutritional effect of nandrolone decanoate, an androgen derivative, in predialysis patients with chronic kidney disease (CKD). This was a prospective and experimental study. The study was performed at the institutional level of clinical care. Twenty-nine predialysis patients with CKD, with a glomerular filtration rate between 5 and 30 mL/min and moderate to severe malnutrition, were included and randomly divided into control (n = 13) and nandrolone decanoate (NAN, n = 16) groups. Patients in the control group received optimally conventional treatment of CKD. Patients in the NAN group, in addition to the conventional treatment, were intramuscularly injected with nandrolone decanoate at the dose of 100 mg per for 3 months. Nutritional markers, including lean body mass (LBM), normalized protein catabolic rate, serum albumin, and lipids, were determined at baseline and 3-month periods. Baseline parameters in both groups were not different. After 3 months, the patients in the NAN group had increased LBM (P < .01) and decreased serum albumin levels (P < .05), but no changes in the values of normalized protein catabolic rate, serum lipids, hematocrit, and glomerular filtration rate. No alterations in all parameters were identified in the control group. Changes in LBM in the NAN group were significantly higher than in the control group (P < .05). Minor adverse effects were observed in a few patients in the NAN group. Nandrolone decanoate expresses an anabolic effect on LBM without altering the renal function and thus would provide nutritional benefit in predialysis patients with CKD.
α1β1 integrin/Rac1-dependent mesangial invasion of glomerular capillaries in Alport syndrome.
Zallocchi, Marisa; Johnson, Brianna M; Meehan, Daniel T; Delimont, Duane; Cosgrove, Dominic
2013-10-01
Alport syndrome, hereditary glomerulonephritis with hearing loss, results from mutations in type IV collagen COL4A3, COL4A4, or COL4A5 genes. The mechanism for delayed glomerular disease onset is unknown. Comparative analysis of Alport mice and CD151 knockout mice revealed progressive accumulation of laminin 211 in the glomerular basement membrane. We show mesangial processes invading the capillary loops of both models as well as in human Alport glomeruli, as the likely source of this laminin. L-NAME salt-induced hypertension accelerated mesangial cell process invasion. Cultured mesangial cells showed reduced migratory potential when treated with either integrin-linked kinase inhibitor or Rac1 inhibitor, or by deletion of integrin α1. Treatment of Alport mice with Rac1 inhibitor or deletion of integrin α1 reduced mesangial cell process invasion of the glomerular capillary tuft. Laminin α2-deficient Alport mice show reduced mesangial process invasion, and cultured laminin α2-null cells showed reduced migratory potential, indicating a functional role for mesangial laminins in progression of Alport glomerular pathogenesis. Collectively, these findings predict a role for biomechanical insult in the induction of integrin α1β1-dependent Rac1-mediated mesangial cell process invasion of the glomerular capillary tuft as an initiation mechanism of Alport glomerular pathology. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Podocytes from the diagnostic and therapeutic point of view.
Müller-Deile, Janina; Schiffer, Mario
2017-08-01
The central role of podocytes in glomerular diseases makes this cell type an interesting diagnostic tool as well as a therapeutic target. In this review, we discuss the current literature on the use of podocytes and podocyte-specific markers as non-invasive diagnostic tools in different glomerulopathies. Furthermore, we highlight the direct effects of drugs currently used to treat primary glomerular diseases and describe their direct cellular effects on podocytes. A new therapeutic potential is seen in drugs targeting the podocytic actin cytoskeleton which is essential for podocyte foot process structure and function. Incubation of cultured human podocyte cell lines with sera from patients with active glomerular diseases is currently also used to identify novel circulating factors with pathophysiological relevance for the glomerular filtration barrier. In addition, treatment of detached urinary podocytes from patients with substances that restore their cytoskeleton might serve as a novel personalized tool to estimate their potential for podocyte recovery ex vivo.
Wada, Toshikazu; Nakao, Toshiyuki; Matsumoto, Hiroshi; Okada, Tomonari; Nagaoka, Yume; Iwasawa, Hideaki; Gondo, Asako; Niwata, Ami; Kanno, Yoshihiko
2015-08-01
Dietary protein intake (PI) induces glomerular hyperfiltration and reduced dietary PI can be effective in preserving kidney function. However, there is limited information regarding the relationship between dietary PI and glomerular histological changes in chronic kidney disease. We investigated the relationship between changes in dietary PI and both the changes in creatinine clearance and glomerular histomorphometry in adult patients with IgA nephropathy (IgAN). A total of 24 consecutive adult patients with biopsy-confirmed IgAN were enrolled and glomerular histomorphometric variables and clinical variables were investigated. The main clinical variables were differences in creatinine clearance (Ccr) (dCcr) and in PI (dPI) which were calculated by subtracting PI and Ccr values in patients on a controlled diet during hospitalization for kidney biopsy from the respective values in patients on daily diets as outpatients. These values of PI were estimated from urinary urea excretion measured by 24-h urine collection. The main renal histomorphometric variable was glomerular tuft area (GTA) (μm(2)). dCcr positively correlated with dPI (r = 0.726, P < 0.001). GTA correlated positively with dPI (r = 0.556, P = 0.013). Multiple regression analysis showed that dPI was independently associated with both dCcr and GTA. Additionally, GTA positively correlated with dietary PI as outpatients (r = 0.457, P = 0.043). Changes in dietary PI were associated with the changes in glomerular filtration rate. Furthermore, histomorphometric findings suggested that a greater dietary PI can affect the glomerular size at the time of the initial diagnostic biopsy for IgAN.
Haege, Sammy; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf
2012-01-01
Background The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. Methodology/Principal Findings We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. Conclusions/Significance We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries. PMID:22880115
Haege, Sammy; Einer, Claudia; Thiele, Stefanie; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf
2012-01-01
The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.
Mauer, Michael; Caramori, Maria Luiza; Fioretto, Paola; Najafian, Behzad
2015-06-01
Studies of structural-functional relationships have improved understanding of the natural history of diabetic nephropathy (DN). However, in order to consider structural end points for clinical trials, the robustness of the resultant models needs to be verified. This study examined whether structural-functional relationship models derived from a large cohort of type 1 diabetic (T1D) patients with a wide range of renal function are robust. The predictability of models derived from multiple regression analysis and piecewise linear regression analysis was also compared. T1D patients (n = 161) with research renal biopsies were divided into two equal groups matched for albumin excretion rate (AER). Models to explain AER and glomerular filtration rate (GFR) by classical DN lesions in one group (T1D-model, or T1D-M) were applied to the other group (T1D-test, or T1D-T) and regression analyses were performed. T1D-M-derived models explained 70 and 63% of AER variance and 32 and 21% of GFR variance in T1D-M and T1D-T, respectively, supporting the substantial robustness of the models. Piecewise linear regression analyses substantially improved predictability of the models with 83% of AER variance and 66% of GFR variance explained by classical DN glomerular lesions alone. These studies demonstrate that DN structural-functional relationship models are robust, and if appropriate models are used, glomerular lesions alone explain a major proportion of AER and GFR variance in T1D patients. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Tanaka, Mari; Asada, Misako; Higashi, Atsuko Y; Nakamura, Jin; Oguchi, Akiko; Tomita, Mayumi; Yamada, Sachiko; Asada, Nariaki; Takase, Masayuki; Okuda, Tomohiko; Kawachi, Hiroshi; Economides, Aris N; Robertson, Elizabeth; Takahashi, Satoru; Sakurai, Takeshi; Goldschmeding, Roel; Muso, Eri; Fukatsu, Atsushi; Kita, Toru; Yanagita, Motoko
2010-03-01
The glomerular basement membrane (GBM) is a key component of the filtering unit in the kidney. Mutations involving any of the collagen IV genes (COL4A3, COL4A4, and COL4A5) affect GBM assembly and cause Alport syndrome, a progressive hereditary kidney disease with no definitive therapy. Previously, we have demonstrated that the bone morphogenetic protein (BMP) antagonist uterine sensitization-associated gene-1 (USAG-1) negatively regulates the renoprotective action of BMP-7 in a mouse model of tubular injury during acute renal failure. Here, we investigated the role of USAG-1 in renal function in Col4a3-/- mice, which model Alport syndrome. Ablation of Usag1 in Col4a3-/- mice led to substantial attenuation of disease progression, normalization of GBM ultrastructure, preservation of renal function, and extension of life span. Immunohistochemical analysis revealed that USAG-1 and BMP-7 colocalized in the macula densa in the distal tubules, lying in direct contact with glomerular mesangial cells. Furthermore, in cultured mesangial cells, BMP-7 attenuated and USAG-1 enhanced the expression of MMP-12, a protease that may contribute to GBM degradation. These data suggest that the pathogenetic role of USAG-1 in Col4a3-/- mice might involve crosstalk between kidney tubules and the glomerulus and that inhibition of USAG-1 may be a promising therapeutic approach for the treatment of Alport syndrome.
Kwon, Young Eun; Lee, Mi Jung; Park, Kyoung Sook; Han, Seung Hyeok; Yoo, Tae Hyun; Oh, Kook Hwan; Lee, Joongyub; Lee, Kyu Beck; Chung, Wookyung; Kim, Yeong Hoon; Ahn, Curie; Choi, Kyu Hun
2017-03-01
Recent studies have reported that loss of bone mass is associated with renal function decline and increased fracture risks in chronic kidney disease (CKD) patients. The aim of this study was to investigate the best estimated glomerular filtration rate (eGFR) equation to detect osteopenia in CKD patients. This was a cross-sectional study, and 780 patients aged 50 years or above were classified into normal bone mass or osteopenia groups according to the -1.0 of T-scores at total hip and femur neck. Comparisons of area under the receiver operating characteristic (ROC) curves (AUC) were performed to investigate significant differences among three eGFR formulas: Modification of Diet in Renal Disease, CKD-Epidemiology Collaboration (EPI) creatinine, and CKD-EPI cystatin C (CKD-EPI-Cys). The mean age was 61 years old and the proportion of females was 37.3%. The total hip osteopenia group showed lower CKD-EPI-Cys eGFR levels (osteopenia group, 33.3±19.0 mL/min/1.73 m²; normal group, 48.1±26.2 mL/min/1.73 m², p<0.001). In multiple logistic regression analysis, CKD-EPI-Cys eGFR was independently associated with osteopenia at the total hip (per 1 mL/min/1.73 m² increase, odds ratio 0.98, 95% confidence interval 0.97-0.99, p=0.004) after adjusting for confounding variables. ROC curve analyses indicated that CKD-EPI-Cys shows the largest AUC for osteopenia at the total hip (AUC=0.678, all p<0.01) and the femur neck (AUC=0.665, all p<0.05). Decreased renal function assessed by CKD-EPI-Cys equation correlates with osteopenia better than creatinine-based methods in CKD patients, and the CKD-EPI-Cys formula might be a useful tool to assess skeletal-related event risks.
van Det, N F; van den Born, J; Tamsma, J T; Verhagen, N A; Berden, J H; Bruijn, J A; Daha, M R; van der Woude, F J
1996-04-01
Changes in heparan sulfate metabolism may be important in the pathogenesis of diabetic nephropathy. Recent studies performed on renal biopsies from patients with diabetic nephropathy revealed a decrease in heparan sulfate glycosaminoglycan staining in the glomerular basement membrane without changes in staining for heparan sulfate proteoglycan-core protein. To understand this phenomenon at the cellular level, we investigated the effect of high glucose conditions on the synthesis of heparan sulfate proteoglycan by glomerular cells in vitro. Human adult mesangial and glomerular visceral epithelial cells were cultured under normal (5 mM) and high glucose (25 mM) conditions. Immunofluorescence performed on cells cultured in 25 mM glucose confirmed and extended the in vivo histological observations. Using metabolic labeling we observed an altered proteoglycan production under high glucose conditions, with predominantly a decrease in heparan sulfate compared to dermatan sulfate or chondroitin sulfate proteoglycan. N-sulfation analysis of heparan sulfate proteoglycan produced under high glucose conditions revealed less di- and tetrasaccharides compared to larger oligosaccharides, indicating an altered sulfation pattern. Furthermore, with quantification of glomerular basement membrane heparan sulfate by ELISA, a significant decrease was observed when mesangial and visceral epithelial cells were cultured in high glucose conditions. We conclude that high glucose concentration induces a significant alteration of heparan sulfate production by mesangial cells and visceral epithelial cells. Changes in sulfation and changes in absolute quantities are both observed and may explain the earlier in vivo observations. These changes may be of importance for the altered integrity of the glomerular charge-dependent filtration barrier and growth-factor matrix interactions in diabetic nephropathy.
Stable olfactory sensory neuron in vivo physiology during normal aging.
Kass, Marley D; Czarnecki, Lindsey A; McGann, John P
2018-05-08
Normal aging is associated with a number of smell impairments that are paralleled by age-dependent changes in the peripheral olfactory system, including decreases in olfactory sensory neurons (OSNs) and in the regenerative capacity of the epithelium. Thus, an age-dependent degradation of sensory input to the brain is one proposed mechanism for the loss of olfactory function in older populations. Here, we tested this hypothesis by performing in vivo optical neurophysiology in 6-, 12-, 18-, and 24-month-old mice. We visualized odor-evoked neurotransmitter release from populations of OSNs into olfactory bulb glomeruli, and found that these sensory inputs are actually quite stable during normal aging. Specifically, the magnitude and number of odor-evoked glomerular responses were comparable across all ages, and there was no effect of age on the sensitivity of OSN responses to odors or on the neural discriminability of different sensory maps. These results suggest that the brain's olfactory bulbs do not receive deteriorated input during aging and that local bulbar circuitry might adapt to maintain stable nerve input. Copyright © 2018 Elsevier Inc. All rights reserved.
Ren, Tao; Wen, Cheng-Long; Chen, Li-Hua; Xie, Shuang-Shuang; Cheng, Yue; Fu, Ying-Xin; Oesingmann, Niels; de Oliveira, Andre; Zuo, Pan-Li; Yin, Jian-Zhong; Xia, Shuang; Shen, Wen
2016-09-01
To evaluate renal allografts function early after transplantation using intravoxel incoherent motion (IVIM) and arterial spin labeling (ASL) MRI. This prospective study was approved by the local ethics committee, and written informed consent was obtained from all participants. A total of 82 participants with 62 renal allograft recipients (2-4weeks after kidney transplantation) and 20 volunteers were enrolled to be scanned using IVIM and ASL MRI on a 3.0T MR scanner. Recipients were divided into two groups with either normal or impaired function according to the estimated glomerular filtration rate (eGFR) with a threshold of 60ml/min/1.73m(2). The apparent diffusion coefficient (ADC) of pure diffusion (ADCslow), the ADC of pseudodiffusion (ADCfast), perfusion fraction (PF), and renal blood flow (RBF) of cortex were compared among three groups. The correlation of ADCslow, ADCfast, PF and RBF with eGFR was evaluated. The receiver operating characteristic (ROC) curve and binary logistic regression analyses were performed to assess the diagnostic efficiency of using IVIM and ASL parameters to discriminate allografts with impaired function from normal function. P<0.05 was considered statistically significant. In allografts with normal function, no significant difference of mean cortical ADCslow, ADCfast, and PF was found compared with healthy controls (P>0.05). Cortical RBF in allografts with normal function was statistically lower than that of healthy controls (P<0.001). Mean cortical ADCslow, ADCfast, PF and RBF were lower for allografts with impaired function than that with normal function (P<0.05). Mean cortical ADCslow, ADCfast, PF and RBF showed a positive correlation with eGFR (all P<0.01) for recipients. The combination of IVIM and ASL MRI showed a higher area under the ROC curve (AUC) (0.865) than that of ASL MRI alone (P=0.02). Combined IVIM and ASL MRI can better evaluate the diffusion and perfusion properties for allografts early after kidney transplantation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Jinnouchi, Hideaki; Nozaki, Kazunari; Watase, Hirotaka; Omiya, Hirohisa; Sakai, Soichi; Samukawa, Yoshishige
2016-03-01
We investigated the impact of reduced renal function on 24-h glucose variability in Japanese patients with type 2 diabetes mellitus (T2DM) treated with luseogliflozin. In this double-blind, placebo-controlled, crossover study, 37 Japanese patients with T2DM [glycated hemoglobin (HbA1c) 7.0-10.0%] and estimated glomerular filtration rate (eGFR) ≥45 mL/min/1.73 m(2) were randomized into two groups in which patients first received luseogliflozin then placebo, or vice versa, for 7 days each. Twenty-four-hour glucose variability was measured on day 7 in each period and was compared among patients divided into three groups according to their baseline eGFR (mL/min/1.73 m(2)): normal (≥90; n = 13; normal group), normal-to-mildly reduced renal function (≥75 to <90; n = 12; normal-mild group), and mild-to-moderately reduced renal function (<75; n = 9; mild-moderate group). The mean [95% confidence interval (CI)] placebo-subtracted 24-h cumulative urinary glucose excretion (g) was 82.1 (72.7, 91.5), 82.5 (73.4, 91.5), and 62.2 (51.2, 73.3); the placebo-subtracted 24-h mean glucose concentration (mg/dL) was -24.39 (-32.53, -16.26), -28.28 (-39.35, -17.22), and -11.53 (-23.93, 0.86); and the placebo-subtracted peak postprandial glucose (mg/dL) was -26.9 (-46.9, -6.9), -38.1 (-59.6, -16.6), and 1.5 (-25.5, 28.4) in the normal, normal-mild, and mild-moderate groups, respectively. The mean lowest glucose concentrations (placebo vs. luseogliflozin, mg/dL) decreased to similar levels in the normal (115.4 vs. 93.4), normal-mild (121.0 vs. 97.9), and mild-moderate (104.0 vs. 91.1) groups. This post hoc subanalysis revealed that although mild-to-moderately reduced renal function attenuated the glucose-lowering effects of luseogliflozin on peak postprandial glucose, it did not attenuate the effects of luseogliflozin on fasting glucose. These findings may explain the smaller increase in urinary glucose excretion in these patients relative to patients with normal renal function or normal-to-moderately reduced renal function. Further studies may be needed to examine these findings in large populations of patients with T2DM and reduced renal function. JapicCTI-142548. Taisho Pharmaceutical Co., Ltd.
Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy.
Raimundo, Joyce R S; Bergamaschi, Cassia T; Campos, Ruy R; Palma, Beatriz D; Tufik, Sergio; Gomes, Guiomar N
2016-09-01
Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.
Sejima, Takehiro; Yamaguchi, Noriya; Iwamoto, Hideto; Masago, Toshihiko; Morizane, Shuichi; Ono, Koji; Koumi, Tsutomu; Honda, Masashi; Takenaka, Atsushi
2015-08-01
To characterize the preoperative factors affecting renal cell carcinoma patients as predictive of post-radical nephrectomy (RN) mild (M-decline) or severe (S-decline) renal functional decline and to elucidate the histopathologic features of the resected normal kidney cortex, as well as the occurrence of cardiovascular disease (CVD) in both M-decline and S-decline patients. M-decline and S-decline were categorized as a percentage of postoperative estimated glomerular filtration rate decline of <20 and of >40, respectively. The preoperative factors analyzed were patient demographics, comorbidities, and radiographic findings, including remnant kidney status and tumor size. The factors based on postoperative information analyzed were tumor and normal cortex pathology and CVD events. In 175 patient cohort, 21 and 32 cases were categorized as M-decline and S-decline, respectively. Absence of comorbidities, larger remnant kidney volume (RKV)/body surface area (BSA) ratio, and larger tumor diameter were significantly predictive of M-decline, whereas smaller tumor diameter was significantly predictive of S-decline. The global glomerulosclerosis extent in nephrectomized normal cortex of S-decline cases was significantly higher than in other types of cases. No CVD event was observed in M-decline cases. This is the first report to identify the RKV/BSA ratio as a promising predictor of post-RN degree of renal functional decline. Post-RN prevention of life-threatening outcomes according to preoperative and postoperative information, including the degree of post-RN renal functional decline and histopathology of the nephrectomized normal cortex, should be considerable in future urological tasks. Copyright © 2015 Elsevier Inc. All rights reserved.
Molecular understanding of the slit diaphragm.
Grahammer, Florian; Schell, Christoph; Huber, Tobias B
2013-10-01
Glomerular filtration has always attracted the interest of nephrologists and renal researchers alike. Although several key questions on the structure and function of the kidney filter may have been answered within the last 40 years of intense research, there still remain crucial questions to be solved. The following article attempts to give a brief overview of recent developments in glomerular research highlighting particular advances in our understanding of the slit diaphragm.
Planar Cell Polarity Pathway Regulates Nephrin Endocytosis in Developing Podocytes
Babayeva, Sima; Rocque, Brittany; Aoudjit, Lamine; Zilber, Yulia; Li, Jane; Baldwin, Cindy; Kawachi, Hiroshi; Takano, Tomoko; Torban, Elena
2013-01-01
The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate. PMID:23824190
Adiponectin regulates albuminuria and podocyte function in mice
Sharma, Kumar; RamachandraRao, Satish; Qiu, Gang; Usui, Hitomi Kataoka; Zhu, Yanqing; Dunn, Stephen R.; Ouedraogo, Raogo; Hough, Kelly; McCue, Peter; Chan, Lawrence; Falkner, Bonita; Goldstein, Barry J.
2008-01-01
Increased albuminuria is associated with obesity and diabetes and is a risk factor for cardiovascular and renal disease. However, the link between early albuminuria and adiposity remains unclear. To determine whether adiponectin, an adipocyte-derived hormone, is a communication signal between adipocytes and the kidney, we performed studies in a cohort of patients at high risk for diabetes and kidney disease as well as in adiponectin-knockout (Ad–/–) mice. Albuminuria had a negative correlation with plasma adiponectin in obese patients, and Ad–/– mice exhibited increased albuminuria and fusion of podocyte foot processes. In cultured podocytes, adiponectin administration was associated with increased activity of AMPK, and both adiponectin and AMPK activation reduced podocyte permeability to albumin and podocyte dysfunction, as evidenced by zona occludens–1 translocation to the membrane. These effects seemed to be caused by reduction of oxidative stress, as adiponectin and AMPK activation both reduced protein levels of the NADPH oxidase Nox4 in podocytes. Ad–/– mice treated with adiponectin exhibited normalization of albuminuria, improvement of podocyte foot process effacement, increased glomerular AMPK activation, and reduced urinary and glomerular markers of oxidant stress. These results suggest that adiponectin is a key regulator of albuminuria, likely acting through the AMPK pathway to modulate oxidant stress in podocytes. PMID:18431508
Serpa Neto, Ary; Bianco Rossi, Felipe Martin; Dal Moro Amarante, Rodrigo; Alves Buriti, Nara; Cunha Barbosa Saheb, Gabriel; Rossi, Marçal
2009-01-01
Morbid obesity (MO) is associated with increased renal plasma flow (RPL) and glomerular filtration rate (GFR). This type of obesity usually does not respond to medical treatment, with bariatric surgery being the current treatment of choice. The present study aimed to evaluate whether weight loss may reverse the glomerular hyperfiltration of MO patients. This was a retrospective study of 140 patients submitted to Roux-en-Y gastric bypass (31.5% men, mean body mass index 46.17 +/- 5). Renal glomerular function and anthropometric and biochemical parameters were studied in patients before and 8 months after the surgery. GFR was determined by 24-hour urine samples. In the obese group, GFR before surgery was 148.7 +/- 35.2 ml/min. After the weight loss, GFR decreased to 113.8 +/- 31.7 ml/min (p<0.0001). Homeostasis model assessment-insulin resistance and glycosylated hemoglobin values were higher in MO with hyperfiltration. Weight loss was associated with reduction in blood pressure and GFR. It was found that the variation in systolic and diastolic blood pressure was a predictor of change in GFR. This study shows that obesity-related glomerular hyperfiltration ameliorates after weight loss. The improvement in hyperfiltration may prevent the development.
Gerchman, Fernando; Tong, Jenny; Utzschneider, Kristina M.; Zraika, Sakeneh; Udayasankar, Jayalakshmi; McNeely, Marguerite J.; Carr, Darcy B.; Leonetti, Donna L.; Young, Bessie A.; de Boer, Ian H.; Boyko, Edward J.; Fujimoto, Wilfred Y.; Kahn, Steven E.
2009-01-01
Context: Although obesity has been, in general, associated with glomerular hyperfiltration, visceral adiposity has been suggested to be associated with reduced glomerular filtration. Objective: The aim of the study was to evaluate the differential effects of obesity and body fat distribution on glomerular filtration. Design and Setting: We conducted a cross-sectional study of the Japanese-American community in Seattle, Washington. Participants: We studied a representative sample of second-generation Japanese-American men and women with normal glucose tolerance (n = 124) and impaired glucose metabolism (impaired fasting glucose and/or impaired glucose tolerance) (n = 144) residing in King County, Washington. Main Outcome Measures: Glomerular filtration rate was estimated by 24-h urinary creatinine clearance, body size by body mass index (BMI), and intra-abdominal fat (IAF), sc fat (SCF), and lean thigh areas by CT scan. Results: Creatinine clearance was positively correlated with BMI (r = 0.429; P < 0.001), fasting glucose (r = 0.198; P = 0.001), and insulin levels (r = 0.125; P = 0.042), as well as IAF (r = 0.239; P < 0.001), SCF (r = 0.281; P < 0.001), and lean thigh (r = 0.353; P < 0.001) areas. The association between creatinine clearance and BMI remained significant after adjustments for IAF, SCF areas, and fasting insulin levels (r = 0.337; P < 0.001); whereas IAF and SCF areas were not independently associated with creatinine clearance after adjusting for BMI. Creatinine clearance increased with increasing BMI after adjusting for fasting insulin, fasting glucose, IAF and SCF areas in subjects with normal glucose tolerance (r = 0.432; P < 0.001) and impaired glucose metabolism (r = 0.471; P < 0.001). Conclusions: BMI rather than body fat distribution is an independent determinant of creatinine clearance in nondiabetic subjects. Lean body mass, rather than adiposity, may explain this association. PMID:19584179
McCarthy, Ellen T; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J; Sharma, Mukut
2015-01-01
Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol. Published by Elsevier Inc.
McCarthy, Ellen T.; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J.; Sharma, Mukut
2014-01-01
Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol. PMID:25447342
Chronic Kidney Disease and Exposure to Nephrotoxic Metals
Orr, Sarah E.; Bridges, Christy C.
2017-01-01
Chronic kidney disease (CKD) is a common progressive disease that is typically characterized by the permanent loss of functional nephrons. As injured nephrons become sclerotic and die, the remaining healthy nephrons undergo numerous structural, molecular, and functional changes in an attempt to compensate for the loss of diseased nephrons. These compensatory changes enable the kidney to maintain fluid and solute homeostasis until approximately 75% of nephrons are lost. As CKD continues to progress, glomerular filtration rate decreases, and remaining nephrons are unable to effectively eliminate metabolic wastes and environmental toxicants from the body. This inability may enhance mortality and/or morbidity of an individual. Environmental toxicants of particular concern are arsenic, cadmium, lead, and mercury. Since these metals are present throughout the environment and exposure to one or more of these metals is unavoidable, it is important that the way in which these metals are handled by target organs in normal and disease states is understood completely. PMID:28498320
Inhibition of WISE preserves renal allograft function.
Qian, Xueming; Yuan, Xiaodong; Vonderfecht, Steven; Ge, Xupeng; Lee, Jae; Jurisch, Anke; Zhang, Li; You, Andrew; Fitzpatrick, Vincent D; Williams, Alexia; Valente, Eliane G; Pretorius, Jim; Stevens, Jennitte L; Tipton, Barbara; Winters, Aaron G; Graham, Kevin; Harriss, Lindsey; Baker, Daniel M; Damore, Michael; Salimi-Moosavi, Hossein; Gao, Yongming; Elkhal, Abdallah; Paszty, Chris; Simonet, W Scott; Richards, William G; Tullius, Stefan G
2013-01-01
Wnt-modulator in surface ectoderm (WISE) is a secreted modulator of Wnt signaling expressed in the adult kidney. Activation of Wnt signaling has been observed in renal transplants developing interstitial fibrosis and tubular atrophy; however, whether WISE contributes to chronic changes is not well understood. Here, we found moderate to high expression of WISE mRNA in a rat model of renal transplantation and in kidneys from normal rats. Treatment with a neutralizing antibody against WISE improved proteinuria and graft function, which correlated with higher levels of β-catenin protein in kidney allografts. In addition, treatment with the anti-WISE antibody reduced infiltration of CD68(+) macrophages and CD8(+) T cells, attenuated glomerular and interstitial injury, and decreased biomarkers of renal injury. This treatment reduced expression of genes involved in immune responses and in fibrogenic pathways. In summary, WISE contributes to renal dysfunction by promoting tubular atrophy and interstitial fibrosis.
Ermer, James; Corcoran, Mary; Lasseter, Kenneth; Marbury, Thomas; Yan, Brian
2016-01-01
Background: Lisdexamfetamine (LDX) and d-amphetamine pharmacokinetics were assessed in individuals with normal and impaired renal function after a single LDX dose; LDX and d-amphetamine dialyzability was also examined. Methods: Adults (N = 40; 8/group) were enrolled in 1 of 5 renal function groups [normal function, mild impairment, moderate impairment, severe impairment/end-stage renal disease (ESRD) not requiring hemodialysis, and ESRD requiring hemodialysis] as estimated by glomerular filtration rate (GFR). Participants with normal and mild to severe renal impairment received 30 mg LDX; blood samples were collected predose and serially for 96 hours. Participants with ESRD requiring hemodialysis received 30 mg LDX predialysis and postdialysis separated by a washout period of 7–14 days. Predialysis blood samples were collected predose, serially for 72 hours, and from the dialyzer during hemodialysis; postdialysis blood samples were collected predose and serially for 48 hours. Pharmacokinetic end points included maximum plasma concentration (Cmax) and area under the plasma concentration versus time curve from time 0 to infinity (AUC0–∞) or to last assessment (AUClast). Results: Mean LDX Cmax, AUClast, and AUC0–∞ in participants with mild to severe renal impairment did not differ from those with normal renal function; participants with ESRD had higher mean Cmax and AUClast than those with normal renal function. d-amphetamine exposure (AUClast and AUC0–∞) increased and Cmax decreased as renal impairment increased. Almost no LDX and little d-amphetamine were recovered in the dialyzate. Conclusions: There seems to be prolonged d-amphetamine exposure after 30 mg LDX as renal impairment increases. In individuals with severe renal impairment (GFR: 15 ≤ 30 mL·min−1·1.73 m−2), the maximum LDX dose is 50 mg/d; in patients with ESRD (GFR: <15 mL·min−1·1.73 m−2), the maximum LDX dose is 30 mg/d. Neither LDX nor d-amphetamine is dialyzable. PMID:26926668
Marco, Helena; Guermah, Imane; Matas, Lurdes; Hernández, Alba; Navarro, Maruja; Lopez, Dolores; Bonet, Josep
2016-04-01
A previously healthy 32-yearold woman developed arterial hypertension, proteinuria, and hematuria (nephritic syndrome) with normal renal function and was diagnosed with post-infectious glomerulonephritis secondary to parvovirus B19 infection. The renal biopsy showed endocapillary glomerulonephritis, with positive IgG, C3, and C1q immunoreactivity in the capillary walls and ultrastructural evidence of subendothelial deposits. The diagnosis of parvovirus B19 infection was confirmed by IgG/IgM serological positivity and parvovirus DNA demonstration in both peripheral blood and kidney tissue. Glomerular involvement improved spontaneously. To be noted are the atypical signs and symptoms of our patient who, unlike previously reported cases, failed to show fever, skin rash, or affected relatives.
Renal Control of Calcium, Phosphate, and Magnesium Homeostasis
Chonchol, Michel; Levi, Moshe
2015-01-01
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933
Li, Rui; Dai, Jinna; Kang, Hui
2018-03-01
Serum creatinine, urea, and cystatin-c are standardly used for the evaluation of renal function in the clinic. However, some patients have chronic kidney disease but still retain kidney function; a conventional serum index in these patients can be completely normal. Serum amino acid levels can reflect subtle changes in metabolism and are closely related to renal function. Here, we investigated how amino acids change as renal impairment increases. Subjects were divided into three groups by renal function glomerular filtration rate: healthy controls, patients with chronic kidney disease with normal kidney function, and patients with chronic kidney disease with decreased kidney function group. We identified 11 amino acids of interest using LC-MS/MS on MRM (+) mode. Statistical analysis indicated that alanine (ALA), valine (VAL), and tyrosine (TYR) decrease with renal function impairment, whereas phenylalanine (PHE) and citrulline (CIT) increase. We tried to construct a diagnostic model utilizing a combination of amino acids capable of identifying early chronic kidney disease patients. The accuracy, specificity, and sensitivity of the combining predictors were 86.9%, 84.6%, and 90.9%, respectively, which is superior to the reported values for serum creatinine, urea, and cystatin-c. Our data suggest that serum amino acid levels may supply important information for the early detection of chronic kidney disease. We are the first to establish a diagnostic model utilizing serum levels of multiple amino acids for the diagnosis of patients with early-stage chronic kidney disease. © 2017 Wiley Periodicals, Inc.
Stereological assessment of normal Persian squirrels (Sciurus anomalus) kidney.
Akbari, Mohsen; Goodarzi, Nader; Tavafi, Majid
2017-03-01
The functions of the mammalian kidney are closely related to its structure. This suggests that renal function can be completely characterized by accurate knowledge of its quantitative morphological features. The aim of this study was to investigate the histomorphometric features of the kidney using design-based and unbiased stereological methods in the Persian squirrel (Sciurus anomalus), which is the only representative of the Sciuridae family in the Middle East. The left kidneys of five animals were examined. Total volume of the kidney, cortex, and medulla were determined to be 960.75 ± 87.4, 754.31 ± 77.09 and 206.1 ± 16.89 mm 3 , respectively. The glomerular number was 32844.03 ± 1069.19, and the total glomerular volume was estimated to be 36.7 ± 1.45 mm 3 . The volume and length of the proximal convoluted tubule were estimated at 585.67 ± 60.7 mm 3 and 328.8 ± 14.8 m, respectively, with both values being greater than those reported in the rat kidney. The volume and length of the distal convoluted tubule were calculated at 122.34 ± 7.38 mm 3 and 234.4 ± 17.45 m, respectively, which are also greater than those reported in the rat kidney. Despite the comparable body weight, the total number and mean individual volume of glomeruli in the Persian squirrel kidney were greater than those in the rat kidney. Overall, the stereological variables of the kidneys elucidated in this study are exclusive to the Persian squirrel. Our findings, together with future renal physiological data, will contribute to a better understanding of the renal structure-function relationship in the Persian squirrel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellett, O.L.; Smith, M.L.; Greene, A.A.
Cystinosis is an autosomal recessive disease in which three clinical forms are recognized: infantile nephropathic, with renal tubular damage by 1 year of age and progressive glomerular insufficiency; intermediate, with tubular and glomerular insufficiency beginning at a later age; benign, with no kidney damage. Skin fibroblasts cultured from patients with all types of cystinosis show increased intralysosomal free (nonprotein) cystine; however, fibroblasts from heterozygotes have normal free-cystine values. To determine whether genetic complementation occurs between the different forms, somatic cell hybrids were constructed between cells from a patient with infantile nephropathic cystinosis and cells from patients with other types ofmore » cystinosis. If complementation occurred, the hybrids would be expected to have normal cystine levels. To construct hybrid cells, a universal parent cell type (TG1-neo), which was hypoxanthine/aminopterin/thymidine (HAT) sensitive and G418 resistant was constructed from an infantile nephropathic cystinosis fibroblast strain. Polyethylene glycol fusion of TG1-neo with other cells that are not HAT sensitive or G418 resistant allowed for selection of hybrid cells in a medium containing HAT and the aminoglycoside G418. As indicated by elevated cystine levels, complementation did not occur between TG1-neo and two different benign cystinosis strains, an intermediate cystinosis strain, or another nephropathic cystinosis cell strain. When a normal fibroblast strain was fused with TG1-neo, all 15 hybrid clones studied contained normal amounts of intracellular free cystine.« less
Implementation of olfactory bulb glomerular-layer computations in a digital neurosynaptic core.
Imam, Nabil; Cleland, Thomas A; Manohar, Rajit; Merolla, Paul A; Arthur, John V; Akopyan, Filipp; Modha, Dharmendra S
2012-01-01
We present a biomimetic system that captures essential functional properties of the glomerular layer of the mammalian olfactory bulb, specifically including its capacity to decorrelate similar odor representations without foreknowledge of the statistical distributions of analyte features. Our system is based on a digital neuromorphic chip consisting of 256 leaky-integrate-and-fire neurons, 1024 × 256 crossbar synapses, and address-event representation communication circuits. The neural circuits configured in the chip reflect established connections among mitral cells, periglomerular cells, external tufted cells, and superficial short-axon cells within the olfactory bulb, and accept input from convergent sets of sensors configured as olfactory sensory neurons. This configuration generates functional transformations comparable to those observed in the glomerular layer of the mammalian olfactory bulb. Our circuits, consuming only 45 pJ of active power per spike with a power supply of 0.85 V, can be used as the first stage of processing in low-power artificial chemical sensing devices inspired by natural olfactory systems.
Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells
Benedetti, Valentina; Novelli, Rubina; Abbate, Mauro; Rizzo, Paola; Conti, Sara; Tomasoni, Susanna; Corna, Daniela; Pozzobon, Michela; Cavallotti, Daniela; Yokoo, Takashi; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe
2016-01-01
Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research. PMID:26516208
Sjöström, Sofia; Jodal, Ulf; Sixt, Rune; Bachelard, Marc; Sillén, Ulla
2009-05-01
We sought to study renal abnormality and renal function through time in infants with high grade vesicoureteral reflux. This prospective observational study included 115 infants (80 boys and 35 girls) younger than 1 year with grade III to V vesicoureteral reflux. The diagnosis was made after prenatal ultrasound in 26% of the patients and after urinary tract infection in 71%. Patients were followed by renal scintigraphy, 51chromium edetic acid clearance and video cystometry. Median followup was 62 months. Renal abnormality, which was found in 90% of the children at followup, was generalized in 71% and focal in 29%. The abnormality was bilateral in 28% of the affected patients. Total glomerular filtration rate was less than 80% of expected in 30% of the patients. Single kidney function was less than 40% of expected total glomerular filtration rate in 71% of the patients. Renal status (parenchymal abnormality and function) remained unchanged through time in 84 of 108 available cases (78%), improved in 5 (5%) and deteriorated in 19 (18%). Predictive factors for deterioration were recurrent febrile urinary tract infection, bilateral abnormality and reduced total glomerular filtration rate. Deteriorated renal status was more common in cases diagnosed prenatally than in those detected after urinary tract infection. Among these infants with high grade vesicoureteral reflux renal abnormality was frequent and was associated with subnormal filtration of one of the kidneys. Decreased total glomerular filtration rate was seen in about a third of the patients. Overall deterioration of renal status was seen in only a fifth of the patients. Infection control seems to be an important factor to minimize the risk.
Concealed renal failure and adverse drug reactions in older patients with type 2 diabetes mellitus.
Corsonello, Andrea; Pedone, Claudio; Corica, Francesco; Mazzei, Bruno; Di Iorio, Angelo; Carbonin, Pierugo; Incalzi, Raffaele Antonelli
2005-09-01
In elderly patients serum creatinine may be normal despite decreased glomerular filtration rate (GFR). The aim of this study was to evaluate the prevalence of this "concealed" renal failure, i.e., renal failure with normal serum creatinine levels, in elderly diabetic patients, and to verify whether it is a risk factor for adverse drug reactions (ADR) to hydrosoluble drugs. We used data on 2257 hospitalized patients with type 2 diabetes mellitus enrolled in the Gruppo Italiano di Farmacovigilanza nell'Anziano study. On the basis of serum creatinine and calculated GFR, patients were grouped as follows: normal renal function (normal serum creatinine levels and normal GFR), concealed (normal serum creatinine levels and reduced GFR), or overt (increased creatinine levels and reduced GFR) renal failure. GFR was calculated using the Modification of Diet in Renal Disease (MDRD) equation. The outcome of the study was the incidence of ADR to hydrosoluble drugs during the hospital stay. The relationship between renal function and ADR was evaluated using Cox regression analysis including potential confounders. Concealed renal failure was observed in 363 (16.1%) of patients studied. Patients with concealed or overt renal failure were older, had more frequently cognitive impairment and polypharmacy, and had lower serum albumin levels than did those with normal renal function. Both concealed (hazard ratio = 1.90; 95% confidence interval, 1.04-3.48; p =.036) and overt (hazard ratio = 2.23; 95% confidence interval, 1.40-3.55; p =.001) renal failure were significantly associated with ADR to hydrosoluble drugs. The use of more than four drugs also qualified as an independent risk factor for ADRs to hydrosoluble drugs during hospital stay. Older diabetic patients should be systematically screened to ascertain the presence of concealed renal failure in an attempt to optimize the pharmacological treatment and reduce the risk of ADRs.
Dong, Li-Qun; Wang, Zheng; Yu, Ping; Guo, Yan-Nan; Wu, Jin; Feng, Shi-Pin; Li, Sha
2009-01-01
To investigate the expression of glomerular heparin sulfate (HS) in paediatric patients with minimal change nephritic syndrome (MCNS). The kidyney tissues were collected by biopsy from 13 paediatric patients with MCNS, while 5 normal renal biopsy samples were used as control. HS in glomeruli was analysed by indirect immunofluorescence staining using four different monoclonal antibodies, Hepss1, 3G10, JM403 and 10E4, which all recognize distinct HS species and each interacts with a specific HS domain. The concentrations of urine heparan sulfate also were measured by enzyme-linked immunosorbent assay (Elisa). Expression of HS fine domains was aberrant in paediatric patients compared with control subjects. Children with MCNS in replase showed a decreased glomerular expression of 10E4, JM403 and Hepss1 (P < 0.05). The level of urinary HS was significantly increased in peadiatric patients with MCNS when compared with that in control subjects (P < 0.01). These results suggest that loss of heparan sulphate in renal tissue may play a role in the pathogenesis of MCNS proteinuria.
Effects of bombesin on erythropoietin production in the anaesthetized dog.
Melchiorri, P; Sopranzi, N; Roseghini, M
1976-08-01
Bombesin, a tetradecapeptide isolated from the skin of some European discoglossid frogs, has been reported previously to reduce renal blood flow and glomerular filtration rate and to increase plasma renin activity in anaesthetized dogs. In the present study bombesin was infused intravenously in anaesthetized dogs at dose levels of 3, 6 and 12 ng/kg/min for 6 h and renal blood flow, glomerular filtration rate, oxygen consumption, oxygen extraction by the kidney tissue, as well as plasma erythropoietin levels (ESF) and plasma renin activity were measured. Plasma levels of ESF increased during bombesin infusion only when renal blood flow was reduced to a level of 1 ml/g/min or less. In this situation glomerular filtration was blocked, renal oxygen consumption was decreased to 10% of normal and oxygen extraction by the kidney was increased by 2 times. No correlation was found between plasma renin activity and ESF concentrations during bombesin infusion. It is concluded that the stimulant action of bombesin on ESF production is a consequence of the renal hypoxia induced by the reduction in renal blood flow.
Kim, Dae Keun; Jang, Yujin; Lee, Jaeseon; Hong, Helen; Kim, Ki Hong; Shin, Tae Young; Jung, Dae Chul; Choi, Young Deuk; Rha, Koon Ho
2015-12-01
To analyze long-term changes in both kidneys, and to predict renal function and contralateral hypertrophy after robot-assisted partial nephrectomy. A total of 62 patients underwent robot-assisted partial nephrectomy, and renal parenchymal volume was calculated using three-dimensional semi-automatic segmentation technology. Patients were evaluated within 1 month preoperatively, and postoperatively at 6 months, 1 year and continued up to 2-year follow up. Linear regression models were used to identify the factors predicting variables that correlated with estimated glomerular filtration rate changes and contralateral hypertrophy 2 years after robot-assisted partial nephrectomy. The median global estimated glomerular filtration rate changes were -10.4%, -11.9%, and -2.4% at 6 months, 1 and 2 years post-robot-assisted partial nephrectomy, respectively. The ipsilateral kidney median parenchymal volume changes were -24%, -24.4%, and -21% at 6 months, 1 and 2 years post-robot-assisted partial nephrectomy, respectively. The contralateral renal volume changes were 2.3%, 9.6% and 12.9%, respectively. On multivariable linear analysis, preoperative estimated glomerular filtration rate was the best predictive factor for global estimated glomerular filtration rate change on 2 years post-robot-assisted partial nephrectomy (B -0.452; 95% confidence interval -0.84 to -0.14; P = 0.021), whereas the parenchymal volume loss rate (B -0.43; 95% confidence interval -0.89 to -0.15; P = 0.017) and tumor size (B 5.154; 95% confidence interval -0.11 to 9.98; P = 0.041) were the significant predictive factors for the degree of contralateral renal hypertrophy on 2 years post-robot-assisted partial nephrectomy. Preoperative estimated glomerular filtration rate significantly affects post-robot-assisted partial nephrectomy renal function. Renal mass size and renal parenchyma volume loss correlates with compensatory hypertrophy of the contralateral kidney. Contralateral hypertrophy of the renal parenchyma compensates for the functional loss of the ipsilateral kidney. © 2015 The Japanese Urological Association.
Kidney Function in Obesity-Challenges in Indexing and Estimation.
Chang, Alex R; Zafar, Waleed; Grams, Morgan E
2018-01-01
As the prevalence of obesity continues to increase worldwide, an increasing number of people are at risk for kidney disease. Thus, there is a critical need to understand how best to assess kidney function in this population, and several challenges exist. The convention of indexing glomerular filtration rate (GFR) to body surface area (BSA) attempts to normalize exposure to metabolic wastes across populations of differing body size. In obese individuals, this convention results in a significantly lower indexed GFR than unindexed GFR, which has practical implications for drug dosing. Recent data suggest that "unindexing" estimated GFR (multiplying by BSA/1.73 m 2 ) for drug dosing may be acceptable, but pharmocokinetic data to support this practice are lacking. Beyond indexing, biomarkers commonly used for estimating GFR may induce bias. Creatinine is influenced by muscle mass, whereas cystatin C correlates with fat mass, both independent of kidney function. Further research is needed to evaluate the performance of estimating equations and other filtration markers in obesity, and determine whether unindexed GFR might better predict optimal drug dosing and clinical outcomes in patients whose BSA is very different than the conventional normalized value of 1.73 m 2 . Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
The influence of contrast media on kidney function in patients with stable coronary artery disease.
Reuter, Simon Bertram; Harutyunyan, Marina; Mygind, Naja Dam; Jørgensen, Erik; Kastrup, Jens
2014-08-01
To investigate the incidence of contrast media-induced nephropathy (CIN) in patients with stable coronary artery disease (CAD) referred for elective coronary intervention following hydration routines. The reversibility of CIN was followed in a 6 month-period. A total of 447 patients referred for elective coronary intervention due to suspected CAD were included. Blood samples were collected before and 24 h after intervention and medical records were obtained. Patients had no drinking fluid restrictions and were routinely treated with a 1000 ml saline infusion. All patients were invited to a 6-month examination and collection of blood samples. A total of 19 patients (4.3%) developed CIN. CIN patients had a pre-investigation higher estimated glomerular filtration rate (eGRF), lower level of kidney failure and lower creatinine level than non-CIN patients. Kidney function was not normalized in CIN patients 6 months after the intervention. Two patients still met the definition of CIN. With no restriction in fluid intake and supplementary infusion of saline, only a few patients with stable CAD developed early indications of CIN during elective coronary interventions. Kidney function and the amount of contrast media used was not a predictor of CIN development. The induced CIN was not completely normalized in a 6-month follow-up period.
NASA Technical Reports Server (NTRS)
Tucker, Bryan J.; Mendonca, Margarida M.
1995-01-01
Transition from a normal gravitational environment to that of microgravity eventually results in decreased plasma and blood volumes, increasing with duration of exposure to microgravity. This loss of vascular fluid is presumably due to negative fluid and electrolyte balance and most likely contributes to the orthostatic intolerance associated with the return to gravity. The decrease in plasma volume is presumed to be a reflection of a concurrent decrease in extracellular fluid volume with maintenance of normal plasma-interstitial fluid balance. In addition, the specific alterations in renal function contributing to these changes in fluid and electrolyte homeostasis are potentially responding to neuro-humoral signals that are not consistent with systemic fluid volume status. We have previously demonstrated an early increase in both glomerular filtration rate and extracellular fluid volume and that this decreases towards control values by 7 days of simulated microgravity. However, longer duration studies relating these changes to plasma volume alterations and the response to return to orthostasis have not been fully addressed. Male Wistar rats were chronically cannulated, submitted to 30 days heat-down tilt (HDT) and followed for 7 days after return to orthostasis from HDT. Measurements of renal function and extracellular and blood volumes were performed in the awake rat.
Quantification of single-kidney glomerular filtration rate with electron-beam computed tomography
NASA Astrophysics Data System (ADS)
Lerman, Lilach O.; Ritman, Erik L.; Pelaez, Laura I.; Sheedy, Patrick F., II; Krier, James D.
2000-04-01
The ability to accurately and noninvasively quantify single- kidney GFR could be invaluable for assessment of renal function. We developed a model that enables this measurement with EBCT. To examine the reliability of this method, EBCT renal flow and volume studies after contrast media administration were performed in pigs with unilateral renal artery stenosis (Group 1), controls (Group 2), and simultaneously with inulin clearance (Group 3). Renal flow curves, obtained from the bilateral renal cortex and medulla, depicted transit of the contrast through the vascular and tubular compartments, and were fitted using extended gamma- variate functions. Renal blood flow was calculated as the sum of products of cortical and medullary perfusions and volumes. Normalized GFR (mL/min/cc) was calculated using the rate (maximal slope) of proximal tubular contrast accumulation, and EBCT-GFR as normalized GFR* cortical volume. In Group 1, the decreased GFR of the stenotic kidney correlated well with its decreased volume and RBF, and with the degree of stenosis (r equals -0.99). In Group 3, EBCT-GFR correlated well with inulin clearance (slope 1.1, r equals 0.81). This novel approach can be very useful for quantification of concurrent regional hemodynamics and function in the intact kidneys, in a manner potentially applicable to humans.
Gundersen, H J; Seefeldt, T; Osterby, R
1980-01-01
The width of individual glomerular epithelial foot processes appears very different on electron micrographs. A method for obtainining distributions of the true width of foot processes from that of their apparent width on electron micrographs has been developed based on geometric probability theory pertaining to a specific geometric model. Analyses of foot process width in humans and rats show a remarkable interindividual invariance implying rigid control and therefore great biological significance of foot process width or a derivative thereof. The very low inter-individual variation of the true width, shown in the present paper, makes it possible to demonstrate slight changes in rather small groups of patients or experimental animals.
Wei, P; Grimm, P R; Settles, D C; Balwanz, C R; Padanilam, B J; Sansom, S C
2009-01-01
Statins may confer renal protection in a variety of glomerular diseases, including diabetic nephropathy (DN). However, various glomerular lesions have different etiologies and may have different responses to statins. This study was performed to determine the differential effects of simvastatin (SMV) on glomerular pathology including mesangial expansion and podocyte injury in a mouse model of early stage type 2 diabetes mellitus (DM). Type 2 DM was induced in male C57BL/6 mice by feeding a high fat diet (HF; 45 kcal% fat). After 22 weeks, one group of HF mice was treated with SMV (HF-SMV; 7 mug/day/g BW) and another group was treated with vehicle (HF-vehicle) for 4 weeks via osmotic mini-pump. A third group served as age-matched normal diet vehicle controls (ND-vehicle; 10 kcal% fat). At the end of treatment, glomerular morphology was evaluated in a blind manner to determine the progression of DN. Body weight, blood glucose, insulin, HDL-cholesterol and triglycerides, but not LDL-cholesterol, were increased in HF mice. Over the course of treatment, the 24-hour urinary albumin excretion (UAE) was unchanged in ND-vehicle. HF mice exhibited elevated UAE, which decreased with SMV, but was unchanged with vehicle. The absolute mesangial volume and the relative mesangial volume per glomerular volume increased in HF-vehicle and remained elevated with SMV treatment. The immuno-staining of nephrin, a protein marker of the integrity of podocyte slit diaphragms, was decreased in HF-vehicle; however, the nephrin quantity of the HF-SMV group was not different from ND-vehicle. It is concluded that SMV reverses podocyte damage, but does not affect mesangial expansion in the kidneys of early stage proteinuria of type 2 DM.
Boini, Krishna M.; Xia, Min; Koka, Saisudha; Gehr, Todd W.; Li, Pin-Lan
2016-01-01
Ceramide has been reported to initiate inflammasome formation and activation in obesity and different pathological conditions. The present study was performed to explore the role of acid sphingomyelinase (Asm) in the development of high fat diet (HFD)-induced inflammasome and activation and consequent glomerular injury. Asm knockout (Asm−/−) and wild type (Asm+/+) mice with or without Asm short hairpin RNA (shRNA) transfection were fed a HFD or normal chow for 12 weeks to produce obesity and associated glomerular injury. HFD significantly enhanced the Asm activity, ceramide production, colocalization of Nlrp3 (Nod-like receptor protein 3) with ASC (apoptosis-associated speck-like protein) or Caspase-1, NADPH-dependent superoxide (O2•−) production in glomeruli of Asm+/+mice than in control diet-fed mice. However, such HFD-induced increases in Asm activity, ceramide production, colocalization of Nlrp3 with ASC or Caspase-1, superoxide (O2•−) production was attenuated in Asm−/− or Asm shRNA-transfected wild-type mice. In consistency with decreased inflammasome formation, the caspase-1 activity and IL-1β production was significantly attenuated in Asm−/− or Asm shRNA-transfected wild-type mice fed a HFD. Morphological examinations showed that HFD-induced profound injury in glomeruli of Asm+/+ mice which was markedly attenuated in Asm−/− mice. The decreased glomerular damage index in Asm−/− mice was accompanied by attenuated proteinuria. Fluorescent immunohistochemical examinations using podocin as a podocyte marker showed that inflammasome formation induced by the HFD were mostly located in podocytes as demonstrated by co-localization of podocin with Nlrp3. In conclusion, these observations disclose a pivotal role of Asm in the HFD-induced inflammasome formation and consequent glomerular inflammation and injury. PMID:26980705
Podocyturia: Potential applications and current limitations
Trimarchi, Hernán
2017-01-01
Chronic kidney disease is a prevalent condition that affects millions of people worldwide and is a major risk factor of cardiovascular morbidity and mortality. The main diseases that lead to chronic kidney disease are frequent entities as diabetes mellitus, hypertension and glomerulopathies. One of the clinical markers of kidney disease progression is proteinuria. Moreover, the histological hallmark of kidney disease is sclerosis, located both in the glomerular and in the interstitial compartments. Glomerulosclerosis underscores an irreversible lesion that is clinically accompanied by proteinuria. In this regard, proteinuria and glomerular sclerosis are linked by the cell that has been conserved phylogenetically not only to prevent the loss of proteins in the urine, but also to maintain the health of the glomerular filtration barrier: The podocyte. It can then be concluded that the link between proteinuria, kidney disease progression and chronic kidney disease is mainly related to the podocyte. What is this situation due to? The podocyte is unable to proliferate under normal conditions, and a complex molecular machinery exists to avoid its detachment and eventual loss. When the loss of podocytes in the urine, or podocyturia, is taking place and its glomerular absolute number decreased, glomerulosclerosis is the predominant histological feature in a kidney biopsy. Therefore, tissular podocyte shortage is the cause of proteinuria and chronic kidney disease. In this regard, podocyturia has been demonstrated to precede proteinuria, showing that the clinical management of proteinuria cannot be considered an early intervention. The identification of urinary podocytes could be an additional tool to be considered by nephrologists to assess the activity of glomerulopathies, for follow-up purposes and also to unravel the pathophysiology of podocyte detachment in order to tailor the therapy of glomerular diseases more appropriately. PMID:28948159
Role for transforming growth factor-beta1 in alport renal disease progression.
Sayers, R; Kalluri, R; Rodgers, K D; Shield, C F; Meehan, D T; Cosgrove, D
1999-11-01
Alport syndrome results from mutations in either the alpha3(IV), alpha4(IV), or alpha5(IV) collagen genes. The disease is characterized by a progressive glomerulonephritis usually associated with a high-frequency sensorineural hearing loss. A mouse model for an autosomal form of Alport syndrome [collagen alpha3(IV) knockout] was produced and characterized. In this study, the model was exploited to demonstrate a potential role for transforming growth factor-beta1 (TGF-beta1) in Alport renal disease pathogenesis. Kidneys from normal and Alport mice, taken at different stages during the course of renal disease progression, were analyzed by Northern blot, in situ hybridization, and immunohistology for expression of TGF-beta1 and components of the extracellular matrix. Normal and Alport human kidney was examined for TGF-beta1 expression using RNase protection. The mRNAs encoding TGF-beta1 (in both mouse and human), entactin, fibronectin, and the collagen alpha1(IV) and alpha2(IV) chains were significantly induced in total kidney as a function of Alport renal disease progression. The induction of these specific mRNAs was observed in the glomerular podocytes of animals with advanced disease. Type IV collagen, laminin-1, and fibronectin were markedly elevated in the tubulointerstitium at 10 weeks, but not at 6 weeks, suggesting that elevated expression of specific mRNAs on Northern blots reflects events associated with tubulointerstitial fibrosis. The concomitant accumulation of mRNAs encoding TGF-beta1 and extracellular matrix components in the podocytes of diseased kidneys may reflect key events in Alport renal disease progression. These data suggest a role for TGF-beta1 in both glomerular and tubulointerstitial damage associated with Alport syndrome.
Structural Predictors of Loss of Renal Function in American Indians with Type 2 Diabetes.
Fufaa, Gudeta D; Weil, E Jennifer; Lemley, Kevin V; Knowler, William C; Brosius, Frank C; Yee, Berne; Mauer, Michael; Nelson, Robert G
2016-02-05
Diabetes is the leading cause of kidney failure in the United States, but early structural determinants of renal function loss in type 2 diabetes are poorly defined. We examined the association between morphometrically determined renal structural variables and loss of renal function in 111 American Indians with type 2 diabetes who volunteered for a research kidney biopsy at the end of a 6-year clinical trial designed to test the renoprotective efficacy of losartan versus placebo. Participants were subsequently followed in an observational study, in which annual measurements of GFR (iothalamate) initiated during the clinical trial were continued. Renal function loss was defined as ≥40% loss of GFR from the research examination performed at the time of kidney biopsy. Associations with renal function loss were evaluated by Cox proportional hazards regression. Hazard ratios (HRs) were reported per 1-SD increment for each morphometric variable. Of 111 participants (82% women; baseline mean [±SD] age, 46 years old [±10]; diabetes duration, 16 years [±6]; hemoglobin A1c =9.4% [±2.2]; GFR=147 ml/min [±56]; median albumin-to-creatinine ratio, 41 mg/g [interquartile range, 13-158]), 51 (46%) developed renal function loss during a median follow-up of 6.6 years (interquartile range, 3.1-9.0). Fourteen had baseline GFR <90 ml/min, and three had baseline GFR <60 ml/min. Higher mesangial fractional volume (HR, 2.27; 95% confidence interval [95% CI], 1.58 to 3.26), percentage of global glomerular sclerosis (HR, 1.63; 95% CI, 1.21 to 2.21), nonpodocyte cell number per glomerulus (HR, 1.50; 95% CI, 1.10 to 2.05), glomerular basement membrane width (HR, 1.48; 95% CI, 1.05 to 2.08), mean glomerular volume (HR, 1.42; 95% CI, 1.02 to 1.96), and podocyte foot process width (HR, 1.28; 95% CI, 1.03 to 1.60); lower glomerular filtration surface density (HR, 0.62; 95% CI, 0.41 to 0.94); and fewer endothelial fenestrations (HR, 0.68; 95% CI, 0.48 to 0.95) were each associated with GFR decline after adjustment for baseline age, sex, duration of diabetes, hemoglobin A1c, GFR, and treatment assignment during the clinical trial. Quantitative measures of glomerular structure predict loss of renal function in type 2 diabetes. Copyright © 2016 by the American Society of Nephrology.
Kazama, Itsuro; Nakajima, Toshiyuki
2017-10-01
In patients with bilateral ureteral obstruction, the serum creatinine levels are often elevated, sometimes causing postrenal acute kidney injury (AKI). In contrast, those with unilateral ureteral obstruction present normal serum creatinine levels, as long as their contralateral kidneys are preserved intact. However, the unilateral obstruction of the ureter could affect the renal function, as it humorally influences the renal hemodynamics. A 66-year-old man with a past medical history of hypertension and diabetes mellitus came to our outpatient clinic because of right abdominal dullness. Unilateral ureteral obstruction caused by a radio-opaque calculus in the right upper ureter and a secondary renal dysfunction. As oral hydration and the use of calcium antagonists failed to allow the spontaneous stone passage, extracorporeal shock wave lithotripsy (ESWL) was performed. Immediately after the passage of the stone, the number of red blood cells in the urine was dramatically decreased and the serum creatinine level almost returned to the normal range with the significant increase in glomerular filtration rate. Unilateral ureteral obstruction by the calculus, which caused reflex vascular constriction and ureteral spasm in the contralateral kidney, was thought to be responsible for the deteriorating renal function.
Risch, Martin; Risch, Lorenz; Purde, Mette-Triin; Renz, Harald; Ambühl, Patrice; Szucs, Thomas; Tomonaga, Yuki
2016-09-01
The ratio of cystatin C to creatinine (cysC/crea) is regarded as a marker of glomerular filtration quality and predicts mortality. It has been hypothesized that increased mortality may be mediated by the retention of biologically active substances due to shrinking glomerular pores. The present study investigated whether cysC/crea is independently associated with the levels of two renally cleared hormones, which have been linked to increased mortality. We conducted a multicenter, cross-sectional study with a random selection of general practitioners (GPs) from all GP offices in seven Swiss cantons. Markers of glomerular filtration quality were investigated together with estimated glomerular filtration rate (eGFR), albuminuria and urinary neutrophil gelatinase associated lipocalin (uNGAL) as well as two renally cleared low-molecular-weight protein hormones (i.e. BNP and PTH), Morbidity was assessed with the Charlson Comorbidity Index (CCI). A total of 1000 patients (433 males; mean age 57 ± 17 years) were included. There was a significant univariate association of BNP (r = 0.36, p < 0.001) and PTH (r = 0.18, p < 0.001) with cysC/crea. An adjusted model that accounted for kidney function (eGFR), altered glomerular structure (albuminuria), renal stress (uNGAL), and CCI showed that BNP and PTH were independently associated with cysC/crea as well as with the ratio of cystatin C-based to creatinine-based eGFR. In conclusion, in primary care patients, BNP and PTH are independently associated both with markers of glomerular filtration quality and eGFR regardless of structural kidney damage or renal stress. These findings offer an explanation, how altered glomerular filtration quality could contribute to increased mortality.
Periodontitis associated with Chronic Kidney Disease among Mexican Americans
Ioannidou, Effie; Hall, Yoshio; Swede, Helen; Himmelfarb, Jonathan
2012-01-01
Objective In comparison to non-Hispanic whites, a number of healthcare disparities, including poor oral health, have been identified among Hispanics in general and Mexican-Americans in particular. We hypothesized that Mexican-Americans with Chronic Kidney disease (CKD) would have higher prevalence of chronic periodontitis compared to Mexican Americans with normal kidney function, and that the level of kidney function would be inversely related to the prevalence of periodontal disease. Method We examined this hypothesis using the National Health and Nutrition Examination Survey 1988–1994 (NHANES III) dataset. We followed the American Academy of Periodontology (AAP)/Center for Disease Control and Prevention (CDC) case definition for periodontitis. Glomerular filtration rate was estimated using the CKD-Epidemiology (EPI) equation for Hispanic populations. The classification to CKD stages was based on the National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Results Periodontitis prevalence increased across the kidney function groups showing a statistically significant dose-response association (p<0.001). Mexican Americans with reduced kidney function were 2-fold more likely to have periodontitis compared to Mexican Americans with normal kidney function after adjusting for potential confounders such as smoking, diabetes and socioeconomic status. Multivariate adjusted Odds Ratio for periodontitis significantly increased with 1, 5 and 10 mL/minute eGFR reduction from the mean. Conclusion This is the first report, to the best our knowledge, that showed an increase of periodontitis prevalence with decreased kidney function in this population. PMID:22775287
The Evolving Complexity of the Podocyte Cytoskeleton.
Schell, Christoph; Huber, Tobias B
2017-11-01
Podocytes exhibit a unique cytoskeletal architecture that is fundamentally linked to their function in maintaining the kidney filtration barrier. The cytoskeleton regulates podocyte shape, structure, stability, slit diaphragm insertion, adhesion, plasticity, and dynamic response to environmental stimuli. Genetic mutations demonstrate that even slight impairment of the podocyte cytoskeletal apparatus results in proteinuria and glomerular disease. Moreover, mechanisms underpinning all acquired glomerular pathologies converge on disruption of the cytoskeleton, suggesting that this subcellular structure could be targeted for therapeutic purposes. This review summarizes our current understanding of the function of the cytoskeleton in podocytes and the associated implications for pathophysiology. Copyright © 2017 by the American Society of Nephrology.
Renal function, renal volume, and blood pressure in infants with antecedent of antenatal steroids.
Carballo-Magdaleno, Deyanira; Guízar-Mendoza, Juan M; Amador-Licona, Norma; Domínguez-Domínguez, Víctor
2011-10-01
Steroids have been used for more than 20 years in preterm infants to induce pulmonary maturity; however, some long-term effects have been reported, such as insulin resistance and elevation of blood pressure. The aim of our study was to compare renal volume, renal function, and blood pressure in infants between 12-36 months of age with and without antecedent of antenatal steroid treatment. This was a cross-sectional study comprised of three groups of infants (n = 30, respectively): preterm infants with and without antecedent of receiving antenatal steroids, respectively, and full-term infants. Blood pressure, renal volume, glomerular filtration rate, and tubular function were measured. Blood pressure and cystatin C levels and glomerular filtration rate were higher in both groups of preterm infants than in the control group (p < 0.01). However, no difference in any of the tested variables between the steroid and non-steroid group of preterm infants. Renal volume was similar in preterm and control infants. Based on these results, we conclude that prematurity independent of antenatal steroid use is associated with higher cystatin C and blood pressure levels and a higher glomerular filtration rate in infants between 12-36 months of age.
Basement Membrane Defects in Genetic Kidney Diseases
Chew, Christine; Lennon, Rachel
2018-01-01
The glomerular basement membrane (GBM) is a specialized structure with a significant role in maintaining the glomerular filtration barrier. This GBM is formed from the fusion of two basement membranes during development and its function in the filtration barrier is achieved by key extracellular matrix components including type IV collagen, laminins, nidogens, and heparan sulfate proteoglycans. The characteristics of specific matrix isoforms such as laminin-521 (α5β2γ1) and the α3α4α5 chain of type IV collagen are essential for the formation of a mature GBM and the restricted tissue distribution of these isoforms makes the GBM a unique structure. Detailed investigation of the GBM has been driven by the identification of inherited abnormalities in matrix proteins and the need to understand pathogenic mechanisms causing severe glomerular disease. A well-described hereditary GBM disease is Alport syndrome, associated with a progressive glomerular disease, hearing loss, and lens defects due to mutations in the genes COL4A3, COL4A4, or COL4A5. Other proteins associated with inherited diseases of the GBM include laminin β2 in Pierson syndrome and LMX1B in nail patella syndrome. The knowledge of these genetic mutations associated with GBM defects has enhanced our understanding of cell–matrix signaling pathways affected in glomerular disease. This review will address current knowledge of GBM-associated abnormalities and related signaling pathways, as well as discussing the advances toward disease-targeted therapies for patients with glomerular disease. PMID:29435440
Matavelli, Luis C; Zhou, Xiaoyan; Varagic, Jasmina; Susic, Dinko; Frohlich, Edward D
2007-02-01
We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% (n = 11), 6% (n = 9), or 8% (n = 11) salt-load diet for the ensuing 8 wk; control rats (n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.
Devassy, Jessay G; Wojcik, Jennifer L; Ibrahim, Naser H M; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M
2017-02-01
Questions remain regarding the potential negative effects of dietary high protein (HP) on kidney health, particularly in the context of obesity in which the risk for renal disease is already increased. To examine whether some of the variability in HP effects on kidney health may be due to source of protein, obese fa/fa Zucker rats were given HP (35% of energy from protein) diets containing either casein, soy protein, or a mixed source of animal and plant proteins for 12 weeks. Control lean and obese rats were given diets containing casein at normal protein (15% of energy from protein) levels. Body weight and blood pressure were measured, and markers of renal structural changes, damage, and function were assessed. Obesity alone resulted in mild renal changes, as evidenced by higher kidney weights, proteinuria, and glomerular volumes. In obese rats, increasing the protein level using the single, but not mixed, protein sources resulted in higher renal fibrosis compared with the lean rats. The mixed-protein HP group also had lower levels of serum monocyte chemoattractant protein-1, even though this diet further increased kidney and glomerular size. Soy and mixed-protein HP diets also resulted in a small number of damaged glomeruli, while soy compared with mixed-protein HP diet delayed the increase in blood pressure over time. Since obesity itself confers added risk of renal disease, an HP diet from mixed-protein sources that enables weight loss but has fewer risks to renal health may be advantageous.
Bending, J J; Viberti, G C; Watkins, P J; Keen, H
1986-01-01
The evolution of renal disease was studied in 12 insulin dependent diabetics selected for intermittent clinical proteinuria. After a run in period during which patients were studied three monthly for at least 12 months members of pairs of patients matched for age and duration of diabetes were allocated either to receive continuous subcutaneous insulin infusion or to continue with their usual conventional insulin injection therapy (controls) and studied three monthly for a further year. Mean (SEM) plasma glucose concentration and glycosylated haemoglobin (HbA1) value improved significantly in the insulin infusion group (glucose 10.1 (1.0) v 5.3 (0.3) mmol/l (182 (18) v 95 (5) mg/100 ml); HbA1 9.6 (0.8) v 7.6 (0.5)%; p less than 0.001 and p less than 0.005, run in v experimental periods) but not in the control group. Blood pressure was kept normal throughout. Glomerular filtration rate fell significantly in the insulin infusion and control groups throughout the study, from mean (SEM) baseline values of 114 (16) and 119 (15) ml/min/1.73 m2 to final values of 92 (15) and 95 (13) ml/min/1.73 m2 respectively (p less than 0.05 and p less than 0.01). The mean rate of decline in glomerular filtration rate did not change significantly in either group (run in v experimental periods: insulin infusion group 1.0 v 0.8 ml/min/month; controls 0.8 v 0.9 ml/min/month). Mean (SEM) plasma creatinine concentration rose slightly in the insulin infusion group only (93 (5) to 109 (11) mumol/l (1.1 (0.06) to 1.2 (0.1) mg/100 ml), 0.1 greater than p greater than 0.05; controls 94 (6) to 96 (6) mumol/l (1.1 (0.07) and 1.1 (0.07) mg/100 ml]. The urinary excretion rate of albumin varied widely and unpredictably throughout, while beta 2 microglobulin excretion remained normal and unchanged in both groups. Thus a at the stage of intermittent clinical proteinuria when albumin excretion rate is unpredictably variable (breaking through the "clinically positive" threshold only episodically) renal function, though still in the "normal" range, is already declining progressively; and the study failed to show that sustained improvement in mean glycaemia exerts a significant effect on this early deterioration of renal function. PMID:3080101
Tanji, N; Markowitz, G S; Fu, C; Kislinger, T; Taguchi, A; Pischetsrieder, M; Stern, D; Schmidt, A M; D'Agati, V D
2000-09-01
Advanced glycation end products (AGE) contribute to diabetic tissue injury by two major mechanisms, i.e., the alteration of extracellular matrix architecture through nonenzymatic glycation, with formation of protein crosslinks, and the modulation of cellular functions through interactions with specific cell surface receptors, the best characterized of which is the receptor for AGE (RAGE). Recent evidence suggests that the AGE-RAGE interaction may also be promoted by inflammatory processes and oxidative cellular injury. To characterize the distributions of AGE and RAGE in diabetic kidneys and to determine their specificity for diabetic nephropathy, an immunohistochemical analysis of renal biopsies from patients with diabetic nephropathy (n = 26), hypertensive nephrosclerosis (n = 7), idiopathic focal segmental glomerulosclerosis (n = 11), focal sclerosis secondary to obesity (n = 7), and lupus nephritis (n = 11) and from normal control subjects (n = 2) was performed, using affinity-purified antibodies raised to RAGE and two subclasses of AGE, i.e., N(epsilon)-(carboxymethyl)-lysine (CML) and pentosidine (PENT). AGE were detected equally in diffuse and nodular diabetic nephropathy. CML was the major AGE detected in diabetic mesangium (96%), glomerular basement membranes (GBM) (42%), tubular basement membranes (85%), and vessel walls (96%). In diabetic nephropathy, PENT was preferentially located in interstitial collagen (90%) and was less consistently observed in vessel walls (54%), mesangium (77%), GBM (4%), and tubular basement membranes (31%). RAGE was expressed on normal podocytes and was upregulated in diabetic nephropathy. The restriction of RAGE mRNA expression to glomeruli was confirmed by reverse transcription-PCR analysis of microdissected renal tissue compartments. The extent of mesangial and GBM immunoreactivity for CML, but not PENT, was correlated with the severity of diabetic glomerulosclerosis, as assessed pathologically. CML and PENT were also identified in areas of glomerulosclerosis and arteriosclerosis in idiopathic and secondary focal segmental glomerulosclerosis, hypertensive nephrosclerosis, and lupus nephritis. In active lupus nephritis, CML and PENT were detected in the proliferative glomerular tufts and crescents. In conclusion, CML is a major AGE in renal basement membranes in diabetic nephropathy, and its accumulation involves upregulation of RAGE on podocytes. AGE are also accumulated in acute inflammatory glomerulonephritis secondary to systemic lupus erythematosus, possibly via enzymatic oxidation of glomerular matrix proteins.
Glomerular disease augments kidney accumulation of synthetic anionic polymers.
Liu, Gary W; Prossnitz, Alexander N; Eng, Diana G; Cheng, Yilong; Subrahmanyam, Nithya; Pippin, Jeffrey W; Lamm, Robert J; Ngambenjawong, Chayanon; Ghandehari, Hamidreza; Shankland, Stuart J; Pun, Suzie H
2018-06-02
Polymeric drug carriers can alter the pharmacokinetics of their drug cargoes, thereby improving drug therapeutic index and reducing side effects. Understanding and controlling polymer properties that drive tissue-specific accumulation is critical in engineering targeted drug delivery systems. For kidney disease applications, targeted drug delivery to renal cells that reside beyond the charge- and size-selective glomerular filtration barrier could have clinical potential. However, there are limited reports on polymer properties that might enhance kidney accumulation. Here, we studied the effects of molecular weight and charge on the in vivo kidney accumulation of polymers in health and disease. We synthesized a panel of well-defined polymers by atom transfer radical polymerization to answer several questions. First, the biodistribution of low molecular weight (23-27 kDa) polymers composed of various ratios of neutral:anionic monomers (1:0, 1:1, 1:4) in normal mice was determined. Then, highly anionic (1:4 monomer ratio) low molecular and high molecular weight (47 kDa) polymers were tested in both normal and experimental focal segmental glomerulosclerosis (FSGS) mice, a model that results in loss of glomerular filtration selectivity. Through these studies, we observed that kidney-specific polymer accumulation increases with anionic monomer content, but not molecular weight; experimental FSGS increases kidney accumulation of anionic polymers; and anionic polymers accumulate predominantly in proximal tubule cells, with some distribution in kidney glomeruli. These findings can be applied to the design of polymeric drug carriers to enhance or mitigate kidney accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Impaired Albumin Uptake and Processing Promote Albuminuria in OVE26 Diabetic Mice
Long, Y. S.; Zheng, S.; Kralik, P. M.; Benz, F. W.
2016-01-01
The importance of proximal tubules dysfunction to diabetic albuminuria is uncertain. OVE26 mice have the most severe albuminuria of all diabetic mouse models but it is not known if impaired tubule uptake and processing are contributing factors. In the current study fluorescent albumin was used to follow the fate of albumin in OVE26 and normal mice. Compared to normal urine, OVE26 urine contained at least 23 times more intact fluorescent albumin but only 3-fold more 70 kD fluorescent dextran. This indicated that a function other than size selective glomerular sieving contributed to OVE26 albuminuria. Imaging of albumin was similar in normal and diabetic tubules for 3 hrs after injection. However 3 days after injection a subset of OVE26 tubules retained strong albumin fluorescence, which was never observed in normal mice. OVE26 tubules with prolonged retention of injected albumin lost the capacity to take up albumin and there was a significant correlation between tubules unable to eliminate fluorescent albumin and total albuminuria. TUNEL staining revealed a 76-fold increase in cell death in OVE26 tubules that retained fluorescent albumin. These results indicate that failure to process and dispose of internalized albumin leads to impaired albumin uptake, increased albuminuria, and tubule cell apoptosis. PMID:27822483
Renal control of calcium, phosphate, and magnesium homeostasis.
Blaine, Judith; Chonchol, Michel; Levi, Moshe
2015-07-07
Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.
Aging and the Kidneys: Anatomy, Physiology and Consequences for Defining Chronic Kidney Disease.
Glassock, Richard J; Rule, Andrew D
2016-01-01
The varied functions of the kidneys are influenced by the complex process of aging. The glomerular filtration rate (GFR) steadily declines with normal aging, and the progress of this process can be influenced by superimposed diseases. Microscopically, nephron numbers decrease as global glomerulosclerosis becomes more evident. The precise mechanisms underlying nephron loss with aging are not well understood, but derangements in podocyte biology appear to be involved. Classifications of chronic kidney disease (CKD) incorporate GFR values and attendant risk of adverse events. Arbitrary and fixed thresholds of GFR for defining CKD have led to an overdiagnosis of CKD in the elderly. An age-sensitive definition of CKD could offer a solution to this problem and more meaningfully capture the prognostic implications of CKD. © 2016 S. Karger AG, Basel.
Alport syndrome and Pierson syndrome: Diseases of the glomerular basement membrane.
Funk, Steven D; Lin, Meei-Hua; Miner, Jeffrey H
2018-04-16
The glomerular basement membrane (GBM) is an important component of the kidney's glomerular filtration barrier. Like all basement membranes, the GBM contains type IV collagen, laminin, nidogen, and heparan sulfate proteoglycan. It is flanked by the podocytes and glomerular endothelial cells that both synthesize it and adhere to it. Mutations that affect the GBM's collagen α3α4α5(IV) components cause Alport syndrome (kidney disease with variable ear and eye defects) and its variants, including thin basement membrane nephropathy. Mutations in LAMB2 that impact the synthesis or function of laminin α5β2γ1 (LM-521) cause Pierson syndrome (congenital nephrotic syndrome with eye and neurological defects) and its less severe variants, including isolated congenital nephrotic syndrome. The very different types of kidney diseases that result from mutations in collagen IV vs. laminin are likely due to very different pathogenic mechanisms. A better understanding of these mechanisms should lead to targeted therapeutic approaches that can help people with these rare but important diseases. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Renin-angiotensin system within the diabetic podocyte.
Márquez, Eva; Riera, Marta; Pascual, Julio; Soler, María José
2015-01-01
Diabetic kidney disease is the leading cause of end-stage renal disease. Podocytes are differentiated cells necessary for the development and maintenance of the glomerular basement membrane and the capillary tufts, as well as the function of the glomerular filtration barrier. The epithelial glomerular cells express a local renin-angiotensin system (RAS) that varies in different pathological situations such as hyperglycemia or mechanical stress. RAS components have been shown to be altered in diabetic podocytopathy, and their modulation may modify diabetic nephropathy progression. Podocytes are a direct target for angiotensin II-mediated injury by altered expression and distribution of podocyte proteins. Furthermore, angiotensin II promotes podocyte injury indirectly by inducing cellular hypertrophy, increased apoptosis, and changes in the anionic charge of the glomerular basement membrane, among other effects. RAS blockade has been shown to decrease the level of proteinuria and delay the progression of chronic kidney disease. This review summarizes the local intraglomerular RAS and its imbalance in diabetic podocytopathy. A better understanding of the intrapodocyte RAS might provide a new approach for diabetic kidney disease treatment. Copyright © 2015 the American Physiological Society.
Rintala, Jukka M; Savikko, Johanna; Rintala, Sini E; Palin, Niina; Koskinen, Petri K
2016-06-01
Mesangial proliferative glomerulonephritis is a common glomerular disorder that may lead to end-stage renal disease. Epidermal growth factor (EGF) plays an important role in the regulation of cell growth, proliferation, and differentiation and in the pathology of various renal diseases. Erlotinib is a novel, oral, highly selective tyrosine kinase inhibitor of the EGF receptor. It is clinically used to treat non-small cell lung and pancreatic cancers. Here, we investigated the effect of erlotinib on the progression of mesangioproliferative glomerulonephritis in an experimental model. Mesangial glomerulonephritis was induced with anti-rat Thy-1.1 antibody in male Wistar rats weighing 150-160 g. Rats were treated with erlotinib (10 mg/kg/day p.o.) or vehicle only (polyethylene glycol). Native Wistar rat kidneys were used as histological controls. Serum creatinine levels were measured at day 7. Kidneys were harvested 7 days after antibody administration for histology. Native controls showed no histological signs of glomerular pathology. In the vehicle group, intense glomerular inflammation developed after 7 days and prominent mesangial cell proliferation and glomerular matrix accumulation was seen. Erlotinib was well tolerated and there were no adverse effects during the follow-up period. Erlotinib significantly prevented progression of the glomerular inflammatory response and glomerular mesangial cell proliferation as well as matrix accumulation when compared with the vehicle group. Erlotinib also preserved renal function. These results indicate that erlotinib prevents the early events of experimental mesangial proliferative glomerulonephritis. Therefore, inhibition of the EGF receptor with erlotinib could prevent the progression of glomerulonephritis also in clinical nephrology.
Pawar, Rahul D; Castrezana-Lopez, Liliana; Allam, Ramanjaneyulu; Kulkarni, Onkar P; Segerer, Stephan; Radomska, Ewa; Meyer, Tobias N; Schwesinger, Catherine-Meyer; Akis, Nese; Gröne, Hermann-Josef; Anders, Hans-Joachim
2009-01-01
What are the molecular mechanisms of bacterial infections triggering or modulating lupus nephritis? In nephritic MRLlpr/lpr mice, transient exposure to bacterial cell wall components such as lipopeptide or lipopolysaccharide (LPS) increased splenomegaly, the production of DNA autoantibodies, and serum interleukin (IL)-6, IL-12 and tumour necrosis factor (TNF) levels, and aggravated lupus nephritis. Remarkably, bacterial lipopeptide induced massive albuminuria in nephritic but not in non-nephritic mice. This was associated with down-regulation of renal nephrin mRNA and redistribution from its normal localization at foot processes to the perinuclear podocyte area in nephritic MRLlpr/lpr mice. Bacterial lipopeptide activates Toll-like receptor 2 (TLR2), which we found to be expressed on cultured podocytes and glomerular endothelial cells. TNF and interferon (IFN)-γ induced TLR2 mRNA and receptor expression in both cell types. Albumin permeability was significantly increased in cultured podocytes and glomerular endothelial cells upon stimulation by bacterial lipopeptide. LPS also induced moderate albuminuria. In summary, bacterial lipopeptide and LPS can aggravate glomerulonephritis but only lipopeptide potently induces severe albuminuria in MRLlpr/lpr mice. PMID:19175801
Signorini, A M; Tanganelli, I; Fondelli, C; Vattimo, A; Ferrari, F; Borgogni, P; Borgogni, L; Gragnoli, G
1991-08-01
In type 2 diabetes elevated glomerular filtration rate (GFR) and increased renal volume (RV), often accompanied to normo or microalbuminuria, were demonstrated. This condition is considered a pathogenetic factor for clinical nephropathy. As this topic is little studied in type 2 diabetes, we have investigated 73 type 2 diabetic patients (34 normo and 39 microalbuminuric), looking for a correlation between GFR, RV, hypertension, duration of diabetes and indexes of metabolic control. GFR was measured by a scintigraphy, after infusion of 99Tc-DTPA. Renal volume was determined by ultrasound scanning. Between the groups GFR and RV weren't different; elevated GFR was demonstrated in 3 patients; increased RV in 1 patient. In the hypertensive group GFR was lower than in normotensive group and in controls. Multivariate analysis in stepwise demonstrated that GFR presents a negative correlation to systolic blood pressure as in normo as in microalbuminuric patients. In the normotensive group GFR didn't correlate to the other variables. The present data suggest that in type 2 diabetes there is a little prevalence of glomerular hyperfiltration and increased renal volume and that hypertension plays a role on GFR of hypertensive diabetic patients.
Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime
NASA Astrophysics Data System (ADS)
Du, Bujie; Jiang, Xingya; Das, Anindita; Zhou, Qinhan; Yu, Mengxiao; Jin, Rongchao; Zheng, Jie
2017-11-01
The glomerular filtration barrier is known as a 'size cutoff' slit, which retains nanoparticles or proteins larger than 6-8 nm in the body and rapidly excretes smaller ones through the kidneys. However, in the sub-nanometre size regime, we have found that this barrier behaves as an atomically precise 'bandpass' filter to significantly slow down renal clearance of few-atom gold nanoclusters (AuNCs) with the same surface ligands but different sizes (Au18, Au15 and Au10-11). Compared to Au25 (∼1.0 nm), just few-atom decreases in size result in four- to ninefold reductions in renal clearance efficiency in the early elimination stage, because the smaller AuNCs are more readily trapped by the glomerular glycocalyx than larger ones. This unique in vivo nano-bio interaction in the sub-nanometre regime also slows down the extravasation of sub-nanometre AuNCs from normal blood vessels and enhances their passive targeting to cancerous tissues through an enhanced permeability and retention effect. This discovery highlights the size precision in the body's response to nanoparticles and opens a new pathway to develop nanomedicines for many diseases associated with glycocalyx dysfunction.
Sanders, Marijke W; Fazzi, Gregorio E; Janssen, Ger M J; Blanco, Carlos E; De Mey, Jo G R
2005-07-01
A suboptimal fetal environment increases the risk to develop cardiovascular disease in the adult. We reported previously that intrauterine stress in response to reduced uteroplacental blood flow in the pregnant rat limits fetal growth and compromises renal development, leading to an altered renal function in the adult offspring. Here we tested the hypothesis that high dietary sodium intake in rats with impaired renal development attributable to intrauterine stress, results in increased blood pressure, altered renal function, and organ damage. In rats, intrauterine stress was induced by bilateral ligation of the uterine arteries at day 17 of pregnancy. At the age of 12 weeks, the offspring was given high-sodium drinking water (2% sodium chloride). At the age of 16 weeks, rats were instrumented for monitoring of blood pressure and renal function. After intrauterine stress, litter size and birth weight were reduced, whereas hematocrit at birth was increased. Renal blood flow, glomerular filtration rate, and the glomerular filtration fraction were increased significantly after intrauterine stress. High sodium intake did not change renal function and blood pressure in control animals. However, during high sodium intake in intrauterine stress offspring, renal blood flow, glomerular filtration rate, and the filtration fraction were decreased, and blood pressure was increased. In addition, these animals developed severe albuminuria, an important sign of renal dysfunction. Thus, a suboptimal fetal microenvironment, which impairs renal development, results in sodium-dependent hypertension and albuminuria.
Pathways to nephron loss starting from glomerular diseases-insights from animal models.
Kriz, Wilhelm; LeHir, Michel
2005-02-01
Studies of glomerular diseases in animal models show that progression toward nephron loss starts with extracapillary lesions, whereby podocytes play the central role. If injuries remain bound within the endocapillary compartment, they will undergo recovery or be repaired by scaring. Degenerative, inflammatory and dysregulative mechanisms leading to nephron loss are distinguished. In addition to several other unique features, the dysregulative mechanisms leading to collapsing glomerulopathy are particular in that glomeruli and tubules are affected in parallel. In contrast, in degenerative and inflammatory diseases, tubular injury is secondary to glomerular lesions. In both of the latter groups of diseases, the progression starts in the glomerulus with the loss of the separation between the tuft and Bowman's capsule by forming cell bridges (parietal cells and/or podocytes) between the glomerular and the parietal basement membranes. Cell bridges develop into tuft adhesions to Bowman's capsule, which initiate the formation of crescents, either by misdirected filtration (proteinaceous crescents) or by epithelial cell proliferation (cellular crescents). Crescents may spread over the entire circumference of the glomerulus and, via the glomerulotubular junction, may extend onto the tubule. Two mechanisms concerning the transfer of a glomerular injury onto the tubulointerstitium are discussed: (1) direct encroachment of extracapillary lesions and (2) protein leakage into tubular urine, resulting in injury to the tubule and the interstitium. There is evidence that direct encroachment is the crucial mechanism. Progression of chronic renal disease is underlain by a vicious cycle which passes on the damage from lost and/or damaged nephrons to so far healthy nephrons. Presently, two mechanisms are discussed: (1) the loss of nephrons leads to compensatory mechanisms in the remaining nephrons (glomerular hypertension, hyperfiltration, hypertrophy) which increase their vulnerability to any further challenge (overload hypothesis); and (2) a proteinuric glomerular disease leads, by some way or another, to tubulointerstitial inflammation and fibrosis, accounting for the further deterioration of renal function (fibrosis hypothesis). So far, no convincing evidence has been published that in primary glomerular diseases fibrosis is harmful to healthy nephrons. The potential of glomerular injuries to regenerate or to be repaired by scaring is limited. The only option for extracapillary injuries with tuft adhesion is repair by formation of a segmental adherent scar (i.e., segmental glomerulosclerosis).
Retinopathy and chronic kidney disease in the Chronic Renal Insufficiency Cohort (CRIC) study.
Grunwald, Juan E; Alexander, Judith; Ying, Gui-Shuang; Maguire, Maureen; Daniel, Ebenezer; Whittock-Martin, Revell; Parker, Candace; McWilliams, Kathleen; Lo, Joan C; Go, Alan; Townsend, Raymond; Gadegbeku, Crystal A; Lash, James P; Fink, Jeffrey C; Rahman, Mahboob; Feldman, Harold; Kusek, John W; Xie, Dawei; Jaar, Bernard G
2012-09-01
To investigate the association between retinopathy and chronic kidney disease. In this observational, cross-sectional study, 2605 patients of the Chronic Renal Insufficiency Cohort (CRIC) study, a multicenter study of chronic kidney disease, were offered participation. Nonmydriatic fundus photographs of the disc and macula in both eyes were obtained in 1936 of these subjects. The photographs were reviewed in a masked fashion at a central photograph reading center using standard protocols. Presence and severity of retinopathy (diabetic, hypertensive, or other) and vessel diameter caliber were assessed by trained graders and a retinal specialist using protocols developed for large epidemiologic studies. Kidney function measurements and information on traditional and nontraditional risk factors for decreased kidney function were obtained from the CRIC study. Greater severity of retinopathy was associated with lower estimated glomerular filtration rate after adjustment for traditional and nontraditional risk factors. The presence of vascular abnormalities usually associated with hypertension was also associated with lower estimated glomerular filtration rate. We found no strong direct relationship between estimated glomerular filtration rate and average arteriolar or venular calibers. Our findings show a strong association between severity of retinopathy and its features and level of kidney function after adjustment for traditional and nontraditional risk factors for chronic kidney disease, suggesting that retinovascular pathology reflects renal disease.
Fomina, Elena V; Lisova, Natalia Iu; Kireev, Kirill S; Tiys, Evgeny S; Kononikhin, Alexey S; Larina, Irina M
2015-05-01
There is a close physiological connection between muscular activity and kidney function. During physical exercise (PE) the qualitative and quantitative composition of urine changes. This paper explores the influence of moderate PE on urine protein composition. The study of urine protein composition will help to make corrections to the existing methods of countermeasures. There were 10 healthy men who exercised on a treadmill similar to the one onboard the International Space Station. We analyzed their urinary proteome composition, potassium level, sodium level, and their level of osmotically active substances before and after PE. After moderate PE, a small increase in urine flow speed and a constant glomerular filtration rate were noted. The average-group index of total protein excretion within the urine was reliably increased. From the 148 proteins identified in the urine, 64 were associated with known tissue origin. We found that protein penetration into the urine had a positive correlation with their tissue expression. Selectivity of the glomerular barrier during PE decreased and high-molecular weight proteins penetrated through the glomerular barrier more easily after PE. Performance of moderate intensity physical exercise of short duration did not lead to an increase in the glomerular filtration rate nor did diuresis increase above the limits of baseline variability. However, the protein excretion rate increased after PE. We also observed that protein composition drift indicated a change in the set of biological processes in which a given protein participated, in some cases activating, in some cases inactivating them.
Rao, Velidi H.; Meehan, Daniel T.; Delimont, Duane; Nakajima, Motowo; Wada, Takashi; Ann Gratton, Michael; Cosgrove, Dominic
2006-01-01
Alport syndrome is a glomerular basement membrane (GBM) disease caused by mutations in type IV collagen genes. A unique irregular thickening and thinning of the GBM characterizes the progressive glomerular pathology. The metabolic imbalances responsible for these GBM irregularities are not known. Here we show that macrophage metalloelastase (MMP-12) expression is >40-fold induced in glomeruli from Alport mice and is markedly induced in glomeruli of both humans and dogs with Alport syndrome. Treatment of Alport mice with MMI270 (CGS27023A), a broad spectrum MMP inhibitor that blocks MMP-12 activity, results in largely restored GBM ultrastructure and function. Treatment with BAY-129566, a broad spectrum MMP inhibitor that does not inhibit MMP-12, had no effect. We show that inhibition of CC chemokine receptor 2 (CCR2) receptor signaling with propagermanium blocks induction of MMP-12 mRNA and prevents GBM damage. CCR2 receptor is expressed in glomerular podocytes of Alport mice, suggesting MCP-1 activation of CCR2 on podocytes may underlie induction of MMP-12. These data indicate that the irregular GBM that characterizes Alport syndrome may be mediated, in part, by focal degradation of the GBM due to MMP dysregulation, in particular, MMP-12. Thus, MMP-12/CCR2 inhibitors may provide a novel and effective therapeutic strategy for Alport glomerular disease. PMID:16816359
Moriya, Tatsumi; Tanaka, Shiro; Sone, Hirohito; Ishibashi, Shun; Matsunaga, Satoshi; Ohashi, Yasuo; Akanuma, Yasuo; Haneda, Masakazu; Katayama, Shigehiro
2017-02-01
The Japan Diabetes Complications Study (JDCS), a nation-wide, multicenter, prospective study of patients with type 2 diabetes, reported that hemoglobin A 1c (HbA 1c ), systolic blood pressure, and smoking were risk factors for the onset of macroalbuminuria. This study explored the risk factors for glomerular filtration rate (GFR) decline in the JDCS patients. We examined the 1407 JDCS patients (667 women, mean age 59years, 974 normoalbuminuria, 433 microalbuminuria) whose urinary albumin-to-creatinine ratio (UACR) and estimated GFR (eGFR) were determined at baseline with an 8-year follow-up. We divided all the patients into four groups according to baseline eGFR: G1 (120≤eGFR), G2 (90≤eGFR<120), G3 (60≤eGFR<90), G4 (eGFR<60). The eGFRs in groups G1 and G2 decreased at follow-up compared to those at the baseline. The risk of annual eGFR decline rate≥3ml/min/1.73m 2 (rapid decliners) increased as the baseline eGFR increased. Advanced age, high HbA 1c , and UACR, or diabetic retinopathy at baseline were risk factors for the rapid decliners. Especially the G1 group had a significant risk for the rapid decliners. The frequency of the patients with GFR<60ml/min/1.73m 2 at the follow-up amounted to 31.1% in the rapid decliners, which was higher than 12% in the non-rapid decliners. In normo- and microalbuminuric patients with type 2 diabetes, extra careful attention should be paid to patients with eGFR ≥120ml/min/1.73m 2 to detect cases with rapidly decreased GFR under the normal range. Copyright © 2016 Elsevier Inc. All rights reserved.
Ku, Sae-Kwang; Park, Jeong-hyeon; Oh, Euichaul; Kwak, Mi-Kyoung
2016-01-01
Chronic kidney disease (CKD) is a major complication of metabolic disorders such as diabetes mellitus, obesity, and hypertension. Comorbidity of these diseases is the factor exacerbating CKD progression. Statins are commonly used in patients with metabolic disorders to decrease the risk of cardiovascular complications. Sarpogrelate, a selective antagonist of 5-hydroxytryptamine (5-HT) 2A receptor, inhibits platelet aggregation and is used to improve peripheral circulation in diabetic patients. Here, we investigated the effects of sarpogrelate and rosuvastatin on CKD in mice that were subjected to a high fat diet (HFD) for 22 weeks and a single low dose of streptozotocin (STZ, 40 mg/kg). When mice were administrated sarpogrelate (50 mg/kg, p.o.) for 13 weeks, albuminuria and urinary cystatin C excretion were normalized and histopathological changes such as glomerular mesangial expansion, tubular damage, and accumulations in lipid droplets and collagen were significantly improved. Sarpogrelate treatment repressed the HFD/STZ-induced CD31 and vascular endothelial growth factor receptor-2 expressions, indicating the attenuation of glomerular endothelial proliferation. Additionally, sarpogrelate inhibited interstitial fibrosis by suppressing the increases in transforming growth factor-β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1). All of these functional and histological improvements were also seen in rosuvastatin (20 mg/kg) group and, notably, the combinatorial treatment with sarpogrelate and rosuvastatin showed additive beneficial effects on histopathological changes by HFD/STZ. Moreover, sarpogrelate reduced circulating levels of PAI-1 that were elevated in the HFD/STZ group. As supportive in vitro evidence, sarpogrelate incubation blocked TGF-β1/5-HT-inducible PAI-1 expression in murine glomerular mesangial cells. Taken together, sarpogrelate and rosuvastatin may be advantageous to control the progression of CKD in patients with comorbid metabolic disorders, and particularly, the use of sarpogrelate as adjunctive therapy with statins may provide additional benefits on CKD. PMID:27097221
Pregnancy outcomes in patients with Alport syndrome.
Yefet, Enav; Tovbin, David; Nachum, Zohar
2016-04-01
To analyze the maternal and obstetric outcomes of patients with Alport syndrome. We describe the pregnancy course of 8 pregnancies of three family members with the autosomal dominant (the rarest) form of Alport syndrome. We also analyzed 10 previously reported pregnancies with other Alport mutations in order to explore risk factors for unfavorable obstetric outcomes and maternal renal deterioration. In 13 pregnancies (72 %), renal function did not deteriorate permanently. All of these women had pre-pregnancy mild chronic kidney disease (CKD stage G1). In all of them, only a transient increase in proteinuria was recorded and in one case there was a transient decrease in the estimated glomerular filtration rate. In four other pregnancies (22 %), renal function deteriorated following pregnancy. All of them were complicated with pre-eclampsia. One woman had pre-pregnancy CKD-G2A3 and chronic hypertension. Two women had CKD-G1A3 of whom one had pre-pregnancy proteinuria near the nephrotic range. In the fourth case, renal function deterioration was reported without information on the exact pre-pregnancy renal function. In the last case, CKD-G2 was reported after pregnancy without information on CKD stage prior to pregnancy. Severe proteinuria did not imply a permanent renal function deterioration if it developed during pregnancy. Ten pregnancies ended with preterm birth (56 %). Two stillbirths were reported (11 %); however, only one was attributed to maternal health deterioration. Data regarding pregnancy outcomes in Alport syndrome is limited. The outcome seems favorable when pre-pregnancy kidney function is normal or near normal and when chronic hypertension/pre-eclampsia is absent.
Serum osteoprotegerin and renal function in the general population: the Tromsø Study.
Vik, Anders; Brodin, Ellen E; Mathiesen, Ellisiv B; Brox, Jan; Jørgensen, Lone; Njølstad, Inger; Brækkan, Sigrid K; Hansen, John-Bjarne
2017-02-01
Serum osteoprotegerin (OPG) is elevated in patients with chronic kidney disease (CKD) and increases with decreasing renal function. However, there are limited data regarding the association between OPG and renal function in the general population. The aim of the present study was to explore the relation between serum OPG and renal function in subjects recruited from the general population. We conducted a cross-sectional study with 6689 participants recruited from the general population in Tromsø, Norway. Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration equations. OPG was modelled both as a continuous and categorical variable. General linear models and linear regression with adjustment for possible confounders were used to study the association between OPG and eGFR. Analyses were stratified by the median age, as serum OPG and age displayed a significant interaction on eGFR. In participants ≤62.2 years with normal renal function (eGFR ≥90 mL/min/1.73 m 2 ) eGFR increased by 0.35 mL/min/1.73 m 2 (95% CI 0.13-0.56) per 1 standard deviation (SD) increase in serum OPG after multiple adjustment. In participants older than the median age with impaired renal function (eGFR <90 mL/min/1.73 m 2 ), eGFR decreased by 1.54 (95% CI -2.06 to -1.01) per 1 SD increase in serum OPG. OPG was associated with an increased eGFR in younger subjects with normal renal function and with a decreased eGFR in older subjects with reduced renal function. Our findings imply that the association between OPG and eGFR varies with age and renal function.
Gómez-Banoy, Nicolás; Cuevas, Virginia; Higuita, Andrea; Aranzález, Luz Helena; Mockus, Ismena
2016-07-01
The tumor necrosis factor α (TNF-α) family of inflammatory molecules plays a crucial role in the pathogenesis of type 2 diabetes mellitus (DM2) complications. TNF-α soluble receptors 1 (sTNFR1) and 2 (sTNFR2) have been associated with chronic kidney disease in DM2 patients. This cross-sectional study intended to determine serum concentrations of sTNFR1 and sTNFR2 in Colombian patients and correlated them with various clinical variables, especially kidney function. 92 Colombian patients with DM2 were recruited. Anthropometric variables, glycemic control parameters, lipid profile and renal function were assessed for each patient. Levels of sTNFR1 and sTNFR2 were determined using ELISA. Patients were stratified in two groups according to reduced estimated glomerular filtration rate (eGFR) (<60ml/min/1.73m(2)) and normal eGFR (≥60ml/min/1.73m(2)). Significantly elevated levels of sTNFR1 and sTNFR2 were observed in the diminished versus normal eGFR group. Also, significant differences were noticed between both groups in haemoglobin A1c (HbA1c) values, percentage of hypertensive subjects treated with angiotensin receptor blocker (ARB) and subjects treated with metformin. No differences were observed regarding body mass index (BMI), albuminuria and lipid profile. Multivariable linear regression analysis revealed that sTNFR1 alone showed a significant association with low eGFR (p=0.009). However, after adjusting for age, the association weakens. Moreover, sTNFR1 and sTNFR2 showed a linear negative correlation with eGFR (r=-0.448, p<0.001 and r=-0.376, p<0.001, respectively). A positive correlation was also seen between sTNFR1 and HbA1c, whereas a negative correlation between both sTNFRs and high-density lipoprotein (HDL) cholesterol was found. Elevated levels of sTNFRs, especially sTNFR1, are associated with loss of kidney function in Hispanic patients with DM2. Future studies should focus on social and genetic determinants of inflammation and their association with CKD in this ethnicity. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Hongyu; Saha, Jharna; Byun, Jaeman; Schin, MaryLee; Lorenz, Matthew; Kennedy, Robert T; Kretzler, Matthias; Feldman, Eva L; Pennathur, Subramaniam; Brosius, Frank C
2008-10-01
Recent studies suggest that thiazolidinediones ameliorate diabetic nephropathy (DN) independently of their effect on hyperglycemia. In the current study, we confirm and extend these findings by showing that rosiglitazone treatment prevented the development of DN and reversed multiple markers of oxidative injury in DBA/2J mice made diabetic by low-dose streptozotocin. These diabetic mice developed a 14.2-fold increase in albuminuria and a 53% expansion of renal glomerular extracellular matrix after 12 wk of diabetes. These changes were largely abrogated by administration of rosiglitazone beginning 2 wk after the completion of streptozotocin injections. Rosiglitazone had no effect on glycemic control. Rosiglitazone had similar effects on insulin-treated diabetic mice after 24 wk of diabetes. Podocyte loss and glomerular fibronectin accumulation, other markers of early DN, were prevented by rosiglitazone in both 12- and 24-wk diabetic models. Surprisingly, glomerular GLUT1 levels did not increase and nephrin levels did not decrease in the diabetic animals; neither changed with rosiglitazone. Plasma and kidney markers of protein oxidation and lipid peroxidation were significantly elevated in the 24-wk diabetic animals despite insulin treatment and were reduced to near-normal levels by rosiglitazone. Finally, urinary metabolites were markedly altered by diabetes. Of 1,988 metabolite features identified by electrospray ionization time of flight mass spectrometry, levels of 56 were altered more than twofold in the urine of diabetic mice. Of these, 21 were returned to normal by rosiglitazone. Thus rosiglitazone has direct effects on the renal glomerulus to reduce reactive oxygen species accumulation to prevent type 1 diabetic mice from development of DN.
Creatinine Clearance and Estimated Glomerular Filtration Rate--When are they Interchangeable.
Simetić, Lucija; Zibar, Lada; Drmić, Sandra; Begić, Ivana; Serić, Vatroslav
2015-09-01
Study goal was to examine which of glomerular rate equations is most suitable for prediction of creatinine clearance (CrCl). Using a retrospective review of data from 500 hospital patients we calculated glomerular filtration rate according to Cockcroft-Gault equation (C-G), Modification of Diet in Renal Disease Study equation (MDRD) and Chronic Kidney Disease Epidemiology Collaboration equation (CKD-EPI). We determined if results of these equations were compatible with CrCl, and does stage of kidney disease, body-mass index (BMI), diabetes or old age have an impact on their ability to predict creatinine clearance. All of the equations showed high correlations with CrCl, regardless of diabetes, overweight or old age. There was no significant difference (p<0.05) between diagnostic accuracy when comparing ROC plots for MDRD and CKD-EPIat CrCl cut offs of 60 ml/min/1.73 m2 and 90 ml/min/1.73 m2 when analyzing data for all patients, older patients (>65 years) and diabetics. The percentage of overweight patients (BMI > or = 25) in patients with normal CrCl and decreased GFR was 64.81% for C-G, 92.04% for MDRD and 91.36% for CKD-EPI. Large number of overweight patients with normal CrCl and decreased GFR would indicate that CrCl overestimates GFR in overweight patients. The simple correction in CrCl for obese subjects is purposed. Passing-Bablok regression showed agreement between CrCl and MDRD and CrCl and CKD-EPI only in cases of severely decreased GFR (G4 and G5 stage of chronic kidney disease). Only in these stages of chronic kidney disease can CrCl and MDRD or CrCl and CKD-EPI be used simultaneously.
Eckfeldt, John H; Karger, Amy B; Miller, W Greg; Rynders, Gregory P; Inker, Lesley A
2015-07-01
Cystatin C is becoming an increasingly popular biomarker for estimating glomerular filtration rate, and accurate measurements of cystatin C concentrations are necessary for accurate estimates of glomerular filtration rate. To assess the accuracy of cystatin C concentration measurements in laboratories participating in the College of American Pathologists CYS Survey. Two fresh frozen serum pools, the first from apparently healthy donors and the second from patients with chronic kidney disease, were prepared and distributed to laboratories participating in the CYS Survey along with the 2 usual processed human plasma samples. Target values were established for each pool by using 2 immunoassays and ERM DA471/IFCC international reference material. For the normal fresh frozen pool (ERM-DA471/IFCC-traceable target of 0.960 mg/L), the all-method mean (SD, % coefficient of variation [CV]) reported by all of the 123 reporting laboratories was 0.894 mg/L (0.128 mg/L, 14.3%). For the chronic kidney disease pool (ERM-DA471/IFCC-traceable target of 2.37 mg/L), the all-method mean (SD, %CV) was 2.258 mg/L (0.288 mg/L, 12.8%). There were substantial method-specific biases (mean milligram per liter reported for the normal pool was 0.780 for Siemens, 0.870 for Gentian, 0.967 for Roche, 1.061 for Diazyme, and 0.970 for other/not specified reagents; and mean milligram per liter reported for the chronic kidney disease pool was 2.052 for Siemens, 2.312 for Gentian, 2.247 for Roche, 2.909 for Diazyme, and 2.413 for other/not specified reagents). Manufacturers need to improve the accuracy of cystatin C measurement procedures if cystatin C is to achieve its full potential as a biomarker for estimating glomerular filtration rate.
Update on the renal toxicity of iodinated contrast drugs used in clinical medicine
Andreucci, Michele; Faga, Teresa; Serra, Raffaele; De Sarro, Giovambattista; Michael, Ashour
2017-01-01
An important side effect of diagnostic contrast drugs is contrast-induced acute kidney injury (CI-AKI; a sudden decrease in renal function) occurring 48–72 hours after injection of a contrast drug that cannot be attributed to other causes. Its existence has recently been challenged, because of some retrospective studies in which the incidence of AKI was not different between subjects who received a contrast drug and those who did not, even using propensity score matching to prevent selection bias. For some authors, only patients with estimated glomerular filtration rate <30 mL/min/1.73 m2 are at significant risk of CI-AKI. Most agree that when renal function is normal, there is no CI-AKI risk. Many experimental studies, however, are in favor of the existence of CI-AKI. Contrast drugs have been shown to cause the following changes: renal vasoconstriction, resulting in a rise in intrarenal resistance (decrease in renal blood flow and glomerular filtration rate and medullary hypoxia); epithelial vacuolization and dilatation and necrosis of proximal tubules; potentiation of angiotensin II effects, reducing nitric oxide (NO) and causing direct constriction of descending vasa recta, leading to formation of reactive oxygen species in isolated descending vasa recta of rats microperfused with a solution of iodixanol; increasing active sodium reabsorption in the thick ascending limbs of Henle’s loop (increasing O2 demand and consequently medullary hypoxia); direct cytotoxic effects on endothelial and tubular epithelial cells (decrease in release of NO in vasa recta); and reducing cell survival, due to decreased activation of Akt and ERK1/2, kinases involved in cell survival/proliferation. Prevention is mainly based on extracellular volume expansion, statins, and N-acetylcysteine; conflicting results have been obtained with nebivolol, furosemide, calcium-channel blockers, theophylline, and hemodialysis. PMID:28579836
Peixoto de Miranda, Érique José F; Bittencourt, Márcio Sommer; Goulart, Alessandra C; Santos, Itamar S; de Oliveira Titan, Silvia Maria; Ladeira, Roberto Marini; Barreto, Sandhi Maria; Lotufo, Paulo A; Benseñor, Isabela Judith Martins
2017-12-01
Few studies have evaluated a possible relationship between thyrotropin levels and glomerular filtration rate (GFR) and albumin/creatinine ratio in euthyroid subjects. We aimed to analyze this association using baseline data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Cross-sectionally, we included subjects with normal thyroid function and with subclinical hypothyroidism (SCH). We excluded individuals using medications that affect thyroid function. Linear and logistic regression models evaluated GFR estimated by Chronic Kidney Disease Epidemiology Collaboration (CKD-Epi) and albuminuria/creatinine ratio as dependent variables and thyrotropin quartiles in individuals with euthyroidism and SCH as independent variables, adjusted for demographical characteristics and diseases related to CKD. We included 13,193 subjects with a median age of 51 years [interquartile range, (IQR): 45-58], 6840 (51.8%) women, 12,416 (94.1%) euthyroid, and 777 (5.9%) with SCH. SCH subjects were characterized by higher age, triglycerides, frequency of white race, cardiovascular disease, CKD, and former smokers. In adjusted models, log-transformed TSH in euthyroid subjects was inversely and strongly associated with CKD (β = -2.181, 95% CI -2.714 to -1.648), P < 0.0001 for glomerular filtration rate and 4.528 (1.190-7.865) for albuminuria/creatinine ratio. Multivariate logistic models for euthyroid subjects showed an OR of 1.45 (95% CI 1.15-1.83) for GFR and of 1.95 (95% CI 1.08-3.54) for albuminuria/creatinine ratio in the fourth quartile of TSH using the first as the reference. Thyrotropin levels are independently associated with CKD in euthyroid subjects.
Lee, Yu-Ji; Cho, Seong; Kim, Sung Rok; Jang, Hye Ryoun; Lee, Jung Eun; Huh, Wooseong; Kim, Dae Joong; Oh, Ha Young; Kim, Yoon-Goo
2011-10-01
Activation of the rennin-angiotensin system (RAS) is thought to contribute to hypertension and proteinuria, and eventually to the progression of chronic kidney disease (CKD). Recent evidence suggests that urinary angiotensinogen (UAGT) excretion reflects activation of the intrarenal RAS. This study was performed to determine the effect of losartan on proteinuria and UAGT excretion in non-diabetic patients with CKD with non-nephrotic-range proteinuria. Thirty-two patients with non-nephrotic-range proteinuria (0.045-0.23 g/mmol creatinine) and normal renal function between April 2005 and April 2006 were randomised to a losartan (n=17) or a control (n=15) group. Patients in the losartan group received losartan 50 mg/day, and the doses were titrated up to 100 mg/day after 6 weeks. Serum and urinary angiotensinogen concentrations were measured by sandwich ELISA. The primary end point was the percentage change in proteinuria. The secondary end points were changes in estimated glomerular filtration rate and UAGT excretion. The follow-up period was 24 months. Baseline characteristics in the two groups were similar. After 24 months, losartan had reduced urinary protein excretion by 43% (from mean±SD 0.13±0.04 to 0.073±0.03 g/mmol, p<0.0001), but proteinuria had not changed in the control group. The percentage change in mean arterial pressure did not differ between the groups. Losartan decreased logarithmically converted UAGT excretion (from 1.58±0.47 to 1.00±0.52, p=0.001). Estimated glomerular filtration rate decreased significantly only in the control group. Losartan significantly decreased proteinuria and UAGT excretion, and preserved renal function in non-diabetic patients with CKD.
Zhao, Shuang; Gu, Xin; Groome, Lynn J.; Wang, Yuping
2011-01-01
Renal injury is a common pathophysiological feature in women with preeclampsia as evidenced by increased protein leakage (proteinuria) and glomerular injury (glomerular endotheliosis). Recently, podocyturia was found in preeclampsia, suggesting podocyte shedding occurs in this pregnancy disorder. However, podocyte function in preeclampsia is poorly understood. In this study, the authors have examined podocyte-specific protein expressions for nephrin, glomerular epithelial protein 1 (GLEPP-1), and ezrin in kidney biopsy tissue sections from women with preeclampsia. Expressions for vascular endothelial growth factor (VEGF) and its receptor Flt-1 and oxidative stress marker nitrotyrosine and antioxidant CuZn-superoxide dismutase (CuZn-SOD) were also examined. Kidney tissue sections from nonhypertensive and chronic hypertensive participants were stained as controls. The findings were (1) nephrin and GLEPP-1 were mainly expressed in glomerular podocytes; (2) ezrin was expressed in both glomerular podocytes and tubular epithelial cells; (3) compared to tissue sections from nonhypertensive and chronic hypertensive participants, nephrin and GLEPP-1 expressions were much reduced in tissue sections from preeclampsia and ezrin expression was reduced in podocytes; (4) enhanced VEGF, Flt-1, and nitrotyrosine, but reduced CuZn-SOD, expressions were observed in both glomerular podocytes and endothelial cells in tissue sections from preeclampsia; and (5) the expression pattern for nephrin, GLEPP-1, ezrin, VEGF, Flt-1, and CuZn-SOD were similar between tissue sections from nonhypertensive and chronic hypertensive participants. Although the authors could not conclude from this biopsy study whether the podocyte injury is the cause or effect of the preeclampsia phenotype, the data provide compelling evidence that podocyte injury accompanied by altered angiogenesis process and increased oxidative stress occurs in kidney of patients with preeclampsia. PMID:19528353
Koehler, Sybille; Brähler, Sebastian; Braun, Fabian; Hagmann, Henning; Rinschen, Markus M; Späth, Martin R; Höhne, Martin; Wunderlich, F Thomas; Schermer, Bernhard; Benzing, Thomas; Brinkkoetter, Paul T
2017-06-01
Podocyte injury is a key event in glomerular disease leading to proteinuria and opening the path toward glomerular scarring. As a consequence, glomerular research strives to discover molecular mechanisms and signaling pathways affecting podocyte health. The hNphs2.Cre mouse model has been a valuable tool to manipulate podocyte-specific genes and to label podocytes for lineage tracing and purification. Here we designed a novel podocyte-specific tricistronic Cre mouse model combining codon improved Cre expression and fluorescent cell labeling with mTomato under the control of the endogenous Nphs2 promoter using viral T2A-peptides. Independent expression of endogenous podocin, codon improved Cre, and mTomato was confirmed by immunofluorescence, fluorescent activated cell sorting and protein analyses. Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type mice developed normally and did not show any signs of glomerular disease or off-target effects under basal conditions and in states of disease. Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type -mediated gene recombination was superior to conventional hNphs2.Cre mice-mediated gene recombination. Last, we compared Cre efficiency in a disease model by mating Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type and hNphs2.Cre mice to Phb2 fl/fl mice. The podocyte-specific Phb2 knockout by Nphs2 pod.T2A.ciCre.T2A.mTomato/wild-type mice resulted in an aggravated glomerular injury as compared to a podocyte-specific Phb2 gene deletion triggered by hNphs2.Cre. Thus, we generated the first tricistronic podocyte mouse model combining enhanced Cre recombinase efficiency and fluorescent labeling in podocytes without the need for additional matings with conventional reporter mouse lines. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in female rats.
Coutinho, João V S; Freitas-Lima, Leandro C; Freitas, Frederico F C T; Freitas, Flávia P S; Podratz, Priscila L; Magnago, Rafaella P L; Porto, Marcella L; Meyrelles, Silvana S; Vasquez, Elisardo C; Brandão, Poliane A A; Carneiro, Maria T W D; Paiva-Melo, Francisca D; Miranda-Alves, Leandro; Silva, Ian V; Gava, Agata L; Graceli, Jones B
2016-10-17
Tributyltin chloride (TBT) is an organometallic pollutant that is used as a biocide in antifouling paints. TBT induces several toxic and endocrine-disrupting effects. However, studies evaluating the effects of TBT on renal function are rare. This study demonstrates that TBT exposure is responsible for improper renal function as well as the development of abnormal morphophysiology in mammalian kidneys. Female rats were treated with TBT, and their renal morphophysiology was assessed. Morphophysiological abnormalities such as decreased glomerular filtration rate and increased proteinuria levels were observed in TBT rats. In addition, increases in inflammation, collagen deposition and α-smooth muscle actin (α-SMA) protein expression were observed in TBT kidneys. A disrupted cellular redox balance and apoptosis in kidney tissue were also observed in TBT rats. TBT rats demonstrated reduced serum estrogen levels and estrogen receptor-α (ERα) protein expression in renal cortex. Together, these data provide in vivo evidence that TBT is toxic to normal renal function and that these effects may be associated with renal histopathology complications, such as inflammation and fibrosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cyclodextrin Protects Podocytes in Diabetic Kidney Disease
Merscher-Gomez, Sandra; Guzman, Johanna; Pedigo, Christopher E.; Lehto, Markku; Aguillon-Prada, Robier; Mendez, Armando; Lassenius, Mariann I.; Forsblom, Carol; Yoo, TaeHyun; Villarreal, Rodrigo; Maiguel, Dony; Johnson, Kevin; Goldberg, Ronald; Nair, Viji; Randolph, Ann; Kretzler, Matthias; Nelson, Robert G.; Burke, George W.; Groop, Per-Henrik; Fornoni, Alessia
2013-01-01
Diabetic kidney disease (DKD) remains the most common cause of end-stage kidney disease despite multifactorial intervention. We demonstrated that increased cholesterol in association with downregulation of ATP-binding cassette transporter ABCA1 occurs in normal human podocytes exposed to the sera of patients with type 1 diabetes and albuminuria (DKD+) when compared with diabetic patients with normoalbuminuria (DKD−) and similar duration of diabetes and lipid profile. Glomerular downregulation of ABCA1 was confirmed in biopsies from patients with early DKD (n = 70) when compared with normal living donors (n = 32). Induction of cholesterol efflux with cyclodextrin (CD) but not inhibition of cholesterol synthesis with simvastatin prevented podocyte injury observed in vitro after exposure to patient sera. Subcutaneous administration of CD to diabetic BTBR (black and tan, brachiuric) ob/ob mice was safe and reduced albuminuria, mesangial expansion, kidney weight, and cortical cholesterol content. This was followed by an improvement of fasting insulin, blood glucose, body weight, and glucose tolerance in vivo and improved glucose-stimulated insulin release in human islets in vitro. Our data suggest that impaired reverse cholesterol transport characterizes clinical and experimental DKD and negatively influences podocyte function. Treatment with CD is safe and effective in preserving podocyte function in vitro and in vivo and may improve the metabolic control of diabetes. PMID:23835338
Wang, Honghui; Misaki, Taro; Taupin, Vanessa; Eguchi, Akiko; Ghosh, Pradipta
2015-01-01
Podocytes are critically involved in the maintenance of the glomerular filtration barrier and are key targets of injury in many glomerular diseases. Chronic injury leads to progressive loss of podocytes, glomerulosclerosis, and renal failure. Thus, it is essential to maintain podocyte survival and avoid apoptosis after acute glomerular injury. In normal glomeruli, podocyte survival is mediated via nephrin-dependent Akt signaling. In several glomerular diseases, nephrin expression decreases and podocyte survival correlates with increased vascular endothelial growth factor (VEGF) signaling. How VEGF signaling contributes to podocyte survival and prevents apoptosis remains unknown. We show here that Gα–interacting, vesicle-associated protein (GIV)/girdin mediates VEGF receptor 2 (VEGFR2) signaling and compensates for nephrin loss. In puromycin aminonucleoside nephrosis (PAN), GIV expression increased, GIV was phosphorylated by VEGFR2, and p-GIV bound and activated Gαi3 and enhanced downstream Akt2, mammalian target of rapamycin complex 1 (mTORC1), and mammalian target of rapamycin complex-2 (mTORC2) signaling. In GIV-depleted podocytes, VEGF-induced Akt activation was abolished, apoptosis was triggered, and cell migration was impaired. These effects were reversed by introducing GIV but not a GIV mutant that cannot activate Gαi3. Our data indicate that after PAN injury, VEGF promotes podocyte survival by triggering assembly of an activated VEGFR2/GIV/Gαi3 signaling complex and enhancing downstream PI3K/Akt survival signaling. Because of its important role in promoting podocyte survival, GIV may represent a novel target for therapeutic intervention in the nephrotic syndrome and other proteinuric diseases. PMID:25012178
Automated renal histopathology: digital extraction and quantification of renal pathology
NASA Astrophysics Data System (ADS)
Sarder, Pinaki; Ginley, Brandon; Tomaszewski, John E.
2016-03-01
The branch of pathology concerned with excess blood serum proteins being excreted in the urine pays particular attention to the glomerulus, a small intertwined bunch of capillaries located at the beginning of the nephron. Normal glomeruli allow moderate amount of blood proteins to be filtered; proteinuric glomeruli allow large amount of blood proteins to be filtered. Diagnosis of proteinuric diseases requires time intensive manual examination of the structural compartments of the glomerulus from renal biopsies. Pathological examination includes cellularity of individual compartments, Bowman's and luminal space segmentation, cellular morphology, glomerular volume, capillary morphology, and more. Long examination times may lead to increased diagnosis time and/or lead to reduced precision of the diagnostic process. Automatic quantification holds strong potential to reduce renal diagnostic time. We have developed a computational pipeline capable of automatically segmenting relevant features from renal biopsies. Our method first segments glomerular compartments from renal biopsies by isolating regions with high nuclear density. Gabor texture segmentation is used to accurately define glomerular boundaries. Bowman's and luminal spaces are segmented using morphological operators. Nuclei structures are segmented using color deconvolution, morphological processing, and bottleneck detection. Average computation time of feature extraction for a typical biopsy, comprising of ~12 glomeruli, is ˜69 s using an Intel(R) Core(TM) i7-4790 CPU, and is ~65X faster than manual processing. Using images from rat renal tissue samples, automatic glomerular structural feature estimation was reproducibly demonstrated for 15 biopsy images, which contained 148 individual glomeruli images. The proposed method holds immense potential to enhance information available while making clinical diagnoses.
Sorigue, Marc; Sancho, Juan-Manuel; Pineda, Alberto; Garcia, Olga; Lopez, David; Moreno, Miriam; Tapia, Gustavo; Batlle, Montse; Ferra, Christelle; Vives, Susanna; Ibarra, Gladys; Feliu, Evarist; Ribera, Josep-Maria
2017-07-01
Nephrotoxicity is a well-known side effect of platinum-based chemotherapy. We retrospectively assessed the incidence and prognostic impact of nephrotoxicity with ESHAP rescue chemotherapy in 74 lymphoma patients (61 aggressive lymphomas). A higher incidence of nephrotoxicity (estimated glomerular filtration rate <60mL/min) was found when ESHAP was administred on an outpatient vs. inpatient basis (14/39 vs. 4/35). Patients submitted to ASCT with renal failure had a lower overall survival (OS) than those with normal renal function (2-yr OS probability [95%CI]: 88% [77%-99%] vs. 50% [22%-78%]). Outpatient administration of ESHAP may not be optimal for all patients and the impact of ESHAP-induced renal failure on ASCT outcomes in lymphoma needs to be assessed in prospective studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Necrotizing crescentic glomerulonephritis related to sarcoidosis: a case report.
Maroz, Natallia; Field, Halle
2015-12-14
Renal injury due to sarcoidosis develops in less than a quarter of patients with this systemic disease. In most cases, granulomatous tissue alters the production of vitamin D, which leads to hypercalciuria, nephrocalcinosis, and nephrolithiasis. Granulomatous interstitial nephritis is another well-recognized pathological process associated with sarcoidosis. However, a glomerular pathology is very rarely noted, and only a few cases are reported to have cellular crescentic glomerulonephritis. We describe the case of a 26-year-old African American woman with systemic sarcoidosis, with a unique constellation of renal lesions, including noncaseating epithelioid granulomatous necrotizing interstitial nephritis, cellular crescent formation, and necrotizing vasculitis. Immunosuppressive therapy was helpful for alleviating her nephrotic syndrome and maintaining the stability of her renal function over a 30-month period. Glomerular involvement of sarcoidosis needs to be considered in the differential diagnosis in cases of rapidly progressive glomerular nephritis.
Mechanisms of Acute Kidney Injury Induced by Experimental Lonomia obliqua Envenomation
Berger, Markus; Santi, Lucélia; Beys-da-Silva, Walter O.; Oliveira, Fabrício Marcus Silva; Caliari, Marcelo Vidigal; Yates, John R.; Ribeiro, Maria Aparecida; Guimarães, Jorge Almeida
2015-01-01
Background Lonomia obliqua caterpillar envenomation causes acute kidney injury (AKI), which can be responsible for its deadly actions. This study evaluates the possible mechanisms involved in the pathogenesis of renal dysfunction. Methods To characterize L. obliqua venom effects we subcutaneously injected rats and examined renal functional, morphological and biochemical parameters at several time points. We also performed discovery based proteomic analysis to measure protein expression to identify molecular pathways of renal disease. Results L. obliqua envenomation causes acute tubular necrosis, which is associated with renal inflammation; formation of hematic casts, resulting from intravascular hemolysis; increase in vascular permeability and fibrosis. The dilation of Bowman’s space and glomerular tuft is related to fluid leakage and intra-glomerular fibrin deposition, respectively, since tissue factor procoagulant activity increases in the kidney. Systemic hypotension also contributes to these alterations and to the sudden loss of basic renal functions, including filtration and excretion capacities, urinary concentration and maintenance of fluid homeostasis. In addition, envenomed kidneys increases expression of proteins involved in cell stress, inflammation, tissue injury, heme-induced oxidative stress, coagulation and complement system activation. Finally, the localization of the venom in renal tissue agrees with morphological and functional alterations, suggesting also a direct nephrotoxic activity. Conclusions Mechanisms of L. obliqua-induced AKI are complex involving mainly glomerular and tubular functional impairment and vascular alterations. These results are important to understand the mechanisms of renal injury and may suggest more efficient ways to prevent or attenuate the pathology of Lonomia’s envenomation. PMID:24798088
Chacko, Balu K; Reily, Colin; Srivastava, Anup; Johnson, Michelle S; Ye, Yaozu; Ulasova, Elena; Agarwal, Anupam; Zinn, Kurt R; Murphy, Michael P; Kalyanaraman, Balaraman; Darley-Usmar, Victor
2010-11-15
Mitochondrial production of ROS (reactive oxygen species) is thought to be associated with the cellular damage resulting from chronic exposure to high glucose in long-term diabetic patients. We hypothesized that a mitochondria-targeted antioxidant would prevent kidney damage in the Ins2(+/)⁻(AkitaJ) mouse model (Akita mice) of Type 1 diabetes. To test this we orally administered a mitochondria-targeted ubiquinone (MitoQ) over a 12-week period and assessed tubular and glomerular function. Fibrosis and pro-fibrotic signalling pathways were determined by immunohistochemical analysis, and mitochondria were isolated from the kidney for functional assessment. MitoQ treatment improved tubular and glomerular function in the Ins2(+/)⁻(AkitaJ) mice. MitoQ did not have a significant effect on plasma creatinine levels, but decreased urinary albumin levels to the same level as non-diabetic controls. Consistent with previous studies, renal mitochondrial function showed no significant change between any of the diabetic or wild-type groups. Importantly, interstitial fibrosis and glomerular damage were significantly reduced in the treated animals. The pro-fibrotic transcription factors phospho-Smad2/3 and β-catenin showed a nuclear accumulation in the Ins2(+/)⁻(AkitaJ) mice, which was prevented by MitoQ treatment. These results support the hypothesis that mitochondrially targeted therapies may be beneficial in the treatment of diabetic nephropathy. They also highlight a relatively unexplored aspect of mitochondrial ROS signalling in the control of fibrosis.
Prevention of diabetic nephropathy in Ins2+/−AkitaJ mice by the mitochondria-targeted therapy MitoQ
Chacko, Balu K.; Reily, Colin; Srivastava, Anup; Johnson, Michelle S.; Ye, Yaozu; Ulasova, Elena; Agarwal, Anupam; Zinn, Kurt R.; Murphy, Michael P.; Kalyanaraman, Balaraman; Darley-Usmar, Victor
2010-01-01
Mitochondrial production of ROS (reactive oxygen species) is thought to be associated with the cellular damage resulting from chronic exposure to high glucose in long-term diabetic patients. We hypothesized that a mitochondria-targeted antioxidant would prevent kidney damage in the Ins2+/−AkitaJ mouse model (Akita mice) of Type 1 diabetes. To test this we orally administered a mitochondria-targeted ubiquinone (MitoQ) over a 12-week period and assessed tubular and glomerular function. Fibrosis and pro-fibrotic signalling pathways were determined by immunohistochemical analysis, and mitochondria were isolated from the kidney for functional assessment. MitoQ treatment improved tubular and glomerular function in the Ins2+/−AkitaJ mice. MitoQ did not have a significant effect on plasma creatinine levels, but decreased urinary albumin levels to the same level as non-diabetic controls. Consistent with previous studies, renal mitochondrial function showed no significant change between any of the diabetic or wild-type groups. Importantly, interstitial fibrosis and glomerular damage were significantly reduced in the treated animals. The pro-fibrotic transcription factors phospho-Smad2/3 and β-catenin showed a nuclear accumulation in the Ins2+/−AkitaJ mice, which was prevented by MitoQ treatment. These results support the hypothesis that mitochondrially targeted therapies may be beneficial in the treatment of diabetic nephropathy. They also highlight a relatively unexplored aspect of mitochondrial ROS signalling in the control of fibrosis. PMID:20825366
Novel in vivo techniques to visualize kidney anatomy and function.
Peti-Peterdi, János; Kidokoro, Kengo; Riquier-Brison, Anne
2015-07-01
Intravital imaging using multiphoton microscopy (MPM) has become an increasingly popular and widely used experimental technique in kidney research over the past few years. MPM allows deep optical sectioning of the intact, living kidney tissue with submicron resolution, which is unparalleled among intravital imaging approaches. MPM has solved a long-standing critical technical barrier in renal research to study several complex and inaccessible cell types and anatomical structures in vivo in their native environment. Comprehensive and quantitative kidney structure and function MPM studies helped our better understanding of the cellular and molecular mechanisms of the healthy and diseased kidney. This review summarizes recent in vivo MPM studies with a focus on the glomerulus and the filtration barrier, although select, glomerulus-related renal vascular and tubular functions are also mentioned. The latest applications of serial MPM of the same glomerulus in vivo, in the intact kidney over several days, during the progression of glomerular disease are discussed. This visual approach, in combination with genetically encoded fluorescent markers of cell lineage, has helped track the fate and function (e.g., cell calcium changes) of single podocytes during the development of glomerular pathologies, and provided visual proof for the highly dynamic, rather than static, nature of the glomerular environment. Future intravital imaging applications have the promise to further push the limits of optical microscopy, and to advance our understanding of the mechanisms of kidney injury. Also, MPM will help to study new mechanisms of tissue repair and regeneration, a cutting-edge area of kidney research.
Podocyte Glutamatergic Signaling Contributes to the Function of the Glomerular Filtration Barrier
Giardino, Laura; Armelloni, Silvia; Corbelli, Alessandro; Mattinzoli, Deborah; Zennaro, Cristina; Guerrot, Dominique; Tourrel, Fabien; Ikehata, Masami; Li, Min; Berra, Silvia; Carraro, Michele; Messa, Piergiorgio
2009-01-01
Podocytes possess the complete machinery for glutamatergic signaling, raising the possibility that neuron-like signaling contributes to glomerular function. To test this, we studied mice and cells lacking Rab3A, a small GTPase that regulates glutamate exocytosis. In addition, we blocked the glutamate ionotropic N-methyl-d-aspartate receptor (NMDAR) with specific antagonists. In mice, the absence of Rab3A and blockade of NMDAR both associated with an increased urinary albumin/creatinine ratio. In humans, NMDAR blockade, obtained by addition of ketamine to general anesthesia, also had an albuminuric effect. In vitro, Rab3A-null podocytes displayed a dysregulated release of glutamate with higher rates of spontaneous exocytosis, explained by a reduction in Rab3A effectors resulting in freedom of vesicles from the actin cytoskeleton. In addition, NMDAR antagonism led to profound cytoskeletal remodeling and redistribution of nephrin in cultured podocytes; the addition of the agonist NMDA reversed these changes. In summary, these results suggest that glutamatergic signaling driven by podocytes contributes to the integrity of the glomerular filtration barrier and that derangements in this signaling may lead to proteinuric renal diseases. PMID:19578006
Parallel odor processing by mitral and middle tufted cells in the olfactory bulb.
Cavarretta, Francesco; Burton, Shawn D; Igarashi, Kei M; Shepherd, Gordon M; Hines, Michael L; Migliore, Michele
2018-05-16
The olfactory bulb (OB) transforms sensory input into spatially and temporally organized patterns of activity in principal mitral (MC) and middle tufted (mTC) cells. Thus far, the mechanisms underlying odor representations in the OB have been mainly investigated in MCs. However, experimental findings suggest that MC and mTC may encode parallel and complementary odor representations. We have analyzed the functional roles of these pathways by using a morphologically and physiologically realistic three-dimensional model to explore the MC and mTC microcircuits in the glomerular layer and deeper plexiform layer. The model makes several predictions. MCs and mTCs are controlled by similar computations in the glomerular layer but are differentially modulated in deeper layers. The intrinsic properties of mTCs promote their synchronization through a common granule cell input. Finally, the MC and mTC pathways can be coordinated through the deep short-axon cells in providing input to the olfactory cortex. The results suggest how these mechanisms can dynamically select the functional network connectivity to create the overall output of the OB and promote the dynamic synchronization of glomerular units for any given odor stimulus.
Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how?
Preston, Rebecca; Stuart, Helen M; Lennon, Rachel
2017-11-27
Steroid-resistant nephrotic syndrome (SRNS) is a common cause of chronic kidney disease in childhood and has a significant risk of rapid progression to end-stage renal disease. The identification of over 50 monogenic causes of SRNS has revealed dysfunction in podocyte-associated proteins in the pathogenesis of proteinuria, highlighting their essential role in glomerular function. Recent technological advances in high-throughput sequencing have enabled indication-driven genetic panel testing for patients with SRNS. The availability of genetic testing, combined with the significant phenotypic variability of monogenic SRNS, poses unique challenges for clinicians when directing genetic testing. This highlights the need for clear clinical guidelines that provide a systematic approach for mutational screening in SRNS. The likelihood of identifying a causative mutation is inversely related to age at disease onset and is increased with a positive family history or the presence of extra-renal manifestations. An unequivocal molecular diagnosis could allow for a personalised treatment approach with weaning of immunosuppressive therapy, avoidance of renal biopsy and provision of accurate, well-informed genetic counselling. Identification of novel causative mutations will continue to unravel the pathogenic mechanisms of glomerular disease and provide new insights into podocyte biology and glomerular function.
Cao, Yan; Zhang, Yang; Shih, George; Zhang, Yan; Bohmart, Andrew; Hecht, Elizabeth M; Prince, Martin R
2016-11-01
The purpose of this study was to determine if renal function affects signal changes in the deep brain nuclei on unenhanced T1-weighted images after administration of linear gadolinium-based contrast agents (GBCAs). An electronic medical records search of 2 large medical centers identified 25 patients who received linear GBCA while on hemodialysis and had unenhanced T1-weighted images of the brain before and after. The dentate-to-cerebellar peduncle (DCP) ratio, globus pallidus-to-mid thalamus (GPT) ratio, and choroid plexus-to-nearby white matter ratio were measured and compared with 25 age/sex/GBCA exposure-matched control patients with normal or near-normal renal function (estimated glomerular filtration rate >60 mL/min per 1.73 m). Two additional control groups included 13 patients on hemodialysis without GBCA exposure and 13 age/sex-matched patients with estimated glomerular filtration rate greater than 60 mL/min per 1.73 m. Hemodialysis patients (n = 25) with an average of 1.8 linear GBCA administrations had a 4.9% mean increase (1.00 ± 0.04 vs 1.05 ± 0.05; P < 0.001) in DCP, which was greater than the 1.6% change (0.99 ± 0.04 vs 1.00 ± 0.05; P = 0.08) observed in matched controls (P = 0.01). There was no significant signal change in the DCP ratio in the 13 hemodialysis patients (0.99 ± 0.04 vs 0.99 ± 0.04; P = 0.78) and 13 age/sex-matched patients (0.99 ± 0.02 vs 0.99 ± 0.03; P = 0.78) who did not receive GBCA. The hemodialysis patients had a baseline GPT that was higher than nondialysis patients (P < 0.001). However, the GPT change after GBCA administration was not significantly different from controls. Increased signal in the choroid plexus on unenhanced T1-weighted images after GBCA administration was noted in hemodialysis patients (0.72 ± 0.20 vs 0.86 ± 0.23; P = 0.006); however, a multivariate analysis showed this to be primarily related to hemodialysis (P = 0.003) with only a trend toward relating to GBCA exposure (P = 0.07). Hemodialysis patients receiving linear GBCA have greater dentate nucleus signal increases on unenhanced T1-weighted images, suggesting that renal function may affect the rate of gadolinium accumulation in the brain after linear GBCA-enhanced magnetic resonance imaging.
Brisco, Meredith A; Coca, Steven G; Chen, Jennifer; Owens, Anjali Tiku; McCauley, Brian D; Kimmel, Stephen E; Testani, Jeffrey M
2013-03-01
Identifying reversible renal dysfunction (RD) in the setting of heart failure is challenging. The goal of this study was to evaluate whether elevated admission blood urea nitrogen/creatinine ratio (BUN/Cr) could identify decompensated heart failure patients likely to experience improvement in renal function (IRF) with treatment. Consecutive hospitalizations with a discharge diagnosis of heart failure were reviewed. IRF was defined as ≥20% increase and worsening renal function as ≥20% decrease in estimated glomerular filtration rate. IRF occurred in 31% of the 896 patients meeting eligibility criteria. Higher admission BUN/Cr was associated with in-hospital IRF (odds ratio, 1.5 per 10 increase; 95% confidence interval [CI], 1.3-1.8; P<0.001), an association persisting after adjustment for baseline characteristics (odds ratio, 1.4; 95% CI, 1.1-1.8; P=0.004). However, higher admission BUN/Cr was also associated with post-discharge worsening renal function (odds ratio, 1.4; 95% CI, 1.1-1.8; P=0.011). Notably, in patients with an elevated admission BUN/Cr, the risk of death associated with RD (estimated glomerular filtration rate <45) was substantial (hazard ratio, 2.2; 95% CI, 1.6-3.1; P<0.001). However, in patients with a normal admission BUN/Cr, RD was not associated with increased mortality (hazard ratio, 1.2; 95% CI, 0.67-2.0; P=0.59; p interaction=0.03). An elevated admission BUN/Cr identifies decompensated patients with heart failure likely to experience IRF with treatment, providing proof of concept that reversible RD may be a discernible entity. However, this improvement seems to be largely transient, and RD, in the setting of an elevated BUN/Cr, remains strongly associated with death. Further research is warranted to develop strategies for the optimal detection and treatment of these high-risk patients.
Brisco, Meredith A.; Coca, Steven G.; Chen, Jennifer; Owens, Anjali Tiku; McCauley, Brian D.; Kimmel, Stephen E.; Testani, Jeffrey M.
2014-01-01
Background Identifying reversible renal dysfunction (RD) in the setting of heart failure is challenging. The goal of this study was to evaluate whether elevated admission blood urea nitrogen/creatinine ratio (BUN/Cr) could identify decompensated heart failure patients likely to experience improvement in renal function (IRF) with treatment. Methods and Results Consecutive hospitalizations with a discharge diagnosis of heart failure were reviewed. IRF was defined as ≥20% increase and worsening renal function as ≥20% decrease in estimated glomerular filtration rate. IRF occurred in 31% of the 896 patients meeting eligibility criteria. Higher admission BUN/Cr was associated with inhospital IRF (odds ratio, 1.5 per 10 increase; 95% confidence interval [CI], 1.3–1.8; P<0.001), an association persisting after adjustment for baseline characteristics (odds ratio, 1.4; 95% CI, 1.1–1.8; P=0.004). However, higher admission BUN/Cr was also associated with post-discharge worsening renal function (odds ratio, 1.4; 95% CI, 1.1–1.8; P=0.011). Notably, in patients with an elevated admission BUN/Cr, the risk of death associated with RD (estimated glomerular filtration rate <45) was substantial (hazard ratio, 2.2; 95% CI, 1.6–3.1; P<0.001). However, in patients with a normal admission BUN/Cr, RD was not associated with increased mortality (hazard ratio, 1.2; 95% CI, 0.67–2.0; P=0.59; p interaction=0.03). Conclusions An elevated admission BUN/Cr identifies decompensated patients with heart failure likely to experience IRF with treatment, providing proof of concept that reversible RD may be a discernible entity. However, this improvement seems to be largely transient, and RD, in the setting of an elevated BUN/Cr, remains strongly associated with death. Further research is warranted to develop strategies for the optimal detection and treatment of these high-risk patients. PMID:23325460
Factors associated with renal function compensation after donor nephrectomy.
Burballa, Carla; Crespo, Marta; Redondo-Pachón, Dolores; Pérez-Sáez, María José; Arias-Cabrales, Carlos; Mir, Marisa; Francés, Albert; Fumadó, Lluís; Cecchini, Lluís; Pascual, Julio
2018-05-14
Kidney transplant donors lose 50% of their renal mass after nephrectomy. The remaining kidney compensates for this loss and it is estimated that 70% of the baseline renal function prior to donation is recovered. Factors associated with post-donation renal compensation are not well understood. Retrospective study of 66 consecutive kidney donors (mean age 48.8 years, 74.2% women). We analysed the potential factors associated with the compensatory mechanisms of the remaining kidney by comparing donors according to their renal compensation rate (RCR) (Group A, infra-compensation [<70%]; Group B, normal compensation [>70%]). We compared Group A (n=38) and group B (n=28). Predictors for RCR>70% were higher baseline creatinine (A vs B: 0.73±0.14 vs 0.82±0.11; P=.03) and a lower baseline glomerular filtration rate (GFR), estimated both by MDRD-4 (A vs B: 97.7±18.8 vs 78.6±9.6ml/min; P<.001) and CKD-EPI (A vs B: 101.7±15 vs. 88.3±11.7ml/min; P≤.001). Age, gender, smoking, hypertension and GFR measured by Tc-DTPA did not show any correlation with the RCR. The multivariate analysis confirmed baseline estimated glomerular filtration rate (eGFR) to be a predictor of compensation: the higher the baseline eGFR, the lower the likelihood of >70% compensation (MDRD-4, OR=0.94 [95% CI 0.8-0.9], P=.01). The compensation rate decreased by 0.4% (P<.001) and 0.3% (P=.006) for every ml/min increase in baseline eGFR estimated by MDRD-4 and CKD-EPI, respectively. One year after living donor nephrectomy, the remaining kidney partially compensates baseline renal function. In our experience, baseline eGFR is inversely proportional to the one-year renal compensation rate. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Meisslitzer-Ruppitsch, Claudia; Röhrl, Clemens; Ranftler, Carmen; Neumüller, Josef; Vetterlein, Monika; Ellinger, Adolf; Pavelka, Margit
2011-02-01
In this study, the ceramide-enriched trans-Golgi compartments representing sites of synthesis of sphingomyelin and higher organized lipids were visualized in control and ATP-depleted hepatoma and endothelial cells using internalization of BODIPY-ceramide and the diaminobenzidine photooxidation method for combined light-electron microscopical exploration. Metabolic stress induced by lowering the cellular ATP-levels leads to reorganizations of the Golgi apparatus and the appearance of tubulo-glomerular bodies and networks. The results obtained with three different protocols, in which BODIPY-ceramide either was applied prior to, concomitantly with, or after ATP-depletion, revealed that the ceramide-enriched compartments reorganize together with other parts of the Golgi apparatus under these conditions. They were found closely associated with and integrated in the tubulo-glomerular bodies formed in response to ATP-depletion. This is in line with the changes of the staining patterns obtained with the Helix pomatia lectin and the GM130 and TGN46 immuno-reactions occurring in response to ATP-depletion and is confirmed by 3D electron tomography. The 3D reconstructions underlined the glomerular character of the reorganized Golgi apparatus and demonstrated continuities of ceramide positive and negative parts. Most interestingly, BODIPY-ceramide becomes concentrated in compartments of the tubulo-glomerular Golgi bodies, even though the reorganization took place before BODIPY-ceramide administration. This indicates maintained functionalities although the regular Golgi stack organization is abolished; the results provide novel insights into Golgi structure-function relationships, which might be relevant for cells affected by metabolic stress.
Glomerular filtration barrier in pediatric idiopathic nephrotic syndrome.
Sharma, Alok; Gupta, Ruchika; Bagga, Arvind; Dinda, Amit K
2013-03-01
Nephrotic syndrome (NS) is a common proteinuric disorder with defect in the perm-selectivity of the glomerular filtration barrier (GFB). Ultrastructural morphometric evaluation of the GFB in pediatric NS has been attempted in only a few studies. This study was aimed at qualitative and quantitative evaluation of the alterations involving the GFB in pediatric idiopathic NS with an attempt to correlate these alterations with the clinico-laboratory data. For this study, renal biopsies from nine patients with NS and two children with interstitial nephritis were included. Relevant clinical and laboratory data, including degree of 24-h proteinuria and renal function tests, were recorded. Renal biopsies were reviewed for morphologic and electron microscopic diagnosis. Ultrastructural morphometry of the GFB was performed using image analysis software. The age at onset of NS, duration of illness, presence of hypertension, and renal function tests were comparable between the group of patients with minimal change disease (MCD) and those with mesangioproliferative glomerulonephritis (mesPGN)/focal segmental glomerulosclerosis (FSGS). However, the latter group showed higher 24-h proteinuria compared with the group with MCD. Among the detected ultra-structural changes, glomerular basement membrane thickness and foot process width were significantly different between the MCD and the mesPGN/FSGS groups. The slit pore diameter in the glomeruli showed a positive correlation with the degree of proteinuria. We conclude that our study demonstrated remarkable differences in certain parameters and the glomerular ultrastructural alterations in the various categories of NS. These differences might underlie the observed variation in response of these entities to various therapies.
Kidneys: Key Modulators of HDL Levels and Function
Yang, Haichun; Fogo, Agnes B.; Kon, Valentina
2016-01-01
Purpose of review This review will examine advances in our understanding of the role kidneys play in HDL metabolism and the effect on levels, composition, and function of HDL particles. Recent findings Components of the HDL particles can cross the glomerular filtration barrier. Some of these components, including apolipoproteins and enzymes involved in lipid metabolism, are taken up by the proximal tubule and degraded, modified, salvaged/returned to the circulation, or lost in the urine. Injury of the glomerular capillaries or tubules can affect these intrarenal processes and modify HDL. Changes in the plasma and urine levels of HDL may be novel markers of kidney damage and/or mechanism(s) of kidney disease. Summary The kidneys have a significant role in metabolism of individual HDL components, which in turn modulate HDL levels, composition and functionality of HDL particles. These intrarenal effects may be useful markers of kidney damage and have consequences on kidney-related perturbations in HDL. PMID:27008596
Functional transformations of odor inputs in the mouse olfactory bulb.
Adam, Yoav; Livneh, Yoav; Miyamichi, Kazunari; Groysman, Maya; Luo, Liqun; Mizrahi, Adi
2014-01-01
Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli. We used in vivo two-photon calcium imaging for large scale functional mapping of distinct neuronal populations in the mouse OB, at single cell resolution. Specifically, we imaged odor responses of mitral cells (MCs), tufted cells (TCs) and glomerular interneurons (GL-INs). Mitral cells population activity was heterogeneous and only mildly correlated with the olfactory receptor neuron (ORN) inputs, supporting the view that discrete input maps undergo significant transformations at the output level of the OB. In contrast, population activity profiles of TCs were dense, and highly correlated with the odor inputs in both space and time. Glomerular interneurons were also highly correlated with the ORN inputs, but showed higher activation thresholds suggesting that these neurons are driven by strongly activated glomeruli. Temporally, upon persistent odor exposure, TCs quickly adapted. In contrast, both MCs and GL-INs showed diverse temporal response patterns, suggesting that GL-INs could contribute to the transformations MCs undergo at slow time scales. Our data suggest that sensory odor maps are transformed by TCs and MCs in different ways forming two distinct and parallel information streams.
Xiong, Jing; Xia, Min; Xu, Ming; Zhang, Yang; Abais, Justine M; Li, Guangbi; Riebling, Christopher R; Ritter, Joseph K; Boini, Krishna M; Li, Pin-Lan
2013-01-01
Podocytes are highly differentiated glomerular epithelial cells that contribute to the glomerular barrier function of kidney. A role for autophagy has been proposed in maintenance of their cellular integrity, but the mechanisms controlling autophagy in podocytes are not clear. The present study tested whether CD38-mediated regulation of lysosome function contributes to autophagic flux or autophagy maturation in podocytes. Podocytes were found to exhibit a high constitutive level of LC3-II, a robust marker of autophagosomes (APs), suggesting a high basal level of autophagic activity. Treatment with the mTOR inhibitor, rapamycin, increased LC3-II and the content of both APs detected by Cyto-ID Green staining and autophagolysosomes (APLs) measured by acridine orange staining and colocalization of LC3 and Lamp1. Lysosome function inhibitor bafilomycin A1 increased APs, but decreased APLs content under both basal and rapamycin-induced conditions. Inhibition of CD38 activity by nicotinamide or silencing of CD38 gene produced the similar effects to that bafilomycin A1 did in podocytes. To explore the possibility that CD38 may control podocyte autophagy through its regulation of lysosome function, the fusion of APs with lysosomes in living podocytes was observed by co-transfection of GFP-LC3B and RFP-Lamp1 expression vectors. A colocalization of GFP-LC3B and RFP-Lamp1 upon stimulation of rapamycin became obvious in transfected podocytes, which could be substantially blocked by nicotinamide, CD38 shRNA, and bafilomycin. Moreover, blockade of the CD38-mediated regulation by PPADS completely abolished rapamycin-induced fusion of APs with lysosomes. These results indicate that CD38 importantly control lysosomal function and influence autophagy at the maturation step in podocytes. PMID:24238063
Ohse, Takamoto; Krofft, Ron D.; Wu, Jimmy S.; Eddy, Allison A.; Pippin, Jeffrey W.; Shankland, Stuart J.
2012-01-01
Background. The biological role(s) of glomerular parietal epithelial cells (PECs) is not fully understood in health or disease. Given its location, PECs are constantly exposed to low levels of filtered albumin, which is increased in nephrotic states. We tested the hypothesis that PECs internalize albumin and increased uptake results in apoptosis. Methods. Confocal microscopy of immunofluorescent staining and immunohistochemistry were used to demonstrate albumin internalization in PECs and to quantitate albumin uptake in normal mice and rats as well as experimental models of membranous nephropathy, minimal change disease/focal segmental glomerulosclerosis and protein overload nephropathy. Fluorescence-activated cell sorting analysis was performed on immortalized cultured PECs exposed to fluorescein isothiocyanate (FITC)-labeled albumin in the presence of an endosomal inhibitor or vehicle. Apoptosis was measured by Hoechst staining in cultured PECs exposed to bovine serum albumin. Levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) were restored by retroviral infection of mitogen-activated protein kinase (MEK) 1/2 and reduced by U0126 in PECs exposed to high albumin levels in culture and apoptosis measured by Hoechst staining. Results. PECs internalized albumin normally, and this was markedly increased in all of the experimental disease models (P < 0.05 versus controls). Cultured immortalized PECs also internalize FITC-labeled albumin, which was reduced by endosomal inhibition. A consequence of increased albumin internalization was PEC apoptosis in vitro and in vivo. Candidate signaling pathways underlying these events were examined. Data showed markedly reduced levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2) in PECs exposed to high albumin levels in nephropathy and in culture. A role for ERK1/2 in limiting albumin-induced apoptosis was shown by restoring p-ERK1/2 by retroviral infection, which reduced apoptosis in cultured PECs, while a forced decrease of p-ERK1/2 through inhibition of MEK 1/2 significantly increased albumin-induced PEC apoptosis. Conclusions. A normal role of PECs is to take up filtered albumin. However, this is increased in proteinuric glomerular diseases, leading to apoptosis through changes in ERK1/2. PMID:21896500
2013-01-01
Background Renal podocytes form the main filtration barrier possessing a unique phenotype maintained by proteins including podocalyxin and nephrin, the expression of which is suppressed in pathological conditions. We used an in vitro model of human glomerular epithelial cells (HGEC) to investigate the role of high glucose in dysregulating the podocytic epithelial phenotype and determined the time needed for this change to occur. Results In our in vitro podocyte system changes indicating podocyte dedifferentiation in the prolonged presence of high glucose included loss of podocalyxin, nephrin and CD10/CALLA concomitant with upregulation of mesenchymal vimentin. Our study demonstrates for the first time that podocyte-specific markers undergo changes of expression at different time intervals, since glucose-mediated podocalyxin downregulation is a progressive process that precedes downregulation of nephrin expression. Finally we demonstrate that high glucose permanently impaired WT1 binding to the podocalyxin gene promoter region but did not affect WT1 binding on the nephrin gene promoter region. Conclusion The presence of high glucose induced a phenotypic conversion of podocytes resembling partial dedifferentiation. Our study demonstrates that dysregulation of the normal podocytic phenotype is an event differentially affecting the expression of function-specific podocytic markers, exhibiting downregulation of the epithelial marker CD10/CALLA and PC first, followed by stably downregulated nephrin. Furthermore, it is herein suggested that WT1 may not be directly involved with upregulation of previously reduced PC and nephrin expression. PMID:23768159
Outcome of renal transplantation from a donor with polycystic kidney disease.
Migone, Silvia Regina da Cruz; Bentes, Camila Guerreiro; Nunes, Débora Bacellar Cruz; Nunes, Juliana Bacellar Cruz; Pinon, Rodolfo Marcial da Silva; Silva, Thales Xavit Souza E
2016-01-01
Faced with the long waiting list for a kidney transplant, the use of donors with expanded criteria, like polycystic kidneys, is an option that aims to increase in a short time the supply of kidneys for transplant. This report of two cases of transplants performed from a donor with polycystic kidneys showed promising results, and the receptors evolved with good renal function, serum creatinine measurements within the normal range and with adequate glomerular filtration rate, evaluated over a period of four years post transplant. This fact confirms that the option of using donors with polycystic kidneys is safe and gives good results. Resumo Diante da longa fila de espera por um transplante renal, a utilização de doadores com critério expandido, a exemplo de rins policísticos, torna-se uma opção que visa aumentar a oferta de rins para transplante a curto prazo. O presente relato de dois casos de transplantes realizados a partir de um doador com rins policísticos apresentou resultado promissor, tendo os receptores evoluído com boa função renal, dosagens de creatinina sérica dentro da faixa de normalidade e com taxa de filtração glomerular adequada, avaliados num período de quatro anos pós-transplante. Isto confirma que a opção da utilização de doadores com rins policísticos é segura e apresenta bons resultados.
... dialysis or transplantation to replace renal function. Bacterial endocarditis, infection of the tissues inside the heart, is ... the most effective way of minimizing kidney damage. Endocarditis sometimes produces chronic kidney disease (CKD) . HIV, the ...
Expression of podocyte-associated molecules in acquired human kidney diseases.
Koop, Klaas; Eikmans, Michael; Baelde, Hans J; Kawachi, Hiroshi; De Heer, Emile; Paul, Leendert C; Bruijn, Jan A
2003-08-01
Proteinuria is a poorly understood feature of many acquired renal diseases. Recent studies concerning congenital nephrotic syndromes and findings in genetically modified mice have demonstrated that podocyte molecules make a pivotal contribution to the maintenance of the selective filtration barrier of the normal glomerulus. However, it is unclear what role podocyte molecules play in proteinuria of acquired renal diseases. This study investigated the mRNA and protein expression of several podocyte-associated molecules in acquired renal diseases. Forty-eight patients with various renal diseases were studied, including minimal change nephropathy, focal segmental glomerulosclerosis, IgA nephropathy, lupus nephritis, and diabetic nephropathy, together with 13 kidneys with normal glomerular function. Protein levels of nephrin, podocin, CD2-associated protein, and podocalyxin were investigated using quantitative immunohistochemical assays. Real-time PCR was used to determine the mRNA levels of nephrin, podocin, and podoplanin in microdissected glomeruli. The obtained molecular data were related to electron microscopic ultrastructural changes, in particular foot process width, and to clinical parameters. In most acquired renal diseases, except in IgA nephropathy, a marked reduction was observed at the protein levels of nephrin, podocin, and podocalyxin, whereas an increase of the glomerular mRNA levels of nephrin, podocin, and podoplanin was found, compared with controls. The mean width of the podocyte foot processes was inversely correlated with the protein levels of nephrin (r = -0.443, P < 0.05), whereas it was positively correlated with podoplanin mRNA levels (r = 0.468, P < 0.05) and proteinuria (r = 0.585, P = 0.001). In the diseases studied, the decrease of slit diaphragm proteins was related to the effacement of foot processes and coincided with a rise of the levels of the corresponding mRNA transcripts. This suggests that the alterations in the expression of podocyte-associated molecules represent a compensatory reaction of the podocyte that results from damage associated with proteinuria.
Ravn, Bo; Prowle, John R; Mårtensson, Johan; Martling, Claes-Roland; Bell, Max
2017-09-01
Renal outcomes after critical illness are seldom assessed despite strong correlation between chronic kidney disease and survival. Outside hospital, renal dysfunction is more strongly associated with mortality when assessed by serum cystatin C than by creatinine. The relationship between creatinine and longer term mortality might be particularly weak in survivors of critical illness. Retrospective observational cohort study. In 3,077 adult ICU survivors, we compared ICU discharge cystatin C and creatinine and their association with 1-year mortality. Exclusions were death within 72 hours of ICU discharge, ICU stay less than 24 hours, and end-stage renal disease. None. During ICU admission, serum cystatin C and creatinine diverged, so that by ICU discharge, almost twice as many patients had glomerular filtration rate less than 60 mL/min/1.73 m when estimated from cystatin C compared with glomerular filtration rate estimated from creatinine, 44% versus 26%. In 743 patients without acute kidney injury, where ICU discharge renal function should reflect ongoing baseline, discharge glomerular filtration rate estimated from creatinine consistently overestimated follow-up glomerular filtration rate estimated from creatinine, whereas ICU discharge glomerular filtration rate estimated from cystatin C well matched follow-up chronic kidney disease status. By 1 year, 535 (17.4%) had died. In survival analysis adjusted for age, sex, and comorbidity, cystatin C was near-linearly associated with increased mortality, hazard ratio equals to 1.78 (95% CI, 1.46-2.18), 75th versus 25th centile. Conversely, creatinine demonstrated a J-shaped relationship with mortality, so that in the majority of patients, there was no significant association with survival, hazard ratio equals to 1.03 (0.87-1.2), 75th versus 25th centile. After adjustment for both creatinine and cystatin C levels, higher discharge creatinine was then associated with lower long-term mortality. In contrast to creatinine, cystatin C consistently associated with long-term mortality, identifying patients at both high and low risk, and better correlated with follow-up renal function. Conversely, lower creatinine relative to cystatin C appeared to confer adverse prognosis, confounding creatinine interpretation in isolation. Cystatin C warrants further investigation as a more meaningful measure of renal function after critical illness.
Hruska, Matthew W; Adamczyk, Robert; Colston, Elizabeth; Hesney, Michael; Stonier, Michele; Myler, Heather; Bertz, Richard
2015-09-01
This open label study was conducted to assess the effect of renal impairment (RI) on the pharmacokinetics (PK) of peginterferon lambda-1a (Lambda). Subjects (age 18-75 years, BMI 18-35 kg m(-2) ) were enrolled into one of five renal function groups: normal (n = 12), mild RI (n = 8), moderate RI (n = 8), severe RI (n = 7), end-stage renal disease (ESRD, n = 8) based on estimated glomerular filtration rate (eGFR) calculated using the Modification of Diet in Renal Disease (MDRD) equation. Subjects received a single dose of Lambda (180 µg) subcutaneously on day 1 followed by PK serum sample collections through day 29. Safety, tolerability and immunogenicity data were collected through day 43. PK parameters were estimated and summarized by group. Geometric mean ratios (GMR) and 90% confidence intervals (CIs) were calculated between normal and RI groups. With decreasing eGFR, Lambda exposure (Cmax , AUC) increased while apparent clearance (CL/F) and apparent volume of distribution (V/F) decreased. Relative to subjects with normal renal function (geometric mean AUC = 99.5 ng ml(-1) h), Lambda exposure estimates (AUC) were slightly increased in the mild RI group (geometric mean [90% CI]: 1.20 [0.82, 1.77]) and greater in the moderate (1.95 [1.35, 2.83]), severe RI (1.95 [1.30, 2.93]) and ESRD (1.88 [1.30, 2.73]) groups. Lambda was generally well tolerated. The results demonstrated that RI reduces the clearance of Lambda and suggests that dose modifications may not be required in patients with mild RI but may be required in patients with moderate to severe RI or ESRD. © 2015 The British Pharmacological Society.
Wu, Fiona Mei Wen; Tay, Melissa Hui Wen; Tai, Bee Choo; Chen, Zhaojin; Tan, Lincoln; Goh, Benjamin Yen Seow; Raman, Lata; Tiong, Ho Yee
2015-12-01
Surgically induced chronic kidney disease (CKD) has been found to have less impact on survival as well as function when compared to medical causes for CKD. The aim of this study is to evaluate whether preoperative remaining kidney volume correlates with renal function after nephrectomy, which represents an individual's renal reserve before surgically induced CKD. A retrospective review of 75 consecutive patients (29.3% females) who underwent radical nephrectomy (RN) (2000-2010) was performed. Normal side kidney parenchyma, excluding renal vessels and central sinus fat, was manually outlined in each transverse slice of CT image and multiplied by slice thickness to calculate volume. Estimated glomerular filtration rate (eGFR) was determined using the Modification of Diet in Renal Disease equation. CKD is defined as eGFR < 60 mL/min/1.73 m(2). Mean preoperative normal kidney parenchymal volume (mean age 55 [SD 13] years) is 150.7 (SD 36.4) mL. Over median follow-up of 36 months postsurgery, progression to CKD occurred in 42.6% (n = 32) of patients. On multivariable analysis, preoperative eGFR and preoperative renal volume <144 mL are independent predictors for postoperative CKD. On Kaplan-Meier analysis, median time to reach CKD postnephrectomy is 12.7 (range 0.03-43.66) months for renal volume <144 mL but not achieved if renal volume is >144 mL. Normal kidney parenchymal volume and preoperative eGFR are independent predictive factors for postoperative CKD after RN and may represent renal reserve for both surgically and medically induced CKD, respectively. Preoperative remaining kidney volume may be an adjunct representation of renal reserve postsurgery and predict later renal function decline due to perioperative loss of nephrons.
Yamamoto, Yoshihiko; Maeshima, Yohei; Kitayama, Hiroyuki; Kitamura, Shinji; Takazawa, Yuki; Sugiyama, Hitoshi; Yamasaki, Yasushi; Makino, Hirofumi
2004-07-01
In the early stage of diabetic nephropathy (one of the major microvascular complications of diabetes) glomerular hyperfiltration and hypertrophy are observed. It is clinically important to regulate glomerular hypertrophy for preventing glomerulosclerosis. The number of glomerular endothelial cells is known to be increased in diabetic nephropathy associated with enlarged glomerular tufts, suggesting that the mechanism is similar to that of angiogenesis. Tumstatin peptide is an angiogenesis inhibitor derived from type IV collagen and inhibits in vivo neovascularization induced by vascular endothelial growth factor (VEGF), one of the mediators of glomerular hypertrophy in diabetic nephropathy. Here, we show the effect of tumstatin peptide in inhibiting alterations in early diabetic nephropathy. Glomerular hypertrophy, hyperfiltration, and albuminuria were suppressed by tumstatin peptide (1 mg/kg) in streptozotocin-induced diabetic mice. Glomerular matrix expansion, the increase of total glomerular cell number and glomerular endothelial cells (CD31 positive), and monocyte/macrophage accumulation was inhibited by tumstatin peptide. Increase in renal expression of VEGF, flk-1, and angiopoietin-2, an antagonist of angiopoietin-1, was inhibited by tumstatin treatment in diabetic mice. Alteration of glomerular nephrin expression, a podocyte protein crucial for maintaining glomerular filtration barrier, was recovered by tumstatin in diabetic mice. Taken together, these results demonstrate the potential use of antiangiogenic tumstatin peptide as a novel therapeutic agent in early diabetic nephropathy.
Moreso, F; Seron, D; O'Valle, F; Ibernon, M; Gomà, M; Hueso, M; Cruzado, J M; Bestard, O; Duarte, V; del Moral, R García; Grinyó, J M
2007-12-01
Patients with a protocol renal allograft biopsy simultaneously displaying interstitial fibrosis/tubular atrophy (IF/TA) and subclinical rejection (SCR) have a shortened graft survival than patients with a normal biopsy, or with a biopsy only displaying IF/TA or SCR. The poor outcome of these patients could be related with a more severe inflammation. We evaluate the immunophenotype of infiltrating cells in these diagnostic categories. Nonexhausted paraffin blocks from protocol biopsies done during the first year were stained with anti-CD45, CD3, CD20, CD68 and CD15 monoclonal antibodies. Glomerular and interstitial positive cells were counted. C4d deposition in peritubular capillaries was evaluated. Histological diagnoses were: normal (n = 80), SCR (n = 17), IF/TA (n = 42) and IF/TA + SCR (n = 17). Only interstitial CD20 positive cells were significantly increased in patients displaying IF/TA + SCR; normal (137 +/- 117), SCR (202 +/- 145), IF/TA (208 +/- 151) and IF/TA + SCR (307 +/- 180 cells/mm(2)), p < 0.01. The proportion of biopsies displaying C4d deposition was not different among groups. The upper tertile of CD20 positive interstitial cells was associated with a decreased death-censored graft survival (relative risk: 3.01, 95% confidence interval: 1.23-7.35; p = 0.015). These data suggest that B-cell interstitial infiltrates are associated with histological damage and outcome, but do not distinguish whether these infiltrates were the cause or the consequence of chronic tubulo-interstitial damage.
Sandilands, Euan A; Cameron, Sharon; Paterson, Frances; Donaldson, Sam; Briody, Lesley; Crowe, Jane; Donnelly, Julie; Thompson, Adrian; Johnston, Neil R; Mackenzie, Ivor; Uren, Neal; Goddard, Jane; Webb, David J; Megson, Ian L; Bateman, Nicholas; Eddleston, Michael
2012-02-03
Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of acetylcysteine on renal function and identify an appropriate route for future dose response studies and in time randomized controlled trials. Clinical Trials.gov: NCT00558142; EudraCT: 2006-003509-18.
Case discussion: impaired renal function and tolerance to high altitude.
2002-01-01
A 58-year-old woman who plans a trek in the Himalayas at altitudes from 4500 to 5000 m is known to have the loss of about 50% of renal function based on glomerular filtration studies and renal biopsy. Possible risks and management are discussed.
TGF-β–Activated Kinase 1 Is Crucial in Podocyte Differentiation and Glomerular Capillary Formation
Lee, So-Young; Wang, Zhibo; Ding, Yan; Haque, Nadeem; Zhang, Jiwang; Zhou, Jing
2014-01-01
TGF-β–activated kinase 1 (TAK1) is a key intermediate in signal transduction induced by TGF-β or inflammatory cytokines, such as TNF-α and IL-1, which are potent inducers of podocyte injury responses that lead to proteinuria and glomerulosclerosis. Nevertheless, little is known about the physiologic and pathologic roles of TAK1 in podocytes. To examine the in vivo role of TAK1, we generated podocyte-specific Tak1 knockout mice (Nphs2-Cre+:Tak1fx/fx; Tak1∆/∆). Targeted deletion of Tak1 in podocytes resulted in perinatal lethality, with approximately 50% of animals dying soon after birth and 90% of animals dying within 1 week of birth. Tak1∆/∆ mice developed proteinuria from P1 and exhibited delayed glomerulogenesis and reduced expression of Wilms’ tumor suppressor 1 and nephrin in podocytes. Compared with Tak1fx/fx mice, Tak1∆/∆ mice exhibited impaired formation of podocyte foot processes that caused disruption of the podocyte architecture with prominent foot process effacement. Intriguingly, Tak1∆/∆ mice displayed increased expression of vascular endothelial growth factor within the glomerulus and abnormally enlarged glomerular capillaries. Furthermore, 4- and 7-week-old Tak1∆/∆ mice with proteinuria had increased collagen deposition in the mesangium and the adjacent tubulointerstitial area. Thus, loss of Tak1 in podocytes is associated with the development of proteinuria and glomerulosclerosis. Taken together, our data show that TAK1 regulates the expression of Wilms’ tumor suppressor 1, nephrin, and vascular endothelial growth factor and that TAK1 signaling has a crucial role in podocyte differentiation and attainment of normal glomerular microvasculature during kidney development and glomerular filtration barrier homeostasis. PMID:24652804
Induction of passive Heymann nephritis in complement component 6-deficient PVG rats.
Spicer, S Timothy; Tran, Giang T; Killingsworth, Murray C; Carter, Nicole; Power, David A; Paizis, Kathy; Boyd, Rochelle; Hodgkinson, Suzanne J; Hall, Bruce M
2007-07-01
Passive Heymann nephritis (PHN), a model of human membranous nephritis, is induced in susceptible rat strains by injection of heterologous antisera to rat renal tubular Ag extract. PHN is currently considered the archetypal complement-dependent form of nephritis, with the proteinuria resulting from sublytic glomerular epithelial cell injury induced by the complement membrane attack complex (MAC) of C5b-9. This study examined whether C6 and MAC are essential to the development of proteinuria in PHN by comparing the effect of injection of anti-Fx1A antisera into PVG rats deficient in C6 (PVG/C6(-)) and normal PVG rats (PVG/c). PVG/c and PVG/C6(-) rats developed similar levels of proteinuria at 3, 7, 14, and 28 days following injection of antisera. Isolated whole glomeruli showed similar deposition of rat Ig and C3 staining in PVG/c and PVG/C6(-) rats. C9 deposition was abundant in PVG/c but was not detected in PVG/C6(-) glomeruli, indicating C5b-9/MAC had not formed in PVG/C6(-) rats. There was also no difference in the glomerular cellular infiltrate of T cells and macrophages nor the size of glomerular basement membrane deposits measured on electron micrographs. To examine whether T cells effect injury, rats were depleted of CD8+ T cells which did not affect proteinuria in the early heterologous phase but prevented the increase in proteinuria associated with the later autologous phase. These studies showed proteinuria in PHN occurs without MAC and that other mechanisms, such as immune complex size, early complement components, CD4+ and CD8+ T cells, disrupt glomerular integrity and lead to proteinuria.
Liu, Qiang; Imaizumi, Tadaatsu; Kawaguchi, Shogo; Aizawa, Tomomi; Matsumiya, Tomoh; Watanabe, Shojiro; Tsugawa, Koji; Yoshida, Hidemi; Tsuruga, Kazushi; Joh, Kensuke; Kijima, Hiroshi; Tanaka, Hiroshi
2018-05-23
Given the importance of neutrophil recruitment in the pathogenesis of glomerulonephritis (GN), the representative neutrophil chemoattractant C-X-C motif chemokine 1 (CXCL1)/GROα and the adhesion molecule E-selectin in glomerular endothelial cells (GECs) play a pivotal role in the development of GN. Endothelial Toll-like receptor 3 (TLR3) is thought to be involved in the inflammatory response via innate immunity. However, the role of endothelial TLR3 signaling in the expression of neutrophil chemoattractants and adhesion molecules remains to be elucidated. Thus, we aimed to examine this issue. We treated normal human GECs with polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA, and analyzed the expressions of CXCL1 and E-selectin using quantitative real-time reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. To further elucidate the poly IC-induced signaling pathway, we subjected the cells to RNA interference against TLR3, interferon (IFN)-β, nuclear factor (NF)-κB p65, and IFN regulatory factor (IRF) 3. We also used immunofluorescence to examine the endothelial expression of CXCL1 in biopsy specimens from patients with crescentic and non-crescentic purpura nephritis (PN). We found that the activation of TLR3 induced the endothelial expression of CXCL1 and E-selectin, and that this involved TLR3, -NF-κB, IRF3, and IFN-β. Intense endothelial CXCL1 expression was observed in biopsy specimens from patients with crescentic PN. These findings support a role for glomerular antiviral innate immunity in the pathogenesis of GN. Intervention of glomerular TLR3 signaling may therefore be a suitable therapeutic strategy for treating GN in the future. © 2018 S. Karger AG, Basel.
Ayas, Najib T.
2018-01-01
Epidemiological studies demonstrate an association between obstructive sleep apnea (OSA) and accelerated loss of kidney function. It is unclear whether the decline in function is due to OSA per se or to other confounding factors such as obesity. In addition, the structural kidney abnormalities associated with OSA are unclear. The objective of this study was to determine whether intermittent hypoxia (IH), a key pathological feature of OSA, induces renal histopathological damage using a mouse model. Ten 8-week old wild-type male CB57BL/6 mice were randomly assigned to receive either IH or intermittent air (IA) for 60 days. After euthanasia, one kidney per animal was paraformaldehyde-fixed and then sectioned for histopathological and immunohistochemical analysis. Measurements of glomerular hypertrophy and mesangial matrix expansion were made in periodic acid–Schiff stained kidney sections, while glomerular transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF) and vascular endothelial growth factor-A (VEGF-A) proteins were semi-quantified by immunohistochemistry. The antigen-antibody reaction was detected by 3,3′-diaminobenzidine chromogen where the color intensity semi-quantified glomerular protein expression. To enhance the accuracy of protein semi-quantification, the percentage of only highly-positive staining was used for analysis. Levels of TGF-β, CTGF and VEGF-A proteins in the kidney cortex were further quantified by western blotting. Cellular apoptosis was also investigated by measuring cortical antiapoptotic B-cell lymphoma 2 (Bcl-2) and apoptotic Bcl-2-associated X (Bax) proteins by western blotting. Further investigation of cellular apoptosis was carried out by fluorometric terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining. Finally, the levels of serum creatinine and 24-hour urinary albumin were measured as a general index of renal function. Our results indicate that mice exposed to IH have an increased glomerular area (by 1.13 fold, p< 0.001) and expansion of mesangial matrix (by 1.8 fold, p< 0.01). Moreover, the glomerular expressions of TGF-β1, CTGF and VEGF-A proteins were 2.7, 2.2 and 3.8-fold higher in mice exposed to IH (p< 0.05 for all). Furthermore, western blotting protein analysis demonstrates that IH-exposed mice express higher levels of TGF-β1, CTGF and VEGF-A proteins by 1.9, 4.0 and 1.6-fold (p< 0.05 for all) respectively. Renal cellular apoptosis was greater in the IH group as shown by an increased cortical Bax/Bcl-2 protein ratio (p< 0.01) and higher fluorometric TUNEL staining (p< 0.001). Finally, 24-hr urinary albumin levels were higher in mice exposed to IH (43.4 μg vs 9.7 μg, p< 0.01), while there were no differences in serum creatinine levels between the two groups. We conclude that IH causes kidney injury that is accompanied by glomerular hypertrophy, mesangial matrix expansion, increased expression of glomerular growth factors and an increased cellular apoptosis. PMID:29389945
Shi, Xiaolei; Peng, Yonghan; Li, Ling; Li, Xiao; Wang, Qi; Zhang, Wei; Dong, Hao; Shen, Rong; Lu, Chaoyue; Liu, Min; Gao, Xiaofeng; Sun, Yinghao
2018-05-26
To evaluate renal function changes and risk factors for acute kidney injury (AKI) after percutaneous nephrolithotomy (PCNL) in patients with renal calculi with a solitary kidney (SK) or normal bilateral kidneys (BKs). Between 2012 and 2016, 859 patients undergoing PCNL were retrospectively reviewed at Changhai Hospital. In all, 53 patients with a SK were paired with 53 patients with normal BKs via a propensity score-matched analysis. Data for the following variables were collected: age, sex, body mass index, stone size, distribution, operation time, perioperative outcomes, and complications. The complications were graded according to the modified Clavien-Dindo system. Univariable and multivariable logistic regression models were constructed to evaluate risk factors for predicting AKI. The SK and BKs groups were comparable in terms of age, sex ratio, stone size, stone location distribution, comorbidities, and American Society of Anesthesiologists Physical Status classification. The initial and final stone-free rates were comparable between the SK and BKs groups (initial: 52.83% vs 58.49%, P = 0.696; final: 84.91% vs 92.45%, P = 0.359). There was no difference between the two groups for complications, according to the Clavien-Dindo grades. The estimated glomerular filtration rate (eGFR) increased dramatically after the stone burden was immediately relieved, and during the 6-month follow-up eGFR was lower in the SK group compared with the BKs group. We found a modest improvement in renal function immediately after PCNL in the BKs group, and renal function gain was delayed in the SK group. Through logistic regression analysis, we discovered that a SK, preoperative creatinine and diabetes were independent risk factors for predicting AKI after PCNL. Considering the overall complication rates, PCNL is generally a safe procedure for treating renal calculi amongst patients with a SK or normal BKs. Follow-up renal function analysis showed a modest improvement in patients of both groups. Compared to patients with normal BKs, patients with a SK were more likely to develop AKI after PCNL. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.
Fernández, Carmen; Araque, Carolina; Méndez, Jorge; Angulo, Luisa; Fargier, Bernardo
2007-06-01
The adolescent nephronophthisis (NPH3) is a variant of the nephronophthisis. In Venezuela, one to three patients have been registered each year, all of them belonging to the same family tree. The objective of this study was to evaluate the function of the proximal convoluted tubule in NPHP3 carriers; using the beta2M as biological marker. Eight carriers, 7 heterozygotes and 1 homozygote, with normal renal function were compared with a 10 healthy subjects (control group). Serum beta2 microglobulin (beta2M), urinary beta2M, the quotient urinary beta2M/urinary creatinine and the beta2M fractional excretion were determinated. The filtered beta2M and the percentage of reabsortion were calculated. We observed an increase in the plasmatic concentration of beta2M but not related with a decrease of the glomerular filtration. The urinary beta2M, the beta2M/urinary creatinine relation and the fractional excretion of beta2M were normal. The filtered load of beta2M was elevated without increase in the excretion or percentage of reabsortion. We conclude that in our group of NPH3 carriers, functional changes in the proximal convoluted tubule, when measured by urinary excretion of beta2M, were absent. This finding suggests the existence of other mechanism of uptake or degradation of the substance in the proximal convoluted tubule, which have yet to be elucidated.
Torres-Sánchez, M J; Ávila-Barranco, E; Esteban de la Rosa, R J; Fernández-Castillo, R; Esteban, M A; Carrero, J J; García-Valverde, M; Bravo-Soto, J A
2016-03-01
To determine in patients with autosomal dominant polycystic kidney disease the relationship between total renal volume (the sum of both kidneys, TRV) as measured by magnetic resonance and renal function; and its behaviour according to sex and the presence of arterial hypertension, hypercholesterolaemia and hyperglycemia. Cross-sectional study including patients with autosomal dominant polycystic kidney disease who underwent periodic reviews at Nephrology external consultations at Hospital de las Nieves de Granada, and who underwent an magnetic resonance to estimate renal volume between January 2008 and March 2011. We evaluated 67 patients (59.7% women, average age of 48±14.4 years) and found a significant positive association between TRV and serum creatinine or urea, which was reversed compared with estimated glomerular filtration by MDRD-4 and Cockcroft-Gault. Women showed an average serum creatinine level and a significantly lower TRV level compared with males. Subgroups affected by arterial hypertension and hyperuricemia presented average values for serum creatinine and urea, higher for TRV and lower for estimated glomerular filtration. The hypercholesterolaemia subgroup showed higher average values for urea and lower for estimated glomerular filtration, without detecting significant differences compared with TRV. The volume of polycystic kidneys measured by magnetic resonance is associated with renal function, and can be useful as a complementary study to monitor disease progression. The presence of arterial hypertension, hyperuricemia or hypercholesterolaemia is associated with a poorer renal function. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo
2017-06-01
To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.
Daehn, Ilse; Casalena, Gabriella; Zhang, Taoran; Shi, Shaolin; Fenninger, Franz; Barasch, Nicholas; Yu, Liping; D’Agati, Vivette; Schlondorff, Detlef; Kriz, Wilhelm; Haraldsson, Borje; Bottinger, Erwin P.
2014-01-01
Focal segmental glomerular sclerosis (FSGS) is a primary kidney disease that is commonly associated with proteinuria and progressive loss of glomerular function, leading to development of chronic kidney disease (CKD). FSGS is characterized by podocyte injury and depletion and collapse of glomerular capillary segments. Progression of FSGS is associated with TGF-β activation in podocytes; however, it is not clear how TGF-β signaling promotes disease. Here, we determined that podocyte-specific activation of TGF-β signaling in transgenic mice and BALB/c mice with Adriamycin-induced glomerulosclerosis is associated with endothelin-1 (EDN1) release by podocytes, which mediates mitochondrial oxidative stress and dysfunction in adjacent endothelial cells via paracrine EDN1 receptor type A (EDNRA) activation. Endothelial dysfunction promoted podocyte apoptosis, and inhibition of EDNRA or scavenging of mitochondrial-targeted ROS prevented podocyte loss, albuminuria, glomerulosclerosis, and renal failure. We confirmed reciprocal crosstalk between podocytes and endothelial cells in a coculture system. Biopsies from patients with FSGS exhibited increased mitochondrial DNA damage, consistent with EDNRA-mediated glomerular endothelial mitochondrial oxidative stress. Our studies indicate that segmental glomerulosclerosis develops as a result of podocyte-endothelial crosstalk mediated by EDN1/EDNRA-dependent mitochondrial dysfunction and suggest that targeting the reciprocal interaction between podocytes and endothelia may provide opportunities for therapeutic intervention in FSGS. PMID:24590287
Investigation of repeated vaccination as a possible cause of glomerular disease in mink.
Newman, Shelley Joy; Johnson, Roger; Sears, William; Wilcock, Brian
2002-07-01
The search for antigens capable of causing immune-complex-mediated glomerulonephritis continues. Modified live-virus vaccines commercially available for veterinary use are a possible source. In this study, repeated vaccination of mink with live-virus vaccines was investigated as a model for vaccine-induced glomerular injury. Three groups of 10-wk-old mink, 15 per group, were vaccinated once with 4-way vaccine against distemper, Pseudomonas aeruginosa infection, botulism and mink viral enteritis. Subsequently, all mink in each group each were vaccinated either with the 4-way vaccine, a monovalent canine distemper vaccine, or saline. Glomerular function was assessed at 2-wk intervals by determining the urinary protein:creatinine (P:C) ratio. Kidney sections taken at necropsy, 20 wk after the 1st vaccination, were examined by light and immunofluorescent microscopy for deposition of immunoglobulin and complement. There was no statistically significant difference between the treated and control groups based on average urinary P:C ratio medians. Light microscopic changes were detected in glomeruli, but Fisher's exact test showed no significant differences between any of the treatment groups. Deposition of immunoglobulin but not complement was significantly more frequent (P < 0.05) in the glomeruli of animals that received multiple injections of the 4-way vaccine than in the glomeruli of those given only the monovalent canine distemper vaccine or saline. These findings suggest that repeated vaccination may increase the glomerular deposition of immunoglobulin. Further studies are required to determine if the increased deposition of immunoglobulin contributes to the development of glomerular damage and to identify the antigens driving production of the deposited immunoglobulin.
Catena, Cristiana; Colussi, GianLuca; Martinis, Flavia; Novello, Marileda; Sechi, Leonardo A
2017-12-01
Identification of factors that contribute to urinary albumin losses in hypertensive nephropathy is crucial for prevention of renal deterioration. The aim of this study was to investigate the relationship of low-grade albuminuria with plasma aldosterone levels in treatment-naïve hypertensive patients free of additional comorbidities that might affect renal function. In 242 newly diagnosed patients with uncomplicated primary hypertension, we obtained duplicate 24-h urine collections for measurement of urinary albumin/creatinine ratio (UACR) and measured plasma aldosterone levels. Patients with diabetes, overt proteinuria (>300 mg/day), glomerular filtration rate less than 30 ml/min per 1.73 m, and previous renal diseases were excluded. Increasing UACR was associated with significantly and progressively higher blood pressure (BP), HDL-cholesterol, and plasma aldosterone levels, and with lower glomerular filtration. Microalbuminuria (30-300 mg/day) was detected in 41 (17%) of 242 hypertensive patients, and these patients had significantly higher BP and plasma aldosterone levels (178 ± 113 vs. 128 ± 84 pg/ml; P = 0.001), and lower glomerular filtration than patients without microalbuminuria. UACR was directly and independently correlated with BP and plasma aldosterone levels. In a logistic regression model, presence of microalbuminuria was associated with plasma aldosterone levels independently of glomerular filtration and demographic, anthropometric, and metabolic variables. In nondiabetic, treatment-naïve patients with hypertension, low-grade albuminuria is independently associated with elevated plasma aldosterone. These findings suggest a contribution of aldosterone to the early glomerular changes occurring in hypertensive nephropathy.
Lee, Chang-Joon; Ngo, Jennifer P; Kar, Saptarshi; Gardiner, Bruce S; Evans, Roger G; Smith, David W
2017-08-01
To assess the physiological significance of arterial-to-venous (AV) oxygen shunting, we generated a new pseudo-three-dimensional computational model of oxygen diffusion from intrarenal arteries to cortical tissue and veins. The model combines the 11 branching levels (known as "Strahler" orders) of the preglomerular renal vasculature in the rat, with an analysis of an extensive data set obtained using light microscopy to estimate oxygen mass transfer coefficients for each Strahler order. Furthermore, the AV shunting model is now set within a global oxygen transport model that includes transport from arteries, glomeruli, peritubular capillaries, and veins to tissue. While a number of lines of evidence suggest AV shunting is significant, most importantly, our AV oxygen shunting model predicts AV shunting is small under normal physiological conditions (~0.9% of total renal oxygen delivery; range 0.4-1.4%), but increases during renal ischemia, glomerular hyperfiltration (~2.1% of total renal oxygen delivery; range 0.84-3.36%), and some cardiovascular disease states (~3.0% of total renal oxygen delivery; range 1.2-4.8%). Under normal physiological conditions, blood Po 2 is predicted to fall by ~16 mmHg from the root of the renal artery to glomerular entry, with AV oxygen shunting contributing ~40% and oxygen diffusion from arteries to tissue contributing ~60% of this decline. Arterial Po 2 is predicted to fall most rapidly from Strahler order 4 , under normal physiological conditions. We conclude that AV oxygen shunting normally has only a small impact on renal oxygenation, but may exacerbate renal hypoxia during renal ischemia, hyperfiltration, and some cardiovascular disease states. Copyright © 2017 the American Physiological Society.
Pottel, Hans; Hoste, Liesbeth; Delanaye, Pierre
2015-05-01
The chronic kidney disease (CKD) classification system for children is similar to that for adults, with both mainly based on estimated glomerular filtration rate (eGFR) combined with fixed cut-off values. The main cut-off eGFR value used to define CKD is 60 mL/min/1.73 m(2), a value that is also applied for children older than 2 years of age, adolescents and young adults. Based on a literature search, we evaluated inclusion criteria for eGFR in clinical trials or research studies on CKD for children. We also collected information on direct measurements of GFR (mGFR) in children and adolescents, with the aim to estimate the normal reference range for GFR. Using serum creatinine (Scr) normal reference values and Scr-based eGFR-equations, we also evaluated the correspondence between Scr normal reference values and (e)GFR normal reference values. Based on our literature search, the inclusion of children in published CKD studies has been based on cut-off values for eGFR of >60 mL/min/1.73 m(2). The lower reference limits for mGFR far exceed this adult threshold. Using eGFR values calculated using Scr-based formulas, we found that abnormal Scr levels in children already correspond to eGFR values that are below a cut-off of 75 mL/min/1.73 m(2). Abnormal GFR in children, adolescents and young adults starts below 75 mL/min/1.73 m(2), and as abnormality is a sign of disease, we recommend referring children, adolescents and young adults with an (e)GFR of <75 mL/min/1.73 m(2) for further clinical assessment.
Toyoda, Hidenao; Nagai, Yuko; Kojima, Aya; Kinoshita-Toyoda, Akiko
2017-04-01
Podocalyxin (PC) was first identified as a heavily sialylated transmembrane protein of glomerular podocytes. Recent studies suggest that PC is a remarkable glycoconjugate that acts as a universal glyco-carrier. The glycoforms of PC are responsible for multiple functions in normal tissue, human cancer cells, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). PC is employed as a major pluripotent marker of hESCs and hiPSCs. Among the general antibodies for human PC, TRA-1-60 and TRA-1-81 recognize the keratan sulfate (KS)-related structures. Therefore, It is worthwhile to summarize the outstanding chemical characteristic of PC, including the KS-related structures. Here, we review the glycoforms of PC and discuss the potential of PC as a novel KS proteoglycan in undifferentiated hESCs and hiPSCs.
NASA Technical Reports Server (NTRS)
Geelen, G.; Kravik, S. E.; Hadj-Aissa, A.; Vincent, M.; Sem-Jacobsen, C. W.; Greenleaf, J.; Gharib, C.
1987-01-01
It is shown that inflation for 3 hr of an antigravity suit that covered the legs and abdomen of normal standing subjects results in significant increases in urine flow, osmolar and free water clearances, total and fractional sodium excretion, and potassium excretion, while glomerular filtration rate and renal plasma flow are transiently increased. Such changes in kidney function are the consequence of the increase in thoracic blood volume induced by inflation which also results in an immediate increase in blood pressure and reflex bradycardia, together with a progressive lowering of plasma renin activity and aldosterone. The changes in kidney excretory patterns brought about by suit inflation appear to be similar in nature and magnitude to those observed during water immersion or in the early phase of bed rest, situations known to result in a headward redistribution of blood.
Hemizygous Fabry disease associated with membranous nephropathy: A rare case report .
Zhou, Wenyan; Ni, Zhaohui; Zhang, Minfang
2018-05-24
Fabry disease may coexist with various glomerular diseases, including IgA nephropathy, focal segmental glomerulosclerosis, etc. In this study, we report a rare case of Fabry disease associated with membranous nephropathy (MN). A 30-year-old man with nephrotic proteinuria, normal renal function, and no other extrarenal manifestations underwent a renal biopsy in February 2017. Light microscopy and immunofluorescence indicated MN (stage 1). Under an electron microscope, there were subepithelial electron-dense deposits and abundant zebra bodies in podocytes. Both the findings of low-activity α-galactosidase A (α-Gal A, GLA) and base deletion in exon 7 of the GLA gene (GLA-E07.1286_*7 del, a newly reported mutation) confirmed that this patient was simultaneously afflicted with Fabry disease. This case report is an important reminder of the role of kidney biopsy, especially electron microscopy, as an indicator of Fabry disease and its rare coexistence with MN. .
RAAS-mediated Redox effects in Chronic Kidney Disease
Nistala, Ravi; Wei, Yongzhong; Sowers, James R; Whaley-Connell, Adam
2009-01-01
The renin-angiotensin-aldosterone-system (RAAS) is central to the pathogenesis of hypertension, cardiovascular and kidney disease. Emerging evidence support various pathways through which a local renal RAAS can affect kidney function, hypertension, and cardiovascular disease. A prominent mechanism appears to be loss of redox homeostasis and formation of excessive free radicals. Free radicals such as reactive oxygen species (ROS) are necessary in normal physiologic processes including development of nephrons, erythropoeisis and tubular sodium transport. However, loss of redox homeostasis contributes to pro-inflammatory and pro-fibrotic pathways in the kidney that in turn lead to reduced vascular compliance, podocyte pathology and proteinuria. Both blockade of the RAAS and oxidative stress produces salutary effects on hypertension and glomerular filtration barrier injury. Thus, the focus of current research is on understanding the pathophysiology of chronic kidney disease in the context of an elevated RAAS and unbalanced redox mechanisms. PMID:19218092
George, Britta; Verma, Rakesh; Soofi, Abdulsalam A.; Garg, Puneet; Zhang, Jidong; Park, Tae-Ju; Giardino, Laura; Ryzhova, Larisa; Johnstone, Duncan B.; Wong, Hetty; Nihalani, Deepak; Salant, David J.; Hanks, Steven K.; Curran, Tom; Rastaldi, Maria Pia; Holzman, Lawrence B.
2012-01-01
The morphology of healthy podocyte foot processes is necessary for maintaining the characteristics of the kidney filtration barrier. In most forms of glomerular disease, abnormal filter barrier function results when podocytes undergo foot process spreading and retraction by remodeling their cytoskeletal architecture and intercellular junctions during a process known as effacement. The cell adhesion protein nephrin is necessary for establishing the morphology of the kidney podocyte in development by transducing from the specialized podocyte intercellular junction phosphorylation-mediated signals that regulate cytoskeletal dynamics. The present studies extend our understanding of nephrin function by showing that nephrin activation in cultured podocytes induced actin dynamics necessary for lamellipodial protrusion. This process required a PI3K-, Cas-, and Crk1/2-dependent signaling mechanism distinct from the previously described nephrin-Nck1/2 pathway necessary for assembly and polymerization of actin filaments. Our present findings also support the hypothesis that mechanisms governing lamellipodial protrusion in culture are similar to those used in vivo during foot process effacement in a subset of glomerular diseases. In mice, podocyte-specific deletion of Crk1/2 prevented foot process effacement in one model of podocyte injury and attenuated foot process effacement and associated proteinuria in a delayed fashion in a second model. In humans, focal adhesion kinase and Cas phosphorylation — markers of focal adhesion complex–mediated Crk-dependent signaling — was induced in minimal change disease and membranous nephropathy, but not focal segmental glomerulosclerosis. Together, these observations suggest that activation of a Cas-Crk1/2–dependent complex is necessary for foot process effacement observed in distinct subsets of human glomerular diseases. PMID:22251701
Ma, Frank Y; Han, Yingjie; Nikolic-Paterson, David J; Kolkhof, Peter; Tesch, Greg H
2015-01-01
Steroidal mineralocorticoid receptor antagonists (MRAs) are effective in the treatment of kidney disease; however, the side effect of hyperkalaemia, particularly in the context of renal impairment, is a major limitation to their clinical use. Recently developed non-steroidal MRAs have distinct characteristics suggesting that they may be superior to steroidal MRAs. Therefore, we explored the benefits of a non-steroidal MRA in a model of rapidly progressive glomerulonephritis. Accelerated anti-glomerular basement membrane (GBM) glomerulonephritis was induced in groups of C57BL/6J mice which received no treatment, vehicle or a non-steroidal MRA (BR-4628, 5mg/kg/bid) from day 0 until being killed on day 15 of disease. Mice were examined for renal injury. Mice with anti-GBM glomerulonephritis which received no treatment or vehicle developed similar disease with severe albuminuria, impaired renal function, glomerular tuft damage and crescents in 40% of glomeruli. In comparison, mice which received BR-4628 displayed similar albuminuria, but had improved renal function, reduced severity of glomerular tuft lesions and a 50% reduction in crescents. The protection seen in BR-4628 treated mice was associated with a marked reduction in glomerular macrophages and T-cells and reduced kidney gene expression of proinflammatory (CCL2, TNF-α, IFN-γ) and profibrotic molecules (collagen I, fibronectin). In addition, treatment with BR-4626 did not cause hyperkalaemia or increase urine Na+/K+ excretion (a marker of tubular dysfunction). The non-steroidal MRA (BR-4628) provided substantial suppression of mouse crescentic glomerulonephritis without causing tubular dysfunction. This finding warrants further investigation of non-steroidal MRAs as a therapy for inflammatory kidney diseases.
Townsend, Raymond R; Anderson, Amanda Hyre; Chirinos, Julio A; Feldman, Harold I; Grunwald, Juan E; Nessel, Lisa; Roy, Jason; Weir, Matthew R; Wright, Jackson T; Bansal, Nisha; Hsu, Chi-Yuan
2018-06-01
Patients with chronic kidney diseases (CKDs) are at risk for further loss of kidney function and death, which occur despite reasonable blood pressure treatment. To determine whether arterial stiffness influences CKD progression and death, independent of blood pressure, we conducted a prospective cohort study of CKD patients enrolled in the CRIC study (Chronic Renal Insufficiency Cohort). Using carotid-femoral pulse wave velocity (PWV), we examined the relationship between PWV and end-stage kidney disease (ESRD), ESRD or halving of estimated glomerular filtration rate, or death from any cause. The 2795 participants we enrolled had a mean age of 60 years, 56.4% were men, 47.3% had diabetes mellitus, and the average estimated glomerular filtration rate at entry was 44.4 mL/min per 1.73 m 2 During follow-up, there were 504 ESRD events, 628 ESRD or halving of estimated glomerular filtration rate events, and 394 deaths. Patients with the highest tertile of PWV (>10.3 m/s) were at higher risk for ESRD (hazard ratio [95% confidence interval], 1.37 [1.05-1.80]), ESRD or 50% decline in estimated glomerular filtration rate (hazard ratio [95% confidence interval], 1.25 [0.98-1.58]), or death (hazard ratio [95% confidence interval], 1.72 [1.24-2.38]). PWV is a significant predictor of CKD progression and death in people with impaired kidney function. Incorporation of PWV measurements may help define better the risks for these important health outcomes in patients with CKDs. Interventions that reduce aortic stiffness deserve study in people with CKD. © 2018 American Heart Association, Inc.
Oates, Jim C; Halushka, Perry V; Hutchison, Florence N; Ruiz, Philip; Gilkeson, Gary S
2011-02-01
Proliferative lupus nephritis (LN) is marked by increased renal thromboxane (TX) A₂ production. Targeting the TXA₂ receptor or TXA₂ synthase effectively improves renal function in humans with LN and improves glomerular pathology in murine LN. This study was designed to address the following hypotheses: (1) TXA₂ production in the MRL/MpJ-Tnfrsf6(lpr)/J (MRL/lpr) model of proliferative LN is cyclooxygenase (COX)-2 dependent and (2) COX2 inhibitor therapy improves glomerular filtration rate (GFR), proteinuria, markers of innate immune response and glomerular pathology. Twenty female MRL/lpr and 20 BALB/cJ mice were divided into 2 equal treatment groups: (1) SC-236, a moderately selective COX2 inhibitor or (2) vehicle. After treatment from the age of 10 to 20 weeks, the effectiveness of inhibition of TXA₂ was determined by measuring urine TXB₂. Response endpoints measured at the age of 20 weeks were renal function (GFR), proteinuria, urine nitrate + nitrite (NO(x)) and glomerular histopathology. SC-236 therapy reduced surrogate markers of renal TXA₂ production during early, active glomerulonephritis. When this pharmacodynamic endpoint was reached, therapy improved GFR. Parallel reductions in markers of the innate immune response (urine NO(x)) during therapy were observed. However, the beneficial effect of SC-236 therapy on GFR was only transient, and renal histopathology was not improved in late disease. These data demonstrate that renal TXA2 production is COX2 dependent in murine LN and suggest that NO production is directly or indirectly COX2 dependent. However, COX2 inhibitor therapy in this model failed to improve renal pathology, making COX2 inhibition a less attractive approach for treating LN.
Imaging of a cat with perirenal pseudocysts.
Essman, S C; Drost, W T; Hoover, J P; Lemire, T D; Chalman, J A
2000-01-01
A 16-year-old, neutered male, domestic short hair cat had abdominal distension and systemic hypertension. Radiography, ultrasonography, excretory urography, and renal scintigraphy were performed to establish the diagnosis and implement appropriate treatment. Bilateral perirenal pseudocysts were confirmed surgically and histopathologically. Following bilateral renal capsulectomy, systemic hypertension decreased and global glomerular filtration rate improved to normal limits. Multiple imaging modalities helped establish the diagnosis and guided implementation of appropriate treatment.
Serum uric acid and renal function in patients with type 1 diabetes: a nationwide study in Brazil.
Pizarro, Marcela Haas; Santos, Deborah Conte; Barros, Bianca Senger Vasconcelos; de Melo, Laura Gomes Nunes; Gomes, Marilia Brito
2018-01-01
Diabetes nephropathy is a microvascular complication associated with high morbidity and mortality in patients with type 1 diabetes, and its pathogenesis is not fully understood. Our aim was to evaluate the association between levels of serum uric acid and renal function assessed by glomerular filtration rate (GFR) and albuminuria in patients with type 1 diabetes. This is a multicenter, cross-sectional, observational study with 1686 patients, conducted between August 2011 and August 2014 in 14 public clinics from ten Brazilian cities. Renal function was estimated by CKD-EPI (adults) and by Schwartz (adolescents). We analyzed 1686 patients, aged 30.1 ± 12.0, with 15.4 ± 9.3 years of duration of diabetes; 55.8% were female and 54.0% were Caucasians. Serum uric acid was related to renal function, with a mean of 4.8 ± 1.4 (in the normal renal function group) vs 5.2 ± 2.0 (GFR ≥ 60 ml/min and albuminuria) vs 6.5 ± 2.6 mg/dl (GFR < 60 ml/min). In the pooled group, multivariate analysis showed an inverse correlation between serum uric acid and GFR (r = - 0.316, p < 0.001) with a decrease of 4.11 ml/min in the GFR for every increase of 1 mg/dl in serum uric acid. Considering only patients with normal renal function (n = 1170), a decrease of 2.04 ml/min in the GFR for every increase of 1 mg/dl in Serum uric acid was noted using multivariate analysis. Patients with higher levels of serum uric acid have worse renal function, independently of HbA1c or duration of diabetes, which persisted even in patients with normal renal function. Further prospective studies are necessary to establish if patients with higher serum uric acid may have an elevated risk for developing chronic kidney disease.
Ye, Wen-Ling; Tang, Nan; Wen, Yu-Bing; Li, Hang; Li, Min-Xi; Du, Bin; Li, Xue-Mei
2016-11-01
Data on PCP in patients with glomerular disease are rare. The aim of this study was to assess the predictors of PCP development, the risk factors for mortality and the incidence of acute kidney injury (AKI) when high-dose trimethoprim-sulphamethoxazole (TMP-SMX) was used in patients with non-transplant glomerular disease. Forty-seven patients with PCP, as confirmed by positive results for Pneumocystis jirovecii DNA or Pneumocystis jirovecii cysts tested by a methenamine silver stain between January 1, 2003, and December 30, 2012, were retrospectively investigated. The baseline characteristics of glomerular disease, clinical findings of PCP and renal parameters after treatment were collected. Predictors for PCP development and risk factors for mortality were determined using a multivariate logistic regression analysis. All PCP patients exclusively received immunosuppressants. Baseline renal insufficiency [estimated glomerular filtration rate (eGFR) <60 mL/min·1.73 m 2 ] was present in 87.23 % of patients. The overall mortality rate was 29.79 %. A pulmonary coinfection and the need for mechanical ventilation were independently associated with PCP mortality. A lower eGFR, lower serum albumin level and a higher percentage of global glomerulosclerosis were independent predictors of PCP in patients with IgA nephropathy receiving immunosuppressants. AKI occurred in 60.47 % of patients who received TMP-SMX. After treatment cessation, 93.75 % of surviving patients showed a recovery of renal function to baseline values. PCP is a fatal complication in patients with glomerular disease, and the use of immunosuppressants may be a basic risk factor for this infection. Underlying renal insufficiency and high renal pathology chronicity are the key risk factors for PCP in IgA nephropathy. TMP-SMX therapy remains an ideal choice because of high treatment response and frequently reversible kidney injury.
Schwarz, Karin; Simons, Matias; Reiser, Jochen; Saleem, Moin A.; Faul, Christian; Kriz, Wihelm; Shaw, Andrey S.; Holzman, Lawrence B.; Mundel, Peter
2001-01-01
NPHS2 was recently identified as a gene whose mutations cause autosomal recessive steroid-resistant nephrotic syndrome. Its product, podocin, is a new member of the stomatin family, which consists of hairpin-like integral membrane proteins with intracellular NH2- and COOH-termini. Podocin is expressed in glomerular podocytes, but its subcellular distribution and interaction with other proteins are unknown. Here we show, by immunoelectron microscopy, that podocin localizes to the podocyte foot process membrane, at the insertion site of the slit diaphragm. Podocin accumulates in an oligomeric form in lipid rafts of the slit diaphragm. Moreover, GST pull-down experiments reveal that podocin associates via its COOH-terminal domain with CD2AP, a cytoplasmic binding partner of nephrin, and with nephrin itself. That podocin interacts with CD2AP and nephrin in vivo is shown by coimmunoprecipitation of these proteins from glomerular extracts. Furthermore, in vitro studies reveal direct interaction of podocin and CD2AP. Hence, as with the erythrocyte lipid raft protein stomatin, podocin is present in high-order oligomers and may serve a scaffolding function. We postulate that podocin serves in the structural organization of the slit diaphragm and the regulation of its filtration function. PMID:11733557
Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury
Fakhruddin, Selim; Alanazi, Wael
2017-01-01
Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure. PMID:28164134
Well Preserved Renal Function in Children With Untreated Chronic Liver Disease.
Berg, Ulla B; Németh, Antal
2018-04-01
On the basis of studies with hepatorenal syndrome, it is widely regarded that renal function is impacted in chronic liver disease (CLD). Therefore, we investigated renal function in children with CLD. In a retrospective study of 277 children with CLD, renal function was investigated as glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), measured as clearance of inulin and para-amino hippuric acid or clearance of iohexol. The data were analyzed with regard to different subgroups of liver disease and to the grade of damage. Hyperfiltration (>+2 SD of controls) was found in the subgroups of progressive familial intrahepatic cholestasis (44%), glycogenosis (75%), and acute fulminant liver failure (60%). Patients with biliary atresia, most other patients with metabolic disease and intrahepatic cholestasis, and those with vascular anomalies and cryptogenic cirrhosis had normal renal function. Decreased renal function was found in patients with Alagille's syndrome (64% < -2 SD). Increased GFR and ERPF was found in patients with elevated transaminases, low prothrombin level, high bile acid concentration, and high aspartate-aminotransferase-to-platelet ratio. Most children with CLD had surprisingly well preserved renal function and certain groups had even hyperfiltration. The finding that children with decompensated liver disease and ongoing liver failure had stable kidney function suggests that no prognostic markers of threatening hepatorenal syndrome were at hand. Moreover, estimation of GFR based on serum creatinine fails to reveal hyperfiltration.
Nanoscale protein architecture of the kidney glomerular basement membrane
Suleiman, Hani; Zhang, Lei; Roth, Robyn; Heuser, John E; Miner, Jeffrey H; Shaw, Andrey S; Dani, Adish
2013-01-01
In multicellular organisms, proteins of the extracellular matrix (ECM) play structural and functional roles in essentially all organs, so understanding ECM protein organization in health and disease remains an important goal. Here, we used sub-diffraction resolution stochastic optical reconstruction microscopy (STORM) to resolve the in situ molecular organization of proteins within the kidney glomerular basement membrane (GBM), an essential mediator of glomerular ultrafiltration. Using multichannel STORM and STORM-electron microscopy correlation, we constructed a molecular reference frame that revealed a laminar organization of ECM proteins within the GBM. Separate analyses of domains near the N- and C-termini of agrin, laminin, and collagen IV in mouse and human GBM revealed a highly oriented macromolecular organization. Our analysis also revealed disruptions in this GBM architecture in a mouse model of Alport syndrome. These results provide the first nanoscopic glimpse into the organization of a complex ECM. DOI: http://dx.doi.org/10.7554/eLife.01149.001 PMID:24137544
Ciani, Lorenza; Patel, Anjla; Allen, Nicholas D.; ffrench-Constant, Charles
2003-01-01
While roles in adhesion and morphogenesis have been documented for classical cadherins, the nonclassical cadherins are much less well understood. Here we have examined the functions of the giant protocadherin FAT by generating a transgenic mouse lacking mFAT1. These mice exhibit perinatal lethality, most probably caused by loss of the renal glomerular slit junctions and fusion of glomerular epithelial cell processes (podocytes). In addition, some mFAT1−/− mice show defects in forebrain development (holoprosencephaly) and failure of eye development (anophthalmia). In contrast to Drosophila, where FAT acts as a tumor suppressor gene, we found no evidence for abnormalities of proliferation in two tissues (skin and central nervous system [CNS]) containing stem and precursor cell populations and in which FAT is expressed strongly. Our results confirm a necessary role for FAT1 in the modified adhesion junctions of the renal glomerular epithelial cell and reveal hitherto unsuspected roles for FAT1 in CNS development. PMID:12724416
Brankovic, Milos; Akkerhuis, K Martijn; van Boven, Nick; Anroedh, Sharda; Constantinescu, Alina; Caliskan, Kadir; Manintveld, Olivier; Cornel, Jan Hein; Baart, Sara; Rizopoulos, Dimitris; Hillege, Hans; Boersma, Eric; Umans, Victor; Kardys, Isabella
2018-04-01
Renal dysfunction is an important component of chronic heart failure (CHF), but its single assessment does not sufficiently reflect clinically silent progression of CHF prior to adverse clinical outcome. Therefore, we aimed to investigate temporal evolutions of glomerular and tubular markers in 263 stable patients with CHF, and to determine if their patient-specific evolutions during this clinically silent period can dynamically predict clinical outcome. We determined the risk of clinical outcome (composite endpoint of Heart Failure hospitalization, cardiac death, Left Ventricular Assist Device placement, and heart transplantation) in relation to marker levels, slopes and areas under their trajectories. In each patient, the trajectories were estimated using repeatedly measured glomerular markers: creatinine/estimated glomerular filtration rate (eGFR), cystatin C (CysC), and tubular markers: urinary N-acetyl-beta-D-glucosaminidase (NAG) and kidney injury molecule (KIM)-1, plasma and urinary neutrophil gelatinase-associated lipocalin (NGAL). During 2.2 years of follow-up, we collected on average 8 urine and 9 plasma samples per patient. All glomerular markers predicted the endpoint (univariable hazard ratio [95% confidence interval] per 20% increase: creatinine: 1.18[1.07-1.31], CysC: 2.41[1.81-3.41], and per 20% eGFR decrease: 1.13[1.05-1.23]). Tubular markers, NAG, and KIM-1 also predicted the endpoint (NAG: 1.06[1.01-1.11] and KIM-1: 1.08[1.04-1.11]). Larger slopes were the strongest predictors (creatinine: 1.57[1.39-1.84], CysC: 1.76[1.52-2.09], eGFR: 1.59[1.37-1.90], NAG: 1.26[1.11-1.44], and KIM-1: 1.64[1.38-2.05]). Associations persisted after multivariable adjustment for clinical characteristics. Thus, during clinically silent progression of CHF, glomerular and tubular functions deteriorate, but not simultaneously. Hence, patient-specific evolutions of these renal markers dynamically predict clinical outcome in patients with CHF. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Effects of Hyperbaric Oxygen Treatment on Renal System.
Tezcan, Orhan; Caliskan, Ahmet; Demirtas, Sinan; Yavuz, Celal; Kuyumcu, Mahir; Nergiz, Yusuf; Guzel, Abdulmenap; Karahan, Oguz; Ari, Seyhmus; Soker, Sevda; Yalinkilic, Ibrahim; Turkdogan, Kenan Ahmet
2017-01-01
Hyperbaric oxygen (HBO) treatment is steadily increasing as a therapeutic modality for various types of diseases. Although good clinical outcomes were reported with HBO treatment for various diseases, the multisystemic effects of this modality are still unclear. This study aimed to investigate the renal effects of HBO experimentally. Fourteen New Zealand White rabbits were divided into 2 groups randomly as the control group and the study group. The study group received HBO treatment for 28 days (100% oxygen at 2.5 atmospheres for 90 minutes daily) and the control group was used to obtain normal renal tissue of the animal genus. After the intervention period, venous blood samples were obtained, and renal tissue samples were harvested for comparisons. Normal histological morphology was determined with Masson trichrome staining and periodic acid-Schiff staining in the control group. Atrophic glomerular structures, vacuolated tubule cells, and degeneration were detected in the renal samples of the study group with Masson trichrome staining. Additionally, flattening was observed on the brush borders of the proximal tubules, and tubular dilatation was visualized with periodic acid-Schiff staining. The histopathologic disruption of renal morphology was verified with detection of significantly elevated kidney function laboratory biomarkers in the study group. Our findings suggests that HBO has adverse effects on renal glomerulus and proximal tubules. However, the functional effects of this alteration should be investigated with further studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aburano, T.; Takayama, T.; Nakajima, K.
The three different methods to evaluate the alterations of split renal function following continued captopril treatment were studied in patients with hypertension. Five patients had unilateral and 2 had bilateral renal artery stenosis, and 13 had normal renal arteries. The studies were performed the day prior to receiving captopril (baseline), and 6th or 7th day following continued captorpril treatment (37.5mg or 75mg/day): Split effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) after injections of I-131 iodohippuran and Tc-99m DTPA were measured respectively by the methods using kidney counting corrected for depth and dose, described by Schlegel and Gates.more » And Tc-99m DMSA uptake was also evaluated qualitatively. In most of patients with renal artery stenosis, split GFR and Tc-99m DMSA uptake in the affected kidney were markedly decreased 6th or 7th day following continued captorpril treatment. These findings suggest that the captopril induced alterations of split renal function may be of importance for the diagnosis of renovascular hypertension. For this purpose, split GFR determination and Tc-99m DMSA study are more useful than split ERPF determination.« less
Iwazu, Yoshitaka; Akimoto, Tetsu; Izawa, Sayoko; Inoue, Makoto; Muto, Shigeaki; Ando, Yasuhiro; Iwazu, Kana; Fukushima, Noriyoshi; Yumura, Wako; Kusano, Eiji
2012-06-01
We describe a case of an adult female who presented with nephrotic syndrome. She was diagnosed with systemic lupus erythematosus with serum antinuclear antibodies, leucopenia with lymphopenia, butterfly erythema, and nephrotic syndrome. Renal biopsy revealed normal glomeruli with diffuse effacement of the foot processes, consistent with lupus podocytopathy. Although human albumin replacement was performed initially, acute renal failure developed rapidly. Therefore, she was treated with double filtration plasmapheresis (DFPP) in addition to oral steroid. After steroid therapy combined with DFPP, the renal function and proteinuria improved rapidly. Although the impact of DFPP on the treatment of lupus nephritis remains to be delineated, our observations suggest that DFPP in lupus podocytopathy played a pivotal role in facilitating the early recovery from renal injuries. Because of the rapid improvement of renal function without any change in body weight by DFPP, acute renal failure in the setting of lupus podocytopathy might contribute to an alternative pathophysiological factor for the diminished glomerular filtration rate, similar to that observed in the setting of idiopathic minimal change glomerulopathy.
Clinicopathological study of glomerular diseases associated with sarcoidosis: a multicenter study
2013-01-01
Background The association between sarcoidosis and glomerular diseases has not been extensively investigated in a large series and the potential features of this uncommon association remain to be determined. Methods We retrospectively identified 26 patients with biopsy-proven glomerular lesions that occurred in a sarcoidosis context. Potential remission of glomerular disease and sarcoidosis under specific treatment (steroid and/or immunosuppressive agents) was recorded for all patients. Demographic, clinical and biological characteristics were assessed at the time of kidney biopsy for each patient. Therapeutic data were analyzed for all patients. Results Glomerular disease occurred after the diagnosis of sarcoidosis in 11 of 26 cases (42%) (mean delay of 9.7 years). In six patients (23%), the glomerulopathy preceded the sarcoidosis diagnosis (mean delay 8 years). In the last nine patients (35%), both conditions occurred simultaneously. The most frequent glomerular disease occurring in sarcoidosis patients was membranous nephropathy in eleven cases. Other glomerular lesions included IgA nephropathy in six cases, focal segmental glomerulosclerosis in four patients, minimal change nephrotic syndrome for three patients and proliferative lupus nephritis in two patients. Granulomatous interstitial nephritis was associated with glomerular disease in six patients and was exclusively found in patients in whom the both disease occurred simultaneously. In nine patients with simultaneous glomerular and sarcoidosis diseases, we observed a strong dissociation between glomerular disease and sarcoidosis in terms of steroid responsiveness. At the end of the follow-up (mean of 8.4 years), six patients had reached end-stage renal disease and three patients had died. Conclusions A wide spectrum of glomerular lesions is associated with sarcoidosis. The close temporal relationship observed in some patients suggests common causative molecular mechanisms of glomerular injury but complete remission of both diseases in response to exclusive steroid therapy is infrequent. PMID:23631446
Morphine induces albuminuria by compromising podocyte integrity.
Lan, Xiqian; Rai, Partab; Chandel, Nirupama; Cheng, Kang; Lederman, Rivka; Saleem, Moin A; Mathieson, Peter W; Husain, Mohammad; Crosson, John T; Gupta, Kalpna; Malhotra, Ashwani; Singhal, Pravin C
2013-01-01
Morphine has been reported to accelerate the progression of chronic kidney disease. However, whether morphine affects slit diaphragm (SD), the major constituent of glomerular filtration barrier, is still unclear. In the present study, we examined the effect of morphine on glomerular filtration barrier in general and podocyte integrity in particular. Mice were administered either normal saline or morphine for 72 h, then urine samples were collected and kidneys were subsequently isolated for immunohistochemical studies and Western blot. For in vitro studies, human podocytes were treated with morphine and then probed for the molecular markers of slit diaphragm. Morphine-receiving mice displayed a significant increase in albuminuria and showed effacement of podocyte foot processes. In both in vivo and in vitro studies, the expression of synaptopodin, a molecular marker for podocyte integrity, and the slit diaphragm constituting molecules (SDCM), such as nephrin, podocin, and CD2-associated protein (CD2AP), were decreased in morphine-treated podocytes. In vitro studies indicated that morphine modulated podocyte expression of SDCM through opiate mu (MOR) and kappa (KOR) receptors. Since morphine also enhanced podocyte oxidative stress, the latter seems to contribute to decreased SDCM expression. In addition, AKT, p38, and JNK pathways were involved in morphine-induced down regulation of SDCM in human podocytes. These findings demonstrate that morphine has the potential to alter the glomerular filtration barrier by compromising the integrity of podocytes.
Eng, Diana G.; Sunseri, Maria W.; Kaverina, Natalya; Roeder, Sebastian S.; Pippin, Jeffrey W.; Shankland, Stuart J.
2015-01-01
Since adult podocytes cannot adequately proliferate following depletion in disease states there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine if parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PECrtTA/LC1/R26 reporter mice. In normal mice, labeled PECs were confined to Bowman's capsule, while in disease (cytotoxic sheep anti-podocyte antibody), labeled PECs were found in the glomerular tuft in progressively higher numbers by days 7, 14 and 28. Early in disease, the majority of PECs in the tuft co-expressed CD44. By day 28, when podocyte numbers were significantly higher and disease severity was significantly lower, the majority of labeled PECs co-expressed podocyte proteins but not CD44. Neither labeled PECs on the tuft, nor podocytes stained for the proliferation marker BrdU. The de novo expression of phospho-ERK colocalized to CD44 expressing PECs, but not to PECs expressing podocyte markers. Thus, in a mouse model of focal segmental glomerulosclerosis typified by abrupt podocyte depletion followed by regeneration, PECs undergo two phenotypic changes once they migrate to the glomerular tuft. Initially these cells are predominantly activated CD44 expressing cells coinciding with glomerulosclerosis, and later they predominantly exhibit a podocyte phenotype which is likely reparative. PMID:25993321
Wilson, Heather M.; Chettibi, Salah; Jobin, Christian; Walbaum, David; Rees, Andrew J.; Kluth, David C.
2005-01-01
Infiltrating macrophages (mφ) can cause injury or facilitate repair, depending on how they are activated by the microenvironment. Studies in vitro have defined the roles of individual cytokines and signaling pathways in activation, but little is known about how macrophages integrate the multiple signals they receive in vivo. We inhibited nuclear factor-κB in bone marrow-derived macrophages (BMDMs) by using a recombinant adenovirus expressing dominant-negative IκB (Ad-IκB). This re-orientated macrophage activation so they became profoundly anti-inflammatory in settings where they would normally be classically activated. In vitro, the lipopolysaccharide-induced nitric oxide, interleukin-12, and tumor necrosis factor-α synthesis was abrogated while interleukin-10 synthesis increased. In vivo, fluorescently labeled BMDMs transduced with Ad-IκB and injected into the renal artery significantly reduced inducible nitric oxide synthase and MHC class II expression when activated naturally in glomeruli of rats with nephrotoxic nephritis. Furthermore, although they only comprised 15% of glomerular macrophages, their presence significantly reduced glomerular infiltration and activation of host macrophages. Injury in nephrotoxic nephritis was also decreased when assessed morphologically and by severity of albuminuria. The results demonstrate the power of Ad-IκB-transduced BMDMs to inhibit injury when activated by acute immune-mediated inflammation within the glomerulus. PMID:15972949
Urinary Podocyte Microparticles Identify Prealbuminuric Diabetic Glomerular Injury
Burger, Dylan; Thibodeau, Jean-Francois; Holterman, Chet E.; Burns, Kevin D.; Touyz, Rhian M.
2014-01-01
Microparticles (MPs) are small (0.1–1.0 µm) vesicles shed from the surface of cells in response to stress. Whether podocytes produce MPs and whether this production reflects glomerular injury are unclear. We examined MP formation in cultured human podocytes (hPODs) and diabetic mice. hPODs were exposed to cyclical stretch, high glucose (HG; 25 mM), angiotensin II, or TGF-β. Urinary podocyte MPs were assessed in three mouse models of diabetic nephropathy: streptozotocin (STZ)-treated, OVE26, and Akita mice. Cyclic stretch and HG increased MP release as assessed by flow cytometry (P<0.01 and P<0.05, respectively, versus controls). Inhibition of Rho-kinase (ROCK) with fasudil blocked HG-induced podocyte MP formation. STZ-treated (8 weeks) mice exhibited increased urinary podocyte MPs compared with age-matched nondiabetic mice. Similarly, 16-week-old OVE26 mice had elevated levels of urinary podocyte MPs compared with wild-type littermates (P<0.01). In 1 week post-STZ–treated and 6- and 12-week-old Akita mice, urinary podocyte MPs increased significantly compared with those MPs in nondiabetic mice, despite normal urinary albumin levels. Our results indicate that podocytes produce MPs that are released into urine. Podocyte-derived MPs are generated by exposure to mechanical stretch and high glucose in vitro and could represent early markers of glomerular injury in diabetic nephropathy. PMID:24676640
Eriguchi, Masahiro; Lin, Mercury; Yamashita, Michifumi; Zhao, Tuantuan V; Khan, Zakir; Bernstein, Ellen A; Gurley, Susan B; Gonzalez-Villalobos, Romer A; Bernstein, Kenneth E; Giani, Jorge F
2018-04-01
Diabetic nephropathy is a major cause of end-stage renal disease in developed countries. While angiotensin-converting enzyme (ACE) inhibitors are used to treat diabetic nephropathy, how intrarenal ACE contributes to diabetic renal injury is uncertain. Here, two mouse models with different patterns of renal ACE expression were studied to determine the specific contribution of tubular vs. glomerular ACE to early diabetic nephropathy: it-ACE mice, which make endothelial ACE but lack ACE expression by renal tubular epithelium, and ACE 3/9 mice, which lack endothelial ACE and only express renal ACE in tubular epithelial cells. The absence of endothelial ACE normalized the glomerular filtration rate and endothelial injury in diabetic ACE 3/9 mice. However, these mice developed tubular injury and albuminuria and displayed low renal levels of megalin that were similar to those observed in diabetic wild-type mice. In diabetic it-ACE mice, despite hyperfiltration, the absence of renal tubular ACE greatly reduced tubulointerstitial injury and albuminuria and increased renal megalin expression compared with diabetic wild-type and diabetic ACE 3/9 mice. These findings demonstrate that endothelial ACE is a central regulator of the glomerular filtration rate while tubular ACE is a key player in the development of tubular injury and albuminuria. These data suggest that tubular injury, rather than hyperfiltration, is the main cause of microalbuminuria in early diabetic nephropathy.
Documentation of angiotensin II receptors in glomerular epithelial cells
NASA Technical Reports Server (NTRS)
Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)
1998-01-01
Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial cells participate in angiotensin II-mediated control of the glomerular filtration barrier.
Mocroft, Amanda; Lundgren, Jens D; Ross, Michael; Fux, Christoph A; Reiss, Peter; Moranne, Olivier; Morlat, Philippe; Monforte, Antonella d'Arminio; Kirk, Ole; Ryom, Lene
2016-01-01
Whether or not the association between some antiretrovirals used in HIV infection and chronic kidney disease is cumulative is a controversial topic, especially in patients with initially normal renal function. In this study, we aimed to investigate the association between duration of exposure to antiretrovirals and the development of chronic kidney disease in people with initially normal renal function, as measured by estimated glomerular filtration rate (eGFR). In this prospective international cohort study, HIV-positive adult participants (aged ≥16 years) from the D:A:D study (based in Europe, the USA, and Australia) with first eGFR greater than 90 mL/min per 1·73 m(2) were followed from baseline (first eGFR measurement after Jan 1, 2004) until the occurrence of one of the following: chronic kidney disease; last eGFR measurement; Feb 1, 2014; or final visit plus 6 months (whichever occurred first). Chronic kidney disease was defined as confirmed (>3 months apart) eGFR lower than 60 mL/min per 1·73 m(2). The primary outcome was the occurrence of chronic kidney disease. Poisson regression was used to estimate the incidence rate of chronic kidney disease associated with cumulative exposure to tenofovir disoproxil fumarate, ritonavir-boosted atazanavir, ritonavir-boosted lopinavir, other ritonavir-boosted protease inhibitors, or abacavir. Between Jan 1, 2004, and July 26, 2013, 23,905 eligible individuals from the D:A:D study were included. Participants had a median baseline eGFR of 110 mL/min per 1·73 m(2) (IQR 100-125), a median age of 39 years (33-45), and median CD4 cell count of 441 cells per mm(3) (294-628). During a median follow-up of 7·2 years (IQR 5·1-8·9), 285 (1%) of 23,905 people developed chronic kidney disease (incidence 1·76 per 1000 person-years of follow-up [95% CI 1·56-1·97]). After adjustment, we recorded a significant increase in chronic kidney disease associated with each additional year of exposure to tenofovir disoproxil fumarate (adjusted incidence rate ratio 1·14 [95% CI 1·10-1·19], p<0·0001), ritonavir-boosted atazanavir (1·20 [1·13-1·26], p<0·0001), and ritonavir-boosted lopinavir (1·11 [1·06-1·16], p<0·0001), but not other ritonavir-boosted protease inhibitors or abacavir. In people with normal renal function, the annual incidence of chronic kidney disease increased for up to 6 years of exposure to tenofovir disoproxil fumarate, ritonavir-boosted atazanavir, or ritonavir-boosted lopinavir therapy. Although the absolute number of new cases of chronic kidney disease was modest, treatment with these antiretrovirals might result in an increasing and cumulative risk of chronic kidney disease. Patients on potentially nephrotoxic antiretrovirals or at high risk of chronic kidney disease should be closely monitored. The Highly Active Antiretroviral Therapy Oversight Committee. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Wen-Hung; Lin, Ja-Liang; Lin-Tan, Dan-Tzu; Hsu, Ching-Wei; Chen, Kuan-Hsing; Yen, Tzung-Hai
2013-01-01
Whether environmental lead exposure has a long-term effect on progressive diabetic nephropathy in type II diabetic patients remains unclear. A total of 107 type II diabetic patients with stage 3 diabetic nephropathy (estimated glomerular filtration rate (eGFR) range, 30-60 mL/min/1.73 m(2)) with normal body lead burden (BLB) (<600 μ g/72 hr in EDTA mobilization tests) and no history of exposure to lead were prospectively followed for 2 years. Patients were divided into high-normal BLB (>80 μ g) and low-normal BLB (<80 μ g) groups. The primary outcome was a 2-fold increase in the initial creatinine levels, long-term dialysis, or death. The secondary outcome was a change in eGFR over time. Forty-five patients reached the primary outcome within 2 years. Although there were no differences in baseline data and renal function, progressive nephropathy was slower in the low-normal BLB group than that in the high-normal BLB group. During the study period, we demonstrated that each 100 μ g increment in BLB and each 10 μ g increment in blood lead levels could decrease GFR by 2.2 mL/min/1.72 m(2) and 3.0 mL/min/1.72 m(2) (P = 0.005), respectively, as estimated by generalized equations. Moreover, BLB was associated with increased risk of achieving primary outcome. Environmental exposure to lead may have a long-term effect on progressive diabetic nephropathy in type II diabetic patients.
Zhang, Xinmiao; Jing, Jing; Zhao, Xingquan; Liu, Liping; Wang, Chunxue; Pan, Yuesong; Meng, Xia; Wang, Yilong; Wang, Yongjun
2018-05-31
Statin use during hospitalization improves prognosis in patients with ischaemic stroke. However, it remains uncertain whether acute ischaemic stroke patients with chronic kidney disease (CKD) benefit from statin therapy. We investigated the effect of statin use during hospitalization in reducing short-term mortality of patients with ischaemic stroke and CKD. Data of first-ever ischaemic stroke patients without a history of pre-stroke statin treatment was derived from the China National Stroke Registry. Patients were stratified according to estimated glomerular filtration rate (eGFR): normal renal function (eGFR ≥90 mL/min/1.73 m2), mild CKD (eGFR 60-90 mL/min/1.73 m2) and moderate CKD (eGFR < 60 mL/min/1.73 m2). Multivariate logistic regression analysis was used to evaluate the association between statin use during hospitalization and all-cause mortality with different renal functions at 3-month follow-up. Among 5,951 patients included, 2,595 (43.6%) patients were on statin use during hospitalization after stroke (45.7% in patients with normal renal function, 42.0% in patients with mild CKD, and 39.0% in patients with moderate CKD). Compared with the non-statin group, statin use during hospitalization was associated with decreased all-cause mortality in patients with normal renal function (OR 0.65, 95% CI 0.43-0.97, p = 0.04), mild CKD (OR 0.59, 95% CI 0.38-0.91, p = 0.02) and moderate CKD (OR 0.41, 95% CI 0.23-0.75, p = 0.004) at 3-month follow-up. Statin use during hospitalization was associated with decreased 3-month mortality of ischaemic stroke patients with mild and moderate CKD. However, the conclusion should be confirmed in further studies with larger population, especially with moderate CKD. © 2018 S. Karger AG, Basel.
Handa, R K; Johns, E J
1985-01-01
Stimulation of the renal sympathetic nerves in pentobarbitone anaesthetized rats achieved a 13% reduction in renal blood flow, did not change glomerular filtration rate, but reduced urine flow by 37%, absolute sodium excretion by 37%, and fractional sodium excretion by 34%. Following inhibition of converting enzyme with captopril (0.38 mmol kg-1 h-1), similar nerve stimulation reduced both renal blood flow and glomerular filtration rate by 16%, and although urine flow and absolute sodium excretion fell by 32 and 31%, respectively, the 18% fall in fractional sodium excretion was significantly less than that observed in the absence of captopril. Renal nerve stimulation at low levels, which did not change either renal blood flow or glomerular filtration rate, reduced urine flow, and absolute and fractional sodium excretions by 25, 26 and 23%, respectively. In animals receiving captopril at 0.38 mmol kg-1 h-1, low-level nerve stimulation caused small increases in glomerular filtration rate of 7% and urine flow of 12%, but did not change either absolute or fractional sodium excretions. At one-fifth the dose of captopril (0.076 mmol kg-1 h-1), low-level nerve stimulation did not change renal haemodynamics but decreased urine flow, and absolute and fractional sodium excretions by 10, 10 and 8%, respectively. These results showed that angiotensin II production was necessary for regulation of glomerular filtration rate in the face of modest neurally induced reductions in renal blood flow and was compatible with an intra-renal site of action of angiotensin II preferentially at the efferent arteriole. They also demonstrated that in the rat the action of the renal nerves to decrease sodium excretion was dependent on angiotensin II. PMID:3005558
Urotensin-II System in Genetic Control of Blood Pressure and Renal Function
Debiec, Radoslaw; Christofidou, Paraskevi; Denniff, Matthew; Bloomer, Lisa D.; Bogdanski, Pawel; Wojnar, Lukasz; Musialik, Katarzyna; Charchar, Fadi J.; Thompson, John R.; Waterworth, Dawn; Song, Kijoung; Vollenweider, Peter; Waeber, Gerard; Zukowska-Szczechowska, Ewa; Samani, Nilesh J.; Lambert, David; Tomaszewski, Maciej
2013-01-01
Urotensin-II controls ion/water homeostasis in fish and vascular tone in rodents. We hypothesised that common genetic variants in urotensin-II pathway genes are associated with human blood pressure or renal function. We performed family-based analysis of association between blood pressure, glomerular filtration and genes of the urotensin-II pathway (urotensin-II, urotensin-II related peptide, urotensin-II receptor) saturated with 28 tagging single nucleotide polymorphisms in 2024 individuals from 520 families; followed by an independent replication in 420 families and 7545 unrelated subjects. The expression studies of the urotensin-II pathway were carried out in 97 human kidneys. Phylogenetic evolutionary analysis was conducted in 17 vertebrate species. One single nucleotide polymorphism (rs531485 in urotensin-II gene) was associated with adjusted estimated glomerular filtration rate in the discovery cohort (p = 0.0005). It showed no association with estimated glomerular filtration rate in the combined replication resource of 8724 subjects from 6 populations. Expression of urotensin-II and its receptor showed strong linear correlation (r = 0.86, p<0.0001). There was no difference in renal expression of urotensin-II system between hypertensive and normotensive subjects. Evolutionary analysis revealed accumulation of mutations in urotensin-II since the divergence of primates and weaker conservation of urotensin-II receptor in primates than in lower vertebrates. Our data suggest that urotensin-II system genes are unlikely to play a major role in genetic control of human blood pressure or renal function. The signatures of evolutionary forces acting on urotensin-II system indicate that it may have evolved towards loss of function since the divergence of primates. PMID:24391740
Shobana, Shanmugam; Harsha, Mysore R; Platel, Kalpana; Srinivasan, Krishnapura; Malleshi, Nagappa G
2010-12-01
Finger millet (Eleusine coracana) is extensively cultivated and consumed in India and Africa. The millet seed coat is a rich source of dietary fibre and phenolic compounds. The effect of feeding a diet containing 20% finger millet seed coat matter (SCM) was examined in streptozotocin-induced diabetic rats. Diabetic rats maintained on the millet SCM diet (diabetic experimental (DE) group) for 6 weeks exhibited a lesser degree of fasting hyperglycaemia and partial reversal of abnormalities in serum albumin, urea and creatinine compared with the diabetic control (DC) group. The DE group of rats excreted comparatively lesser amounts of glucose, protein, urea and creatinine and was accompanied by improved body weights compared with their corresponding controls. Hypercholesterolaemia and hypertriacylglycerolaemia associated with diabetes were also notably reversed in the DE group. Slit lamp examination of the eye lens revealed an immature subcapsular cataract with mild lenticular opacity in the DE group of rats compared to the mature cataract with significant lenticular opacity and corneal vascularisation in the DC group. Lower activity of lens aldose reductase, serum advanced glycation end products and blood glycosylated Hb levels were observed in the DE group. The millet SCM feeding showed pronounced ameliorating effects on kidney pathology as reflected by near normal glomerular and tubular structures and lower glomerular filtration rate compared with the shrunken glomerulus, tubular vacuolations in the DC group. Thus, the present animal study evidenced the hypoglycaemic, hypocholesterolaemic, nephroprotective and anti-cataractogenic properties of finger millet SCM, suggesting its utility as a functional ingredient in diets for diabetics.
Neutrophil contribution to the crescentic glomerulonephritis in SCG/Kj mice.
Ishida-Okawara, Akiko; Ito-Ihara, Toshiko; Muso, Eri; Ono, Takahiko; Saiga, Kan; Nemoto, Kyuichi; Suzuki, Kazuo
2004-07-01
Myeloperoxidase-specific anti-neutrophil cytoplasmic auto-antibody (MPO-ANCA) has been a useful diagnostic marker in systemic vasculitis with crescentic glomerulonephritis (CrGN). It is highly suspected that the antigenic enzyme MPO released from activated neutrophils is involved in these lesions. We evaluated the relationship between neutrophil functions including peripheral neutrophil counts and renal lesions in SCG/Kj mice as a model of ANCA-associated CrGN and vasculitis. Peripheral neutrophil counts, the plasma levels of MPO-ANCA and tumour necrosis factor alpha (TNF-alpha) were measured. The capacity of MPO release and superoxide generation were evaluated as neutrophil activity. The renal lesions were estimated by grade of proteinuria, histopathological lesion, such as glomerular neutrophil infiltration and active or chronic renal injury scores with crescent formation. MPO-ANCA and TNF-alpha levels were higher than those of normal mice C57BL/6 even before overt proteinuria; subsequently, peripheral neutrophils increased. In the phase of nephritis with low grade proteinuria, the spontaneous release of MPO from peripheral neutrophils increased, while superoxide generation increased before spontaneous MPO release occurred. In addition, the renal lesion in histological observations was aggravated with ageing and the glomerular neutrophil infiltration was positively correlated with MPO-ANCA levels, as well as with histological indices of nephritis, active renal injury score; in particular, crescent formation was correlated with spontaneous MPO release. In contrast, superoxide generation was negatively correlated with the severity of this lesion during the progression. These findings indicate that neutrophils are activated and contribute to the development of the active crescentic lesion in SCG/Kj mice.
Kvirkvelia, Nino; McMenamin, Malgorzata; Warren, Marie; Jadeja, Ravirajsinh N; Kodeboyina, Sai Karthik; Sharma, Ashok; Zhi, Wenbo; O'Connor, Paul M; Raju, Raghavan; Lucas, Rudolf; Madaio, Michael P
2018-05-04
To investigate the role of protein kinase C-α (PKC-α) in glomerulonephritis, the capacity of PKC-α inhibition to reverse the course of established nephrotoxic nephritis (NTN) was evaluated. Nephritis was induced by a single injection of nephrotoxic serum and after its onset, a PKC-α inhibitor was administered either systemically or by targeted glomerular delivery. By day seven, all mice with NTN had severe nephritis, whereas mice that received PKC-α inhibitors in either form had minimal evidence of disease. To further understand the underlying mechanism, label-free shotgun proteomic analysis of the kidney cortexes were performed, using quantitative mass spectrometry. Ingenuity pathway analysis revealed 157 differentially expressed proteins and mitochondrial dysfunction as the most modulated pathway. Functional protein groups most affected by NTN were mitochondrial proteins associated with respiratory processes. These proteins were down-regulated in the mice with NTN, while their expression was restored with PKC-α inhibition. This suggests a role for proteins that regulate oxidative phosphorylation in recovery. In cultured glomerular endothelial cells, nephrotoxic serum caused a decrease in mitochondrial respiration and membrane potential, mitochondrial morphologic changes and an increase in glycolytic lactic acid production; all normalized by PKC-α inhibition. Thus, PKC-α has a critical role in NTN progression, and the results implicate mitochondrial processes through restoring oxidative phosphorylation, as an essential mechanism underlying recovery. Importantly, our study provides additional support for targeted therapy to glomeruli to reverse the course of progressive disease. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Tanagho, Youssef S; Bhayani, Sam B; Sandhu, Gurdarshan S; Vaughn, Nicholas P; Nepple, Kenneth G; Figenshau, R Sherburne
2012-10-01
To evaluate the potential benefit of performing off-clamp robot-assisted partial nephrectomy as it relates to renal functional outcomes, while assessing the safety profile of this unconventional surgical approach. Twenty-nine patients who underwent off-clamp robot-assisted partial nephrectomy for suspected renal cell carcinoma at Washington University between March 2008 and September 2011 (group 1) were matched to 29 patients with identical nephrometry scores and comparable baseline renal function who underwent robot-assisted partial nephrectomy with hilar clamping during the same period (group 2). The matched cohorts' perioperative and renal functional outcomes were compared at a mean 9-month follow-up. Mean estimated blood loss was 146.4 mL in group 1, versus 103.9 mL in group 2 (P = .039). Mean hilar clamp time was 0 minutes in group 1 and 14.7 minutes in group 2. No perioperative complications were encountered in group 1; 1 Clavien-2 complication (3.4%) occurred in group 2 (P = 1.000). At 9-month follow-up, mean estimated glomerular filtration rate in group 1 was 79.9 versus 84.8 mL/min/1.73 m(2) preoperatively (P = .013); mean estimated glomerular filtration rate in group 2 was 74.1 versus 85.8 mL/min/1.73 m(2) preoperatively (P < .001). Hence, estimated glomerular filtration rate declined by a mean of 4.9 mL/min/1.73 m(2) in group 1 versus 11.7 mL/min/1.73 m(2) in group 2 (P = .033). Off-clamp robot-assisted partial nephrectomy is associated with a favorable morbidity profile and relatively greater renal functional preservation compared to clamped robot-assisted partial nephrectomy. Nevertheless, the benefit is small in renal functional terms and may have very limited clinical relevance. Copyright © 2012 Elsevier Inc. All rights reserved.
Ishibashi, Ryoichi; Takemoto, Minoru; Akimoto, Yoshihiro; Ishikawa, Takahiro; He, Peng; Maezawa, Yoshiro; Sakamoto, Kenichi; Tsurutani, Yuya; Ide, Shintaro; Ide, Kana; Kawamura, Harukiyo; Kobayashi, Kazuki; Tokuyama, Hirotake; Tryggvason, Karl; Betsholtz, Christer; Yokote, Koutaro
2016-05-16
Kidney diseases including diabetic nephropathy have become huge medical problems, although its precise mechanisms are still far from understood. In order to increase our knowledge about the patho-physiology of kidney, we have previously identified >300 kidney glomerulus-enriched transcripts through large-scale sequencing and microarray profiling of the mouse glomerular transcriptome. One of the glomerulus-specific transcripts identified was semaphorin 3G (Sema3G) which belongs to the semaphorin family. The aim of this study was to analyze both the in vivo and in vitro functions of Sema3G in the kidney. Sema3G was expressed in glomerular podocytes. Although Sema3G knockout mice did not show obvious glomerular defects, ultrastructural analyses revealed partially aberrant podocyte foot processes structures. When these mice were injected with lipopolysaccharide to induce acute inflammation or streptozotocin to induce diabetes, the lack of Sema3G resulted in increased albuminuria. The lack of Sema3G in podocytes also enhanced the expression of inflammatory cytokines including chemokine ligand 2 and interleukin 6. On the other hand, the presence of Sema3G attenuated their expression through the inhibition of lipopolysaccharide-induced Toll like receptor 4 signaling. Taken together, our results surmise that the Sema3G protein is secreted by podocytes and protects podocytes from inflammatory kidney diseases and diabetic nephropathy.
Ishibashi, Ryoichi; Takemoto, Minoru; Akimoto, Yoshihiro; Ishikawa, Takahiro; He, Peng; Maezawa, Yoshiro; Sakamoto, Kenichi; Tsurutani, Yuya; Ide, Shintaro; Ide, Kana; Kawamura, Harukiyo; Kobayashi, Kazuki; Tokuyama, Hirotake; Tryggvason, Karl; Betsholtz, Christer; Yokote, Koutaro
2016-01-01
Kidney diseases including diabetic nephropathy have become huge medical problems, although its precise mechanisms are still far from understood. In order to increase our knowledge about the patho-physiology of kidney, we have previously identified >300 kidney glomerulus-enriched transcripts through large-scale sequencing and microarray profiling of the mouse glomerular transcriptome. One of the glomerulus-specific transcripts identified was semaphorin 3G (Sema3G) which belongs to the semaphorin family. The aim of this study was to analyze both the in vivo and in vitro functions of Sema3G in the kidney. Sema3G was expressed in glomerular podocytes. Although Sema3G knockout mice did not show obvious glomerular defects, ultrastructural analyses revealed partially aberrant podocyte foot processes structures. When these mice were injected with lipopolysaccharide to induce acute inflammation or streptozotocin to induce diabetes, the lack of Sema3G resulted in increased albuminuria. The lack of Sema3G in podocytes also enhanced the expression of inflammatory cytokines including chemokine ligand 2 and interleukin 6. On the other hand, the presence of Sema3G attenuated their expression through the inhibition of lipopolysaccharide-induced Toll like receptor 4 signaling. Taken together, our results surmise that the Sema3G protein is secreted by podocytes and protects podocytes from inflammatory kidney diseases and diabetic nephropathy. PMID:27180624
Barbas, Andrew S; Li, Yanhong; Zair, Murtuza; Van, Julie A; Famure, Olusegun; Dib, Martin J; Laurence, Jerome M; Kim, S Joseph; Ghanekar, Anand
2016-09-01
Living kidney donor evaluation commonly includes nuclear renography to assess split kidney function and computed tomography (CT) scan to evaluate anatomy. To streamline donor workup and minimize exposure to radioisotopes, we sought to assess the feasibility of using proportional kidney volume from CT volumetry in lieu of nuclear renography. We examined the correlation between techniques and assessed their ability to predict residual postoperative kidney function following live donor nephrectomy. In a cohort of 224 live kidney donors, we compared proportional kidney volume derived by CT volumetry with split kidney function derived from nuclear renography and found only modest correlation (left kidney R(2) =26.2%, right kidney R(2) =26.7%). In a subset of 88 live kidney donors with serum creatinine measured 6 months postoperatively, we compared observed estimated glomerular filtration rate (eGFR) at 6 months with predicted eGFR from preoperative imaging. Compared to nuclear renography, CT volumetry more closely approximated actual observed postoperative eGFR for Chronic Kidney Disease Epidemiology Collaboration (J-test: P=.02, Cox-Pesaran test: P=.01) and Mayo formulas (J-test: P=.004, Cox-Pesaran test: P<.001). These observations support the use of CT volumetry for estimation of split kidney function in healthy individuals with normal kidney function and morphology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gómez Navarro, Rafael
2009-01-01
To study the renal function (FR) of the hypertensive patients by means of estimating equations and serum creatinine (Crp). To calculate the percentage of patients with chronic kidney disease (ERC) that present normal values of Crp. To analyze which factors collaborate in the deterioration of the FR. Descriptive cross-sectional study of patients with HTA. Crp and arterial tension (TA) were determined. The glomerular filtration rate was calculated by means of Cockroft-Gault and MDRD's formula. The years of evolution of the HTA were registered. A descriptive study of the variables and the possible dependence among them was completed, using several times linear multiple regression. 52 patients were studied (57,7% women). Average age 72,4 +/- 10,8. 32,6% (Cockcroft-Gault) or 21,5% (MDRD) were fulfilling ERC criterion. The ERC was mainly diagnosed in females. 21,4% (Cockcroft-Gault) and 9,5 % patients (MDRD) with ERC had normal Crp values. We do not find linear dependence between the numbers of TA and the FR. The TA check-up objectives do not suppose less development of ERC. In males we find linear dependence within the FR (MDRD) and the years of evolution of the HTA. The ERC is a frequent pathology in the hypertense persons. The systematical utilization of estimating equations facilitates the detection of hidden ERC in patients with normal Crp.
Surrogate markers of subtle renal injury in patients with visceral leishmaniasis.
Elnojomi, N A A; Musa, A M; Younis, B M; Elfaki, M E E; El-Hassan, A M; Khalil, E A G
2010-09-01
Sudanese visceral leishmaniasis (VL) is a disease of children that is characterized by fever, hepatosplenomegaly, lymphadenopathy, pancytopenia, and renal injury. Microalbuminuria (MA) and urinary retinol binding protein (urRBP) are useful markers for glomerular and tubular dysfunctions, respectively. We report the prevalence of subtle renal injury in 88 parasitologically confirmed VL patients in a cross-sectional and hospital-based study. Blood and urine were collected before treatment for hematological, biochemical profiles in addition to MA and urRBP measurement using competitive solid phase, sandwich enzyme-linked immune sorbent assay (ELISA), and immunoturbidometry. All the patients had normal serum urea and creatinine levels and no detectable urRBP. However, 40% of the patients had MA detected by ELISA, and 42% were reactive with turbidometry. The sensitivity, specificity, positive and negative predictive values for MA turbidometric technique were calculated as 100%; 96%; 95% and 100%, respectively. In conclusion; subtle renal injury in VL is mainly glomerular. Turbidometry for MA measurement is a simple, inexpensive, sensitive, and specific technique with high predictive values.
Sarashina, Akiko; Ueki, Kohjiro; Sasaki, Tomohiro; Tanaka, Yuko; Koiwai, Kazuki; Sakamoto, Wataru; Woerle, Hans J; Salsali, Afshin; Broedl, Uli C; Macha, Sreeraj
2014-11-01
The purpose of this study was to assess the effect of renal impairment on the pharmacokinetic, pharmacodynamic, and safety profiles of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in Japanese patients with type 2 diabetes mellitus (T2DM). In an open-label, parallel-group study, 32 Japanese patients with T2DM and different degrees of renal function (n = 8 per renal function category: normal renal function, estimated glomerular filtration rate [eGFR; Japanese equation] ≥90 mL/min/1.73 m(2); mild renal impairment, eGFR of 60-<90 mL/min/1.73 m(2); moderate renal impairment, eGFR of 30-<60 mL/min/1.73 m(2); and severe renal impairment, eGFR of 15-<30 mL/min/1.73 m(2)) received a single 25 mg dose of empagliflozin. Empagliflozin exposure increased with increasing renal impairment. Maximum empagliflozin plasma concentrations were similar among all renal function groups. Adjusted geometric mean ratios for extent of exposure (AUC0-∞) to empagliflozin versus normal renal function were 128.8% (95% CI, 106.0-156.6%), 143.8% (95% CI, 118.3-174.8%), and 152.3% (95% CI, 125.3-185.2%) for patients with mild, moderate, and severe renal impairment, respectively. Decreases in renal clearance of empagliflozin correlated with eGFR. Urinary glucose excretion decreased with increasing renal impairment and correlated with eGFR (adjusted mean [SE] change from baseline: 75.0 [4.84] g, 62.6 [5.75] g, 57.9 [4.86] g, and 23.7 [5.24] g for patients with normal renal function and mild, moderate, and severe renal impairment, respectively). Only 2 patients (6%) had adverse events; both were mild. Pharmacokinetic data suggest that no dose adjustment of empagliflozin is necessary in Japanese patients with T2DM and renal impairment because increases in exposure were <2-fold. Urinary glucose excretion decreased with increasing renal impairment. ClinicalTrials.gov identifier: NCT01581658. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.
Glomerular enlargement assessed by paired donor and early protocol renal allograft biopsies.
Alperovich, Gabriela; Maldonado, Rafael; Moreso, Francesc; Fulladosa, Xavier; Grinyó, Josep M; Serón, Daniel
2004-04-01
The aim of the study was to evaluate the evolution of glomerular volume 4 months after transplantation. Mean glomerular volume (Vg) was estimated according to the Weibel and Gomez method in a donor and a protocol biopsy done at 139 +/- 58 d in 41 stable grafts. Biopsies were also evaluated according to the Banff schema. Vg increased after transplantation from 4.1 +/- 1.4 to 5.1 +/- 2.4 x 10(6) micro3 (p=0.02). In patients with chronic allograft nephropathy in the protocol biopsy (n=14), the Vg enlargement was -0.3 +/-x 10(6) micro3 while in patients without chronic allograft nephropathy (n=27), glomerular enlargement was 1.6 +/- 2.1 x 10(6) micro3 (p=0.01). There was a negative association between glomerular volume in the donor biopsy and glomerular enlargement after transplantation (R=- 0.34, p=0.03). Multivariate regression analysis confirmed that Vg in the donor biopsy and chronic allograft nephropathy in the protocol biopsy were independent predictors of glomerular enlargement after transplantation (R=0.48, p=0.01). Moreover, Vg in the protocol biopsy correlated with creatinine clearance at the time of biopsy (R=0.38, p=0.01). Glomeruli enlarge after transplantation and glomerular volume after 4 months correlates with creatinine clearance, suggesting that glomerular enlargement is a necessary condition for renal adaptation to the recipient. Glomerular enlargement is impaired in patients with chronic allograft nephropathy.
Fadrowski, Jeffrey J.; Pierce, Christopher B.; Cole, Stephen R.; Moxey-Mims, Marva; Warady, Bradley A.; Furth, Susan L.
2008-01-01
Background and objectives: The level of glomerular filtration rate at which hemoglobin declines in chronic kidney disease is poorly described in the pediatric population. Design, setting, participants, & measurements: This cross-sectional study of North American children with chronic kidney disease examined the association of glomerular filtration rate, determined by the plasma disappearance of iohexol, and hemoglobin concentration. Results: Of the 340 patients studied, the mean age was 11 ± 4 yr, the mean glomerular filtration rate was 42 ± 14 ml/min per 1.73 m2, and the mean hemoglobin was 12.5 ± 1.5. Below a glomerular filtration rate of 43, the hemoglobin declined by 0.3 g/dl (95% confidence interval −0.2 to −0.5) for every 5-ml/min per 1.73 m2 decrease in glomerular filtration rate. Above a glomerular filtration rate of 43 ml/min per 1.73 m2, the hemoglobin showed a nonsignificant decline of 0.1 g/dl for every 5-ml/min per 1.73 m2 decrease in glomerular filtration rate. Conclusions: In pediatric patients with chronic kidney disease, hemoglobin declines as an iohexol-determined glomerular filtration rate decreases below 43 ml/min per 1.73 m2. Because serum creatinine–based estimated glomerular filtration rates may overestimate measured glomerular filtration rate in this population, clinicians need to be mindful of the potential for hemoglobin decline and anemia even at early stages of chronic kidney disease, as determined by current Schwartz formula estimates. Future longitudinal analyses will further characterize the relationship between glomerular filtration rate and hemoglobin, including elucidation of reasons for the heterogeneity of this association among individuals. PMID:18235140
COL4A6 is dispensable for autosomal recessive Alport syndrome.
Murata, Tomohiro; Katayama, Kan; Oohashi, Toshitaka; Jahnukainen, Timo; Yonezawa, Tomoko; Sado, Yoshikazu; Ishikawa, Eiji; Nomura, Shinsuke; Tryggvason, Karl; Ito, Masaaki
2016-07-05
Alport syndrome is caused by mutations in the genes encoding α3, α4, or α5 (IV) chains. Unlike X-linked Alport mice, α5 and α6 (IV) chains are detected in the glomerular basement membrane of autosomal recessive Alport mice, however, the significance of this finding remains to be investigated. We therefore generated mice lacking both α3 and α6 (IV) chains and compared their renal function and survival with Col4a3 knockout mice of 129 × 1/Sv background. No significant difference was observed in the renal function or survival of the two groups, or when the mice were backcrossed once to C57BL/6 background. However, the survival of backcrossed double knockout mice was significantly longer than that of the mice of 129 × 1/Sv background, which suggests that other modifier genes were involved in this phenomenon. In further studies we identified two Alport patients who had a homozygous mutation in intron 46 of COL4A4. The α5 and α6 (IV) chains were focally detected in the glomerular basement membrane of these patients. These findings indicate that although α5 and α6 (IV) chains are induced in the glomerular basement membrane in autosomal recessive Alport syndrome, their induction does not seem to play a major compensatory role.
COL4A6 is dispensable for autosomal recessive Alport syndrome
Murata, Tomohiro; Katayama, Kan; Oohashi, Toshitaka; Jahnukainen, Timo; Yonezawa, Tomoko; Sado, Yoshikazu; Ishikawa, Eiji; Nomura, Shinsuke; Tryggvason, Karl; Ito, Masaaki
2016-01-01
Alport syndrome is caused by mutations in the genes encoding α3, α4, or α5 (IV) chains. Unlike X-linked Alport mice, α5 and α6 (IV) chains are detected in the glomerular basement membrane of autosomal recessive Alport mice, however, the significance of this finding remains to be investigated. We therefore generated mice lacking both α3 and α6 (IV) chains and compared their renal function and survival with Col4a3 knockout mice of 129 × 1/Sv background. No significant difference was observed in the renal function or survival of the two groups, or when the mice were backcrossed once to C57BL/6 background. However, the survival of backcrossed double knockout mice was significantly longer than that of the mice of 129 × 1/Sv background, which suggests that other modifier genes were involved in this phenomenon. In further studies we identified two Alport patients who had a homozygous mutation in intron 46 of COL4A4. The α5 and α6 (IV) chains were focally detected in the glomerular basement membrane of these patients. These findings indicate that although α5 and α6 (IV) chains are induced in the glomerular basement membrane in autosomal recessive Alport syndrome, their induction does not seem to play a major compensatory role. PMID:27377778
Etiopathology of chronic tubular, glomerular and renovascular nephropathies: Clinical implications
2011-01-01
Chronic kidney disease (CKD) comprises a group of pathologies in which the renal excretory function is chronically compromised. Most, but not all, forms of CKD are progressive and irreversible, pathological syndromes that start silently (i.e. no functional alterations are evident), continue through renal dysfunction and ends up in renal failure. At this point, kidney transplant or dialysis (renal replacement therapy, RRT) becomes necessary to prevent death derived from the inability of the kidneys to cleanse the blood and achieve hydroelectrolytic balance. Worldwide, nearly 1.5 million people need RRT, and the incidence of CKD has increased significantly over the last decades. Diabetes and hypertension are among the leading causes of end stage renal disease, although autoimmunity, renal atherosclerosis, certain infections, drugs and toxins, obstruction of the urinary tract, genetic alterations, and other insults may initiate the disease by damaging the glomerular, tubular, vascular or interstitial compartments of the kidneys. In all cases, CKD eventually compromises all these structures and gives rise to a similar phenotype regardless of etiology. This review describes with an integrative approach the pathophysiological process of tubulointerstitial, glomerular and renovascular diseases, and makes emphasis on the key cellular and molecular events involved. It further analyses the key mechanisms leading to a merging phenotype and pathophysiological scenario as etiologically distinct diseases progress. Finally clinical implications and future experimental and therapeutic perspectives are discussed. PMID:21251296
Zinc deficiency during growth: influence on renal function and morphology.
Tomat, Analía Lorena; Costa, María Angeles; Girgulsky, Luciana Carolina; Veiras, Luciana; Weisstaub, Adriana Ruth; Inserra, Felipe; Balaszczuk, Ana María; Arranz, Cristina Teresa
2007-03-13
This study was designed to investigate the effects of moderate zinc deficiency during growth on renal morphology and function in adult life. Weaned male Wistar rats were divided into two groups and fed either a moderately zinc-deficient diet (zinc: 8 mg/kg, n=12) or a control diet (zinc: 30 mg/kg, n=12) for 60 days. We evaluated: renal parameters, NADPH-diaphorase and nitric oxide synthase activity in kidney, renal morphology and apoptotic cells in renal cortex. Zinc-deficient rats showed a decrease in glomerular filtration rate and no changes in sodium and potassium urinary excretion. Zinc deficiency decreased NADPH diaphorase activity in glomeruli and tubular segment of nephrons, and reduced activity of nitric oxide synthase in the renal medulla and cortex, showing that zinc plays an important role in preservation of the renal nitric oxide system. A reduction in nephron number, glomerular capillary area and number of glomerular nuclei in cortical and juxtamedullary areas was observed in zinc deficient kidneys. Sirius red staining and immunostaining for alpha-smooth muscle-actin and collagen III showed no signs of fibrosis in the renal cortex and medulla. An increase in the number of apoptotic cells in distal tubules and cortical collecting ducts neighboring glomeruli and, to a lesser extent, in the glomeruli was observed in zinc deficient rats. The major finding of our study is the emergence of moderate zinc deficiency during growth as a potential nutritional factor related to abnormalities in renal morphology and function that facilitates the development of cardiovascular and renal diseases in adult life.
The effect of non-diabetic chronic renal failure on olfactory function.
Koseoglu, S; Derin, S; Huddam, B; Sahan, M
2017-05-01
In chronic renal failure (CRF), deterioration of glomerular filtration results in accumulation of metabolites in the body which affect all organs. This study was performed to investigate the olfactory functions, and determine if hemodialysis or peritoneal dialysis improves olfactory function in non-diabetic CRF patients. The olfactory functions were analyzed in CRF patients not on a dialysis program and had a creatinine level≥2mg/dL, in CRF patients on hemodialysis or peritoneal dialysis, and in healthy controls. Diabetic patients were excluded since diabetes alone is a cause of olfactory dysfunction. The study group consisted of a total of 107 individuals including 38CRF patients on a hemodialysis program, 15 CRF patients on peritoneal dialysis, 30 patients with a creatinine level ≥ 2mg/dL without any need for dialysis, and 24 healthy controls with normal renal functions. Olfactory functions were analyzed with "Sniffin' sticks" test, and the groups were compared for the test results. All test parameters were impaired in patients with CRF. The median TDI scores of the patients with CRF and the healthy subjects were 24.75 (13-36) and 32.5 (27.75-37.75), respectively, with a statistically significant difference in between (P<0.001). The olfactory functions for the dialysis patients were better than those for the CRF patients not on a dialysis program (P=0.020). Non-diabetic CRF affects olfactory functions negatively. Dialysis improves olfactory functions in those patients. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Nutritional status and body composition in patients early after renal transplantation.
Netto, M C A S; Alves-Filho, G; Mazzali, M
2012-10-01
After renal transplantation recovery in nutritional status occurs during the first year. We assessed the changes in nutritional status after transplantation in 145 transplant recipients (94 males, 51 females). Patients were evaluated immediately after renal transplant (baseline data) and at 6 months' follow-up. Analysis included body mass index (BMI), body composition (skin fold and arm circumference), and estimated body composition (calculated percent of fat, arm circumference, arm muscle circumference, and arm muscle area). Other data obtained from medical records included renal function (MDRD) serum albumin and lipid profile. At baseline evaluation (21 ± 15 days posttransplant), mean BMI was 23.9 ± 3.9 kg/m(2), serum albumin was 3.7 ± 0.7 g/dL, and lipid profile showed (cholesterol 158.5 ± 52.7 mg% and triglycerides 135.9 ± 91.8 mg%. Body composition analysis showed better adaptation of muscle mass in females [AC (91 ± 10.2 × 98 ± 14.6; male × female, P < .05) arm muscle circumference (92.6 ± 1.4 × 102.3% ± 2.9%, male × female, P < .05) and arm muscle area (87.1 ± 22.3 × 105.5% ± 25.9%, male × female, P < .05)]. Body fat was above the recommended levels in 80% of patients, especially females. After 6 months we divided the groups according to BMI, observing better renal function in the normal weight group compared with obese subjects (60 ± 17.2 × 39.5 ± 19.8 mL/min MDRD, P < .05), despite comparable estimated glomerular filtration rate at baseline. The nutritional assessment of patients with end-stage renal disease early after renal transplantation, showed inadequate body composition, with increased fat and reduced lean body mass. The lower glomerular filtration rate after 6 months may be attributed to relatively inadequate renal mass or to obesity-induced hyperfiltration. Copyright © 2012 Elsevier Inc. All rights reserved.
Gür, Mustafa; Uçar, Hakan; Kuloğlu, Osman; Kıvrak, Ali; Şeker, Taner; Türkoğlu, Caner; Özaltun, Betül; Kaypaklı, Onur; Şahin, Durmuş Yıldıray; Elbasan, Zafer; Tanboğa, Halil İbrahim; Çaylı, Murat
2014-01-01
Even a slight decrease in the glomerular filtration rate (GFR) is an independent risk factor for cardiovascular disease. Arterial stiffness, left ventricular hypertrophy and N-terminal pro-brain natriuretic peptide (NT-proBNP) are independent risk factors for cardiovascular disease, which are particularly common in end-stage renal disease. We aimed to evaluate the association between GFR with arterial stiffness, left ventricle mass (LVM) and NT-proBNP in hypertensive subjects with normal to mildly impaired renal function. The study population consisted of 285 newly diagnosed hypertensive patients (mean age; 49.9 ± 11.8 years). GFR was estimated (eGFR) by the Modification of Diet in Renal Disease formula. Pulse wave velocity (PWV) and augmentation index (AIx), which reflects arterial stiffness, were calculated using the single-point method via the Mobil-O-Graph® ARCsolver algorithm. LVM was obtained by echocardiography. Plasma NT-proBNP was measured by electrochemiluminescence. The patients were divided into two groups according to the median eGFR value (eGFRlow group <101 ml/min/1.73 m(2) and eGFRhigh group ≥ 101 ml/min/1.73 m(2)). LVM and NT-proBNP values were higher in eGFRlow group compared with eGFRhigh group (p<0.05). Pulse wave velocity and augmentation index values were higher in eGFRlow group compared with eGFRhigh group (p<0.05, for all). Multiple linear regression analysis showed that eGFR was independently associated with PWV (β=-0.422, p<0.001) and NT-proBNP (β=-0.404, p<0.001). Present study showed that eGFR was independently associated with PWV and NT-proBNP values. Importantly, these findings may explain, in part, the increase in cardiovascular risk in with slightly impaired renal function.
Lin, Jin-Ding; Lin, Lan-Ping; Hsieh, Molly; Lin, Pei-Ying
2010-01-01
The present study aimed to describe the kidney function profile - serum creatinine and estimated glomerular filtration rate (eGFR), and to examine the relationships of predisposing factors to abnormal serum creatinine in people with intellectual disabilities (ID). Data were collected by a cross-sectional study of 827 aged 15-18 years adolescents with ID who participated in annual health examinations as they enrolled into special education schools in Taiwan. We used serum samples to determine participants' creatinine profiles, and the Cockcroft-Gault formula to calculate the data of eGFR to present the chronic kidney disease. The results found 22% of the participants have abnormal serum creatinine value (creatinine>1.0mg/dl) and 59.6%, 36.4% and 4.0% at chronic kidney disease (CKD) stage 1, 2 and 3 cases accordingly based on the Cockcroft-Gault formula. No CKD stage 4 and 5 cases in this study. That is, there were 4% CKD cases (eGFR <60 mL/min/1.73 m(2); CKD stage 3, 4 and 5) in adolescents with ID in this study. The results also indicated that gender and BMI could significantly predict abnormal creatinine condition in multivariate logistic regression analysis. Those boys with ID were more likely to have abnormal creatinine value than girls with ID (OR=10.13, 95% CI=5.96-17.23). In term of BMI, those underweight adolescents with ID were less likely to have high creatinine value compared to normal weight group (OR=0.45, 95% CI=0.28-0.72). In summary, this study provides the preliminary information of creatinine and estimated GFR in people with ID; we suggest the public health policy should initiate appropriate management strategies to monitor kidney function and to improve treatment outcomes of chronic kidney disease for this vulnerable population. Copyright © 2010 Elsevier Ltd. All rights reserved.
Thieme, Karina; Oliveira-Souza, Maria
2015-01-01
The role of hyperleptinemia in cardiovascular diseases is well known; however, in the renal tissue, the exact site of leptin’s action has not been established. This study was conducted to assess the effect of leptin treatment for 7 and 28 days on renal function and morphology and the participation of angiotensin II (Ang II), through its AT1 receptor. Rats were divided into four groups: sham, losartan (10 mg/kg/day, s.c.), leptin (0.5 mg/kg/day for the 7 days group and 0.25 mg/kg/day for the 28 days group) and leptin plus losartan. Plasma leptin, Ang II and endothelin 1 (ET-1) levels were measured using an enzymatic immuno assay. The systolic blood pressure (SBP) was evaluated using the tail-cuff method. The renal plasma flow (RPF) and the glomerular filtration rate (GFR) were determined by p-aminohippuric acid and inulin clearance, respectively. Urinary Na+ and K+ levels were also analyzed. Renal morphological analyses, desmin and ED-1 immunostaining were performed. Proteinuria was analyzed by silver staining. mRNA expression of renin-angiotensin system (RAS) components, TNF-α and collagen type III was analyzed by quantitative PCR. Our results showed that leptin treatment increased Ang II plasma levels and progressively increased the SBP, achieving a pre-hypertension state. Rats treated with leptin 7 days showed a normal RPF and GFR, but increased filtration fraction (FF) and natriuresis. However, rats treated with leptin for 28 showed a decrease in the RPF, an increase in the FF and no changes in the GFR or tubular function. Leptin treatment-induced renal injury was demonstrated by: glomerular hypertrophy, increased desmin staining, macrophage infiltration in the renal tissue, TNF-α and collagen type III mRNA expression and proteinuria. In conclusion, our study demonstrated the progressive renal morphological changes in experimental hyperleptinemia and the interaction between leptin and the RAS on these effects. PMID:25793389
Gestational diabetes mellitus (GDM) in the Republic of Kosovo: a retrospective pilot study.
Daci, Armond; Elshani, Brikene; Giangiacomo, Beretta
2013-01-01
GDM is a condition in which women without previously diagnosed diabetes exhibit high blood glucose levels during pregnancy. Pregnancy causes some insulin resistance in all women, but only a few develop GDM. To test the hypothesis that women with GDM have impaired regulation of blood iron storage and transport, decreased renal function due to decreased glomerular filtration rate and occurrence of urinary tract infection (UTI). Incidence of blood iron storage was investigated in n=30 pregnant kosovar women with GDM after mild of pregnancy and in n=30 pregnant women without GDM (years 2010-2012). Baby weights, both systolic and diastolic BP, creatinine, albumin, lymphocytes, monocytes, WBC and granulocytes in both groups were within their normal ranges in both groups. Compared to control group, glucose was higher in women with GDM (mean +/- SD: 7.43 +/- 2.23 mg/dL vs. 4.33 +/- 0.63 mg/dL; P < 0.001). Women with GDM had also higher RBC (mean +/- SD: 4.4 +/- 0.8% vs. 3.8 +/- 0.3%; P < 0.005) and HGB (mean +/- SD: 13.0 +/- 3.2 g/dL vs. 11.2 +/- 1.4 mg/dL; P < 0.05), and decreased renal functionality (MDRD-GFR: 92.8 +/- 25.8 g/dL vs. 108.2 +/- 38.2 g/dL; P < .05). There is a potential association between iron status and GDM. The role of iron from diet and/or from supplementation in GDM pathogenesis needs still to be examined. In addition we have observed a decrease of glomerular filtration rate in women with GDM. Due to the lack of studies on the relationships between GDM and UTI, and to the retrospective design of the present investigation, it is difficult to establish whether UTI may be a GDM causal factor or a consequence of GDM symptoms, signs and/or of its correlated pathologies.
High-salt diet induces outward remodelling of efferent arterioles in mice with reduced renal mass.
Zhao, L; Gao, Y; Cao, X; Gao, D; Zhou, S; Zhang, S; Cai, X; Han, F; Wilcox, C S; Li, L; Lai, E Y
2017-03-01
The glomerular filtration rate (GFR) falls progressively in chronic kidney disease (CKD) which is caused by a reduction in the number of functional nephrons. The dysfunctional nephron exhibits a lower glomerular capillary pressure that is induced by an unbalance between afferent and efferent arteriole. Therefore, we tested the hypothesis that oxidative stress induced by CKD differentially impairs the structure or function of efferent vs. afferent arterioles. C57BL/6 mice received sham operations (sham) or 5/6 nephrectomy (RRM) and three months of normal- or high-salt diet or tempol. GFR was assessed from the plasma inulin clearance, arteriolar remodelling from media/lumen area ratio, myogenic responses from changes in luminal diameter with increases in perfusion pressure and passive wall compliance from the wall stress/strain relationships. Mice with RRM fed a high salt (vs. sham) had a lower GFR (553 ± 25 vs. 758 ± 36 μL min -1 g -1 kidney, P < 0.01) and a larger efferent arteriolar diameter (9.6 ± 0.8 vs. 7.4 ± 0.7 μm, P < 0.05) resulting in a lower media/lumen area ratio (1.4 ± 0.1 vs. 2.4 ± 0.2, P < 0.01). These alterations were corrected by tempol. The myogenic responses of efferent arterioles were about one-half that of afferent arterioles and were unaffected by RRM or salt. Passive wall compliance was reduced by high salt in both afferent and efferent arterioles. A reduction in renal mass with a high-salt diet induces oxidative stress that leads to an outward eutrophic remodelling in efferent arterioles and reduced wall compliance in both afferent and efferent arterioles. This may contribute to the lower GFR in this model of CKD. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Poucher, S M; Karim, F
1991-01-01
1. The effect of direct electrical stimulation of the renal efferent nerves upon renal haemodynamics and function was studied in greyhounds anaesthetized with chloralose and artificially ventilated. The left kidney was neurally and vascularly isolated, and perfused with blood from one of the femoral arteries at a constant pressure of 99 +/- 1 mmHg. Renal blood flow was measured with a cannulating electromagnetic flow probe placed in the perfusion circuit, glomerular filtration rate by creatinine clearance, urinary sodium excretion by flame photometry and solute excretion by osmometry. Beta-Adrenergic receptor activation was blocked by the infusion of dl-propranolol (17 micrograms kg-1 min-1). The peripheral ends of the ligated renal nerves were stimulated at 0.5, 1.0, 1.5 and 2.0 Hz. 2. At 0.5 Hz frequency only osmolar excretion was significantly reduced (10.3 +/- 3.2%, P less than 0.05, n = 6). Reductions in sodium excretion (53.6 +/- 8.5%, P less than 0.01, n = 6) and water excretion (26.9 +/- 8.0%, P less than 0.05, n = 6) and further reductions of osmolar excretion (20.7 +/- 3.7%, P less than 0.01, n = 6) were observed at 1.0 Hz; however, these were observed in the absence of significant changes in renal blood flow and glomerular filtration rate. Significant reductions were observed in glomerular filtration rate at 1.5 Hz (16.3 +/- 4.1%, P less than 0.02, n = 5) and in renal blood flow at 2.0 Hz (13.1 +/- 4.0%, P less than 0.05, n = 5). Further reductions in urine flow and sodium excretion were also observed at these higher frequencies. 3. These results clearly show that significant changes in renal tubular function can occur in the absence of changes in renal blood flow and glomerular filtration rate when the renal nerves are stimulated electrically from a zero baseline activity up to a frequency of 1.5 Hz. Higher frequencies caused significant changes in both renal haemodynamics and function. PMID:2023113
Early RAAS Blockade Exerts Renoprotective Effects in Autosomal Recessive Alport Syndrome.
Uchida, Nao; Kumagai, Naonori; Nozu, Kandai; Fu, Xue Jun; Iijima, Kazumoto; Kondo, Yoshiaki; Kure, Shigeo
2016-11-01
Alport syndrome is a progressive renal disease caused by mutations in COL4A3, COL4A4, and COL4A5 genes that encode collagen type IV alpha 3, alpha 4, and alpha 5 chains, respectively. Because of abnormal collagen chain, glomerular basement membrane becomes fragile and most of the patients progress to end-stage renal disease in early adulthood. COL4A5 mutation causes X-linked form of Alport syndrome, and two mutations in either COL4A3 or COL4A4 causes an autosomal recessive Alport syndrome. Recently, renin-angiotensin-aldosterone system (RAAS) blockade has been shown to attenuate effectively disease progression in Alport syndrome. Here we present three Japanese siblings and their father all diagnosed with autosomal recessive Alport syndrome and with different clinical courses, suggesting the importance of the early initiation of RAAS blockade. The father was diagnosed with Alport syndrome. His consanguineous parents and his wife were healthy. All three siblings showed hematuria since infancy. Genetic analysis revealed that they shared the same gene mutations in COL4A3 in a compound heterozygous state: c.2330G>A (p.Gly777Ala) from the mother and c.4354A>T (p.Ser1452Cys) from the father. Although RAAS blockade was initiated for the older sister and brother when their renal function was already impaired, it did not attenuate disease progression. In the youngest brother, RAAS blockade was initiated during normal renal function stage. After the initiation, his renal function has been normal with the very mild proteinuria to date at the age of 17 years. We propose that in Alport syndrome, RAAS blockade should be initiated earlier than renal function is impaired.
Moschella, Carla
2016-07-01
Chronic kidney disease affects 23 million Americans and is associated with many complications, one of the most complex of which is mineral and bone disorder. Pathophysiologic mechanisms begin to occur early in CKD but when the glomerular filtration rate declines to <50% of normal, biochemical and bone matrix abnormalities, which vary and are multifactorial, begin to be clinically apparent. Mainstays of treatment remain management of hyperphosphatemia and prevention or treatment of secondary hyperparathyroidism.
Aging-associated renal disease in mice is fructokinase dependent.
Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Milagres, Tamara; Hernando, Ana Andres; Jensen, Thomas; Miyazaki, Makoto; Doke, Tomohito; Hayasaki, Takahiro; Nakagawa, Takahiko; Marumaya, Shoichi; Long, David A; Garcia, Gabriela E; Kuwabara, Masanari; Sánchez-Lozada, Laura G; Kang, Duk-Hee; Johnson, Richard J
2016-10-01
Aging-associated kidney disease is usually considered a degenerative process associated with aging. Recently, it has been shown that animals can produce fructose endogenously, and that this can be a mechanism for causing kidney damage in diabetic nephropathy and in association with recurrent dehydration. We therefore hypothesized that low-level metabolism of endogenous fructose might play a role in aging-associated kidney disease. Wild-type and fructokinase knockout mice were fed a normal diet for 2 yr that had minimal (<5%) fructose content. At the end of 2 yr, wild-type mice showed elevations in systolic blood pressure, mild albuminuria, and glomerular changes with mesangial matrix expansion, variable mesangiolysis, and segmental thrombi. The renal injury was amplified by provision of high-salt diet for 3 wk, as noted by the presence of glomerular hypertrophy, mesangial matrix expansion, and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase knockout mice were protected from renal injury both at baseline and after high salt intake (3 wk) compared with wild-type mice. This was associated with higher levels of active (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies suggest that aging-associated renal disease might be due to activation of specific metabolic pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-associated renal injury may represent a disease process as opposed to normal age-related degeneration.
De Vecchis, Renato; Baldi, Cesare; Di Biase, Giuseppina
2016-04-01
Approximately one-third of patients with acute decompensated heart failure (ADHF) treated with an intravenous (iv) loop diuretic at a relatively high dose (>80 mg/day of furosemide, or an equivalent dose of another loop diuretic), exhibit worsening renal function (WRF) after a single course of iv infusions or iv bolus injections maintained for several days. WRF is currently defined as an increase in serum creatinine >0.3 mg/dL (WRF-Cr) or a decrease in the estimated glomerular filtration rate of ≥20% (WRF-GFR) compared to baseline measurements. Furthermore, small increases in serum creatinine in the high-normal range of its values are indicative of significant reductions in estimated glomerular filtration rate (eGFR) due to the exponential relationship between serum creatinine and eGFR. Therefore, underestimating this relationship could lead to an erroneous quantitative estimate of new-onset renal dysfunction, diuretic-related. The relationship between baseline serum creatinine (exposure variable) and the risk of diuretic-related WRF (dichotomous outcome variable), expressed either as WRF-Cr or as WRF-GFR, was assessed by logistic regression analysis. For this purpose, medical records with a diagnosis of previous ADHF were collated, and retrospectively analyzed. The eGFR was calculated using the equation "Modification of Diet in Renal Disease" (MDRD). The WRF was inferred from measurements of serum creatinine that had been made daily during the scheduled courses of intravenous diuretic therapy. Thirty-eight patients with chronic heart failure (CHF) and history of a previous episode of ADHF were enrolled in the study. An increase higher than 0.3 mg/dL of serum creatinine (WRF-Cr) was detected in 14 of 38 patients (36.8%). In addition, a decrease of ≥20% in GFR (WRF-GFR) was detected in 14 of 38 patients (36.8%). However, a poor concordance between the two criteria was found (Cohen's Kappa =0.208, 95% CI: -0.110 to 0.526). WRF-Cr and WRF-GFR showed opposing relations with baseline serum creatinine. In fact, the risk of WRF-Cr appeared positively associated with baseline serum creatinine (odds ratio =33.56; 95% CI:2.93- 384.18 P=0.0047), while the risk of WRF-GFR was inversely associated with the same analyte (odds ratio =0.0393; 95% CI: 0.0039 to 0.3966 P=0.0061). The criterion to discontinue the iv diuretic or to reduce its dosage in the presence of WRF-Cr for patients with ADHF or resistance to oral diuretic should be joined with the useful notion that this finding indicates a significant reduction of eGFR only for values of serum creatinine in the normal or near-normal ranges.
Small molecule membrane transporters in the mammalian podocyte: a pathogenic and therapeutic target.
Zennaro, Cristina; Artero, Mary; Di Maso, Vittorio; Carraro, Michele
2014-11-18
The intriguingly complex glomerular podocyte has been a recent object of intense study. Researchers have sought to understand its role in the pathogenesis of common proteinuric diseases such as minimal change disease and focal segmental glomerular sclerosis. In particular, considerable effort has been directed towards the anatomic and functional barrier to macromolecular filtration provided by the secondary foot processes, but little attention has been paid to the potential of podocytes to handle plasma proteins beyond the specialization of the slit diaphragm. Renal membrane transporters in the proximal tubule have been extensively studied for decades, particularly in relation to drug metabolism and elimination. Recently, uptake and efflux transporters for small organic molecules have also been found in the glomerular podocyte, and we and others have found that these transporters can engage not only common pharmaceuticals but also injurious endogenous and exogenous agents. We have also found that the activity of podocyte transporters can be manipulated to inhibit pathogen uptake and efflux. It is conceivable that podocyte transporters may play a role in disease pathogenesis and may be a target for future drug development.
Matrix Gelatinases in Atherosclerosis and Diabetic Nephropathy: Progress and Challenges.
Dimas, Grigorios G; Didangelos, Triantafyllos P; Grekas, Dimitrios M
2017-01-01
Matrix metalloproteinases (MMPs) are zinc-dependent proteases that degrade components of the extracellular matrix (ECM). In glomerular disease, MMPs are major regulators of ECM degradation as well as structural and functional integrity in the glomerulus. In altered matrix composition diseases, glomerular damage is due to increased degradation of kidney and vessel basement membranes (BMs) by MMPs. MMP -2 and -9 are both considered as the main enzymes that degrade collagen type-IV (coll-IV), which represents the key collagenous component of ECM and constitutes the architectural structure of vessels and glomerular BM. There is growing evidence implicating MMPs in atherosclerosis as well as in cardiovascular disease (CVD) and chronic kidney disease (CKD). Specific endogenous tissue inhibitors of MMPs (TIMPs) are also implicated in CKD, CVD and diabetic nephropathy (DN). The present review discusses the role of MMPs -2 and -9 in DN, as a leading cause of endstage renal disease and as a model of the link between progressive glomerulosclerosis and MMP expression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Small Molecule Membrane Transporters in the Mammalian Podocyte: A Pathogenic and Therapeutic Target
Zennaro, Cristina; Artero, Mary; Di Maso, Vittorio; Carraro, Michele
2014-01-01
The intriguingly complex glomerular podocyte has been a recent object of intense study. Researchers have sought to understand its role in the pathogenesis of common proteinuric diseases such as minimal change disease and focal segmental glomerular sclerosis. In particular, considerable effort has been directed towards the anatomic and functional barrier to macromolecular filtration provided by the secondary foot processes, but little attention has been paid to the potential of podocytes to handle plasma proteins beyond the specialization of the slit diaphragm. Renal membrane transporters in the proximal tubule have been extensively studied for decades, particularly in relation to drug metabolism and elimination. Recently, uptake and efflux transporters for small organic molecules have also been found in the glomerular podocyte, and we and others have found that these transporters can engage not only common pharmaceuticals but also injurious endogenous and exogenous agents. We have also found that the activity of podocyte transporters can be manipulated to inhibit pathogen uptake and efflux. It is conceivable that podocyte transporters may play a role in disease pathogenesis and may be a target for future drug development. PMID:25411800
van der Bel, René; Coolen, Bram F; Nederveen, Aart J; Potters, Wouter V; Verberne, Hein J; Vogt, Liffert; Stroes, Erik S G; Krediet, C T Paul
2016-03-28
The role of kidney hypoxia is considered pivotal in the progression of chronic kidney disease. A widely used method to assess kidney oxygenation is blood oxygen level dependent (BOLD)-magnetic resonance imaging (MRI), but its interpretation remains problematic. The BOLD-MRI signal is the result of kidney oxygen consumption (a proxy of glomerular filtration) and supply (ie, glomerular perfusion). Therefore, we hypothesized that with pharmacological modulation of kidney blood flow, renal oxygenation, as assessed by BOLD-MRI, correlates to filtration fraction (ie, glomerular filtration rate/effective renal plasma flow) in healthy humans. Eight healthy volunteers were subjected to continuous angiotensin-II infusion at 0.3, 0.9, and 3.0 ng/kg per minute. At each dose, renal oxygenation and blood flow were assessed using BOLD and phase-contrast MRI. Subsequently, "gold standard" glomerular filtration rate/effective renal plasma flow measurements were performed under the same conditions. Renal plasma flow decreased dose dependently from 660±146 to 467±103 mL/min per 1.73 m(2) (F[3, 21]=33.3, P<0.001). Glomerular filtration rate decreased from 121±23 to 110±18 mL/min per 1.73 m(2) (F[1.8, 2.4]=6.4, P=0.013). Cortical transverse relaxation rate (R2*; increases in R2* represent decreases in oxygenation) increased by 7.2±3.8% (F[3, 21]=7.37, P=0.001); medullar R2* did not change. Cortical R2* related to filtration fraction (R(2) 0.46, P<0.001). By direct comparison between "gold standard" kidney function measurements and BOLD MRI, we showed that cortical oxygenation measured by BOLD MRI relates poorly to glomerular filtration rate but is associated with filtration fraction. For future studies, there may be a need to include renal plasma flow measurements when employing renal BOLD-MRI. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Jocks, T; Freudenberg, J; Zahner, G; Stahl, R A
1998-01-01
These studies were designed to determine the possible role of platelet-activating factor (PAF) in the production of monocyte chemoattractant protein-1 (MCP-1) in glomerular immune injury. The glomerular lesion was induced in isolated perfused rat kidneys by a rabbit anti-rat-thymocyte serum (ATS) and rat serum (RS) as a complement source. Perfusion of kidneys with ATS and RS results in the selective binding of the antiserum to the glomerular mesangium with consecutive intraglomerular activation of complement. Antibody binding and complement activation induced a significant increase in glomerular MCP-1 mRNA levels when assessed by Northern blotting or RT-PCR. Decomplemented RS or non antibody rabbit IgG had only moderate effects on glomerular MCP-1 mRNA levels. The PAF receptor antagonist WEB 2170 almost completely blocked the ATS and RS induced MCP-1 mRNA levels. Perfusion of control kidneys with PAF increased MCP-1 mRNA expression, an effect which was blocked by WEB 2170. Glomerular MCP-1 protein formation, assessed by Western blotting, was stimulated following ATS and RS and PAF, respectively, was blocked by WEB 2170. These data show that PAF, derived from glomerular resident cells following antibody and complement induced injury, stimulates MCP-1 expression. In addition to the direct effects on leukocyte adhesion and activation PAF may mediate inflammatory cell influx in glomerular injuries due to the release of MCP-1.
Hamed, Ahmed Alsaeed; Shalaby, Mennatallah Hatem; El-Kinawy, Nihal Saad; Elamawy, Alaa Adel; Abd El-Ghany, Shereen Mohamed
2017-07-01
Many risk factors may contribute to renal disease in patients with hemophilia A. We aimed to evaluate functional and structural renal abnormalities among a group of Egyptian children with severe and moderate hemophilia A using technetium-99m diethylene triamine pentaacetic acid ( 99m Tc-DTPA) and technetium-99 m dimercaptusuccinic acid ( 99m Tc-DMSA) scan. We also aimed to determine the relation between these abnormalities and different risk factors and disease severity. Forty male patients, 16 with severe and 24 with moderate hemophilia A, were enrolled in this study. Their mean age was 10.2 ± 4.3 years (range, 5-17 years). Full history taking, clinical examination, laboratory, and radionuclide investigations including serum creatinine, blood urea nitrogen (BUN), urine analysis, creatinine clearance, 24-hour urinary protein, 99m Tc-DTPA scan, and 99m Tc-DMSA scan were performed to all enrolled patients. Serum creatinine and BUN were normal in all patients, and corrected creatinine clearance was diminished in 2 patients. However, 99m Tc-DTPA results yielded 19 (47.5%) patients with diminished glomerular filtration rate (GFR). Moreover, it showed that 14 (35%) had obstructive uropathy, 15 (37.5%) had obstructive nephropathy, while 11 (27.5%) patients showed normal scan. One patient had atrophy of 1 kidney on 99m Tc-DMSA scan. Among our cohort, 5 (12.5%) patients were hypertensive. Microscopic hematuria was detected in 14 (35%) patients while 72.5% had proteinuria. We found an association between hematuria and hypertension with diminished GFR. Despite normal kidney functions (serum creatinine and BUN), we found a high rate of diminished GFR and obstructive uropathy and nephropathy as detected by 99m Tc-DTPA scan among children with hemophilia A.
Hasslacher, Christoph; Kulozik, Felix
2016-09-01
1,5-Anhydroglucitol (1,5-AG) is a new blood glucose control marker reflecting temporary glucose elevations. However, 1,5-AG is of limited value in patients with advanced renal insufficiency. The aim of the present study was to assess the correlation between 1,5-AG levels and renal function in patients with earlier stages of nephropathy compared with another two markers of diabetes control, namely HbA1c and glycated albumin (GA). The following parameters were measured in 377 patients with type 2 diabetes: HbA1c, serum concentrations of 1,5-AG, GA and creatinine, hemoglobin, urinary albumin/creatinine ratio, and urinary excretion of α1 -microglobulin (A1M). Estimated glomerular filtration rate (eGFR) was calculated according to the Cockgroft-Gault formula. There was a negative correlation between 1,5-AG and renal function (r = -0.18; P < 0.001). Concentrations of 1,5-AG were, on average, 27.2% lower in patients with glomerular hyperfiltration (eGFR >120 mL/min) compared with patients with moderate renal impairment (eGFR 30-59 mL/min; P = 0.016). In contrast, HbA1c, GA levels and urinary A1M excretion did not differ between the two patient groups. The mean age of patients with eGFR 30-59 mL/min was substantially higher than that of patients with glomerular hyperfiltration (P < 0.001). Thus, an age-related change in the renal glucose threshold could be the reason for the observed correlation between 1,5-AG and renal function. In clinical practice, age and renal function must be taken into consideration when interpreting 1,5-AG levels, even in the absence of advanced renal impairment. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Said, Samar M; Fidler, Mary E; Valeri, Anthony M; McCann, Brooke; Fiedler, Wade; Cornell, Lynn D; Alexander, Mariam Priya; Alkhunaizi, Ahmed M; Sullivan, Anne; Cramer, Carl H; Hogan, Marie C; Nasr, Samih H
2017-01-01
Alport syndrome (AS) is a genetic disorder characterized by progressive hematuric nephropathy with or without sensorineural hearing loss and ocular lesions. Previous studies on AS included mostly children. To determine the prognostic value of loss of staining for collagen type IV alpha 5 (COL4A5) and its relationship with the ultrastructural glomerular basement membrane alterations, we performed direct immunofluorescence using a mixture of fluorescein isothiocyanate-conjugated and Texas-red conjugated antibodies against COL4A5 and COL4A2, respectively, on renal biopsies of 25 males with AS (including 16 who were diagnosed in adulthood). All patients showed normal positive staining of glomerular basement membranes and tubular basement membranes for COL4A2. Of the 25 patients, 10 (40%) patients showed loss of staining for COL4A5 (including 89% of children and 13% of adults) and the remaining 15 (60%) had intact staining for COL4A5. Compared with patients with intact staining for COL4A5, those with loss of staining had more prominent ultrastructural glomerular basement membrane alterations and were younger at the time of biopsy. By Kaplan-Meier survival analysis and Cox regression analysis, loss of staining for COL4A5 predicted earlier progression to overt proteinuria and stage 2 chronic kidney disease or worse. By multivariate Cox regression analysis, loss of staining for COL4A5 was an independent predictor of the development of overt proteinuria and stage 2 chronic kidney disease or worse. Thus, the COL4A5 expression pattern has an important prognostic value and it correlates with the severity of ultrastructural glomerular basement membrane alterations in males with AS. Loss of COL4A5 staining is uncommon in patients with AS diagnosed in their adulthood.
Scrutinio, Domenico; Passantino, Andrea; Lagioia, Rocco; Santoro, Daniela; Cacciapaglia, Erasmo
2011-03-03
Accurate identification of renal dysfunction (RD) is crucial to risk stratification in chronic heart failure (CHF). Patients with CHF are at special risk of having RD despite normal serum creatinine (SCr), owing to a decreased Cr generation. At low levels of SCr, the equations estimating renal function are less accurate. This study was aimed to assess and compare the prognostic value of formulas estimating renal function in CHF patients with normal SCr. We studied 462 patients with systolic CHF and normal SCr. Creatinine clearance was estimated by the Cockcroft-Gault (eCrCl) and glomerular filtration rate by the 4-variable MDRD equation (eGFR); eCrCl normalized for body-surface area (eCrCl(BSA)) was calculated. The primary outcome was all-cause mortality at 2 years. Seventy five patients died. At multivariate Cox regression analysis, only eCrCl(BSA) was significantly associated with mortality (p = 0.006); eGFR (p = 0.24), eCrCl (p = 0.09) and BUN (p = 0.14) were not statistically significant predictors. The patients in the lowest eCrCl(BSA) quartile had an adjusted 2.1-fold (CI: 1.06-4.1) increased risk of mortality, compared with those in the referent quartile. Two-year survival was 70.4% in the lowest eCrCl(BSA) quartile and 89.7% in the referent quartile. Other independent predictors of mortality were ischemic etiology (RR: 2.16 [CI: 1.3-3.5], p = 0.0017), NYHA III/IV class (RR: 2.45 [CI: 1.51-3.97], p = 0.0003), LVEF <0.25 (RR: 3.38 [CI: 1.69-6.75], p = 0.014), and anemia (RR: 1.86 [CI: 1.16-2.99], p = 0.009). A sizeable proportion of CHF patients have prognostically significant RD despite normal SCr. Such patients represent a high-risk subgroup and can more accurately be identified by the CG formula corrected for BSA than the MDRD. Copyright © 2009 Elsevier B.V. All rights reserved.
Mungun, Harr-Keshauve; Li, Shuzhen; Zhang, Yue; Huang, Songming; Jia, Zhanjun; Ding, Guixia; Zhang, Aihua
2018-01-01
Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin and has been used as an antimalarial drug. Recently, roles of artemisinin and its derivatives in treating diseases besides antimalarial effect were documented. Thus, this study was undertaken to investigate the role of DHA in indoxyl sulfate (IS)-promoted cell cycle progression in glomerular mesangial cells, as well as the potential mechanisms. Under the basal condition, DHA significantly retarded the cell cycle progression as shown by decreased cell percentage in S phase and increased cell percentage in G1/G0 phases in line with reduced cell cycle proteins cyclin A2 and cyclin D1. Interestingly, DHA also inactivated the COX-2/mPGES-1/PGE 2 cascade which has been shown to play a critical role in promoting the mesangial cell cycle progression by our previous studies. Next, we investigated the role of DHA in IS-triggered cell cycle progression in this mesangial cell line. As expected, DHA treatment significantly retarded IS-induced cell cycle progression and inhibited the activation of COX-2/mPGES-1/PGE 2 cascade induced by IS. In summary, these data indicated that DHA inhibited the cell cycle progression in glomerular mesangial cells under normal condition or IS challenge possibly through the inhibition of COX-2/mPGES-1/PGE 2 cascade, suggesting a potential of DHA in treating glomerular diseases with mesangial cell proliferation.
Schneider, A; Thaiss, F; Rau, H P; Wolf, G; Zahner, G; Jocks, T; Helmchen, U; Stahl, R A
1996-07-01
To test whether or not prostaglandins mediate extracellular matrix formation in immune-mediated glomerular disease, rats with anti-thymocyte antibody-induced glomerulonephritis were treated with prostaglandin E1 (PGE1) (250 micrograms/twice daily/s.c.). Glomerular expression of collagen types III and IV was assessed by Northern blotting, immunohistology and Western blotting. Proliferation of glomerular cells was evaluated by staining for the proliferating cell nuclear antigen (PCNA) and consecutive cell counting. At day five after induction of the disease, glomerular mRNA levels of collagen types III and IV were three- to fivefold higher compared with non-nephritic controls. Similarly glomerular deposition of these collagens was markedly increased when assessed by immunohistology. The treatment of nephritic rats with PGE1 reduced the increased glomerular mRNA levels as well as the protein concentration and the deposition of extracellular collagens. The number of PCNA positive cells which was significantly higher in nephritic rats when compared with control animals (24 hr, nephritis 2.53 +/- 0.33 and Control 0.26 +/- 0.06, P = 0.011; 5 days, nephritis 5.10 +/- 1.13 and Control 0.75 +/- 0.08, cells per glomerular cross section, P = 0.03) was reduced by PGE1 (24 hr, nephritis+PGE1 0.44 +/- 0.30, P = 0.0001; 5 days, nephritis +/- PGE1 1.91 +/- 1.84 cells per glomerular cross section, P = 0.001). Prostaglandin E1 also ameliorated the glomerular infiltration of monocytes at 24 hours (nephritis 4.36 +/- 2.82, nephritis + PGE1 2.20 +/- 1.82, cells per glomerular cross section) and five days (nephritis 1.51 +/- 0.58, nephritis+PGE1 1.12 +/- 0.61, cells per glomerular cross section). To further characterize possible mechanisms by which PGE1 reduces extracellular matrix deposition, the glomerular expression of transforming growth factor (TGF-beta), and interleukin 1 beta (IL-1 beta) was assessed by Northern blotting. Nephritic glomeruli showed increased mRNA levels of TGF-beta at day 5 and IL-1 beta at 24 hours when compared with control kidneys. Treatment of the animals with PGE1 inhibited the mRNA expression of TGF-beta and IL-1 beta. These data demonstrate that PGE1 reduces the glomerular expression of extracellular matrix proteins in anti-thymocyte antibody-induced glomerulonephritis, suggesting a beneficial role of prostaglandins in this proliferative glomerular immune injury. The effects of PGE1 might be mediated by inhibition of TGF-beta and IL-1 beta production.
Kimura, Junpei; Ichii, Osamu; Otsuka, Saori; Sasaki, Hayato; Hashimoto, Yoshiharu; Kon, Yasuhiro
2013-01-01
Membranous proliferative glomerulonephritis (MPGN) is a major primary cause of chronic kidney disease (CKD). Podocyte injury is crucial in the pathogenesis of glomerular disease with proteinuria, leading to CKD. To assess podocyte injuries in MPGN, the pathological features of spontaneous murine models were analyzed. The autoimmune-prone mice strains BXSB/MpJ-Yaa and B6.MRL-(D1Mit202-D1Mit403) were used as the MPGN models, and BXSB/MpJ-Yaa(+) and C57BL/6 were used as the respective controls. In addition to clinical parameters and glomerular histopathology, the protein and mRNA levels of podocyte functional markers were evaluated as indices for podocyte injuries. The relation between MPGN pathology and podocyte injuries was analyzed by statistical correlation. Both models developed MPGN with albuminuria and elevated serum anti-double-strand DNA (dsDNA) antibody levels. BXSB/MpJ-Yaa and B6.MRL showed severe proliferative lesions with T and B cell infiltrations and membranous lesions with T cell infiltrations, respectively. Foot process effacement and microvillus-like structure formation were observed ultrastructurally in the podocytes of both MPGN models. Furthermore, both MPGN models showed a decrease in immune-positive areas of nephrin, podocin and synaptopodin in the glomerulus, and in the mRNA expression of Nphs1, Nphs2, Synpo, Actn4, Cd2ap, and Podxl in the isolated glomerulus. Significant negative correlations were detected between serum anti-dsDNA antibody levels and glomerular Nphs1 expression, and between urinary albumin-to-creatinine ratio and glomerular expression of Nphs1, Synpo, Actn4, Cd2ap, or Podxl. MPGN models clearly developed podocyte injuries characterized by the decreased expression of podocyte functional markers with altered morphology. These data emphasized the importance of regulation of podocyte injuries in MPGN. Copyright © 2013 S. Karger AG, Basel.
SGLT2 Inhibitors and the Diabetic Kidney.
Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto
2016-08-01
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether SGLT2 inhibitors, in addition to their glycemic and blood pressure benefits, may provide nephroprotective effects. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Renal ultrafiltration changes induced by focused US.
Fischer, Krisztina; McDannold, Nathan J; Zhang, Yongzhi; Kardos, Magdolna; Szabo, Andras; Szabo, Antal; Reusz, Gyorgy S; Jolesz, Ferenc A
2009-12-01
To determine if focused ultrasonography (US) combined with a diagnostic microbubble-based US contrast agent can be used to modulate glomerular ultrafiltration and size selectivity. The experiments were approved by the animal care committee. The left kidney of 17 healthy rabbits was sonicated by using a 260-kHz focused US transducer in the presence of a microbubble-based US contrast agent. The right kidney served as the control. Three acoustic power levels were applied: 0.4 W (six rabbits), 0.9 W (six rabbits), and 1.7 W (five rabbits). Three rabbits were not treated with focused US and served as control animals. The authors evaluated changes in glomerular size selectivity by measuring the clearance rates of 3000- and 70,000-Da fluorescence-neutral dextrans. The creatinine clearance was calculated for estimation of the glomerular filtration rate. The urinary protein-creatinine ratio was monitored during the experiments. The authors assessed tubular function by evaluating the fractional sodium excretion, tubular reabsorption of phosphate, and gamma-glutamyltransferase-creatinine ratio. Whole-kidney histologic analysis was performed. For each measurement, the values obtained before and after sonication were compared by using the paired t test. Significant (P < .05) increases in the relative (ratio of treated kidney value/nontreated kidney value) clearance of small- and large-molecule agents and the urine flow rates that resulted from the focused US treatments were observed. Overall, 1.23-, 1.23-, 1.61-, and 1.47-fold enhancement of creatinine clearance, 3000-Da dextran clearance, 70 000-Da dextran clearance, and urine flow rate, respectively, were observed. Focal tubular hemorrhage and transient functional tubular alterations were observed at only the highest (1.7-W) acoustic power level tested. Glomerular ultrafiltration and size selectivity can be temporarily modified with simultaneous application of US and microbubbles. This method could offer new opportunities for treatment of renal disease.
Gallium-68 EDTA PET/CT for Renal Imaging.
Hofman, Michael S; Hicks, Rodney J
2016-09-01
Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of (68)Ga EDTA PET/CT for measuring glomerular filtration rate and split renal function. Copyright © 2016 Elsevier Inc. All rights reserved.
Candela-Toha, Ángel; Pardo, María Carmen; Pérez, Teresa; Muriel, Alfonso; Zamora, Javier
2018-04-20
and objective Acute kidney injury (AKI) diagnosis is still based on serum creatinine and diuresis. However, increases in creatinine are typically delayed 48h or longer after injury. Our aim was to determine the utility of routine postoperative renal function blood tests, to predict AKI one or 2days in advance in a cohort of cardiac surgery patients. Using a prospective database, we selected a sample of patients who had undergone major cardiac surgery between January 2002 and December 2013. The ability of the parameters to predict AKI was based on Acute Kidney Injury Network serum creatinine criteria. A cohort of 3,962 cases was divided into 2groups of similar size, one being exploratory and the other a validation sample. The exploratory group was used to show primary objectives and the validation group to confirm results. The ability to predict AKI of several kidney function parameters measured in routine postoperative blood tests, was measured with time-dependent ROC curves. The primary endpoint was time from measurement to AKI diagnosis. AKI developed in 610 (30.8%) and 623 (31.4%) patients in the exploratory and validation samples, respectively. Estimated glomerular filtration rate using the MDRD-4 equation showed the best AKI prediction capacity, with values for the AUC ROC curves between 0.700 and 0.946. We obtained different cut-off values for estimated glomerular filtration rate depending on the degree of AKI severity and on the time elapsed between surgery and parameter measurement. Results were confirmed in the validation sample. Postoperative estimated glomerular filtration rate using the MDRD-4 equation showed good ability to predict AKI following cardiac surgery one or 2days in advance. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Ascher, Simon B; Scherzer, Rebecca; Peralta, Carmen A; Tien, Phyllis C; Grunfeld, Carl; Estrella, Michelle M; Abraham, Alison; Gustafson, Deborah R; Nowicki, Marek; Sharma, Anjali; Cohen, Mardge H; Butch, Anthony W; Young, Mary A; Bennett, Michael R; Shlipak, Michael G
2017-02-01
Subclinical kidney disease is associated with developing hypertension in the general population, but data are lacking among HIV-infected people. We examined associations of kidney function and injury with incident hypertension in 823 HIV-infected and 267 HIV-uninfected women in the Women's Interagency HIV Study, a multicenter, prospective cohort of HIV-infected and uninfected women in the United States. Baseline kidney biomarkers included estimated glomerular filtration rate using cystatin C, urine albumin-to-creatinine ratio, and 7 urine biomarkers of tubular injury: α-1-microglobulin, interleukin-18, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, liver fatty acid-binding protein, N-acetyl-β-d-glucosaminidase, and α1-acid-glycoprotein. We used multivariable Poisson regression to evaluate associations of kidney biomarkers with incident hypertension, defined as 2 consecutive visits of antihypertensive medication use. During a median follow-up of 9.6 years, 288 HIV-infected women (35%) developed hypertension. Among the HIV-infected women, higher urine albumin-to-creatinine ratio was independently associated with incident hypertension (relative risk =1.13 per urine albumin-to-creatinine ratio doubling, 95% confidence interval, 1.07-1.20), as was lower estimated glomerular filtration rate (relative risk =1.10 per 10 mL/min/1.73 m 2 lower estimated glomerular filtration rate; 95% confidence interval, 1.04-1.17). No tubular injury and dysfunction biomarkers were independently associated with incident hypertension in HIV-infected women. In contrast, among the HIV-uninfected women, urine albumin-to-creatinine ratio was not associated with incident hypertension, whereas higher urine interleukin-18, α1-acid-glycoprotein, and N-acetyl-β-d-glucosaminidase levels were significantly associated with incident hypertension. These findings suggest that early glomerular injury and kidney dysfunction may be involved in the pathogenesis of hypertension in HIV-infected people. The associations of tubular markers with hypertension in HIV-uninfected women should be validated in other studies. © 2016 American Heart Association, Inc.
Hakeem, Abdul; Bhatti, Sabha; Dillie, Kathryn Sullivan; Cook, Jeffrey R; Samad, Zainab; Roth-Cline, Michelle D; Chang, Su Min
2008-12-09
Patients with chronic kidney disease (CKD) have worse cardiovascular outcomes than those without CKD. The prognostic utility of myocardial perfusion single-photon emission CT (MPS) in patients with varying degrees of renal dysfunction and the impact of CKD on cardiac death prediction in patients undergoing MPS have not been investigated. We followed up 1652 consecutive patients who underwent stress MPS (32% exercise, 95% gated) for cardiac death for a mean of 2.15+/-0.8 years. MPS defects were defined with a summed stress score (normal summed stress score <4, abnormal summed stress score>or=4). Ischemia was defined as a summed stress score >or=4 plus a summed difference score >or=2, and scar was defined as a summed difference score <2 plus a summed stress score >or=4. Renal function was calculated with the Modified Diet in Renal Disease equation. CKD (estimated glomerular filtration rate <60 mL . min(-1) . 1.73 m(-2)) was present in 36%. Cardiac death increased with worsening levels of perfusion defects across the entire spectrum of renal function. Presence of ischemia was independently predictive of cardiac death, all-cause mortality, and nonfatal myocardial infarction. Patients with normal MPS and CKD had higher unadjusted cardiac death event rates than those with no CKD and normal MPS (2.7% versus 0.8%, P=0.001). Multivariate Cox proportional hazards models revealed that both perfusion defects (hazard ratio 1.90, 95% CI 1.47 to 2.46) and CKD (hazard ratio 1.96, 95% CI 1.29 to 2.95) were independent predictors of cardiac death after accounting for risk factors, left ventricular dysfunction, pharmacological stress, and symptom status. Both MPS and CKD had incremental power for cardiac death prediction over baseline risk factors and left ventricular dysfunction (global chi(2) 207.5 versus 169.3, P<0.0001). MPS provides effective risk stratification across the entire spectrum of renal function. Renal dysfunction is also an important independent predictor of cardiac death in patients undergoing MPS. Renal function and MPS have additive value in risk stratisfying patients with suspected coronary artery disease. Patients with CKD appear to have a relatively less benign prognosis than those without CKD, even in the presence of a normal scan.
2012-01-01
Background Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. Methods/Design We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Discussion Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of acetylcysteine on renal function and identify an appropriate route for future dose response studies and in time randomized controlled trials. Trial registration Clinical Trials.gov: NCT00558142; EudraCT: 2006-003509-18. PMID:22305183
Immunoadsorption in Anti-GBM Glomerulonephritis: Case Report in a Child and Literature Review.
Dorval, Guillaume; Lion, Mathilde; Guérin, Sophie; Krid, Saoussen; Galmiche-Rolland, Louise; Salomon, Rémi; Boyer, Olivia
2017-11-01
Antiglomerular basement membrane glomerulonephritis (anti-GBM GN) is a rare autoimmune disease that is characterized by rapidly progressive glomerulonephritis that may be associated with pulmonary hemorrhage. Anti-GBM GN is caused by autoantibodies (classically type G immunoglobulin) directed against the α3 subunit of type IV collagen. Without any appropriate treatment, the disease is generally fulminant, and patient and kidney survival is poor. The current guidelines recommend the use of plasma exchanges and immunosuppressive drugs. Immunoadsorption (IA) can remove pathogenic IgGs from the circulation and do not require plasma infusions, contrary to plasma exchanges. IA has seldom been used in adult patients with good tolerance and efficiency. We report herein the first pediatric case successfully treated with IA combined with immunosuppressive drugs in a 7-year-old girl who presented acute kidney injury (estimated glomerular filtration rate 38 mL/minute/1.73 m 2 ). A kidney biopsy revealed numerous >80% glomerular crescents and linear IgG deposits along the glomerular basement membrane. Ten IA sessions led to rapid and sustained clearance of autoantibodies and improvement of kidney function until 21 months after onset (glomerular filtration rate 87 mL/minute/1.73 m 2 ). No adverse effect was noted. This report adds to the growing body of evidence suggesting IA as a therapeutic alternative to plasma exchanges in anti-GBM GN. The other 27 published pediatric cases of anti-GBM GN are reviewed. Copyright © 2017 by the American Academy of Pediatrics.
Tanaka, Mari; Tsujimoto, Hiraku; Yamamoto, Kojiro; Shimoda, Saeko; Oka, Kazumasa; Takeoka, Hiroya
2017-10-01
TAFRO syndrome is a systemic inflammatory disease characterized by a constellation of symptoms: Thrombocytopenia, Anasarca, MyeloFibrosis, Renal dysfunction, and Organomegaly. Progressive renal insufficiency is a predominant symptom; however, the mechanism of acute kidney injury (AKI) remains unclear, probably because severe thrombocytopenia prevents kidney biopsy. We report a rare case of TAFRO syndrome with histologically confirmed renal involvement. A 70-year-old man developed fever, anasarca, AKI, thrombocytopenia, and hepatosplenomegaly. Plasma vascular endothelial growth factor and serum interleukin-6 levels were significantly elevated. The diagnosis of TAFRO syndrome was made based on his clinical and laboratory findings. Kidney biopsy was performed for the evaluation of AKI and provided a diagnosis of membranoproliferative glomerulonephritis-like lesions due to endothelial injury. Glomerular capillary lumens were extremely narrowed or occluded by endothelial swelling, and marked widening of the subendothelial space by electron-lucent material resulted in mesangiolysis and a double-contoured glomerular basement membrane with no immune complex deposits. The patient required temporary hemodialysis due to oliguric AKI, but steroid therapy rapidly improved renal function. Typically, patients with progressive renal involvement in TAFRO syndrome rapidly develop oliguric or anuric AKI. This report suggests that the reduction of glomerular perfusion by glomerular endothelial injury might be a primary factor in the progressive AKI of TAFRO syndrome. Our case and the literature review indicate that steroid and/or biological therapies result in highly favorable renal outcomes in patients with progressive AKI in TAFRO syndrome.
Dong, Kai; Huang, Xiaoqin; Zhang, Qian; Yu, Zhipeng; Ding, Jianping; Song, Haiqing
2017-02-01
Chronic kidney disease (CKD) is gradually recognized as an independent risk factor for cardiovascular and cardio-/cerebrovascular disease. This study aimed to examine the association of the estimated glomerular filtration rate (eGFR) and clinical outcomes at 3 months after the onset of ischemic stroke in a hospitalized Chinese population.Totally, 972 patients with acute ischemic stroke were enrolled into this study. Modified of Diet in Renal Disease (MDRD) equations were used to calculate eGFR and define CKD. The site and degree of the stenosis were examined. Patients were followed-up for 3 months. Endpoint events included all-cause death and newly ischemic events. The multivariate logistic model was used to determine the association between renal dysfunction and patients' outcomes.Of all patients, 130 patients (13.4%) had reduced eGFR (<60 mL/min/1.73 m), and 556 patients had a normal eGFR (≥90 mL/min/1.73 m). A total of 694 patients suffered from cerebral artery stenosis, in which 293 patients only had intracranial artery stenosis (ICAS), 110 only with extracranial carotid atherosclerotic stenosis (ECAS), and 301 with both ICAS and ECAS. The patients with eGFR <60 mL/min/1.73m had a higher proportion of death and newly ischemic events compared with those with a relatively normal eGFR. Multivariate analysis revealed that a baseline eGFR <60 mL/min/1.73 m increased the risk of mortality by 3.089-fold and newly ischemic events by 4.067-fold. In further analysis, a reduced eGFR was associated with increased rates of mortality and newly events both in ICAS patients and ECAS patients. However, only an increased risk of newly events was found as the degree of renal function deteriorated in ICAS patients (odds ratio = 8.169, 95% confidence interval = 2.445-14.127).A low baseline eGFR predicted a high mortality and newly ischemic events at 3 months in ischemic stroke patients. A low baseline eGFR was also a strong independent predictor for newly ischemic events in ICAS patients.
Hogan, Marie C.; Johnson, Kenneth L.; Zenka, Roman M.; Charlesworth, M. Cristine; Madden, Benjamin J.; Mahoney, Doug W.; Oberg, Ann L.; Huang, Bing Q.; Nesbitt, Lisa L.; Bakeberg, Jason L.; Bergen, H. Robert; Ward, Christopher J.
2014-01-01
Urinary exosome-like vesicles (ELVs) are a heterogenous mixture (diameter 40–200nm) containing vesicles shed from all segments of the nephron including glomerular podocytes. Contamination with Tamm Horsfall protein (THP) oligomers has hampered their isolation and proteomic analysis. Here we improved ELV isolation protocols employing density centrifugation to remove THP and albumin, and isolated a glomerular membranous vesicle (GMV) enriched subfraction from 7 individuals identifying 1830 proteins and in 3 patients with glomerular disease identifying 5657 unique proteins. The GMV fraction was composed of podocin/podocalyxin positive irregularly shaped membranous vesicles and podocin/podocalyxin negative classical exosomes. Ingenuity pathway analysis identified integrin, actin cytoskeleton and RhoGDI signaling in the top three canonical represented signaling pathways and 19 other proteins associated with inherited glomerular diseases. The GMVs are of podocyte origin and the density gradient technique allowed isolation in a reproducible manner. We show many nephrotic syndrome proteins, proteases and complement proteins involved in glomerular disease are in GMVs and some were shed in the disease state (nephrin, TRPC6 and INF2 and PLA2R). We calculated sample sizes required to identify new glomerular disease biomarkers, expand the ELV proteome and provide a reference proteome in a database that may prove useful in the search for biomarkers of glomerular disease. PMID:24196483
Yoshida, Yutaka; Miyazaki, Kenji; Kamiie, Junichi; Sato, Masao; Okuizumi, Seiji; Kenmochi, Akihisa; Kamijo, Ken'ichi; Nabetani, Takuji; Tsugita, Akira; Xu, Bo; Zhang, Ying; Yaoita, Eishin; Osawa, Tetsuo; Yamamoto, Tadashi
2005-03-01
To contribute to physiology and pathophysiology of the glomerulus of human kidney, we have launched a proteomic study of human glomerulus, and compiled a profile of proteins expressed in the glomerulus of normal human kidney by two-dimensional gel electrophoresis (2-DE) and identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kidney cortices with normal appearance were obtained from patients under surgical nephrectomy due to renal tumor, and glomeruli were highly purified by a standard sieving method followed by picking-up under a phase-contrast microscope. The glomerular proteins were separated by 2-DE with 24 cm immobilized pH gradient strips in the 3-10 range in the first dimension and 26 x 20 cm sodium dodecyl sulfate polyacrylamide electrophoresis gels of 12.5% in the second dimension. Gels were silver-stained, and valid spots were processed for identification through an integrated robotic system that consisted of a spot picker, an in-gel digester, and a MALDI-TOF MS and / or a LC-MS/MS. From 2-DE gel images of glomeruli of four subjects with no apparent pathologic manifestations, a synthetic gel image of normal glomerular proteins was created. The synthetic gel image contained 1713 valid spots, of which 1559 spots were commonly observed in the respective 2-DE gels. Among the 1559 spots, 347 protein spots, representing 212 proteins, have so far been identified, and used for the construction of an extensible markup language (XML)-based database. The database is deposited on a web site (http://www.sw.nec.co.jp/bio/rd/hgldb/index.html) in a form accessible to researchers to contribute to proteomic studies of human glomerulus in health and disease.
Cheng, Yao; Kong, Fan-Zhen; Dong, Xiao-Feng; Xu, Qin-Rong; Gui, Qian; Wang, Wei; Feng, Hong-Xuan; Luo, Wei-Feng; Gao, Zong-En; Wu, Guan-Hui
2017-01-01
We examined whether the association between total homocysteine (tHCY) and risk of ischemic stroke (IS) varies depending on renal function to gain insight into why tHCY-lowering vitamins do not reduce the incidence of cardiovascular disease in clinical trials. We analyzed data from 542 IS patients with large artery atherosclerosis (LAA) or small artery occlusion (SAO) after stratification by estimated glomerular filtration rate (eGFR) to evaluate renal function. We found that tHCY level was positively associated with the occurrence of IS in both LAA (OR: 1.159, 95% CI: 1.074-1.252, P <0.001) and SAO (OR: 1.143, 95% CI: 1.064-1.228, P <0.001) patients and in LAA (OR: 1.135, 95% CI: 1.047-1.230, P =0.002) and SAO (OR: 1.159, 95% CI: 1.060-1.268, P =0.001) subgroups with normal renal function but not in LAA or SAO subgroups with renal insufficiency. eGFR level was positively associated with IS in LAA (OR: 1.022, 95% CI: 1.010-1.034, P <0.001) and SAO (OR: 1.024, 1.012-1.037, P <0.001) subgroups with normal renal function but was negatively associated with IS in LAA (OR: 0.875, 95% CI: 0.829-0.925, P <0.001) and SAO (OR: 0.890, 95% CI: 0.850-0.932, P <0.001) subgroups with renal insufficiency. Folic acid level was negatively associated with IS in LAA (OR: 0.734, 95% CI: 0.606-0.889, P =0.002) and SAO (OR: 0.861, 95% CI: 0.767-0.967, P =0.012) subgroups with renal insufficiency. Therefore, renal function as evaluated by eGFR exerts a significant influence on the association between tHCY and risk of IS.
Nephrogenous Cyclic Adenosine Monophosphate as a Parathyroid Function Test
Broadus, Arthur E.; Mahaffey, Jane E.; Bartter, Frederic C.; Neer, Robert M.
1977-01-01
Nephrogenous cyclic AMP (NcAMP), total cyclic AMP excretion (UcAMP), and plasma immunoreactive parathyroid hormone (iPTH), determined with a multivalent antiserum, were prospectively measured in 55 control subjects, 57 patients with primary hyperparathyroidism (1°HPT), and 10 patients with chronic hypoparathyroidism. In the group with 1° HPT, NcAMP was elevated in 52 patients (91%), and similar elevations were noted in subgroups of 26 patients with mild (serum calcium ≤10.7 mg/dl) or intermittent hypercalcemia, 19 patients with mild renal insufficiency (mean glomerular filtration rate, 64 ml/min), and 10 patients with moderate renal insufficiency (mean glomerular filtration rate, 43 ml/min). Plasma iPTH was increased in 41 patients (73%). The development of a parametric expression for UcAMP was found to be critically important in the clinical interpretation of results for total cAMP excretion. Because of renal impairment in a large number of patients, the absolute excretion rate of cAMP correlated poorly with the hyperparathyroid state. Expressed as a function of creatinine excretion, UcAMP was elevated in 81% of patients with 1° HPT, but the nonparametric nature of the expression led to a number of interpretive difficulties. The expression of cAMP excretion as a function of glomerular filtration rate was developed on the basis of the unique features of cAMP clearance in man, and this expression, which provided elevated values in 51 (89%) of the patients with 1° HPT, avoided entirely the inadequacies of alternative expressions. Results for NcAMP and UcAMP in nonazotemic and azotemic patients with hypoparathyroidism confirmed the validity of the measurements and the expressions employed. PMID:197123
Regulation and Function of TMEM16F in Renal Podocytes.
Schenk, Laura K; Ousingsawat, Jiraporn; Skryabin, Boris V; Schreiber, Rainer; Pavenstädt, Hermann; Kunzelmann, Karl
2018-06-18
The Ca 2+ -activated phospholipid scramblase and ion channel TMEM16F is expressed in podocytes of renal glomeruli. Podocytes are specialized cells that form interdigitating foot processes as an essential component of the glomerular filter. These cells, which participate in generation of the primary urine, are often affected during primary glomerular diseases, such as glomerulonephritis and secondary hypertensive or diabetic nephropathy, which always leads to proteinuria. Because the function of podocytes is known to be controlled by intracellular Ca 2+ signaling, it is important to know about the role of Ca 2+ -activated TMEM16F in these cells. To that end, we generated an inducible TMEM16F knockdown in the podocyte cell line AB8, and produced a conditional mouse model with knockout of TMEM16F in podocytes and renal epithelial cells of the nephron. We found that knockdown of TMEM16F did not produce proteinuria or any obvious phenotypic changes. Knockdown of TMEM16F affected cell death of tubular epithelial cells but not of glomerular podocytes when analyzed in TUNEL assays. Surprisingly, and in contrast to other cell types, TMEM16F did not control intracellular Ca 2+ signaling and was not responsible for Ca 2+ -activated whole cell currents in podocytes. TMEM16F levels in podocytes were enhanced after inhibition of the endolysosomal pathway and after treatment with angiotensin II. Renal knockout of TMEM16F did not compromise renal morphology and serum electrolytes. Taken together, in contrast to other cell types, such as platelets, bone cells, and immune cells, TMEM16F shows little effect on basal properties of podocytes and does not appear to be essential for renal function.
Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria
Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H.; Roberts, Ian S.D.; Sheehan, Susan; Savage, Holly; Haller, Hermann
2016-01-01
Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. PMID:27020856
Interglomerular Connectivity within the Canonical and GC-D/Necklace Olfactory Subsystems
Puche, Adam C.; Munger, Steven D.
2016-01-01
The mammalian main olfactory system contains several subsystems that differ not only in the receptors they express and the glomerular targets they innervate within the main olfactory bulb (MOB), but also in the strategies they use to process odor information. The canonical main olfactory system employs a combinatorial coding strategy that represents odorant identity as a pattern of glomerular activity. By contrast, the "GC-D/necklace" olfactory subsystem—formed by olfactory sensory neurons expressing the receptor guanylyl cyclase GC-D and their target necklace glomeruli (NGs) encircling the caudal MOB—is critical for the detection of a small number of semiochemicals that promote the acquisition of food preferences. The formation of these socially-transmitted food preferences requires the animal to integrate information about two types of olfactory stimuli: these specialized social chemosignals and the food odors themselves. However, the neural mechanisms with which the GC-D/necklace subsystem processes this information are unclear. We used stimulus-induced increases in intrinsic fluorescence signals to map functional circuitry associated with NGs and canonical glomeruli (CGs) in the MOB. As expected, CG-associated activity spread laterally through both the glomerular and external plexiform layers associated with activated glomeruli. Activation of CGs or NGs resulted in activity spread between the two types of glomeruli; there was no evidence of preferential connectivity between individual necklace glomeruli. These results support previous anatomical findings that suggest the canonical and GC-D/necklace subsystems are functionally connected and may integrate general odor and semiochemical information in the MOB. PMID:27902696
Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M
2007-08-01
Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.
Pan, Pan; Binjie, Hu; Min, Li; Lipei, Fan; Yanli, Ni; Junwen, Zhou; Xianghua, Shi
2014-12-01
This meta-analysis aimed to perform a systematic review on comparing the diagnostic value of serum cystatin C and creatinine for glomerular filtration rate in renal transplant patients. The data was extracted into 2×2 table after the articles were assessed by the tool of QUADAS and heterogeneity analysis. The SROC curve and meta-analysis were performed by MetaDisc1.4. Meta-analysis showed that the serum cystatin C had no heterogeneity (P=0.418, I2=2.2%, DOR=25.03), while creatinine heterogeneity was high (P=0.109, I2=37.5%, DOR=9.11). The values of SEN, SPE and SAUC were calculated as 0.86, 0.70 and 0.9015 for cystatin C, and 0.78, 0.73 and 0.8285 for creatinine individually. This study utilized GFR detection and subgroups analysis by cutoff. The PLR was 6.13 and the NLR was 0.12 for cystatin C, compared to SCr (3.72, 0.32). There was homogeneity among these studies using PENIA testing for cystatin C (χ2=2.61, P=0.4560, I2=0.0%. There were significant correlations among cystatin C , creatinine and glomerular filtration rate (GFR). Cystatin C had more sensitivity but less specificity than creatinine for evaluation of GFR. Cystatin C had strong ability in diagnosing renal function after renal transplant and ruling out diagnostic efficacy.
Loxosceles gaucho Venom-Induced Acute Kidney Injury – In Vivo and In Vitro Studies
Lucato, Rui V.; Abdulkader, Regina C. R. M.; Barbaro, Katia C.; Mendes, Glória E.; Castro, Isac; Baptista, Maria A. S. F.; Cury, Patrícia M.; Malheiros, Denise M. C.; Schor, Nestor; Yu, Luis; Burdmann, Emmanuel A.
2011-01-01
Background Accidents caused by Loxosceles spider may cause severe systemic reactions, including acute kidney injury (AKI). There are few experimental studies assessing Loxosceles venom effects on kidney function in vivo. Methodology/Principal Findings In order to test Loxosceles gaucho venom (LV) nephrotoxicity and to assess some of the possible mechanisms of renal injury, rats were studied up to 60 minutes after LV 0.24 mg/kg or saline IV injection (control). LV caused a sharp and significant drop in glomerular filtration rate, renal blood flow and urinary output and increased renal vascular resistance, without changing blood pressure. Venom infusion increased significantly serum creatine kinase and aspartate aminotransferase. In the LV group renal histology analysis found acute epithelial tubular cells degenerative changes, presence of cell debris and detached epithelial cells in tubular lumen without glomerular or vascular changes. Immunohistochemistry disclosed renal deposition of myoglobin and hemoglobin. LV did not cause injury to a suspension of fresh proximal tubules isolated from rats. Conclusions/Significance Loxosceles gaucho venom injection caused early AKI, which occurred without blood pressure variation. Changes in glomerular function occurred likely due to renal vasoconstriction and rhabdomyolysis. Direct nephrotoxicity could not be demonstrated in vitro. The development of a consistent model of Loxosceles venom-induced AKI and a better understanding of the mechanisms involved in the renal injury may allow more efficient ways to prevent or attenuate the systemic injury after Loxosceles bite. PMID:21655312
Prostaglandins and nonsteroidal anti-inflammatory drugs. Effects on renal hemodynamics.
DiBona, G F
1986-01-17
Renal prostaglandins are important modulators of renal hemodynamic function. Their synthesis from arachidonic acid precursor is regulated by neurohumoral vasoactive substances as well as by intrarenal factors. Endogenous renal prostaglandins exert little influence on renal blood flow and glomerular filtration rate in the basal state. In contrast, inhibition of cyclooxygenase-dependent arachidonic acid metabolism with nonsteroidal anti-inflammatory drugs in states of decreased renal perfusion causes marked alterations in these variables. Thus, clinical states characterized by decreased intravascular volume (decreased effective blood volume) with decreased renal perfusion augment the activity of various neurohumoral vasoactive systems and result in an increased dependence of renal hemodynamics on endogenous renal prostaglandin synthesis, which is stimulated, in a compensatory manner, by these same systems. The development of newer drugs that undergo biotransformation in the kidney between active and inactive forms may permit a lesser degree of renal cyclooxygenase inhibition, with the possibility of a reduction in the adverse effects on renal blood flow and glomerular filtration rate. Appropriate clinical use of nonsteroidal anti-inflammatory drugs requires careful consideration of the potential deleterious consequences of prostaglandin synthesis inhibition. Prostaglandins are considered to be autacoids and, as such, they exert their physiologic actions close to or at the site of synthesis. Therefore, production of prostaglandins, thromboxanes, and, possibly, leukotrienes in the renal cortex by the constituent cells of the glomeruli and the arterioles would be anticipated to influence their hemodynamic functions, that is, glomerular filtration rate, renal blood flow, renal vascular resistance, and juxtaglomerular granular cell renin release.
Prion Protein Promotes Kidney Iron Uptake via Its Ferrireductase Activity*
Haldar, Swati; Tripathi, Ajai; Qian, Juan; Beserra, Amber; Suda, Srinivas; McElwee, Matthew; Turner, Jerrold; Hopfer, Ulrich; Singh, Neena
2015-01-01
Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrPC) from its normal conformation to an aggregated, PrP-scrapie (PrPSc) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrPC in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrPC is lacking. Kidney provides a relevant model for this evaluation because PrPC is expressed in the kidney, and ∼370 μg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrPC promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of 59Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP−/−) mouse kidney relative to PrP+/+ controls. Selective in vivo radiolabeling of plasma NTBI with 59Fe revealed similar results. Expression of exogenous PrPC in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of 59Fe-NTBI and to a smaller extent 59Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrPΔ51–89) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrPC to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrPC promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism. PMID:25572394
Qiwei granules alleviates podocyte lesion in kidney of diabetic KK-Ay mice.
Zhou, Jingxin; Sun, Wen; Yoshitomi, Hisae; Li, Linyi; Qin, Lingling; Guo, Xiangyu; Wu, Lili; Zhang, Yan; Wu, Xinli; Xu, Tunhai; Gao, Ming; Liu, Tonghua
2015-03-31
Chinese medicine comprised of all natural herbs is widespread used in the treatment of diabetic nephropathy (DN). Podocyte contributes to the integrity of glomerular filtration barrier whose injury plays an important role in the initiation and progression of DN. Our study aimed to investigate the effect of Qiwei granules on podocyte lesion in diabetic KK-A(y) mice kidney and its underlying mechanism. Twelve-week-old male KK-A(y) mice were randomly divided in vehicle group and Qiwei granules group, while C57BL/6J mice were used as normal control. The mice were gavage with 1.37 g/kg/day Qiwei granules or water for 10 weeks. We measured water, food intake and body weight (BW) and fasting blood glucose (FBG) every 2 weeks, and urine protein every 4 weeks. At the end of the experiment, all surviving mice were sacrificed. The kidney weight and serum renal parameters were measured, and the renal morphology was observed. To search the underlying mechanism, we examined the podocyte positive marker, slit diaphragm protein expression and some involved cell signal pathway. Qiwei granules treatment significantly improved the metabolic parameters, alleviated the urinary protein, and protected renal function in KK-A(y) mice. In addition, the glomerular injuries and podocyte lesions were mitigated with Qiwei granules treatment. Furthermore, Qiwei granules increased expression of nephrin, CD2AP, and integrin alpha3beta1 in the podocytes of KK-A(y) mice. Qiwei granules improved the phosphoration of Akt and inhibited cleaved caspase-3 protein expression. These finding suggest that Qiwei granules protects the podocyte from the development of DN via improving slit diaphragm (SD) molecules expression and likely activating Akt signaling pathway in KK-A(y) mice.
2012-01-01
Background MELAS syndrome (MIM ID#540000), an acronym for Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-like episodes, is a genetically heterogeneous mitochondrial disorder with protean manifestations and occasional kidney involvement. Interest in the latter is rising due to the identification of cases with predominant kidney involvement and to the hypothesis of a link between mitochondrial DNA and kidney neoplasia. Case presentation We report the case of a 41-year-old male with full blown MELAS syndrome, with lactic acidosis and neurological impairment, affected by the "classic" 3243A > G mutation of mitochondrial DNA, with kidney cancer. After unilateral nephrectomy, he rapidly developed severe kidney functional impairment, with nephrotic proteinuria. Analysis of the kidney tissue at a distance from the two tumor lesions, sampled at the time of nephrectomy was performed in the context of normal blood pressure, recent onset of diabetes and before the appearance of proteinuria. The morphological examination revealed a widespread interstitial fibrosis with dense inflammatory infiltrate and tubular atrophy, mostly with thyroidization pattern. Vascular lesions were prominent: large vessels displayed marked intimal fibrosis and arterioles had hyaline deposits typical of hyaline arteriolosclerosis. These severe vascular lesions explained the different glomerular alterations including ischemic and obsolescent glomeruli, as is commonly observed in the so-called "benign" arteriolonephrosclerosis. Some rare glomeruli showed focal segmental glomerulosclerosis; as the patient subsequently developed nephrotic syndrome, these lesions suggest that silent ischemic changes may result in the development of focal segmental glomerulosclerosis secondary to nephron loss. Conclusions Nephron loss may trigger glomerular sclerosis, at least in some cases of MELAS-related nephropathy. Thus the incidence of kidney disease in the "survivors" of MELAS syndrome may increase as the support therapy of these patients improves. PMID:22353239
Piccoli, Giorgina Barbara; Bonino, Laura Davico; Campisi, Paola; Vigotti, Federica Neve; Ferraresi, Martina; Fassio, Federica; Brocheriou, Isabelle; Porpiglia, Francesco; Restagno, Gabriella
2012-02-21
MELAS syndrome (MIM ID#540000), an acronym for Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-like episodes, is a genetically heterogeneous mitochondrial disorder with protean manifestations and occasional kidney involvement. Interest in the latter is rising due to the identification of cases with predominant kidney involvement and to the hypothesis of a link between mitochondrial DNA and kidney neoplasia. We report the case of a 41-year-old male with full blown MELAS syndrome, with lactic acidosis and neurological impairment, affected by the "classic" 3243A > G mutation of mitochondrial DNA, with kidney cancer. After unilateral nephrectomy, he rapidly developed severe kidney functional impairment, with nephrotic proteinuria. Analysis of the kidney tissue at a distance from the two tumor lesions, sampled at the time of nephrectomy was performed in the context of normal blood pressure, recent onset of diabetes and before the appearance of proteinuria. The morphological examination revealed a widespread interstitial fibrosis with dense inflammatory infiltrate and tubular atrophy, mostly with thyroidization pattern. Vascular lesions were prominent: large vessels displayed marked intimal fibrosis and arterioles had hyaline deposits typical of hyaline arteriolosclerosis. These severe vascular lesions explained the different glomerular alterations including ischemic and obsolescent glomeruli, as is commonly observed in the so-called "benign" arteriolonephrosclerosis. Some rare glomeruli showed focal segmental glomerulosclerosis; as the patient subsequently developed nephrotic syndrome, these lesions suggest that silent ischemic changes may result in the development of focal segmental glomerulosclerosis secondary to nephron loss. Nephron loss may trigger glomerular sclerosis, at least in some cases of MELAS-related nephropathy. Thus the incidence of kidney disease in the "survivors" of MELAS syndrome may increase as the support therapy of these patients improves.
Huang, Kai-Peng; Chen, Cheng; Hao, Jie; Huang, Jun-Ying; Liu, Pei-Qing; Huang, He-Qing
2015-01-01
We previously demonstrated that advanced glycation-end products (AGEs) promote the pathological progression of diabetic nephropathy by decreasing silent information regulator 2-related protein 1 (Sirt1) expression in glomerular mesangial cells (GMCs). Here, we investigated whether AGEs-receptor for AGEs (RAGE) system down-regulated Sirt1 expression through ubiquitin-proteasome pathway and whether Sirt1 ubiquitination affected fibronectin (FN) and TGF-β1, 2 fibrotic indicators in GMCs. Sirt1 was polyubiquitinated and subsequently degraded by proteasome. AGEs increased Sirt1 ubiquitination and proteasome-mediated degradation, shortened Sirt1 half-life, and promoted FN and TGF-β1 expression. Ubiquitin-specific protease 22 (USP22) reduced Sirt1 ubiquitination and degradation and decreased FN and TGF-β1 expression in GMCs under both basal and AGEs-treated conditions. USP22 depletion enhanced Sirt1 degradation and displayed combined effects with AGEs to further promote FN and TGF-β1 expression. RAGE functioned crucial mediating roles in these processes via its C-terminal cytosolic domain. Inhibiting Sirt1 by EX-527 substantially suppressed the down-regulation of FN and TGF-β1 resulting from USP22 overexpression under both normal and AGEs-treated conditions, eventually leading to their up-regulation in GMCs. These results indicated that the AGEs-RAGE system increased the ubiquitination and subsequent proteasome-mediated degradation of Sirt1 by reducing USP22 level, and AGEs-RAGE-USP22-Sirt1 formed a cascade pathway that regulated FN and TGF-β1 level, which participated in the pathological progression of diabetic nephropathy.
Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis
Fornoni, Alessia; Sageshima, Junichiro; Wei, Changli; Merscher-Gomez, Sandra; Robier, Aguillon-Prada; Jauregui, Alexandra N.; Li, Jing; Mattiazzi, Adela; Ciancio, Gaetano; Chen, Linda; Zilleruelo, Gaston; Abitbol, Carolyn; Chandar, Jayanthi; Seeherunvong, Wacheree; Ricordi, Camillo; Ikehata, Masami; Rastaldi, Maria Pia; Reiser, Jochen; Burke, George W.
2013-01-01
Focal segmental glomerulosclerosis (FSGS) is a prevalent glomerular disease characterized by proteinuria, progression to end stage renal disease and recurrence of proteinuria after kidney transplantation in approximately one third of patients. It has been suggested that rituximab might treat recurrent FSGS through an unknown mechanism. Rituximab recognizes CD20 on B-lymphocytes but might also bind sphingomyelin-phosphodiesterase-acid-like-3b (SMPDL-3b) and regulates acid-sphyngomyelinase (ASMase) activity. We hypothesized that rituximab prevents recurrent FSGS and preserves podocyte SMPDL-3b expression. We studied 41 patients at high risk for recurrent FSGS, 27 of whom were treated with rituximab at time of kidney transplant. Incidence of nephrotic-range proteinuria and change in estimated glomerular filtration rate (ΔeGFR) were analyzed. SMPDL-3b immunostaining was performed in post-reperfusion kidney biopsies. SMPDL-3b protein, ASMase activity, and cytoskeleton remodeling were studied in cultured normal human podocytes that had been exposed to patient sera with or without rituximab. Rituximab treatment was associated with lower incidence of post-transplant proteinuria and decreased ΔeGFR. The number of SMPDL-3b+ podocytes in post-reperfusion biopsies was reduced in patients who developed recurrent FSGS. Rituximab partially prevented SMPDL-3b and ASMase downregulation that was observed in podocytes treated with the sera of patients with recurrent FSGS. Either SMPDL-3b overexpression or treatment with rituximab prevented disruption of the actin cytoskeleton and podocyte apoptosis induced by patient sera. This effect was diminished in cultured podocytes where the gene encoding SMPDL-3b was silenced. Our study suggests that treatment of high-risk patients with rituximab at time of kidney transplant might prevent recurrent FSGS by modulating podocyte function in an SMPDL-3b–dependent manner. PMID:21632984
Wiener, Scott; Kiziloz, Halil; Dorin, Ryan P; Finnegan, Kyle; Shichman, Steven S; Meraney, Anoop
2014-07-01
To identify prognostic indicators of estimated glomerular filtration rate (eGFR) following robotic partial nephrectomy (RPN). In a retrospective study of RPN patients, we examined data describing age, gender, eGFR, body mass index (BMI), tumor size (TS), length of stay, and estimated blood loss (EBL). Changes in eGFR (i.e., renal function trajectory [RFT]) and chronic kidney disease (CKD) stage shift were analyzed with mixed model linear and logistic regression analyses, Chi-squared, and t-tests. Changes in eGFR (RFT) were determined in 122 patients at baseline and at 6- and 12-month follow-up visits. Mean age, TS, and Charlson comorbidity index (CCI) were 62±11 years, 3±1.2 cm, and 4.8±1.8, respectively. The pre- and postoperative eGFR was lower in patients >60 years. Preoperative eGFR was unrelated to gender, BMI>30 kg/m(2), histopathology, nuclear grade, and TS. Univariate analyses determined that age, BMI>30, EBL>200 mL, CCI>5, and TS were associated with greater declines in eGFR. Reduced eGFR was also associated with warm ischemia time ≥22 minutes, while age was associated with a ≥1 worsening of British CKD classification. Using multivariate analysis, only age was significantly associated with a decline in eGFR, which was greater in patients with a normal preoperative eGFR. Patient age, BMI>30, EBL>200 mL, CCI>5, and TS were predictors of greater postoperative declines in eGFR. Although a decline in eGFR was proportionally greater in low stage CKD, postoperative changes are associated with advancing age.
Ojeda, Norma B.; Royals, Thomas P.
2013-01-01
This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg−1·min−1) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P < 0.05). Cotreatment with the Rho kinase inhibitor fasudil (33 μg·kg−1·min−1) significantly attenuated these hemodynamic changes (P < 0.05), but it did not abolish the differential increase in blood pressure above baseline, suggesting that the impact of intrauterine growth restriction on blood pressure in intact male growth-restricted rats is independent of Rho kinase. Gonadectomy in conjunction with fasudil returned blood pressure back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats. PMID:23344570
Ojeda, Norma B; Royals, Thomas P; Alexander, Barbara T
2013-04-01
This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg(-1)·min(-1)) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P < 0.05). Cotreatment with the Rho kinase inhibitor fasudil (33 μg·kg(-1)·min(-1)) significantly attenuated these hemodynamic changes (P < 0.05), but it did not abolish the differential increase in blood pressure above baseline, suggesting that the impact of intrauterine growth restriction on blood pressure in intact male growth-restricted rats is independent of Rho kinase. Gonadectomy in conjunction with fasudil returned blood pressure back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats.
Acute kidney injury and cardiovascular outcomes in acute severe hypertension.
Szczech, Lynda A; Granger, Christopher B; Dasta, Joseph F; Amin, Alpesh; Peacock, W Frank; McCullough, Peter A; Devlin, John W; Weir, Matthew R; Katz, Jason N; Anderson, Frederick A; Wyman, Allison; Varon, Joseph
2010-05-25
Little is known about the association of kidney dysfunction and outcome in acute severe hypertension. This study aimed to measure the association between baseline chronic kidney disease (estimated glomerular filtration rate), acute kidney injury (AKI, decrease in estimated glomerular filtration rate > or =25% from baseline) and outcome in patients hospitalized with acute severe hypertension. The Studying the Treatment of Acute Hypertension (STAT) registry enrolled patients with acute severe hypertension, defined as > or =1 blood pressure measurement >180 mm Hg systolic and/or >110 mm Hg diastolic and treated with intravenous antihypertensive therapy. Data were compared across groups categorized by admission estimated glomerular filtration rate and AKI during admission. On admission, 79% of the cohort (n=1566) had at least mild chronic kidney disease (estimated glomerular filtration rate <60 mL/min in 46%, <30 mL/min in 22%). Chronic kidney disease patients were more likely to develop heart failure (P<0.0001), non-ST-elevation myocardial infarction (P=0.003), and AKI (P<0.007). AKI patients were at greater risk of heart failure and cardiac arrest (P< or =0.0001 for both). Subjects with AKI experienced higher mortality at 90 days (P=0.003). Any acute loss of estimated glomerular filtration rate during hospitalization was independently associated with an increased risk of death (odds ratio, 1.05; P=0.03 per 10-mL/min decline). Other independent predictors of mortality included increasing age (P<0.0001), male gender (P=0.016), white versus black race (P=0.003), and worse baseline kidney function (P=0.003). Chronic kidney disease is a common comorbidity among patients admitted with acute severe hypertension, and AKI is a frequent form of acute target organ dysfunction, particularly in those with baseline chronic kidney disease. Any degree of AKI is associated with a greater risk of morbidity and mortality.
Hepatocyte growth factor: a regulator of extracellular matrix genes in mouse mesangial cells.
Laping, N J; Olson, B A; Ho, T; Ziyadeh, F N; Albrightson, C R
2000-04-01
The potential role of hepatocyte growth factor (HGF) in regulating extracellular matrix in mouse mesangial cells (MMC) was evaluated. Functional HGF receptors were deed in MMC by HGF-induced extracellular acidification, a response that was inhibited by the HGF inhibitor HGF/NK2, a splice variant expressing the N-terminal domain through the second kringle domain HGF also increased fibronectin and collagen alpha1 (IV) mRNA levels in these cells; the increases were associated with a concentration-dependent increase in transcriptional activity of the collagen alpha1 (IV) gene. HGF also stimulated fibronectin and collagen alpha1 (IV) mRNA levels in primary rabbit proximal tubule epithelial cells To evaluate the potential consequences of chronic elevation of HGF on renal fuction, HGF was administered continuously for 18 days to normal and diabetic C57BLKS/J lepr(db) mice. In the diabetic mice, HGF reduced creatinine clearance and increased microalbuminuria, indicating that chronic exposure to HGF impairs renal function. Thus, chronically elevated HGF may contribute to the progression of chronic renal disease in diabetes by decreasing the glomerular filtration rate and possibly promoting the accumulation of extracellular matrix.
Effect of renal denervation on dynamic autoregulation of renal blood flow.
DiBona, Gerald F; Sawin, Linda L
2004-06-01
Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.
Qi, Haiying; Casalena, Gabriella; Shi, Shaolin; Yu, Liping; Ebefors, Kerstin; Sun, Yezhou; Zhang, Weijia; D'Agati, Vivette; Schlondorff, Detlef; Haraldsson, Börje; Böttinger, Erwin; Daehn, Ilse
2017-03-01
The molecular signaling mechanisms between glomerular cell types during initiation/progression of diabetic kidney disease (DKD) remain poorly understood. We compared the early transcriptome profile between DKD-resistant C57BL/6J and DKD-susceptible DBA/2J (D2) glomeruli and demonstrated a significant downregulation of essential mitochondrial genes in glomeruli from diabetic D2 mice, but not in C57BL/6J, with comparable hyperglycemia. Diabetic D2 mice manifested increased mitochondrial DNA lesions (8-oxoguanine) exclusively localized to glomerular endothelial cells after 3 weeks of diabetes, and these accumulated over time in addition to increased urine secretion of 8-oxo-deoxyguanosine. Detailed assessment of glomerular capillaries from diabetic D2 mice demonstrated early signs of endothelial injury and loss of fenestrae. Glomerular endothelial mitochondrial dysfunction was associated with increased glomerular endothelin-1 receptor type A (Ednra) expression and increased circulating endothelin-1 (Edn1). Selective Ednra blockade or mitochondrial-targeted reactive oxygen species scavenging prevented mitochondrial oxidative stress of endothelial cells and ameliorated diabetes-induced endothelial injury, podocyte loss, albuminuria, and glomerulosclerosis. In human DKD, increased urine 8-oxo-deoxyguanosine was associated with rapid DKD progression, and biopsies from patients with DKD showed increased mitochondrial DNA damage associated with glomerular endothelial EDNRA expression. Our studies show that DKD susceptibility was linked to mitochondrial dysfunction, mediated largely by Edn1-Ednra in glomerular endothelial cells representing an early event in DKD progression, and suggest that cross talk between glomerular endothelial injury and podocytes leads to defects and depletion, albuminuria, and glomerulosclerosis. © 2017 by the American Diabetes Association.
Use of bortezomib in heavy-chain deposition disease: a report of 3 cases.
Patel, Kinjal; Dillon, John J; Leung, Nelson; Bomback, Andrew S; Appel, Gerald B; D'Agati, Vivette; Canetta, Pietro A
2014-07-01
Heavy-chain deposition disease (HCDD) is a rare complication of plasma cell dyscrasia in which monoclonal heavy chains deposit in glomerular and tubular basement membranes of the kidney. Clinical and pathologic features of HCDD have been well described in case reports and series, but evidence supporting specific therapies is sparse. Historically, the disease has had a poor prognosis, intensifying the need to clarify optimal treatments. We describe 3 cases of HCDD with biopsy-proven glomerular involvement, severe nephrotic syndrome, and decline in kidney function that were treated successfully with bortezomib, a proteasome inhibitor. None of these patients had multiple myeloma. In all cases, bortezomib-based therapy resulted in sustained resolution of nephrotic syndrome and improvement in kidney function. All 3 patients developed peripheral neuropathy; otherwise, treatment was well tolerated. To our knowledge, this is the first description of the clinical effectiveness of bortezomib against HCDD. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Randles, Michael J.; Woolf, Adrian S.; Huang, Jennifer L.; Byron, Adam; Humphries, Jonathan D.; Price, Karen L.; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J.; Long, David A.
2015-01-01
Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein–protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. PMID:25896609
Jocks, T; Zahner, G; Freudenberg, J; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A
1996-06-01
To study whether prostaglandins (PG) can regulate the mRNA expression of monocyte-chemoattractant protein 1 (MCP-1) in glomerular immune injury, MCP-1 mRNA levels were evaluated in anti-thymocyte antibody (ATS) -induced glomerular injury by Northern blotting and reverse transcription-polymerase chain reaction. Immune injury was induced in vivo by the intravenous application of ATS to male Wistar rats and in vitro by the perfusion of isolated rat kidneys with ATS and rat serum. In vivo 3 h and 5 days after antibody application, glomerular mRNA expression of MCP-1 was markedly enhanced compared with controls. In the isolated perfused kidney, antibody and complement also induced an increase in MCP-1 expression at 10 min and 60 min after antibody perfusion. When the rats were treated with PGE (250 micrograms, twice daily), the increase in MCP-1 expression was reduced. This was associated with a reduction of intraglomerular recruitment of monocytes/macrophages. In the isolated perfused kidneys, PGE1 (1 mg/L) prevented the antibody- and rat serum-stimulated increase in glomerular MCP-1 mRNA expression. These data demonstrate that PGE1 reduces glomerular MCP-1 mRNA expression in glomerulonephritis and in the isolated perfused rat kidney after induction of immune injury with antibody and complement. The data suggest that prostaglandins might mediate MCP-1 effects in glomerular immune injuries.
Bird, Nicholas J; Peters, Christina; Michell, A Robert; Peters, A Michael
2007-02-01
Extracellular fluid volume (ECV) is larger when measured with Tc-99m-DTPA ( approximately 500 Da) than inulin (6 kDa). As part of an assessment of the suitability of the non-radioactive marker, iohexol, against the gold standard tracer, Cr-51-EDTA, for measurement of the glomerular filtration rate (GFR) based on a postal service, we took the opportunity to determine if this volume dependence is present for diffusible markers less disparate in size than inulin and Tc-99m-DTPA. Cr-51-EDTA ( approximately 400 Da) and iohexol ( approximately 900 Da) were administered into the opposite arms of 20 normal volunteers (fasting and non-fasting) and 60 patients (non-fasting), including 36 diabetics, 10 cancer patients and 13 dermatology patients. Blood was obtained from both arms 20, 40, 60, 120, 180 and 240 min after injection and assayed for a marker injected contra-laterally. The glomerular filtration rate (GFR) and mean indicator transit time, T, were measured from the bi-exponential clearance curves. ECV, the product of GFR and T, was subdivided into V(1) (administered indicator divided by the sum of zero-time intercepts of the two exponentials) and V(2) (the difference between V(1) and ECV). Variables were scaled to 1.73 m(2). For all 100 studies, the mean GFR from Cr-51-EDTA was 3 ml min(-1) higher than iohexol (p < 0.01). ECV was 0.41 L higher (p < 0.02) and V(1) 0.65 L higher (p < 0.001) from Cr-51-EDTA but V(2) was 0.33 L lower (p < 0.02). V(1)/ECV was 0.031 higher from Cr-51-EDTA (p < 0.01). ECV and V(2) from Cr-51-EDTA were both higher in diabetics (15.1 [1.7] and 5.0 [0.095] L, respectively) compared with normal non-fasting subjects (13.7 [1.5] and 4.3 [1.0]; p < 0.01). ECV and the volumes of its sub-compartments are different between markers that are less than an order of magnitude different in size.
Skinner, Eila C; Fairey, Adrian S; Groshen, Susan; Daneshmand, Siamak; Cai, Jie; Miranda, Gus; Skinner, Donald G
2015-08-01
The need to prevent reflux in the construction of an orthotopic ileal neobladder is controversial. We designed the USC-STAR trial to determine whether the T-pouch neobladder that included an antireflux mechanism was superior to the Studer pouch in patients with bladder cancer undergoing radical cystectomy. This single center, randomized, controlled trial recruited patients with clinically nonmetastatic bladder cancer scheduled to undergo radical cystectomy with neobladder. Eligible patients were randomly assigned to undergo T-pouch or Studer ileal orthotopic neobladder. Treatment assignment was not masked. The primary end point was change in renal function from baseline to 3 years. The CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation was used to calculate the estimated glomerular filtration rate. Between February 2002 and November 2009, 237 patients were randomly assigned to T-pouch ileal orthotopic neobladder and 247 to Studer ileal orthotopic neobladder. Baseline characteristics did not differ between the groups. Between baseline and 3 years the estimated glomerular filtration rate decreased by 6.4 ml/minute/1.73 m(2) in the Studer group and 6.6 ml/minute/1.73 m(2) in the T-pouch group (p=0.35). Multivariable analysis showed that type of ileal orthotopic neobladder was not independently associated with 3-year renal function (p=0.63). However, baseline estimated glomerular filtration rate, age and urinary tract obstruction were independently associated with 3-year decline in renal function. Cumulative risk of urinary tract infection and overall late complications were not different between the groups, but the T-pouch was associated with an increased risk of secondary diversion related surgeries. T-pouch ileal orthotopic neobladder with an antireflux mechanism did not prevent a moderate reduction in renal function observed at 3 years compared to the Studer pouch, but did result in an increase in diversion related secondary surgical procedures. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Ruilope, Luis M; Zanchetti, Alberto; Julius, Stevo; McInnes, Gordon T; Segura, Julian; Stolt, Pelle; Hua, Tsushung A; Weber, Michael A; Jamerson, Ken
2007-07-01
Reduced renal function is predictive of poor cardiovascular outcomes but the predictive value of different measures of renal function is uncertain. We compared the value of estimated creatinine clearance, using the Cockcroft-Gault formula, with that of estimated glomerular filtration rate (GFR), using the Modification of Diet in Renal Disease (MDRD) formula, as predictors of cardiovascular outcome in 15 245 high-risk hypertensive participants in the Valsartan Antihypertensive Long-term Use Evaluation (VALUE) trial. For the primary end-point, the three secondary end-points and for all-cause death, outcomes were compared for individuals with baseline estimated creatinine clearance and estimated GFR < 60 ml/min and > or = 60 ml/min using hazard ratios and 95% confidence intervals. Coronary heart disease, left ventricular hypertrophy, age, sex and treatment effects were included as covariates in the model. For each end-point considered, the risk in individuals with poor renal function at baseline was greater than in those with better renal function. Estimated creatinine clearance (Cockcroft-Gault) was significantly predictive only of all-cause death [hazard ratio = 1.223, 95% confidence interval (CI) = 1.076-1.390; P = 0.0021] whereas estimated GFR was predictive of all outcomes except stroke. Hazard ratios (95% CIs) for estimated GFR were: primary cardiac end-point, 1.497 (1.332-1.682), P < 0.0001; myocardial infarction, 1.501 (1.254-1.796), P < 0.0001; congestive heart failure, 1.699 (1.435-2.013), P < 0.0001; stroke, 1.152 (0.952-1.394) P = 0.1452; and all-cause death, 1.231 (1.098-1.380), P = 0.0004. These results indicate that estimated glomerular filtration rate calculated with the MDRD formula is more informative than estimated creatinine clearance (Cockcroft-Gault) in the prediction of cardiovascular outcomes.
Hsieh, Po-Fan; Wang, Yu-De; Huang, Chi-Ping; Wu, Hsi-Chin; Yang, Che-Rei; Chen, Guang-Heng; Chang, Chao-Hsiang
2016-07-01
We proposed a mathematical formula to calculate contact surface area between a tumor and renal parenchyma. We examined the applicability of using contact surface area to predict renal function after partial nephrectomy. We performed this retrospective study in patients who underwent partial nephrectomy between January 2012 and December 2014. Based on abdominopelvic computerized tomography or magnetic resonance imaging, we calculated the contact surface area using the formula (2*π*radius*depth) developed by integral calculus. We then evaluated the correlation between contact surface area and perioperative parameters, and compared contact surface area and R.E.N.A.L. (Radius/Exophytic/endophytic/Nearness to collecting system/Anterior/Location) score in predicting a reduction in renal function. Overall 35, 26 and 45 patients underwent partial nephrectomy with open, laparoscopic and robotic approaches, respectively. Mean ± SD contact surface area was 30.7±26.1 cm(2) and median (IQR) R.E.N.A.L. score was 7 (2.25). Spearman correlation analysis showed that contact surface area was significantly associated with estimated blood loss (p=0.04), operative time (p=0.04) and percent change in estimated glomerular filtration rate (p <0.001). On multivariate analysis contact surface area and R.E.N.A.L. score independently affected percent change in estimated glomerular filtration rate (p <0.001 and p=0.03, respectively). On ROC curve analysis contact surface area was a better independent predictor of a greater than 10% change in estimated glomerular filtration rate compared to R.E.N.A.L. score (AUC 0.86 vs 0.69). Using this simple mathematical method, contact surface area was associated with surgical outcomes. Compared to R.E.N.A.L. score, contact surface area was a better predictor of functional change after partial nephrectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Hoover, Randall K; Alcorn, Harry; Lawrence, Laura; Paulson, Susan K; Quintas, Megan; Luke, David R; Cammarata, Sue K
2018-03-26
Delafloxacin, a fluoroquinolone, has activity against Gram-positive organisms including methicillin-resistant S aureus and fluoroquinolone-susceptible and -resistant Gram-negative organisms. The intravenous formulation of delafloxacin contains the excipient sulfobutylether-β-cyclodextrin (SBECD), which is eliminated by renal filtration. This study examined the pharmacokinetics and safety of SBECD after single intravenous (IV) infusions in subjects with renal impairment. The study was an open-label, parallel-group, crossover study in subjects with normal renal function or mild, moderate, or severe renal impairment, and those with end-stage renal disease undergoing hemodialysis. Subjects received 300 mg delafloxacin IV or placebo IV, containing 2400 mg SBECD, in 2 periods separated by ≥14-day washouts. SBECD total clearance decreased with decreasing renal function, with a corresponding increase in area under the concentration-time curve (AUC 0-∞ ). After IV delafloxacin 300 mg administration, SBECD mean total clearance was 6.28 and 1.24 L/h, mean AUC 0-∞ was 387 and 2130 h·μg/mL, and mean renal clearance was 5.36 and 1.14 L/h in normal and severe renal subjects, respectively. Similar values were obtained after IV placebo administration. In subjects with end-stage renal disease, delafloxacin 300 mg IV produced mean SBECD AUC 0-48 values of 2715 and 7861 h·μg/mL when dosed before and after hemodialysis, respectively. Total SBECD clearance exhibited linear relationships to estimated glomerular filtration rate and creatinine clearance. Single doses of IV delafloxacin 300 mg and IV placebo were well tolerated in all groups. In conclusion, decreasing renal function causes reduced SBECD clearance and increased exposures, but SBECD continues to exhibit a good safety and tolerability profile in IV formulations. © 2018, The American College of Clinical Pharmacology.
Svensson, Anders S; Kvitting, John-Peder Escobar; Kovesdy, Csaba P; Cederholm, Ingemar; Szabó, Zoltán
2016-06-01
The use of cardiopulmonary bypass (CPB) can cause changes in serum creatinine and cystatin C independent of glomerular filtration rate. We aimed to quantify the temporal changes of these biomarkers and C-reactive protein (CRP) after CPB. This was a prospective study at an academic medical centre between April and October 2013. We compared postoperative changes in serum creatinine and cystatin C in 38 patients with normal preoperative kidney function who underwent cardiac surgery using CPB and did not develop perioperative acute kidney injury (AKI). The effect of inflammation on intra-individual changes was examined in mixed effects regressions, using measurements of pre- and postoperative CRP. Both serum creatinine (79.9 ± 22.7 vs. 92.6 ± 21.4 µmol/L, P = 0.001) and cystatin C (1.16 ± 0.39 vs. 1.33 ± 0.37 mg/L, P = 0.012) decreased significantly in the first 8 h postoperatively compared to preoperatively, as a result of haemodilution. Thereafter serum creatinine returned to preoperative levels, whereas serum cystatin C continued to rise and was significantly elevated at 72 h post-CPB compared to preoperative levels (1.53 ± 0.48 vs. 1.33 ± 0.37 mg/L, P = 0.003). CRP levels increased significantly post-CPB and were significantly associated with increases in both serum creatinine and cystatin C. Serum creatinine and cystatin C appear not to be interchangeable biomarkers during and immediately after CPB. Processes unrelated to kidney function such as acute inflammation have a significant effect on post-CPB changes in these biomarkers, and may result in significant increases in serum cystatin C that could erroneously be interpreted as AKI. © 2015 Asian Pacific Society of Nephrology.
Significant Acute Kidney Injury Due to Non-steroidal Anti-inflammatory Drugs: Inpatient Setting.
Dixit, Mehul; Doan, Thuy; Kirschner, Rebecca; Dixit, Naznin
2010-04-26
In the United States non-steroidal anti-inflammatory drugs (NSAID) are freely available over-the-counter. Because of the adverse effects on the kidneys and the popularity of these drugs, unregulated use of NSAIDs is an under recognized and potentially dangerous problem. Fifteen inpatients, mean age of 15.2 ± 2.3 years (five males, 10 females), were referred to nephrology for acute kidney injury. All patients admitted to taking ibuprofen and six also consumed naproxen. None of the patients had underlying renal diseases at the time of admission. Nine patients had proteinuria and 12 had hematuria (including one with gross hematuria). One patient had nephrotic syndrome but the condition resolved spontaneously without steroids and has remained in remission for four years. Two patients required dialysis. Only one of the dialyzed patients required steroid therapy for recovery of renal function. The mean duration of hospitalization was 7.4 ± 5.5 days. The serum creatinine peaked at 4.09 ± 4.24 (range 1.2-15.3) mg/dL. All patients recovered renal function with normalization of serum creatinine to 0.71 ± 0.15 mg/dL. The estimated GFR (glomerular filtration rate) at peak of renal failure was 38.2 ± 20.5 mL/min but did improve to a baseline of 134 ± 26.2 mL/min (range 89-177, p < 0.01). However, the duration from onset to normalization of serum creatinine was 37 ± 42 days indicating that majority of patients had abnormal renal function for a prolonged period. In conclusion, NSAIDs pose a significant risk of renal failure for significant duration and as an entity may be under recognized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamki, L.; Spence, J.D.; MacDonald, A.C.
Two hundred nine hypertensive patients with high stimulated plasma renin levels were screened for renovascular hypertension using Tc-99m DTPA renal scintigraphy. Differential glomerular filtration rate (Diff-GFR) was obtained by integrating the area under the background-subtracted renogram of each kidney between 1 and 3 minutes. 50 patients who also had undergone selective renal angiography were divided into four groups according to Diff-GFR contribution by one of the kidneys. If one kidney contributed 45-50% of total GFR, this was regarded as normal. A Diff-GFR of less than 45% was very considered to be very suggestive of renovascular hypertension in the appropriate clinicalmore » setting, while a Diff-GFR of less than 20% indicated that the renal artery might not be amenable to successful balloon angioplasty. Diff-GFR following balloon angioplasty closely reflected the early clinical response of the patients--and in some cases progressive Diff-GFR improvement was observed several months later. Diff-GFR as a scintigraphic criterion for renovascular hypertension has a sensitivity of 93%, specificity of 74%, and accuracy of 85%.« less
Comparison of glomerular filtration rate between greyhounds and non-Greyhound dogs.
Drost, Wm Tod; Couto, C Guillermo; Fischetti, Anthony J; Mattoon, John S; Iazbik, Cristina
2006-01-01
Greyhounds have significantly higher serum creatinine (SCr) concentration than do non-Greyhound dogs that may be attributable to differences in glomerular filtration rate (GFR). By means of plasma clearance of technetium Tc 99m diethylenetriaminepentaacetic acid, GFR was measured in 10 Greyhounds and 10 non-Greyhound dogs with normal findings of physical examination, CBC, serum biochemical analysis, and urinalysis. Dogs were fed the same diet for a minimum of 6 weeks before GFR data collection. Greyhounds had significantly higher mean +/- SD GFR (3.0 +/- 0.1 vs 2.5 +/- 0.2 ml/min/ kg; P = .01) and SCr concentration (1.8 +/- 0.1 vs 1.5 +/- 0.1 mg/dL; P = .03) than did non-Greyhound dogs, but the serum urea nitrogen (SUN) concentration was not significantly different (18 +/- 1 vs 18 +/- 2 mg/dL; P = .8). Therefore, the higher SCr concentration in Greyhounds is not attributable to decreased GFR, and may be associated with the high muscle mass in the breed. Healthy Greyhounds have higher GFR than do non-Greyhound dogs.
Rigothier, Claire; Auguste, Patrick; Welsh, Gavin I.; Lepreux, Sébastien; Deminière, Colette; Mathieson, Peter W.; Saleem, Moin A.; Ripoche, Jean; Combe, Christian
2012-01-01
IQGAP1 is a scaffold protein that interacts with proteins of the cytoskeleton and the intercellular adhesion complex. In podocytes, IQGAP1 is associated with nephrin in the glomerular slit diaphragm (SD) complex, but its role remains ill-defined. In this work, we investigated the interaction of IQGAP1 with the cytoskeleton and SD proteins in podocytes in culture, and its role in podocyte migration and permeability. Expression, localization, and interactions between IQGAP1 and SD or cytoskeletal proteins were determined in cultured human podocytes by Western blot (WB), immunocytolocalization (IC), immunoprecipitation (IP), and In situ Proximity Ligation assay (IsPL). Involvement of IQGAP1 in migration and permeability was also assessed. IQGAP1 expression in normal kidney biopsies was studied by immunohistochemistry. IQGAP1 expression by podocytes increased during their in vitro differentiation. IC, IP, and IsPL experiments showed colocalizations and/or interactions between IQGAP1 and SD proteins (nephrin, MAGI-1, CD2AP, NCK 1/2, podocin), podocalyxin, and cytoskeletal proteins (α-actinin-4). IQGAP1 silencing decreased podocyte migration and increased the permeability of a podocyte layer. Immunohistochemistry on normal human kidney confirmed IQGAP1 expression in podocytes and distal tubular epithelial cells and also showed an expression in glomerular parietal epithelial cells. In summary, our results suggest that IQGAP1, through its interaction with components of SD and cytoskeletal proteins, is involved in podocyte barrier properties. PMID:22662192
Observations of a large Dent disease cohort.
Blanchard, Anne; Curis, Emmanuel; Guyon-Roger, Tiphaine; Kahila, Diana; Treard, Cyrielle; Baudouin, Véronique; Bérard, Etienne; Champion, Gérard; Cochat, Pierre; Dubourg, Julie; de la Faille, Renaud; Devuyst, Olivier; Deschenes, Georges; Fischbach, Michel; Harambat, Jérôme; Houillier, Pascal; Karras, Alexandre; Knebelmann, Bertrand; Lavocat, Marie-Pierre; Loirat, Chantal; Merieau, Elodie; Niaudet, Patrick; Nobili, François; Novo, Robert; Salomon, Rémi; Ulinski, Tim; Jeunemaître, Xavier; Vargas-Poussou, Rosa
2016-08-01
Dent disease classically combines low-molecular-weight proteinuria, hypercalciuria with nephrocalcinosis, and renal failure. Nephrotic range proteinuria, normal calciuria, and hypokalemia have been rarely reported. It is unknown whether the changes in phenotype observed over time are explained by a decrease in glomerular filtration rate (GFR) or whether there is any phenotype-genotype relationship. To answer this we retrospectively analyzed data from 109 male patients with CLCN5 mutations (Dent-1) and 9 patients with mutation of the OCRL gene (Dent-2). In Dent-1 disease, the estimated GFR decreased with age, by 1.0 to 1.6 ml/min per 1.73 m(2)/yr in the absence and presence of nephrocalcinosis, respectively, with no significant difference. Median values of low-molecular-weight proteinuria were in the nephrotic range and remained at the same level even in late renal disease. End-stage renal disease occurred in 12 patients, at a median age of 40 years. Hypercalciuria decreased with glomerular filtration and was absent in 40% of the patients under 30 and 85% of those over the age of 30. Hypophosphatemia did not resolve with age and calcitriol concentrations were in the upper normal range. Kalemia decreased with age, with half of the patients over the age of 18 presenting with hypokalemia. Thus, no phenotype/genotype correlation was observed in this cohort of patients with Dent disease. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Ma, Yan-Rong; Zhou, Yan; Huang, Jing; Qin, Hong-Yan; Wang, Pei; Wu, Xin-An
2018-03-01
The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Ruiyun; Wu, Guangyu; Huang, Jiwei; Shi, Oumin; Kong, Wen; Chen, Yonghui; Xu, Jianrong; Xue, Wei; Zhang, Jin; Huang, Yiran
2017-06-06
The present study aimed to assess the impact of peritumoral artery characteristics on renal function outcome prediction using a novel Peritumoral Artery Scoring System based on computed tomography arteriography. Peritumoral artery characteristics and renal function were evaluated in 220 patients who underwent laparoscopic partial nephrectomy and then validate in 51 patients with split and total glomerular filtration rate (GFR). In particular, peritumoral artery classification and diameter were measured to assign arteries into low, moderate, and high Peritumoral Artery Scoring System risk categories. Univariable and multivariable logistic regression analyses were then used to determine risk factors for major renal functional decline. The Peritumoral Artery Scoring System and four other nephrometry systems were compared using receiver operating characteristic curve analysis. The Peritumoral Artery Scoring System was significantly superior to the other systems for predicting postoperative renal function decline (p < 0.001). In receiver operating characteristic analysis, our category system was a superior independent predictor of estimated glomerular filtration rate (eGFR) decline (area-under-the-curve = 0.865, p < 0.001) and total GFR decline (area-under-the-curve = 0.796, p < 0.001), and split GFR decline (area-under-the-curve = 0.841, p < 0.001). Peritumoral artery characteristics were independent predictors of renal function outcome after laparoscopic partial nephrectomy.
Association between pulmonary function and renal function: findings from China and Australia.
Yu, Dahai; Chen, Tao; Cai, Yamei; Zhao, Zhanzheng; Simmons, David
2017-05-01
The relationship between obstructive lung function and impaired renal function is unclear. This study investigated the dose-response relationship between obstructive lung function and impaired renal function. Two independent cross-sectional studies with representative sampling were applied. 1454 adults from rural Victoria, Australia (1298 with normal renal function, 156 with impaired renal function) and 5824 adults from Nanjing, China (4313 with normal renal function, 1511 with impaired renal function). Pulmonary function measurements included forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). Estimated glomerular filtration rate (eGFR), and impaired renal function marked by eGFR <60 mL/min/1.73m 2 were used as outcome. eGFR increased linearly with FEV1 in Chinese participants and with FVC in Australians. A non-linear relationship with peaked eGFR was found for FEV1 at 2.65 L among Australians and for FVC at 2.78 L among Chinese participants, respectively. A non-linear relationship with peaked eGFR was found for the predicted percentage value of forced expiratory volume in 1 s (PFEV1) at 81-82% and for the predicted percentage value of forced vital capacity (PFVC) at 83-84% among both Chinese and Australian participants, respectively. The non-linear dose-response relationships between lung capacity measurements (both for FEV1 and FVC) and risk of impaired renal function were consistently identified in both Chinese and Australian participants. An increased risk of impaired renal function was found below 3.05 L both for FEV1 and FVC, respectively. The non-linear relationship between PFEV and PVC and the risk of impaired renal function were consistently identified in both Chinese and Australian participants. An increased risk of impaired renal function was found below 76-77% for PFEV1 and 79-80% for PFVC, respectively. In both Australian and Chinese populations, the risk of impaired renal function increased both with FEV1 and FVC below 3.05 L, with PFEV1 below 76-77% or with PFVC below 79-80%, respectively. Obstructive lung function was associated with increased risk of reduced renal function. The screen for impaired renal function in patients with obstructive lung disease might be useful to ensure there was no impaired renal function before the commencement of potentially nephrotoxic medication where indicated (eg diuretics).
Renal functional reserve and renal hemodynamics in hypertensive patients.
Gaipov, Abduzhappar; Solak, Yalcin; Zhampeissov, Nurlan; Dzholdasbekova, Aliya; Popova, Nadezhda; Molnar, Miklos Z; Tuganbekova, Saltanat; Iskandirova, Elmira
2016-10-01
The renal functional reserve (RFR) is the ability of the kidneys to increase renal plasma flow and glomerular filtration rate (GFR) in response to protein intake. It is a measure of functional and anatomic integrity of nephrons. It is not known what relation between RFR and kidney Doppler parameters. We aimed to study the relation between the RFR and renal hemodynamic parameters in hypertensive patients with and without nephropathy who had normal kidney function. Twenty-four hypertensive subjects with nephropathy (HTN-n, n = 10) and hypertension without nephropathy (HTN, n = 14) were included in the study. Control group included 11 healthy subjects. Baseline GFR (GFR1) and GFR after intake of egg protein 1 mg/kg of body weight were determined (GFR2). RFR was calculated by the following formula: (GFR2-GFR1)/GFR1 × 100%. Doppler ultrasonography was performed. Arterial blood pressure (BP), body mass index (BMI), and estimated GFR were also recorded. HTN and HTN-n groups had impaired levels of RFR compared with controls (p < 0.05), significantly decreased value of flow velocity parameters (Vmax, Vmin), and increased RRI compared with controls. There was significant negative correlation of RFR with blood pressure levels (sBP, r = -0.435, p = 0.009; dBP, r = -0.504, p = 0.002), RRI (r = -0.456, p = 0.008), micro albuminuria (MAU, r = -0.366, p = 0.031) and positive correlation with Vmax and Vmin (r = 0.556, p = 0.001 and r = 0.643, respectively, p < 0.001). Linear regression showed that RRI and MAU were independent predictors of decreased RFR. RFR is lower in hypertensive patients despite near-normal level of kidney function and is related to particular level of BP. RRI and MAU were independent predictors of decreased RFR.
Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age
Roeder, Sebastian S.; Stefanska, Ania; Eng, Diana G.; Kaverina, Natalya; Sunseri, Maria W.; McNicholas, Bairbre A.; Rabinovitch, Peter; Engel, Felix B.; Daniel, Christoph; Amann, Kerstin; Lichtnekert, Julia; Pippin, Jeffrey W.
2015-01-01
Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age. PMID:26017974
RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice
Khaibullina, Alfia; Adjei, Elena A.; Afangbedji, Nowah; Ivanov, Andrey; Kumari, Namita; Almeida, Luis E.F.; Quezado, Zenaide M.N.; Nekhai, Sergei; Jerebtsova, Marina
2018-01-01
Sickle cell disease patients are at increased risk of developing a chronic kidney disease. Endothelial dysfunction and inflammation associated with hemolysis lead to vasculopathy and contribute to the development of renal disease. Here we used a Townes sickle cell disease mouse model to examine renal endothelial injury. Renal disease in Townes mice was associated with glomerular hypertrophy, capillary dilation and congestion, and significant endothelial injury. We also detected substantial renal macrophage infiltration, and accumulation of macrophage stimulating protein 1 in glomerular capillary. Treatment of human cultured macrophages with hemin or red blood cell lysates significantly increased expression of macrophage membrane-associated protease that might cleave and activate circulating macrophage stimulating protein 1 precursor. Macrophage stimulating protein 1 binds to and activates RON kinase, a cell surface receptor tyrosine kinase. In cultured human renal glomerular endothelial cells, macrophage stimulating protein 1 induced RON downstream signaling, resulting in increased phosphorylation of ERK and AKT kinases, expression of Von Willebrand factor, increased cell motility, and re-organization of F-actin. Specificity of macrophage stimulating protein 1 function was confirmed by treatment with RON kinase inhibitor BMS-777607 that significantly reduced downstream signaling. Moreover, treatment of sickle cell mice with BMS-777607 significantly reduced glomerular hypertrophy, capillary dilation and congestion, and endothelial injury. Taken together, our findings demonstrated that RON kinase is involved in the induction of renal endothelial injury in sickle cell mice. Inhibition of RON kinase activation may provide a novel approach for prevention of the development of renal disease in sickle cell disease. PMID:29519868
van Twist, Daan J L; Houben, Alphons J H M; de Haan, Michiel W; de Leeuw, Peter W; Kroon, Abraham A
2016-06-01
Fibromuscular dysplasia (FMD) is the second most common cause of renovascular hypertension. Nonetheless, knowledge on the renal microvasculature and renin-angiotensin system (RAS) activity in kidneys with FMD is scarce. Given the fairly good results of revascularization, we hypothesized that the renal microvasculature and RAS are relatively spared in kidneys with FMD. In 58 hypertensive patients with multifocal renal artery FMD (off medication) and 116 matched controls with essential hypertension, we measured renal blood flow (Xenon washout method) per kidney and drew blood samples from the aorta and both renal veins to determine renin secretion and glomerular filtration rate per kidney. We found that renal blood flow and glomerular filtration rate in FMD were comparable to those in controls. Although systemic renin levels were somewhat higher in FMD, renal renin secretion was not elevated. Moreover, in patients with unilateral FMD, no differences between the affected and unaffected kidney were observed with regard to renal blood flow, glomerular filtration rate, or renin secretion. In men, renin levels and renin secretion were higher as compared with women. The renal blood flow response to RAS modulation (by intrarenal infusion of angiotensin II, angiotensin-(1-7), an angiotensin II type 1 receptor blocker, or a nitric oxide synthase blocker) was also comparable between FMD and controls. Renal blood flow, glomerular filtration, and the response to vasoactive substances in kidneys with multifocal FMD are comparable to patients with essential hypertension, suggesting that microvascular function is relatively spared. Renin secretion was not increased and the response to RAS modulation was not affected in kidneys with FMD.
Kaneko, Hidehiro; Neuss, Michael; Schau, Thomas; Weissenborn, Jens; Butter, Christian
2017-02-01
MitraClip (MC; Abbott Vascular, Menlo Park, CA, USA) is a treatment option for mitral regurgitation. Renal dysfunction is closely associated with cardiovascular disease. However, the influence of renal function in MC remains not fully understood. In this study, we aimed to clarify the association between renal function and MC. We examined 206 consecutive patients who underwent MC and divided patients into 3 groups according to estimated glomerular filtration rate (eGFR), normal eGFR (≥60mL/min/1.73m 2 ) (n=70), mild chronic kidney disease (CKD) (30-59mL/min/1.73m 2 ) (n=106), and severe CKD (<30mL/min/1.73m 2 ) (n=30). N-terminal pro-B type natriuretic peptide (NT-pro BNP) levels increased with decreasing eGFR. Kaplan-Meier curves revealed that the long-term survival rate significantly decreased with eGFR. After adjustment with the covariates, severe CKD was still associated with mortality. Improved renal function was observed in 30% and associated with baseline lower NT-pro BNP levels. Patients with improved renal function had higher chronic phase survival rate. Renal dysfunction is common in MC patients and the survival rate decreased with eGFR in association with increased NT-pro BNP levels. MC may improve renal function in approximately 30% of MC patients. Improved renal function is associated with lower NT-pro BNP levels and results in satisfactory prognosis. These results implies a close association between renal function and MC treatment. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Stereological study of developing glomerular forms during human fetal kidney development.
Dakovic Bjelakovic, Marija; Vlajkovic, Slobodan; Petrovic, Aleksandar; Bjelakovic, Marko; Antic, Milorad
2018-05-01
Human fetal kidney development is a complex and stepwise process. The number, shape, size and distribution of glomeruli provide important information on kidney organization. The aim of this study was to quantify glomerular developing forms during human fetal kidney development using stereological methods. Kidney tissue specimens of 40 human fetuses with gestational ages ranging from 9 to 40 weeks were analyzed. Specimens were divided into eight groups based on gestational age, each corresponding to 1 lunar month. Stereological methods were used at the light microscopy level to estimate volume, surface and numerical density of the glomerular developing forms. During gestation, nephrogenesis continually advanced, and the number of nephrons increased. Volume, surface and numerical densities of vesicular forms and S-shaped bodies decreased gradually in parallel with gradual increases in estimated stereological parameters for vascularized glomeruli. Volume density and surface density of vascularized glomeruli increased gradually during fetal kidney development, and numerical density increased until the seventh lunar month. A relative decrease in vascularized glomeruli per unit volume of cortex occurred during the last 3 lunar months. Nephrogenesis began to taper off by 32 weeks and was completed by 36 weeks of gestation. The last sample in which we observed vesicles was from a fetus aged 32 weeks, and the last sample with S-shaped bodies was from a fetus aged 36 weeks. The present study is one of few quantitative studies conducted on human kidney development. Knowledge of normal human kidney morphogenesis during development could be important for future medical practice. Events occurring during fetal life may have significant consequences later in life.
MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaoyou; Dong, Changgui; Jiang, Zhengyao
Kidney transplantation is the major therapeutic option for end-stage kidney diseases. However, acute rejection could cause allograft loss in some of these patients. Emerging evidence supports that microRNA (miRNA) dysregulation is implicated in acute allograft rejection. In this study, we used next-generation sequencing to profile miRNA expression in normal and acutely rejected kidney allografts. Among 75 identified dysregulated miRNAs, miR-10b was the most significantly downregulated miRNAs in rejected allografts. Transfecting miR-10b inhibitor into human renal glomerular endothelial cells recapitulated key features of acute allograft rejection, including endothelial cell apoptosis, release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor α, interferon-γ, andmore » chemokine (C–C motif) ligand 2) and chemotaxis of macrophages whereas transfection of miR-10b mimics had opposite effects. Downregulation of miR-10b directly derepressed the expression of BCL2L11 (an apoptosis inducer) as revealed by luciferase reporter assay. Taken together, miR-10b downregulation mediates many aspects of disease pathogenicity of acute kidney allograft rejection. Restoring miR-10b expression in glomerular endothelial cells could be a novel therapeutic approach to reduce acute renal allograft loss. - Highlights: • miR-10b was the most downregulated microRNAs in acutely rejected renal allografts. • miR-10b downregulation triggered glomerular endothelial cell apoptosis. • miR-10b downregulation induced release of pro-inflammatory cytokines. • miR-10b downregulation derepressed its pro-apoptotic target BCL2L11.« less
Clinical characteristics and predictive factors of subclinical diabetic nephropathy.
Zhang, Y; Yang, J; Zheng, M; Wang, Y; Ren, H; Xu, Y; Yang, Y; Cheng, J; Han, F; Yang, X; Chen, L; Shan, C; Chang, B
2015-02-01
To investigate the clinical characteristics and predictive factors of subclinical diabetic nephropathy in type 2 diabetes patients. A total of 298 type 2 diabetes patients were divided into 3 groups based on 24-h urinary microalbumin and estimated glomerular filtration rate: patients with normal albuminuria and glomerular filtration rate (NC), patients with normoalbuminuria and glomerular hyperfiltration (SDN) and patients with microalbuminuria (EDN). The renal size, tubular injury markers and ambulatory blood pressure were analyzed. Renal size increased in the SDN and EDN groups compared to the NC group (P<0.05), while renal length in the SDN group was greater than the EDN group (P<0.05). Patients in the SDN and EDN groups had higher level of urine retinol binding protein and N-acetyl-β-D-glucosaminidase and most of them developed proximal tubular dysfunction. The SDN group had higher 24-h mean and nocturnal diastolic blood pressure than the NC group (P<0.05), while the EDN group had higher systolic blood pressure and pulse pressure than the SDN group (P<0.01). More patients developed abnormal blood pressure rhythm in the SDN and EDN groups. The likelihood of a decrease in nocturnal systolic blood pressure was lower as the microalbuminuria increased. Increased renal size, more abnormal tubular injury markers and higher 24-h mean and nocturnal blood pressure were all risk factors of subclinical diabetic nephropathy. Patients with subclinical diabetic nephropathy had increased renal size, abnormal tubular injury markers, high blood pressure and abnormal circadian rhythm. © Georg Thieme Verlag KG Stuttgart · New York.
Alcendor, Donald J
2017-07-15
Zika virus (ZIKV) infection in the human renal compartment has not been reported. Several clinical reports have describe high-level persistent viral shedding in the urine of infected patients, but the associated mechanisms have not been explored until now. The current study examined cellular components of the glomerulus of the human kidney for ZIKV infectivity. I infected primary human podocytes, renal glomerular endothelial cells (GECs), and mesangial cells with ZIKV. Viral infectivity was analyzed by means of microscopy, immunofluorescence, real-time reverse-transcription polymerase chain reaction (RT-PCR), and quantitative RT-PCR (qRT-PCR), and the proinflammatory cytokines interleukin 1β, interferon β, and RANTES (regulated on activation of normal T cells expressed and secreted) were assessed using qRT-PCR. I show that glomerular podocytes, renal GECs, and mesangial cells are permissive for ZIKV infection. ZIKV infectivity was confirmed in all 3 cell types by means of immunofluorescence staining, RT-PCR, and qRT-PCR, and qRT-PCR analysis revealed increased transcriptional induction of interleukin 1β, interferon β, and RANTES in ZIKV-infected podocytes at 72 hours, compared with renal GECs and mesangial cells. The findings of this study support the notion that the glomerulus may serve as an amplification reservoir for ZIKV in the renal compartment. The impact of ZIKV infection in the human renal compartment is unknown and will require further study. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.
Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J
2018-02-21
Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.
The Dynamics of Glomerular Ultrafiltration in the Rat
Brenner, Barry M.; Troy, Julia L.; Daugharty, Terrance M.
1971-01-01
Using a unique strain of Wistar rats endowed with glomeruli situated directly on the renal cortical surface, we measured glomerular capillary pressures using servo-nulling micropipette transducer techniques. Pressures in 12 glomerular capillaries from 7 rats averaged 60 cm H2O, or approximately 50% of mean systemic arterial values. Wave form characteristics for these glomerular capillaries were found to be remarkably similar to those of the central aorta. From similarly direct estimates of hydrostatic pressures in proximal tubules, and colloid osmotic pressures in systemic and efferent arteriolar plasmas, the net driving force for ultrafiltration was calculated. The average value of 14 cm H2O is lower by some two-thirds than the majority of estimates reported previously based on indirect techniques. Single nephron GFR (glomerular filtration rate) was also measured in these rats, thereby permitting calculation of the glomerular capillary ultrafiltration coefficient. The average value of 0.044 nl sec−1 cm H2O−1 glomerulus−1 is at least fourfold greater than previous estimates derived from indirect observations. PMID:5097578
Early chronic low-level lead exposure produces glomerular hypertrophy in young C57BL/6J mice☆
Basgen, John M.; Sobin, Christina
2014-01-01
Early chronic lead exposure continues to pose serious health risks for children, particularly those living in lower socioeconomic environments. This study examined effects on developing glomeruli in young C57BL/6J mice exposed to low (30 ppm), higher (330 ppm) or no lead via dams’ drinking water from birth to sacrifice on post-natal day 28. Low-level lead exposed mice [BLL mean (SD); 3.19 (0.70) μg/dL] had an increase in glomerular volume but no change in podocyte number compared to control mice [0.03 (0.01) μg/dL]. Higher-level lead exposed mice [14.68 (2.74) μg/dL] had no change in either glomerular volume or podocyte number. The increase in glomerular volume was explained by increases in glomerular capillary and mesangial volumes with no change in podocyte volume. Early chronic lead exposure yielding very low blood lead levels alters glomerular development in pre-adolescent animals. PMID:24300173
Liver function testing with nuclear medicine techniques is coming of age.
Bennink, Roelof J; Tulchinsky, Mark; de Graaf, Wilmar; Kadry, Zakiyah; van Gulik, Thomas M
2012-03-01
Liver function is a broad term, as the organ participates in a multitude of different physiological and biochemical processes, including metabolic, synthetic, and detoxifying functions. However, it is the function of the hepatocyte that is central to sustaining normal life and dealing with disease states. When the liver begins to fail in severely ill patients, it forecasts a terminal outcome. However, unlike the glomerular filtration rate which clearly quantifies the key renal function, at most practice sites, there is no clinically available quantitative test for liver function. Although it is commonplace to assess indirect evidence of that function (by measuring blood levels of its end products and by-products) and to detect an acute injury (by following rising transaminases), a widely available test that would directly measure hepatocellular function is lacking. This article reviews current knowledge on liver function studies and focuses on those nuclear medicine tests available to study the whole liver and regional liver function. The clinical application driving these tests, prediction of remnant liver function after partial hepatectomy for primary liver malignancy or metastatic disease, is addressed here in detail. The test was recently validated for this specific application and was shown to be better than the current standard of practice (computed tomography volumetry), particularly in patients with hepatic comorbidities like cirrhosis, steatosis, or cholestasis. Furthermore, early assessment of regional liver function increase after preoperative portal vein embolization becomes possible with this technology. The limiting factor to a wider acceptance of this test is based on the lack of clinical software that would allow calculation of liver function parameters. This article provides information that enables a clinical nuclear medicine facility to provide this test using readily available equipment. Furthermore, it addresses emerging clinical applications that are under investigation. Copyright © 2012 Elsevier Inc. All rights reserved.
Randles, Michael J; Woolf, Adrian S; Huang, Jennifer L; Byron, Adam; Humphries, Jonathan D; Price, Karen L; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J; Long, David A; Lennon, Rachel
2015-12-01
Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. Copyright © 2015 by the American Society of Nephrology.
[Renal excretion of methylene-diphosphate-technium-99m. Preliminary observations].
Vattimo, A; Martini, G
1983-11-30
The purpose of this study is to elucidate the mechanism of the renal excretion of 99mTc-MDP in man. We compared the renal clearance of 99mTc-MDP and 51Cr-EDTA (glomerular filtration rate agent). Since the 99mTc-MDP is bound to the plasma protein, the free fraction was calculated by dialysis. The clearances were obtained by single-injection technique. The plasma disappearance of the tracers was resolved into three exponential functions and area was calculated. The clearance was calculated by dividing the amount of the tracers excreted during the first four hours and the plasma area. In this study no difference was found in the clearance of the two agents. These findings suggest that the renal excretion of diphosphonate is related to the glomerular filtration rate.
An overview of glomerular filtration rate testing in dogs and cats
Von Hendy-Willson, Vanessa E.; Pressler, Barrak M.
2010-01-01
Determination of glomerular filtration rate (GFR) is a valuable, yet underused, diagnostic tool for evaluating renal function in dogs and cats. This article first reviews the hormonal and hemodynamic factors which contribute to GFR, followed by a description of considerations when selecting a pharmacokinetic model and methods of animal-to-animal standardization. The best-characterized existing GFR markers, including creatinine, radiolabeled markers, and iohexol, are reviewed in depth, as well as alternative but lesser-used techniques. A weighted means analysis of reported GFR measurements in healthy dogs and cats and a review of selected studies that have examined GFR alterations in animals with naturally-occurring and experimental diseases provide the reader with preliminary guidelines on expected GFR results in these species and disease conditions. PMID:20541957
Lifestyle factors and indices of kidney function in the Framingham Heart Study
USDA-ARS?s Scientific Manuscript database
Background and objectives: Lifestyle characteristics are modifiable factors that could be targeted as part of chronic kidney disease (CKD) prevention. We sought to determine the association of lifestyle characteristics with incident estimated glomerular filtration rate (eGFR)<60mL/min/1.73m2 and rap...
Can zero-hour cortical biopsy predict early graft outcomes after living donor renal transplantation?
Rathore, Ranjeet Singh; Mehta, Nisarg; Mehta, Sony Bhaskar; Babu, Manas; Bansal, Devesh; Pillai, Biju S; Sam, Mohan P; Krishnamoorthy, Hariharan
2017-11-01
The aim of this study was to identify relevance of subclinical pathological findings in the kidneys of living donors and correlate these with early graft renal function. This was a prospective study on 84 living donor kidney transplant recipients over a period of two years. In all the donors, cortical wedge biopsy was taken and sent for assessment of glomerular, mesangial, and tubule status. The graft function of patients with normal histology was compared with those of abnormal histological findings at one, three, and six months, and one year post-surgery. Most abnormal histological findings were of mild degree. Glomerulosclerosis (GS, 25%), interstitial fibrosis (IF, 13%), acute tubular necrosis (ATN 5%), and focal tubal atrophy (FTA, 5%) were the commonly observed pathological findings in zero-hour biopsies. Only those donors who had histological changes of IF and ATN showed progressive deterioration of renal function at one month, three months, six months, and one year post-transplantation. In donors with other histological changes, no significant effect on graft function was observed. Zero-hour cortical biopsy gave us an idea of the general status of the donor kidney and presence or absence of subclinical pathological lesions. A mild degree of subclinical and pathological findings on zero-hour biopsy did not affect early graft renal function in living donor kidney transplantation. Zero-hour cortical biopsy could also help in discriminating donor-derived lesions from de novo alterations in the kidney that could happen subsequently.
Paterson, Euan N; Neville, Charlotte E; Silvestri, Giuliana; Montgomery, Shannon; Moore, Evelyn; Silvestri, Vittorio; Cardwell, Christopher R; MacGillivray, Tom J; Maxwell, Alexander P; Woodside, Jayne V; McKay, Gareth J
2018-04-27
Associations between dietary patterns and chronic kidney disease are not well established, especially in European populations. We conducted a cross-sectional study of 1033 older Irish women (age range 56-100 years) with a restricted lifestyle. Dietary intake was assessed using a food frequency questionnaire. Renal function was determined by estimated glomerular filtration rate. Two dietary patterns were identified within the study population using factor analysis. A significant negative association was found between unhealthy dietary pattern adherence and renal function in both unadjusted and adjusted models controlling for potential confounding variables (p for trend <0.001), with a mean difference in estimated glomerular filtration rate of -6 ml/min/1.73 m 2 between those in the highest fifth of adherence to the unhealthy dietary pattern compared to the lowest, in the fully adjusted model. Chronic kidney disease risk was significantly greater for the highest fifth, compared to the lowest fifth of unhealthy dietary pattern adherence in adjusted models (adjusted odds ratio = 2.62, p < 0.001). Adherence to the healthy dietary pattern was not associated with renal function or chronic kidney disease in adjusted models. In this cohort, an unhealthy dietary pattern was associated with lower renal function and greater prevalence of chronic kidney disease.
Effects of high-tone external muscle stimulation on renal function in healthy volunteers.
Peckova, Miroslava; Havlin, Jan; Charvat, Jiri; Horackova, Miroslava; Schück, Otto
2013-01-01
Hightone external muscle stimulation (HTEMS) ameliorates pain and discomfort of patients with polyneuropathy. Since some patients reported about an urge to urinate during these treatments, the potential effects of HTEMS application on renal function were investigated. For this purpose in healthy subjects, we analyzed in the current study the acute effects of electrotherapy on parameters of renal function. 24 healthy volunteers (14 women and 10 men), mean age 26 ± 4 years, were enrolled. The protocol was composed of a run-in period, a pre-treatment period, the active HTEMS treatment period of both lower extremities and the post-treatment period. The duration of each period was 60 min. Urine collection and blood samples were taken at the beginning and end of each period. To achieve a sufficient diuresis, the fluid intake was adapted to the amount of diuresis. Parameters of renal function included diuresis, glomerular filtration rate (endogenous creatinine clearance) and absolute and fractional sodium excretion. Moreover blood pressure and heart rate were monitored. HTEMS led to a significant increase of creatinine clearance and fractional sodium excretion which was limited to the active treatment period. These findings show for the first time that HTEMS can transiently increase glomerular filtration rate associated with a decreased tubular sodium reabsorption. The underlying mechanisms are to be elucidated.
Kelchner, J; McIntosh, J R; Boedecker, E; Guggenheim, S; McIntosh, R M
1976-09-15
Serial administration of mercuric chloride to rats was followed by development of antibodies to tubular basement membrane and renal tubular epithelial antigen (RTE) and glomerulonephritis characterized by granular deposits of hosts IgG, C3 and RTE along the glomerular capillary walls. The glomerular fixed antibody was directed against RTE. These studies suggest that tubular injury by mercury may lead to release of RTE and autosensitization and subsequent antibody production to this antigen result in formation of and glomerular deposition of circulating immunopathogenic complexes (RTE-anti-RTE) and glomerular morphologic alterations.
Brinkworth, Grant D; Buckley, Jonathan D; Noakes, Manny; Clifton, Peter M
2010-04-01
A frequently cited concern of very-low-carbohydrate diets is the potential for increased risk of renal disease associated with a higher protein intake. However, to date, no well-controlled randomized studies have evaluated the long-term effects of very-low-carbohydrate diets on renal function. To study this issue, renal function was assessed in 68 men and women with abdominal obesity (age 51.5+/-7.7 years, body mass index [calculated as kg/m(2)] 33.6+/-4.0) without preexisting renal dysfunction who were randomized to consume either an energy-restricted ( approximately 1,433 to 1,672 kcal/day), planned isocaloric very-low-carbohydrate (4% total energy as carbohydrate [14 g], 35% protein [124 g], 61% fat [99 g]), or high-carbohydrate diet (46% total energy as carbohydrate [162 g], 24% protein [85 g], 30% fat [49 g]) for 1 year. Body weight, serum creatinine, estimated glomerular filtration rate and urinary albumin excretion were assessed before and after 1 year (April 2006-July 2007). Repeated measures analysis of variance was conducted. Weight loss was similar in both groups (very-low-carbohydrate: -14.5+/-9.7 kg, high-carbohydrate: -11.6+/-7.3 kg; P=0.16). By 1 year, there were no changes in either group in serum creatinine levels (very-low-carbohydrate: 72.4+/-15.1 to 71.3+/-13.8 mumol/L, high-carbohydrate: 78.0+/-16.0 to 77.2+/-13.2 mumol/L; P=0.93 time x diet effect) or estimated glomerular filtration rate (very-low-carbohydrate: 90.0+/-17.0 to 91.2+/-17.8 mL/min/1.73 m(2), high-carbohydrate: 83.8+/-13.8 to 83.6+/-11.8 mL/min/1.73 m(2); P=0.53 time x diet effect). All but one participant was classified as having normoalbuminuria at baseline, and for these participants, urinary albumin excretion values remained in the normoalbuminuria range at 1 year. One participant in high-carbohydrate had microalbuminuria (41.8 microg/min) at baseline, which decreased to a value of 3.1 microg/min (classified as normoalbuminuria) at 1 year. This study provides preliminary evidence that long-term weight loss with a very-low-carbohydrate diet does not adversely affect renal function compared with a high-carbohydrate diet in obese individuals with normal renal function. Copyright (c) 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Marui, Akira; Okabayashi, Hitoshi; Komiya, Tatsuhiko; Tanaka, Shiro; Furukawa, Yutaka; Kita, Toru; Kimura, Takeshi; Sakata, Ryuzo
2013-01-01
OBJECTIVES High serum creatinine is considered an independent risk factor for poor outcomes following coronary artery bypass grafting (CABG). However, the impact of occult renal impairment (ORI), defined as an impaired glomerular filtration rate (GFR) with a normal serum creatinine (SCr) level, remains unclear. Thus, we sought to investigate the impact of ORI on outcomes after CABG. METHODS Among patients undergoing their first percutaneous coronary intervention (PCI) or CABG enrolled in the CREDO-Kyoto Registry (a registry of first-time PCI and CABG patients in Japan), 1842 patients with normal SCr levels undergoing CABG were enrolled in the study. Patients were divided into two groups based on preoperative estimated GFR calculated by the Cockcroft–Gault equation: 1339 patients with estimated GFR of ≥60 ml/min/1.73 m2 (normal group) and 503 with estimated GFR of <60 ml/min/1.73 m2 (ORI group). RESULTS Preoperative estimated GFR differed between the groups (51.3 ± 6.6 vs 85.8 ± 23.0 ml/min/1.73 m2, P < 0.01). ORI was associated with high in-hospital mortality (3.2 vs 1.0%, P < 0.01) and need for dialysis (2.0 vs 0.2%, P < 0.01). In terms of long-term outcomes, ORI was associated with high mortality compared with the normal (hazard ratio [95% confidence interval]: 1.72 [1.16–2.54], P < 0.01) and high incidence of composite cardiovascular events (death, stroke or myocardial infarction: 1.53 [1.16–2.02], P < 0.01). CONCLUSIONS ORI was an independent risk factor for early and late death as well as cardiovascular events in patients undergoing CABG with normal SCr levels. A more accurate evaluation of renal function through a combination of SCr and estimated GFR is needed in patients with normal SCr levels. PMID:23793709
Marui, Akira; Okabayashi, Hitoshi; Komiya, Tatsuhiko; Tanaka, Shiro; Furukawa, Yutaka; Kita, Toru; Kimura, Takeshi; Sakata, Ryuzo
2013-10-01
High serum creatinine is considered an independent risk factor for poor outcomes following coronary artery bypass grafting (CABG). However, the impact of occult renal impairment (ORI), defined as an impaired glomerular filtration rate (GFR) with a normal serum creatinine (SCr) level, remains unclear. Thus, we sought to investigate the impact of ORI on outcomes after CABG. Among patients undergoing their first percutaneous coronary intervention (PCI) or CABG enrolled in the CREDO-Kyoto Registry (a registry of first-time PCI and CABG patients in Japan), 1842 patients with normal SCr levels undergoing CABG were enrolled in the study. Patients were divided into two groups based on preoperative estimated GFR calculated by the Cockcroft-Gault equation: 1339 patients with estimated GFR of ≥ 60 ml/min/1.73 m(2) (normal group) and 503 with estimated GFR of <60 ml/min/1.73 m(2) (ORI group). Preoperative estimated GFR differed between the groups (51.3 ± 6.6 vs 85.8 ± 23.0 ml/min/1.73 m(2), P < 0.01). ORI was associated with high in-hospital mortality (3.2 vs 1.0%, P < 0.01) and need for dialysis (2.0 vs 0.2%, P < 0.01). In terms of long-term outcomes, ORI was associated with high mortality compared with the normal (hazard ratio [95% confidence interval]: 1.72 [1.16-2.54], P < 0.01) and high incidence of composite cardiovascular events (death, stroke or myocardial infarction: 1.53 [1.16-2.02], P < 0.01). ORI was an independent risk factor for early and late death as well as cardiovascular events in patients undergoing CABG with normal SCr levels. A more accurate evaluation of renal function through a combination of SCr and estimated GFR is needed in patients with normal SCr levels.
Venkatareddy, Madhusudan; Verma, Rakesh; Kalinowski, Anne; Patel, Sanjeevkumar R.; Shisheva, Assia
2016-01-01
The mechanisms by which the glomerular filtration barrier prevents the loss of large macromolecules and simultaneously, maintains the filter remain poorly understood. Recent studies proposed that podocytes have an active role in both the endocytosis of filtered macromolecules and the maintenance of the filtration barrier. Deletion of a key endosomal trafficking regulator, the class 3 phosphatidylinositol (PtdIns) 3-kinase vacuolar protein sorting 34 (Vps34), in podocytes results in aberrant endosomal membrane morphology and podocyte dysfunction. We recently showed that the vacuolation phenotype in cultured Vps34–deficient podocytes is caused by the absence of a substrate for the Vps34 downstream effector PtdIns 3-phosphate 5-kinase (PIKfyve), which phosphorylates Vps34-generated PtdIns(3)P to produce PtdIns (3,5)P2. PIKfyve perturbation and PtdIns(3,5)P2 reduction result in massive membrane vacuolation along the endosomal system, but the cell-specific functions of PIKfyve in vivo remain unclear. We show here that the genetic deletion of PIKfyve in endocytically active proximal tubular cells resulted in the development of large cytoplasmic vacuoles caused by arrested endocytic traffic progression at a late-endosome stage. In contrast, deletion of PIKfyve in glomerular podocytes did not significantly alter the endosomal morphology, even in age 18-month-old mice. However, on culturing, the PIKfyve-deleted podocytes developed massive cytoplasmic vacuoles. In summary, these data suggest that glomerular podocytes and proximal tubules have different requirements for PIKfyve function, likely related to distinct in vivo needs for endocytic flux. PMID:26825532
Morici, Nuccia; Savonitto, Stefano; Ponticelli, Claudio; Schrieks, Ilse C; Nozza, Anna; Cosentino, Francesco; Stähli, Barbara E; Perrone Filardi, Pasquale; Schwartz, Gregory G; Mellbin, Linda; Lincoff, A Michael; Tardif, Jean-Claude; Grobbee, Diederick E
2017-09-01
Worsening renal function during hospitalization for an acute coronary syndrome is strongly predictive of in-hospital and long-term outcome. However, the role of post-discharge worsening renal function has never been investigated in this setting. We considered the placebo cohort of the AleCardio trial comparing aleglitazar with standard medical therapy among patients with type 2 diabetes mellitus and a recent acute coronary syndrome. Patients who had died or had been admitted to hospital for heart failure before the 6-month follow-up, as well as patients without complete renal function data, were excluded, leaving 2776 patients for the analysis. Worsening renal function was defined as a >20% reduction in estimated glomerular filtration rate from discharge to 6 months, or progression to macroalbuminuria. The Cox regression analysis was used to determine the prognostic impact of 6-month renal deterioration on the composite of all-cause death and hospitalization for heart failure. Worsening renal function occurred in 204 patients (7.34%). At a median follow-up of 2 years the estimated rates of death and hospitalization for heart failure per 100 person-years were 3.45 (95% confidence interval [CI], 2.46-6.36) for those with worsening renal function, versus 1.43 (95% CI, 1.14-1.79) for patients with stable renal function. At the adjusted analysis worsening renal function was associated with the composite endpoint (hazard ratio 2.65; 95% CI, 1.57-4.49; P <.001). Post-discharge worsening renal function is not infrequent among patients with type 2 diabetes and acute coronary syndromes with normal or mildly depressed renal function, and is a strong predictor of adverse cardiovascular events. Copyright © 2017 Elsevier Inc. All rights reserved.
The rebirth of interest in renal tubular function.
Lowenstein, Jerome; Grantham, Jared J
2016-06-01
The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. Copyright © 2016 the American Physiological Society.
Haifler, Miki; Ristau, Benjamin T; Higgins, Andrew M; Smaldone, Marc C; Kutikov, Alexander; Zisman, Amnon; Uzzo, Robert G
2017-09-20
We sought to externally validate a mathematical formula for tumor contact surface area as a predictor of postoperative renal function in patients undergoing partial nephrectomy for renal cell carcinoma. We queried a prospectively maintained kidney cancer database for patients who underwent partial nephrectomy between 2014 and 2016. Contact surface area was calculated using data obtained from preoperative cross-sectional imaging. The correlation between contact surface area and perioperative variables was examined. The correlation between postoperative renal functional outcomes, contact surface area and the R.E.N.A.L. (radius, exophytic/endophytic properties, nearness of tumor to collecting system or sinus, anterior/posterior, location relative to polar lines and tumor touches main renal artery or vein) nephrometry score was also assessed. A total of 257 patients who underwent partial nephrectomy had sufficient data to enter the study. Median contact surface area was 14.5 cm 2 (IQR 6.2-36) and the median nephrometry score was 9 (IQR 7-10). Spearman correlation analysis showed that contact surface area correlated with estimated blood loss (r s = 0.42, p <0.001), length of stay (r s = 0.18, p = 0.005), and percent and absolute change in the estimated glomerular filtration rate (r s = -0.77 and -0.78, respectively, each p <0.001). On multivariable analysis contact surface area and nephrometry score were independent predictors of the absolute change in the estimated glomerular filtration rate (each p <0.001). ROC curve analysis revealed that contact surface area was a better predictor of a greater than 20% postoperative decline in the estimated glomerular filtration rate compared with the nephrometry score (AUC 0.94 vs 0.80). Contact surface area correlated with the change in postoperative renal function after partial nephrectomy. It can be used in conjunction with the nephrometry score to counsel patients about the risk of renal functional decline after partial nephrectomy. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Monosodium glutamate intake affect the function of the kidney through NMDA receptor.
Mahieu, Stella; Klug, Maximiliano; Millen, Néstor; Fabro, Ana; Benmelej, Adriana; Contini, Maria Del Carmen
2016-03-15
We investigated whether the chronic intake of monosodium glutamate (MSG) with food affects kidney function, and renal response to glycine. We also established if the NMDA receptors are involved in the changes observed. Male Wistar rats (5weeks old) were fed a diet supplemented with MSG (3g/kg b.w./day), five days a week, and spontaneous ingestion of a 1% MSG solution during 16weeks. NaCl rats were fed a diet with NaCl (1g/kg b.w./day) and 0.35% NaCl solution at the same frequency and time. Control group was fed with normal chow and tap water. We utilized clearance techniques to examine glomerular filtration rate (GFR) and cortical renal plasma flow (CRPF) response to glycine and glycine+MK-801 (antagonist NMDA-R), and we determined NMDA-R1 in kidney by immunohistochemistry. The addition of MSG in the diet of rats increased both GFR and CRPF with an increase of absolute sodium reabsorption. However, hyperfiltration was accompanied with a normal response to glycine infusion. Immunostain of kidney demonstrate that the NMDA receptor is upregulated in rats fed with MSG diet. NMDA-R antagonist MK-801 significantly reduced both the GFR and CRPF; however the percentage of reduction was significantly higher in the group MSG. MK-801 also reduces fractional excretion of water, sodium and potassium in the three groups. Renal NMDAR may be conditioned by the addition of MSG in the diet, favoring the hyperfiltration and simultaneously Na retention in the body. Copyright © 2016 Elsevier Inc. All rights reserved.
Aloni, Michel Ntetani; Ngiyulu, René Makwala; Gini-Ehungu, Jean-Lambert; Nsibu, Célestin Ndosimao; Ekila, Mathilde Bothale; Lepira, François Bompeka; Nseka, Nazaire Mangani
2014-01-01
The prevalence of Sickle cell disease is extremely high in Democratic Republic of Congo. Despite this high prevalence of the disease, data on renal abnormalities in children are rare. The study proposed to assess blood pressure, glomerular function, urea and uric acid levels in 65 steady state Congolese children with homozygous sickle cell disease and 67 normal controls. In Hb-SS group, blood pressure level tended to be lower than Hb-AA groups but there was no statistically significant difference (p>0.05) between the two groups. The absolute values for GFR corrected for BSA were significantly higher in Hb-SS group compared to Hb-AA group (130.5±34.1 ml/min/1.73 m2 vs 113.7±24.5 ml/min/1.73 m2; p = 0.004). Children with Hb-SS were more likely to hyperfiltrate (30.8% of subjects) than children with Hb-AA (6.1% of subjects). Proteinuria was found in 4 (6.2%) children with Hb-SS. Uric acid level was significantly increased in children with Hb-SS compared to corresponding values in control group (4.4±1.3 mg/dl vs 3.5±1.1 mg/dl; p<0.001). Urea level was significantly decreased compared to corresponding values in Hb-AA group (15.3±8.3 mg/dl vs 22.9±10.1 mg/dl; p<0.001). Hyperfiltration, low creatinine, lower urea and high uric acid are more common in children with sickle cell disease than in normal controls.
Frazier, Kendall S; Sobry, Cécile; Derr, Victoria; Adams, Mike J; Besten, Cathaline Den; De Kimpe, Sjef; Francis, Ian; Gales, Tracy L; Haworth, Richard; Maguire, Shaun R; Mirabile, Rosanna C; Mullins, David; Palate, Bernard; Doorten, Yolanda Ponstein-Simarro; Ridings, James E; Scicchitano, Marshall S; Silvano, Jérémy; Woodfine, Jennie
2014-07-01
Chronic administration of drisapersen, a 2'-OMe phosphorothioate antisense oligonucleotide (AON) to mice and monkeys resulted in renal tubular accumulation, with secondary tubular degeneration. Glomerulopathy occurred in both species with species-specific characteristics. Glomerular lesions in mice were characterized by progressive hyaline matrix accumulation, accompanied by the presence of renal amyloid and with subsequent papillary necrosis. Early changes involved glomerular endothelial hypertrophy and degeneration, but the chronic glomerular amyloid and hyaline alterations in mice appeared to be species specific. An immune-mediated mechanism for the glomerular lesions in mice was supported by early inflammatory changes including increased expression of inflammatory cytokines and other immunomodulatory genes within the renal cortex, increased stimulation of CD68 protein, and systemic elevation of monocyte chemotactic protein 1. In contrast, kidneys from monkeys given drisapersen chronically showed less severe glomerular changes characterized by increased mesangial and inflammatory cells, endothelial cell hypertrophy, and subepithelial and membranous electron-dense deposits, with ultrastructural and immunohistochemical characteristics of complement and complement-related fragments. Lesions in monkeys resembled typical features of C3 glomerulopathy, a condition described in man and experimental animals to be linked to dysregulation of the alternative complement pathway. Thus, inflammatory/immune mechanisms appear critical to glomerular injury with species-specific sensitivities for mouse and monkey. The lower observed proinflammatory activity in humans as compared to mice and monkeys may reflect a lower risk of glomerular injury in patients receiving AON therapy. © 2014 by The Author(s).
Arlet, Jean-Benoît; Ribeil, Jean-Antoine; Chatellier, Gilles; Eladari, Dominique; De Seigneux, Sophie; Souberbielle, Jean-Claude; Friedlander, Gérard; de Montalembert, Marianne; Pouchot, Jacques; Prié, Dominique; Courbebaisse, Marie
2012-08-06
Sickle cell disease (SCD) leads to tissue hypoxia resulting in chronic organ dysfunction including SCD associated nephropathy. The goal of our study was to determine the best equation to estimate glomerular filtration rate (GFR) in SCD adult patients. We conducted a prospective observational cohort study. Since 2007, all adult SCD patients in steady state, followed in two medical departments, have had their GFR measured using iohexol plasma clearance (gold standard). The Cockcroft-Gault, MDRD-v4, CKP-EPI and finally, MDRD and CKD-EPI equations without adjustment for ethnicity were tested to estimate GFR from serum creatinine. Estimated GFRs were compared to measured GFRs according to the graphical Bland and Altman method. Sixty-four SCD patients (16 men, median age 27.5 years [range 18.0-67.5], 41 with SS-genotype were studied. They were Sub-Saharan Africa and French West Indies natives and predominantly lean (median body mass index: 22 kg/m2 [16-33]). Hyperfiltration (defined as measured GFR >110 mL/min/1.73 m2) was detected in 53.1% of patients. Urinary albumin/creatinine ratio was higher in patients with hyperfiltration than in patients with normal GFR (4.05 mg/mmol [0.14-60] versus 0.4 mg/mmol [0.7-81], p = 0.01). The CKD-EPI equation without adjustment for ethnicity had both the lowest bias and the greatest precision. Differences between estimated GFRs using the CKP-EPI equation and measured GFRs decreased with increasing GFR values, whereas it increased with the Cockcroft-Gault and MDRD-v4 equations. We confirm that SCD patients have a high rate of glomerular hyperfiltration, which is frequently associated with microalbuminuria or macroalbuminuria. In non-Afro-American SCD patients, the best method for estimating GFR from serum creatinine is the CKD-EPI equation without adjustment for ethnicity. This equation is particularly accurate to estimate high GFR values, including glomerular hyperfiltration, and thus should be recommended to screen SCD adult patients at high risk for SCD nephropathy.
The effect of a low potassium diet on the glomerular zone of the adrenal cortex of rats.
Kawai, K; Sugihara, H; Tsuchiyama, H
1979-05-01
Rats were fed on low potassium diets in order to observe the effect of dietary low potassium on the adrenal cortex. The authors clarified morphological changes of the hypofunctional glomerular zone and compared these changes with those of the hyperfunctional glomerular zone. Three weeks after or 2 months after the start of a low potassium diet, slight narrowing of the glomerular zone of the adrenal cortex was observed followed by miniaturization of cells, presence of binuclear cells and an increase of lipid with enlarged lipid drops. Electron microscope mainly disclosed changes of mitochondrial cristae consisting of markedly reduced, enlarged and irregularly dilated cristae with shortening or elongation. Granules appeared in mitochondria. Lysosomes or dense bodies were enlarged. The Golgi's apparatus was atrophied but endoplasmic reticulum did not show remarkable changes. These changes were directly opposite to those of the hyperfunctional glomerular zone noted after a pottasium load or seen in sodium deficiency. Consequently, these changes were considered to be the changes of the hypofunctional glomerular zone associated with decrease of aldosterone production.
Watts, Kara L; Ghosh, Propa; Stein, Solomon; Ghavamian, Reza
2017-01-01
To assess the relationship between individual nephrometry score (NS) constituents (RENAL) on perioperative outcomes and renal function of the surgical kidney in patients undergoing laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy. Two hundred forty-five patients who underwent laparoscopic partial nephrectomy or robotic-assisted partial nephrectomy between 2005 and 2014 were retrospectively reviewed. Each renal mass' NS was calculated from preoperative computed tomography imaging. Multivariate regression analysis was used to evaluate the effect of NS variables on perioperative outcomes and change in overall renal function (as estimated by glomerular filtration rate) from preoperative to 1-year postoperative. A cohort analysis assessed the effect of NS variables on change in split renal function of the surgical kidney from pre- to postoperative based on nuclear medicine renal scintigraphy. Tumor radius (R), endophytic nature (E), and nearness to collecting system (N) variables significantly and incrementally predicted a longer operative time and warm ischemia time. Overall renal function based on glomerular filtration rate was not affected by any NS variable. However, percent function of the surgical kidney by renal scintigraphy significantly decreased postoperatively as R and E values increased. R, E, and N were associated with significant changes in warm ischemia time and operative time. R and E were associated with a significant decrease in split renal function of the surgical kidney at 1 year after surgery but not with overall renal function. R, E, and N are the NS constituents most relevant to perioperative outcomes and postoperative differential renal function after partial nephrectomy. Copyright © 2016. Published by Elsevier Inc.
Effects of water immersion on renal hemodynamics in normal man
NASA Technical Reports Server (NTRS)
Epstein, M.; Levinson, R.; Loutzenhiser, R.
1976-01-01
The present study was undertaken to delineate the effects of water immersion to the neck (NI) on renal plasma flow and glomerular filtration rate as assessed by the clearance of p-aminohippuric acid (PAH) and inulin, respectively. Nine normal male subjects were studied on two occasions, control and NI. The conditions of seated posture and time of day were identical. Immersion did not alter either clearance at a time when sodium excretion was increasing markedly. The constancy of PAH clearance during NI suggests that renal blood flow is unaltered and that the natriuresis of NI is mediated independently of alterations in overall renal perfusion. The sluggish decline of a natriuresis during recovery is consistent with the presence of a humoral factor contributing to the encountered natriuresis.
Sene, Letícia de Barros; Mesquita, Flávia Fernandes; de Moraes, Leonardo Nazário; Santos, Daniela Carvalho; Carvalho, Robson; Gontijo, José Antônio Rocha; Boer, Patrícia Aline
2013-01-01
Prior study shows that maternal protein-restricted (LP) 16-wk-old offspring have pronounced reduction of nephron number and arterial hypertension associated with unchanged glomerular filtration rate, besides enhanced glomerular area, which may be related to glomerular hyperfiltration/overflow and which accounts for the glomerular filtration barrier breakdown and early glomerulosclerosis. In the current study, LP rats showed heavy proteinuria associated with podocyte simplification and foot process effacement. TGF-β1 glomerular expression was significantly enhanced in LP. Isolated LP glomeruli show a reduced level of miR-200a, miR-141, miR-429 and ZEB2 mRNA and upregulated collagen 1α1/2 mRNA expression. By western blot analyzes of whole kidney tissue, we found significant reduction of both podocin and nephrin and enhanced expression of mesenchymal protein markers such as desmin, collagen type I and fibronectin. From our present knowledge, these are the first data showing renal miRNA modulation in the protein restriction model of fetal programming. The fetal-programmed adult offspring showed pronounced structural glomerular disorders with an accentuated and advanced stage of fibrosis, which led us to state that the glomerular miR-200 family would be downregulated by TGF-β1 action inducing ZEB 2 expression that may subsequently cause glomeruli epithelial-to-mesenchymal transition. PMID:23977013
Bomback, Andrew S; Canetta, Pietro A; Beck, Laurence H; Ayalon, Rivka; Radhakrishnan, Jai; Appel, Gerald B
2012-01-01
Adrenocorticotropic hormone (ACTH) has shown promising results in glomerular diseases resistant to conventional therapies, but the reported data have solely been from retrospective, observational studies. In this prospective, open-label study (NCT01129284), 15 subjects with resistant glomerular diseases were treated with ACTH gel (80 units subcutaneously twice weekly) for 6 months. Resistant membranous nephropathy (MN), minimal change disease (MCD), and focal segmental glomerulosclerosis (FSGS) were defined as failure to achieve sustained remission of proteinuria off immunosuppressive therapy with at least 2 treatment regimens; resistant IgA nephropathy was defined as >1 g/g urine protein:creatinine ratio despite maximally tolerated RAAS blockade. Remission was defined as stable or improved renal function with ≥50% reduction in proteinuria to <0.5 g/g (complete remission) or 0.5-3.5 g/g (partial remission). The study included 5 subjects with resistant idiopathic MN, 5 subjects with resistant MCD (n = 2)/FSGS (n = 3), and 5 subjects with resistant IgA nephropathy. Two resistant MN subjects achieved partial remission on ACTH therapy, although 3 achieved immunologic remission of disease (PLA(2)R antibody disappeared by 4 months of therapy). One subject with resistant FSGS achieved complete remission on ACTH; one subject with resistant MCD achieved partial remission but relapsed within 4 weeks of stopping ACTH. Two subjects with resistant IgA nephropathy demonstrated >50% reductions in proteinuria while on ACTH, with proteinuria consistently <1 g/g by 6 months. Three of 15 subjects reported significant steroid-like adverse effects with ACTH, including weight gain and hyperglycemia, prompting early termination of therapy without any clinical response. ACTH gel is a promising treatment for resistant glomerular diseases and should be studied further in controlled trials against currently available therapies for resistant disease. Copyright © 2012 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poelstra, K.; Baller, J.F.; Hardonk, M.J.
1991-04-01
It has been proposed, predominantly from ex vivo studies, that glomerular ADPase may function as an antithrombotic principle within the rat kidney. Therefore, intraglomerular platelet aggregation was studied in vivo in rats after impairment of glomerular ADPase activity using local X-irradiation (20 Gy). Biochemical assays in suspensions of glomeruli obtained from rats 24 hours after local X-irradiation (group I) demonstrated a significant reduction in ADPase activity as compared to sham treated rats (group II; p less than 0.01). Cytochemical observations at the ultrastructural level showed that this reduction in glomerular enzyme activity represents in particular ADPase activity detectable in themore » basement membrane. Following X-irradiation, intraglomerular platelet aggregation was quantitatively studied in two groups of rats. Both groups received X-irradiation of the left kidney (20 Gy). Twenty-four hours after X-irradiation, animals received an intravenous injection of either 0.5 ml of saline (group III; N = 6) or 0.5 ml of heterologous nephrotoxic serum (NTS; group IV; N = 6). Subsequently, 24 hours after this injection, platelet aggregation in left kidneys was compared with aggregation in contralateral non-X-irradiated kidneys. The results showed that while X-irradiation per se did not induce intraglomerular platelet aggregation as compared with the contralateral kidney (0.20 +/- 0.08% versus 0.17 +/- 0.06% platelet aggregation/glomerulus), a significant increase in platelet aggregation could be demonstrated in X-irradiated kidneys in the early phase of nephrotoxic serum nephritis as compared with the contralateral nephritic kidney. A potential effect of altered influx of inflammatory cells after X-irradiation could be excluded since no difference in H2O2 producing cells was observed between left and right kidneys.« less
Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury.
Hong, Quan; Zhang, Lu; Das, Bhaskar; Li, Zhengzhe; Liu, Bohan; Cai, Guangyan; Chen, Xiangmei; Chuang, Peter Y; He, John Cijiang; Lee, Kyung
2018-06-01
Podocyte injury and loss contribute to the progression of glomerular diseases, including diabetic kidney disease. We previously found that the glomerular expression of Sirtuin-1 (SIRT1) is reduced in human diabetic glomeruli and that the podocyte-specific loss of SIRT1 aggravated albuminuria and worsened kidney disease progression in diabetic mice. SIRT1 encodes an NAD-dependent deacetylase that modifies the activity of key transcriptional regulators affected in diabetic kidneys, including NF-κB, STAT3, p53, FOXO4, and PGC1-α. However, whether the increased glomerular SIRT1 activity is sufficient to ameliorate the pathogenesis of diabetic kidney disease has not been explored. We addressed this by inducible podocyte-specific SIRT1 overexpression in diabetic OVE26 mice. The induction of SIRT1 overexpression in podocytes for six weeks in OVE26 mice with established albuminuria attenuated the progression of diabetic glomerulopathy. To further validate the therapeutic potential of increased SIRT1 activity against diabetic kidney disease, we developed a new, potent and selective SIRT1 agonist, BF175. In cultured podocytes BF175 increased SIRT1-mediated activation of PGC1-α and protected against high glucose-mediated mitochondrial injury. In vivo, administration of BF175 for six weeks in OVE26 mice resulted in a marked reduction in albuminuria and in glomerular injury in a manner similar to podocyte-specific SIRT1 overexpression. Both podocyte-specific SIRT1 overexpression and BT175 treatment attenuated diabetes-induced podocyte loss and reduced oxidative stress in glomeruli of OVE26 mice. Thus, increased SIRT1 activity protects against diabetes-induced podocyte injury and effectively mitigates the progression of diabetic kidney disease. Published by Elsevier Inc.
Prolonged Baroreflex Activation Abolishes Salt-Induced Hypertension After Reductions in Kidney Mass.
Hildebrandt, Drew A; Irwin, Eric D; Lohmeier, Thomas E
2016-12-01
Chronic electric activation of the carotid baroreflex produces sustained reductions in sympathetic activity and arterial pressure and is currently being evaluated for therapy in patients with resistant hypertension. However, patients with significant impairment of renal function have been largely excluded from clinical trials. Thus, there is little information on blood pressure and renal responses to baroreflex activation in subjects with advanced chronic kidney disease, which is common in resistant hypertension. Changes in arterial pressure and glomerular filtration rate were determined in 5 dogs after combined unilateral nephrectomy and surgical excision of the poles of the remaining kidney to produce ≈70% reduction in renal mass. After control measurements, sodium intake was increased from ≈45 to 450 mol/d. While maintained on high salt, animals experienced increases in mean arterial pressure from 102±4 to 121±6 mm Hg and glomerular filtration rate from 40±2 to 45±2 mL/min. During 7 days of baroreflex activation, the hypertension induced by high salt was abolished (103±6 mm Hg) along with striking suppression of plasma norepinephrine concentration from 139±21 to 81±9 pg/mL, but despite pronounced blood pressure lowering, there were no significant changes in glomerular filtration rate (43±2 mL/min). All variables returned to prestimulation values during a recovery period. These findings indicate that after appreciable nephron loss, chronic suppression of central sympathetic outflow by baroreflex activation abolishes hypertension induced by high salt intake. The sustained antihypertensive effects of baroreflex activation occur without significantly compromising glomerular filtration rate in remnant nephrons. © 2016 American Heart Association, Inc.
Following specific podocyte injury captopril protects against progressive long term renal damage.
Zhou, Yu S; Ihmoda, Ihmoda A; Phelps, Richard G; Bellamy, Christopher Os; Turner, A Neil
2015-01-01
Angiotensin converting enzyme inhibitors (ACEi) reduce proteinuria and preserve kidney function in proteinuric renal diseases. Their nephroprotective effect exceeds that attributable to lowering of blood pressure alone. This study examines the potential of ACEi to protect from progression of injury after a highly specific injury to podocytes in a mouse model. We created transgenic (Podo-DTR) mice in which graded specific podocyte injury could be induced by a single injection of diphtheria toxin. Transgenic and wild-type mice were given the ACEi captopril in drinking water, or water alone, commencing 24h after toxin injection. Kidneys were examined histologically at 8 weeks and injury assessed by observers blinded to experimental group. After toxin injection, Podo-DTR mice developed acute proteinuria, and at higher doses transient renal impairment, which subsided within 3 weeks to be followed by a slow glomerular scarring process. Captopril treatment in Podo-DTR line 57 after toxin injection at 5ng/g body weight reduced proteinuria and ameliorated glomerular scarring, matrix accumulation and glomerulosclerosis almost to baseline (toxin: 17%; toxin + ACEi 10%, p<0.04; control 7% glomerular scarring). Podocyte counts were reduced after toxin treatment and showed no recovery irrespective of captopril treatment (7.1 and 7.3 podocytes per glomerular cross section in water and captopril-treated animals compared with 8.2 of wild-type controls, p<0.05). Observations in Podo-DTR mice support the hypothesis that continuing podocyte dysfunction is a key abnormality in proteinuric disease. Our model is ideal for studying strategies to protect the kidney from progressive injury following podocyte depletion. Demonstrable protective effects from captopril occur, despite indiscernible preservation or restoration of podocyte counts, at least after this degree of relatively mild injury.
Cristelli, M P; Cofán, F; Rico, N; Trullàs, J C; Manzardo, C; Agüero, F; Bedini, J L; Moreno, A; Oppenheimer, F; Miro, J M
2017-02-10
Accurately determining renal function is essential for clinical management of HIV patients. Classically, it has been evaluated by estimating glomerular filtration rate (eGFR) with the MDRD-equation, but today there is evidence that the new Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation has greater diagnostic accuracy. To date, however, little information exists on patients with HIV-infection. This study aimed to evaluate eGFR by CKD-EPI vs. MDRD equations and to stratify renal function according to KDIGO guidelines. Cross-sectional, single center study including adult patients with HIV-infection. Four thousand five hundred three patients with HIV-infection (864 women; 19%) were examined. Median age was 45 years (IQR 37-52), and median baseline creatinine was 0.93 mg/dL (IQR 0.82-1.05). A similar distribution of absolute measures of eGFR was found using both formulas (p = 0.548). Baseline median eGFR was 95.2 and 90.4 mL/min/1.73 m 2 for CKD-EPI and MDRD equations (p < 0.001), respectively. Of the 4503 measurements, 4109 (91.2%) agreed, with a kappa index of 0.803. MDRD classified 7.3% of patients as "mild reduced GFR" who were classified as "normal function" with CKD-EPI. Using CKD-EPI, it was possible to identify "normal function" (>90 mL/min/1.73 m 2 ) in 73% patients and "mild reduced GFR" (60-89 mL/min/1.73 m 2 ) in 24.3% of the patients, formerly classified as >60 mL/min/1.73 m 2 with MDRD. There was good correlation between CKD-EPI and MDRD. Estimating renal function using CKD-EPI equation allowed better staging of renal function and should be considered the method of choice. CKD-EPI identified a significant proportion of patients (24%) with mild reduced GFR (60-89 mL/min/1.73 m 2 ).
Interconnected network motifs control podocyte morphology and kidney function.
Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi
2014-02-04
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Interconnected Network Motifs Control Podocyte Morphology and Kidney Function
Azeloglu, Evren U.; Hardy, Simon V.; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y.; Fang, Wei; Xiong, Huabao; Neves, Susana R.; Jain, Mohit R.; Li, Hong; Ma’ayan, Avi; Gordon, Ronald E.; He, John Cijiang; Iyengar, Ravi
2014-01-01
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3′,5′-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element–binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor–driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609
Tran, Cheryl L; Sethi, Sanjeev; Murray, David; Cramer, Carl H; Sas, David J; Willrich, Maria; Smith, Richard J; Fervenza, Fernando C
2016-04-01
Dense deposit disease (DDD) is a rare glomerular disease caused by an uncontrolled activation of the alternative complement pathway leading to end-stage renal disease in 50 % of patients. As such, DDD has been classified within the spectrum of complement component 3 (C3) glomerulopathies due to its pathogenesis from alternative pathway dysregulation. Conventional immunosuppressive therapies have no proven effectiveness. Eculizumab, a terminal complement inhibitor, has been reported to mitigate disease in some cases. We report on the efficacy of eculizumab in a pediatric patient who failed to respond to cyclophosphamide, corticosteroids, and plasma exchange. Complement biomarker profiling was remarkable for low serum C3, low properdin, and elevated soluble C5b-9. Consistent with these findings, the alternative pathway functional assay was abnormally low, indicative of alternative pathway activity, although neither C3-nephritic factors nor Factor H autoantibodies were detected. Eculizumab therapy was associated with significant improvement in proteinuria and renal function allowing discontinuation of hemodialysis (HD). Repeat C3 and soluble C5b-9 levels normalized, showing that terminal complement pathway activity was successfully blocked while the patient was receiving eculizumab therapy. Repeat testing for alternative pathway activation allowed for a successful decrease in eculizumab dosing. The case reported here demonstrates the successful recovery of renal function in a pediatric patient on HD following the use of eculizumab.
Hindryckx, An; Raaijmakers, Anke; Levtchenko, Elena; Allegaert, Karel; De Catte, Luc
2017-12-01
To evaluate renal blood flow and renal volume for the prediction of postnatal renal function in fetuses with solitary functioning kidney (SFK). Seventy-four SFK fetuses (unilateral renal agenesis [12], multicystic dysplastic kidney [36], and severe renal dysplasia [26]) were compared with 58 healthy fetuses. Peak systolic velocity (PSV), pulsatility index (PI), and resistance index (RI) of the renal artery (RA) were measured; 2D and 3D (VOCAL) volumes were calculated. Renal length and glomerular filtration rate (GFR) were obtained in SFK children (2 years). Compared with the control group, the PSV RA was significantly lower in nonfunctioning kidneys and significantly higher in SFK. Volume measurements indicated a significantly larger volume of SFK compared with healthy kidneys. All but 4 children had GFR above 70 mL/min/1.73 m 2 , and compensatory hypertrophy was present in 69% at 2 years. PSV RA and SFK volume correlated with postnatal renal hypertrophy. No correlation between prenatal and postnatal SFK volume and GFR at 2 years was demonstrated. Low PSV RA might have a predictive value for diagnosing a nonfunctioning kidney in fetuses with a SFK. We demonstrated a higher PSV RA and larger renal volume in the SFK compared with healthy kidneys. © 2017 John Wiley & Sons, Ltd.
Ruiz-Argüelles, Alejandro; Gastélum-Cano, Jose M; Méndez-Huerta, Mariana A; Rodríguez-Gallegos, Alma B; Ruiz-Argüelles, Guillermo J
2018-06-15
Glomerular filtration rate (GFR) is partially impaired in patients with multiple sclerosis (MS). When given chemotherapy before receiving hematopoietic stem-cell transplantation, GFR might be further deteriorated. To measure the effect of cyclophosphamide on GFR in patients with MS who undergo chemotherapy. We estimated GFR based on creatinine and cystatin C plasma concentrations in patients undergoing autologous hematopoietic stem-cell transplantation to treat their MS. Baseline GFR values were lower in the 28 patients with MS than in the 20 healthy individuals. Also, according to the Chronic Kidney Disease-Epidemiology Collaborative Group (CKD-EPI) 2012 Creat-CysC equation criteria, 4 of 28 patients were classified as having chronic kidney disease (CKD) before receiving the chemotherapy drugs. After receiving 4 × 50 mg per kg body weight cyclophosphamide, abnormal GFR results were recorded in 12 of 28 patients. Renal function must be monitored in patients with MS undergoing autologous stem-cell transplantation. Also, chemotherapy should be constrained as much as possible to prevent further deterioration of renal function.
Developmental changes in renal tubular transport - An overview
Gattineni, Jyothsna; Baum, Michel
2013-01-01
The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. None the less, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development. PMID:24253590
Developmental changes in renal tubular transport-an overview.
Gattineni, Jyothsna; Baum, Michel
2015-12-01
The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.
Morello, Roy; Lee, Brendan
2002-05-01
In recent years, our understanding of the molecular basis of kidney development has benefited from the study of rare genetic diseases affecting renal function. This has especially been the case with the differentiation of the highly specialized podocyte in the pathogenesis of human disorders and mouse phenotypes affecting the renal filtration barrier. This filtration barrier represents the end product of a complex series of signaling events that produce a tripartite structure consisting of interdigitating podocyte foot processes with intervening slit diaphragms, the glomerular basement membrane, and the fenestrated endothelial cell. Dysregulation of unique cytoskeletal and extracellular matrix proteins in genetic forms of nephrotic syndrome has shown how specific structural proteins contribute to podocyte function and differentiation. However, much less is known about the transcriptional determinants that both specify and maintain this differentiated cell. Our studies of a skeletal malformation syndrome, nail-patella syndrome, have shown how the LIM homeodomain transcription factor, Lmx1b, contributes to transcriptional regulation of glomerular basement membrane collagen expression by podocytes. Moreover, they raise intriguing questions about more global transcriptional regulation of podocyte morphogenesis.
Sun, Yijuan; Horowitz, Bruce L; Servilla, Karen S; Fair, Joanna R; Vigil, Darlene; Ganta, Kavitha; Massie, Larry; Tzamaloukas, Antonios H
2017-03-20
A 56-year-old man with stable chronic kidney disease (CKD) for two years following a single episode of calcium oxalate urolithiasis developed progressive elevation of his serum creatinine concentration. Urinalysis revealed pyuria and white cell casts, a few red blood cells, minimal proteinuria, and no crystals. Urine culture was sterile. Gallium scintigraphy was consistent with interstitial nephritis. Proton pump inhibitor intake was discontinued, and a short course of oral corticosteroids was initiated. Percutaneous kidney biopsy, performed because of the continued deterioration of renal function to a minimum estimated glomerular filtration rate (eGFR) value of 15 mL/min per 1.73 m 2 and persistent pyuria, revealed deposition of oxalate crystals in the tubules and interstitium, pronounced tubular changes, and interstitial nephritis and fibrosis. Urinary oxalate excretion was very high, in the range usually associated with primary hyperoxaluria. However, investigations for primary or enteric hyperoxaluria were negative. He reported a diet based on various nuts high in oxalate content. Estimated oxalate content in the diet was, for years, approximately four times higher than that in the average American diet. The institution of a diet low in oxalates resulted in the rapid normalization of urinary oxalate excretion and urinary sediment and in the slow, continuous improvement of renal function to near normal levels (eGFR 59 mL/min/1.73 m 2 ) before his death from a brain malignancy 3.5 years later. The manifestations of nephropathy secondary to dietary hyperoxaluria, including the urine findings, can be indistinguishable from other types of interstitial nephritis. The diagnosis of dietary hyperoxaluria requires careful dietary history and a kidney biopsy. Identifying dietary hyperoxaluria as the cause of CKD is important because the decrease in dietary oxalate intake without any other measures can lead to sustained improvement in renal function.
Cooper, William A; O'Brien, Sean M; Thourani, Vinod H; Guyton, Robert A; Bridges, Charles R; Szczech, Lynda A; Petersen, Rebecca; Peterson, Eric D
2006-02-28
Although patients with end-stage renal disease are known to be at high risk for mortality after coronary artery bypass graft (CABG) surgery, the impact of lesser degrees of renal impairment has not been well studied. The purpose of this study was to compare outcomes in patients undergoing CABG with a range from normal renal function to dependence on dialysis. We reviewed 483,914 patients receiving isolated CABG from July 2000 to December 2003, using the Society of Thoracic Surgeons National Adult Cardiac Database. Glomerular filtration rate (GFR) was estimated for patients with the use of the Modification of Diet in Renal Disease study formula. Multivariable logistic regression was used to determine the association of GFR with operative mortality and morbidities (stroke, reoperation, deep sternal infection, ventilation >48 hours, postoperative stay >2 weeks) after adjustment for 27 other known clinical risk factors. Preoperative renal dysfunction (RD) was common among CABG patients, with 51% having mild RD (GFR 60 to 90 mL/min per 1.73 m2, excludes dialysis), 24% moderate RD (GFR 30 to 59 mL/min per 1.73 m2, excludes dialysis), 2% severe RD (GFR <30 mL/min per 1.73 m2, excludes dialysis), and 1.5% requiring dialysis. Operative mortality rose inversely with declining renal function, from 1.3% for those with normal renal function to 9.3% for patients with severe RD not on dialysis and 9.0% for those who were dialysis dependent. After adjustment for other covariates, preoperative GFR was one of the most powerful predictors of operative mortality and morbidities. Preoperative RD is common in the CABG population and carries important prognostic importance. Assessment of preoperative renal function should be incorporated into clinical risk assessment and prediction models.
Sun, Yijuan; Horowitz, Bruce L; Servilla, Karen S; Fair, Joanna R; Vigil, Darlene; Ganta, Kavitha; Massie, Larry
2017-01-01
A 56-year-old man with stable chronic kidney disease (CKD) for two years following a single episode of calcium oxalate urolithiasis developed progressive elevation of his serum creatinine concentration. Urinalysis revealed pyuria and white cell casts, a few red blood cells, minimal proteinuria, and no crystals. Urine culture was sterile. Gallium scintigraphy was consistent with interstitial nephritis. Proton pump inhibitor intake was discontinued, and a short course of oral corticosteroids was initiated. Percutaneous kidney biopsy, performed because of the continued deterioration of renal function to a minimum estimated glomerular filtration rate (eGFR) value of 15 mL/min per 1.73 m2 and persistent pyuria, revealed deposition of oxalate crystals in the tubules and interstitium, pronounced tubular changes, and interstitial nephritis and fibrosis. Urinary oxalate excretion was very high, in the range usually associated with primary hyperoxaluria. However, investigations for primary or enteric hyperoxaluria were negative. He reported a diet based on various nuts high in oxalate content. Estimated oxalate content in the diet was, for years, approximately four times higher than that in the average American diet. The institution of a diet low in oxalates resulted in the rapid normalization of urinary oxalate excretion and urinary sediment and in the slow, continuous improvement of renal function to near normal levels (eGFR 59 mL/min/1.73 m2) before his death from a brain malignancy 3.5 years later. The manifestations of nephropathy secondary to dietary hyperoxaluria, including the urine findings, can be indistinguishable from other types of interstitial nephritis. The diagnosis of dietary hyperoxaluria requires careful dietary history and a kidney biopsy. Identifying dietary hyperoxaluria as the cause of CKD is important because the decrease in dietary oxalate intake without any other measures can lead to sustained improvement in renal function. PMID:28435765
McCord, Kelly; Steyn, Philip F; Lunn, Katharine F
2008-07-01
A 12-year-old, 6 kg, castrated male Siamese-cross cat was referred for investigation of an abdominal mass. The cat was found to have a left perinephric pseudocyst (PNP), accompanied by azotemia, with a small right kidney detected on ultrasound. Glomerular filtration rate (GFR) was determined by renal scintigraphy and was found to be low, with the left kidney contributing 64% of the total GFR. Percutaneous ultrasound-guided drainage of the PNP did not improve the GFR, and fluid reaccumulated within a short period of time. Laparoscopic fenestration of the cyst capsule was performed to allow for permanent drainage. The PNP did not recur, renal values progressively improved, and 8 months after the capsulotomy the GFR of the left kidney had increased by 50%, while renal function remained static on the right side.
An unusual case of acute kidney injury due to vancomycin lessons learnt from reliance on eGFR.
Barraclough, Katherine; Harris, Marianne; Montessori, Val; Levin, Adeera
2007-08-01
We present a case of renal impairment in an emaciated HIV-infected male that initially went unrecognized because of reliance on serum creatinine and estimated glomerular filtration rate (eGFR). Inaccurate vancomycin dosing led to toxic drug levels (66 mg/l), associated with acute and severe worsening of kidney function. This occurred in the context of escalating doses of vancomycin given in the presence of changing kidney function, albeit kidney function that always remained well within the normal range (serum creatinine 29 - 42 mumol/l). In the absence of other plausible explanations, a presumptive diagnosis of vancomycin nephrotoxicity was made. Given the rarity of this diagnosis in the current era, we discuss the pathophysiology of vancomycin nephrotoxicity. We also explore the potential reasons for inaccuracy of GFR prediction equations in the HIV population, and discuss the potential pitfalls associated with application of eGFR or even serum creatinine without appropriate understanding of their limitations. We believe our case highlights a number of important teaching points: Vancomycin nephrotoxitiy is rare but can occur in the setting of kidney dysfunction. Current assessment of kidney function using creatinine and eGFR requires awareness of the clinical caveats in which these measures may be misleading. Acute changes in kidney function, irrespective of the test used, should be contextualized to the individual situation. Persons with HIV and low muscle mass constitute a specific subgroup in whom assessment of kidney function may be problematic using creatinine. We support ongoing efforts to develop or refine equations for specific unique and easily identifiable populations.
Ma, Ji; Matsusaka, Taiji; Yang, Hai-Chun; Zhong, Jianyong; Takagi, Nobuaki; Fogo, Agnes B; Kon, Valentina; Ichikawa, Iekuni
2011-07-01
Our previous studies using puromycin aminonucleoside (PAN) established that podocyte damage leads to glomerular growth arrest during development and glomerulosclerosis later in life. This study examined the potential benefit of maintaining podocyte-derived VEGF in podocyte defense and survival after PAN injury using conditional transgenic podocytes and mice, in which human VEGF-A (hVEGF) transgene expression is controlled by tetracycline responsive element (TRE) promoter and reverse tetracycline transactivator (rtTA) in podocytes. In vitro experiments used primary cultured podocytes harvested from mice carrying podocin-rtTA and TRE-hVEGF transgenes, in which hVEGF can be induced selectively. Induction of VEGF in PAN-exposed podocytes resulted in preservation of intrinsic VEGF, α-actinin-4 and synaptopodin, antiapoptotic marker Bcl-xL/Bax, as well as attenuation in apoptotic marker cleaved/total caspase-3. In vivo, compared with genotype controls, PAN-sensitive neonatal mice with physiologically relevant levels of podocyte-derived VEGF showed significantly larger glomeruli. Furthermore, PAN-induced up-regulation of desmin, down-regulation of synaptopodin and nephrin, and disruption of glomerular morphology were significantly attenuated in VEGF-induced transgenic mice. Our data indicate that podocyte-derived VEGF provides self-preservation functions, which can rescue the cell after injury and preempt subsequent deterioration of the glomerulus in developing mice.
[Determination of homeostatic kidney function in the diagnosis of chronic glomerulonephritis].
Ratner, M J
1977-12-01
The latent and hypertonic forms of the course of compensated nephritides more frequently make difficulties concerning the differential diagnosis between a chronic glomerulonephritis and a chronic pyelonephritis. According to the results achieved the determination of the renal processes furthering homoeostasis gives the possibility to demarcate the two diseases. A certain reduction of the creatinine clearance (to less than 90 ml/min) and of the maximum water diuresis (to less than 10.0 per 100 ml glomerular filtrate) is suitable for the latent form of the chronic glomerulonephritis. On the other hand, a reduction of the ammonia secretion (to less than 35 per 100 ml glomerular (filtrate) and of the total H+-ion secretion (to less than 50 per 100 ml glomerular filtrate) in the determination after Alkinton is characteristic for the chronic pyelonephritis. In the hypertensive form of the course of the chronic glomerulonephritis in contrast to the same form in chronic pyelonephritis a reduction of the maximum water diuresis to less than 7.5, of the clearance of the "osmotically free" water to less than 6.0, of the titrable acidity to less than 25 is the result. Here the ammonia quotient transgresses 45%. In chronic pyelonephritis the titrable acidity in considerably increased and the ammonia genesis relatively decreased (to less than 45%).
Secretory NaCl and volume flow in renal tubules.
Beyenbach, K W
1986-05-01
This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.
Bird, J E; Milhoan, K; Wilson, C B; Young, S G; Mundy, C A; Parthasarathy, S; Blantz, R C
1988-01-01
The effects of antioxidant therapy with probucol were evaluated in rats subjected to 1 h renal ischemia and to 24 h reperfusion. Probucol exerted significant antioxidant effects in renal cortical tubules in vitro when exposed to a catalase-resistant oxidant. At 24 h probucol treatment (IP) improved single nephron glomerular filtration rate (SNGFR) (28.1 +/- 3.3 nl/min) in comparison to untreated ischemic (I) rats (15.2 +/- 3.0), primarily as a result of improving SNGFR in a population of low SNGFR, low flow and/or obstructed nephrons. However, absolute proximal reabsorption remained abnormally low in IP rats at 24 h (5.9 +/- 0.8 nl/min), and cell necrosis was greater than in I rats. Kidney GFR remained low in IP rats due to extensive tubular backleak of inulin measured by microinjection studies. Evaluations after 2 h of reperfusion revealed a higher SNGFR in IP (36 +/- 3.1 nl/min) than I rats (20.8 +/- 2.7 nl/min). Absolute proximal reabsorption was essentially normal (11.6 +/- 1.3 nl/min) in IP rats, which was higher than IP rats at 24 h and the concurrent I rats. Administration of the lipophilic antioxidant, probucol, increased SNGFR and proximal tubular reabsorption within 2 h after ischemic renal failure. Although SNGFR remained higher than I rats at 24 h, absolute reabsorption fell below normal levels and tubular necrosis was more extensive in IP rats. Early improvement in nephron filtration with antioxidants may increase load dependent metabolic demand upon tubules and increase the extent of damage and transport dysfunction. Images PMID:2835399
Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion
Roeder, Sebastian S.; Barnes, Taylor J.; Lee, Jonathan S.; Kato, India; Eng, Diana G.; Kaverina, Natalya V.; Sunseri, Maria W.; Daniel, Christoph; Amann, Kerstin; Pippin, Jeffrey W.; Shankland, Stuart J.
2017-01-01
The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wildtype mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain) and collagen IV staining were lower in CD44 knockout compared with wild type mice with FSGS. Parietal epithelial cells had lower migration from Bowman’s capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cells migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44 overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cells phenotype. PMID:27998643
The Tacrolimus Metabolism Rate Influences Renal Function after Kidney Transplantation
Thölking, Gerold; Fortmann, Christian; Koch, Raphael; Gerth, Hans Ulrich; Pabst, Dirk; Pavenstädt, Hermann; Kabar, Iyad; Hüsing, Anna; Wolters, Heiner
2014-01-01
The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient’s risk management strategies. PMID:25340655
Kim, Eun Oh; Lee, Ihn Suk; Choi, Yoo A; Lee, Sang Ju; Chang, Yoon Kyung; Yoon, Hye Eun; Jang, Yi Sun; Lee, Jong Min; Kim, Hye Soo; Yang, Chul Woo; Kim, Suk Young; Hwang, Hyeon Seok
2014-01-01
Patients with chronic kidney disease (CKD) often have subclinical hypothyroidism. However, few reports have investigated changes in the status of subclinical hypothyroidism in CKD patients and its clinical significance in CKD progression. We included 168 patients with nondialysis-dependent CKD stages 2-4. The normalization of subclinical hypothyroidism during follow-up was assessed, and the association between transitions in subclinical hypothyroid status and the rate of decline of the estimated glomerular filtration rate (eGFR) was investigated. At baseline, 127 patients were euthyroid and 41 (24.4%) patients were diagnosed with subclinical hypothyroidism. Of these 41 patients, 21 (51.2%) spontaneously resolved to euthyroid during follow-up. The rate of eGFR decline of patients with resolved subclinical hypothyroidism was similar to that of euthyroid patients. The patients with unresolved subclinical hypothyroidism showed a steeper renal function decline than patients with euthyroidism or resolved subclinical hypothyroidism (all p < 0.05). The progression to end-stage renal disease was more frequent in those with unresolved subclinical hypothyroidism than in those who were euthyroid (p = 0.006). In multivariate linear regression for rate of eGFR decrease, unresolved subclinical hypothyroidism (β = -5.77, p = 0.001), baseline renal function (β = -0.12, p < 0.001) and level of proteinuria (β = -2.36, p = 0.015) were independently associated with the rate of renal function decline. Half of the CKD patients with subclinical hypothyroidism did not resolve to euthyroidism, and this lack of resolution was independently associated with rapid renal function decline.
Shara, Nawar M; Resnick, Helaine E; Lu, Li; Xu, Jiaqiong; Vupputuri, Suma; Howard, Barbara V; Umans, Jason G
2009-01-01
Kidney function, expressed as glomerular filtration rate (GFR), is commonly estimated from serum creatinine (Scr) and, when decreased, may serve as a nonclassical risk factor for incident cardiovascular disease (CVD). The ability of estimated GFR (eGFR) to predict CVD events during 5-10 years of follow-up is assessed using data from the Strong Heart Study (SHS), a large cohort with a high prevalence of diabetes. eGFRs were calculated with the abbreviated Modification of Diet in Renal Disease study (MDRD) and the Cockcroft-Gault (CG) equations. These estimates were compared in participants with normal and abnormal Scr. The association between eGFR and incident CVD was assessed. More subjects were labeled as having low eGFR (<60 ml/min per 1.73 m2) by the MDRD or CG equation, than by Scr alone. When Scr was in the normal range, both equations labeled similar numbers of participants as having low eGFRs, although concordance between the equations was poor. However, when Scr was elevated, the MDRD equation labeled more subjects as having low eGFR. Persons with low eGFR had increased risk of CVD. The MDRD and CG equations labeled more participants as having decreased GFR than did Scr alone. Decreased eGFR was predictive of CVD in this American Indian population with a high prevalence of obesity and type 2 diabetes mellitus.
Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb
Ma, Jie; Lowe, Graeme
2007-01-01
Glomeruli are functional units of the olfactory bulb responsible for early processing of odor information encoded by single olfactory receptor genes. Glomerular neural circuitry includes numerous external tufted (ET) cells whose rhythmic burst firing may mediate synchronization of bulbar activity with the inhalation cycle. Bursting is entrained by glutamatergic input from olfactory nerve terminals, so specific properties of ionotropic glutamate receptors on ET cells are likely to be important determinants of olfactory processing. Particularly intriguing is recent evidence that α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors of juxta-glomerular neurons may permeate calcium. This could provide a novel pathway for regulating ET cell signaling. We tested the hypothesis that ET cells express functional calcium-permeable AMPA receptors. In rat olfactory bulb slices, excitatory postsynaptic currents (EPSCs) in ET cells were evoked by olfactory nerve shock, and by uncaging glutamate. We found attenuation of AMPA/kainate EPSCs by 1-naphthyl acetyl-spermine (NAS), an open-channel blocker specific for calcium permeable AMPA receptors. Cyclothiazide strongly potentiated EPSCs, indicating a major contribution from AMPA receptors. The current-voltage (I-V) relation of uncaging EPSCs showed weak inward rectification which was lost after > ~ 10 min of whole-cell dialysis, and was absent in NAS. In kainate-stimulated slices, Co2+ ions permeated cells of the glomerular layer. Large AMPA EPSCs were accompanied by fluorescence signals in fluo-4 loaded cells, suggesting calcium permeation. Depolarizing pulses evoked slow tail currents with pharmacology consistent with involvement of calcium permeable AMPA autoreceptors. Tail currents were abolished by Cd2+ and NBQX, and were sensitive to NAS block. Glutamate autoreceptors were confirmed by uncaging intracellular calcium to evoke a large inward current. Our results provide evidence that calcium permeable AMPA receptors reside on ET cells, and are divided into at least two functionally distinct pools – postsynaptic receptors at olfactory nerve synaptic terminals, and autoreceptors sensitive to glutamate released from dendrodendritic synapses. PMID:17156930
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.
Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1more » in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.« less