Sample records for normal glucose levels

  1. Analysis of blood glucose distribution characteristics in a health examination population in Chengdu (2007-2015).

    PubMed

    Huang, Wenxia; Xu, Wangdong; Zhu, Ping; Yang, Hanwei; Su, Linchong; Tang, Huairong; Liu, Yi

    2017-12-01

    With socioeconomic growth and cultural changes in China, the level of blood glucose may have changed in recent years. This study aims to detect the blood glucose distribution characteristics with a large size of health examination population.A total of 641,311 cases (360,259 males and 281,052 females) more than 18 years old during 2007 to 2015 were recruited from the Health Examination Center at West China hospital, Sichuan University.The percentage of cases with abnormal glucose level and the mean level of glucose were significantly increased since 2007 to 2015 overall. The percentage of cases with abnormal glucose level in males was significantly higher than that in females every year, and the percentage of cases with abnormal glucose level in aged population was higher than the young population. In addition, the mean level of glucose was higher in aged population with normal level of glucose than the young population with normal level of glucose, and the mean level of glucose was higher in males with normal level of glucose than the females with normal level of glucose.The population showed an increased level of blood glucose. Some preventive action may be adopted early and more attention can be paid to them.

  2. Diurnal glycemic profile in obese and normal weight nondiabetic pregnant women.

    PubMed

    Yogev, Yariv; Ben-Haroush, Avi; Chen, Rony; Rosenn, Barak; Hod, Moshe; Langer, Oded

    2004-09-01

    A paucity of data exists concerning the normal glycemic profile in nondiabetic pregnancies. Using a novel approach that provides continuous measurement of blood glucose, we sought to evaluate the ambulatory daily glycemic profile in the second half of pregnancy in nondiabetic women. Fifty-seven obese and normal weight nondiabetic subjects were evaluated for 72 consecutive hours with continuous glucose monitoring by measurement interstitial glucose levels in subcutaneous tissue every 5 minutes. Subjects were instructed not to modify their lifestyle or to follow any dietary restriction. For each woman, mean and fasting blood glucose values were determined; for each meal during the study period, the first 180 minutes were analyzed. For the study group, the fasting blood glucose level was 75 +/- 12 mg/dL; the mean blood glucose level was 83.7 +/- 18 mg/dL; the postprandial peak glucose value level was 110 +/- 16 mg/dL, and the time interval that was needed to reach peak postprandial glucose level was 70 +/- 13 minutes. A similar postprandial glycemic profile was obtained for breakfast, lunch, and dinner. Obese women were characterized by a significantly higher postprandial glucose peak value, increased 1- and 2-hour postprandial glucose levels, increased time interval for glucose peak, and significantly lower mean blood glucose during the night. No difference was found in fasting and mean blood glucose between obese and nonobese subjects. Glycemic profile characterization in both obese and normal weight nondiabetic subjects provide a measure for the desired level of glycemic control in pregnancy that is complicated with diabetes mellitus.

  3. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats

    PubMed Central

    Qinna, Nidal A; Badwan, Adnan A

    2015-01-01

    Streptozotocin (STZ) is currently the most used diabetogenic agent in testing insulin and new antidiabetic drugs in animals. Due to the toxic and disruptive nature of STZ on organs, apart from pancreas, involved in preserving the body’s normal glucose homeostasis, this study aims to reassess the action of STZ in inducing different glucose response states in diabetic rats while testing insulin. Diabetic Sprague-Dawley rats induced with STZ were classified according to their initial blood glucose levels into stages. The effect of randomizing rats in such a manner was investigated for the severity of interrupting normal liver, pancreas, and kidney functions. Pharmacokinetic and pharmacodynamic actions of subcutaneously injected insulin in diabetic and nondiabetic rats were compared. Interruption of glucose homeostasis by STZ was challenged by single and repeated administrations of injected insulin and oral glucose to diabetic rats. In diabetic rats with high glucose (451–750 mg/dL), noticeable changes were seen in the liver and kidney functions compared to rats with lower basal glucose levels. Increased serum levels of recombinant human insulin were clearly indicated by a significant increase in the calculated maximum serum concentration and area under the concentration–time curve. Reversion of serum glucose levels to normal levels pre- and postinsulin and oral glucose administrations to STZ diabetic rats were found to be variable. In conclusion, diabetic animals were more responsive to insulin than nondiabetic animals. STZ was capable of inducing different levels of normal glucose homeostasis disruption in rats. Both pharmacokinetic and pharmacodynamic actions of insulin were altered when different initial blood glucose levels of STZ diabetic rats were selected for testing. Such findings emphasize the importance of selecting predefined and unified glucose levels when using STZ as a diabetogenic agent in experimental protocols evaluating new antidiabetic agents and insulin delivery systems. PMID:26005328

  4. Blood glucose may condition factor VII levels in diabetic and normal subjects.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Dello Russo, P; Torella, R

    1988-12-01

    Increased factor VII levels have been reported in Type 1 (insulin-dependent) diabetic subjects. A direct correlation between fasting plasma glucose and factor VII level was found to exist in both diabetic and normal subjects. Induced-hyperglycaemia was able to increase factor VII levels in both diabetic patients and normal control subjects while, when euglycaemia was achieved in diabetic patients, factor VII values returned to normal range. This study shows that the level of factor VII may be directly conditioned by circulating blood glucose and, therefore, stresses the role of hyperglycaemia in conditioning coagulation abnormalities in diabetes mellitus.

  5. Higher Fasting Plasma Glucose Levels, within the Normal Range, are Associated with Decreased Processing Speed in High Functioning Young Elderly.

    PubMed

    Raizes, Meytal; Elkana, Odelia; Franko, Motty; Ravona Springer, Ramit; Segev, Shlomo; Beeri, Michal Schnaider

    2016-01-01

    We explored the association of plasma glucose levels within the normal range with processing speed in high functioning young elderly, free of type 2 diabetes mellitus (T2DM). A sample of 41 participants (mean age = 64.7, SD = 10; glucose 94.5 mg/dL, SD = 9.3), were examined with a computerized cognitive battery. Hierarchical linear regression analysis showed that higher plasma glucose levels, albeit within the normal range (<110 mg/dL), were associated with longer reaction times (p <  0.01). These findings suggest that even in the subclinical range and in the absence of T2DM, monitoring plasma glucose levels may have an impact on cognitive function.

  6. Follow-up of blood glucose distribution characteristics in a health examination population in Chengdu from 2010 to 2016.

    PubMed

    Wang, Yuting; Xu, Wangdong; Zhang, Qiongying; Bao, Ting; Yang, Hanwei; Huang, Wenxia; Tang, Huairong

    2018-02-01

    The worldwide prevalence and incidence of diabetes and obesity are increasing in pandemic proportions. Thus, regular health examination is an important way for early detection of diabetes and glucose intolerance. The present study aims to detect the blood glucose distribution characteristics of the participants in the Health Examination Center at West China Hospital, Sichuan University from 2010 to 2016.A prospective cohort included 9168 Chinese participants, aged 18 years or more, who had available information on fasting blood glucose concentrations at the start of the study (2010). Examination surveys were conducted every year from 2010 to 2016. Cases having serum level of fasting blood glucose between 2.2 and 6.1 mmol/L were considered as normality, while serum level of fasting blood glucose < 2.2 or higher than 6.2 mmol/L were considered as abnormality.The percentage of participants having normal level of glucose was gradually reduced both in males and females from 2010 to 2016, by which the percentage of males having normal level of glucose was significantly lower than that in females. Moreover, the mean level of glucose was significantly increased from 2010 to 2016 both in males and females overall, and the mean level of glucose was higher in males compared with that in females every year. Furthermore, we showed that the level of glucose was gradually increased year by year in each age group, and the level of glucose was higher in aged cases compared with the young population.The study population in the current study showed higher levels of glucose with ages increasing, and males indicated higher expression of glucose than that in females. Some preventive action may be adopted early and more attention can be paid to this health-examination population.

  7. Higher fasting glucose is associated with poorer cognition among healthy young adults.

    PubMed

    Hawkins, Misty A W; Gunstad, John; Calvo, Dayana; Spitznagel, Mary Beth

    2016-02-01

    Obesity is associated with cognitive deficits; however, the mechanisms are unclear, especially among otherwise healthy adults. Our objectives were to examine (a) whether obesity is linked to elevations in fasting glucose and (b) whether these elevations are associated with cognitive impairment among otherwise healthy young adults. Participants were 35 normal weight adults and 35 young adults with obesity who completed a task from the Automated Neuropsychological Assessment Metrics-4 (ANAM-4). Measured body mass index (BMI) and fasting blood glucose levels (mg/dL) were examined. Persons with obesity had higher fasting glucose levels than normal weight persons (p = .03). After applying Bonferroni correction for multiple tests, higher fasting glucose predicted less accurate performance on tests of inhibitory control: Go/No-Go Commission Errors (β = .33, p = .004). No effects were observed for sustained attention or working memory (ps ≥. 049). Persons with glucose levels in the prediabetes range had nearly twice as many errors as those with normal glucose, a large effect that was independent of BMI. Young adults who were obese but otherwise healthy had higher fasting glucose levels compared with normal weight peers. Higher glucose levels were associated with poorer cognitive performance on tests of inhibitory control, especially among individuals with prediabetes levels. Thus, subclinical elevations in blood glucose may contribute to cognitive impairment and, ultimately, greater impulsivity-well in advance of the development of chronic disease states (e.g., insulin resistance or Type 2 diabetes) and independently of excess adiposity--though prospective studies are needed to determine directionality of this relationship. (c) 2016 APA, all rights reserved).

  8. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation.

    PubMed

    Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-03-01

    Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effect of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) extracts on blood glucose level of normal and streptozotocin diabetic rats.

    PubMed

    El-Fiky, F K; Abou-Karam, M A; Afify, E A

    1996-01-01

    The present study investigates the effect of oral administration of the ethanolic extracts of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) on blood glucose levels both in normal and streptozotocin (STZ) diabetic rats. Treatment with both extracts significantly reduced the blood glucose level in STZ diabetic rats during the first three hours of treatment. L. aegyptiaca extract decreased blood glucose level with a potency similar to that of the biguanide, metformin. The total glycaemic areas were 589.61 +/- 45.62 mg/dl/3 h and 660.38 +/- 64.44 mg/dl/3 h for L. aegyptiaca and metformin, respectively, vs. 816.73 +/- 43.21 mg/dl/3 h for the control (P < 0.05). On the other hand, in normal rats, both treatments produced insignificant changes in blood glucose levels compared to glibenclamide treatment.

  10. In vivo Investigation of Anti-diabetic Properties of Ripe Onion Juice in Normal and Streptozotocin-induced Diabetic Rats

    PubMed Central

    Lee, Chul-Won; Lee, Hyung-Seok; Cha, Yong-Jun; Joo, Woo-Hong; Kang, Dae-Ook; Moon, Ja-Young

    2013-01-01

    The acute and subacute hypoglycemic and antihyperglycemic effects of drinkable ripe onion juice (Commercial product name is “Black Onion Extract”) were investigated in normal and streptozotocin-induced diabetic rats. For tests of acute and subacute hypoglycemic effects, ripe onion juice (5 and 15 mL/kg b.w.) was administered by oral gavage to normal Sprague Dawley rats and measurements of fasting glucose levels and oral glucose tolerance tests were performed. Tolbutamide was used as a reference drug at a single oral dose of 250 mg/kg b.w. To test anti-hyper-glycemic activity, the ripe onion juice was administered to streptozotocin-induced diabetic rats by oral gavage at single dose of 15 mL/kg b.w. per day for 7 consecutive days. Oral administration of the ripe onion juice at either dosed level of 5 or 15 mL/kg b.w. showed no remarkable acute hypoglycemic effect in normal rats. The two dosed levels caused a relatively small reduction, only 18% and 12% (5 and 15 mL/kg b.w., respectively) decrease in glucose levels at 2 h after glucose loading in normal rats. However, at 3 h after glucose loading, blood glucose levels in the ripe onion juice-dosed rats were decreased to the corresponding blood glucose level in tolbutamide-dosed rats. Although showing weak hypoglycemic potential compared to that of tolbutamide, oral administration of ripe onion juice (15 mL/kg b.w.) for a short period (8 days) resulted in a slight reduction in the blood glucose levels that had elevated in Streptozotocin-induced diabetic rats. In conclusion, these results suggest that the commercial product “Black Onion Extract” may possess anti-hyperglycemic potential in diabetes. PMID:24471128

  11. Mild hypercholesterolemia, normal plasma triglycerides, and normal glucose levels across dementia staging in Alzheimer's disease: a clinical setting-based retrospective study.

    PubMed

    Ramdane, Said; Daoudi-Gueddah, Doria

    2011-08-01

    We examined retrospectively the concurrent relationships between fasting plasma total cholesterol, triglycerides, and glucose levels, and Alzheimer's disease (AD), in a clinical setting-based study. Total cholesterol level was higher in patients with AD compared to elderly controls; triglycerides or glucose levels did not significantly differ between the 2 groups. Respective plotted trajectories of change in cholesterol level across age were fairly parallel. No significant difference in total cholesterol levels was recorded between patients with AD classified by the Clinical Dementia Rating (CDR) score subgroups. These results suggest that patients with AD have relative mild total hypercholesterolemia, normal triglyceridemia, and normal fasting plasma glucose level. Mild total hypercholesterolemia seems to be permanent across age, and across dementia severity staging, and fairly parallels the trajectory of age-related change in total cholesterolemia of healthy controls. We speculate that these biochemical parameters pattern may be present long before-a decade at least-the symptomatic onset of the disease.

  12. The significance of nerve sugar levels for the peripheral nerve impairment of spontaneously diabetic GK (Goto-Kakizaki) rats.

    PubMed

    Suzuki, K; Yen-Chung, H; Toyota, T; Goto, Y; Hirata, Y; Okada, K

    1990-05-01

    This study was carried out to clarify the relationship between the slowing of motor nerve conduction velocity and nerve levels of sorbitol, fructose, glucose and myoinositol in spontaneously diabetic GK (Goto-Kakizaki) rats. The motor nerve conduction velocity in GK rats was constantly lower than in normal controls at three and nine months of age. This constant decrease in motor nerve conduction velocity in GK rats was closely related to glucose intolerance in GK rats soon after birth. Nerve levels of sorbitol, glucose and fructose in GK rats were significantly increased as compared to normal controls at nine months old, but not (except glucose) at three months old. The increase in nerve concentrations of sugars in GK rats was progressive with age. However, levels of glucose, sorbitol and fructose in normal Wistar rats remain unchanged with age. Although nerve myo-inositol levels in GK rats were lower at three and nine months than those of normal controls, a significant difference in myo-inositol levels was observed only at nine months. On the contrary, nerve myo-inositol level in normal Wistar rats did not show age-related change. These findings suggested that both enhanced polyol pathway activity and myo-inositol depletion play important roles in the reduction of motor nerve conduction velocity.

  13. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease.

    PubMed

    Protas, Hillary D; Chen, Kewei; Langbaum, Jessica B S; Fleisher, Adam S; Alexander, Gene E; Lee, Wendy; Bandy, Daniel; de Leon, Mony J; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W; Caselli, Richard J; Reiman, Eric M

    2013-03-01

    To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxyglucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Academic medical center. A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P = .60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P = .001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r = 0.29, P = .0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P < .05, determined by use of pairwise Fisher z tests). Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or metabolism in cognitively normal persons at increased genetic risk for Alzheimer disease.

  14. Higher serum glucose levels are associated with cerebral hypometabolism in Alzheimer regions.

    PubMed

    Burns, Christine M; Chen, Kewei; Kaszniak, Alfred W; Lee, Wendy; Alexander, Gene E; Bandy, Daniel; Fleisher, Adam S; Caselli, Richard J; Reiman, Eric M

    2013-04-23

    To investigate whether higher fasting serum glucose levels in cognitively normal, nondiabetic adults were associated with lower regional cerebral metabolic rate for glucose (rCMRgl) in brain regions preferentially affected by Alzheimer disease (AD). This is a cross-sectional study of 124 cognitively normal persons aged 64 ± 6 years with a first-degree family history of AD, including 61 APOEε4 noncarriers and 63 carriers. An automated brain mapping algorithm characterized and compared correlations between higher fasting serum glucose levels and lower [(18)F]-fluorodeoxyglucose-PET rCMRgl measurements. As predicted, higher fasting serum glucose levels were significantly correlated with lower rCMRgl and were confined to the vicinity of brain regions preferentially affected by AD. A similar pattern of regional correlations occurred in the APOEε4 noncarriers and carriers. Higher fasting serum glucose levels in cognitively normal, nondiabetic adults may be associated with AD pathophysiology. Findings suggest that the risk imparted by higher serum glucose levels may be independent of APOEε4 status. This study raises additional questions about the role of the metabolic process in the predisposition to AD and supports the possibility of targeting these processes in presymptomatic AD trials.

  15. Verification of Non-Invasive Blood Glucose Measurement Method Based on Pulse Wave Signal Detected by FBG Sensor System.

    PubMed

    Kurasawa, Shintaro; Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun

    2017-11-23

    This paper describes and verifies a non-invasive blood glucose measurement method using a fiber Bragg grating (FBG) sensor system. The FBG sensor is installed on the radial artery, and the strain (pulse wave) that is propagated from the heartbeat is measured. The measured pulse wave signal was used as a collection of feature vectors for multivariate analysis aiming to determine the blood glucose level. The time axis of the pulse wave signal was normalized by two signal processing methods: the shortest-time-cut process and 1-s-normalization process. The measurement accuracy of the calculated blood glucose level was compared with the accuracy of these signal processing methods. It was impossible to calculate a blood glucose level exceeding 200 mg/dL in the calibration curve that was constructed by the shortest-time-cut process. In the 1-s-normalization process, the measurement accuracy of the blood glucose level was improved, and a blood glucose level exceeding 200 mg/dL could be calculated. By verifying the loading vector of each calibration curve to calculate the blood glucose level with a high measurement accuracy, we found the gradient of the peak of the pulse wave at the acceleration plethysmogram greatly affected.

  16. Assessment of glycemic potential ofMusa paradisiaca stem juice.

    PubMed

    Singh, Santosh Kumar; Kesari, Achyut Narayan; Rai, Prashant Kumar; Watal, Geeta

    2007-09-01

    The present study reveals the effect of Musa paradisiaca stem juice on blood glucose level (BGL) of normal & diabetic rats. The dose of 500 mg/kg bodyweight produces a significant rise of 28.3% in blood glucose level after 6h of oral administration in normal rats. Whereas, in sub diabetic rats the same dose produces a rise of 16.4% in blood glucose levels within 1h during glucose tolerance test (GTT) and a rise of 16% after 4 h in fasting blood glucose levels of severe diabetic cases. These results were unexpected and important to report as other species of Musa like Musa sapientum has been reported for its hypoglycemic effect.

  17. Partitioning the variability of fasting plasma glucose levels in pedigrees. Genetic and environmental factors.

    PubMed

    Boehnke, M; Moll, P P; Kottke, B A; Weidman, W H

    1987-04-01

    Fasting plasma glucose measurements made in 1972-1977 on normoglycemic individuals in three-generation Caucasian pedigrees from Rochester, Minnesota were analyzed. The authors determined the contributions of polygenic loci and environmental factors to fasting plasma glucose variability in these pedigrees. To that end, fasting plasma glucose measurements were normalized by an inverse normal scores transformation and then regressed separately for males and females on measured concomitants including age, body mass index (weight/height2), season of measurement, sex hormone use, and diuretic use. The authors found that 27.7% of the variability in normalized fasting plasma glucose in these pedigrees is explained by these measured concomitants. Subsequent variance components analysis suggested that unmeasured polygenic loci and unmeasured shared environmental factors together account for at least an additional 36.7% of the variability in normalized fasting plasma glucose, with genes alone accounting for at least 27.3%. These results are consistent with the known familiality of diabetes, for which fasting plasma glucose level is an important predictor. Further, these familial factors provide an explanation for at least half the variability in normalized fasting plasma glucose which remains after regression on known concomitants.

  18. Hypoglycemic effect of Gymnema sylvestre (retz.,) R.Br leaf in normal and alloxan induced diabetic rats.

    PubMed

    Sathya, S; Kokilavani, R; Gurusamy, K

    2008-10-01

    The water extract of Gymnema sylvestre R.Br leaf was tested for hypoglycemic activity in normal and alloxan induced diabetic rats. Grated amount (2ml/kg) of the water extract of Gymnema sylvestre leaf was given to both normal and alloxan induced diabetic rats. A significant reduction of glucose concentration was noticed in normal rats, blood glucose level was significantly reduced in diabetic rats. Protein level is also decreased in diabetic rats. Urea, uric acid and creatinine levels were increased in diabetic condition. After the herbal treatment the levels were altered near to normal level.

  19. Insulin and glucose excursion following premeal insulin lispro or repaglinide in cystic fibrosis-related diabetes.

    PubMed

    Moran, A; Phillips, J; Milla, C

    2001-10-01

    Insulin and glucose levels in response to premeal insulin lispro or repaglinide were evaluated in adult patients with cystic fibrosis-related diabetes (CFRD) without fasting hyperglycemia. Seven patients with CFRD were fed 1,000-kcal liquid mixed meals. Three study conditions were administered in random order on separate mornings: 1) no premeal diabetes medication, 2) insulin lispro, 0.1 unit/kg body wt premeal and 3) repaglinide 1 mg premeal. Glucose and insulin levels were measured every 20 min for 5 h. Fasting insulin and glucose levels were normal in patients with CFRD, but the peak glucose level was elevated. Insulin lispro significantly decreased the peak glucose level (P = 0.0004) and the 2-h (P = 0.001) and 5-h (P < 0.0001) glucose area under the curve (AUC). Repaglinide significantly decreased the 5-h glucose AUC (P = 0.03). Neither drug completely normalized cystic fibrosis glucose excursion at the doses used for this study. Insulin lispro significantly increased the 5-h insulin AUC (P = 0.04). In response to subcutaneous insulin lispro, postprandial glucose excursion was significantly diminished and insulin secretion was enhanced compared with a control meal in which no medication was given to patients with CFRD. The oral agent repaglinide resulted in lesser corrections in these parameters. Neither drug completely normalized glucose or insulin levels, suggesting that the doses chosen for this study were suboptimal. Placebo-controlled longitudinal studies comparing the effectiveness of repaglinide and insulin on glucose metabolic control as well as overall nutrition and body weight are needed to help determine optimal medical treatment of CFRD.

  20. Follow-up of blood glucose distribution characteristics in a health examination population in Chengdu from 2010 to 2016

    PubMed Central

    Wang, Yuting; Xu, Wangdong; Zhang, Qiongying; Bao, Ting; Yang, Hanwei; Huang, Wenxia; Tang, Huairong

    2018-01-01

    Abstract The worldwide prevalence and incidence of diabetes and obesity are increasing in pandemic proportions. Thus, regular health examination is an important way for early detection of diabetes and glucose intolerance. The present study aims to detect the blood glucose distribution characteristics of the participants in the Health Examination Center at West China Hospital, Sichuan University from 2010 to 2016. A prospective cohort included 9168 Chinese participants, aged 18 years or more, who had available information on fasting blood glucose concentrations at the start of the study (2010). Examination surveys were conducted every year from 2010 to 2016. Cases having serum level of fasting blood glucose between 2.2 and 6.1 mmol/L were considered as normality, while serum level of fasting blood glucose < 2.2 or higher than 6.2 mmol/L were considered as abnormality. The percentage of participants having normal level of glucose was gradually reduced both in males and females from 2010 to 2016, by which the percentage of males having normal level of glucose was significantly lower than that in females. Moreover, the mean level of glucose was significantly increased from 2010 to 2016 both in males and females overall, and the mean level of glucose was higher in males compared with that in females every year. Furthermore, we showed that the level of glucose was gradually increased year by year in each age group, and the level of glucose was higher in aged cases compared with the young population. The study population in the current study showed higher levels of glucose with ages increasing, and males indicated higher expression of glucose than that in females. Some preventive action may be adopted early and more attention can be paid to this health-examination population. PMID:29465557

  1. Blood glucose regulation mechanism in depressive disorder animal model during hyperglycemic states.

    PubMed

    Lim, Su-Min; Park, Soo-Hyun; Sharma, Naveen; Kim, Sung-Su; Lee, Jae-Ryeong; Jung, Jun-Sub; Suh, Hong-Won

    2016-06-01

    Depression is more common among diabetes people than in the general population. In the present study, blood glucose change in depression animal model was characterized by various types of hyperglycemia models such as d-glucose-fed-, immobilization stress-, and drug-induced hyperglycemia models. First, the ICR mice were enforced into chronic restraint stress for 2h daily for 2 weeks to produce depression animal model. The animals were fed with d-glucose (2g/kg), forced into restraint stress for 30min, or administered with clonidine (5μg/5μl) supraspinally or spinally to produce hyperglycemia. The blood glucose level in depression group was down-regulated compared to that observed in the normal group in d-glucose-fed-, restraint stress-, and clonidine-induced hyperglycemia models. The up-regulated corticosterone level induced by d-glucose feeding or restraint stress was reduced in the depression group while the up-regulation of plasma corticosterone level is further elevated after i.t. or i.c.v. clonidine administration in the depression group. The up-regulated insulin level induced by d-glucose feeding or restraint stress was reduced in the depression group. On the other hand, blood corticosterone level in depression group was up-regulated compared to the normal group after i.t. or i.c.v. clonidine administration. Whereas the insulin level in depression group was not altered when mice were administered clonidine i.t. or i.c.v. Our results suggest that the blood glucose level in depression group is down-regulated compared to the normal group during d-glucose-fed-, immobilization stress-, and clonidine-induced hyperglycemia in mice. The down-regulation of the blood glucose level might be one of the important pathophysiologic changes in depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Posterior Cingulate Glucose Metabolism, Hippocampal Glucose Metabolism, and Hippocampal Volume in Cognitively Normal, Late-Middle-Aged Persons at 3 Levels of Genetic Risk for Alzheimer Disease

    PubMed Central

    Protas, Hillary D.; Chen, Kewei; Langbaum, Jessica B. S.; Fleisher, Adam S.; Alexander, Gene E.; Lee, Wendy; Bandy, Daniel; de Leon, Mony J.; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W.; Caselli, Richard J.; Reiman, Eric M.

    2013-01-01

    Objective To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Design Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxy-glucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Setting Academic medical center. Participants A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. Main Outcome Measures The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Results Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P=.60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P=.001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r=0.29, P=.0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P<.05, determined by use of pairwise Fisher z tests). Conclusions Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or metabolism in cognitively normal persons at increased genetic risk for Alzheimer disease. PMID:23599929

  3. Hypoglycemic effect of Gymnema sylvestre (retz.,) R.Br leaf in normal and alloxan induced diabetic rats

    PubMed Central

    Sathya, S.; Kokilavani, R.; Gurusamy, K.

    2008-01-01

    The water extract of Gymnema sylvestre R.Br leaf was tested for hypoglycemic activity in normal and alloxan induced diabetic rats. Grated amount (2ml/kg) of the water extract of Gymnema sylvestre leaf was given to both normal and alloxan induced diabetic rats. A significant reduction of glucose concentration was noticed in normal rats, blood glucose level was significantly reduced in diabetic rats. Protein level is also decreased in diabetic rats. Urea, uric acid and creatinine levels were increased in diabetic condition. After the herbal treatment the levels were altered near to normal level. PMID:22557305

  4. Preserved circadian rhythm of serum insulin concentration at low plasma glucose during fasting in lean and overweight humans.

    PubMed

    Merl, Volker; Peters, Achim; Oltmanns, Kerstin M; Kern, Werner; Hubold, Christian; Hallschmid, Manfred; Born, Jan; Fehm, Horst L; Schultes, Bernd

    2004-11-01

    Circadian rhythms in glucose metabolism are well documented. Most studies, however, evaluated such variations under conditions of continuous glucose supply, either via food intake or glucose infusion. Here we assessed in 30 subjects circadian variations in concentrations of plasma glucose, serum insulin, and C-peptide during a 72-hour fasting period to evaluate rhythms independent from glucose supply. Furthermore we assessed differences in these parameters between normal-weight (n = 20) and overweight (n = 10) subjects. Blood was sampled every 4 hours. During fasting, plasma glucose, serum insulin, and C-peptide levels gradually decreased (all P < .001). While there was no circadian variation in plasma glucose levels after the first day of fasting, serum levels of insulin were constantly higher in the morning (8.00 h) than at night (0.00 h) (P < .001), although the extent of this morning-associated rise in insulin levels decreased with the time spent fasting (P = .001). Also, morning C-peptide concentrations were higher compared to the preceding night (P < .001). The C-peptide/insulin ratio (CIR) decreased during prolonged fasting (P = .030), suggesting a decrease in hepatic insulin clearance. Moreover, CIR was significantly lower in the morning than at the night of day 1 and day 2 of fasting (P = .010 and P = .004, respectively). Compared to normal-weight subjects, overweight subjects had higher plasma glucose, as well as serum insulin and C-peptide levels (all P < .03). Data indicate preserved circadian rhythms in insulin concentrations in the presence of substantially decreased glucose levels in normal-weight and overweight subjects. This finding suggests a central nervous system contribution to the regulation of insulin secretion independent of plasma glucose levels.

  5. Insulin and C-peptide secretion in non-obese patients with polycystic ovarian disease.

    PubMed

    Mahabeer, S; Jialal, I; Norman, R J; Naidoo, C; Reddi, K; Joubert, S M

    1989-09-01

    Plasma glucose, immunoreactive insulin (IRI) and C-peptide responses during an oral glucose tolerance test (oGTT) were assessed in 11 non-obese patients with polycystic ovarian disease (PCOD) and 11 reference subjects matched for age, height and weight. Also, 6 patients with PCOD and 6 normal women were subjected to intravenous glucose tolerance testing (ivGTT) On oGTT, all subjects exhibited normal glucose tolerance; however, PCOD patients had significantly higher mean plasma glucose levels at 30, 60, 90 and 120 min and higher mean incremental glucose areas. In addition the patients with polycystic ovaries showed higher mean basal IRI and C-peptide levels, higher mean glucose stimulated IRI and C-peptide levels and higher mean incremental IRI and C-peptide values. The molar ratios of C-peptide/IRI were significantly lower in the PCOD group at all time intervals after glucose stimulation when compared to the normal women. During ivGTT, there were significantly higher mean glucose levels at 5, 40, 50 and 60 min in the PCOD group when compared to the reference group. The IRI response to intravenous glucose in the PCOD women was similar to the reference group. The findings on oGTT suggest that non-obese patients with PCOD have increased pancreatic IRI secretion as well as impaired hepatic extraction of the hormone.

  6. Elevated glucose levels in early puerperium, and association with high cortisol levels during parturition.

    PubMed

    Risberg, Anitha; Sjöquist, Mats; Wedenberg, Kaj; Larsson, Anders

    2016-07-01

    Background Gestational diabetes is one of the commonest metabolic problems associated with pregnancy and an accurate diagnosis is critical for the care. Research has shown that pregnant women have high levels of cortisol during the last stage of parturition. As cortisol is a diabetogenic hormone causing increased glucose levels, we wanted to study the association between cortisol and glucose levels during parturition. Materials and methods Glucose and cortisol were analyzed during parturition in 50 females divided according to slow (n = 11) and normal labors (n = 39). Blood samples were analyzed three times during the parturition and four times in the first day after delivery. Glucose levels were also measured once in each trimester. Results In the normal group, the glucose concentration increased from 6.2 (IQR 5.6-8.0) mmol/L in the latency phase to 11.6 (10.0-13.3) mmol/L at aftercare (p < 0.05). After parturition the glucose concentrations decreased gradually. There were significant Spearman rank correlations between glucose and cortisol values. Conclusions The changes associated with birth cause significant elevations of cortisol and glucose around parturition.

  7. Effects of hydrogen sulfide on high glucose-induced glomerular podocyte injury in mice

    PubMed Central

    Liu, Ye; Zhao, Huichen; Qiang, Ye; Qian, Guanfang; Lu, Shengxia; Chen, Jicui; Wang, Xiangdong; Guan, Qingbo; Liu, Yuantao; Fu, Yuqin

    2015-01-01

    The aim of this study was to assess the effects of hydrogen sulfide on high glucose-induced mouse podocyte (MPC) injury and the underlying mechanisms. Mouse podocytes were randomly divided into 4 groups, including high glucose (HG), normal glucose (NG), normal glucose + DL-propargylglycine (PPG), and high glucose + NaHS (HG + NaHS) groups for treatment. Then, ZO-2, nephrin, β-catenin, and cystathionine γ-lyase (CSE) protein expression levels were determined by western blot. We found that high glucose significantly reduced nephrin, ZO-2, and CSE expression levels (P<0.05), and overtly elevated β-catenin amounts (P<0.05), in a time-dependent manner. Likewise, PPG at different concentrations in normal glucose resulted in significantly lower CSE, ZO-2, and nephrin levels (P<0.05), and increased β-catenin amounts (P<0.05). Interestingly, significantly increased ZO-2 and nephrin levels, and overtly reduced β-catenin amounts were observed in the HG + NaHS group compared with HG treated cells (P<0.01). Compared with NG treated cells, decreased ZO-2 and nephrin levels and higher β-catenin amounts were obtained in the HG + NaHS group. In conclusion,CSE downregulation contributes to hyperglycemia induced podocyte injury, which is alleviated by exogenous H2S possibly through ZO-2 upregulation and the subsequent suppression of Wnt/β-catenin pathway. PMID:26261567

  8. Dysregulation of glucose metabolism even in Chinese PCOS women with normal glucose tolerance.

    PubMed

    Li, Weiping; Li, Qifu

    2012-01-01

    To clarify the necessity of improving glucose metabolism in polycystic ovary syndrome (PCOS) women as early as possible, 111 PCOS women with normal glucose tolerance and 92 healthy age-matched controls were recruited to investigate glucose levels distribution, insulin sensitivity and β cell function. 91 PCOS women and 33 controls underwent hyperinsulinemic-euglycemic clamp to assess their insulin sensitivity, which was expressed as M value. β cell function was estimated by homeostatic model assessment (HOMA)-β index after adjusting insulin sensitivity (HOMA-βad index). Compared with lean controls, lean PCOS women had similar fasting plasma glucose (FPG), higher postprandial plasma glucose (PPG) (6.03±1.05 vs. 5.44±0.97 mmol/L, P<0.05), lower M value but similar HOMA-βad index, while overweight/obese PCOS women had higher levels of both FPG (5.24±0.58 vs. 4.90±0.39, P<0.05) and PPG (6.15±0.84 vs. 5.44±0.97 mmol/L, P<0.05), and lower levels of both M value and HOMA-βad index. Linear regression and ROC analysis found BMI was independently associated with M value and HOMA-βad index in PCOS women separately, and the cutoff of BMI indicating impaired β cell function of PCOS women was 25.545kg/m². In conclusion, insulin resistance and dysregulation of glucose metabolism were common in Chinese PCOS women with normal glucose tolerance. BMI ≥ 25.545kg/m² indicated impaired β cell function in PCOS women with normal glucose tolerance.

  9. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  10. Influence of insulin on beta-endorphin plasma levels in obese and normal weight subjects.

    PubMed

    Brunani, A; Pincelli, A I; Pasqualinotto, L; Tibaldi, A; Baldi, G; Scacchi, M; Fatti, L M; Cavagnini, F

    1996-08-01

    To establish the possible role of hyperinsulinemia in the elevation of plasma beta-endorphin (beta-EP) levels observed in obese patients after an oral glucose load. Oral glucose tolerance test (OGTT) and euglycemic-hyperinsulinemic clamp. Two groups of six (age: 22-39 y, BMI: 30-48 kg/m2) and eight obese men (age: 18-37 y, BMI: 35-45 kg/m2), respectively, and five normal weight healthy men (age: 22-30 y, BMI 22-23 kg/m2). Glucose, insulin and beta-EP levels at baseline and every 30 min until 180 min during the OGTT; glucose, insulin, C-peptide and beta-EP concentrations at baseline and in steady state condition (i.e. during the last 30 min of insulin infusion) in the euglycemic-hyperinsulinemic clamp studies. In the six obese patients undergoing the OGTT a significant elevation of beta-EP plasma levels was observed between 60 and 90 min after glucose ingestion. In the clamp studies no significant differences in beta-EP plasma levels, blood glucose and serum insulin were observed between obese and normal weight subjects both at baseline and at steady state. A markedly diminished insulin sensitivity along with a lower inhibition of C-peptide during insulin infusion was observed in obese patients compared to control subjects. A rise in serum insulin levels unaccompanied by a concomitant increase in blood glucose concentration is unable to elicit a beta-EP response in obese patients.

  11. The effect of unabsorbable carbohydrate on gut hormones. Modification of post-prandial GIP secretion by guar.

    PubMed

    Morgan, L M; Goulder, T J; Tsiolakis, D; Marks, V; Alberti, K G

    1979-08-01

    Five healthy volunteers and 6 diabetics were given a mixed test meal on two occasions--once with and once without 10 g guar flour. Addition of guar caused a 47% decrease in maximum post-prandial GIP levels, a 48% decrease in blood glucose and a 48% decrease in plasma insulin in normal subjects. In diabetics, addition of guar caused a 30% reduction in maximum post-prandial GIP and 58% decrease in blood glucose. Four normal and 6 diabetic subjects were given a predominantly carbohydrate meal, again with and without 10 g guar. Addition of guar caused a 78% decrease in blood glucose and a 59% decrease in plasma insulin in normal subjects. In diabetics addition of guar caused a 71% decrease in maximum post-prandial plasma GIP and a 68% decrease in blood glucose. Lowering of post-prandial blood glucose, plasma insulin and GIP levels by guar was statistically significant in every case. Addition of guar to the predominantly carbohydrate meal caused a decrease in total plasma GLI in both normal and diabetic subjects but reached statistical significance only in the normal subjects. There was a highly significant correlation (r = 0.83; p less than 0.0005) between peak post-prandial insulin levels in normal subjects and the corresponding plasma GIP concentration. The reduction of GIP or GLI secretion may, therefore, be partly responsible for the smaller rise in plasma insulin observed in normal volunteers when guar is added to meals.

  12. [The blood glucose value not necessarily indicates correctly the cellular metabolic state].

    PubMed

    Simon, Kornél; Wittmann, István

    2017-03-01

    In clinical recommendations the normalized blood glucose level is declared as the main target in therapy of diabetes mellitus, i.e. the achievement of euglycemia is the main therapeutic goal. This approach suggests, that the normal blood glucose value is the marker of the normal carbohydrate metabolism (eumetabolism), and vice versa: hyperglycemia is associated with abnormal metabolism (dysmetabolism). However the question arises, whether identical blood glucose values do reflect the same intracellular biochemical mechanisms? On the basis of data published in the literature authors try to answer these questions by studying the relations between the short/longterm blood glucose level and the cellular metabolism in different clinical settings characterized by divergent pathophysiological parameters. The correlations between blood glucose level and cellular metabolism in development of micro-, and macroangiopathy, in the breakthrough phenomenon, as well as during administration of metabolic promoters, the discrepancies of relation between blood glucose values and cellular metabolism in type 1, and type 2 diabetes mellitus, furthermore association between blood glucose value and myocardial metabolism in acute and chronic stress were analyzed. Authors conclude, that the actual blood glucose values reveal the actual cellular metabolism in a very variable manner: neither euglycemia does mandatorily indicate eumetabolism (balance of cellular energy production), nor hyperglycemia is necessarily a marker of abnormal metabolic state (dept of cellular energy production). Moreover, at the same actual blood glucose level both the metabolic efficacy of the same organ may sharply vary, and the intracellular biochemical machinery could also be very different. In case of the very same longterm blood glucose level the metabolic state of the different organs could be very variable: some organs show an energetically balanced metabolism, while others produce a significant deficit. These inconsistencies between blood glucose level and cellular metabolism can be explained by the fact, that blood glucose value is a transport parameter, reflecting the actual steady state of glucose transport from the carbohydrate pools into the blood, and that from the blood into the tissues. Without knowing the speed of these transports of opposite direction, the blood glucose value per se can not reveal the quantitative and qualitative characteristics of cellular metabolism. Orv. Hetil., 2017, 158(11), 409-417.

  13. Estrogen Deprivation in Primate Pregnancy Leads to Insulin Resistance in Offspring

    PubMed Central

    Maniu, Adina; Aberdeen, Graham W.; Lynch, Terrie J.; Nadler, Jerry L.; Kim, Soon OK; Quon, Michael J.; Pepe, Gerald J.; Albrecht, Eugene D.

    2016-01-01

    This study tested the hypothesis that estrogen programs mechanisms within the primate fetus that promote insulin sensitivity and glucose homeostasis in offspring. Glucose tolerance tests were performed longitudinally in prepubertal offspring of baboons untreated or treated on days 100 to 165/175 of gestation (term is 184 days) with the aromatase inhibitor letrozole which decreased fetal estradiol levels by 95%. Basal plasma insulin levels were over 2-fold greater in offspring delivered to letrozole-treated than untreated animals. Moreover, the peak 1 min, average of the 1, 3 and 5 min, and area under the curve blood glucose and plasma insulin levels after an iv bolus of glucose were greater (P<0.05 and P<0.01, respectively) in offspring deprived of estrogen in utero than in untreated animals and partially or completely restored in letrozole plus estradiol-treated baboons. The value for the homeostasis model assessment of insulin resistance was 2.5-fold greater (P<0.02) and quantitative insulin sensitivity check index lower (P<0.01) in offspring of letrozole-treated versus untreated animals and returned to almost normal in letrozole plus estradiol-treated animals. The exaggerated rise in glucose and insulin levels after glucose challenge in baboon offspring deprived of estrogen in utero indicates that pancreatic beta cells had the capacity to secrete insulin, but that peripheral glucose uptake and/or metabolism were impaired, indicative of insulin resistance and glucose intolerance. We propose that estrogen normally programs mechanisms in utero within the developing primate fetus that lead to insulin sensitivity, normal glucose tolerance and the capacity to metabolize glucose after birth. PMID:27207093

  14. Triglycerides as an early pathophysiological marker of endothelial dysfunction in nondiabetic women with a previous history of gestational diabetes.

    PubMed

    Sokup, Alina; Góralczyk, Barbara; Góralczyk, Krzysztof; Rość, Danuta

    2012-02-01

    To investigate whether baseline triglyceride levels are associated with early glucose dysregulation and/or cardiovascular risk in women with a previous history of gestational diabetes. Prospective postpregnancy cohort study. Polish university hospitals. Participants included 125 women with previous gestational diabetes and 40 women with normal glucose regulation during pregnancy. All women were studied 2-24 months (mean 12 ± 10 months) after the index pregnancy. Women with previous gestational diabetes were divided into tertiles in accordance with baseline triglyceride levels. We assessed glucose regulation (oral glucose tolerance test), insulin resistance (homeostasis model assessment), markers of endothelial dysfunction (soluble: intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, tissue plasminogen activator antigen, von Willebrand factor antigen), fibrinolysis (plasminogen activator inhibitor antigen), inflammation (high-sensitivity C-reactive protein) and lipid levels. Women with previous gestational diabetes (78% normal glucose regulation, 22% impaired glucose tolerance) had a high cardiometabolic risk profile compared with control women (100% normal glucose regulation). Baseline triglycerides >0.83 mmol/l were associated with a higher prevalence of impaired glucose tolerance, higher high-sensitivity C-reactive protein and triglyceride/high-density lipoprotein-cholesterol ratio. Triglycerides >1.22 mmol/l were associated with higher body fat indexes, higher insulin resistance, higher levels of endothelial dysfunction biomarkers, higher plasminogen activator inhibitor antigen and dyslipidemia. Only E-selectin was independently associated with triglyceride levels. Baseline triglyceride levels are a cardiovascular risk marker as well as a pathophysiological parameter independently associated with endothelial dysfunction in nondiabetic women with previous gestational diabetes at 2-24 months after an index pregnancy. Normalization of triglycerides should be included in preventive therapy after a pregnancy complicated by gestational diabetes. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  15. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis.

    PubMed

    Lansey, Melissa N; Walker, Natalie N; Hargett, Stefan R; Stevens, Joseph R; Keller, Susanna R

    2012-11-15

    Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160(-/-)) mice. We observed increased and normal basal glucose uptake in isolated AS160(-/-) adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160(-/-) extensor digitorum longus muscles. In plasma membranes isolated from AS160(-/-) adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160(-/-) adipocytes and normal in AS160(-/-) soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160(-/-) skeletal muscles and liver but not in AS160(-/-) adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis.

  16. Low osteocalcin level is a risk factor for impaired glucose metabolism in a Chinese male population.

    PubMed

    Liang, Yaojie; Tan, Aihua; Liang, Danyan; Yang, Xiaobo; Liao, Ming; Gao, Yong; Jiang, Yonghua; Yao, Ziting; Lin, Xinggu; Lu, Zheng; Wu, Chunlei; Zhang, Shijun; Hu, Yanlin; Qin, Xue; Mo, Zengnan; Li, Hong; Zhang, Haiying

    2016-07-01

    This study was to assess the association between serum osteocalcin level and glucose metabolism in a Chinese male population. We carried out a cross-sectional study with a cohort of participants from the Fangchenggang Area Male Health and Examination Survey. The cross-sectional study was carried out among 2,353 men, including 2,139 participants with normal glucose tolerance, 148 with impaired fasting glucose and 66 with type 2 diabetes. A subsample of 1,109 men with measurement of osteocalcin was observed in the cohort. After a 4-year follow-up period, 1,049 non-diabetic and 983 participants with normal glucose tolerance who submitted the available information were enrolled in the cohort. Participants were divided into group-H (≥23.33 ng/mL) and group-L (<23.33 ng/mL) by osteocalcin level. In the cross-sectional study, osteocalcin levels were highest in participants with normal glucose tolerance, followed by those with impaired fasting glucose and type 2 diabetes (P < 0.001). In partial correlation analysis adjusted for age, serum osteocalcin level was related to glucose level (r = -0.082, P < 0.001), insulin level (r = -0.079, P < 0.001) and insulin resistance (r = -0.065, P = 0.002). Compared with group-H, group-L was associated with an increased risk of type 2 diabetes (odds ratio 2.107, 95% confidence interval 1.123-3.955), impaired fasting glucose (odds ratio 2.106; 95% CI 1.528-2.902), and insulin resistance (odds ratio 1.359, 95% confidence interval 1.080-1.710) adjusted for age, education levels, cigarette smoking and lipid profiles. In the cohort study, the increased risk of impaired fasting glucose was significant in group-L vs group-H (3.3% vs 1.2%, P = 0.026). Low serum osteocalcin level was a risk factor for impaired glucose metabolism and subsequent type 2 diabetes. © 2015 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  17. Associations between apolipoprotein E genotypes and serum levels of glucose, cholesterol, and triglycerides in a cognitively normal aging Han Chinese population.

    PubMed

    Tao, Qing-Qing; Chen, Yan; Liu, Zhi-Jun; Sun, Yi-Min; Yang, Ping; Lu, Shen-Ji; Xu, Miao; Dong, Qin-Yun; Yang, Jia-Jun; Wu, Zhi-Ying

    2014-01-01

    To determine the associations between apolipoprotein E (APOE) genotypes and serum levels of glucose, total cholesterol, and triglycerides in a cognitively normal aging Han Chinese population. There were 1,003 cognitively normal aging subjects included in this study. APOE genotypes were analyzed and biochemical parameters were tested. All the subjects were divided into three groups according to APOE genotypes: (1) E2/2 or E2/3 (APOE E2); (2) E3/3 (APOE E3); and (3) E2/4, E3/4, or E4/4 (APOE E4). Correlations of serum levels of glucose, total cholesterol, and triglycerides with APOE genotypes were assessed. E2, E3, and E4 allele frequencies were found to be 6.2%, 82.1%, and 11.7%, respectively. Serum levels of total cholesterol were higher in the APOE E4 group (P<0.05). A higher level of total cholesterol was associated with the E4 allele (adjusted odds ratio 1.689, 95% confidence interval 1.223-2.334, P<0.01). However, no association was found between APOE status and serum levels of glucose (adjusted odds ratio 0.981, 95% confidence interval 0.720-1.336, P=0.903) or total triglycerides (adjusted odds ratio 1.042, 95% confidence interval 0.759-1.429, P=0.800). A higher serum level of total cholesterol was significantly correlated with APOE E4 status in a cognitively normal, nondiabetic aging population. However, there was no correlation between APOE genotypes and serum levels of glucose or total triglycerides.

  18. Noninvasive and Painless Urine Glucose Detection by Using Computer-based Polarimeter

    NASA Astrophysics Data System (ADS)

    Sutrisno; Laksono, Y. A.; Hidayat, N.

    2017-05-01

    Diabetes kills millions of people worldwide each year. It challenges us as researchers to give contribution in early diagnosis to ensure a healthy life. As a matter of fact, common glucose testing devices that have been widely used so far are, at least, glucose meter and urine glucose test strip. The glucose meter ordinarily requires blood taken from patient’s finger. The glucose test strip uses patient’s urine but records unspecific urine glucose level, since the strip only provides the glucose level in some particular ranges. Instead of detecting the glucose level in blood and using the non-specific technique, a noninvasive and painless technique that can detect glucose level accurately will provide a more feasible approach for diabetes diagnosis. The noninvasive and painless urine glucose level monitoring by means of computer-based polarimeter is presented in this paper. The instrument consisted of a power source, a sample box, a light sensor, a polarizer, an analyzer, an analog to digital converter (ADC), and a computer. The concentration of urine glucose concentration was evaluated from the curve of the change in detected optical rotation angle and output potential by the computer-based polarimeter. Statistical analyses by means of Gaussian fitting and linear regression were applied to investigate the rotation angle and urine glucose concentration, respectively. From our experiment, the urine glucose level, measured by glucose test strips, of the normal patient was 100 mg/dl, and the diabetic patient was 500 mg/dl. Our polarimeter even read more precise values for the urine glucose concentrations of those normal and diabetic of the same patients, i.e. 50.61 mg/dl and 502.41 mg/dl, respectively. In other words, the results showed that our polarimeter was able to quantitatively measure the urine glucose level more accurate than urine glucose test strips. Hence, this computer-based polarimeter could be used as an alternative for early detection of urine glucose with noninvasive and painless characteristics.

  19. Evidence for the absence of cerebral glucose-6-phosphatase activity in glycogen storage disease type I (Von Gierke's disease)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, M.E.; Mazziotta, J.C.; Hawkins, R.A.

    1981-01-01

    Glycogen storage disease type I (GSD-I) is characterized by a functional deficit in glucose-6-phosphatase that normally hydrolyzes glucose-6-PO/sub 4/ to glucose. This enzyme is primarily found in liver, kidney, and muscle but it is also present in brain, where it appears to participate in the regulation of cerebral tissue glucose. Since most neurological symptoms in GSD-I patients involve systemic hypoglycemia, previous reports have not examined possible deficiencies in phosphatase activity in the brain. Positron computed tomography, F-18-labeled 2-fluorodeoxyglucose (FDG) and a tracer kinetic model for FDG were used to measure the cortical plasma/tissue forward and reverse transport, phosphorylation and dephosphorylationmore » rate constants, tissue/plasma concentration gradient, tissue concentration turnover rate for this competitive analog of glucose, and the cortical metabolic rates for glucose. Studies were carried out in age-matched normals (N = 13) and a single GSD-I patient. The dephosphorylation rate constant in the GSD-I patient was about one tenth the normal value indicating a low level of cerebral phosphatase activity. The other measured parameters were within normal limits except for the rate of glucose phosphorylation which reflected a cortical glucose metabolic rate one half the normal value. Since glucose transport and tissue glucose concentration was normal, the reduced cortical glucose metabolism probably results from the use of alternative substrates (..beta..-hydroxybutyrate and acetoacetate) which are consistently elevated in the plasma of GSD-I patients.« less

  20. Effect of aluminum chloride on blood glucose level and lipid profile in normal, diabetic and treated diabetic rats.

    PubMed

    Konda, Venugopala Rao; Eerike, Madhavi; Chary, R Prasanth; Arunachalam, Ruckmani; Yeddula, Venkata Ramana; Meti, Vinayak; Devi, T Sobita

    2017-01-01

    The objectives of the study were to assess evaluate the effects of aluminum chloride (AlCl 3 ) on blood glucose and lipid levels in normal, diabetic, and glibenclamide-treated diabetic rats. Forty-two male Wistar rats were divided into seven groups of six each. Group I was normal control, Groups II and III were given AlCl 3 50 and 100 mg/kg, and Group IV to VII were administered with streptozotocin (STZ) (60 mg/kg) intraperitoneally. Group IV was diabetic control, Group V in addition was given AlCl 3 50 mg/kg, Group VI glibenclamide (10 mg/kg), and Group VII glibenclamide and AlCl 3 (50 mg/kg) per-oral daily for 28 days. Blood glucose and lipid levels were estimated at base line, after diabetes was set in and on the last day of study. Histopathological changes in pancreas, liver, and kidney were studied. No significant change was observed in blood glucose and lipid levels in Group I. Group II and III showed a dose-dependent significant increase in blood glucose was observed. Group V had a reduction in blood glucose but not to the nondiabetic level. Group VI had significant reduction in blood sugar. In Group VII, treated with glibenclamide and AlCl 3 , there was no significant change in blood glucose reduction compared to Group VI. Lipid levels were reduced in groups treated with AlCl 3 and glibenclamide and not in other groups. Gross tissue damage was seen in pancreas in STZ group and in liver and kidney in AlCl 3 groups. AlCl 3 administration in Wistar rats caused in significant hyperglycemia in normal rats, hypoglycemia in diabetic rats, and did not influenced hypoglycemic effect of glibenclamide and in addition, resulted in reduction in lipid levels.

  1. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress.

    PubMed

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju; Hong, Jae-Seung

    2016-09-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.

  2. High glucose augments angiotensinogen in human renal proximal tubular cells through hepatocyte nuclear factor-5

    PubMed Central

    Wang, Juan; Shibayama, Yuki; Kobori, Hiroyuki; Liu, Ya; Kobara, Hideki; Masaki, Tsutomu; Wang, Zhiyu

    2017-01-01

    High glucose has been demonstrated to induce angiotensinogen (AGT) synthesis in the renal proximal tubular cells (RPTCs) of rats, which may further activate the intrarenal renin-angiotensin system (RAS) and contribute to diabetic nephropathy. This study aimed to investigate the effects of high glucose on AGT in the RPTCs of human origin and identify the glucose-responsive transcriptional factor(s) that bind(s) to the DNA sequences of AGT promoter in human RPTCs. Human kidney (HK)-2 cells were treated with normal glucose (5.5 mM) and high glucose (15.0 mM), respectively. Levels of AGT mRNA and AGT secretion of HK-2 cells were measured by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Consecutive 5’-end deletion mutant constructs and different site-directed mutagenesis products of human AGT promoter sequences were respectively transfected into HK-2 cells, followed by AGT promoter activity measurement through dual luciferase assay. High glucose significantly augmented the levels of AGT mRNA and AGT secretion of HK-2 cells, compared with normal glucose treatment. High glucose also significantly augmented AGT promoter activity in HK-2 cells transfected with the constructs of human AGT promoter sequences, compared with normal glucose treatment. Hepatocyte nuclear factor (HNF)-5 was found to be one of the glucose-responsive transcriptional factors of AGT in human RPTCs, since the mutation of its binding sites within AGT promoter sequences abolished the above effects of high glucose on AGT promoter activity as well as levels of AGT mRNA and its secretion. The present study has demonstrated, for the first time, that high glucose augments AGT in human RPTCs through HNF-5, which provides a potential therapeutic target for diabetic nephropathy. PMID:29053707

  3. Efficacy of a church-based lifestyle intervention programme to control high normal blood pressure and/or high normal blood glucose in church members: a randomized controlled trial in Pretoria, South Africa.

    PubMed

    Pengpid, Supa; Peltzer, Karl; Skaal, Linda

    2014-06-06

    In persons 15 years and above in South Africa the prevalence of pre-diabetes and diabetes has been estimated at 9.1% and 9.6%, respectively, and the prevalence of systolic prehypertension and hypertension, 38.2% and 24.6%, respectively. Elevated blood glucose and elevated blood pressure are prototype of preventable chronic cardiovascular disease risk factors.Lifestyle interventions have been shown to control high normal blood pressure and/or high normal blood glucose. This study proposes to evaluate the efficacy of a community (church)-based lifestyle intervention programme to control high normal blood pressure and/or high normal blood glucose in church members in a randomized controlled trial in Gauteng, South Africa. The objectives are to: (1) measure non-communicable diseases profile, including hypertension and diabetes, health behaviours, weight management and psychological distress of church members; (2) measure the reduction of blood glucose and blood pressure levels after the intervention; (3) prevent the development of impaired glucose tolerance; (4) compare health behaviours, weight management and psychological distress, blood glucose and blood pressure levels between intervention and control groups, and within group during 6, 12, 24 and 36 months during and post intervention. The study will use a group-randomized design, recruiting 300 church members from 12 churches. Churches will be randomly assigned to experimental and control conditions. Lifestyle interventions may prevent from the development of high blood pressure and/or diabetes. The findings will impact public health and will enable the health ministry to formulate policy related to lifestyle interventions to control blood pressure and glucose. PACTR201105000297151.

  4. Sodium salicylate restores the impaired insulin response to glucose and improves glucose tolerance in heroin addicts.

    PubMed

    Giugliano, D; Quatraro, A; Consoli, G; Stante, A; Simeone, V; Ceriello, A; Paolisso, G; Torella, R

    1987-01-01

    Plasma glucose, insulin, C-peptide, glucagon and growth hormone responses to intravenous glucose were evaluated in 10 heroin addicts in the basal state and during an infusion of sodium salicylate, an inhibitor of endogenous prostaglandin synthesis. Ten normal subjects, matched for age, sex and weight served as controls. In the basal state, the heroin addicts had markedly reduced insulin responses to intravenous glucose and low glucose disappearance rates (p less than 0.01 vs controls). The infusion of sodium salicylate caused a striking increase of the acute insulin response to intravenous glucose (from 14.5 +/- 4 microU/ml to 88 +/- 11 microU/ml, p less than 0.001) and restored to normal the reduced glucose tolerance (KG from 1.10 +/- 0.1% min-1 to 2.04 +/- 0.19% min-1). Hypoglycemic values were found in all addicts at the end of the test during salicylate infusion. Indomethacin pretreatment in five additional addicts also caused normalization of the impaired insulin responses to the intravenous glucose challenge and restored to normal the reduced glucose disappearance rate. Plasma glucagon and growth hormone levels were normally suppressed by glucose in addicts in basal conditions; sodium salicylate infusion completely overturned these hormonal responses which became positive in the first 15 min following the glucose challenge. These results demonstrate that the two prostaglandin synthesis inhibitors can restore the impaired B-cell response to glucose in heroin addicts to normal, indicating that this response is not lost but is inhibited by heroin itself or by other substances, perhaps by the endogenous prostaglandins.

  5. Differential expression of glucose transporters in normal and pathologic thyroid tissue.

    PubMed

    Matsuzu, Kenichi; Segade, Fernando; Matsuzu, Utako; Carter, Aaron; Bowden, Donald W; Perrier, Nancy D

    2004-10-01

    Malignant cells demonstrate increased glucose uptake and utilization. Immunohistochemical studies have suggested that enhanced glucose uptake in cancer cells may be caused by the overexpression of glucose transporters (GLUTs), in most cases GLUT1 and/or GLUT3. The aim of this study was to examine in detail the expression pattern and levels of GLUT genes in normal and pathologic thyroid tissues and to evaluate the clinical significance of GLUT mRNA levels. One hundred fifty-two surgically resected thyroid tissue samples from 103 patients were evaluated. Samples included: normal thyroid tissue (n = 58), benign thyroid disease (n = 61), and thyroid carcinoma (n = 33). Expression of the GLUT1, GLUT2, GLUT3, GLUT4, and GLUT10 genes were examined by reverse transcription-polymerase chain reaction (RT-PCR) and mRNA levels were quantitated by real-time RT-PCR. All thyroid parenchymal cells expressed GLUT1, GLUT3, GLUT4, and GLUT10. GLUT1 showed increased expression in carcinoma cases (p < 0.0001) and also in comparison with paired normal tissue samples from the same patient (p < 0.0001). Other GLUTs were statistically unchanged in pathologic tissues. These results are consistent with the theory that GLUT1 is upregulated during carcinogenesis and may play a major role in enhanced glucose uptake in thyroid cancer cells.

  6. [Mild preeclampsia and serum insulin values in the third pregnancy trimester].

    PubMed

    Martínez-Abundis, E; González-Ortíz, M; Cardona-Muñoz, E G; Hernández-Chávez, A

    1998-06-01

    The purpose of this investigation was to determine the baseline insulin level in sera during fasting and after an oral glucose load in patients with mild preeclampsia and compare these values with those obtained from pregnant women with normal arterial pressure during the third trimester of their pregnancy. A cross-sectional study was realized in 38 patients with mild preeclamsia and 39 patients with normal arterial pressure values, both groups in their third trimester of pregnancy. We determined baseline arterial pressure, serum glucose and insulin, and the insulin/glucose ratio with at least 6 hours of fasting, and one hour after 50 g of glucose PO. The hypertensive group was under treatment with alfametildopa and/or hidralazine, patients with known coexistent conditions that would alter glucose or insulin levels were not included. The glucose was measured with the glucose oxidase method and the insulin levels by radioimmunoanalysis. The insulin/glucose ratio was obtained as the coefficient of insulin/glucose. Both patient groups had similar ages, number of pregnancies, gestational age and pre-pregnancy body mass index. We found no difference in glucose levels during fasting nor glucose post-load between groups. Insulin fasting levels were lower in the preeclampsia group compared with the normotensive one (7.1 +/- 3.8 vs 10.6 +/- 8.7 microU/mL, p = 0.02), however there was no difference in either group after the glucose load was administered (66.8 +/- 46.5 vs 71.0 +/- 51.9, p = N.S.). The insulin/glucose ratio had the same behavior than insulin. The hypertensive group showed a lower fasting insulin levels compared with the normotensive group. We suggest further research be done on this matter with strict selection criteria in order to emit final conclusions.

  7. Low HDL-cholesterol among normal weight, normoglycemic offspring of individuals with type 2 diabetes mellitus.

    PubMed

    Praveen, Edavan P; Kulshreshtha, Bindu; Khurana, Madan L; Sahoo, Jayaprakash; Gupta, Nandita; Kumar, Guresh; Ammini, Ariachery; Knadgawat, Rajech

    2011-01-01

    Offspring of type 2 diabetics have an increased risk of dyslipidemia, glucose intolerance and obesity. The aim of this study was to assess the lipid levels in the offspring of diabetics with normal glucose tolerance and normal body weight. Normal weight offspring of patients with type 2 diabetes mellitus (DM) who had normal glucose tolerance, and healthy gender matched controls of comparable age without a family history of diabetes mellitus, were the subjects of this study. Lipid profiles were determined in cases and controls. The study included 114 subjects (64 males and 50 females) in each group, aged (mean ± SD) 24.0 ± 7.9 in cases and 24.1 ± 8.0 years in controls. The body mass index (BMI) was 20.8 ± 3.0 and 20.2 ± 3.1 kg/m2 in cases and controls, respectively. Serum total cholesterol, triglycerides, plasma glucose, fasting insulin, C-peptide and proinsulin levels were comparable in cases and controls. Serum high density lipoprotein (HDL) cholesterol was lower (p <0.001), whilst the serum triglyceride/HDL ratio, low density lipoprotein (LDL) cholesterol and area under the curve for insulin and proinsulin during an oral glucose tolerance test were higher in cases compared to controls. HDL cholesterol showed no significant correlation with plasma glucose, insulin or proinsulin. Plasma HDL cholesterol is low among normal weight, normoglycemic offspring of subjects with type 2 diabetes mellitus. The implications of this finding are not apparent.

  8. Measurement of Physiologic Glucose Levels Using Raman Spectroscopy in a Rabbit Aqueous Humor Model

    NASA Technical Reports Server (NTRS)

    Lambert, J.; Storrie-Lombardi, M.; Borchert, M.

    1998-01-01

    We have elecited a reliable glucose signature in mammalian physiological ranges using near infrared Raman laser excitation at 785 nm and multivariate analysis. In a recent series of experiments we measured glucose levels in an artificial aqueous humor in the range from 0.5 to 13X normal values.

  9. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion.

    PubMed

    Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark

    2013-08-01

    To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30-60% of normal (CON) and approximately 5-10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.

  10. Effect of chromium chloride supplementation on glucose tolerance and serum lipids including high-density lipoprotein of adult men.

    PubMed

    Riales, R; Albrink, M J

    1981-12-01

    Chromium deficiency may cause insulin resistance, hyperinsulinemia, impaired glucose tolerance, and hyperlipidemia, recovered by chromium supplementation. The effect of chromium supplementation on serum lipids and glucose tolerance was tested in a double-blind 12-wk study of 23 healthy adult men aged 31 to 60 yr. Either 200 micrograms trivalent chromium in 5 ml water (Cr) or 5 ml plain water (W) was ingested daily 5 days each week. Half the subjects volunteered for glucose tolerance tests with insulin levels. At 12 wk high-density lipoprotein cholesterol increased in the Cr group from 35 to 39 mg/dl (p less than 0.05) but did not change in the water group (34 mg/dl). The largest increase in high-density lipoprotein cholesterol and decreases in insulin and glucose were found in those subjects having normal glucose levels together with elevated insulin levels at base-line. The data are thus consistent with the hypothesis that Cr supplementation raises high-density lipoprotein cholesterol and improves insulin sensitivity in those with evidence of insulin resistance but normal glucose tolerance.

  11. Contribution of nonesterified fatty acids to insulin resistance in the elderly with normal fasting but diabetic 2-hour postchallenge plasma glucose levels: the Baltimore Longitudinal Study of Aging.

    PubMed

    Carlson, Olga D; David, Jehan D; Schrieder, Jessica M; Muller, Dennis C; Jang, Hyeung-Jin; Kim, Byung-Joon; Egan, Josephine M

    2007-10-01

    Isolated postchallenge hyperglycemia (IPH) with normal fasting plasma glucose <100 mg/dL and plasma glucose with diabetic 2-hour plasma glucose >or=200 mg/dL after an oral glucose tolerance test (OGTT) is a common occurrence in the elderly. We sought to understand what unique characteristics this population might have that puts it at risk for this particular metabolic finding. We therefore conducted a longitudinal study of volunteers in the Baltimore Longitudinal Study of Aging (BLSA). All volunteers had an OGTT performed (75 g) on 2 or more occasions. We measured plasma levels of glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), ghrelin, leptin, adiponectin, resistin, C-reactive protein, cytokines, and their soluble receptors, as well as nonesterified free fatty acids (NEFAs). We determined that 22 subjects in BLSA had IPH, accounting for 2.1% of the BLSA population. All 22 were older than 65 years. They were then matched by age, sex, and body mass index to 12 subjects who had isolated impaired glucose tolerance (IGT) and 15 subjects with normal glucose tolerance (NGT). All subjects had normal fasting glucose levels <100 mg/dL in accordance with the American Diabetes Association Expert Committee on the Classification and Diagnosis of Diabetes Mellitus criteria (2003). We found that subjects with IPH had similar plasma insulin levels to the other 2 groups, except at the 2-hour time when their insulin levels were higher than NGT (P < .05). Although there was a clear trend for differences in the insulinogenic index, the areas under the curves for insulin, systolic blood pressure, adiponectin, and C-reactive protein across the glucose tolerance categories revealed no statistical significance. Cytokines and their soluble receptors, gut hormones, and adipokines were similar in all 3 groups. The NEFA levels were significantly elevated in the fasting state (P < .05) in the IPH compared with NGT, with IGT intermediate between the other 2 groups. The rate of clearance of NEFAs after the OGTT decreased progressively from the NGT to the IPH group (in micromoles per liter per minute: NGT, 11.9 vs IGT, 7.6 vs IPH, 3.0). We conclude that the rate of suppression of lipolysis in the elderly determines the sensitivity of glucose uptake to insulin after OGTT.

  12. Hypoglycemic and antihyperglycemic effect of Semecarpus anacardium Linn in normal and streptozotocin-induced diabetic rats.

    PubMed

    Arul, B; Kothai, R; Christina, A J M

    2004-12-01

    The effect of ethanolic extract of dried nuts of Semecarpus anacardium on blood glucose was investigated in both normal (hypoglycemic) and streptozotocin-induced diabetic (antihyperglycemic) rats. The blood glucose levels were measured at 0, 1, 2 and 3 h after the treatment. The ethanolic extract of S. anacardium (100 mg/kg) reduced the blood glucose of normal rats from 85.83 +/- 1.55 to 65.83 +/- 2.20 mg/dl, 3 h after oral administration of the extract (p < 0.05). It also significantly lowered blood glucose levels in streptozotocin-induced diabetic rats from 335.33 +/- 4.90 to 132.17 +/- 4.49 mg/dl, 3 h after oral administration of the extract (p < 0.05). The antihyperglycemic activity of S. anacardium was compared with tolbutamide, a sulfonyl urea derivative used in diabetes mellitus. 2004 Prous Science

  13. Impact of Glucose Metabolism Disorders on IGF-1 Levels in Patients with Acromegaly.

    PubMed

    Dogansen, Sema Ciftci; Yalin, Gulsah Yenidunya; Tanrikulu, Seher; Yarman, Sema

    2018-05-01

    In this study, we aimed to evaluate the presence of glucose metabolism abnormalities and their impact on IGF-1 levels in patients with acromegaly. Ninety-three patients with acromegaly (n=93; 52 males/41 females) were included in this study. Patients were separated into three groups such as; normal glucose tolerance (n=23, 25%), prediabetes (n=38, 41%), and diabetes mellitus (n=32, 34%). Insulin resistance was calculated with homeostasis model assessment (HOMA). HOMA-IR > 2.5 or ≤2.5 were defined as insulin resistant or noninsulin resistant groups, respectively. Groups were compared in terms of factors that may be associated with glucose metabolism abnormalities. IGF-1% ULN (upper limit of normal)/GH ratios were used to evaluate the impact of glucose metabolism abnormalities on IGF-1 levels. Patients with diabetes mellitus were significantly older with an increased frequency of hypertension (p<0.001, p=0.01, respectively). IGF-1% ULN/GH ratio was significantly lower in prediabetes group than in normal glucose tolerance group (p=0.04). Similarly IGF-1% ULN/GH ratio was significantly lower in insulin resistant group than in noninsulin resistant group (p=0.04). Baseline and suppressed GH levels were significantly higher in insulin resistant group than in noninsulin resistant group (p=0.024, p<0.001, respectively). IGF-1% ULN/GH ratio is a useful marker indicating glucose metabolism disorders and IGF-1 levels might be inappropriately lower in acromegalic patients with insulin resistance or prediabetes. We suggest that IGF-1 levels should be re-evaluated after the improvement of insulin resistance or glycemic regulation for the successful management of patients with acromegaly. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Effect of Powder Leaf Breadfruit Disposals (Arthocarpus Altilis) in Oil Mandar District and Polman Against Cholesterol and Glucose Mice (Mus Musculus)

    NASA Astrophysics Data System (ADS)

    Mu'nisa, A.; Asmawati, A.; Farida, A.; FA, Fressy; Erni

    2018-01-01

    The purpose of this study was to determine the effect of powdered leaves of breadfruit (Arthocarpus altilis) on oil is mandated origin of the Polman glucose and cholesterol levels in mice (Mus musculus). This study comprised 4 treatments and each treatment consisted of 5 replicates, ie groups of mice were fed a standard (negative control); 2 groups: group of mice fed with standard and cholesterol feed (positive control); Group 3 that mice fed with standard and Selayar oil; and group 4: group of mice fed with standard and Mandar oil that has been given powdered leaves of breadfruit. Measurement of glucose and blood cholesterol levels in mice done 3 times ie 2 weeks after the adaptation period (phase 1), 2 weeks after administration of the oil (phase 2) and 2 weeks after feeding cholesterol (stage 3). Based on the analysis of data both cholesterol and glucose levels showed that in a group of 4 decreased glucose and cholesterol levels in stage 2 but at stage 3 an increase in the group of mice given only the oil while in the group of mice given the oil and powdered leaves of breadfruit indicate glucose levels and normal cholesterol. The conclusion of this study show that the addition of powdered leaves of breadfruit into cooking oil Mandar influential in glucose levels and normalize blood cholesterol levels in mice.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, A.L.; Kohrs, M.B.; Horwitz, D.L.

    To determine the effect of glucose loading on serum zinc concentrations, 34 elderly subjects aged 60-86 y were studied. Anthropometric data, medical and dietary histories were obtained. Serum zinc and glucose concentrations were obtained fasting and 1/2, 1, 1 1/2, 2 and 3 h after 75 g oral glucose load; glycohemoglobin and fasting serum lipids were also determined. For comparison, the subjects were categorized as: normal or low serum zinc concentrations; normal or high body mass index BMI; normal or high sum of skinfolds and normal or high serum cholesterol. Results showed that low serum zinc concentrations increased significantly overmore » baseline values after the glucose load and did not return to fasting levels. On the other hand, mean serum zinc concentrations significantly declined without recovery for those with normal zinc values. For the total group, no significant differences were noted between fasting values and subsequent time periods. No correlations were noted between fasting serum zinc and area under the curve for zinc except in the high BMI group (positive correlation observed). For the high BMI group, fasting serum zinc differed significantly from the succeeding measurements except for 30 min. For the group as a whole, mean serum zinc concentration was within normal limits (76.9 +/- 2.8 mcg/ml): mean zinc intake was less than 2/3rds the RDA. They conclude that glucose ingestion may alter serum zinc and should be considered in interpreting these levels.« less

  16. Levels of lactic acid, normal level & its relation to food, glucose, cholesterol, raised blood urea and phenformin therapy.

    PubMed

    Patel, J C; Sawant, M S; Amin, B M

    2000-01-01

    1. The level of lactic acid was found to be 25 mg percent in 95 percent of 186 normal Indians. There was no difference due to sex and age. 2. Level of lactic acid was estimated in blood of normal persons and diabetics Type II patients to observe the effects of food and glucose. There was no change except the level of lactic acid was in higher but in normal range. 3. Hyperglycemia of over 300 mg raised the blood lactic acid in 25 percent of patients. 4. Lactic acid was not affected by hypercholesteremia but was raised in 60 percent of cases with raised blood urea. 5. Lactic acid was found to remain within normal limits in 48 type II diabetics treated with phenformin dose varying from 50 mg to 225 mg per day. The duration of treatment varied from one year to seven years.

  17. Interleukin-1β (IL-1β) increases pain behavior and the blood glucose level: possible involvement of glucocorticoid system.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won

    2013-10-01

    The possible involvement of glucocorticoid system in interleukin-1β (IL-1β)-induced nociception and the blood glucose level was studied in ICR mice. In the first experiment, mice were treated intrathecally (i.t.) with IL-1β (100 pg). Corticotrophin releasing hormone (CRH) mRNA (hypothalamus) and c-Fos mRNA (pituitary gland, spinal cord, and the adrenal gland) levels were measured at 30, 60 and 120 min after IL-1β administration. We found that i.t. injection with IL-1β increased CRH mRNA level in the hypothalamus. The IL-1β administered i.t. elevated c-Fos mRNA levels in the spinal cord, pituitary and adrenal glands. Furthermore, i.t. administration of IL-1β significantly increased the plasma corticosterone level up to 60 min. In addition, the adrenalectomy caused the reductions of the blood glucose level and pain behavior induced by IL-1β injected i.t. in normal and D-glucose-fed groups. Furthermore, intraperitoneal (i.p.) pretreatment with RU486 (100mg/kg) attenuated the blood glucose level and pain behavior induced by IL-1β administered i.t. in normal and D-glucose-fed groups. Our results suggest that IL-1β administered i.t. increases the blood glucose level and pain behavior via an activation of the glucocorticoid system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altszuler, N.; Puma, F.; Winkler, B.

    1986-05-01

    Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the (6-/sup 3/H)glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 ..mu..U/kg/min) caused a rise in plasma glucagon and glucose levels,more » increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production.« less

  19. [Prevalence of metabolic syndrome in children with and without obesity].

    PubMed

    Guzmán-Guzmán, Iris Paola; Salgado-Bernabé, Aralia Berenice; Muñoz Valle, José Francisco; Vences-Velázquez, Amalia; Parra-Rojas, Isela

    2015-03-09

    Childhood obesity is considered the main risk factor for the development of metabolic syndrome (MetS) during childhood, adolescence and adulthood. This study aimed to determine the prevalence of MetS components and its main defining combinations in a sample of school children with and without obesity. A total of 225 children aged 6-12 years, 106 obese and 119 with normal weight were included. MetS was defined by the presence of 3 or more of the following: obesity as a body mass index ≥ 95th percentile, fasting glucose ≥ 100 mg/dL, triglycerides ≥ 150 mg/dL, high density lipoproteins cholesterol (HDL-c)<40 mg/dL and systolic and diastolic blood pressure ≥ 95th percentile. We found MetS components in both groups. Most frequent abnormalities in the obese group included increased levels of HDL-c, triglycerides, fasting glucose and total cholesterol, while increased levels of glucose and total cholesterol, and lower HDL-c levels predominated in the normal weight group. The prevalence of MetS in the obese group was 44.3% and, in normal weight children, it was 0.84%. The 3 main components that defined the MetS in the obese group were obesity/triglycerides/HDL-c (34.0%), obesity/glucose/triglycerides/HDL-c (29.8%) and obesity/glucose/HDL-c (14.9%), while the only combination observed in the normal weight group was glucose/HDL-c/triglycerides. A percentage of 44.3 of obese school children had MetS, and dyslipidemia showed to be strong determinants of MetS. Although the prevalence of MetS was low in children with normal weight, one third of them showed one of the components of MetS. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  20. Effects of insulin under normal and low glucose on retinal electrophysiology in the perfused cat eye.

    PubMed

    Lansel, N; Niemeyer, G

    1997-04-01

    To investigate the short-term effects of fast-acting insulin on the electroretinogram-b-wave, optic nerve response, standing potential, and flow rate in the arterially perfused cat eye under normal conditions and during low glucose levels. Enucleated cat eyes were perfused with a glucose- and insulin-free tissue culture medium, to which glucose was applied at normal (5.5 mM) and reduced (2 and 1 mM) concentrations. Photic stimulation was performed in the rod-matched intensity range before, during, and after insulin application at postprandial (5 ng/ml) and at 10 and 20 x higher concentrations. Insulin failed to affect retinal signals at normal glucose levels. However, insulin enhanced the low glucose-induced decrease in rod-driven b-wave amplitude (P < 0.05 at 2 mM; P < 0.01 at 1 mM) without affecting the corresponding changes in the optic nerve response. The standing potential increased by as much as 0.75 mV in response to insulin. The perfusate flow rate was not altered by insulin. Insulin was not required for normal retinal function as observed during 10 hours of perfusion. The differential responsiveness to insulin under low glucose of the b-wave versus the optic nerve response is thought to reflect suppression of glucose use by Müller (glial) cells rather than neuromodulation, as the neuronal optic nerve response is unaffected. The postulated insulin sensitivity of Müller cells (changes in b-wave amplitude) indicates a possible difference in the mechanism of glucose metabolism of glia versus neurons. The electrophysiological effect of insulin under low glucose suggests its passage across the blood-retina barrier. The increase in the standing potential is likely to be a receptor-mediated retinal pigment epithelium effect. These results provide evidence in the retina for the reported multifunctional nature of the insulin receptor.

  1. [Relationship between blood glucose levels and salivary pH and buffering capacity in type II diabetes patients].

    PubMed

    Elkafri, I H; Mashlah, A; Shaqifa, A

    2014-03-13

    This study was evaluated the relationship between blood glucose levels and salivary pH and buffering capacity in type II diabetic patients. The sample comprised 210 participants (age ranged 40-60 years). Based on fasting blood glucose levels the participants were divided into 3 groups: controls with normal blood glucose levels; diabetic patients with levels ≤ 200 mg/dL; and diabetic patients with levels > 200 mg/dL. Salivary pH and buffering capacity were determined in a sample of resting (non-stimulated) saliva taken from each participant. Salivary pH levels in diabetic patients with blood glucose levels > 200 mg/dL were lower than in the controls and diabetic patients with levels ≤ 200 mg/dL. Salivary pH levels were comparable in controls and diabetic patients with blood glucose levels ≤ 200 mg/dL. Salivary buffering capacity in the 3 groups was comparable.

  2. Impaired glucose tolerance in patients with amyotrophic lateral sclerosis.

    PubMed

    Pradat, Pierre-Francois; Bruneteau, Gaelle; Gordon, Paul H; Dupuis, Luc; Bonnefont-Rousselot, Dominique; Simon, Dominique; Salachas, Francois; Corcia, Philippe; Frochot, Vincent; Lacorte, Jean-Marc; Jardel, Claude; Coussieu, Christiane; Le Forestier, Nadine; Lacomblez, Lucette; Loeffler, Jean-Philippe; Meininger, Vincent

    2010-01-01

    Our objectives were to analyse carbohydrate metabolism in a series of ALS patients and to examine potential association with parameters of lipid metabolism and clinical features. Glucose tolerance was assessed by the oral glucose tolerance test in 21 non-diabetic ALS patients and compared with 21 age- and sex-matched normal subjects. Lipids and lactate/pyruvate ratio, levels of pro-inflammatory cytokines (tumour necrosis factor-alpha and interleukin-6) and adipocytokines (leptin and adiponectin) were also measured in ALS patients. Mann-Whitney U-tests analysed continuous data and Fisher's exact tests assessed categorical data. Blood glucose determined 120 min after the glucose bolus was significantly higher in patients with ALS (7.41 mmol/l+/-1.68) compared to controls (6.05+/-1.44, p=0.006). ALS patients with impaired glucose tolerance (IGT) according to WHO criteria (n=7, 33%) were more likely to have elevated free fatty acids (FFA) levels compared to patients with normal glucose tolerance (0.77 nmol/l+/-0.30 vs. 0.57+/-0.19, p=0.04). IGT was not associated with disease duration or severity. In conclusion, patients with ALS show abnormal glucose tolerance that could be associated with increased FFA levels, a key determinant of insulin resistance. The origin of glucose homeostasis abnormalities in ALS may be multifactorial and deserves further investigation.

  3. Cardiac damage associated with stress hyperglycaemia and acute coronary syndrome changes according to level of presenting blood glucose.

    PubMed

    Al Jumaily, Talib; Rose'Meyer, Roselyn B; Sweeny, Amy; Jayasinghe, Rohan

    2015-10-01

    To determine the prevalence of stress hyperglycaemia in people presenting with acute coronary syndrome (ACS), and the relationships between admission glucose and cardiac damage, cardiovascular mortality and morbidity. In a prospective observational study people presenting with ACS at the Gold Coast Hospital had their admission glucose (AG) level tested to determine stress hyperglycaemia. A range of measurements supplemented this data including troponin levels, category of ACS and major adverse coronary events (MACEs) were obtained through hospital records and patient follow-up post-discharge. One hundred eighty-eight participants were recruited. The prevalence of stress hyperglycaemia in ACS was 44% with 31% having a previous diagnosis of type 2 diabetes and 7.7% had undiagnosed diabetes. The stress hyperglycaemic group had a significantly higher median troponin levels compared to participants with normal blood glucose levels on admission (p<0.05) however the highest presenting glucose group (>15 mmol/L) had troponin levels similar to people presenting with normal blood glucose levels and ACS (p>0.05). Cardiac necrosis as measured by troponin levels is significantly increased in people with ACS and stress hyperglycaemia. This study found that one in four participants presenting with ACS and an admission glucose of >7.0 had no previous diagnosis for diabetes. Consistently ordering HbA1C testing on patients with high AG can enable earlier diagnosis and treatment of diabetes. Copyright © 2015. Published by Elsevier Ireland Ltd.

  4. Angelica dahurica Extracts Improve Glucose Tolerance through the Activation of GPR119

    PubMed Central

    Kim, Mi-Hwi; Choung, Jin-Seung; Oh, Yoon-Sin; Moon, Hong-Sub; Jun, Hee-Sook

    2016-01-01

    G protein-coupled receptor (GPR) 119 is expressed in pancreatic β-cells and intestinal L cells, and is involved in glucose-stimulated insulin secretion and glucagon-like peptide-1 (GLP-1) release, respectively. Therefore, the development of GPR119 agonists is a potential treatment for type 2 diabetes. We screened 1500 natural plant extracts for GPR119 agonistic actions and investigated the most promising extract, that from Angelica dahurica (AD), for hypoglycemic actions in vitro and in vivo. Human GPR119 activation was measured in GeneBLAzer T-Rex GPR119-CRE-bla CHO-K1 cells; intracellular cAMP levels and insulin secretion were measured in INS-1 cells; and GLP-1 release was measured in GLUTag cells. Glucose tolerance tests and serum plasma insulin levels were measured in normal C57BL6 mice and diabetic db/db mice. AD extract-treated cells showed significant increases in GPR119 activation, intracellular cAMP levels, GLP-1 levels and glucose-stimulated insulin secretion as compared with controls. In normal mice, a single treatment with AD extract improved glucose tolerance and increased insulin secretion. Treatment with multiple doses of AD extract or n-hexane fraction improved glucose tolerance in diabetic db/db mice. Imperatorin, phellopterin and isoimperatorin were identified in the active fraction of AD extract. Among these, phellopterin activated GPR119 and increased active GLP-1 and insulin secretion in vitro and enhanced glucose tolerance in normal and db/db mice. We suggest that phellopterin might have a therapeutic potential for the treatment of type 2 diabetes. PMID:27391814

  5. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis.

    PubMed

    Kiho, T; Hui, J; Yamane, A; Ukai, S

    1993-12-01

    Crude polysaccharides were obtained from a hot-water extract and alkaline extracts of the cultural mycelium of Cordyceps sinensis. They showed significant activity in normal mice and streptozotocin-induced diabetic mice as a result of intraperitoneal (i.p.) injection. A crude polysaccharide (CS-OHEP) obtained from 5% sodium hydroxide extract slightly lowered the plasma glucose level in normal mice by oral (p.o.) administration. A neutral polysaccharide (CS-F30) exhibited higher hypoglycemic activity than its crude polysaccharide (CS-OHEP), exhibited by i.p. injection, and it significantly lowered the glucose level by p.o. administration (50 mg/kg). However, it hardly affected the plasma insulin level in normal mice. CS-F30 ([alpha]D + 21 degrees in water) is composed of galactose, glucose and mannose (molar percent, 62:28:10), and its molecular weight is about 45000.

  6. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion

    PubMed Central

    Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark

    2013-01-01

    To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake. PMID:24303141

  7. Beneficial effect of tagatose consumption on postprandial hyperglycemia in Koreans: a double-blind crossover designed study.

    PubMed

    Kwak, Jung Hyun; Kim, Min Sun; Lee, Jin Hee; Yang, Yoon Jung; Lee, Ki Ho; Kim, Oh Yoen; Lee, Jong Ho

    2013-08-01

    The present study determined the effect of tagatose supplementation on postprandial hyperglycemia in normal (n = 54) and hyperglycemic subjects [n = 40, impaired fasting glucose (IFG) and newly diagnosed type 2 diabetes]. In a double-blind crossover designed study, study subjects were randomly assigned to consume a sucralose-erythritol drink (the placebo) or a tagatose-containing drink (the test) with a seven-day interval. Finally, 85 subjects completed the study (normal, n = 52; hyperglycemic, n = 33). Blood samples were collected at 0, 30, 60 and 120 min after ingestion and analyzed for fasting and postprandial levels of glucose, insulin and C-peptide. Basic anthropometric parameters and lipid files were also measured. Hyperglycemic subjects were basically older and heavier, and showed higher levels of triglyceride, total- and LDL-cholesterols and apolipoprotein AI and B compared with normal subjects. After consuming the tagatose (5 g)-containing drink, hyperglycemic subjects had a significant reduction in serum levels of glucose at 120 min (p = 0.019) and glucose area under the curve (AUC) (p = 0.017), however these were not observed in normal subjects. When ages were matched between the two groups, the glucose response patterns were shown to be similar. Additionally, normal subjects who received a high-dose of tagatose-containing drinks (10 g) showed significantly lower levels of insulin at 30 min (p = 0.004) and 60 min (p = 0.011), insulin AUC (p = 0.009), and C-peptide at 30 min (p = 0.004), 60 min (p = 0.011) and C-peptide AUC (p = 0.023). In conclusion, a single dietary supplement in the form of a tagatose-containing drink may be beneficial for controlling postprandial glycemic response in Koreans.

  8. Effect of Different Insulin Response Patterns During Oral Glucose Tolerance Test on Glycemia in Individuals with Normal Glucose Tolerance.

    PubMed

    Praveen, Edavan Pulikkanath; Chouhan, Sunil; Sahoo, Jayaprakash; Goel, Sudhir K; Dwivedi, Sada Nand; Khurana, Madan Lal; Kulshreshtha, Bindu; Ammini, Ariachery C

    2016-05-01

    Research is still going on for detecting the earliest glucose homeostasis derangements in individuals, which is crucial for the prevention of glucose intolerance. This cross-sectional study analyzes different insulin response patterns during the oral glucose tolerance test (OGTT) and their implications on glycemia in normoglycemic individuals. The sample frame was the "Offspring of Individuals with Diabetes Study" database. All participants underwent OGTT. Blood samples were collected at 0, 30, 60, and 120 min for measurement of insulin, C-peptide, and proinsulin levels. Normal glucose tolerant individuals were selected for analysis. Four hundred fifty subjects (mean age, 25 years) were included and divided into two groups according to timing of plasma insulin peaking during OGTT: Group 1, peaking at 30 min; and Group 2, peaking at 60 or 120 min. Body mass index (BMI) and insulin resistance were comparable between the groups; however, Group 2 showed a significantly higher 60- and 120-min glucose level and lower disposition index. Based on the magnitude of the insulin levels, Group 1 was subdivided into Group N (normal pattern) and Group E (exaggerated pattern) with a 30-min insulin cutoff of 74 μU/mL (Group E, ≥74 μU/mL). Group 2 was subdivided into Group DL (delayed and limited pattern; 60-min insulin <73.0 μU/mL and 120-min insulin <80.0 μU/mL) and Group DE (delayed and exaggerated pattern; 60-min insulin ≥73.0 μU/mL or 120-min insulin ≥80.0 μU/mL). Group DE showed a significantly higher area under the curve (AUC) of glucose compared with the other groups and had a lower disposition index and high-density lipoprotein levels. Group DL had significantly lower insulin resistance and BMI compared with Group E but showed a similar AUC of glucose. A delayed insulin pattern was associated with higher postprandial glucose levels. Individuals with delayed and exaggerated insulin secretion may have a higher risk for glucose intolerance.

  9. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury.

    PubMed

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid; Fuglsang, Stefan; Graff, Jesper; Larsen, Karen B; Kammersgaard, Lars P; Law, Ian; Siebner, Hartwig R

    2017-11-01

    Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [ 18 F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [ 18 F]FDG-PET scan and venous blood sampling. Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI patients compared to HC. In accordance these measurements correlated to level of consciousness. Our study demonstrates that the analysis method of the [ 18 F]FDG PET data has a substantial impact on the estimated whole brain cerebral glucose metabolism in patients with severe TBI. Importantly, the SUVR method which is often used in a clinical setting was not able to distinguish patients with severe TBI from HC at the whole-brain level. We recommend supplementing a static [ 18 F]FDG scan with a single venous blood sample in future studies of patients with severe TBI or reduced level of consciousness. This can be used for simple semi-quantitative uptake values by normalizing brain activity uptake to plasma tracer concentration, or quantitative estimates of CMRglc. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Glucose, Insulin and C-peptide Kinetics during an Oral Glucose Tolerance Test in Patients with Chronic Liver Disease

    PubMed Central

    Min, Yong Ki; Suh, Kyo II; Choi, Sang Jeon; Lee, Hong Kyu; Kim, Chung Yong; Koh, Chang-Soon; Min, Hun Ki

    1987-01-01

    To elucidate the mechanism of glucose intolerance in patients with chronic liver disease(CLD), we measured the levels of plasma glucose, insulin and C-peptide during oral glucose tolerance test and urinary excretion of C-peptide per 24 hours during a weight maintenance diet in 20 patients with CLD who had fasting plasma glucose(FBS) of less than 100 mg/dl. The patients with CLD who had normal FBS(FBS less than 100 mg/dl) were divided into two groups by the National Diabetes Data Group Criteria: one with abnormal glucose tolerance (abnormal GTT, Group 1) and the other with normal glucose tolerance (normal GTT. Group 2). Group 1 patients showed significantly higher plasma insulin (p<0.02 and p<0.01, respectively) and C-peptide concentrations (p<0.01) in the fasting state and 2 hours after a 75gram oral glucose loading (PP2) than group 2 patients. Urinary excretion of C-peptide per 24 hours was also higher in group 1 patients than in group 2 patients (p<0.01). Group 2 patients demonstrated similar plasma insulin, C-peptide and urinary excretion of C-peptide per 24 hours to normal subjects (p>0.05). These results suggest that patients with CLD who had normal FBS can be divided into two groups by oral glucose tolerance test(GTT) and those with abnormal GTT have hyperinsulinemia the mechanism of which is insulin hypersecretion from pancreatic B-cell. PMID:3154815

  11. Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

    DTIC Science & Technology

    2007-09-01

    Introduction Intensive treatment with the goal of maintaining blood glucose concentrations close to the normal range can prevent or delay...the occurrence of diabetic related complications.1 Diabetic patients, therefore, have to frequently monitor their blood glucose levels by drawing... blood necessary for conventional glucose monitoring. The blood data obtained gives no indication of direction or trend of blood sugar levels. Even the

  12. The Influence of Insulin Injections and Infusions on Eating and Blood Glucose Level in the Rat,

    DTIC Science & Technology

    then a sudden rise ensues. Continuous infusion of insulin in normal rats induces hyperphagia : blood glucose decreases slowly to 50 mg%; at which...insulin into static obese hypothalamic subjects (whose daily food intake is fairly normal) leads to renewed hyperphagia , but the fluctuations in blood

  13. [Dracorhodin perchlorate inhibit high glucose induce serum and glucocorticoid induced protein kinase 1 and fibronectin expression in human mesangial cells].

    PubMed

    Xie, Yifeng; Wang, Quansheng; Liu, Jianguo; Xie, Jiwen; Xue, Kaming; Tang, Qing

    2010-08-01

    To investigate the effect of dracorhodin perchlorate (DP) on inhibiting high glucose-induced serum and glucocorticoid induced protein kinase 1 (SGK1) and fibronectin (FN) expression in human mesangial cells (HMC), and its mechanism of prevention and treatment on renal fibrosis in diabetic nephropathy (DN) . The HMC were divided into normal glucose group (NG group, 5.5 mmol x L(-1) D-glucose), normal glucose +low DP group (NG + LDP group, 5.5 mmol x L(-1) D-glucose +7.5 micromol x L(-1) DP), normal glucose +high DP group (NG + HDP group, 5.5 mmol x L(-1) D-glucose + 15 micromol x L(-1) DP), high glucose group (HG group,25 mmol x L(-1) D-glucose), high glucose +low DP group (HG + LDP group, 25 mmol x L(-1) D-glucose + 7.5 micromol x L(-1) DP)and high glucose +high DP group (HG +HDP group, 25 mmol x L(-1) D-glucose + 15 micromol x L(-1) DP). Each group was examined at 24 hours. The levels of SGK1 and FN mRNA was detected by real-time fluorescence quantitative PCR,and the expression of SGK1 and FN protein was detected by Western blot or indirect immunofluorescence. A basal level of SGK1 and FN in HMC were detected in NG group, and the level of SGK1 and FN mRNA and protein were not evidently different compared to that of NG group adding 7.5 micromol x L(-1) DP for 24 hours. On the other hand, the levels of SGK1 and FN mRNA and protein were obviously decreased by adding 15 micromol x L(-1) DP for 24 hours. Compared to NG group, the levels of SGK1 and FN mRNA and protein were increased in HG group after stimulating for 24 hours (P < 0.01). Compared to HG group, the level of SGK1 and FN mRNA and protein were evidently reduced in HG + LDP and HG + HDP groups by adding 7.5 micromol x L(-1) DP and 15 micromol x L(-1) DP for 24 hours (P < 0.01). Dracorhodin perchlorate can inhibit high glucose-induced serum and glucocorticoid induced protein kinase 1 (SGK1) and fibronectin(FN) expression in human mesangial cells, and this may be part of the mechanism of preventing and treating renal fibrosis of DN.

  14. Correlation between normal glucose-6-phosphate dehydrogenase level and haematological parameters.

    PubMed

    Ajlaan, S K; al-Naama, L M; al-Naama, M M

    2000-01-01

    The study involved 143 individuals and aimed to correlate normal glucose-6-phosphate dehydrogenase (G6PD) level with haematological parameters. A statistically significant negative correlation was found between G6PD level and haemoglobin, packed cell volume, red blood cell count, mean corpuscular haemoglobin and mean corpuscular volume. A statistically significant positive correlation was found between G6PD level and white blood cell count and reticulocyte count, but no significant correlation was found between G6PD level and mean corpuscular haemoglobin concentration. The negative correlation between G6PD level and haemoglobin suggests that anaemic people have higher G6PD levels than normal individuals. The positive correlation between G6PD level and white blood cell count indicates that white blood cells may play an important role in contributing to G6PD level.

  15. Beta-endorphin-induced inhibition and stimulation of insulin secretion in normal humans is glucose dependent.

    PubMed

    Giugliano, D; Cozzolino, D; Salvatore, T; Torella, R; D'Onofrio, F

    1988-09-01

    This study evaluated the effect of human beta-endorphin on pancreatic hormone levels and their responses to nutrient challenges in normal subjects. Infusion of 0.5 mg/h beta-endorphin caused a significant rise in plasma glucose concentrations preceded by a significant increase in peripheral glucagon levels. No changes occurred in the plasma concentrations of insulin and C-peptide. Acute insulin and C-peptide responses to intravenous pulses of different glucose amounts (0.33 g/kg and 5 g) and arginine (3 g) were significantly reduced by beta-endorphin infusion (P less than .01). This effect was associated with a significant reduction of the glucose disappearance rates, suggesting that the inhibition of insulin was of biological relevance. beta-Endorphin also inhibited glucose suppression of glucagon levels and augmented the glucagon response to arginine. To verify whether the modification of prestimulus glucose level could be important in these hormonal responses to beta-endorphin, basal plasma glucose concentrations were raised by a primed (0.5 g/kg) continuous (20 mg kg-1.min-1) glucose infusion. After stabilization of plasma glucose levels (350 +/- 34 mg/dl, t = 120 min), beta-endorphin infusion caused an immediate and marked increase in plasma insulin level (peak response 61 +/- 9 microU/ml, P less than .01), which remained elevated even after the discontinuation of opioid infusion. Moreover, the acute insulin response to a glucose pulse (0.33 g/kg i.v.) given during beta-endorphin infusion during hyperglycemia was significantly higher than the response obtained during euglycemia (171 +/- 32 vs. 41 +/- 7 microU/ml, P less than .01).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    PubMed Central

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  17. Attenuation of Diabetic Conditions by Sida rhombifolia in Moderately Diabetic Rats and Inability to Produce Similar Effects in Severely Diabetic in Rats.

    PubMed

    Chaturvedi, Padmaja; Kwape, Tebogo Elvis

    2015-12-01

    This study was done out to evaluate the effects of Sida rhombifolia methanol extract (SRM) on diabetes in moderately diabetic (MD) and severely diabetic (SD) Sprague-Dawley rats. SRM was prepared by soaking the powdered plant material in 70% methanol and rota evaporating the methanol from the extract. Effective hypoglycemic doses were established by performing oral glucose tolerance tests (OGTTs) in normal rats. Hourly effects of SRM on glucose were observed in the MD and the SD rats. Rats were grouped, five rats to a group, into normal control 1 (NC1), MD control 1 (MDC1), MD experimental 1 (MDE1), SD control 1 (SDC1), and SD experimental 1 (SDE1) groups. All rats in the control groups were administered 1 mL of distilled water (DW). The rats in the MDE1 and the SDE1 groups were administered SRM orally at 200 and 300 mg/kg body weight (BW), respectively, dissolved in 1 mL of DW. Blood was collected initially and at intervals of 1 hour for 6 hours to measure blood glucose. A similar experimental design was followed for the 30-day long-term trial. Finally, rats were sacrificed, and blood was collected to measure blood glucose, lipid profiles, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH). OGTTs indicated that two doses (200 and 300 mg/kg BW) were effective hypoglycemic doses in normal rats. Both doses reduced glucose levels after 1 hour in the MDE1 and the SDE1 groups. A long-term trial of SRM in the MD group showed a reduced glucose level, a normal lipid profile, and normal GSH and TBARS levels. In SD rats, SRM had no statistically significant effects on these parameters. Normal weight was achieved in the MD rats, but the SD rats showed reduced BW. The study demonstrates that SRM has potential to alleviate the conditions of moderate diabetic, but not severe diabetes.

  18. Soy β-conglycinin improves glucose uptake in skeletal muscle and ameliorates hepatic insulin resistance in Goto-Kakizaki rats.

    PubMed

    Tachibana, Nobuhiko; Yamashita, Yoko; Nagata, Mayuko; Wanezaki, Satoshi; Ashida, Hitoshi; Horio, Fumihiko; Kohno, Mitsutaka

    2014-02-01

    Although the underlying mechanism is unclear, β-conglycinin (βCG), the major component of soy proteins, regulates blood glucose levels. Here, we hypothesized that consumption of βCG would normalize blood glucose levels by ameliorating insulin resistance and stimulating glucose uptake in skeletal muscles. To test our hypothesis, we investigated the antidiabetic action of βCG in spontaneously diabetic Goto-Kakizaki (GK) rats. Our results revealed that plasma adiponectin levels and adiponectin receptor 1 messenger RNA expression in skeletal muscle were higher in βCG-fed rats than in casein-fed rats. Phosphorylation of adenosine monophosphate-activated protein kinase (AMP kinase) but not phosphatidylinositol-3 kinase was activated in βCG-fed GK rats. Subsequently, βCG increased translocation of glucose transporter 4 to the plasma membrane. Unlike the results in skeletal muscle, the increase in adiponectin receptor 1 did not lead to AMP kinase activation in the liver of βCG-fed rats. The down-regulation of sterol regulatory element-binding factor 1, which is induced by low insulin levels, promoted the increase in hepatic insulin receptor substrate 2 expression. Based on these findings, we concluded that consumption of soy βCG improves glucose uptake in skeletal muscle via AMP kinase activation and ameliorates hepatic insulin resistance and that these actions may help normalize blood glucose levels in GK rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Normal adiponectin levels despite abnormal glucose tolerance (or diabetes) and inflammation in adult patients with cystic fibrosis.

    PubMed

    Hammana, I; Malet, A; Costa, M; Brochiero, E; Berthiaume, Y; Potvin, S; Chiasson, J-L; Coderre, L; Rabasa-Lhoret, R

    2007-06-01

    Circulating adiponectin levels are negatively associated with glucose intolerance, inflammation and central adiposity. Since these conditions are common in cystic fibrosis (CF), we examined whether adiponectin values are altered in these patients. To determine if CF patients have altered adiponectin levels and if these levels correlate with glucose tolerance categories (normal, impaired glucose tolerance (IGT) and cystic fibrosis-related diabetes (CFRD)), insulin resistance or inflammatory markers such as fibrinogen and C-reactive protein (CRP). Oral glucose tolerance tests (OGTTs) were performed and adiponectin levels were measured in 90 CF patients not known to be diabetic and 15 healthy controls matched for age, sex and body mass index (BMI). Inflammatory markers, serum albumin concentrations and the clinical status of CF patients (i.e. pulmonary function) were also examined. CF pathology was characterized by a high prevalence (43.5%) of glucose tolerance abnormalities: 26.5% of IGT and 17.0% of newly diagnosed CFRD. CF patients also presented systemic inflammation as revealed by a significant increase of fibrinogen (P=0.029) in all patients and higher CRP levels in CFRD patients compared to the controls (P<0.05). On the other hand, CF and control subjects had similar albumin serum concentration. While CF patients and controls had similar serum adiponectin values, women had significantly higher hormone levels than men (P<0.001). Adiponectin levels did not correlate with glucose tolerance, inflammatory markers or insulin resistance. On the other hand, they correlated positively with both total and HDL-cholesterol (P<0.001). CF patients did not show any alterations in adiponectin levels despite insulin resistance, glucose intolerance and sub clinical chronic inflammation. Thus, CF appears to be one of the rare conditions in which discordance between adiponectin values and insulin resistance or inflammation is evident.

  20. Fasting hyperglycaemia blunts the reversal of impaired glucose tolerance after exercise training in obese older adults.

    PubMed

    Malin, S K; Kirwan, J P

    2012-09-01

    Lifestyle modification, consisting of exercise and weight loss, delays the progression from prediabetes to type 2 diabetes (T2D). However, no study has determined the efficacy of exercise training on glucose metabolism in the different prediabetes subtypes. Seventy-six older (65.1 ± 0.6 years) obese adults with impaired fasting glucose (IFG; n = 12), impaired glucose tolerance (IGT; n = 9) and combined glucose intolerance (IFG + IGT = CGI; n = 22) were compared with normal glucose tolerant (NGT; n = 15) and T2D (n = 18) groups after 12 weeks of exercise training (60 min/day for 5 days/week at ~85% HR(max)). An oral glucose tolerance test was used to assess glucose levels. Insulin sensitivity (IS; euglycaemic hyperinsulinaemic clamp at 40 mU/m(2)/min), β-cell function (glucose-stimulated insulin secretion corrected for IS), body composition (hydrostatic weighing/computed tomography scan) and cardiovascular fitness (treadmill VO(2) max) were also assessed. Exercise training reduced weight and increased cardiovascular fitness (p < 0.05). Exercise training lowered fasting glucose levels in IFG, CGI and T2D (p < 0.05) and 2-h glucose levels in IGT, CGI and T2D (p < 0.05). However, 2-h glucose levels were not normalized in adults with CGI compared with IGT (p < 0.05). β-Cell function improved similarly across groups (p < 0.05). Although not statistically significant, IS increased approximately 40% in IFG and IGT, but only 17% in CGI. The magnitude of improvement in glucose metabolism after 12 weeks of exercise training is not uniform across the prediabetes subtypes. Given the high risk of progressing to T2D, adults with CGI may require more aggressive therapies to prevent diabetes. © 2012 Blackwell Publishing Ltd.

  1. A low glycemic index staple diet reduces postprandial glucose values in Asian women with gestational diabetes mellitus.

    PubMed

    Hu, Zhi-Geng; Tan, Rong-Shao; Jin, Di; Li, Wei; Zhou, Xiao-Yan

    2014-12-01

    A low glycemic index (GI) diet is beneficial for glucose control in patients with diabetes mellitus. This study aimed to investigate the influence of a low-GI diet on postprandial glucose levels in women with gestational diabetes mellitus (GDM). Pregnant women with GDM were randomized to receive a normal diabetic control diet or a low-GI staple diet for 5 days. A low-GI staple food was used to replace rice in lunch and dinner for the low-GI staple diet group, whereas the total energy and carbohydrate levels remained equal in both groups. Fasting and postprandial glucose levels were determined daily. A total of 140 pregnant women with GDM were included in the study, including 66 in the low-GI staple diet group and 74 in the normal diabetic diet control group. No differences existed in baseline characteristics between the 2 groups (all P > 0.05). After dietary intervention, glucose levels were significantly reduced in the low-GI staple diet group (all P < 0.01) and the control group (all P < 0.008). Postintervention glucose values after breakfast, lunch, and dinner were significantly reduced in the treatment group compared with those in the control group (all P < 0.05). The percentage changes from baseline of all glucose values were significantly greater in the treatment group than in the control group (all P < 0.05). A low-GI staple diet significantly reduces postprandial glucose levels in women with GDM.

  2. Hypoglycemic and hypolipidemic effects of Aronia melanocarpa fruit juice in streptozotocin-induced diabetic rats.

    PubMed

    Valcheva-Kuzmanova, S; Kuzmanov, K; Tancheva, S; Belcheva, A

    2007-03-01

    Aronia melanocarpa fruit juice (AMFJ) is rich in phenolic antioxidants, especially flavonoids from the anthocyanin subclass. The aim of the present study was to investigate the influence of AMFJ on plasma glucose and lipids in diabetic rats. Diabetes was induced by an intraperitoneal injection of streptozotocin (50 mg/kg). AMFJ was applied by gavage at doses of 10 and 20 ml/kg for 6 weeks to normal and diabetic rats. Streptozotocin caused a significant elevation of plasma glucose by 141% and of plasma triglycerides (TG) by 64% in comparison with normal control rats and induced statistically insignificant elevations of total cholesterol and LDL-cholesterol and a reduction of HDL-cholesterol. Applied to normal rats, AMFJ did not influence plasma glucose and lipid levels. Applied to diabetic rats, AMFJ (10 and 20 ml/kg) significantly reduced plasma glucose by 44% and 42% and TG by 35% and 39%, respectively, to levels that did not significantly differ from those of the normal control rats and counteracted the influence of streptozotocin on total cholesterol, LDL-cholesterol and HDL-cholesterol. In conclusion, AMFJ significantly decreased the streptozotocin-induced abnormalities in blood glucose and TG in diabetic rats and might be useful in prevention and control of diabetes mellitus and diabetes-associated complications. Copyright 2007 Prous Science.

  3. D-tagatose, a novel hexose: acute effects on carbohydrate tolerance in subjects with and without type 2 diabetes.

    PubMed

    Donner, T W; Wilber, J F; Ostrowski, D

    1999-09-01

    D-Tagatose (D-tag), a hexose bulk sweetener, does not affect plasma glucose levels when orally administered to rodents. Additionally, D-tag attenuates the rise in plasma glucose after mice are administered oral sucrose. The current study was undertaken to investigate the acute glycaemic effects of oral D-tag alone or in combination with oral glucose in human subjects with and without type 2 diabetes mellitus. Glycaemic responses to D-tag also were investigated in subjects after oral sucrose to examine whether the glucose-lowering effects of D-tag in rodents may result from a direct inhibition of intestinal disaccharidases. Eight normal and eight subjects with diabetes mellitus were administered 75 g of glucose, 75 g of D-tag, or 75 g of D-tag 30 min prior to a 75 g oral glucose tolerance test (OGTT). Five patients with diabetes mellitus were challenged with a 75 g oral sucrose tolerance test (OSTT) with and without oral pre-treatment with 75 g of D-tag. Patients with diabetes mellitus also received separate 0, 10, 15, 20 and 30 g of D-tag 30 min prior to a 75 g OGTT. Oral loading with D-tag alone led to no changes in glucose or insulin levels in either normal patients or those with diabetes mellitus. Pre-OGTT treatment with 75 g D-tag, however, attenuated the rise in glucose levels in patients with diabetes mellitus (p < 0.02 at 60 and 180 min, and p < 0.01 at 120 min). The glucose area under the curve (AUC) was reduced significantly also by pre-treatment with D-tag in a dose-dependent manner in patients with diabetes mellitus (p < 0.05 for 10 g D-tag, p < 0.001 for 20 g D-tag, and p = 0.0001 for 30 g D-tag). In patients with diabetes mellitus 75 g D-tag similarly attenuated the rise in glucose following an OSTT (p < 0.01 at 30 min, and p < 0.02 at 60 min). Pre-treatment with 75 g D-tag also tended to blunt the rise in insulin following an OGTT in normal patients (p = 0.07 for insulin AUC) but not patients with diabetes mellitus (p = 0.66). Following 75 g of oral D-tag in four normal patients, plasma D-tag levels rose to a mean peak level of 3.6 mg/dl at 90 min. The administration of 75 g D-tag led to diarrhoea, nausea and/or flatulence in 100% of subjects. When D-tag was administered at lower doses ranging from 10 g to 30 g, only three of 10 patients with diabetes mellitus had gastrointestinal symptoms which were much more mild than those evoked by 75 g D-tag. These results show that oral D-tag significantly blunts the rise in plasma glucose seen after oral glucose in patients with diabetes mellitus in a dose-dependent manner without significantly affecting insulin levels. The minimal elevation of plasma D-tag levels in normal patients and the adverse gastrointestinal effects seen following larger doses of D-tag support poor absorption of this hexose and suggest that D-tag may act by attenuating glucose absorption in the intestine. D-tag may be a useful therapeutic adjunct in the management of type 2 diabetes mellitus.

  4. Everolimus induces rapid plasma glucose normalization in insulinoma patients by effects on tumor as well as normal tissues.

    PubMed

    Fiebrich, Helle-Brit; Siemerink, Ester J M; Brouwers, Adrienne H; Links, Thera P; Remkes, Wouter S; Hospers, Geke A P; de Vries, Elisabeth G E

    2011-01-01

    Mammalian target of rapamycin inhibitor everolimus administered to four insulinoma patients rapidly controlled hypoglycemia (Kulke et al., N Engl J Med 2009;360:195-197). We wanted to identify the kinetics of everolimus effects on controlling hypoglycemia and understand underlying mechanisms. Three consecutive patients with a metastasized symptomatic insulinoma were started on 100 μg of octreotide subcutaneously three times daily. Because of persisting hypoglycemias, treatment with daily 10 mg of oral everolimus was initiated. Serial plasma glucose levels and serum insulin levels were measured. Computer tomography (CT) scans were performed before and after 2 and 5 months of treatment. [¹⁸F]fluoro-2-deoxy-d-glucose positron emission tomography (¹⁸F-FDG-PET) scans, to visualize glucose metabolism, were made before and after 2 weeks, 5 weeks, and 5 months of treatment. The ¹⁸F-FDG uptake was quantified as the maximum standardized uptake value. All patients achieved control of hypoglycemia on everolimus within 14 days. Insulin levels were 2.5- to 6.3-fold elevated before start of treatment and declined 14%-64% after 4 weeks of treatment. CT scans showed stable disease at 2 months in all patients, with progressive disease after 5 months in one. Before treatment, both the tumor lesions and the muscles and myocardium showed high ¹⁸F-FDG uptake. Everolimus reduced tumor and muscle ¹⁸F-FDG uptake after 2 weeks by 26% ± 14% and 19% ± 41%, and after 5 months by 31% ± 13% and 27% ± 41%. Everolimus normalizes plasma glucose levels in metastatic insulinoma within 14 days, coinciding with a lower glucose uptake in tumor and muscles and declining (pro)insulin levels. This effect on tumor as well as normal tissues explains the rapid controlling of hypoglycemia.

  5. The small dense LDL particle/large buoyant LDL particle ratio is associated with glucose metabolic status in pregnancy.

    PubMed

    Chen, Yanmin; Du, Mengkai; Xu, Jianyun; Chen, Danqing

    2017-12-14

    The lipoprotein subfraction particle profile can be used to improve clinical assessments of cardiovascular disease risk and contribute to early detection of atherogenic dyslipidemia. Lipid alterations in gestational diabetes have been extensively studied, but the results have been inconsistent. Here, we investigated serum lipoprotein subfraction particle levels and their association with glucose metabolic status in pregnancy. Twenty-eight pregnant women with gestational diabetes and 56 pregnant women with normal glucose tolerance matched for body mass index were enrolled in this study. We assessed fasting serum lipid concentrations and lipoprotein subfraction particle levels in participants between 24 and 28 weeks of gestation. The level of low-density lipoprotein (LDL) cholesterol was significantly lower in women with gestational diabetes than in those with normal glucose tolerance, but the triglyceride and high-density lipoprotein (HDL) cholesterol levels of the two groups were similar. Lipoprotein particle analysis showed that very-low-density lipoprotein (VLDL) particle number and the small dense LDL particle/large buoyant LDL particle (sdLDL-P/lbLDL-P) ratio were significantly higher in women with gestational diabetes than in those with normal glucose tolerance (P = 0.013 and P = 0.015, respectively). In multivariate analysis, fasting glucose was independently and positively associated with sdLDL-P/lbLDL-P ratio even after adjustment for maternal age, gestational weight gain, BMI and LDL cholesterol (standardized Beta = 0.214, P = 0.029). The sdLDL-P/lbLDL-P ratio is higher in GDM compared with non-diabetic pregnant women, and positively and independently associated with fasting glucose in pregnant women.

  6. Carbon Disulfide (CS2) Interference in Glucose Metabolism from Unconventional Oil and Gas Extraction and Processing Emissions.

    PubMed

    Rich, Alisa L; Patel, Jay T; Al-Angari, Samiah S

    2016-01-01

    Carbon disulfide (CS2) has been historically associated with the manufacturing of rayon, cellophane, and carbon tetrachloride production. This study is one of the first to identify elevated atmospheric levels of CS2 above national background levels and its mechanisms to dysregulate normal glucose metabolism. Interference in glucose metabolism can indirectly cause other complications (diabetes, neurodegenerative disease, and retinopathy), which may be preventable if proper precautions are taken. Rich et al found CS2 and 12 associated sulfide compounds present in the atmosphere in residential areas where unconventional shale oil and gas extraction and processing operations were occurring. Ambient atmospheric concentrations of CS2 ranged from 0.7 parts per billion by volume (ppbv) to 103 ppbv over a continuous 24-hour monitoring period. One-hour ambient atmospheric concentrations ranged from 3.4 ppbv to 504.6 ppbv. Using the U.S. Environmental Protection Agency Urban Air Toxic Monitoring Program study as a baseline comparison for atmospheric CS2 concentrations found in this study, it was determined that CS2 atmospheric levels were consistently elevated in areas where unconventional oil and gas extraction and processing occurred. The mechanisms by which CS2 interferes in normal glucose metabolism by dysregulation of the tryptophan metabolism pathway are presented in this study. The literature review found an increased potential for alteration of normal glucose metabolism in viscose rayon occupational workers exposed to CS2. Occupational workers in the energy extraction industry exposed to CS2 and other sulfide compounds may have an increased potential for glucose metabolism interference, which has been an indicator for diabetogenic effect and other related health impacts. The recommendation of this study is for implementation of regular monitoring of blood glucose levels in CS2-exposed populations as a preventative health measure.

  7. Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure

    PubMed Central

    2004-01-01

    The liver plays an important role in insulin-regulated glucose homoeostasis. To study the function of the PDK1 (3-phosphoinositide-dependent protein kinase-1) signalling pathway in mediating insulin's actions in the liver, we employed CRE recombinase/loxP technology to generate L(liver)-PDK1−/− mice, which lack expression of PDK1 in hepatocytes and in which insulin failed to induce activation of PKB in liver. The L-PDK1−/− mice were not insulin-intolerant, possessed normal levels of blood glucose and insulin under normal feeding conditions, but were markedly glucose-intolerant when injected with glucose. The L-PDK1−/− mice also possessed 10-fold lower levels of hepatic glycogen compared with control littermates, and were unable to normalize their blood glucose levels within 2 h after injection of insulin. The glucose intolerance of the L-PDK1−/− mice may be due to an inability of glucose to suppress hepatic glucose output through the gluconeogenic pathway, since the mRNA encoding hepatic PEPCK (phosphoenolpyruvate carboxykinase), G6Pase (glucose-6-phosphatase) and SREBP1 (sterol-regulatory-element-binding protein 1), which regulate gluconeogenesis, are no longer controlled by feeding. Furthermore, three other insulin-controlled genes, namely IGFBP1 (insulin-like-growth-factor-binding protein-1), IRS2 (insulin receptor substrate 2) and glucokinase, were regulated abnormally by feeding in the liver of PDK1-deficient mice. Finally, the L-PDK1−/− mice died between 4–16 weeks of age due to liver failure. These results establish that the PDK1 signalling pathway plays an important role in regulating glucose homoeostasis and controlling expression of insulin-regulated genes. They suggest that a deficiency of the PDK1 pathway in the liver could contribute to development of diabetes, as well as to liver failure. PMID:15554902

  8. Effect of metformin and spironolactone therapy on OGTT in patients with polycystic ovarian syndrome - a retrospective analysis.

    PubMed

    Kulshreshtha, Bindu; Gupta, Nandita; Ganie, Mohd Ashraf; Ammini, Ariachery C

    2012-10-01

    Metformin (an insulin sensitizer) and spironolactone (an antiandrogen) are both used for treatment of polycystic ovary syndrome. We analyzed the effect of 6 months of therapy with these drugs on body weight and glucose tolerance. This was a retrospective analysis of polycystic ovarian syndrome (PCOS) cases on treatment. There were 88 patients with PCOS-42 were on metformin 1 g daily and 46 were taking spironolactone 50-75 mg daily. 21 of 42 had abnormal glucose tolerance (AGT) in the metformin group and 13 of 46 had AGT in the spironolactone group. Patients on metformin reported a greater reduction in body weight, whereas there was no change in body weight with spironolactone therapy (67.6-63.7 versus 59.6-59.2 kg). There was a significant reduction in the 1 and 2 h glucose and insulin levels with metformin therapy in those with AGT. However, fasting glucose increased in those with normal glucose tolerance. There was no change in either body weight or insulin levels with spironolactone. But, there was a significant reduction in both the 0 and 2 h glucose with spironolactone also in those with AGT. Spironolactone and metformin had similar effect in reducing the glucose levels in PCOS patients with AGT. PCOS patients with normal glucose tolerance had higher fasting plasma glucose at the end of 6 months of metformin therapy inspite of weight reduction.

  9. Higher fasting plasma glucose is associated with smaller striatal volume and poorer fine motor skills in a longitudinal cohort.

    PubMed

    Zhang, Tianqi; Shaw, Marnie E; Walsh, Erin I; Sachdev, Perminder S; Anstey, Kaarin J; Cherbuin, Nicolas

    2018-06-07

    Previous studies have demonstrated associations between higher blood glucose and brain atrophy and functional deficits, however, little is known about the association between blood glucose, striatal volume and striatal function despite sensori-motor deficits being reported in diabetes. This study investigated the relationship between blood glucose levels, striatal volume and fine motor skills in a longitudinal cohort of cognitively healthy individuals living in the community with normal or impaired fasting glucose or type 2 diabetes. Participants were 271 cognitively healthy individuals (mean age 63 years at inclusion) with normal fasting glucose levels (<5.6 mmol/L) (n=173), impaired fasting glucose (5.6-6.9 mmol/L) (n=57), or with type 2 diabetes (≥7.0 mmol/L) (n=41). Fasting glucose, Purdue Pegboard scores as measurement of fine motor skills, and brain scans were collected at wave 1, 2 and 4, over a total follow-up of twelve years. Striatal volumes were measured using FreeSurfer after controlling for age, sex and intracranial volume. Results showed that type 2 diabetes was associated with smaller right putamen volume and lower Purdue Pegboard scores after controlling for age, sex and intracranial volume. These findings add to the evidence suggesting that higher blood glucose levels, especially type 2 diabetes, may impair brain structure and function. Copyright © 2018. Published by Elsevier B.V.

  10. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model

    PubMed Central

    Kim, Chea-Ha

    2015-01-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level. PMID:25792867

  11. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model.

    PubMed

    Kim, Chea-Ha; Hong, Jae-Seung

    2015-03-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

  12. Chronic High Fructose Intake Reduces Serum 1,25 (OH)2D3 Levels in Calcium-Sufficient Rodents

    PubMed Central

    Douard, Veronique; Patel, Chirag; Lee, Jacklyn; Tharabenjasin, Phuntila; Williams, Edek; Fritton, J. Christopher; Sabbagh, Yves; Ferraris, Ronaldo P.

    2014-01-01

    Excessive fructose consumption inhibits adaptive increases in intestinal Ca2+ transport in lactating and weanling rats with increased Ca2+ requirements by preventing the increase in serum levels of 1,25(OH)2D3. Here we tested the hypothesis that chronic fructose intake decreases 1,25(OH)2D3 levels independent of increases in Ca2+ requirements. Adult mice fed for five wk a high glucose-low Ca2+ diet displayed expected compensatory increases in intestinal and renal Ca2+ transporter expression and activity, in renal CYP27B1 (coding for 1α-hydroxylase) expression as well as in serum 1,25(OH)2D3 levels, compared with mice fed isocaloric glucose- or fructose-normal Ca2+ diets. Replacing glucose with fructose prevented these increases in Ca2+ transporter, CYP27B1, and 1,25(OH)2D3 levels induced by a low Ca2+ diet. In adult mice fed for three mo a normal Ca2+ diet, renal expression of CYP27B1 and of CYP24A1 (24-hydroxylase) decreased and increased, respectively, when the carbohydrate source was fructose instead of glucose or starch. Intestinal and renal Ca2+ transporter activity and expression did not vary with dietary carbohydrate. To determine the time course of fructose effects, a high fructose or glucose diet with normal Ca2+ levels was fed to adult rats for three mo. Serum levels of 1,25(OH)2D3 decreased and of FGF23 increased significantly over time. Renal expression of CYP27B1 and serum levels of 1,25(OH)2D3 still decreased in fructose- compared to those in glucose-fed rats after three mo. Serum parathyroid hormone, Ca2+ and phosphate levels were normal and independent of dietary sugar as well as time of feeding. Thus, chronically high fructose intakes can decrease serum levels of 1,25(OH)2D3 in adult rodents experiencing no Ca2+ stress and fed sufficient levels of dietary Ca2+. This finding is highly significant because fructose constitutes a substantial portion of the average diet of Americans already deficient in vitamin D. PMID:24718641

  13. Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women.

    PubMed

    Behall, Kay M; Scholfield, Daniel J; Hallfrisch, Judith G; Liljeberg-Elmståhl, Helena G M

    2006-05-01

    Consumption of a meal high in resistant starch or soluble fiber (beta-glucan) decreases peak insulin and glucose concentrations and areas under the curve (AUCs). The objective was to determine whether the effects of soluble fiber and resistant starch on glycemic variables are additive. Ten normal-weight (43.5 years of age, BMI 22.0 kg/m2) and 10 overweight women (43.3 years of age, BMI 30.4 kg/m2) consumed 10 tolerance meals in a Latin square design. Meals (1 g carbohydrate/kg body wt) were glucose alone or muffins made with different levels of soluble fiber (0.26, 0.68, or 2.3 g beta-glucan/100 g muffin) and three levels of resistant starch (0.71, 2.57, or 5.06 g/100 g muffin). Overweight subjects had plasma insulin concentrations higher than those of normal-weight subjects but maintained similar plasma glucose levels. Compared with low beta-glucan-low resistant starch muffins, glucose and insulin AUC decreased when beta-glucan (17 and 33%, respectively) or resistant starch (24 and 38%, respectively) content was increased. The greatest AUC reduction occurred after meals containing both high beta-glucan-high resistant starch (33 and 59% lower AUC for glucose and insulin, respectively). Overweight women were somewhat more insulin resistant than control women. Soluble fiber appears to have a greater effect on postprandial insulin response while glucose reduction is greater after resistant starch from high-amylose cornstarch. The reduction in glycemic response was enhanced by combining resistant starch and soluble fiber. Consumption of foods containing moderate amounts of these fibers may improve glucose metabolism in both normal and overweight women.

  14. Switching from high-fat to low-fat diet normalizes glucose metabolism and improves glucose-stimulated insulin secretion and insulin sensitivity but not body weight in C57BL/6J mice.

    PubMed

    Agardh, Carl-David; Ahrén, Bo

    2012-03-01

    Environmental factors such as a high-fat diet contribute to type 2 diabetes and obesity. This study examined glycemia, insulin sensitivity, and β-cell function after switching from a high-fat diet to a low-fat diet in mice. C57BL/6J mice were fed a high-fat diet or low-fat diet for 18 months, after which mice on the high-fat diet either maintained this diet or switched to a low-fat diet for 4 weeks. Body weight and glucose and insulin responses to intraperitoneal glucose were determined. Insulin secretion (insulinogenic index: the 10-minute insulin response divided by the 10-minute glucose level) and insulin sensitivity (1 divided by basal insulin) were determined. After 18 months on a high-fat diet, mice had glucose intolerance, marked hyperinsulinemia, and increased body weight compared to mice on a low-fat diet (P < 0.001). Switching from a high-fat diet to low-fat diet normalized glucose tolerance, reduced but not normalized body weight (P < 0.001), increased insulin secretion (248 ± 39 vs 141 ± 46 pmol/mmol; P = 0.028) and improved but not normalized insulin sensitivity (3.2 ± 0.1 vs 1.0 ± 0.1 [pmol/L]; P = 0.012). Switching from a high-fat diet to low-fat diet normalizes glucose tolerance and improves but not normalizes insulin secretion and insulin sensitivity. These effects are more pronounced than the reduced body weight.

  15. Renal glucose metabolism in normal physiological conditions and in diabetes.

    PubMed

    Alsahli, Mazen; Gerich, John E

    2017-11-01

    The kidney plays an important role in glucose homeostasis via gluconeogenesis, glucose utilization, and glucose reabsorption from the renal glomerular filtrate. After an overnight fast, 20-25% of glucose released into the circulation originates from the kidneys through gluconeogenesis. In this post-absorptive state, the kidneys utilize about 10% of all glucose utilized by the body. After glucose ingestion, renal gluconeogenesis increases and accounts for approximately 60% of endogenous glucose release in the postprandial period. Each day, the kidneys filter approximately 180g of glucose and virtually all of this is reabsorbed into the circulation. Hormones (most importantly insulin and catecholamines), substrates, enzymes, and glucose transporters are some of the various factors influencing the kidney's role. Patients with type 2 diabetes have an increased renal glucose uptake and release in the fasting and the post-prandial states. Additionally, glucosuria in these patients does not occur at plasma glucose levels that would normally produce glucosuria in healthy individuals. The major abnormality of renal glucose metabolism in type 1 diabetes appears to be impaired renal glucose release during hypoglycemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Glucose Metabolism as a Pre-clinical Biomarker for the Golden Retriever Model of Duchenne Muscular Dystrophy.

    PubMed

    Schneider, Sarah Morar; Sridhar, Vidya; Bettis, Amanda K; Heath-Barnett, Heather; Balog-Alvarez, Cynthia J; Guo, Lee-Jae; Johnson, Rachel; Jaques, Scott; Vitha, Stanislav; Glowcwski, Alan C; Kornegay, Joe N; Nghiem, Peter P

    2018-03-05

    Metabolic dysfunction in Duchenne muscular dystrophy (DMD) is characterized by reduced glycolytic and oxidative enzymes, decreased and abnormal mitochondria, decreased ATP, and increased oxidative stress. We analyzed glucose metabolism as a potential disease biomarker in the genetically homologous golden retriever muscular dystrophy (GRMD) dog with molecular, biochemical, and in vivo imaging. Pelvic limb skeletal muscle and left ventricle tissue from the heart were analyzed by mRNA profiling, qPCR, western blotting, and immunofluorescence microscopy for the primary glucose transporter (GLUT4). Physiologic glucose handling was measured by fasting glucose tolerance test (GTT), insulin levels, and skeletal and cardiac positron emission tomography/X-ray computed tomography (PET/CT) using the glucose analog 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG). MRNA profiles showed decreased GLUT4 in the cranial sartorius (CS), vastus lateralis (VL), and long digital extensor (LDE) of GRMD vs. normal dogs. QPCR confirmed GLUT4 downregulation but increased hexokinase-1. GLUT4 protein levels were not different in the CS, VL, or left ventricle but increased in the LDE of GRMD vs. normal. Microscopy revealed diffuse membrane expression of GLUT4 in GRMD skeletal but not cardiac muscle. GTT showed higher basal glucose and insulin in GRMD but rapid tissue glucose uptake at 5 min post-dextrose injection in GRMD vs. normal/carrier dogs. PET/ CT with [ 18 F]FDG and simultaneous insulin stimulation showed a significant increase (p = 0.03) in mean standard uptake values (SUV) in GRMD skeletal muscle but not pelvic fat at 5 min post-[ 18 F]FDG /insulin injection. Conversely, mean cardiac SUV was lower in GRMD than carrier/normal (p < 0.01). Altered glucose metabolism in skeletal and cardiac muscle of GRMD dogs can be monitored with molecular, biochemical, and in vivo imaging studies and potentially utilized as a biomarker for disease progression and therapeutic response.

  17. Effect of diabetes mellitus on the quality and cytokine content of human semen.

    PubMed

    Lu, Xiaosheng; Huang, Yonggang; Zhang, Huina; Zhao, Junzhao

    2017-09-01

    The effects of diabetes mellitus (DM) on the quality and cytokine levels of human semen remain unknown. Sixty semen samples from 30 normal volunteers and 30 DM patients were assayed. The percentage of sperm progressive motility, sperm vitality, sperm survival rate, the rate of normal sperm morphology, semen volume, and semen pH and density of DM males were significantly lower than those of normal males (p<0.05). Moreover, semen interleukin (IL)-17 and IL-18 levels in DM males were significantly higher than those in normal males (p<0.05) and were positively correlated with blood glucose level and sperm DNA fragmentation index. DM increased blood glucose levels, consequently inducing the abnormal expression of IL-17 and IL-18. The abnormal expression of these cytokines in semen decreased semen quality and might lead to male infertility. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Postprandial glucose response to selected tropical fruits in normal glucose-tolerant Nigerians.

    PubMed

    Edo, A; Eregie, A; Adediran, O; Ohwovoriole, A; Ebengho, S

    2011-01-01

    The glycemic response to commonly eaten fruits in Nigeria has not been reported. Therefore, this study assessed the plasma glucose response to selected fruits in Nigeria. Ten normal glucose-tolerant subjects randomly consumed 50 g carbohydrate portions of three fruits: banana (Musa paradisiaca), pineapple (Ananus comosus), and pawpaw (Carica papaya), and a 50-g glucose load at 1-week intervals. Blood samples were collected in the fasting state and half-hourly over a 2-h period post-ingestion of the fruits or glucose. The samples were analyzed for plasma glucose concentrations. Plasma glucose responses were assessed by the peak plasma glucose concentration, maximum increase in plasma glucose, 2-h postprandial plasma glucose level, and incremental area under the glucose curve and glycemic index (GI). The results showed that the blood glucose response to these three fruits was similar in terms of their incremental areas under the glucose curve, maximum increase in plasma glucose, and glycemic indices (GIs). The 2-h postprandial plasma glucose level of banana was significantly higher than that of pineapple, P < 0.025. The mean ± SEM GI values were as follows: pawpaw; 86 ± 26.8%; banana, 75.1 ± 21.8%; pineapple, 64.5 ± 11.3%. The GI of glucose is taken as 100. The GI of pineapple was significantly lower than that of glucose (P < 0.05). Banana, pawpaw, and pineapple produced a similar postprandial glucose response. Measured portions of these fruits may be used as fruit exchanges with pineapple having the most favorable glycemic response.

  19. Decreased brain glucose utilization in patients with Cushing's disease.

    PubMed

    Brunetti, A; Fulham, M J; Aloj, L; De Souza, B; Nieman, L; Oldfield, E H; Di Chiro, G

    1998-05-01

    Glucocorticoid hormones affect glucose use in different tissues, and the results of several experimental studies have suggested that glucocorticoids have a central action on cerebral metabolism. PET, using the radiotracer 18F-fluorodeoxyglucose (FDG), permits the measurement of cerebral glucose metabolism. To investigate whether cerebral glucose metabolism would be altered in patients with increased plasma glucocorticoid levels, we analyzed the FDG PET studies that were done on 13 patients with Cushing's disease and compared the results with those obtained in 13 age-matched normal control subjects. A second FDG PET scan was performed on 4 patients after surgical removal of the pituitary adenoma. Patients with Cushing's disease had a significant reduction in cerebral glucose metabolism compared with normal controls. In the patients on whom a second PET scan was performed, there was a trend toward increased glucose metabolism on the second scan when comparing pre- and postsurgery values for each patient. We suggest that the decreased cerebral glucose metabolism we observed in Cushing's disease is attributable to increased glucocorticoid levels, and we speculate that abnormal cerebral glucose metabolism might contribute to the cognitive and psychiatric abnormalities that are frequently observed in patients with Cushing's disease.

  20. Changes in Fasting Plasma Glucose Levels with Ribavirin and Pegylated Interferon Treatment in Normal and Impaired Glucose Tolerant Patients with Chronic Hepatitis C

    PubMed Central

    Sarasombath, Ongkarn; Suwantarat, Nuntra; Tice, Alan D

    2012-01-01

    Background Patients with Hepatitis C Virus (HCV) infection have increased rates of glucose intolerance, and studies have shown the improvement of fasting plasma glucose (FPG) levels after clearance of HCV infection with standard ribavirin plus pegylated interferon treatment. The purpose of this study was to examine glycemic changes with standard HCV treatment in patients with impaired fasting glucose (IFG) and normal fasting glucose (NFG). Methods A retrospective study of FPG changes in HCV patients with IFG and NFG treated with standard HCV therapy was conducted. Baseline characteristics and viral responses were assessed; FPG levels before treatment, at the end of treatment, and more than one-month post treatment were compared. Results The mean FPG levels increased by 8.68 mg/dl at the end of treatment in the NFG group but decreased by 9.0 mg/dl in the IFG group, a statistically significant difference (P=0.019). The change in FPG levels remained significantly different after adjusting for weight change (P=0.009) and weight changes and initial weight (P=0.039). FPG change from baseline at more than one month after treatment were similar in both groups (P=0.145). The change in FPG levels was not associated with sustained viral response. Conclusions In HCV-infected patients, standard ribavirin plus pegylated interferon treatment reduced FPG levels in patients with IFG and increased FPG levels in NFG individuals; independent of initial weight, weight change, or viral response. Standard HCV treatment modulates fasting plasma glucose levels which supports the need for a prospective study to determine the clinical significance of this finding. PMID:22737650

  1. NADPH Oxidase-Mediated ROS Production Determines Insulin's Action on the Retinal Microvasculature.

    PubMed

    Kida, Teruyo; Oku, Hidehiro; Horie, Taeko; Matsuo, Junko; Kobayashi, Takatoshi; Fukumoto, Masanori; Ikeda, Tsunehiko

    2015-10-01

    To determine whether insulin induces nitric oxide (NO) formation in retinal microvessels and to examine the effects of high glucose on the formation of NO. Freshly isolated rat retinal microvessels were incubated in normal (5.5 mM) or high (20 mM) glucose with or without insulin (100 nM). The levels of insulin-induced NO and reactive oxygen species (ROS) in the retinal microvessels were determined semiquantitatively using fluorescent probes, 4,5-diaminofluorescein diacetate, and hydroethidine, respectively, and a laser scanning confocal microscope. The insulin-induced changes of NO in rat retinal endothelial cells and pericytes cultured at different glucose concentrations (5.5 and 25 mM) were determined using flow cytometry. Nitric oxide synthase (NOS) protein levels were determined by Western blot analysis; intracellular levels of ROS were determined using fluorescence-activated cell sorting (FACS) analysis of ethidium fluorescence; and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase RNA expression was quantified using real-time PCR. Exposure of microvessels to insulin under normal glucose conditions led to a significant increase in NO levels; however, this increase was significantly suppressed when the microvessels were incubated under high glucose conditions. Intracellular levels of ROS were significantly increased in both retinal microvessels and cultured microvascular cells under high glucose conditions. The expression of NOS and NADPH oxidase were significantly increased in endothelial cells and pericytes under high glucose conditions. The increased formation of NO by insulin and its suppression by high glucose conditions suggests that ROS production mediated by NADPH oxidase is important by insulin's effect on the retinal microvasculature.

  2. The Effects of Mitiglinide and Repaglinide on Postprandial Hyperglycemia in Patients Undergoing Methylprednisolone Pulse Therapy.

    PubMed

    Tanaka, Kenichi; Okada, Yosuke; Mori, Hiroko; Torimoto, Keiichi; Arao, Tadashi; Tanaka, Yoshiya

    2018-01-01

    One adverse effect of methylprednisolone (MP) pulse therapy is an acute dose-dependent increase in the blood glucose level. Five patients with thyroid ophthalmopathy but normal glucose tolerance received MP pulse therapy (3 cycles, 3 days/week) and were assessed by continuous glucose monitoring. Steroid therapy increased the mean sensor glucose level, and all patients developed steroid-induced diabetes. The patients were treated alternately with mitiglinide (30 mg/day) and repaglinide (1.5 mg/day) during the second or third MP pulse therapy. The sensor glucose levels before lunch and dinner were more favorable during treatment with repaglinide than during treatment with mitiglinide. Repaglinide may be more clinically appropriate than mitiglinide.

  3. Glucose Intolerance, Plasma Insulin Levels, and Colon Adenomas in Japanese Men

    PubMed Central

    Kono, Suminori; Abe, Hiroshi; Eguchi, Hiroyuki; Shimazaki, Kae; Hatano, Ben; Hamada, Hiroaki

    2001-01-01

    Hyperinsulinemia may be related to colon carcinogenesis. Several studies have suggested that diabetes mellitus is related to increased risk of colon cancer. We examined cross‐sectionally the relation of fasting plasma insulin levels and glucose tolerance status to colon adenomas. In a consecutive series of 951 men undergoing total colonoscopy for a health examination at the Japan Self Defense Forces Fukuoka Hospital from April 1998 to August 1999, we identified 233 cases of colon adenomas and 497 controls with normal colonoscopy. Glucose tolerance status was determined by a 75‐g oral glucose tolerance test, and subjects were classified as normal, unpaired glucose tolerance (IGT) or non‐insulin dependent diabetes mellitus (NIDDM). Plasma insulin levels were measured after subjects had fasted overnight. Logistic regression analysis and analysis of covariance was used to control for age and obesity. While plasma insulin levels were unrelated to colon adenomas, NIDDM was associated with a significantly increased risk of colon adenomas. There was no association between IGT and colon adenomas. NIDDM was more strongly associated with proximal colon adenomas. The findings suggest that long‐term hyperinsulinemic status associated with NIDDM may increase the risk of colon adenomas, and subsequently of colon cancer. PMID:11509114

  4. Effect of aqueous extracts of alligator pear seed (Persea americana mill) on blood glucose and histopathology of pancreas in alloxan-induced diabetic rats.

    PubMed

    Edem, Do; Ekanem, Is; Ebong, Pe

    2009-07-01

    Effects of aqueous extract of alligator pear seed on normal and alloxan-induced diabetic rats were investigated in 6 groups of rats (5 rats per group). Test groups were made diabetic with intra-peritoneal injection of alloxan and treated with 300 mg and 600 mg/kg body weight of alligator pear seed extract. Two non-diabetic groups were also administered with 300 mg and 600 mg/kg body weight extract. The levels of blood glucose were examined in all 6 experimental groups. In diabetic rats, blood glucose levels were significantly reduced (p<0.05) by 73.26-78.24% on consumption of the extracts, with greater effect exhibited by the 600 mg/kg extract. In normal rats, blood glucose levels were significantly reduced (p<0.05) by 34.68-38.9% on consumption of the seed extract. Histological studies showed a degenerative effect on the pancreatic islet cells of diabetic rats. The result suggested restorative (protective) effect of the extract on pancreatic islet cells. Administration of aqueous extract of alligator pear seed may contribute significantly to the reduction of blood glucose levels and can be useful in the treatment of diabetes.

  5. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    PubMed

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  6. Abrupt decrease in serum testosterone levels after an oral glucose load in men: implications for screening for hypogonadism.

    PubMed

    Caronia, Lisa M; Dwyer, Andrew A; Hayden, Douglas; Amati, Francesca; Pitteloud, Nelly; Hayes, Frances J

    2013-02-01

    This study examines the physiological impact of a glucose load on serum testosterone (T) levels in men with varying glucose tolerance (GT). Cross-sectional study. 74 men (19-74 years, mean 51·4 ± 1·4 years) underwent a standard 75-g oral glucose tolerance test with blood sampling at 0, 30, 60, 90 and 120 min. Fasting serum glucose, insulin, total T (and calculated free T), LH, SHBG, leptin and cortisol were measured. 57% of the men had normal GT, 30% had impaired GT and 13% had newly diagnosed type 2 diabetes. Glucose ingestion was associated with a 25% decrease in mean T levels (delta = -4·2 ± 0·3 nm, P < 0·0001). T levels remained suppressed at 120 min compared with baseline (13·7 ± 0·6 vs 16·5 ± 0·7 nm, P < 0·0001) and did not differ across GT or BMI. Of the 66 men with normal T levels at baseline, 10 (15%) had levels that decreased to the hypogonadal range (<9·7 nm) at one or more time points. SHBG, LH and cortisol levels were unchanged. Leptin levels decreased from baseline at all time points (P < 0·0001). Glucose ingestion induces a significant reduction in total and free T levels in men, which is similar across the spectrum of glucose tolerance. This decrease in T appears to be because of a direct testicular defect, but the absence of compensatory changes in LH suggests an additional central component. Men found to have low nonfasting T levels should be re-evaluated in the fasting state. © 2012 Blackwell Publishing Ltd.

  7. Major Risk Factors for Heart Disease: Diabetes

    MedlinePlus

    ... the disease. They have a condition known as "prediabetes," in which blood glucose levels are higher than ... heart problems." — Ann Preventing Diabetes If you have "prediabetes"—higher than normal glucose levels—you are more ...

  8. Gestational diabetes

    MedlinePlus

    ... this page, please enable JavaScript. Gestational diabetes is high blood sugar (glucose) that starts or is first diagnosed during pregnancy. ... high blood pressure during pregnancy . After delivery: Your high blood sugar (glucose) level often goes back to normal. You should ...

  9. Phenformin-induced Hypoglycaemia in Normal Subjects*

    PubMed Central

    Lyngsøe, J.; Trap-Jensen, J.

    1969-01-01

    Study of the effect of phenformin on the blood glucose level in normal subjects before and during 70 hours of starvation showed a statistically significant hypoglycaemic effect after 40 hours of starvation. This effect was not due to increased glucose utilization. Another finding in this study was a statistically significant decrease in total urinary nitrogen excretion during starvation in subjects given phenformin. These findings show that the hypoglycaemic effect of phenformin in starved normal subjects is due to inhibition of gluconeogenesis. PMID:5780431

  10. Impaired brain energy gain upon a glucose load in obesity.

    PubMed

    Wardzinski, Ewelina K; Kistenmacher, Alina; Melchert, Uwe H; Jauch-Chara, Kamila; Oltmanns, Kerstin M

    2018-03-06

    There is evidence that the brain's energy status is lowered in obesity despite of chronic hypercaloric nutrition. The underlying mechanisms are unknown. We hypothesized that the brain of obese people does not appropriately generate energy in response to a hypercaloric supply. Glucose was intravenously infused in 17 normal weights and 13 obese participants until blood glucose concentrations reached the postprandial levels of 7 mmol/L and 10 mmol/L. Changes in cerebral adenosine triphosphate (ATP) and phosphocreatine (PCr) content were measured by 31 phosphorus magnetic resonance spectroscopy and stress hormonal measures regulating glucose homeostasis were monitored. Because vitamin C is crucial for a proper neuronal energy synthesis we determined circulating concentrations during the experimental testing. Cerebral high-energy phosphates were increased at blood glucose levels of 7 mmol/L in normal weights, which was completely missing in the obese. Brain energy content moderately raised only at blood glucose levels of 10 mmol/L in obese participants. Vitamin C concentrations generally correlated with the brain energy content at blood glucose concentrations of 7 mmol/L. Our data demonstrate an inefficient cerebral energy gain upon a glucose load in obese men, which may result from a dysfunctional glucose transport across the blood-brain barrier or a downregulated energy synthesis in mitochondrial oxidation processes. Our finding offers an explanation for the chronic neuroenergetic deficiency and respectively missing satiety perception in obesity. Copyright © 2018. Published by Elsevier Inc.

  11. Targeted delivery of HGF to the skeletal muscle improves glucose homeostasis in diet-induced obese mice.

    PubMed

    Sanchez-Encinales, Viviana; Cozar-Castellano, Irene; Garcia-Ocaña, Adolfo; Perdomo, Germán

    2015-12-01

    Hepatocyte growth factor (HGF) is a cytokine that increases glucose transport ex vivo in skeletal muscle. The aim of this work was to decipher the impact of whether conditional overexpression of HGF in vivo could improve glucose homeostasis and insulin sensitivity in mouse skeletal muscle. Following tetracyclin administration, muscle HGF levels were augmented threefold in transgenic mice (SK-HGF) compared to control mice without altering plasma HGF levels. In conditions of normal diet, SK-HGF mice showed no differences in body weight, plasma triglycerides, blood glucose, plasma insulin and glucose tolerance compared to control mice. Importantly, obese SK-HGF mice exhibited improved whole-body glucose tolerance independently of changes in body weight or plasma triglyceride levels compared to control mice. This effect on glucose homeostasis was associated with significantly higher (∼80%) levels of phosphorylated protein kinase B in muscles from SK-HGF mice compared to control mice. In conclusion, muscle expression of HGF counteracts obesity-mediated muscle insulin resistance and improves glucose tolerance in mice.

  12. Impact of Reduced Renal Function on the Glucose-Lowering Effects of Luseogliflozin, a Selective SGLT2 Inhibitor, Assessed by Continuous Glucose Monitoring in Japanese Patients with Type 2 Diabetes Mellitus.

    PubMed

    Jinnouchi, Hideaki; Nozaki, Kazunari; Watase, Hirotaka; Omiya, Hirohisa; Sakai, Soichi; Samukawa, Yoshishige

    2016-03-01

    We investigated the impact of reduced renal function on 24-h glucose variability in Japanese patients with type 2 diabetes mellitus (T2DM) treated with luseogliflozin. In this double-blind, placebo-controlled, crossover study, 37 Japanese patients with T2DM [glycated hemoglobin (HbA1c) 7.0-10.0%] and estimated glomerular filtration rate (eGFR) ≥45 mL/min/1.73 m(2) were randomized into two groups in which patients first received luseogliflozin then placebo, or vice versa, for 7 days each. Twenty-four-hour glucose variability was measured on day 7 in each period and was compared among patients divided into three groups according to their baseline eGFR (mL/min/1.73 m(2)): normal (≥90; n = 13; normal group), normal-to-mildly reduced renal function (≥75 to <90; n = 12; normal-mild group), and mild-to-moderately reduced renal function (<75; n = 9; mild-moderate group). The mean [95% confidence interval (CI)] placebo-subtracted 24-h cumulative urinary glucose excretion (g) was 82.1 (72.7, 91.5), 82.5 (73.4, 91.5), and 62.2 (51.2, 73.3); the placebo-subtracted 24-h mean glucose concentration (mg/dL) was -24.39 (-32.53, -16.26), -28.28 (-39.35, -17.22), and -11.53 (-23.93, 0.86); and the placebo-subtracted peak postprandial glucose (mg/dL) was -26.9 (-46.9, -6.9), -38.1 (-59.6, -16.6), and 1.5 (-25.5, 28.4) in the normal, normal-mild, and mild-moderate groups, respectively. The mean lowest glucose concentrations (placebo vs. luseogliflozin, mg/dL) decreased to similar levels in the normal (115.4 vs. 93.4), normal-mild (121.0 vs. 97.9), and mild-moderate (104.0 vs. 91.1) groups. This post hoc subanalysis revealed that although mild-to-moderately reduced renal function attenuated the glucose-lowering effects of luseogliflozin on peak postprandial glucose, it did not attenuate the effects of luseogliflozin on fasting glucose. These findings may explain the smaller increase in urinary glucose excretion in these patients relative to patients with normal renal function or normal-to-moderately reduced renal function. Further studies may be needed to examine these findings in large populations of patients with T2DM and reduced renal function. JapicCTI-142548. Taisho Pharmaceutical Co., Ltd.

  13. Attenuation of Diabetic Conditions by Sida rhombifolia in Moderately Diabetic Rats and Inability to Produce Similar Effects in Severely Diabetic in Rats

    PubMed Central

    Chaturvedi, Padmaja; Kwape, Tebogo Elvis

    2015-01-01

    Objectives: This study was done out to evaluate the effects of Sida rhombifolia methanol extract (SRM) on diabetes in moderately diabetic (MD) and severely diabetic (SD) Sprague-Dawley rats. Methods: SRM was prepared by soaking the powdered plant material in 70% methanol and rota evaporating the methanol from the extract. Effective hypoglycemic doses were established by performing oral glucose tolerance tests (OGTTs) in normal rats. Hourly effects of SRM on glucose were observed in the MD and the SD rats. Rats were grouped, five rats to a group, into normal control 1 (NC1), MD control 1 (MDC1), MD experimental 1 (MDE1), SD control 1 (SDC1), and SD experimental 1 (SDE1) groups. All rats in the control groups were administered 1 mL of distilled water (DW). The rats in the MDE1 and the SDE1 groups were administered SRM orally at 200 and 300 mg/kg body weight (BW), respectively, dissolved in 1 mL of DW. Blood was collected initially and at intervals of 1 hour for 6 hours to measure blood glucose. A similar experimental design was followed for the 30-day long-term trial. Finally, rats were sacrificed, and blood was collected to measure blood glucose, lipid profiles, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH). Results: OGTTs indicated that two doses (200 and 300 mg/kg BW) were effective hypoglycemic doses in normal rats. Both doses reduced glucose levels after 1 hour in the MDE1 and the SDE1 groups. A long-term trial of SRM in the MD group showed a reduced glucose level, a normal lipid profile, and normal GSH and TBARS levels. In SD rats, SRM had no statistically significant effects on these parameters. Normal weight was achieved in the MD rats, but the SD rats showed reduced BW. Conclusion: The study demonstrates that SRM has potential to alleviate the conditions of moderate diabetic, but not severe diabetes. PMID:26998385

  14. Nocturnal levels of chemerin and progranulin in adolescents: influence of sex, body mass index, glucose metabolism and sleep.

    PubMed

    Daxer, Johann; Herttrich, Theresa; Zhao, Ying Y; Vogel, Mandy; Hiemisch, Andreas; Scheuermann, Kathrin; Körner, Antje; Kratzsch, Jürgen; Kiess, Wieland; Quante, Mirja

    2017-01-01

    Adipokines have been implicated in obesity, insulin resistance and sleep regulation. However, the role of chemerin and progranulin, two recently described adipokines, in the context of sleep remains unclear. The aim of this study was to compare nocturnal serum chemerin and progranulin levels between overweight/obese and normal-weight adolescents and to assess variations by sex, across different sleep stages and in relation to glucose metabolism. The study sample included 34 overweight/obese and 32 normal-weight adolescents from secondary schools and the Leipzig Research Center for Civilization Diseases (LIFE) Child study cohort. We obtained longitudinal serum adipokine levels during in-laboratory polysomnography followed by an oral glucose tolerance test. Overweight/obese adolescents had significantly higher mean nocturnal serum chemerin area under the curve (AUC) levels (348.2±133.3 vs. 241.7±67.7 vs. ng/mL×h, p<0.001) compared to normal-weight controls. In detail, higher chemerin AUC levels in obese/overweight subjects were exclusively due to increased levels in females. No overall difference for serum progranulin AUC was found between the groups. However, when assessing sex-specific levels, serum progranulin AUC levels were ~30% higher in overweight/obese males compared to overweight/obese females. Of note, nocturnal serum chemerin and progranulin AUC did not exhibit a correlation with markers of glucose metabolism or sleep stages. Collectively, we report a sexual dimorphism in nocturnal progranulin and chemerin levels, which may help explain underlying differences in energy balance and body composition between males and females in the context of obesity.

  15. Hypoglycemic effect of Mucuna pruriens seed extract on normal and streptozotocin-diabetic rats.

    PubMed

    Bhaskar, Anusha; Vidhya, V G; Ramya, M

    2008-12-01

    The hypoglycemic effect of the aqueous extract of the seeds of Mucuna pruriens was investigated in normal, glucose load conditions and streptozotocin (STZ)-induced diabetic rats. In normal rats, the aqueous extract of the seeds of Mucuna pririens (100 and 200 mg/kg body weight) significantly (P<0.001) reduced the blood glucose levels after an oral glucose load from 127.5+/-3.2 to 75.6+/-4.8 mg% 2 h after oral administration of seed extract. It also significantly lowered the blood glucose in STZ diabetic rats from 240.5+/-7.2 to 90.6+/-5.6 mg% after 21 days of daily oral administration of the extract (P<0.001). Thus, this study shows that M. pruriens has an anti-hyperglycemic action and it could be a source of hypoglycemic compounds.

  16. Acacia nilotica leave extract and glyburide: comparison of fasting blood glucose, serum insulin, beta-thromboglubulin levels and platelet aggregation in streptozotocin induced diabetic rats.

    PubMed

    Asad, Munnaza; Munir, Tahir Ahmad; Afzal, Nasir

    2011-03-01

    To evaluate the hypoglycaemic and anti-platelet aggregation effect of aqueous methanol extract of Acacia Nilotica (AN) leaves compared with glyburide on streptozotocin induced diabetic rats. Diabetes mellitus was induced in 90 out of 120 albino rats by administering 50 mg/kg body weight (b.w) streptozotocin and was confirmed by measuring fasting blood glucose level >200 mg/dL on 4th post-induction day. The rats were equally divided into 4 groups, A (normal control), B (diabetic control), C (diabetic rats treated with AN extract) and group D (diabetic rats treated with glyburide). The rats of group C and D were given 300 mg/kg b.w AN extract and 900 microgm/kg b.w glyburide respectively for 3 weeks. Blood glucose was measured by glucometer, platelet aggregation by Dia-Med method and insulin and beta-thromboglobulin by ELISA technique. A significant increase (p<0.05) in fasting blood glucose, beta-thromboglobulin and platelet aggregation and a significant decrease (p<0.05) in insulin levels was observed in streptozotocin induced diabetic rats than the normal controls. The rats treated with AN extract and glyburide showed a significant decrease (p<0.05) in fasting blood glucose and increase (p<0.05) in insulin levels than the diabetic control rats. However, the levels in both the treatment groups remained significantly different than the normal controls. A significant decrease (p<0.05) in beta-thromboglobulin levels was seen in diabetic rats treated with glyburide than the diabetic control rats and diabetic rats treated with AN extract. AN leaves extract result into hypoglycaemic and anti-platelet aggregation activity in diabetic rats as that of glyburide.

  17. Association of blood glucose level and hypertension in Elderly Chinese Subjects: a community based study.

    PubMed

    Yan, Qun; Sun, Dongmei; Li, Xu; Chen, Guoliang; Zheng, Qinghu; Li, Lun; Gu, Chenhong; Feng, Bo

    2016-07-13

    There is a scarcity of epidemiological researches examining the relationship between blood pressure (BP) and glucose level among older adults. The objective of the current study was to investigate the association of high BP and glucose level in elderly Chinese. A cross-sectional study of a population of 2092 Chinese individuals aged over 65 years was conducted. Multiple logistic analysis was used to explore the association between hypertension and hyperglycemia. Independent risk factors for systolic and diastolic BP were analyzed using stepwise linear regression. Subjects in impaired fasting glucose group (IFG) (n = 144) and diabetes (n = 346), as compared with normal fasting glucose (NFG) (n = 1277), had a significant higher risk for hypertension, with odds ratios (ORs) of 1.81 (95 % CI, 1.39-2.35) (P = 0.000) and 1.40 (95 % CI, 1.09-1.80) (P = 0.009), respectively. Higher fasting plasma glucose (FPG) levels in the normal range were still significantly associated with a higher prevalence of hypertension in both genders, with ORs of 1.24 (95 % CI, 0.85-1.80), R (2) = 0.114, P = 0.023 in men and 1.61 (95 % CI, 1.12-2.30), R (2) = 0.082, P = 0.010 in women, respectively, when compared with lower FPG. Linear regression analysis revealed FPG was an independent factor of systolic and diastolic BP. Our findings suggest that hyperglycemia as well as higher FPG within the normal range is associated with a higher prevalence of hypertension independent of other cardiovascular risk factors in elderly Chinese. Further studies are needed to explore the relationship between hyperglycemia and hypertension in a longitudinal setting.

  18. Associations of lipid profiles with insulin resistance and β cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation.

    PubMed

    Zheng, Shuang; Xu, Hua; Zhou, Huan; Ren, Xingxing; Han, Tingting; Chen, Yawen; Qiu, Huiying; Wu, Peihong; Zheng, Jun; Wang, Lihua; Liu, Wei; Hu, Yaomin

    2017-01-01

    To investigate the associations of dyslipidemia with insulin resistance and β cell function in individuals with normal glucose tolerance (NGT) and different categories of impaired glucose regulation (IGR). 544 subjects (365 with dyslipidemia and/or IGR and 179 with normal lipid and glucose tolerance) were enrolled in the study. All subjects underwent oral glucose tolerance test (OGTT). HOMA-IR was used to evaluate insulin sensitivity. Disposition index (DI) was used to evaluate β cell function. Multiple linear regression analysis was performed to assess correlations among lipid profiles, insulin resistance and β cell function. Among subjects with NGT, those with dyslipidemia had higher level of HOMA-IR but lower level of DI. While among subjects with different categories of IGR, those with dyslipidemia and CGI had significantly decreased DI. No obvious differences of insulin resistance or β cell function were found in IFG or IGT subjects with or without dyslipidemia. TG and HDL-C were correlated with HOMA-IR (β = 0.79, p <0.001; β = -0.38, p = 0.027, respectively, compared with subjects in the low level groups). Moreover, TG and TC were negatively correlated with DI (β = -2.17, p = 0.013; β = -2.01, p = 0.034 respectively, compared with subjects in the low level groups) after adjusting for confounding parameters. Dyslipidemia induces insulin resistance and impaired β cell response to insulin resistance in individuals with NGT. Furthermore, dyslipidemia diminishes β cell function in subjects with CGI. TG and HDL-C were correlated with insulin resistance, and TG, TC were negatively correlated with β cell response to insulin resistance in non-diabetic individuals.

  19. Associations of lipid profiles with insulin resistance and β cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation

    PubMed Central

    Ren, Xingxing; Han, Tingting; Chen, Yawen; Qiu, Huiying; Wu, Peihong; Zheng, Jun; Wang, Lihua; Liu, Wei; Hu, Yaomin

    2017-01-01

    Aims To investigate the associations of dyslipidemia with insulin resistance and β cell function in individuals with normal glucose tolerance (NGT) and different categories of impaired glucose regulation (IGR). Methods 544 subjects (365 with dyslipidemia and/or IGR and 179 with normal lipid and glucose tolerance) were enrolled in the study. All subjects underwent oral glucose tolerance test (OGTT). HOMA-IR was used to evaluate insulin sensitivity. Disposition index (DI) was used to evaluate β cell function. Multiple linear regression analysis was performed to assess correlations among lipid profiles, insulin resistance and β cell function. Results Among subjects with NGT, those with dyslipidemia had higher level of HOMA-IR but lower level of DI. While among subjects with different categories of IGR, those with dyslipidemia and CGI had significantly decreased DI. No obvious differences of insulin resistance or β cell function were found in IFG or IGT subjects with or without dyslipidemia. TG and HDL-C were correlated with HOMA-IR (β = 0.79, p <0.001; β = -0.38, p = 0.027, respectively, compared with subjects in the low level groups). Moreover, TG and TC were negatively correlated with DI (β = -2.17, p = 0.013; β = -2.01, p = 0.034 respectively, compared with subjects in the low level groups) after adjusting for confounding parameters. Conclusions Dyslipidemia induces insulin resistance and impaired β cell response to insulin resistance in individuals with NGT. Furthermore, dyslipidemia diminishes β cell function in subjects with CGI. TG and HDL-C were correlated with insulin resistance, and TG, TC were negatively correlated with β cell response to insulin resistance in non-diabetic individuals. PMID:28199386

  20. Optimal blood glucose level control using dynamic programming based on minimal Bergman model

    NASA Astrophysics Data System (ADS)

    Rettian Anggita Sari, Maria; Hartono

    2018-03-01

    The purpose of this article is to simulate the glucose dynamic and the insulin kinetic of diabetic patient. The model used in this research is a non-linear Minimal Bergman model. Optimal control theory is then applied to formulate the problem in order to determine the optimal dose of insulin in the treatment of diabetes mellitus such that the glucose level is in the normal range for some specific time range. The optimization problem is solved using dynamic programming. The result shows that dynamic programming is quite reliable to represent the interaction between glucose and insulin levels in diabetes mellitus patient.

  1. Effect of levulose containing sweets on blood and salivary glucose levels.

    PubMed

    Subramaniam, Priya; K L, Girish Babu; Gona, Harsha

    2015-06-01

    It is common that many diabetic patients crave for sweets which are normally prohibited. To satisfy their desire to have sweets, alternative sweeteners have been introduced to provide sweetness to some items of their diabetic diet. To (1) assess the effect of sweets containing levulose on glucose levels in blood and saliva, and (2) compare it with effect of sweets containing sucrose on blood and saliva levels of glucose. The study consisted of 20 healthy participants, aged 17-20 years. Two sweet preparations of 36 g each were selected for the study. One preparation was sweetened with levulose (diabetic sweet; Group I) and the other with sucrose (regular sweet; Group II). Blood sugar and salivary glucose levels were estimated before and after the consumption of diabetic and regular sweets. The mean increase in salivary glucose level was lower in Group I than in Group II. Similarly, increase in blood glucose levels in Group I was lower and highly significant. In comparison with regular sweets, consumption of levulose containing sweet resulted in significantly lower blood and salivary glucose levels.

  2. Association of Biomarkers of Inflammation and Endothelial Dysfunction with Fasting and Postload Glucose Metabolism: A Population-Based Prospective Cohort Study Among Inner Mongolians in China.

    PubMed

    Wu, Jiahui; Liang, Zhu; Zhou, Jingwen; Zhong, Chongke; Jiang, Wei; Zhang, Yonghong; Zhang, Shaoyan

    2016-12-01

    To examine the associations between elevated levels of C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble E-selectin (sE-selectin) with fasting and 2-hour postload glucometabolic status among Inner Mongolians in China. Based on a cross-sectional survey of patients during 2003, 2260 participants were reinvestigated between 2013 and 2014. We categorized the participants into 3 subgroups according to fasting and postload glucose levels, respectively. The associations between biomarkers of inflammation and endothelial dysfunction and deterioration of fasting and postload glucometabolic status were examined by ordinal logistic regression analysis. We found 142 and 49 persons who had impaired fasting glucose (IFG) levels and type 2 diabetes in the fasting state and 335 and 50 persons who had impaired glucose tolerance (IGT) and type 2 diabetes in the postload state. After multivariable adjustment, elevated CRP and sICAM-1 levels were associated with deterioration of fasting glucometabolic status from normal fasting glucose to IFG and type 2 diabetes (odds ratio [OR] 1.73 [95% CI 1.18 to 2.54] for elevated CRP levels, OR 1.86 [95% CI 1.30 to 2.66] for elevated sICAM-1 levels). Elevated sE-selectin levels were associated with deterioration of postload glucometabolic status from normal glucose tolerance to IGT and type 2 diabetes (OR 1.34 [95% CI 1.01 to 1.77]) in the multivariable-adjusted model. Biomarkers of inflammation and endothelial dysfunction were separately associated with fasting and postload glucose metabolism among Inner Mongolians. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  3. Prediabetes:MedlinePlus Health Topic

    MedlinePlus

    ... levels that are higher than normal but not high enough to be called diabetes . Glucose comes from the foods you eat. Too much glucose in your blood can damage your body over time. If you have prediabetes, you are ...

  4. Postnatal Pancreatic Islet β Cell Function and Insulin Sensitivity at Different Stages of Lifetime in Rats Born with Intrauterine Growth Retardation

    PubMed Central

    Liu, Cuiping; Xu, Kuanfeng; Mao, Xiaodong; Liu, Chao

    2011-01-01

    Epidemiological studies have linked intrauterine growth retardation (IUGR) to the metabolic diseases, consisting of insulin resistance, type 2 diabetes, obesity and coronary artery disease, during adult life. To determine the internal relationship between IUGR and islet β cell function and insulin sensitivity, we established the IUGR model by maternal nutrition restriction during mid- to late-gestation. Glucose tolerance test and insulin tolerance test(ITT) in vivo and glucose stimulated insulin secretion(GSIS) test in vitro were performed at different stages in IUGR and normal groups. Body weight, pancreas weight and pancreas/body weight of IUGR rats were much lower than those in normal group before 3 weeks of age. While the growth of IUGR rats accelerated after 3 weeks, pancreas weight and pancreas/body weight remained lower till 15 weeks of age. In the newborns, the fasting glucose and insulin levels of IUGR rats were both lower than those of controls, whereas glucose levels at 120 and 180 min after glucose load were significantly higher in IUGR group. Between 3 and 15 weeks of age, both the fasting glucose and insulin levels were elevated and the glucose tolerance was impaired with time in IUGR rats. At age 15 weeks, the area under curve of insulin(AUCi) after glucose load in IUGR rats elevated markedly. Meanwhile, the stimulating index of islets in IUGR group during GSIS test at age 15 weeks was significantly lower than that of controls. ITT showed no significant difference in two groups before 7 weeks of age. However, in 15-week-old IUGR rats, there was a markedly blunted glycemic response to insulin load compared with normal group. These findings demonstrate that IUGR rats had both impaired pancreatic development and deteriorated glucose tolerance and insulin sensitivity, which would be the internal causes why they were prone to develop type 2 diabetes. PMID:22022381

  5. Hepatic glucocorticoid receptor antagonism is sufficient to reduce elevated hepatic glucose output and improve glucose control in animal models of type 2 diabetes.

    PubMed

    Jacobson, Peer B; von Geldern, Thomas W; Ohman, Lars; Osterland, Marie; Wang, Jiahong; Zinker, Bradley; Wilcox, Denise; Nguyen, Phong T; Mika, Amanda; Fung, Steven; Fey, Thomas; Goos-Nilsson, Annika; Grynfarb, Marlena; Barkhem, Tomas; Marsh, Kennan; Beno, David W A; Nga-Nguyen, Bach; Kym, Philip R; Link, James T; Tu, Noah; Edgerton, Dale S; Cherrington, Alan; Efendic, Suad; Lane, Benjamin C; Opgenorth, Terry J

    2005-07-01

    Glucocorticoids amplify endogenous glucose production in type 2 diabetes by increasing hepatic glucose output. Systemic glucocorticoid blockade lowers glucose levels in type 2 diabetes, but with several adverse consequences. It has been proposed, but never demonstrated, that a liver-selective glucocorticoid receptor antagonist (LSGRA) would be sufficient to reduce hepatic glucose output (HGO) and restore glucose control to type 2 diabetic patients with minimal systemic side effects. A-348441 [(3b,5b,7a,12a)-7,12-dihydroxy-3-{2-[{4-[(11b,17b)-17-hydroxy-3-oxo-17-prop-1-ynylestra-4,9-dien-11-yl] phenyl}(methyl)amino]ethoxy}cholan-24-oic acid] represents the first LSGRA with significant antidiabetic activity. A-348441 antagonizes glucocorticoid-up-regulated hepatic genes, normalizes postprandial glucose in diabetic mice, and demonstrates synergistic effects on blood glucose in these animals when coadministered with an insulin sensitizer. In insulin-resistant Zucker fa/fa rats and fasted conscious normal dogs, A-348441 reduces HGO with no acute effect on peripheral glucose uptake. A-348441 has no effect on the hypothalamic pituitary adrenal axis or on other measured glucocorticoid-induced extrahepatic responses. Overall, A-348441 demonstrates that an LSGRA is sufficient to reduce elevated HGO and normalize blood glucose and may provide a new therapeutic approach for the treatment of type 2 diabetes.

  6. Irisin and its relation to insulin resistance and puberty in obese children: a longitudinal analysis.

    PubMed

    Reinehr, Thomas; Elfers, Clinton; Lass, Nina; Roth, Christian L

    2015-05-01

    Irisin is a recently identified myokine affecting metabolic and glucose homeostasis. However, the role of irisin in obesity and its metabolic consequences are controversial, and data in children are scarce. To study the relationships between irisin, insulin resistance, and puberty before and after weight loss in obese children with and without impaired glucose tolerance. One-year follow-up study in obese children participating in a lifestyle intervention. Primary care. Forty obese children and 20 normal-weight children of similar age, gender, and pubertal stage. A 1-year outpatient intervention program based on exercise, behavior, and nutrition therapy. Fasting serum irisin, weight status (body mass index [BMI] SD score), and the following parameters of the metabolic syndrome: insulin resistance index (homeostasis model of assessment), blood pressure, and lipids. The irisin levels were the highest in obese children with impaired glucose tolerance, followed by obese children with normal glucose tolerance, and levels were lowest in normal-weight children (P < .001). In a multiple linear regression analysis, baseline irisin was significantly associated with pubertal stage, high-density lipoprotein-cholesterol, and homeostasis model of assessment, but not to age, gender, BMI, or any other parameter of the metabolic syndrome. The irisin concentrations were significantly (P = .010) lower in the prepubertal compared to the pubertal children. In longitudinal analyses, changes of irisin were significantly associated with entry into puberty, change of fasting glucose, and 2-hour glucose in an oral glucose tolerance test, but not with change of BMI or any other parameter. Irisin levels are related to pubertal stage and insulin resistance but not to weight status in childhood.

  7. Maternal OGTT Glucose Levels at 26–30 Gestational Weeks with Offspring Growth and Development in Early Infancy

    PubMed Central

    Liu, Gongshu; Li, Nan; Sun, Shurong; Wen, Jing; Lyu, Fengjun; Gao, Wen; Li, Lili; Chen, Fang; Baccarelli, Andrea A.; Hou, Lifang

    2014-01-01

    Aims. We aim to evaluate the association of maternal gestational oral glucose tolerance test (OGTT) glucose concentrations with anthropometry in the offspring from birth to 12 months in Tianjin, China. Methods. A total of 27,157 pregnant women underwent OGTT during 26–30 weeks gestation, and their children had body weight/length measured from birth to 12 months old. Results. Maternal OGTT glucose concentrations at 26–30 gestational weeks were positively associated with Z-scores for birth length-for-gestational age and birth weight-for-length. Compared with infants born to mothers with normal glucose tolerance, infants born to mothers with gestational diabetes mellitus (impaired glucose tolerance/new diabetes) had higher mean values of Z-scores for birth length-for-gestational age (0.07/0.23; normal group −0.08) and birth weight-for-length (0.27/0.57; normal group −0.001), smaller changes in mean values of Z-scores for length-for-age (0.75/0.62; normal group 0.94) and weight-for-length (0.18/−0.17; normal group 0.37) from birth to month 3, and bigger changes in mean values in Z-scores for weight-for-length (0.07/0.12; normal group 0.02) from month 9 to 12. Conclusions. Abnormal maternal glucose tolerance during pregnancy was associated with higher birth weight and birth length, less weight and length gain in the first 3 months of life, and more weight gain in the months 9–12 of life. PMID:24689042

  8. Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults.

    PubMed

    Magistrelli, Ashley; Chezem, Jo Carol

    2012-11-01

    In healthy normal-weight adults, cinnamon reduces blood glucose concentration and enhances insulin sensitivity. Insulin resistance, resulting in increased fasting and postprandial blood glucose and insulin levels, is commonly observed in obese individuals. The objective of the study was to compare declines in postprandial glycemic response in normal-weight and obese subjects with ingestion of 6 g ground cinnamon. In a crossover study, subjects consumed 50 g available carbohydrate in instant farina cereal, served plain or with 6 g ground cinnamon. Blood glucose concentration, the main outcome measure, was assessed at minutes 0, 15, 30, 45, 60, 90, and 120. Repeated-measures analysis of variance evaluated the effects of body mass index (BMI) group, dietary condition, and time on blood glucose. Paired t-test assessed blood glucose at individual time points and glucose area under the curve (AUC) between dietary conditions. Thirty subjects between the ages of 18 and 30 years, 15 with BMIs between 18.5 and 24.9 and 15 with BMIs of 30.0 or more, completed the study. There was no significant difference in blood glucose between the two BMI groups at any time point. However, in a combined analysis of all subjects, the addition of cinnamon to the cereal significantly reduced 120-minute glucose AUC (P=0.008) and blood glucose at 15 (P=0.001), 30 (P<0.001), 45 (P<0.001), and 60 (P=0.001) minutes. At 120 minutes, blood glucose was significantly higher with cinnamon consumption (P<0.001). These results suggest cinnamon may be effective in moderating postprandial glucose response in normal weight and obese adults. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  9. Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice.

    PubMed

    Tsuneki, Hiroshi; Tokai, Emi; Nakamura, Yuya; Takahashi, Keisuke; Fujita, Mikio; Asaoka, Takehiro; Kon, Kanta; Anzawa, Yuuki; Wada, Tsutomu; Takasaki, Ichiro; Kimura, Kumi; Inoue, Hiroshi; Yanagisawa, Masashi; Sakurai, Takeshi; Sasaoka, Toshiyasu

    2015-02-01

    Circadian rhythm is crucial for preventing hepatic insulin resistance, although the mechanism remains uncovered. Here we report that the wake-active hypothalamic orexin system plays a key role in this regulation. Wild-type mice showed that a daily rhythm in blood glucose levels peaked at the awake period; however, the glucose rhythm disappeared in orexin knockout mice despite normal feeding rhythm. Central administration of orexin A during nighttime awake period acutely elevated blood glucose levels but subsequently lowered daytime glucose levels in normal and diabetic db/db mice. The glucose-elevating and -lowering effects of orexin A were suppressed by adrenergic antagonists and hepatic parasympathectomy, respectively. Moreover, the expression levels of hepatic gluconeogenic genes, including Pepck, were increased and decreased by orexin A at nanomolar and femtomolar doses, respectively. These results indicate that orexin can bidirectionally regulate hepatic gluconeogenesis via control of autonomic balance, leading to generation of the daily blood glucose oscillation. Furthermore, during aging, orexin deficiency enhanced endoplasmic reticulum (ER) stress in the liver and caused impairment of hepatic insulin signaling and abnormal gluconeogenic activity in pyruvate tolerance test. Collectively, the daily glucose rhythm under control of orexin appears to be important for maintaining ER homeostasis, thereby preventing insulin resistance in the liver. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Serum Uric Acid Levels were Dynamically Coupled with Hemoglobin A1c in the Development of Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Wei, Fengjiang; Chang, Baocheng; Yang, Xilin; Wang, Yaogang; Chen, Liming; Li, Wei-Dong

    2016-06-01

    The aim of the study was to decipher the relationship between serum uric acid (SUA) and glycated hemoglobin A1c (HbA1c) or fasting plasma glucose (FPG) in both type 2 diabetes mellitus (T2DM) patients and normal subjects. A total of 2,250 unrelated T2DM patients and 4,420 Han Chinese subjects from a physical examination population were recruited for this study. In T2DM patients SUA levels were negatively correlated with HbA1c (rs = -0.109, P = 0.000) and 2 h plasma glucose levels (rs = -0.178, P = 0.000). In the physical examination population, SUA levels were inversely correlated with HbA1c (rs = -0.175, P = 0.000) and FPG (rs = -0.131, P = 0.009) in T2DM patients but positively correlated with HbA1c (rs = 0.040, P = 0.012) and FPG (rs = 0.084, P = 0.000) in normal-glucose subjects. Multivariate analyses showed that HbA1c was significantly negatively associated with HUA both in T2DM patients (OR = 0.872, 95% CI: 0.790~0.963) and in the physical examination T2DM patients (OR = 0.722, 95% CI: 0.539~0.968). Genetic association studies in T2DM patients showed that alleles of two glucose-uric acid transporter genes, ABCG2 and SLC2A9 were significantly associated with SUA levels (P < 0.05). SUA level is inversely correlated with HbA1c in T2DM patients but positively correlated with HbA1c in normal-glucose subjects. The reverse transporting of uric acid and glucose in renal tubules might be accounted for these associations.

  11. Epigenetic differences in normal colon mucosa of cancer patients suggests altered dietary metabolic pathways

    PubMed Central

    Silviera, Matthew L.; Smith, Brian P.; Powell, Jasmine; Sapienza, Carmen

    2012-01-01

    We have compared DNA methylation in normal colon mucosa between colon cancer patients and patients without cancer. We identified significant differences in methylation between the two groups at 114 – 874 genes. The majority of the differences are in pathways involved in the metabolism of carbohydrates, lipids and amino acids. We also compared transcript levels of genes in the insulin-signaling pathway. We found that the mucosa of cancer patients had significantly higher transcript levels of several hormones regulating glucose metabolism and significantly lower transcript levels of a glycolytic enzyme and a key regulator of glucose and lipid homeostasis. The se differences suggest that the normal colon mucosa of cancer patients metabolizes dietary components differently than the colon mucosa of controls. Because the differences identified are present in morphologically normal tissue, they may be diagnostic of colon cancer and/or prognostic of colon cancer susceptibility. PMID:22300984

  12. Fasting leptin and glucose in normal weight, over weight and obese men and women diabetes patients with and without clinical depression.

    PubMed

    Haleem, Darakhshan Jabeen; Sheikh, Shehnaz; Fawad, Asher; Haleem, Muhammad A

    2017-06-01

    A large number of diabetes patients suffer from major depression and are at high risk of mortality. In view of a role of leptin in diabetes, depression and energy homeostasis, the present study concerns circulating levels of leptin in different BMI groups of un-depressed and depressed diabetes patients. Six hundred thirty male and female patients with a primary diagnosis of diabetes were grouped according to BMI and with or without clinical symptoms of depression. Age matched healthy, normal weight male and female volunteers without clinical symptoms of depression or diabetes were taken as controls. Blood samples were obtained after an overnight fast of 12 h. Serum was stored for the determination of leptin and glucose. We found that there were more female than male diabetes patients with comorbid depression. Fasting leptin was higher in normal weight non-diabetes women than men; but comparable in normal weight men and women diabetes patients. Fasting glucose levels were higher in diabetes than non diabetes groups; values were comparable in men and women. Depression was associated with a decrease and increase in leptin respectively in normal-overweight and obese men and women diabetes patients. Glucose levels were also higher in obese depressed than un-depressed diabetes patients. The results suggested that the female gender is at greater risk to comorbid diabetes with depression. Adipo-insular axis plays an important role in diabetes, associated depression and in the greater risk of the female gender to comorbid diabetes with depression.

  13. Kinetic Modeling of Human Hepatic Glucose Metabolism in Type 2 Diabetes Mellitus Predicts Higher Risk of Hypoglycemic Events in Rigorous Insulin Therapy*

    PubMed Central

    König, Matthias; Holzhütter, Hermann-Georg

    2012-01-01

    A major problem in the insulin therapy of patients with diabetes type 2 (T2DM) is the increased occurrence of hypoglycemic events which, if left untreated, may cause confusion or fainting and in severe cases seizures, coma, and even death. To elucidate the potential contribution of the liver to hypoglycemia in T2DM we applied a detailed kinetic model of human hepatic glucose metabolism to simulate changes in glycolysis, gluconeogenesis, and glycogen metabolism induced by deviations of the hormones insulin, glucagon, and epinephrine from their normal plasma profiles. Our simulations reveal in line with experimental and clinical data from a multitude of studies in T2DM, (i) significant changes in the relative contribution of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization; (ii) decreased postprandial glycogen storage as well as increased glycogen depletion in overnight fasting and short term fasting; and (iii) a shift of the set point defining the switch between hepatic glucose production and hepatic glucose utilization to elevated plasma glucose levels, respectively, in T2DM relative to normal, healthy subjects. Intriguingly, our model simulations predict a restricted gluconeogenic response of the liver under impaired hormonal signals observed in T2DM, resulting in an increased risk of hypoglycemia. The inability of hepatic glucose metabolism to effectively counterbalance a decline of the blood glucose level becomes even more pronounced in case of tightly controlled insulin treatment. Given this Janus face mode of action of insulin, our model simulations underline the great potential that normalization of the plasma glucagon profile may have for the treatment of T2DM. PMID:22977253

  14. The effect of glucose concentration and sodium phenylbutyrate treatment on mitochondrial bioenergetics and ER stress in 3T3-L1 adipocytes.

    PubMed

    Tanis, Ross M; Piroli, Gerardo G; Day, Stani D; Frizzell, Norma

    2015-01-01

    While the 3T3-L1 adipocyte model is routinely used for the study of obesity and diabetes, the mitochondrial respiratory profile in normal versus high glucose has not been examined in detail. We matured adipocytes in normal (5mM) or high (30 mM) glucose and insulin and examined the mitochondrial bioenergetics. We also assessed the requirement for the Unfolded Protein Response (UPR) and ER stress under these conditions. Basal respiration was ~1.7-fold greater in adipocytes that had matured in 30 mM glucose; however, their ability to increase oxygen consumption in response to stress was impaired. Adipogenesis proceeded in both normal and high glucose with concomitant activation of the UPR, but only high glucose was associated with increased levels of ER stress and mitochondrial stress as observed by parallel increases in CHOP and protein succination. Treatment of adipocytes with sodium phenylbutyrate relieved mitochondrial stress through a reduction in mitochondrial respiration. Our data suggests that mitochondrial stress, protein succination and ER stress are uniquely linked in adipocytes matured in high glucose. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The Effect of Glucose Concentration and Sodium Phenylbutyrate Treatment on Mitochondrial Bioenergetics and ER Stress in 3T3-L1 Adipocytes

    PubMed Central

    Tanis, Ross M.; Piroli, Gerardo G.; Day, Stani D.; Frizzell, Norma

    2016-01-01

    While the 3T3-L1 adipocyte model is routinely used for the study of obesity and diabetes, the mitochondrial respiratory profile in normal versus high glucose has not been examined in detail. We matured adipocytes in normal (5 mM) or high (30 mM) glucose and insulin and examined the mitochondrial bioenergetics. We also assessed the requirement for the Unfolded Protein Response (UPR) and ER stress under these conditions. Basal respiration was ∼1.7-fold greater in adipocytes that had matured in 30 mM glucose; however, their ability to increase oxygen consumption in response to stress was impaired. Adipogenesis proceeded in both normal and high glucose with concomitant activation of the UPR, but only high glucose was associated with increased levels of ER stress and mitochondrial stress as observed by parallel increases in CHOP and protein succination. Treatment of adipocytes with sodium phenylbutyrate relieved mitochondrial stress through a reduction in mitochondrial respiration. Our data suggests that mitochondrial stress, protein succination and ER stress are uniquely linked in adipocytes matured in high glucose. PMID:25448036

  16. Reduced circulating stem cells associate with excess fasting and post-load NEFA exposure in healthy adults with normal glucose tolerance.

    PubMed

    Fadini, Gian Paolo; Tura, Andrea; Pacini, Giovanni; Avogaro, Angelo; Vigili de Kreutzenberg, Saula

    2017-06-01

    Reduced levels of circulating stem cells (CSCs) predict cardiovascular events and death, but the factors underlying variability of CSCs in healthy adults are mostly unknown. Previous studies detected associations of CSCs with glucose tolerance or insulin resistance, while the role of fatty acids has been overlooked. We herein aimed to describe in better detail the metabolic abnormalities associated with a reduced CSC level. This was a cross-sectional study on 94 healthy male and female individuals with normal glucose tolerance, aged 18-65 years. All participants underwent an oral glucose tolerance test (OGTT) with blood samples collected at 0, 10, 20, 30, 60, 90 and 120 min. Mathematical models were applied to plasma glucose, insulin, C-peptide and non-esterified fatty acids (NEFA) concentrations. CSCs were defined as CD34 + or CD133 + . Participants (mean ± SEM age 43.8 ± 0.7; 41% males) were divided according to CSC levels below (low) or above (high) the median value and metabolic parameters were compared. There was no significant baseline difference between groups except for higher concentrations of fasting NEFA in subjects with low CSCs. Upon OGTT, individuals with low CSCs had higher area under curve (AUC) of NEFA (p < 0.001) and no significant differences in glucose, insulin and C-peptide. Several insulin sensitivity and beta cell function indexes were not significantly different, except for a decrease in the disposition index (DI) in subjects with low CSCs. CSCs were associated with excess NEFA levels independently from age and DI. We show for the first time that, in healthy adults with normal glucose tolerance, low CSCs are strongly associated with excess NEFA exposure. The pathophysiological consequence of this association needs to be interpreted in view of the prognostic role of CSCs. Future studies should explore whether excess NEFA and low CSCs and are causally interconnected. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Oral hypoglycemic activity of culinary-medicinal mushrooms Pleurotus ostreatus and P. cystidiosus (higher basidiomycetes) in normal and alloxan-induced diabetic Wistar rats.

    PubMed

    Jayasuriya, W J A B; Suresh, T S; Abeytunga, D; Fernando, G H; Wanigatunga, C A

    2012-01-01

    This study investigates the oral hypoglycemic activity of Pleurotus ostreatus (P.o.) and P. cystidiosus (P.c.) mushrooms on normal and alloxan-induced diabetic Wistar rats. Different doses (250, 500, 750, 1000, and 1250 mg/kg/body weight) of suspensions of freeze-dried and powdered (SFDP) P.o. and P.c. were administered to normal rats, and postprandial serum glucose levels were measured. Optimal time of activity was investigated using the dose 500 mg/kg. Hypoglycemic effect of a single dose of SFDP P.o. and P.c. (500 mg/kg) were investigated using diabetic male and female rats at different stages of estrous cycle and compared with metformin and glibenclamide. Chronic hypoglycemic activity of SFDP P.o. and P.c. (500 mg/kg) was studied using serum glucose levels and glycosylated hemoglobin levels. Maximally effective dose of SFDP P.o. and P.c. was 500 mg/kg. The highest reduction in the serum glucose level was observed 120 minutes after administration of mushrooms. A single dose of P.o. and P.c. significantly (P < 0.05) reduced the serum glucose levels of male diabetic rats. The hypoglycemic activity in female rats was highest in proestrous stage. The hypoglycemic effect of P.o. and P.c. is comparable with metformin and glibenclamide. Daily single administrations of P.o. and P.c. to diabetic rats exert apparent control on the homeostasis of blood glucose. SFDP P.o. and P.c. possessed marked and significant oral hypoglycemic activity. This study suggests the consumption of P.o. and P.c. mushrooms might bring health benefits to mankind as it shows hypoglycemic activity in rats.

  18. Reversible changes in brain glucose metabolism following thyroid function normalization in hyperthyroidism.

    PubMed

    Miao, Q; Zhang, S; Guan, Y H; Ye, H Y; Zhang, Z Y; Zhang, Q Y; Xue, R D; Zeng, M F; Zuo, C T; Li, Y M

    2011-01-01

    Patients with hyperthyroidism frequently present with regional cerebral metabolic changes, but the consequences of endocrine-induced brain changes after thyroid function normalization are unclear. We hypothesized that the changes of regional cerebral glucose metabolism are related to thyroid hormone levels in patients with hyperthyroid, and some of these changes can be reversed with antithyroid therapy. Relative regional cerebral glucose metabolism was compared between 10 new-onset untreated patients with hyperthyroidism and 20 healthy control participants by using brain FDG-PET scans. Levels of emotional distress were evaluated by using the SAS and SDS. Patients were treated with methimazole. A follow-up PET scan was performed to assess metabolic changes of the brain when thyroid functions normalized. Compared with controls, patients exhibited lower activity in the limbic system, frontal lobes, and temporal lobes before antithyroid treatment. There were positive correlations between scores of depression and regional metabolism in the cingulate and paracentral lobule. The severity of depression and anxiety covaried negatively with pretreatment activity in the inferior temporal and inferior parietal gyri respectively. Compared with the hyperthyroid status, patients with normalized thyroid functions showed an increased metabolism in the left parahippocampal, fusiform, and right superior frontal gyri. The decrease in both FT3 and FT4 was associated with increased activity in the left parahippocampal and right superior frontal gyri. The changes of regional cerebral glucose metabolism are related to thyroid hormone levels in patients with hyperthyroidism, and some cerebral hypometabolism can be improved after antithyroid therapy.

  19. Prediabetes in patients treated with antipsychotic drugs.

    PubMed

    Manu, Peter; Correll, Christoph U; van Winkel, Ruud; Wampers, Martien; De Hert, Marc

    2012-04-01

    In 2010, the American Diabetes Association (ADA) proposed that individuals with fasting glucose level of 100-125 mg/dL (5.6-6.9 mmol/L) or glucose level of 140-199 mg/dL (7.8-11.0 mmol/L) 2 hours after a 75-g oral glucose tolerance test or hemoglobin A(1c) 5.7%-6.4% be classified as prediabetic, indicating increased risk for the emergence of diabetes mellitus. At the same time, the ADA formulated guidelines for the use of metformin for the treatment of prediabetes. To determine the prevalence of prediabetes in a cohort of psychiatrically ill adults receiving antipsychotics and to compare the clinical and metabolic features of prediabetic patients with those of patients with normal glucose tolerance and those with diabetes mellitus. The 2010 ADA criteria were applied to a large, consecutive, single-site European cohort of 783 adult psychiatric inpatients (mean age: 37.6 years) without a history of diabetes who were receiving antipsychotics. All patients in this cross-sectional study underwent measurement of body mass index (BMI), waist circumference, oral glucose tolerance test, and fasting insulin and lipids from November 2003 through July 2007. 413 patients (52.8%) had normal glucose tolerance, 290 (37.0%) had prediabetes, and 80 (10.2%) had diabetes mellitus. The fasting glucose and/or hemoglobin A(1c) criteria were met by 89.7% of prediabetic patients. A statistically significant intergroup gradient from normal glucose tolerance to prediabetes and from prediabetes to diabetes mellitus was observed for waist circumference, triglycerides, fasting insulin levels, and frequency of metabolic syndrome (P = .02 to P < .0001). Only 19/290 prediabetic patients (6.6%) met the 2010 ADA criteria for treatment with metformin. Prediabetes is highly prevalent in adults treated with antipsychotic drugs and correlates with markers of increased intraabdominal adiposity, enhanced lipolysis, and insulin resistance. Criteria for using metformin to prevent the emergence of diabetes mellitus may need to be revised for this population. © Copyright 2012 Physicians Postgraduate Press, Inc.

  20. Normal fasting plasma glucose levels and type 2 diabetes in young men.

    PubMed

    Tirosh, Amir; Shai, Iris; Tekes-Manova, Dorit; Israeli, Eran; Pereg, David; Shochat, Tzippora; Kochba, Ilan; Rudich, Assaf

    2005-10-06

    The normal fasting plasma glucose level was recently defined as less than 100 mg per deciliter (5.55 mmol per liter). Whether higher fasting plasma glucose levels within this range independently predict type 2 diabetes in young adults is unclear. We obtained blood measurements, data from physical examinations, and medical and lifestyle information from men in the Israel Defense Forces who were 26 to 45 years of age. A total of 208 incident cases of type 2 diabetes occurred during 74,309 person-years of follow-up (from 1992 through 2004) among 13,163 subjects who had baseline fasting plasma glucose levels of less than 100 mg per deciliter. A multivariate model, adjusted for age, family history of diabetes, body-mass index, physical-activity level, smoking status, and serum triglyceride levels, revealed a progressively increased risk of type 2 diabetes in men with fasting plasma glucose levels of 87 mg per deciliter (4.83 mmol per liter) or more, as compared with those whose levels were in the bottom quintile (less than 81 mg per deciliter [4.5 mmol per liter], P for trend <0.001). In multivariate models, men with serum triglyceride levels of 150 mg per deciliter (1.69 mmol per liter) or more, combined with fasting plasma glucose levels of 91 to 99 mg per deciliter (5.05 to 5.50 mmol per liter), had a hazard ratio of 8.23 (95 percent confidence interval, 3.6 to 19.0) for diabetes, as compared with men with a combined triglyceride level of less than 150 mg per deciliter and fasting glucose levels of less than 86 mg per deciliter (4.77 mmol per liter). The joint effect of a body-mass index (the weight in kilograms divided by the square of the height in meters) of 30 or more and a fasting plasma glucose level of 91 to 99 mg per deciliter resulted in a hazard ratio of 8.29 (95 percent confidence interval, 3.8 to 17.8), as compared with a body-mass index of less than 25 and a fasting plasma glucose level of less than 86 mg per deciliter. Higher fasting plasma glucose levels within the normoglycemic range constitute an independent risk factor for type 2 diabetes among young men, and such levels may help, along with body-mass index and triglyceride levels, to identify apparently healthy men at increased risk for diabetes. Copyright 2005 Massachusetts Medical Society.

  1. HIGHER SERUM TOTAL CHOLESTEROL LEVELS IN LATE MIDDLE AGE ARE ASSOCIATED WITH GLUCOSE HYPOMETABOLISM IN BRAIN REGIONS AFFECTED BY ALZHEIMER’S DISEASE AND NORMAL AGING

    PubMed Central

    Reiman, Eric M.; Chen, Kewei; Langbaum, Jessica B.S.; Lee, Wendy; Reschke, Cole; Bandy, Daniel; Alexander, Gene E.; Caselli, Richard J.

    2010-01-01

    Epidemiological studies suggest that higher midlife serum total cholesterol levels are associated with an increased risk of Alzheimer’s disease (AD). Using fluorodeoxyglucose positron emission tomography (PET) in the study of cognitively normal late-middle-aged people, we demonstrated an association between apolipoprotein E (APOE) ε4 gene dose, the major genetic risk factor for late-onset AD, and lower measurements of the cerebral metabolic rate for glucose (CMRgl) in AD-affected brain regions, we proposed using PET as a presymptomatic endophenotype to evaluate other putative AD risk modifiers, and we then used it to support an aggregate cholesterol-related genetic risk score in the risk of AD. In the present study, we used PET to investigate the association between serum total cholesterol levels and cerebral metabolic rate for glucose metabolism (CMRgl) in 117 cognitively normal late middle-aged APOE ε4 homozygotes, heterozygotes and noncarriers. Higher serum total cholesterol levels were associated with lower CMRgl bilaterally in precuneus, parietotemporal and prefrontal regions previously found to be preferentially affected by AD, and in additional frontal regions previously found to be preferentially affected by normal aging. The associations were greater in APOE ε4 carriers than non-carriers in some of the AD-affected brain regions. We postulate the higher midlife serum total cholesterol levels accelerate brain processes associated with normal aging and conspire with other risk factors in the predisposition to AD. We propose using PET in proof-of-concept randomized controlled trials to rapidly evaluate the effects of midlife cholesterol-lowering treatments on the brain changes associated with normal aging and AD. PMID:19631758

  2. Hyperglycemia and subsequent torsades de pointes with marked QT prolongation during refeeding.

    PubMed

    Nakashima, Takashi; Kubota, Tomoki; Takasugi, Nobuhiro; Kitagawa, Yuichiro; Yoshida, Takahiro; Ushikoshi, Hiroaki; Kawasaki, Masanori; Nishigaki, Kazuhiko; Ogura, Shinji; Minatoguchi, Shinya

    2017-01-01

    A fatal cardiac complication can occasionally present in malnourished patients during refeeding; this is known as refeeding syndrome. However, to our knowledge, hyperglycemia preceding torsades de pointes with QT prolongation during refeeding has not been reported. In the present study, we present a case in which hyperglycemia preceded torsades de pointes with QT prolongation during refeeding. The aim of this study was to determine the possible mechanism underlying QT prolongation during refeeding and indicate how to prevent it. A 32-y-old severely malnourished woman (body mass index 14.57 kg/m 2 ) was admitted to the intensive care unit of our institution after resuscitation from cardiopulmonary arrest due to ventricular fibrillation. She was diagnosed with anorexia nervosa. Although no obvious electrolyte abnormalities were observed, her blood glucose level was 11 mg/dL. A 12-lead electrocardiogram at admission showed sinus rhythm with normal QT interval (QTc 0.448). Forty mL of 50% glucose (containing 20 g of glucose) was intravenously injected, followed by a drip infusion of glucose to maintain blood glucose level within normal range. After 9 h, the patient's blood glucose level increased to 569 mg/dL. However, after 38 h, an episode of marked QT prolongation (QTc 0.931) followed by torsades de pointes developed. Hyperglycemia during refeeding can present with QT prolongation; consequently, monitoring blood glucose levels may be useful in avoiding hyperglycemia, which can result in QT prolongation. Furthermore, additional monitoring of QT intervals using a 12-lead electrocardiogram should allow the early detection of QT prolongation when glucose solution is administered to a malnourished patient with (severe) hypoglycemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Thioredoxin-interacting protein (Txnip) is a critical regulator of hepatic glucose production.

    PubMed

    Chutkow, William A; Patwari, Parth; Yoshioka, Jun; Lee, Richard T

    2008-01-25

    Thioredoxin-interacting protein (Txnip) has been recently described as a possible link between cellular redox state and metabolism; Txnip binds thioredoxin and inhibits its disulfide reductase activity in vitro, while a naturally occurring strain of Txnip-deficient mice has hyperlipidemia, hypoglycemia, and ketosis exacerbated by fasting. We generated Txnip-null mice to investigate the role of Txnip in glucose homeostasis. Txnip-null mice were hypoglycemic, hypoinsulinemic, and had blunted glucose production following a glucagon challenge, consistent with a central liver glucose-handling defect. Glucose release from isolated Txnip-null hepatocytes was 2-fold lower than wild-type hepatocytes, whereas beta-hydroxybutyrate release was increased 2-fold, supporting an intrinsic defect in hepatocyte glucose metabolism. While hepatocyte-specific gene deletion of Txnip did not alter glucose clearance compared with littermate controls, Txnip expression in the liver was required for maintaining normal fasting glycemia and glucose production. In addition, hepatic overexpression of a Txnip transgene in wild-type mice resulted in elevated serum glucose levels and decreased ketone levels. Liver homogenates from Txnip-null mice had no significant differences in the glutathione oxidation state or in the amount of available thioredoxin. However, overexpression of wild-type Txnip in Txnip-null hepatocytes rescued cellular glucose production, whereas overexpression of a C247S mutant Txnip, which does not bind thioredoxin, had no effect. These data demonstrate that Txnip is required for normal glucose homeostasis in the liver. While available thioredoxin is not changed in Txnip-null mice, the effects of Txnip on glucose homeostasis are abolished by a single cysteine mutation that inhibits binding to thioredoxin.

  4. Neutraceutical approaches to control diabetes: A natural requisite approach

    PubMed Central

    Srivastava, N.; Tiwari, G.; Tiwari, R.; Bhati, L. K.; Rai, Awani K

    2012-01-01

    Objective: The aim of this study is to screen the polyherbal preparation for antidiabetic activity in rats. Materials and Methods: The blood glucose lowering activity of the polyherbal preparation-I (1:1:1 of wheat germ oil, Coraidrum sativum, and Aloe vera) was studied in normal rats after oral administration at doses of 1.0 ml/kg and 2.0 ml/kg and polyherbal preparation-I, II (wheat germ oil, fresh juice of C. sativum, and A. vera in the ratio of 2:2:1), and III (wheat germ oil, fresh juice of C. sativum and A. vera in the ratio of 1:2:2) on alloxan-induced diabetic rats, after oral administration at doses of 1.0 ml/kg and 2.0 ml/kg. Blood samples were collected from the tail vein method at 0, 0.5, 1, 2, 4, 8, 12, and 24 h in normal rats and in diabetic rats at 0, 1, 3, 7, 15, and 30 days. Blood plasma glucose was estimated by the GOD/POD (glucose oxidase and peroxidase) method. The data were compared statistically by using the one-way ANOVA method followed by the Dunnett multiple component test. Statistical significance was set at P < 0.05. Results: The polyherbal preparation-I produced significant (P < 0.05) reduction in the blood glucose level of normal rats and polyherbal preparation-I, II, and III produced significant (P < 0.01) reduction in the blood glucose level of diabetic rats during 30-day study and compared with that of control and glibenclamide. Conclusion: The polyherbal preparation-I showed a significant glucose lowering effect in normal rats and polyherbal preparation-I, II, and III in diabetic rats. This preparation is going to be promising antidiabetic preparation for masses; however, it requires further extensive studies in human beings. PMID:23225980

  5. Sex difference in the effect of the fasting serum glucose level on the risk of coronary heart disease.

    PubMed

    Ahn, Song Vogue; Kim, Hyeon Chang; Nam, Chung Mo; Suh, Il

    2018-02-01

    Diabetic women have a greater relative risk of coronary heart disease than diabetic men. However, the sex difference in the effect of fasting serum glucose levels below the diabetic range on the risk of coronary heart disease is unclear. We investigated whether the association between nondiabetic blood glucose levels and the incident risk of coronary heart disease is different between men and women. The fasting serum glucose levels and other cardiovascular risk factors at baseline were measured in 159,702 subjects (100,144 men and 59,558 women). Primary outcomes were hospital admission and death due to coronary heart disease during the 11-year follow-up. The risk for coronary heart disease in women significantly increased with impaired fasting glucose levels (≥110mg/dL) compared to normal glucose levels (<100mg/dL), whereas the risk for coronary heart disease in men was significantly increased at a diabetic glucose range (≥126mg/dL). Women had a higher hazard ratio of coronary heart disease associated with the fasting serum glucose level than men (p for interaction with sex=0.021). The stronger effect of the fasting serum glucose levels on the risk of coronary heart disease in women than in men was significant from a prediabetic range (≥110mg/dL). Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  6. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome

    PubMed Central

    Whigham, Leah D.; Butz, Daniel E.; Dashti, Hesam; Tonelli, Marco; Johnson, LuAnn K.; Cook, Mark E.; Porter, Warren P.; Eghbalnia, Hamid R.; Markley, John L.; Lindheim, Steven R.; Schoeller, Dale A.; Abbott, David H.; Assadi-Porter, Fariba M.

    2014-01-01

    Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (p<0.030) lipid use as a metabolic substrate during overnight fasting in PCOS compared to normal women. Accompanying urinary analyses showed a trending correlation (p<0.057) between overnight total nitrogen and circulating testosterone in PCOS women, alone. Serum analyzed by NMR spectroscopy following overnight, fast and at 2 h following an oral glucose tolerance test showed that a transient elevation in blood glucose levels decreased circulating levels of lipid, glucose and amino acid metabolic intermediates (acetone, 2-oxocaporate, 2-aminobutyrate, pyruvate, formate, and sarcosine) in PCOS women, whereas the 2 h glucose challenge led to increases in the same intermediates in normal women. These pilot data suggest that PCOS-related inflexibility in fasting-related switching between lipid and carbohydrate/protein utilization for carbon metabolism may contribute to enhanced weight gain. PMID:24765590

  7. [A cohort study on association between the first trimester phthalates exposure and fasting blood glucose level in the third trimester].

    PubMed

    Zhang, Y W; Gao, H; Huang, K; Xu, Y Y; Sheng, J; Tao, F B

    2017-03-10

    Objective: To examine the association between the phthalate exposure in the first trimester and fasting blood glucose level or gestational diabetes mellitus (GDM) in the third trimester in pregnant women. Methods: A total of 3 474 pregnant women, receiving their prenatal examination in Ma' anshan Maternal and Child Health-Care Hospital of Anhui province, were selected from May 2013 to September 2014. Questionnaires were used to collect the information about their socio-demographic characteristics, clinical characteristics and GDM diagnostic results in the first, second and third trimesters. Urine samples and fasting venous blood samples were collected. Concentrations of 7 kinds of phthalate metabolites in urine samples were detected by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS), and multiple linear regression model was used for statistical analyses. Logistic regression analysis on the risk of the first trimester phthalate exposure for GDM in the third trimester was conducted. Results: The prevalence of GDM in this study was 12.8%, monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEHHP) exposure levels were positively correlated with the fasting blood glucose level in the third trimester ( P <0.05), but mono-(2-ethylhexyl) phthalate (MEHP) and mono-(2-ethyl-5-hydroxylhexyl) phthalate (MEOHP) exposure levels were negatively correlated with the fasting blood glucose level in the third trimester ( P <0.05). Stratified analysis showed a positive correlation between MEHHP exposure and the third trimester fasting blood glucose level in both normal group and GDM group. However, MMP, MEP, MBP, MBzP, MEHP and MEOHP exposure levels had influences on the third trimester fasting blood glucose level in normal group but not in GDM group. MMP and MBP exposure might increase the risk of GDM, but MEOHP exposure might reduce the risk of GDM. Conclusion: The phthalate exposure in the first trimester might be associated with the fasting blood glucose level in the third trimester, MMP, MEP, MBP, MBzP and MEHHP concentrations were positively associated with the third trimester blood glucose level, MEHP and MEOHP concentrations were negatively associated with the third trimester blood glucose level. Moreover, the effects of different kinds of phthalates might be different.

  8. Impact of taurine depletion on glucose control and insulin secretion in mice.

    PubMed

    Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W

    2015-09-01

    Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. Adeno-Associated Virus-Mediated Correction of a Canine Model of Glycogen Storage Disease Type Ia

    PubMed Central

    Weinstein, David A.; Correia, Catherine E.; Conlon, Thomas; Specht, Andrew; Verstegen, John; Onclin-Verstegen, Karine; Campbell-Thompson, Martha; Dhaliwal, Gurmeet; Mirian, Layla; Cossette, Holly; Falk, Darin J.; Germain, Sean; Clement, Nathalie; Porvasnik, Stacy; Fiske, Laurie; Struck, Maggie; Ramirez, Harvey E.; Jordan, Juan; Andrutis, Karl; Chou, Janice Y.; Byrne, Barry J.

    2010-01-01

    Abstract Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-α. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease. We investigated the potential of recombinant adeno-associated virus (rAAV) vector-based therapy to treat the canine model of GSDIa. After delivery of a therapeutic rAAV2/8 vector to a 1-day-old GSDIa dog, improvement was noted as early as 2 weeks posttreatment. Correction was transient, however, and by 2 months posttreatment the rAAV2/8-treated dog could no longer sustain normal blood glucose levels after 1 hr of fasting. The same animal was then dosed with a therapeutic rAAV2/1 vector delivered via the portal vein. Two months after rAAV2/1 dosing, both blood glucose and lactate levels were normal at 4 hr postfasting. With more prolonged fasting, the dog still maintained near-normal glucose concentrations, but lactate levels were elevated by 9 hr, indicating that partial correction was achieved. Dietary glucose supplementation was discontinued starting 1 month after rAAV2/1 delivery and the dog continues to thrive with minimal laboratory abnormalities at 23 months of age (18 months after rAAV2/1 treatment). These results demonstrate that delivery of rAAV vectors can mediate significant correction of the GSDIa phenotype and that gene transfer may be a promising alternative therapy for this disease and other genetic diseases of the liver. PMID:20163245

  10. Evidence for insulin resistance in nonobese patients with polycystic ovarian disease.

    PubMed

    Jialal, I; Naiker, P; Reddi, K; Moodley, J; Joubert, S M

    1987-05-01

    In this study seven normal weight Indian patients with polycystic ovarian disease (PCOD) with no evidence of acanthosis nigricans and 7 age- and weight-matched normal Indian women were studied to determine whether PCOD patients were insulin-resistant. While all 14 women had normal glucose tolerance, the PCOD women had significantly higher mean plasma glucose levels at 30 and 60 min and higher mean incremental glucose areas [incremental areas: PCOD, 9.0 +/- 2.2 (+/- SEM); normal women, 4.0 +/- 0.8 mmol/L; P less than 0.05]. Insulin responses were significantly higher in the PCOD compared to normal women (incremental areas: PCOD, 623.8 +/- 78.3; normal women, 226.2 +/- 30.3 microU/mL; P less than 0.001). Both serum testosterone and androstenedione levels correlated with the insulin areas (r = 0.82; P less than 0.001 and r = 0.86; P less than 0.001, respectively). [125I] Insulin binding to erythrocytes revealed decreased maximum specific binding in the PCOD women (6.9 +/- 0.6%) compared to that in normal women (9.2 +/- 0.7%; P less than 0.02). While Scatchard analysis revealed similar receptor numbers, ID50 values demonstrated decreased receptor affinity in the women with PCOD. In conclusion, in the absence of acanthosis nigricans, nonobese patients with PCOD are insulin resistant, and this insulin resistance correlates with the hyperandrogenism.

  11. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis.

    PubMed

    Nakano, Haruko; Minami, Itsunari; Braas, Daniel; Pappoe, Herman; Wu, Xiuju; Sagadevan, Addelynn; Vergnes, Laurent; Fu, Kai; Morselli, Marco; Dunham, Christopher; Ding, Xueqin; Stieg, Adam Z; Gimzewski, James K; Pellegrini, Matteo; Clark, Peter M; Reue, Karen; Lusis, Aldons J; Ribalet, Bernard; Kurdistani, Siavash K; Christofk, Heather; Nakatsuji, Norio; Nakano, Atsushi

    2017-12-12

    The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy.

  12. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis

    PubMed Central

    Nakano, Haruko; Minami, Itsunari; Braas, Daniel; Pappoe, Herman; Wu, Xiuju; Sagadevan, Addelynn; Vergnes, Laurent; Fu, Kai; Morselli, Marco; Dunham, Christopher; Ding, Xueqin; Stieg, Adam Z; Gimzewski, James K; Pellegrini, Matteo; Clark, Peter M; Reue, Karen; Lusis, Aldons J; Ribalet, Bernard; Kurdistani, Siavash K; Christofk, Heather; Nakatsuji, Norio

    2017-01-01

    The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy. PMID:29231167

  13. Preabsorptive insulin release and hypoglycemia in rats.

    PubMed

    Louis-Sylvestre, J

    1976-01-01

    Peripheral blood glucose and immunologically reactive insulin levels were determined in freely moving normal rats which were submitted either to a free oral glucose load or to a gastric administration of the glucose load. Identical determinations were performed in ventromedial hypothalamic nucleus-(VMH) lesioned and vagotomized rats after the same oral intake. It was demonstrated that: 1) a free oral glucose intake was immediately followed by two peaks of insulun release and a resultant decrease in blood glucose; 2) a gastric glucose load resulted in a single peak of insulin release and the concomitant decline in blood glucose; 3) the recorded blood glucose level was the resultant of the insulin-induced hypoglycemia and the postabsorptive hyperglycemia; and 4) the responses were largely exaggerated in VMH-lesioned rats and abolished by vagotomy. It is concluded that the early prandial insulin release reflexly induced by food-related stimuli temporarily enhances the metabolic conditions which provoke feeding.

  14. BDNF action in the brain attenuates diabetic hyperglycemia via insulin-independent inhibition of hepatic glucose production.

    PubMed

    Meek, Thomas H; Wisse, Brent E; Thaler, Joshua P; Guyenet, Stephan J; Matsen, Miles E; Fischer, Jonathan D; Taborsky, Gerald J; Schwartz, Michael W; Morton, Gregory J

    2013-05-01

    Recent evidence suggests that central leptin administration fully normalizes hyperglycemia in a rodent model of uncontrolled insulin-deficient diabetes by reducing hepatic glucose production (HGP) and by increasing glucose uptake. The current studies were undertaken to determine whether brain-derived neurotrophic factor (BDNF) action in the brain lowers blood glucose in uncontrolled insulin-deficient diabetes and to investigate the mechanisms mediating this effect. Adult male rats implanted with cannulas to either the lateral cerebral ventricle or the ventromedial hypothalamic nucleus (VMN) received either vehicle or streptozotocin to induce uncontrolled insulin-deficient diabetes. Three days later, animals received daily intracerebroventricular or intra-VMN injections of either BDNF or its vehicle. We found that repeated daily intracerebroventricular administration of BDNF attenuated diabetic hyperglycemia independent of changes in food intake. Instead, using tracer dilution techniques during a basal clamp, we found that BDNF lowered blood glucose levels by potently suppressing HGP, without affecting tissue glucose uptake, an effect associated with normalization of both plasma glucagon levels and hepatic expression of gluconeogenic genes. Moreover, BDNF microinjection directly into the VMN also lowered fasting blood glucose levels in uncontrolled insulin-deficient diabetes, but this effect was modest compared with intracerebroventricular administration. We conclude that central nervous system BDNF attenuates diabetic hyperglycemia via an insulin-independent mechanism. This action of BDNF likely involves the VMN and is associated with inhibition of glucagon secretion and a decrease in the rate of HGP.

  15. Dysglycemia and long-term mortality: observations from the Israel study of glucose intolerance, obesity and hypertension.

    PubMed

    Bergman, Michael; Chetrit, Angela; Roth, Jesse; Dankner, Rachel

    2015-05-01

    We describe the relationship between dysglycemia and long-term mortality and elucidate the relationship between blood glucose levels during an oral glucose tolerance test (OGTT) and haemoglobin A1 (HbA1) and mortality. A cohort of 1410 individuals was followed for 33 years since 1980. Fasting and post-OGTT glucose parameters were used to categorize the cohort according to baseline glycemic status. The mortality rate increased from 43% in normoglycemic individuals to 53.3, 61.7, 72.9 and 88.0% in those with impaired fasting glucose (IFG), impaired glucose tolerance (IGT), IFG/IGT and diabetes, respectively. The highest mortality rate, compared with the normoglycemic category, was observed in individuals with IFG/IGT and diabetes according to a Cox proportional hazard model (HR = 1.38, 95%CI 1.10-1.74 and HR = 2.14, 95%CI 1.70-2.70, respectively), followed by individuals with IGT and IFG, but this did not reach statistical significance. We speculate that the IFG group may represent a mixture of individuals en route from normal to the next two categories as well as another cohort whose glucose levels are stably set at the upper reaches of the normal distribution. Significant differences were found between 1 and 2 h glucose values (p < 0.001). Fasting, 60 and 120 min glucose values were positively associated with increasing HbA1 quintiles (p < 0.05). The mean HbA1 was significantly higher in those who died (p = 0.01). The highest mortality (58.8%) was observed in the upper HbA1 quintile that was also associated with the highest prevalence of the metabolic syndrome (17.2%). This study shows a continuous relationship between the severity of dysglycemia and long-term mortality and should promote the early recognition of prediabetes. The 1 h post-load glucose level was continuously associated with increasing HbA1 concentrations and may therefore serve as an early marker for abnormalities in glucose tolerance. An elevated 1 h post-load glucose level may potentially identify at-risk individuals well before the traditional 2 h glucose value. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Comparative activity of proline-containing dipeptide noopept and inhibitor of dipeptidyl peptidase-4 sitagliptin in a rat model of developing diabetes.

    PubMed

    Ostrovskaya, R U; Ozerova, I V; Gudascheva, T A; Kapitsa, I G; Ivanova, E A; Voronina, T A; Seredenin, S B

    2014-01-01

    Developing diabetes was modeled on adult male Wistar rats by repeated intraperitoneal injections of streptozotocin in a subdiabetogenic dose of 30 mg/kg for 3 days. Proline-containing dipeptide drug Noopept or a standard diabetic drug dipeptidyl peptidase-4 inhibitor sitagliptin was administered per os in a dose of 5 mg/kg before each injection of the toxin and then for 16 days after streptozotocin course. In active control group, spontaneously increase glucose level and reduced tolerance to glucose load (1000 mg/kg intraperitoneally) were observed on the next day after the third administration of toxin. Basal glucose level decreased by day 16, but glucose tolerance remained impaired. Noopept normalized the basal blood glucose level and tolerance to glucose load on the next day after administration of streptozotocin. The effect of Noopept persisted to the end of the experiment. At early terms of the experiment, sitagliptin was somewhat superior to Noopept by the effect on baseline glucose level, but was inferior by the influence on glucose tolerance.. By the end of the experiment, Noopept significantly (by 2 times) surpassed sitagliptin by its effect on glucose tolerance.

  17. Glucose starvation impairs DNA repair in tumour cells selectively by blocking histone acetylation.

    PubMed

    Ampferl, Rena; Rodemann, Hans Peter; Mayer, Claus; Höfling, Tobias Tim Alexander; Dittmann, Klaus

    2018-03-01

    Tumour cells are characterized by aerobic glycolysis and thus have high glucose consumption. Because repairing radiation-induced DNA damage is an energy-demanding process, we hypothesized that glucose starvation combined with radiotherapy could be an effective strategy to selectively target tumour cells. We glucose-starved tumour cells (A549, FaDu) in vitro and analysed their radiation-induced cell responses compared to normal fibroblasts (HSF7). Irradiation depleted intracellular ATP levels preferentially in cancer cells. Consequently, glucose starvation impaired DNA double-strand break (DSB) repair and radiosensitized confluent tumour cells but not normal fibroblasts. In proliferating tumour cells glucose starvation resulted in a reduction of proliferation, but failed to radiosensitize cells. Glucose supply was indispensable during the late DSB repair in confluent tumour cells starting approximately 13 h after irradiation, and glucose starvation inhibited radiation-induced histone acetylation, which is essential for chromatin relaxation. Sirtinol - an inhibitor of histone deacetylases - reverted the effects of glucose depletion on histone acetylation and DNA DSB repair in tumour cells. Furthermore, a glucose concentration of 2.8 mmol/L was sufficient to impair DSB repair in tumour cells and reduced their clonogenic survival under a fractionated irradiation regimen. In resting tumour cells, glucose starvation combined with irradiation resulted in the impairment of late DSB repair and the reduction of clonogenic survival, which was associated with disrupted radiation-induced histone acetylation. However, in normal cells, DNA repair and radiosensitivity were not affected by glucose depletion. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.; Dergilev, A.

    2016-06-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 minutes at room temperature. After centrifugation of the vials with cells, the supernatant was removed. Radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B 1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 minutes. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D- glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3±0.15MBq and 1.07±0.6MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio- D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  19. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.

    2016-08-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 min at room temperature. After centrifugation of the vials with cells, the supernatant was removed. The radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25 MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 min. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D-glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3 ± 0.15 MBq and 1.07 ± 0.6 MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio-D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  20. Abnormal oral glucose tolerance and glucose malabsorption after vagotomy and pyloroplasty. A tracer method for measuring glucose absorption rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radziuk, J.; Bondy, D.C.

    1982-11-01

    The mechanisms underlying the abnormal glucose tolerance in patients who had undergone vagotomy and pyloroplasty were investigated by measuring the rates of absorption of ingested glucose and the clearance rate of glucose using tracer methods. These methods are based on labeling a 100-g oral glucose load with (1-/sup 14/C)glucose and measuring glucose clearance using plasma levels of infused (3-/sup 3/H)glucose. The rate of appearance of both ingested and total glucose is then calculated continuously using a two-compartment model of glucose kinetics. It was found that about 30% of the ingested glucose (100 g) failed to appear in the systemic circulation.more » That this was due to malabsorption was confirmed using breath-hydrogen analysis. The absorption period is short (101 +/- 11 min) compared with normal values but the clearance of glucose is identical to that in control subjects, and it peaks 132 +/- 7 min after glucose loading. The peak plasma insulin values were more than four times higher in patients than in normal subjects, and this may afford an explanation of rates of glucose clearance that are inappropriate for the short absorption period. The combination of glucose malabsorption and this clearance pattern could yield the hypoglycemia that may be observed in patients after gastric surgery.« less

  1. Fasting plasma glucose levels and coronary artery calcification in subjects with impaired fasting glucose.

    PubMed

    Eun, Young-Mi; Kang, Sung-Goo; Song, Sang-Wook

    2016-01-01

    Prediabetes is associated with an increased risk of cardiovascular disease (CVD). While the association of impaired glucose tolerance with CVD has been shown in many studies, the relationship between impaired fasting glucose (IFG) and CVD remains unclear. The purpose of this study was to compare the coronary artery calcium (CAC) scores of participants with normal fasting glucose versus those with IFG, according to fasting plasma glucose (FPG) levels, and to assess whether differences in CAC scores were independent of important confounders. Retrospective study. Health Promotion Center of the University Hospital (Gyeonggi-do, South Korea), during the period 2010-2014. Participants were enrolled from the general population who visited for a medical check-up. CAC was assessed in asymptomatic individuals by multidetector computed tomography. Anthropometric parameters and metabolic profiles were also recorded. Subjects were divided into four fasting glucose groups. Participants with a history of CVD or diabetes mellitus were excluded. Correlation between FPG and CAC scores, CAC score categories, and association between CAC score and FPG categories. Of 1112 participants, 346 (34.2%) had a CAC score > 0. FPG values in the IFG patients were positively but weakly correlated with CAC scores (r=0.099, P=.001). The incidence of CAC differed according to FPG level (P < .001) and in Kruskal-Wallis test the mean CAC score differed by FPG group (P < .001). After adjustment for other factors in a multiple logistic regression analysis, those subjects with FPG >=110 mg/dL had a significantly higher risk of CAC than did subjects with normal fasting glucose (110.

  2. Impaired glucose tolerance in first-episode drug-naïve patients with schizophrenia: relationships with clinical phenotypes and cognitive deficits.

    PubMed

    Chen, D C; Du, X D; Yin, G Z; Yang, K B; Nie, Y; Wang, N; Li, Y L; Xiu, M H; He, S C; Yang, F D; Cho, R Y; Kosten, T R; Soares, J C; Zhao, J P; Zhang, X Y

    2016-11-01

    Schizophrenia patients have a higher prevalence of type 2 diabetes mellitus with impaired glucose tolerance (IGT) than normals. We examined the relationship between IGT and clinical phenotypes or cognitive deficits in first-episode, drug-naïve (FEDN) Han Chinese patients with schizophrenia. A total of 175 in-patients were compared with 31 healthy controls on anthropometric measures and fasting plasma levels of glucose, insulin and lipids. They were also compared using a 75 g oral glucose tolerance test and the homeostasis model assessment of insulin resistance (HOMA-IR). Neurocognitive functioning was assessed using the MATRICS Consensus Cognitive Battery (MCCB). Patient psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS). Of the patients, 24.5% had IGT compared with none of the controls, and they also had significantly higher levels of fasting blood glucose and 2-h glucose after an oral glucose load, and were more insulin resistant. Compared with those patients with normal glucose tolerance, the IGT patients were older, had a later age of onset, higher waist or hip circumference and body mass index, higher levels of low-density lipoprotein and triglycerides and higher insulin resistance. Furthermore, IGT patients had higher PANSS total and negative symptom subscale scores, but no greater cognitive impairment except on the emotional intelligence index of the MCCB. IGT occurs with greater frequency in FEDN schizophrenia, and shows association with demographic and anthropometric parameters, as well as with clinical symptoms but minimally with cognitive impairment during the early course of the disorder.

  3. Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice.

    PubMed

    Sun, Jun-En; Ao, Zong-Hua; Lu, Zhen-Ming; Xu, Hong-Yu; Zhang, Xiao-Mei; Dou, Wen-Fang; Xu, Zheng-Hong

    2008-06-19

    The antihyperglycemic and antilipidperoxidative effects of the dry matter of culture broth (DMCB) of Inonotus obliquus were investigated. The normal, glucose-induced hyperglycemic and alloxan-induced diabetic mice were used to evaluate the antihyperglycemic and antilipidperoxidative effects of the DMCB of Inonotus obliquus. Treatment with the DMCB (500 and 1000 mg/kg body weight) exhibited a mild hypoglycemic effect in normal mice, and failed to reduce the peak glucose levels after glucose administration. However, euglycemia was achieved in the DMCB of Inonotus obliquus (1000 mg/kg) and glibenclamide-treated mice after 120 min of glucose loading. In alloxan-induced diabetic mice, the DMCB (500 and 1000 mg/kg body weight for 21 days) showed a significant decrease in blood glucose level, the percentages reduction on the 7th day were 11.90 and 15.79%, respectively. However, feeding of this drug for 3 weeks produced reduction was 30.07 and 31.30%. Furthermore, the DMCB treatment significantly decreased serum contents of free fatty acid (FFA), total cholesterol (TC), triglyceride (TG) and low density lipoprotein-cholesterol (LDL-C), whereas effectively increased high density lipoprotein-cholesterol (HDL-C), insulin level and hepatic glycogen contents in liver on diabetic mice. Besides, the DMCB treatment significantly increased catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities except for decreasing maleic dialdehyde (MDA) level in diabetic mice. Histological morphology examination showed that the DMCB restored the damage of pancreas tissues in mice with diabetes mellitus. The results showed that the DMCB of Inonotus obliquus possesses significant antihyperglycemic, antilipidperoxidative and antioxidant effects in alloxan-induced diabetic mice.

  4. Progression from impaired glucose tolerance to type 2 diabetes in obese children and adolescents: a 3-6-year cohort study in southern Thailand.

    PubMed

    Jaruratanasirikul, Somchit; Thammaratchuchai, Sudarat; Puwanant, Maneerat; Mo-Suwan, Ladda; Sriplung, Hutcha

    2016-11-01

    Childhood obesity is associated with abnormal glucose metabolism and type 2 diabetes mellitus (T2DM). This study evaluated the prevalence of abnormal glucose metabolism in asymptomatic obese children and adolescents, and determined the percentage of T2DM development after 3-6 years of follow-up. During 2007-2013, 177 obese children and adolescents who had normal fasting plasma glucose (FPG<100 mg/dL) were given an oral glucose tolerance test (OGTT). The participants were classified into four groups: normal glucose tolerance (NGT), NGT-hyperinsulinemia (NGT-HI), impaired glucose tolerance (IGT), and diabetes mellitus (DM). Blood chemistries, including FPG, glycated hemoglobin, and lipid profiles, and liver function test were performed every 6-12 months or when the patient developed any symptom or sign indicative of diabetes. Glucose metabolism alterations were detected in 81.4% of the participants: 63.8% with NGT-HI, 15.3% with IGT, and 2.3% with T2DM. The median levels of homeostasis model assessment-insulin resistance (HOMA-IR) in patients with IGT (8.63) were significantly greater than those in the patients with NGT (4.04) (p<0.01). During the follow-up, 22 patients (14.4%) developed T2DM significantly more from the IGT group (nine of 33 cases, 27.3%) than the NGT-HI group (12 of 108 cases, 11.1%) (p=0.022). The predicting parameters for T2DM conversion were weight status, body mass index (BMI), FBG, fasting insulin, alanine transaminase (ALT) levels, and HOMA-IR. Glucose metabolism alteration was commonly found among obese adolescents. Factors associated with T2DM development were greater weight status and the severity of insulin resistance as shown by higher HOMA-IR levels.

  5. A fermented soy permeate improves the skeletal muscle glucose level without restoring the glycogen content in streptozotocin-induced diabetic rats.

    PubMed

    Malardé, Ludivine; Vincent, Sophie; Lefeuvre-Orfila, Luz; Efstathiou, Théo; Groussard, Carole; Gratas-Delamarche, Arlette

    2013-02-01

    Exercise is essential into the therapeutic management of diabetic patients, but their level of exercise tolerance is lowered due to alterations of glucose metabolism. As soy isoflavones have been shown to improve glucose metabolism, this study aimed to assess the effects of a dietary supplement containing soy isoflavones and alpha-galactooligosaccharides on muscular glucose, glycogen synthase (GSase), and glycogen content in a type 1 diabetic animal model. The dietary supplement tested was a patented compound, Fermented Soy Permeate (FSP), developed by the French Company Sojasun Technologies. Forty male Wistar rats were randomly assigned to control or diabetic groups (streptozotocin, 45 mg/kg). Each group was then divided into placebo or FSP-supplemented groups. Both groups received by oral gavage, respectively, water or diluted FSP (0.1 g/day), daily for a period of 3 weeks. At the end of the protocol, glycemia was noticed after a 24-h fasting period. Glucose, total GSase, and the glycogen content were determined in the skeletal muscle (gastrocnemius). Diabetic animals showed a higher blood glucose concentration, but a lower glucose and glycogen muscle content than controls. Three weeks of FSP consumption allowed to restore the muscle glucose concentration, but failed to reduce glycemia and to normalize the glycogen content in diabetic rats. Furthermore, the glycogen content was increased in FSP-supplemented controls compared to placebo controls. Our results demonstrated that diabetic rats exhibited a depleted muscle glycogen content (-25%). FSP-supplementation normalized the muscle glucose level without restoring the glycogen content in diabetic rats. However, it succeeded to increase it in the control group (+20%).

  6. Anti-Proliferative Effects of Rutin on OLETF Rat Vascular Smooth Muscle Cells Stimulated by Glucose Variability

    PubMed Central

    Yu, Sung Hoon; Yu, Jae Myung; Lee, Seong Jin; Kang, Dong Hyun; Cho, Young Jung; Kim, Doo Man

    2016-01-01

    Purpose Proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in atherosclerosis. Rutin is a major representative of the flavonol subclass of flavonoids and has various pharmacological activities. Currently, data are lacking regarding its effects on VSMC proliferation induced by intermittent hyperglycemia. Here, we demonstrate the effects of rutin on VSMC proliferation and migration according to fluctuating glucose levels. Materials and Methods Primary cultures of male Otsuka Long-Evans Tokushima Fatty (OLETF) rat VSMCs were obtained from enzymatically dissociated rat thoracic aortas. VSMCs were incubated for 72 h with alternating normal (5.5 mmol/L) and high (25.0 mmol/L) glucose media every 12 h. Proliferation and migration of VSMCs, the proliferative molecular pathway [including p44/42 mitogen-activated protein kinases (MAPK), mitogen-activated protein kinase kinase 1/2 (MEK1/2), p38 MAPK, phosphoinositide 3-kinase (PI3K), c-Jun N-terminal protein kinase (JNK), nuclear factor kappa B (NF-κB), and Akt], the migratory pathway (big MAPK 1, BMK1), reactive oxygen species (ROS), and apoptotic pathway were analyzed. Results We found enhanced proliferation and migration of VSMCs when cells were incubated in intermittent high glucose conditions, compared to normal glucose. These effects were lowered upon rutin treatment. Intermittent treatment with high glucose for 72 h increased the expression of phospho-p44/42 MAPK (extracellular signal regulated kinase 1/2, ERK1/2), phospho-MEK1/2, phospho-PI3K, phospho-NF-κB, phospho-BMK1, and ROS, compared to treatment with normal glucose. These effects were suppressed by rutin. Phospho-p38 MAPK, phospho-Akt, JNK, and apoptotic pathways [B-cell lymphoma (Bcl)-xL, Bcl-2, phospho-Bad, and caspase-3] were not affected by fluctuations in glucose levels. Conclusion Fluctuating glucose levels increased proliferation and migration of OLETF rat VSMCs via MAPK (ERK1/2), BMK1, PI3K, and NF-κB pathways. These effects were inhibited by the antioxidant rutin. PMID:26847289

  7. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level

    NASA Astrophysics Data System (ADS)

    Ilany, Jacob; Bilan, Philip J.; Kapur, Sonia; Caldwell, James S.; Patti, Mary-Elizabeth; Marette, Andre; Kahn, C. Ronald

    2006-03-01

    Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes. diabetes mellitus | glucose transport | RGK GTPase | transgenic mouse

  8. Blood Glucose Levels in Diabetic Patients Following Corticosteroid Injections into the Subacromial Space of the Shoulder.

    PubMed

    Aleem, Alexander W; Syed, Usman Ali M; Nicholson, Thema; Getz, Charles L; Namdari, Surena; Beredjiklian, Pedro K; Abboud, Joseph A

    2017-09-01

    Corticosteroid injections are used to treat a variety of orthopedic conditions with the goal of decreasing pain and inflammation. Administration of systemic or local corticosteroids risks temporarily increasing blood glucose levels, especially diabetic patients. The purpose of this study is to quantify the effects of corticosteroid injections on blood glucose levels in diabetic patients with shoulder pathology. Diabetic patients who regularly monitored their blood glucose levels and were indicated for a subacromial corticosteroid injection were included in this prospective investigation. The typical normal morning fasting glucose and most recent hemoglobin A1c level was recorded for each patient. After injection, patients were contacted daily to confirm their fasting morning glucose level for 10 days post-injection. Seventeen consecutive patients were enrolled. Patients with hemoglobin A1c of <7% had an average rise in blood glucose of 38 mg/dL compared to 98 mg/dL in the poorly controlled group after injection ( P <0.001). Well-controlled patients' glucose levels returned to near baseline levels around post-injection day 8, while poorly controlled patients levels remained elevated. Similarly, insulin-dependent diabetic patients had an average increase in fasting glucose level of 99 mg/dL versus 50 mg/dL in non-insulin-dependent diabetic patients ( P <0.001). After corticosteroid injection, patients with well-controlled diabetes experience smaller elevations and faster return to baseline glucose levels than patients with poor control. Insulin dependent diabetics experienced similar findings as patients with poor control. Future studies are needed to evaluate dosing to optimize the risks of blood glucose elevation while maintaining therapeutic benefit.

  9. High serum selenium levels are associated with impaired fasting glucose and elevated fasting serum glucose in Linyi, China.

    PubMed

    Li, Zhe; Li, Xia; Ju, Wen; Wu, Guanrui; Yang, Xiaomei; Fu, Xiaofeng; Gao, Xibao

    2018-01-01

    The relationship between selenium level and impaired fasting glucose or elevated fasting serum glucose remains controversial. This study aimed to evaluate these associations in China. This observational population study adopted a cluster sampling approach to enroll participants. Baseline information on selenium categories was tested using one-way analysis of variance and Kruskal-Wallis equality-of-populations rank tests. Multivariable logistic regression was used to investigate the association between serum selenium level and impaired fasting glucose or elevated fasting serum glucose. The mean serum selenium concentration was 121.5μg/L which in a relatively high baseline Se status. Differences were observed among individuals with normal, impaired fasting glucose and elevated fasting serum glucose levels in their basic information, physical examination results and laboratory findings. After adjusting for their basic information, physical examination results and laboratory findings, compared with the low-selenium group, the high-selenium groups (124.9-143.9 and above 143.9μg/L) had ORs for elevated fasting serum glucose of 2.31 (1.37-3.90) and 2.67 (1.59-4.48), respectively (both P<0.05). A sex-difference was observed, and a significant association between selenium levels and impaired fasting glucose was observed for males but not for females. The findings of this observational study suggest that relatively high selenium levels might be positively associated with elevated fasting serum glucose and relatively high selenium levels might be positively associated with impaired fasting glucose in men. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Glucose Biosensors: An Overview of Use in Clinical Practice

    PubMed Central

    Yoo, Eun-Hyung; Lee, Soo-Youn

    2010-01-01

    Blood glucose monitoring has been established as a valuable tool in the management of diabetes. Since maintaining normal blood glucose levels is recommended, a series of suitable glucose biosensors have been developed. During the last 50 years, glucose biosensor technology including point-of-care devices, continuous glucose monitoring systems and noninvasive glucose monitoring systems has been significantly improved. However, there continues to be several challenges related to the achievement of accurate and reliable glucose monitoring. Further technical improvements in glucose biosensors, standardization of the analytical goals for their performance, and continuously assessing and training lay users are required. This article reviews the brief history, basic principles, analytical performance, and the present status of glucose biosensors in the clinical practice. PMID:22399892

  11. Role of prediabetes in stroke

    PubMed Central

    Mijajlović, Milija D; Aleksić, Vuk M; Šternić, Nadežda M; Mirković, Mihailo M; Bornstein, Natan M

    2017-01-01

    Stroke is one of the leading causes of death and probably the greatest cause of adult disability worldwide. Diabetes mellitus (DM) is a state of accelerated aging of blood vessels. Patients with diabetes have increased risk of stroke. Hyperglycemia represents a risk factor for poor outcome following stroke, and probably is just a marker of poor outcome rather than a cause. Lowering of blood glucose levels has not been shown to improve prognosis. Also, prevention of stroke risk among patients with DM is not improved with therapy for reduction of glucose levels. On the other hand, prediabetes, a metabolic state between normal glucose metabolism and diabetes, is a risk factor for the development of DM type 2 and subsequently for stroke. Several methods are known to identify prediabetes patients, including fasting plasma glucose levels, 2-hour post load glucose levels, and glycosylated hemoglobin levels. In this text, we tried to summarize known data about diagnosis, epidemiology, risk factors, pathophysiology, and prevention of prediabetes in relation to DM and stroke. PMID:28203079

  12. Changes of insulin resistance and β-cell function in women with gestational diabetes mellitus and normal pregnant women during mid- and late pregnant period: a case-control study.

    PubMed

    Wang, Yun-Hui; Wu, Hui-Hua; Ding, Hong; Li, Yan; Wang, Zhen-Hua; Li, Feng; Zhang, Jian-Ping

    2013-03-01

    The aim of this study was to observe insulin resistance and β-cell function changes among women diagnosed with gestational impaired glucose tolerance or gestational diabetes mellitus (GDM) in mid-pregnancy. Sixty-four pregnant women receiving prenatal care underwent an oral glucose tolerance test at 20-24 weeks of gestation and an insulin release test. The GDM group included 34 pregnant women diagnosed with gestational impaired glucose tolerance or GDM, and the subjects with normal blood glucose were the control group. Insulin resistance and islet β-cell function changes were observed with the oral glucose tolerance test and insulin release test. The homeostatic model assessment-β levels in late pregnancy were higher than those in mid-pregnancy for both groups, and the primary time effect was statistically significant. The early insulin secretion index (ΔI(30)/ΔG(30)) values in mid- and late pregnancy were lower in the GDM group. The values of the area under the curve of blood glucose in mid- and late pregnancy were higher in the GDM group than those in the control group. Insulin resistance was higher in GDM patients than in normal pregnant women. Insulin resistance was aggravated, and β-cell's ability to compensate for the increased insulin resistance by modulating insulin secretion was aggravated, as gestational week increased in women with gestational diabetes and normal pregnant women. Insulin resistance in women with GDM is higher than in pregnant women with normal metabolism of glucose. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  13. Comparative influence of propranolol and verapamil on glycemic control and histamine sensitivity associated with L-thyroxine-induced hyperthyroidism - an experimental study.

    PubMed

    Bhatt, Parloop A; Makwana, Dharmesh

    2008-02-01

    The present investigation was undertaken to study the comparative effectiveness of beta-adrenergic antagonist propranolol and calcium channel blocker verapamil on L-thyroxine-induced alteration on glycemic control and histamine sensitivity on rats and guinea pigs, respectively. Injection of L-thyroxine sodium every alternate day for 3 weeks in guinea pigs (75 microg/kg, i.p.) and rats (75 mg/kg, s.c.) produced a condition similar to thyrotoxicosis. Verapamil and propranolol administered daily in the third week along with L-thyroxine to two separate groups of hyperthyroid animals reversed thyroxine-induced loss in body weight, reduction in serum TSH levels, and rise in body temperature. Effect on glucose metabolism and insulin sensitivity was studied on rats. Compared to normal rats, L-thyroxine-treated animals showed a state of hyperglycemia, hyperinsulinemia, impaired glucose tolerance, and insulin resistance. Propranolol (10 mg/kg, i.p.) treatment significantly decreased fasting serum glucose levels without affecting serum insulin levels, AUC glucose, and K(ITT) values. Treatment with verapamil (5 mg/kg, i.p.) significantly reduced fasting serum glucose and insulin levels, AUC glucose, and significantly increased K(ITT) values. Effect of propranolol (15 mg/kg, orally) and verapamil (20 mg/kg, orally) treatment on histamine sensitivity was studied on L-thyroxine-treated guinea pigs. Compared to normal guinea pigs, L-thyroxine-treated guinea pigs showed an increased sensitivity to histamine-induced asphyxia. Verapamil treatment reversed this increased histamine sensitivity while propranolol aggravated it. In conclusion, compared to propranolol, verapamil has advantageous effects on glucose metabolism, insulin and histamine sensitivity and could therefore be a valuable addition as an adjunctive therapy option currently available for thyrotoxicosis associated with diabetes and/or anaphylaxis.

  14. Molecular Pathophysiology of Hepatic Glucose Production

    PubMed Central

    Sharabi, Kfir; Tavares, Clint D. J.; Rines, Amy K.; Puigserver, Pere

    2015-01-01

    Maintaining blood glucose concentration within a relatively narrow range through periods of fasting or excess nutrient availability is essential to the survival of the organism. This is achieved through an intricate balance between glucose uptake and endogenous glucose production to maintain constant glucose concentrations. The liver plays a major role in maintaining normal whole body glucose levels by regulating the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis), thus controlling the levels of hepatic glucose release. Aberrant regulation of hepatic glucose production (HGP) can result in deleterious clinical outcomes, and excessive HGP is a major contributor to the hyperglycemia observed in Type 2 diabetes mellitus (T2DM). Indeed, adjusting glycaemia as close as possible to a non-diabetic range is the foremost objective in the medical treatment of patients with T2DM and is currently achieved in the clinic primarily through suppression of HGP. Here, we review the molecular mechanisms controlling HGP in response to nutritional and hormonal signals and discuss how these signals are altered in T2DM. PMID:26549348

  15. Antioxidant potential of the methanol-methylene chloride extract of Terminalia glaucescens leaves on mice liver in streptozotocin-induced stress.

    PubMed

    Njomen, Guy Bertrand Sabas Nya; Kamgang, René; Oyono, Jean Louis Essame; Njikam, Njifutie

    2008-11-01

    The antioxidant effect of the methanol-methylene chloride extract of Terminalia glaucescens (Combretaceae) leaves was investigated in streptozotocin (STZ)-induced oxidative stress. Oxidative stress was induced in mice by a daily dose of STZ (45 mg/kg body weight i.p.) for five days. From day one, before STZ injection, normal and diabetic-test mice received an oral dose of the extract (100 or 300 mg/kg b.w.) daily. Plasma metabolites, lipid peroxidation, and antioxidant enzymes in the liver were assessed and gain in body weight recorded. In normal mice the plant extract reduced food and water intake, blood glucose and LDL-C level and body weight gain, did not affect the lipid peroxidation in the liver, while the antioxidant enzyme activities seemed increased. Blood glucose was decreased (P < 0.05) in normal mice treated with 300 mg/kg extract. Diabetic mice pretreated with 100 mg/kg extract as diabetic control mice (DC) showed significant (P < 0.001) body weight loss, polyphagia and polydipsia, high plasma glucose level, decrease in the liver catalase, peroxidase, and superoxide dismutase activities, and increase in lipid peroxidation. The HDL-C level was lowered (P < 0.05) whereas LDL-C increased. In 300 mg/kg extract-pretreated diabetic mice the extract prevented body weight loss, increase of blood glucose level, lipid peroxidation in liver, food and water intake, and lowering of plasma HDL-C level and liver antioxidants; this extract prevented LDL-C level increase. These results indicate that T. glaucescens protects against STZ-induced oxidative stress and could thus explain its traditional use for diabetes and obesity treatment or management.

  16. Leptin action in the ventromedial hypothalamic nucleus is sufficient, but not necessary, to normalize diabetic hyperglycemia.

    PubMed

    Meek, Thomas H; Matsen, Miles E; Dorfman, Mauricio D; Guyenet, Stephan J; Damian, Vincent; Nguyen, Hong T; Taborsky, Gerald J; Morton, Gregory J

    2013-09-01

    In rodent models of type 1 diabetes, leptin administration into brain ventricles normalizes blood glucose at doses that have no effect when given peripherally. The ventromedial nucleus of the hypothalamus (VMN) is a potential target for leptin's antidiabetic effects because leptin-sensitive neurons in this brain area are implicated in glucose homeostasis. To test this hypothesis, we injected leptin directly into the bilateral VMN of rats with streptozotocin-induced uncontrolled diabetes mellitus. This intervention completely normalized both hyperglycemia and the elevated rates of hepatic glucose production and plasma glucagon levels but had no effect on tissue glucose uptake in the skeletal muscle or brown adipose tissue as measured using tracer dilution techniques during a basal clamp. To determine whether VMN leptin signaling is required for leptin-mediated normalization of diabetic hyperglycemia, we studied mice in which the leptin receptor gene was deleted in VMN steroidogenic factor 1 neurons using cre-loxP technology. Our findings indicate leptin action within these neurons is not required for the correction of diabetic hyperglycemia by central leptin infusion. We conclude that leptin signaling in the VMN is sufficient to mediate leptin's antidiabetic action but may not be necessary for this effect. Leptin action within a distributed neuronal network may mediate its effects on glucose homeostasis.

  17. The differences in the incidence of diabetes mellitus and prediabetes according to the type of HMG-CoA reductase inhibitors prescribed in Korean patients.

    PubMed

    Kim, Tong Min; Kim, Hyunah; Jeong, Yoo Jin; Baik, Sun Jung; Yang, So Jung; Lee, Seung-Hwan; Cho, Jae-Hyoung; Lee, Hyunyong; Yim, Hyeon Woo; Choi, In Young; Yoon, Kun-Ho; Kim, Hun-Sung

    2017-10-01

    Very few studies conducted in Korea have investigated the relationship between statins and the incidence of diabetes. Therefore, we analyzed the progression from normal blood glucose to prediabetes and then to diabetes mellitus (DM) according to the type, intensity, and dose of statin prescribed. Data of patients who were first prescribed statins between 2009 and 2011 were extracted from electronic medical records. Patients with normal blood glucose or prediabetes were observed for 4 years after initiation of statin therapy. A total of 2890 patients were included in our study and analyzed on the basis of the first statin they were prescribed. The incidence rate of DM in patients with prediabetes was 1.72 times that of patients with normal glucose levels (odds ratio = 1.72, 95% confidence interval = 1.41-2.10, P < .001). Regarding progression from normal blood glucose to prediabetes, the incidence rate of prediabetes was significantly lower in patients prescribed pitavastatin (odds ratio = 0.62, 95% confidence interval = 0.40-0.96, P = .031) compared to that in patients prescribed atorvastatin. Regarding the progression from normal blood glucose or prediabetes to DM, there were no significant differences among all statins. Lower DM incidence in patients prescribed pitavastatin appears to be primarily because of the lower rate of progression from normal blood glucose to prediabetes. These findings indicate that avoiding statins because of DM risk is unjustified and that clinicians should prescribe statins from the appropriate potency group. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Association of High Pulse Pressure With Proteinuria in Subjects With Diabetes, Prediabetes, or Normal Glucose Tolerance in a Large Japanese General Population Sample

    PubMed Central

    Yano, Yuichiro; Sato, Yuji; Fujimoto, Shouichi; Konta, Tsuneo; Iseki, Kunitoshi; Moriyama, Toshiki; Yamagata, Kunihiro; Tsuruya, Kazuhiko; Yoshida, Hideaki; Asahi, Koichi; Kurahashi, Issei; Ohashi, Yasuo; Watanabe, Tsuyoshi

    2012-01-01

    OBJECTIVE To examine whether there is a difference in the association between high pulse pressure and proteinuria, independent of other blood pressure (BP) indices, such as systolic or diastolic BP, among subjects with diabetes, prediabetes, or normal glucose tolerance. RESEARCH DESIGN AND METHODS Using a nationwide health checkup database of 228,778 Japanese aged ≥20 years (mean 63.2 years; 39.3% men; none had pre-existing cardiovascular disease), we examined the association between high pulse pressure, defined as the highest quintile of pulse pressure (≥63 mmHg, n = 40,511), and proteinuria (≥1+ on dipstick, n = 12,090) separately in subjects with diabetes (n = 27,913), prediabetes (n = 100,214), and normal glucose tolerance (n = 100,651). RESULTS The prevalence of proteinuria was different among subjects with diabetes, prediabetes, and normal glucose tolerance (11.3 vs. 5.0 vs. 3.9%, respectively; P < 0.001). In subjects with diabetes, but not those with prediabetes or normal glucose tolerance, high pulse pressure was associated with proteinuria independently of significant covariates, including systolic BP (odds ratio 1.15 [95% CI 1.04–1.28]) or diastolic or mean BP (all P < 0.01). In patients with diabetes, a +1 SD increase of pulse pressure (+13 mmHg) was associated with proteinuria, even after adjustment for systolic BP (1.07 [1.00–1.13]) or diastolic or mean BP (all P < 0.05). CONCLUSIONS Among the Japanese general population, there was a significant difference in the association between high pulse pressure and proteinuria among subjects with diabetes, prediabetes, and normal glucose tolerance. Only in diabetes was high pulse pressure associated with proteinuria independent of systolic, diastolic, or mean BP levels. PMID:22474041

  19. Elevated 1-h post-challenge plasma glucose levels in subjects with normal glucose tolerance or impaired glucose tolerance are associated with whole blood viscosity.

    PubMed

    Marini, Maria Adelaide; Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2017-08-01

    It has been suggested that glucose levels ≥155 mg/dl at 1-h during an oral glucose tolerance test (OGTT) may predict development of type 2 diabetes and cardiovascular events among adults with normal glucose tolerance (NGT 1 h-high). Studies showed a link between increased blood viscosity and type 2 diabetes. However, whether blood viscosity is associated with dysglycemic conditions such as NGT 1 h-high, impaired glucose tolerance (IGT) or impaired fasting glucose (IFG) is unsettled. 1723 non-diabetic adults underwent biochemical evaluation and OGTT. A validated formula based on hematocrit and total plasma proteins was employed to estimate whole blood viscosity. Subjects were categorized into NGT with 1 h glucose <155 mg/dL (NGT-1 h-low), NGT-1 h-high, IFG and/or IGT. Hematocrit and blood viscosity values appeared significantly higher in individuals with NGT 1 h-high, IFG and/or IGT as compared to NGT 1 h-low subjects. Blood viscosity was significantly correlated with age, waist circumference, blood pressure, HbA1c, fasting, 1- and 2-h post-challenge insulin levels, total cholesterol and low-density lipoprotein, triglycerides, fibrinogen, white blood cell, and inversely correlated with high-density lipoprotein and insulin sensitivity. Of the four glycemic parameters, 1-h post-challenge glucose showed the strongest correlation with blood viscosity (β = 0.158, P < 0.0001) in a multivariate regression analysis model including several atherosclerosis risk factors. Our results demonstrate a positive relationship between blood viscosity and 1-h post-challenge plasma glucose. They also suggest that a subgroup of NGT individuals with 1-h post-challenge plasma >155 mg/dl have increased blood viscosity comparable to that observed in subjects with IFG and/or IGT.

  20. Influence of hyperthyroidism on growth hormone secretion.

    PubMed

    Valcavi, R; Dieguez, C; Zini, M; Muruais, C; Casanueva, F; Portioli, I

    1993-05-01

    Hyperthyroidism is associated with altered GH secretion. Whether this is due to changes of somatotroph responsiveness or reflects an alteration in negative feedback signals at the hypothalamic level is unknown. We therefore performed a series of studies to shed some light onto this issue. Study 1: GHRH (1 microgram/kg b.w.) was injected i.v. in 38 hyperthyroid patients and in 30 normal subjects; in 11 of the patients the GHRH test was repeated following methimazole-induced remission of hyperthyroidism. Study 2: hGH (2 U i.v.) or saline were administered 3 hours prior to GHRH; six hyperthyroid patients and six normal subjects were studied. Study 3: ten normal subjects and ten hyperthyroid patients were given 75 g oral glucose or water 30 minutes before GHRH. Study 4: 11 normal subjects and eight hyperthyroid patients were studied. TRH or vehicle were dissolved in 250 ml of saline solution and infused at a rate of 400 micrograms/h for 150 minutes. Thirty minutes after the beginning of the infusions, L-arginine (30 g infused over 45 min i.v.) was administered. Hyperthyroid patients were compared to normal subjects. Growth hormone was measured by RIA at 15-minute intervals. GH responses to GHRH were subnormal in hyperthyroid patients. Following antithyroid drug treatment with methimazole, GH responses to GHRH increased in these patients in comparison to pretreatment values. Serum IGF-I levels, which were elevated before treatment, decreased after methimazole administration. Exogenous GH administration induced a clear decrease of GH responses to GHRH in both control and hyperthyroid subjects. On the other hand, oral glucose load decreased the GH responses to GHRH in normal but not in hyperthyroid subjects. TRH administration did not modify the GH responses to arginine in either normal subjects or hyperthyroid patients. Hyperthyroidism is associated with increased serum IGF-I levels and marked alterations in the neuroregulation of GH secretion. These changes involve decreased GH responsiveness to GHRH at the pituitary level and, at the hypothalamic level, a lack of suppressive effect of an oral glucose load. The normal inhibitory effect of exogenous GH administration but not of an oral glucose load in hyperthyroid patients suggests that these two feedback signals act through different mechanisms. The lack of effect of a TRH infusion on GH responses to L-arginine in normal and hyperthyroid patients makes an inhibitory role for TRH in GH secretion unlikely, at least in Caucasian subjects.

  1. Effects of Systemic Metabolic Fuels on Glucose and Lactate Levels in the Brain Extracellular Compartment of the Mouse

    PubMed Central

    Béland-Millar, Alexandria; Larcher, Jeremy; Courtemanche, Justine; Yuan, Tina; Messier, Claude

    2017-01-01

    Classic neuroenergetic research has emphasized the role of glucose, its transport and its metabolism in sustaining normal neural function leading to the textbook statement that it is the necessary and sole metabolic fuel of the mammalian brain. New evidence, including the Astrocyte-to-Neuron Lactate Shuttle hypothesis, suggests that the brain can use other metabolic substrates. To further study that possibility, we examined the effect of intraperitoneally administered metabolic fuels (glucose, fructose, lactate, pyruvate, ß-hydroxybutyrate, and galactose), and insulin, on blood, and extracellular brain levels of glucose and lactate in the adult male CD1 mouse. Primary motor cortex extracellular levels of glucose and lactate were monitored in freely moving mice with the use of electrochemical electrodes. Blood concentration of these same metabolites were obtained by tail vein sampling and measured with glucose and lactate meters. Blood and extracellular fluctuations of glucose and lactate were monitored for a 2-h period. We found that the systemic injections of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate increased blood lactate levels. Apart for a small transitory rise in brain extracellular lactate levels, the main effect of the systemic injection of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate was an increase in brain extracellular glucose levels. Systemic galactose injections produced a small rise in blood glucose and lactate but almost no change in brain extracellular lactate and glucose. Systemic insulin injections led to a decrease in blood glucose and a small rise in blood lactate; however brain extracellular glucose and lactate monotonically decreased at the same rate. Our results support the concept that the brain is able to use alternative fuels and the current experiments suggest some of the mechanisms involved. PMID:28154523

  2. Correlation of the association of serum lactate, random blood sugar, and revised trauma score as predictors of outcome in hemodynamically unstable abdominal emergencies.

    PubMed

    Allwell-Brown, E; Afuwape, O O; Ayandipo, O; Alonge, T

    2016-01-01

    Elevated levels of serum lactate and glucose during resuscitation have been demonstrated to be predictors of morbidity and mortality in hemodynamically unstable patients with surgical abdominal conditions. However, the rate of return to normal levels of both lactate and blood glucose may be better predictors of mortality and morbidity. The aims of this study are: (I) To determine the pattern of serum lactate and glucose changes in patients with surgical abdominal conditions requiring resuscitation within 48 hours of presentation. (II) To correlate the predictive capability of these two independent parameters. (III) To correlate the predictive values of these parameters with the revised trauma score (RTS). This is a prospective observational study conducted over three months. The patients admitted by the general surgery division requiring resuscitation from shock was included in this study. Resuscitation was carried out with crystalloids. The estimation of serum lactate and glucose levels was done at presentation (0 hours), 12, 24 and 48 hours after admission. The revised trauma score (RTS) was calculated for each patient at presentation and at 12, 24 and 48 hours subsequently. The patients were followed up four weeks or when death occurred within four weeks of presentation. Forty four patients were recruited in the study. There were seven mortalities. The mean serum levels of Plasma glucose and lactate of all the patients were elevated at presentation in the emergency department. Survival was better with a return to normal serum lactate within 12 hours. On the other hand the random plasma glucose (RPG) levels may not be useful in prognosticating patients. However a combination of serum lactate, RTS (at 24 and 48 hours) and RPG at 48 hours may improve predictive parameters in trauma related cases.

  3. [Changes in the secretion of somatotropin and insulin in hyperthyroidism].

    PubMed

    Cavagnini, F; Peracchi, M; Panerai, A E; Pinto, M

    1975-06-01

    Twenty hyperthyroid patients were investigated for growth hormone (GH) and immunoreactive insulin (IRI) secretion in response to insulin hypoglycaemia, arginine infusion and glucose-induced hyperglycaemia. GH response to either insulin hypoglycaemia or arginine infusion was significantly reduced in these patients compared with 20 normal subjects. Thyrotoxic patients also displayed an abnormal GH pattern after a 100 g oral glucose load: in fact, serum GH underwent a paradoxical increase in spite of abnormally high levels attained by blood glucose. IRI secretion was also clearly reduced in response to arginine infusion and moderately blunted after oral glucose. In a group of patients re-evaluated under euthyroid conditions, a fair increase of GH response to the provocative stimuli jointly with the restoration of a normal suppressibility of serum GH by glucose were noted; by contrast, no significant change of IRI response to arginine or glucose took place. Likewise, the impairment of glucose tolerance was not improved. These findings indicate that an impairment of GH and IRI secretion is present in hyperthyroidism. The possibility that a potentiation of the catecholamine effects caused by the thyroid hormones is involved in this alteration deserves consideration.

  4. BMI and waist circumference are associated with impaired glucose metabolism and type 2 diabetes in normal weight Chinese adults.

    PubMed

    Li, Shengxu; Xiao, Jianzhong; Ji, Linong; Weng, Jianping; Jia, Weiping; Lu, Juming; Zhou, Zhiguang; Guo, Xiaohui; Liu, Jie; Shan, Zhongyan; Zhu, Dalong; Chen, Li; Zhao, Zhigang; Tian, Haoming; Ji, Qiuhe; Ge, Jiapu; Li, Qiang; Lin, Lixiang; Yang, Zhaojun; He, Jiang; Yang, Wenying

    2014-01-01

    To examine the associations of BMI and waist circumference with glucose metabolism and (pre)diabetes among adults with BMI < 25 kg/m². We conducted a cross-sectional study in a nationally representative sample (10,098 men and 17,454 women) of Chinese adults aged ≥ 20 years with BMI < 25 kg/m². Glucose levels after at least 10 hours of overnight fasting, at 30 minutes and at 120 minutes after a standard 75-g oral glucose load were measured. Associations of BMI and waist circumference with outcomes were examined by general linear models for continuous outcomes and by logistic regression models for dichotomous outcomes. Among those with BMI < 25 kg/m², 18.8% of men and 17.1% of women had abnormal glucose metabolism, including 4.9% of men and 3.8% of women with undiagnosed type 2 diabetes. For each SD increase in BMI (2.1 kg/m²) and waist circumference (8.3 cm), fasting glucose levels increased by 0.128 and 0.170 mmol/L in men, and by 0.112 and 0.167 mmol/L in women, respectively; the corresponding increases for 2-hour post-load glucose levels were 0.121 and 0.217 mmol/L in men, and 0.241 and 0.362 mmol/L in women. When simultaneously included in the same model, these associations with waist circumference were stronger than with BMI. Obesity measures are associated with abnormal glucose metabolism and diabetes, with central obesity playing a more prominent role than general obesity in Chinese population with BMI < 25 kg/m². Chinese diabetes prevention and treatment programs should incorporate targeting of normal weight adults with central obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Regional differences in brain glucose metabolism determined by imaging mass spectrometry.

    PubMed

    Kleinridders, André; Ferris, Heather A; Reyzer, Michelle L; Rath, Michaela; Soto, Marion; Manier, M Lisa; Spraggins, Jeffrey; Yang, Zhihong; Stanton, Robert C; Caprioli, Richard M; Kahn, C Ronald

    2018-06-01

    Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS). To examine the relative abundance of glucose and other metabolites in the brain, mouse brain sections were subjected to imaging mass spectrometry at a resolution of 100 μm. This was correlated with immunohistochemistry, qPCR, western blotting and enzyme assays of dissected brain regions to determine the relative contributions of the glycolytic and pentose phosphate pathways to regional glucose metabolism. In brain, there are significant regional differences in glucose metabolism, with low levels of hexose bisphosphate (a glycolytic intermediate) and high levels of the pentose phosphate pathway (PPP) enzyme glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolite hexose phosphate in thalamus compared to cortex. The ratio of ATP to ADP is significantly higher in white matter tracts, such as corpus callosum, compared to less myelinated areas. While the brain is able to maintain normal ratios of hexose phosphate, hexose bisphosphate, ATP, and ADP during fasting, fasting causes a large increase in cortical and hippocampal lactate. These data demonstrate the importance of direct measurement of metabolic intermediates to determine regional differences in brain glucose metabolism and illustrate the strength of imaging mass spectrometry for investigating the impact of changing metabolic states on brain function at a regional level with high resolution. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Pineal peptides restore the age-related disturbances in hormonal functions of the pineal gland and the pancreas.

    PubMed

    Goncharova, N D; Vengerin, A A; Khavinson, V Kh; Lapin, B A

    2005-01-01

    The purpose of this research was to study age-related changes in functioning of pineal and pancreatic glands of non-human primates, rhesus monkeys, and to elucidate the possibility of their corrections with the help of epitalon, a synthetic analogue of the pharmacopoeia drug epithalamin. In old (20-27 years) animals, the basal plasma levels of glucose and insulin were found to be higher, while the night melatonin level was lower in comparison with (6-8 years) young animals. After the glucose administration to old monkeys, a larger area under the curve of the plasma glucose response, a reduced glucose 'disappearance' rate, and a reduced insulin peak (5 min after the glucose administration) were observed in comparison with young animals in similar experiments. The epitalon administration to old monkeys caused the decrease in the basal levels of glucose and insulin and the increase in the basal night melatonin level. Additionally, in the case of old monkeys, epitalon decreased the area under the plasma glucose response curve, markedly increased the glucose 'disappearance' rate and normalized the plasma insulin dynamics in response to glucose administration. Yet, it has not affected the hormonal and metabolic changes in young animals. Thus, epitalon is a promising factor for restoring the age-related endocrine dysfunctions of primates.

  7. Thymoquinone, a bioactive component of Nigella sativa, normalizes insulin secretion from pancreatic β-cells under glucose overload via regulation of malonyl-CoA

    PubMed Central

    Gray, Joshua P.; Zayasbazan Burgos, Delaine; Yuan, Tao; Seeram, Navindra; Rebar, Rebecca; Follmer, Rebecca

    2015-01-01

    Thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone) is a major bioactive component of Nigella sativa, a plant used in traditional medicine to treat a variety of symptoms, including elevated blood glucose levels in type 2 diabetic patients. Normalization of elevated blood glucose depends on both glucose disposal by peripheral tissues and glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. We employed clonal β-cells and rodent islets to investigate the effects of thymoquinone (TQ) and Nigella sativa extracts (NSEs) on GSIS and cataplerotic metabolic pathways implicated in the regulation of GSIS. TQ and NSE regulated NAD(P)H/NAD(P)+ ratios via a quinone-dependent redox cycling mechanism. TQ content was positively correlated with the degree of redox cycling activity of NSE extracts, suggesting that TQ is a major component engaged in mediating NSE-dependent redox cycling. Both acute and chronic exposure to TQ and NSE enhanced GSIS and were associated with the ability of TQ and NSE to increase the ATP/ADP ratio. Furthermore, TQ ameliorated the impairment of GSIS following chronic exposure of β-cells to glucose overload. This protective action was associated with the TQ-dependent normalization of chronic accumulation of malonyl-CoA, elevation of acetyl-CoA carboxylase (ACC), fatty acid synthase, and fatty acid-binding proteins following chronic glucose overload. Together, these data suggest that TQ modulates the β-cell redox circuitry and enhances the sensitivity of β-cell metabolic pathways to glucose and GSIS under normal conditions as well as under hyperglycemia. This action is associated with the ability of TQ to regulate carbohydrate-to-lipid flux via downregulation of ACC and malonyl-CoA. PMID:26786775

  8. Hyperglycemia and adverse pregnancy outcome study: neonatal glycemia.

    PubMed

    Metzger, Boyd E; Persson, Bengt; Lowe, Lynn P; Dyer, Alan R; Cruickshank, J Kennedy; Deerochanawong, Chaicharn; Halliday, Henry L; Hennis, Anselm J; Liley, Helen; Ng, Pak C; Coustan, Donald R; Hadden, David R; Hod, Moshe; Oats, Jeremy J N; Trimble, Elisabeth R

    2010-12-01

    The goal was to describe the temporal pattern of neonatal plasma glucose levels and associations with maternal glucose levels, cord serum C-peptide levels, and neonatal size and adiposity. A total of 17,094 mothers and infants were included in the Hyperglycemia and Adverse Pregnancy Outcome Study (15 centers in 9 countries). Mothers underwent a 75-g, 2-hour, oral glucose tolerance test (OGTT) at 24 to 32 weeks of gestation. Cord blood and neonatal blood samples were collected. Biochemical neonatal hypoglycemia was defined as glucose levels of <10th percentile (2.2 mmol/L). Clinically identified hypoglycemia was ascertained through medical record review and associations were assessed. Plasma glucose concentrations were stable during the first 5 hours after birth. Maternal glucose levels were weakly positively associated with biochemical neonatal hypoglycemia (odds ratios: 1.07-1.14 for 1-SD higher OGTT glucose levels). Frequency of neonatal hypoglycemia was higher with higher cord C-peptide levels (odds ratio: 11.6 for highest versus lowest C-peptide category). Larger and/or fatter infants were more likely to have hypoglycemia (P < .001), and infants with hypoglycemia tended to have a higher frequency of cord C-peptide levels of >90th percentile. Mean neonatal plasma glucose concentrations varied little in the first 5 hours after birth, which suggests normal postnatal adjustment. Biochemical and clinical hypoglycemia were weakly related to maternal OGTT glucose measurements but were strongly associated with elevated cord serum C-peptide levels. Larger and/or fatter infants were more likely to develop hypoglycemia and hyperinsulinemia. These relationships suggest physiologic relationships between maternal glycemia and fetal insulin production.

  9. Antidiabetic Activity of Aqueous Leaves Extract of Sesbania sesban (L) Merr. in Streptozotocin Induced Diabetic Rats

    PubMed Central

    Pandhare, Ramdas B.; Sangameswaran, B.; Mohite, Popat B.; Khanage, Shantaram G.

    2011-01-01

    The aqueous leaves extract of Sesbania sesban (L) Merr. (Family: Fabaceae) was evaluated for its antidiabetic potential on normal and streptozotocin (STZ)-induced diabetic rats. In the chronic model, the aqueous extract was administered to normal and STZ- induced diabetic rats at the doses of 250 and 500 mg/kg body weight (b.w.) p.o. per day for 30 days. The fasting Blood Glucose Levels (BGL), serum insulin level and biochemical data such as glycosylated hemoglobin, Total Cholesterol (TC), Triglycerides (TG), High Density Lipoproteins (HDL) and Low Density Lipoproteins (LDL) were evaluated and all were compared to that of the known anti-diabetic drug glibenclamide (0.25 mg/kg b.w.). The statistical data indicated significant increase in the body weight, liver glycogen, serum insulin and HDL levels and decrease in blood glucose, glycosylated hemoglobin, total cholesterol and serum triglycerides when compared with glibenclamide. Thus the aqueous leaves extract of Sesbania sesban had beneficial effects in reducing the elevated blood glucose level and lipid profile of STZ-induced diabetic rats. PMID:23407749

  10. Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study.

    PubMed

    Hertle, Daniel N; Santos, Edgar; Hagenston, Anna M; Jungk, Christine; Haux, Daniel; Unterberg, Andreas W; Sakowitz, Oliver W

    2015-07-01

    Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (<1 mmol/L) and noncritical (>1 mmol/L) extracellular brain glucose levels. We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (P<0.05). For critical brain glucose levels, extracellular brain glucose was unaffected by any type of sedative. These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.

  11. Metabolic differences between short children with GH peak levels in the lower normal range and healthy children of normal height.

    PubMed

    Tidblad, Anders; Gustafsson, Jan; Marcus, Claude; Ritzén, Martin; Ekström, Klas

    2017-06-01

    Severe growth hormone deficiency (GHD) leads to several metabolic effects in the body ranging from abnormal body composition to biochemical disturbances. However, less is known regarding these parameters in short children with GH peak levels in the lower normal range during provocation tests. Our aim was to study the metabolic profile of this group and compare it with that of healthy children of normal height. Thirty-five pre-pubertal short children (<-2.5 SDS) aged between 7 and 10years, with peak levels of GH between 7 and 14μg/L in an arginine insulin tolerance test (AITT), were compared with twelve age- and sex-matched children of normal height. The metabolic profile of the subjects was analysed by blood samples, DEXA, frequently sampled intravenous glucose tolerance test, microdialysis and stable isotope examinations of rates of glucose production and lipolysis. There were no overall significant metabolic differences between the groups. However, in the subgroup analysis, the short children with GH peaks <10μg/L had significantly lower fasting insulin levels which also correlated to other metabolic parameters. The short pre-pubertal children with GH peak levels between 7 and 14μg/L did not differ significantly from healthy children of normal height but subpopulations within this group show significant metabolic differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeltchan, R., E-mail: r.zelchan@yandex.ru; Medvedeva, A.; Sinilkin, I.

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with {sup 99m}Tc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of {sup 99m}Tc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with {sup 99m}Tc was added to the vials with 3 million cells and incubated for 30 min at room temperature. After centrifugation of the vials with cells, the supernatant was removed. The radioactivity in vials with normalmore » and tumor cells was then measured. In addition, the study included 40 mice of C57B1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25 MBq of {sup 99m}Tc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 min. Results: when measuring the radioactivity of normal and malignant cells after incubation with {sup 99m}Tc-1-thio-D-glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3 ± 0.15 MBq and 1.07 ± 0.6 MBq, respectively. All examined animals had increased accumulation of {sup 99m}Tc-1-thio-D-glucose at the tumor site. The accumulation of {sup 99m}Tc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that {sup 99m}Tc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of {sup 99m}Tc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.« less

  13. Is type 2 diabetes really resolved after laparoscopic sleeve gastrectomy? Glucose variability studied by continuous glucose monitoring.

    PubMed

    Capoccia, D; Coccia, F; Guida, A; Rizzello, M; De Angelis, F; Silecchia, G; Leonetti, F

    2015-01-01

    The study was carried out on type 2 diabetic obese patients who underwent laparoscopic sleeve gastrectomy (LSG). Patients underwent regular glycemic controls throughout 3 years and all patients were defined cured from diabetes according to conventional criteria defined as normalization of fasting glucose levels and glycated hemoglobin in absence of antidiabetic therapy. After 3 years of follow-up, Continuous Glucose Monitoring (CGM) was performed in each patient to better clarify the remission of diabetes. In this study, we found that the diabetes resolution after LSG occurred in 40% of patients; in the other 60%, even if they showed a normal fasting glycemia and A1c, patients spent a lot of time in hyperglycemia. During the oral glucose tolerance test (OGTT), we found that 2 h postload glucose determinations revealed overt diabetes only in a small group of patients and might be insufficient to exclude the diagnosis of diabetes in the other patients who spent a lot of time in hyperglycemia, even if they showed a normal glycemia (<140 mg/dL) at 120 minutes OGTT. These interesting data could help clinicians to better individualize patients in which diabetes is not resolved and who could need more attention in order to prevent chronic complications of diabetes.

  14. Origanum Majoranum Extract Modulates Gene Expression, Hepatic and Renal Changes in a Rat Model of Type 2 Diabetes

    PubMed Central

    Soliman, Mohamed Mohamed; Abdo Nassan, Mohamed; Ismail, Tamer Ahmed

    2016-01-01

    The present study was conducted to test the effect of Origanum Majoranum Extract (OME) of leaves on alterations induced in a model of type 2 diabetic rats. Adult male Wistar rats were fed high fat diet for 3 weeks and injected a single dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetic rats. Diabetic rats were given aqueous extract of OME in a dose of 20 mg/kg orally for 3 weeks. Changes in lipid profiles, glucose, insulin, expression of some genes related to glucose metabolism and histopathological changes in liver and kidney were examined. Administration of OME improved and normalized dyslipidemia recorded in type 2 diabetic rats together with reduction in glucose and insulin levels. OME induced up-regulation in gene expression of glucose [adiponectin and glucose transporter-2 (GLUT-2)] and lipid metabolism [lipoprotein lipase (LPL)]. Moreover, OME normalized histopathological changes occurred in liver and kidney of diabetic rats. OME decreased lipids accumulation in liver and kidney and increased regeneration of hepatic parenchyma and restored normal renal architecture with disappearance of fat droplets. In conclusion, OME improved dyslipidemia associated with type 2 diabetes through regulation of genes related to glucose and lipid metabolism. PMID:28228803

  15. Epinephrine deficiency results in intact glucose counter-regulation, severe hepatic steatosis and possible defective autophagy in fasting mice

    PubMed Central

    Sharara-Chami, Rana I.; Zhou, Yingjiang; Ebert, Steven; Pacak, Karel; Ozcan, Umut; Majzoub, Joseph A.

    2016-01-01

    Epinephrine is one of the major hormones involved in glucose counter-regulation and gluconeogenesis. However, little is known about its importance in energy homeostasis during fasting. Our objective is to study the specific role of epinephrine in glucose and lipid metabolism during starvation. In our experiment, we subject regular mice and epinephrine-deficient mice to a 48-h fast then we evaluate the different metabolic responses to fasting. Our results show that epinephrine is not required for glucose counter-regulation: epinephrine-deficient mice maintain their blood glucose at normal fasting levels via glycogenolysis and gluconeogenesis, with normal fasting-induced changes in the peroxisomal activators: peroxisome proliferator activated receptor γ coactivator α (PGC-1α), fibroblast growth factor 21 (FGF-21), peroxisome proliferator activated receptor α (PPAR-α), and sterol regulatory element binding protein (SREBP-1c). However, fasted epinephrine-deficient mice develop severe ketosis and hepatic steatosis, with evidence for inhibition of hepatic autophagy, a process that normally provides essential energy via degradation of hepatic triglycerides during starvation. We conclude that, during fasting, epinephrine is not required for glucose homeostasis, lipolysis or ketogenesis. Epinephrine may have an essential role in lipid handling, possibly via an autophagy-dependent mechanism. PMID:22405854

  16. Correlation of salivary glucose level with blood glucose level in diabetes mellitus.

    PubMed

    Gupta, Shreya; Nayak, Meghanand T; Sunitha, J D; Dawar, Geetanshu; Sinha, Nidhi; Rallan, Neelakshi Singh

    2017-01-01

    Saliva is a unique fluid, which is important for normal functioning of the oral cavity. Diabetes mellitus (DM) is a disease of absolute or relative insulin deficiency characterized by insufficient secretion of insulin by pancreatic beta-cells. The diagnosis of diabetes through blood is difficult in children, older adults, debilitated and chronically ill patients, so diagnosis by analysis of saliva can be potentially valuable as collection of saliva is noninvasive, easier and technically insensitive, unlike blood. The aim of the study was to correlate blood glucose level (BGL) and salivary glucose level (SGL) in DM patients. A cross-sectional study was conducted in 120 patients, who were categorized as 40 controlled diabetics, 40 uncontrolled diabetics and 40 healthy, age- and sex-matched individuals constituted the controls. The blood and unstimulated saliva samples were collected from the patients at the different intervals for fasting, random and postprandial levels. These samples were then subjected for analysis of glucose in blood and saliva using glucose oxidase/peroxidase reagent in HITACHI 902 (R) Automatic analyzer, and the results were recorded. The mean SGLs were higher in uncontrolled and controlled diabetic groups than in nondiabetic group. A highly statistically significant correlation was found between fasting saliva glucose and fasting blood glucose in all the groups. With increase in BGL, increase in SGL was observed in patients with diabetes suggesting that SGL can be used for monitoring glycemic level in DM.

  17. The prevalence of Type 2 diabetes is not increased in normal-weight women with PCOS.

    PubMed

    Pelanis, Rasa; Mellembakken, Jan Roar; Sundström-Poromaa, Inger; Ravn, Pernille; Morin-Papunen, Laure; Tapanainen, Juha S; Piltonen, Terhi; Puurunen, Johanna; Hirschberg, Angelica Lindén; Fedorcsak, Peter; Andersen, Marianne; Glintborg, Dorte

    2017-11-01

    Is oral glucose tolerance test (OGTT) needed in all women with polycystic ovary syndrome (PCOS)? OGTT is not routinely needed in women with PCOS and BMI < 25 kg/m2. PCOS is associated with insulin resistance and increased prevalence of prediabetes and Type 2 diabetes (T2D) which is closely linked to obesity and possibly age, ethnicity and PCOS phenotype. Several guidelines recommend OGTT upon diagnosis of PCOS and during follow-up. A Nordic cross-sectional study including 876 women. The 876 Nordic women with PCOS, aged 14-57 years, were examined for T2D and prediabetes (impaired glucose tolerance [IGT] or impaired fasting glucose (IFG) by OGTT. Of all study subjects 3% (23/876) had T2D, 23% (204/876) prediabetes and 74% (649/876) had normal glucose tolerance (NGT). Increased BMI and waist circumference were significantly (P < 0.001) associated with prevalence of prediabetes and T2D. No normal-weight woman (BMI < 25 kg/m2) was diagnosed with T2D. The prevalence of BMI ≥ 25 kg/m2 was 66% (578/ 876). 91% of women (21/23) with T2D had BMI ≥ 30 kg/m2. Testosterone levels and PCOS phenotype did not predict 2-h glucose levels during OGTT after adjustment for BMI and age. The present study included cross-sectional data and prospective studies are needed to confirm our results. These results may not apply to populations of other ethnic origin. Routine OGTT may not be indicated in normal-weight women with PCOS. None. N/A. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36.

    PubMed

    Yoon, Ji Sung; Moon, Jun Sung; Kim, Yong-Woon; Won, Kyu Chang; Lee, Hyoung Woo

    2016-04-01

    Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36.

  19. The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36

    PubMed Central

    2016-01-01

    Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36. PMID:27051238

  20. Serum fructosamine concentrations in dogs with hypothyroidism.

    PubMed

    Reusch, C E; Gerber, B; Boretti, F S

    2002-10-01

    Serum fructosamine concentrations were measured in 11 untreated hypothyroid dogs with normal serum glucose and serum protein concentrations. The fructosamine level ranged between 276 and 441 micromol/L (median 376 micromol/L; reference range 207-340 micromol/L). Nine of the 11 dogs had fructosamine levels above the reference range. The fructosamine levels decreased significantly during treatment with levothyroxine. It is suggested that serum fructosamine concentrations may be high in hypothyroid dogs because of decelerated protein turnover, independent of the blood glucose concentration.

  1. Kir6.2 Variant E23K Increases ATP-Sensitive K+ Channel Activity and Is Associated With Impaired Insulin Release and Enhanced Insulin Sensitivity in Adults With Normal Glucose Tolerance

    PubMed Central

    Villareal, Dennis T.; Koster, Joseph C.; Robertson, Heather; Akrouh, Alejandro; Miyake, Kazuaki; Bell, Graeme I.; Patterson, Bruce W.; Nichols, Colin G.; Polonsky, Kenneth S.

    2009-01-01

    OBJECTIVE The E23K variant in the Kir6.2 subunit of the ATP-sensitive K+ channel (KATP channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope–labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS Insulin secretory responses to oral and intravenous glucose were reduced by ∼40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is ∼40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS The E23K variant leads to overactivity of the KATP channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes. PMID:19491206

  2. Serum galectin-1 levels are positively correlated with body fat and negatively with fasting glucose in obese children.

    PubMed

    Acar, Sezer; Paketçi, Ahu; Küme, Tuncay; Tuhan, Hale; Gürsoy Çalan, Özlem; Demir, Korcan; Böber, Ece; Abacı, Ayhan

    2017-09-01

    Galectin-1, a recently identified peptide, is primarily released from the adipose tissue. Although galectin-1 was shown to have an anti-inflammatory effect, its specific function is not clearly understood. We aimed to evaluate the relationship of serum galectin-1 levels with clinical and laboratory parameters in childhood obesity. A total of 45 obese children (mean age: 12.1±3.1years) and 35 normal-weight children (mean age: 11.8±2.2years) were enrolled. Clinical [body mass index (BMI), waist circumference (WC), percentage of body fat and blood pressure] and biochemical [glucose, insulin, lipids, galectin-1, high-sensitive C-reactive protein (hsCRP) and leptin levels] parameters were assessed. Serum galectin-1, hsCRP and leptin levels were significantly higher in obese children than those in normal-weight children (12.4 vs 10.2ng/mL, p<0.001; 3.28 vs 0.63mg/L, p<0.001; 8.3 vs 1.2ng/mL, p<0.001, respectively). In obese children, galectin-1 levels correlated negatively with fasting glucose (r=-0.346, p=0.020) and positively with fat mass (r=0.326, p=0.026) and WC standard deviation score (SDS) (r=0.451, p=0.002). The multivariate regression analysis demonstrated that serum galectin-1 levels were significantly associated with fasting glucose and WC SDS. This study showed that obese children had significantly higher galectin-1 levels in proportion to fat mass in obese cases than those in healthy children, which may be interpreted as a compensatory increase in an attempt to improve glucose metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B; Ma, Qian; Malloy, Craig R; Pascual, Juan M

    2013-01-01

    It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-13C3]heptanoate was examined in the normal mouse brain and in G1D by 13C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in 13C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and 13C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucose-deficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism. PMID:23072752

  4. A low calorie morning meal prevents the decline of hepatic glycogen stores: a pilot in vivo (13)C magnetic resonance study.

    PubMed

    Bawden, S J; Stephenson, M C; Ciampi, E; Hunter, K; Marciani, L; Spiller, R C; Aithal, G P; Morris, P G; Macdonald, I A; Gowland, P A

    2014-09-01

    Previous studies have reported a meal-induced rise in hepatic glycogen stores from baseline levels following a fast and it is generally assumed that glycogen levels rise steadily following meals throughout the day. However, measurements are normally taken in conditions that are not typical of the Western breakfast, which is relatively carbohydrate rich with a lower calorific content than most experimental test meals. As such, little is known about the normal metabolic response to a realistic, low calorie morning meal. Therefore, the aim of this pilot study was to evaluate the effects of a low dose oral glucose intake on hepatic glycogen levels following an overnight fast in healthy subjects. Glycogen levels were monitored in vivo using (13)C Magnetic Resonance Spectroscopy at baseline and hourly for 4 hours following either a 50 g glucose drink (773 kJ) or a control drink (0 kJ) given over two different visits. During the control visit hepatic glycogen levels decreased throughout the experiment with statistically significant decreases from baseline at 190 minutes (P < 0.05) and 250 minutes (P < 0.05). By contrast, the low dose glucose intake maintained glycogen concentrations with no significant decrease from baseline over 4 hours. A comparison between visits revealed that mean glycogen concentrations were significantly greater during the glucose visit (control visit, AUC = 218 ± 39 mol L(-1) min(-1); glucose visit, AUC = 305 ± 49 mol L(-1) min(-1); P < 0.05). Liver volume decreased significantly from baseline at 180 minutes (P < 0.05) post consumption in both groups, with no significant difference found between visits. Gastric content volumes were significantly higher for the glucose visit immediately following consumption (P < 0.001) and at 60 minutes (P = 0.007) indicating slower gastric emptying for the glucose compared with the control. In conclusion, following an overnight fast, a low dose oral glucose challenge prevents a reduction in hepatic glycogen content but does not increase it above fasted levels.

  5. Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model

    PubMed Central

    2014-01-01

    Background Diabetes mellitus is a heterogeneous metabolic disorders characterized by abnormally high levels of blood glucose The main objective of the present work is to study the effect of Alpinia calcarata on glucose uptake in streptozotocin (STZ) induced diabetic rats. Methods The diabetes was induced by single dose of STZ (45 mg/kg) in citrate buffer, while the normal control group was given the vehicle (citrate buffer) only. After induction of diabetes, the diabetic animals were treated with ethanolic extract of Alpinia calcarata (200 mg/kg) and glibenclamide (2 mg/kg) for 30 days. Blood glucose estimation was performed every week of the study. At the end of study period, animals were sacrificed for biochemical studies. Results Streptozotocin induced diabetic rats shows the altered levels of various biochemical profiles. Those levels were brought back to near normal upon treatment with ethanolic extract of Alpinia calcarata and standard drug glibanclamide. No significant changes were observed on treatment with plant extract alone group indicated that there are no toxic substances present in Alpinia calcarata. The antidiabetic activity of plant extract was also further confirmed by histopathological studies. The ethanolic extract of Alpinia calcarata shows significant inhibition of alpha glucosidase activity and also enhancing the glucose uptake in rat hemidiaphragm. Conclusions In conclusion, the ethanolic extract of Alpinia calcarata ameliorates the condition associated with diabetes. PMID:24502532

  6. A Tele-Behavioral Health Intervention to Reduce Depression, Anxiety, and Stress and Improve Diabetes Self-Management.

    PubMed

    Mochari-Greenberger, Heidi; Vue, Lee; Luka, Andi; Peters, Aimee; Pande, Reena L

    2016-08-01

    Depression is prevalent among individuals with diabetes and associated with suboptimal self-management. Little is known about the feasibility and potential impact of tele-behavioral therapy to improve depressive symptoms and self-management among diabetes patients. This was a retrospective observational study of consecutive graduates enrolled in a national 8-week diabetes behavioral telehealth program between August 1, 2014, and January 31, 2015 (N = 466; mean age 56.8 ± 5.0 years; 56% female). Participant characteristics (demographics, comorbidities) were obtained by standardized questionnaire. Depression, anxiety, and stress symptoms (DASS; validated Depression Anxiety and Stress Scale 21 survey), and glucose self-testing frequency and values (point-of-care monitor) were measured at program start and completion. Changes in DASS severity and glucose self-testing frequency were assessed by chi-square tests. Changes in DASS and blood glucose levels were evaluated by paired t-tests. At baseline, approximately one in three participants had elevated depression (32%), anxiety (33%), or stress (31%) scores. Significant reductions in average DASS, depression (-8.8), anxiety (-6.9), and stress (-9.9), scores were observed at graduation among those with elevated baseline scores (p < 0.0001); most (≥80%) improved to less severe depression, anxiety, or stress categories. Improved glucose self-testing frequency (69% vs. 60% tested ≥once per week; p = 0.0005) and significant reductions in mean morning glucose levels (-12.3 mg/dL; p = 0.0002) were observed from baseline to graduation. Participants with normal versus non-normal depression scores were more likely to have lower (

  7. What Can I Do to Prevent Serious Hypoglycemic Episodes When I Am Hypoglycemic Unaware?

    MedlinePlus

    ... important because they start at a blood glucose level where you should still be able to independently treat yourself. These early mental symptoms are subtle and have to be distinguished from normal performance; for example, most people are slower at math when their blood glucose is low, but if ...

  8. Preoperative octreotide therapy and surgery in acromegaly: associations between glucose homeostasis and treatment response.

    PubMed

    Helseth, R; Carlsen, S M; Bollerslev, J; Svartberg, J; Øksnes, M; Skeie, S; Fougner, S L

    2016-02-01

    In acromegaly, high GH/IGF-1 levels associate with abnormal glucose metabolism. Somatostatin analogs (SSAs) reduce GH and IGF-1 but inhibit insulin secretion. We studied glucose homeostasis in de novo patients with acromegaly and changes in glucose metabolism after treatment with SSA and surgery. In this post hoc analysis from a randomized controlled trial, 55 de novo patients with acromegaly, not using antidiabetic medication, were included. Before surgery, 26 patients received SSAs for 6 months. HbA1c, fasting glucose, and oral glucose tolerance test were performed at baseline, after SSA pretreatment and at 3 months postoperative. Area under curve of glucose (AUC-G) was calculated. Glucose homeostasis was compared to baseline levels of GH and IGF-1, change after SSA pretreatment, and remission both after SSA pretreatment and 3 months postoperative. In de novo patients, IGF-1/GH levels did not associate with baseline glucose parameters. After SSA pretreatment, changes in GH/IGF-1 correlated positively to change in HbA1c levels (both p < 0.03). HbA1c, fasting glucose, and AUC-G increased significantly during SSA pretreatment in patients not achieving hormonal control (all p < 0.05) but did not change significantly in patients with normalized hormone levels. At 3 months postoperative, HbA1c, fasting glucose, and AUC-G were significantly reduced in both cured and not cured patients (all p < 0.05). To conclude, in de novo patients with acromegaly, disease activity did not correlate with glucose homeostasis. Surgical treatment of acromegaly improved glucose metabolism in both cured and not cured patients, while SSA pretreatment led to deterioration in glucose homeostasis in patients not achieving biochemical control.

  9. Effect of oral administration of bark extracts of Pterocarpus santalinus L. on blood glucose level in experimental animals.

    PubMed

    Kameswara Rao, B; Giri, R; Kesavulu, M M; Apparao, C

    2001-01-01

    The effect of administration of different doses of Pterocarpus santalinus L. bark extracts in normal and diabetic rats, on blood glucose levels was evaluated in this study. Among the three fractions (aqueous, ethanol and hexane), ethanolic fraction at the dose of 0.25 g/kg body weight showed maximum antihyperglycemic activity. The same dose did not cause any hypoglycemic activity in normal rats. The results were compared with the diabetic rats treated with glibenclamide and the antihyperglycemic activity of ethanolic extract of PS bark at the dose of 0.25 g/kg b.w. was found to be more effective than that of glibenclamide.

  10. AGEs Induce Apoptosis in Rat Osteoblast Cells by Activating the Caspase-3 Signaling Pathway Under a High-Glucose Environment In Vitro.

    PubMed

    Liu, Jiaqiang; Mao, Jing; Jiang, Yi; Xia, Lunguo; Mao, Lixia; Wu, Yong; Ma, Pan; Fang, Bing

    2016-03-01

    Advanced glycation end products (AGEs) accumulate under high-glucose conditions and affect the healing of bone damage through various pathways; however, the detail mechanisms underlying these changes are unknown. In this study, we investigated the effects of AGEs on the apoptosis of in vitro-cultured rat osteoblasts under high-glucose conditions and explored the underlying mechanisms of these effects. First, we cultured rat osteoblasts and determined the accumulation of AGEs in the culture medium under high-glucose conditions. Then, we cultured rat osteoblasts under a high glucose concentration (35 mM), a normal glucose concentration (5.5 mM), and a normal glucose concentration (5.5 mM) in the presence of AGEs. We examined the effects of high glucose and AGEs on the apoptosis of rat osteoblasts at different time points and further analyzed the activity and changes in the levels of procaspase-3, caspase-3, and the caspase-3 substrate poly ADP-ribose polymerase (PARP). Finally, we added sRAGE (soluble RAGE) (an AGE inhibitor) or DEVD (a caspase-3 inhibitor) to each culture group and examined apoptosis under each culture condition and the changes in the levels of procaspase-3, caspase-3, and its substrate PARP. The results showed that the high-glucose condition and the addition of AGEs increased the apoptosis of rat osteoblast cells and simultaneously increased the activity and quantity of caspase-3. These increases could be inhibited by the AGE inhibitor sRAGE or the caspase-3 inhibitor DEVD. The above results demonstrate that high-glucose conditions lead to the accumulation of AGEs and activation of the caspase-3 signaling pathway, resulting in the increased apoptosis of cultured rat osteoblast cells.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onodera, Yasuhito; Bissell, Mina

    Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA andmore » GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.« less

  12. 48-h Glucose infusion in humans: effect on hormonal responses, hunger and food intake

    PubMed Central

    Teff, Karen L.; Petrova, Maja; Havel, Peter J.; Townsend, Raymond R.

    2009-01-01

    Experimentally-induced hyperglycemia by prolonged glucose infusion allows investigation of the effects of sustained stimulation of the pancreatic β-cell on insulin secretion and sensitivity. Hormonal responses to a meal following prolonged glucose infusions have not been investigated. To determine if a 48-h glucose infusion alters hormonal responses to a test meal as well as food intake and hunger in normal weight individuals, 16 subjects (8 men, 8 women, age 18–30 y, mean BMI=21.7±1.6 kg/m2) were infused for 48-h with either saline (50 ml/h) or 15% glucose (200 mg/m2/min). Subjects ingested a 600 kcal mixed nutrient meal 3-h after infusion termination. Blood samples were taken during the 48-h and for 4 hours following food ingestion. The 48-h glucose infusion elicited a metabolic profile of a glucose intolerant obese subjects, with increased plasma glucose, insulin and leptin (all P<0.01) and increased HOMA-IR (P<0.001). During meal ingestion, early insulin secretion was increased (P<0.05) but postprandial glucose (P<0.01) and insulin (P<0.01) excursions were lower following the glucose infusion. Postprandial plasma triglyceride concentrations were increased after glucose compared with saline. Food intake and hunger ratings were not different between the two conditions. Plasma leptin levels were inversely correlated with hunger (P<0.03) in both conditions and with food intake (P<0.003) during the glucose condition only. Thus, a 48-h glucose infusion does not impair postprandial hormonal responses, alter food intake or hunger in normal weight subjects. The glucose-induced increases in plasma leptin result in a stronger inverse relationship between plasma leptin and hunger as well as food intake. These data are the first to demonstrate a relationship between leptin and hunger in normal weight, non-calorically restricted human subjects. PMID:17275862

  13. High Normal Uric Acid Levels Are Associated with an Increased Risk of Diabetes in Lean, Normoglycemic Healthy Women.

    PubMed

    Shani, Michal; Vinker, Shlomo; Dinour, Dganit; Leiba, Merav; Twig, Gilad; Holtzman, Eliezer J; Leiba, Adi

    2016-10-01

    The risk associated with serum uric acid (SUA) levels within the normal range is unknown, especially among lean and apparently healthy adults. Evaluating whether high-normal SUA levels, 6.8 mg/dL and below, are associated with an increased diabetes risk, compared with low-normal SUA. This was a cohort study with 10 years of followup involving all clinics of the largest nationally distributed Health Maintenance Organization in Israel. Participants included 469,947 examinees, 40-70 years old at baseline, who had their SUA measured during 2002. We excluded examinees who had hyperuricemia (SUA > 6.8 mg/dL), impaired fasting glucose, overweight or obesity and chronic cardiovascular or renal disorders. The final cohort was composed of 30 302 participants. Participants were followed up to a new diagnosis of diabetes during the study period. Odds ratio of developing diabetes among participants with high-normal baseline SUA were compared with low-normal (2 ≤ uric acid < 3 and 3 ≤ uric acid < 4 in women and men, respectively). In a logistic regression model adjusted for age, body mass index, socioeconomic status, smoking, baseline estimated glomerular filtration rate, and baseline glucose, SUA levels of 4-5 mg/dL for women were associated with 61% increased risk for incident diabetes (95% confidence interval, 1.1-2.3). At the highest normal levels for women (SUA, 5-6 mg/dL) the odds ratio was 2.7 (1.8-4.0), whereas men had comparable diabetes risk at values of 6-6.8 mg/dL (hazard ratio, 1.35; 95% confidence interval, 0.9-2.1). SUA levels within the normal range are associated with an increased risk for new-onset diabetes among healthy lean women when compared with those with low-normal values.

  14. Association of Androgen Excess with Glucose Intolerance in Women with Polycystic Ovary Syndrome.

    PubMed

    Zhang, Bingjie; Wang, Jing; Shen, Shanmei; Liu, Jiayi; Sun, Jie; Gu, Tianwei; Ye, Xiao; Zhu, Dalong; Bi, Yan

    2018-01-01

    Women with polycystic ovary syndrome (PCOS) show high prevalence of glucose intolerance. This study aimed to investigate the association of androgen excess with glucose intolerance in PCOS. A total of 378 women with PCOS participated in the study. Free androgen index (FAI) was selected as indicator of hyperandrogenism. Insulin sensitivity was assessed by 1/homeostasis model assessment of insulin resistance (1/HOMA-IR) and Matsuda insulin sensitivity index (ISI M ); β -cell function was assessed by disposition index (DI). We found that women with glucose intolerance had higher FAI levels compared to women with normal glucose tolerance (NGT) (prediabetes 6.2, T2DM 7.9 versus NGT 5.0, resp.; p < 0.001). Furthermore, there was a direct association between FAI levels and frequency of glucose intolerance (OR = 2.480, 95% CI 1.387-4.434), even after adjusting for age, BMI, waist circumference, hypertension, fasting insulin, testosterone, SHBG, and family history of diabetes. In addition, with FAI increase, glycosylated hemoglobin (HbA1c), plasma glucose concentrations, and serum insulin levels increased, while insulin sensitivity and β -cell function decreased. Our results suggested that androgen excess indicated by high FAI levels might serve as indicator of glucose intolerance, as it might promote insulin resistance and β -cell dysfunction in women with PCOS.

  15. Contribution of the blood glucose level in perinatal asphyxia.

    PubMed

    Basu, Pallab; Som, Sabbasachi; Choudhuri, Nabendu; Das, Harendranath

    2009-07-01

    This is a comparative study between 60 asphyxiated newborns (cases) and 60 normal neonates (controls) in respect of their plasma glucose and uric acid levels and also their clinical and neurological status. The mean plasma glucose level was significantly lower (35.1 +/- 11.4 mg/dl vs. 56.9 +/- 5.5 mg/dl; P < 0.001) and the mean serum uric acid level was higher (8.0 +/- 1.2 mg/dl vs. 4.5 +/- 0.83 mg/dl; P < 0.001) in the asphyxiated group when compared to the controls. Within the perinatal asphyxia group, the plasma glucose level and Apgar scores showed a significant positive linear correlation (r = 0.740, P < 0.001), whereas a significant negative linear correlation was observed between the glucose level and different stages of hypoxic ischemic encephalopathy (HIE) (r = -0.875, P < 0.001). Although a strong positive linear correlation was found between uric acid and HIE stages (r = 0.734, P < or = 0.001), the linear correlation between uric acid and Apgar scores (r = -0.885, P < 0.001) and uric acid and the plasma glucose level (r = -0.725, P < 0.001) were found to be significantly negative among the cases. The severity of encephalopathy and cellular damage varies with the severity of hypoglycemia.

  16. Lipopolysaccharide (LPS)-stimulated iNOS Induction Is Increased by Glucosamine under Normal Glucose Conditions but Is Inhibited by Glucosamine under High Glucose Conditions in Macrophage Cells*

    PubMed Central

    Hwang, Ji-Sun; Kwon, Mi-Youn; Kim, Kyung-Hong; Lee, Yunkyoung; Lyoo, In Kyoon; Kim, Jieun E.; Oh, Eok-Soo; Han, Inn-Oc

    2017-01-01

    We investigated the regulatory effect of glucosamine (GlcN) for the production of nitric oxide (NO) and expression of inducible NO synthase (iNOS) under various glucose conditions in macrophage cells. At normal glucose concentrations, GlcN dose dependently increased LPS-stimulated production of NO/iNOS. However, GlcN suppressed NO/iNOS production under high glucose culture conditions. Moreover, GlcN suppressed LPS-induced up-regulation of COX-2, IL-6, and TNF-α mRNAs under 25 mm glucose conditions yet did not inhibit up-regulation under 5 mm glucose conditions. Glucose itself dose dependently increased LPS-induced iNOS expression. LPS-induced MAPK and IκB-α phosphorylation did not significantly differ at normal and high glucose conditions. The activity of LPS-induced nuclear factor-κB (NF-κB) and DNA binding of c-Rel to the iNOS promoter were inhibited under high glucose conditions in comparison with no significant changes under normal glucose conditions. In addition, we found that the LPS-induced increase in O-GlcNAcylation as well as DNA binding of c-Rel to the iNOS promoter were further increased by GlcN under normal glucose conditions. However, both O-GlcNAcylation and DNA binding of c-Rel decreased under high glucose conditions. The NF-κB inhibitor, pyrrolidine dithiocarbamate, inhibited LPS-induced iNOS expression under high glucose conditions but it did not influence iNOS induction under normal glucose conditions. In addition, pyrrolidine dithiocarbamate inhibited NF-κB DNA binding and c-Rel O-GlcNAcylation only under high glucose conditions. By blocking transcription with actinomycin D, we found that stability of LPS-induced iNOS mRNA was increased by GlcN under normal glucose conditions. These results suggest that GlcN regulates inflammation by sensing energy states of normal and fuel excess. PMID:27927986

  17. Cooperation between brain and islet in glucose homeostasis and diabetes

    PubMed Central

    Schwartz, Michael W.; Seeley, Randy J.; Tschöp, Matthias H.; Woods, Stephen C.; Morton, Gregory J.; Myers, Martin G.; D'Alessio, David

    2014-01-01

    Although a prominent role for the brain in glucose homeostasis was proposed by scientists in the nineteenth century, research throughout most of the twentieth century focused on evidence that the function of pancreatic islets is both necessary and sufficient to explain glucose homeostasis, and that diabetes results from defects of insulin secretion, action or both. However, insulin-independent mechanisms, referred to as ‘glucose effectiveness’, account for roughly 50% of overall glucose disposal, and reduced glucose effectiveness also contributes importantly to diabetes pathogenesis. Although mechanisms underlying glucose effectiveness are poorly understood, growing evidence suggests that the brain can dynamically regulate this process in ways that improve or even normalize glycaemia in rodent models of diabetes. Here we present evidence of a brain-centred glucoregulatory system (BCGS) that can lower blood glucose levels via both insulin-dependent and -independent mechanisms, and propose a model in which complex and highly coordinated interactions between the BCGS and pancreatic islets promote normal glucose homeostasis. Because activation of either regulatory system can compensate for failure of the other, defects in both may be required for diabetes to develop. Consequently, therapies that target the BCGS in addition to conventional approaches based on enhancing insulin effects may have the potential to induce diabetes remission, whereas targeting just one typically does not. PMID:24201279

  18. Elevated glucose concentrations during an oral glucose tolerance test are associated with the presence of metabolic syndrome in childhood obesity.

    PubMed

    Sabin, M A; Hunt, L P; Ford, A L; Werther, G A; Crowne, E C; Shield, J P H

    2008-03-01

    To investigate whether changes in glucose concentrations during an OGTT in obese children reflect the presence of peripheral insulin resistance and/or cardiovascular risk factors more closely than single measurements of fasting plasma glucose (FPG). One hundred and twenty-two obese children attending our Paediatric Obesity Service underwent formal OGTTs, following the measurement of blood pressure and fasting levels of insulin, glucose and lipid profiles in the majority. Fasting insulin was used as a surrogate measure of insulin sensitivity. Three different child-specific definitions for metabolic syndrome were used to identify clustering of cardiovascular risk factors in 65 of these children. In the whole group, 10.7% had IGT but changes in glucose during the OGTT were not influenced by age, sex, pubertal status or raw (or age- and sex-adjusted) body mass index (BMI). During the OGTT, FPG, glucose at 60 min and area under the glucose curve correlated highly with fasting insulin. Children with metabolic syndrome (defined using any of three definitions) had comparable FPG levels to those without metabolic syndrome, but they demonstrated significantly elevated glucose levels at 60 min. On sub-group analysis, obese children with normal carbohydrate metabolism were significantly more likely to have a 1 h glucose level > or = 7.8 mmol/l if they had metabolic syndrome (P = 0.026). These data suggest that an elevated 1 h post-load glucose measurement is seen in obese children who have a coexistent clustering of cardiovascular risk factors.

  19. Application of Semipermeable Membranes in Glucose Biosensing

    PubMed Central

    Kulkarni, Tanmay; Slaughter, Gymama

    2016-01-01

    Glucose biosensors have received significant attention in recent years due to the escalating mortality rate of diabetes mellitus. Although there is currently no cure for diabetes mellitus, individuals living with diabetes can lead a normal life by maintaining tight control of their blood glucose levels using glucose biosensors (e.g., glucometers). Current research in the field is focused on the optimization and improvement in the performance of glucose biosensors by employing a variety of glucose selective enzymes, mediators and semipermeable membranes to improve the electron transfer between the active center of the enzyme and the electrode substrate. Herein, we summarize the different semipermeable membranes used in the fabrication of the glucose biosensor, that result in improved biosensor sensitivity, selectivity, dynamic range, response time and stability. PMID:27983630

  20. Oral administration of soybean peptide Vglycin normalizes fasting glucose and restores impaired pancreatic function in Type 2 diabetic Wistar rats.

    PubMed

    Jiang, Hua; Feng, Jueping; Du, Zhongxia; Zhen, Hui; Lin, Mei; Jia, Shaohui; Li, Tao; Huang, Xinyuan; Ostenson, Claes-Goran; Chen, Zhengwang

    2014-09-01

    Vglycin, a natural 37-residue polypeptide isolated from pea seeds in which six half-cysteine residues are embedded in three pairs of disulfide bonds, is resistant to digestive enzymes and has antidiabetic potential. To investigate the pharmacological activity of Vglycin in vivo and to examine the mechanisms involved, the therapeutic effect of Vglycin in diabetic rats was examined. Diabetes was induced in Wistar rats by high-fat diet and multiple streptozotocin intraperitoneal injections. Diabetic rats were treated daily with Vglycin for 4 weeks. Body weight, food intake, fasting plasma glucose and insulin levels were assayed weekly. Glucose and insulin tolerance tests were conducted on Day 29. Subsequently, levels of p-Akt in the liver and pancreas and cleaved PARP, Pdx-1 and insulin in the pancreas were detected by immunoblotting. The morphology of the pancreas and the insulin expression in the pancreas were analyzed by hematoxylin-eosin staining and immunohistochemistry, respectively. Furthermore, human liver-derived cell lines were used to explore the in vitro effects of Vglycin on insulin sensitivity and glucose uptake. Chronic treatment with Vglycin normalized fasting glucose levels in diabetic rats. The improvement in glucose homeostasis and the increased insulin sensitivity mediated by restored insulin signaling likely contributed to decreased food intake and reduced body weight. Vglycin protected pancreatic cells from damage by streptozotocin. Although insulin synthesis and secretion in impaired β-cell were not significantly elevated, islets morphology was improved in the Vglycin-treated groups. These results suggest that Vglycin could be useful in Type 2 diabetes for restoring impaired insulin signaling, glucose tolerance and pancreatic function. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The impact of transsphenoidal surgery on glucose homeostasis and insulin resistance in acromegaly.

    PubMed

    Stelmachowska-Banaś, Maria; Zieliński, Grzegorz; Zdunowski, Piotr; Podgórski, Jan; Zgliczyński, Wocjiech

    2011-01-01

    Impaired glucose tolerance and overt diabetes mellitus are frequently associated with acro-megaly. The aim of this study was to find out whether these alterations could be reversed after transsphenoidal surgery. Two hundred and thirty-nine acromegalic patients were studied before and 6-12 months after transsphenoidal surgery. Diagnosis of active acromegaly was established on the basis of widely recognized criteria. In each patient, glucose and insulin concentrations were assessed during the 75 γ oral glucose tolerance test (OGTT). To estimate insulin resistance, we used homeostasis model assessment (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). At the moment of diagnosis, diabetes mellitus was present in 25% of the acromegalic patients. After surgery, the pre-valence of diabetes mellitus normalized to the level present in the general Polish population. We found a statistically significant reduction after surgery in plasma glucose levels both fasting (89.45 ± 13.92 mg/dL vs. 99.12 ± 17.33 mg/dL, p < 0.001) and during OGTT. Similarly, a prominent reduction in insulin secretion was found after surgery compared to the moment of diagnosis (15.44 ± 8.80 mIU/mL vs. 23.40 ± 10.24 mIU/mL, p < 0.001). After transsphenoidal surgery, there was a significant reduction in HOMA-IR (3.08 vs. 6.76, p < 0.0001) and a significant increase in QUICKI (0.32 vs. 0.29, p < 0.001). There were no statistically significant differences after surgery in fasting glucose and insulin levels between patients with controlled and in-adequately controlled disease. We conclude that in acromegalic patients glucose homeostasis alterations and insulin sensitivity can be normalized after transsphenoidal surgery, even if strict biochemical cure criteria are not fulfilled.

  2. Dynamics of Nampt/visfatin and high molecular weight adiponectin in response to oral glucose load in obese and lean women.

    PubMed

    Unlütürk, Uğur; Harmanci, Ayla; Yildiz, Bülent Okan; Bayraktar, Miyase

    2010-04-01

    High molecular weight adiponectin (HMWA) is the active circulating form of adiponectin. Nampt/visfatin is the enzyme secreted from adipocytes in an active form and is one of the putative regulators of insulin secretion. To investigate the dynamics of total adiponectin (TA), HMWA and Nampt/visfatin in obese and lean women during oral glucose tolerance test (OGTT). We studied normal glucose-tolerant (NGT), age-matched, 30 obese and 30 lean women. All subjects underwent a standard 75 g, 2-h OGTT, and area under the curve (AUC) during OGTT for glucose, insulin, Nampt/visfatin, TA and HMWA was calculated. Body fat mass was assessed by bioimpedance analysis. Results Obese women had significantly higher basal and AUC values for insulin and Nampt/visfatin, whereas basal and AUC-HMWA were significantly lower in this group. Alternatively, obese and lean groups had similar basal and AUC values for glucose and TA. Basal insulin levels were negatively correlated with HMWA levels, but not with basal Nampt/visfatin. AUC-insulin was correlated positively with AUC-visfatin, and negatively with AUC-HMWA. Total and truncal body fat mass showed positive correlation with basal and AUC-visfatin, and negative correlation with basal and AUC-HMWA. In the NGT state, obese women have higher Nampt/visfatin and lower HMWA levels, both basally and in response to oral glucose challenge. The dynamics of Nampt/visfatin and HMWA during OGTT appear to be linked with insulin and adiposity. Counter-regulatory adaptations in HMWA and Nampt/visfatin might have an impact on suggested adipoinsular axis, contributing to maintenance of normal glucose tolerance.

  3. Ursolic acid improves podocyte injury caused by high glucose.

    PubMed

    Xu, Li; Fan, Qiuling; Wang, Xu; Li, Lin; Lu, Xinxing; Yue, Yuan; Cao, Xu; Liu, Jia; Zhao, Xue; Wang, Lining

    2017-08-01

    Autophagy plays an important role in the maintenance of podocyte homeostasis. Reduced autophagy may result in limited renal cell function during exposure to high glucose conditions. In this study we investigated the effects of ursolic acid (UA) on autophagy and podocyte injury, which were induced by high glucose. Conditionally immortalized murine podocytes were cultured in media supplemented with high glucose and the effects of the PI3K inhibitor LY294002 and UA on protein expression were determined. miR-21 expression was detected by real-time RT-PCR. Activation of the PTEN-PI3K/Akt/mTOR pathway, expression of autophagy-related proteins and expression of podocyte marker proteins were determined by western blot. Immunofluorescence was used to monitor the accumulation of LC3 puncta. Autophagosomes were also observed by transmission electron microscopy. During exposure to high glucose conditions, the normal level of autophagy was reduced in podocytes, and this defective autophagy induced podocyte injury. Increased miR-21 expression, decreased PTEN expression and abnormal activation of the PI3K/Akt/mTOR pathway were observed in cells that were cultured in high glucose conditions. UA and LY294002 reduced podocyte injury through the restoration of defective autophagy. Our data suggest that UA inhibits miR-21 expression and increases PTEN expression, which in turn inhibits Akt and mTOR and restores normal levels of autophagy. Our data suggest that podocyte injury is associated with reduced levels of autophagy during exposure to high glucose conditions, UA attenuated podocyte injury via an increase in autophagy through miR-21 inhibition and PTEN expression, which inhibit the abnormal activation of the PI3K/Akt/mTOR pathway. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  4. Prolonged fasting impairs neural reactivity to visual stimulation.

    PubMed

    Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U

    2016-01-01

    Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.

  5. Effect of Chinese Herbal Medicine Jinlida Granule in Treatment of Patients with Impaired Glucose Tolerance

    PubMed Central

    Shi, Ya-Lin; Liu, Wen-Juan; Zhang, Xiao-Fang; Su, Wei-Juan; Chen, Ning-Ning; Lu, Shu-Hua; Wang, Li-Ying; Shi, Xiu-Lin; Li, Zhi-Bin; Yang, Shu-Yu

    2016-01-01

    Background: Diabetes mellitus (DM) remains a major health problem worldwide. Several clinical trials have shown the superiority of the Traditional Chinese Medicine in delaying or reversing the development and progression of DM. This study aimed to evaluate the efficacy of Jinlida (JLD) granule, a Chinese herbal recipe, in the treatment of impaired glucose tolerance (IGT) and its effect on the prevention of DM. Methods: Sixty-five IGT patients were randomized to receive one bag of JLD granules three times daily (JLD group, n = 34) or no drug intervention (control group, n = 31) for 12 weeks. Oral glucose tolerance test, glycated hemoglobin A1c (HbA1c), body mass index, blood lipids levels, fasting insulin, and insulin resistance calculated using homeostatic model assessment (HOMA-IR) of all the patients were observed and compared before and after the treatment. Results: Sixty-one participants completed the trial (32 in JLD group and 29 in the control group). There were statistically significant decreases in HbA1c (P < 0.001), 2-h plasma glucose (P < 0.001), and HOMA-IR (P = 0.029) in JLD group compared with the control group after 12 weeks of treatment. After 12 weeks of treatment, two (6.9%) patients returned to normal blood glucose, and five (17.2%) patients turned into DM in control group, while in the JLD group, 14 (43.8%) returned to normal blood glucose and 2 (6.2%) turned into DM. There was a significant difference in the number of subjects who had normal glucose at the end of the study between two groups (P = 0.001). Conclusions: JLD granule effectively improved glucose control, increased the conversion of IGT to normal glucose, and improved the insulin resistance in patients with IGT. This Chinese herbal medicine may have a clinical value for IGT. PMID:27647185

  6. Effect of Chinese Herbal Medicine Jinlida Granule in Treatment of Patients with Impaired Glucose Tolerance.

    PubMed

    Shi, Ya-Lin; Liu, Wen-Juan; Zhang, Xiao-Fang; Su, Wei-Juan; Chen, Ning-Ning; Lu, Shu-Hua; Wang, Li-Ying; Shi, Xiu-Lin; Li, Zhi-Bin; Yang, Shu-Yu

    2016-10-05

    Diabetes mellitus (DM) remains a major health problem worldwide. Several clinical trials have shown the superiority of the Traditional Chinese Medicine in delaying or reversing the development and progression of DM. This study aimed to evaluate the efficacy of Jinlida (JLD) granule, a Chinese herbal recipe, in the treatment of impaired glucose tolerance (IGT) and its effect on the prevention of DM. Sixty-five IGT patients were randomized to receive one bag of JLD granules three times daily (JLD group, n = 34) or no drug intervention (control group, n = 31) for 12 weeks. Oral glucose tolerance test, glycated hemoglobin A1c (HbA1c), body mass index, blood lipids levels, fasting insulin, and insulin resistance calculated using homeostatic model assessment (HOMA-IR) of all the patients were observed and compared before and after the treatment. Sixty-one participants completed the trial (32 in JLD group and 29 in the control group). There were statistically significant decreases in HbA1c (P < 0.001), 2-h plasma glucose (P < 0.001), and HOMA-IR (P = 0.029) in JLD group compared with the control group after 12 weeks of treatment. After 12 weeks of treatment, two (6.9%) patients returned to normal blood glucose, and five (17.2%) patients turned into DM in control group, while in the JLD group, 14 (43.8%) returned to normal blood glucose and 2 (6.2%) turned into DM. There was a significant difference in the number of subjects who had normal glucose at the end of the study between two groups (P = 0.001). JLD granule effectively improved glucose control, increased the conversion of IGT to normal glucose, and improved the insulin resistance in patients with IGT. This Chinese herbal medicine may have a clinical value for IGT.

  7. Effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome after radical gastrectomy.

    PubMed

    Sun, Li; Zhou, Pingping; Hua, Qingli; Jin, Changming; Guo, Chunling; Song, Bing

    2018-06-01

    This study aimed to investigate the effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome (MS) after radical gastrectomy. A total of 150 patients with gastric cancer, who were treated in Daqing Longnan Hospital from November, 2015 to May, 2017, were enrolled in this study. The patients were divided into the MS group (80 cases) and non-MS group (70 cases). Patients in the MS group were given corresponding drugs to control blood pressure, blood lipids and blood glucose, while patients in the non-MS group were not treated with those drugs. Patients in the MS group were divided into the normal and abnormal groups according to the levels of blood glucose, blood lipids and blood pressure. Moreover, occurrences of complications were compared between the normal and abnormal groups. Before surgery, blood glucose, blood lipids and blood pressure in the MS group were significantly higher than those in the non-MS group (p<0.05). One month after operation, blood glucose, blood lipids and blood pressure of the MS group decreased significantly compared to those before operation (p<0.05). Incidence of complications at 1 and 3 months after operation was significantly lower in the normal groups than that in the corresponding abnormal groups (p<0.05). Postoperative recovery was significantly better in the normal groups than that in the corresponding abnormal groups (p<0.05). Logistic regression analysis showed that the incidence of postoperative complications was related to fasting blood glucose, 2 h postprandial blood glucose, glycosylated hemoglobin, total triglycerides (TGs), LDL, mean blood pressure and BMI (p<0.05). The results show that, control of blood glucose, blood lipids and blood pressure in patients with gastric cancer complicated with MS after radical gastrectomy can reduce the incidence of postoperative complications and promote postoperative recovery.

  8. Smart Plasmonic Glucose Nanosensors as Generic Theranostic Agents for Targeting-Free Cancer Cell Screening and Killing.

    PubMed

    Chen, Limei; Li, Haijuan; He, Haili; Wu, Haoxi; Jin, Yongdong

    2015-07-07

    Fast and accurate identification of cancer cells from healthy normal cells in a simple, generic way is very crucial for early cancer detection and treatment. Although functional nanoparticles, like fluorescent quantum dots and plasmonic Au nanoparticles (NPs), have been successfully applied for cancer cell imaging and photothermal therapy, they suffer from the main drawback of needing time-consuming targeting preparation for specific cancer cell detection and selective ablation. The lack of a generic and effective method therefore limits their potential high-throughput cancer cell preliminary screening and theranostic applications. We report herein a generic in vitro method for fast, targeting-free (avoiding time-consuming preparations of targeting moiety for specific cancer cells) visual screening and selective killing of cancer cells from normal cells, by using glucose-responsive/-sensitive glucose oxidase-modified Ag/Au nanoshells (Ag/Au-GOx NSs) as a smart plasmonic theranostic agent. The method is generic to some extent since it is based on the distinct localized surface plasmon resonance (LSPR) responses (and colors) of the smart nanoprobe with cancer cells (typically have a higher glucose uptake level) and normal cells.

  9. Low glucose level and low pH alter the electrochemical function of human parietal pleura.

    PubMed

    Kouritas, V K; Hatzoglou, C; Foroulis, C N; Hevas, A; Gourgoulianis, K I; Molyvdas, P A

    2007-08-01

    The aim of the present study was to investigate whether low glucose and pH level, which are usually measured in complicated pleural effusions, alter the electrochemical function of healthy human parietal pleura. Parietal pleural pieces were stripped from 66 patients during thoracic surgery and were mounted in Ussing chambers. Krebs' solutions containing different glucose levels (0, 40 and 100 mg) and balanced at different pH levels (7.4, 7.3 and 7.2) were added to the pleural cavity surface of the pieces. Transmesothelial potential difference was measured at various time-points as an electrophysiological variable and transmesothelial resistance (R(TM)) was calculated using Ohm's law. When normal-glucose Krebs at pH 7.45 was used, R(TM) remained unchanged over time, but when low-glucose Krebs was used, R(TM) decreased. Krebs without glucose caused the greatest decrease in R(TM). Use of low-pH Krebs decreased R(TM). The lower the pH of the Krebs, the faster the decrease in R(TM) and the greater the effect. The decrease in R(TM) was greater with low-pH than with low-glucose Krebs. Low glucose and low pH caused an additive decrease in R(TM). Low glucose concentration and low pH cause alteration of the electrochemical function of human parietal pleura and could act as agents that lead to further exudate progression.

  10. Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart.

    PubMed

    Aravindhan, Karpagam; Bao, Weike; Harpel, Mark R; Willette, Robert N; Lepore, John J; Jucker, Beat M

    2015-01-01

    Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner.

  11. Phenotype Heterogeneity in Glucokinase-Maturity-Onset Diabetes of the Young (GCK-MODY) Patients.

    PubMed

    Wędrychowicz, Anna; Tobór, Ewa; Wilk, Magdalena; Ziółkowska-Ledwith, Ewa; Rams, Anna; Wzorek, Katarzyna; Sabal, Barbara; Stelmach, Małgorzata; Starzyk, Jerzy B

    2017-09-01

    The aim of the study was to evaluate the clinical phenotypes of glucokinase-maturity-onset diabetes of the young (GCK-MODY) pediatric patients from Southwest Poland and to search for phenotype-genotype correlations. We conducted a retrospective analysis of data on 37 CGK-MODY patients consisting of 21 girls and 16 boys of ages 1.9-20.1 (mean 12.5±5.2) years, treated in our centre in the time period between 2002 and 2013. GCK-MODY carriers were found in a frequency of 3% among 1043 diabetes mellitus (DM) patients and constituted the second most numerous group of DM patients, following type 1 DM, in our centre. The mean age of GCK-MODY diagnosis was 10.4±4.5 years. The findings leading to the diagnosis were impaired fasting glucose (IFG) (15/37), symptoms of hyperglycemia (4/37), and a GCK-MODY family history (18/37). Mean fasting blood glucose level was 6.67±1.64 mmol/L. In the sample, there were patients with normal values (4/37), those with DM (10/37), and IFG (23/37). In OGTT, 120 min glucose level was normal in 8, diabetic in 2, and characteristic for glucose intolerance in 27 of the 37 cases. Twelve of the 37 cases (32%) were identified as GCK-MODY carriers. In the total group, mean C-peptide level was 2.13±0.65 ng/mL and HbA1c was 6.26±0.45% (44.9±-18 mmol/mol). Thirty-two patients had a family history of DM. DM autoantibodies were detected in two patients. The most common mutations were p.Gly318Arg (11/37) and p.Val302Leu (8/37). There was no correlation between type of mutations and plasma glucose levels. The phenotype of GCK-MODY patients may vary from those characteristic for other DM types to an asymptomatic state with normal FG with no correlation with genotype.

  12. The fluctuation of blood glucose, insulin and glucagon concentrations before and after insulin therapy in type 1 diabetes

    NASA Astrophysics Data System (ADS)

    Arif, Idam; Nasir, Zulfa

    2015-09-01

    A dynamical-systems model of plasma glucose, insulin and glucagon concentrations has been developed to investigate the effects of insulin therapy on blood glucose, insulin and glucagon regulations in type 1 diabetic patients. Simulation results show that the normal regulation of blood glucose concentration depends on insulin and glucagon concentrations. On type 1 diabetic case, the role of insulin on regulating blood glucose is not optimal because of the destruction of β cells in pancreas. These β cells destructions cause hyperglycemic episode affecting the whole body metabolism. To get over this, type 1 diabetic patients need insulin therapy to control the blood glucose level. This research has been done by using rapid acting insulin (lispro), long-acting insulin (glargine) and the combination between them to know the effects of insulin therapy on blood glucose, insulin and glucagon concentrations. Simulation results show that these different types of insulin have different effects on blood glucose concentration. Insulin therapy using lispro shows better blood glucose control after consumption of meals. Glargin gives better blood glucose control between meals and during sleep. Combination between lispro and glargine shows better glycemic control for whole day blood glucose level.

  13. TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis.

    PubMed

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T; Rane, Sushil G

    2017-02-24

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. TGF-β1/Smad3 Pathway Targets PP2A-AMPK-FoxO1 Signaling to Regulate Hepatic Gluconeogenesis*

    PubMed Central

    Yadav, Hariom; Devalaraja, Samir; Chung, Stephanie T.; Rane, Sushil G.

    2017-01-01

    Maintenance of glucose homeostasis is essential for normal physiology. Deviation from normal glucose levels, in either direction, increases susceptibility to serious medical complications such as hypoglycemia and diabetes. Maintenance of glucose homeostasis is achieved via functional interactions among various organs: liver, skeletal muscle, adipose tissue, brain, and the endocrine pancreas. The liver is the primary site of endogenous glucose production, especially during states of prolonged fasting. However, enhanced gluconeogenesis is also a signature feature of type 2 diabetes (T2D). Thus, elucidating the signaling pathways that regulate hepatic gluconeogenesis would allow better insight into the process of normal endogenous glucose production as well as how this process is impaired in T2D. Here we demonstrate that the TGF-β1/Smad3 signaling pathway promotes hepatic gluconeogenesis, both upon prolonged fasting and during T2D. In contrast, genetic and pharmacological inhibition of TGF-β1/Smad3 signals suppressed endogenous glucose production. TGF-β1 and Smad3 signals achieved this effect via the targeting of key regulators of hepatic gluconeogenesis, protein phosphatase 2A (PP2A), AMP-activated protein kinase (AMPK), and FoxO1 proteins. Specifically, TGF-β1 signaling suppressed the LKB1-AMPK axis, thereby facilitating the nuclear translocation of FoxO1 and activation of key gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. These findings underscore an important role of TGF-β1/Smad3 signaling in hepatic gluconeogenesis, both in normal physiology and in the pathophysiology of metabolic diseases such as diabetes, and are thus of significant medical relevance. PMID:28069811

  15. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  16. Plasma adiponectin levels and incident glucose intolerance in Japanese-Brazilians: a seven-year follow-up study.

    PubMed

    Vendramini, Marcio F; Ferreira, Sandra R G; Gimeno, Suely G A; Kasamatsu, Teresa S; Miranda, Walkiria L; Moisés, Regina S

    2006-09-01

    The objective of this study was to investigate whether decreased baseline adiponectin levels are an independent risk factor for development of glucose intolerance in a population-based study of Japanese-Brazilians, a group with one of the highest prevalence rates of diabetes worldwide. We examined 210 Japanese-Brazilians (97 male and 113 female, aged 56.7+/-10.1 years) with normal glucose tolerance (NGT). Plasma adiponectin, insulin, fasting and 2-h plasma glucose and lipid profile were evaluated at baseline and also at 7-year follow-up. Plasma adiponectin levels were significantly lower in glucose intolerance progressors compared with subjects who remained NGT. By increasing tertiles of adiponectin, the frequencies of subjects who progressed to glucose intolerance were 40%, 33% and 27% and the frequencies of subjects who remained NGT were 13%, 35% and 52% (chi2=15.8, p=0.001). Logistic regression analyses showed that adiponectin levels (OR for the highest versus lowest tertile: 0.31; 95% CI: 0.12-0.84, p=0.021), male sex (OR: 2.61, 95% CI: 1.21-5.65, p=0.015), fasting plasma glucose (0R: 3.05, 95% CI: 1.35-6.91, p=0.008) and waist circumference (OR: 1.04, 95% CI: 1.00-1.08, p=0.046) were independent risk factors for the progression to glucose intolerance. In conclusion, low plasma levels of adiponectin is one of several independent predictors of glucose intolerance in a Japanese-Brazilian population.

  17. Diabetic Children Need Care but Can Lead Normal Lives.

    ERIC Educational Resources Information Center

    PTA Today, 1984

    1984-01-01

    Children with diabetes can take part in normal school activities as long as they maintain control over their blood sugar level through a technique called self blood-glucose monitoring. Parents can work with teachers to see that dietary and medicinal needs are accommodated. (PP)

  18. Endothelial Cells Derived from the Blood-Brain Barrier and Islets of Langerhans Differ in their Response to the Effects of Bilirubin on Oxidative Stress Under Hyperglycemic Conditions.

    PubMed

    Kapitulnik, Jaime; Benaim, Clara; Sasson, Shlomo

    2012-01-01

    Unconjugated bilirubin (UCB) is a neurotoxic degradation product of heme. Its toxic effects include induction of apoptosis, and ultimately neuronal cell death. However, at low concentrations, UCB is a potent antioxidant that may protect cells and tissues against oxidative stress by neutralizing toxic metabolites such as reactive oxygen species (ROS). High glucose levels (hyperglycemia) generate reactive metabolites. Endothelial cell dysfunction, an early vascular complication in diabetes, has been associated with hyperglycemia-induced oxidative stress. Both glucose and UCB are substrates for transport proteins in microvascular endothelial cells of the blood-brain barrier (BBB). In the current study we show that UCB (1-40 μM) induces apoptosis and reduces survival of bEnd3 cells, a mouse brain endothelial cell line which serves as an in vitro model of the BBB. These deleterious effects of UCB were enhanced in the presence of high glucose (25 mM) levels. Interestingly, the bEnd3 cells exhibited an increased sensitivity to the apoptotic effects of UCB when compared to the MS1 microcapillary endothelial cell line. MS1 cells originate from murine pancreatic islets of Langerhans, and are devoid of the barrier characteristics of BBB-derived endothelial cells. ROS production was increased in both bEnd3 and MS1 cells exposed to high glucose, as compared with cells exposed to normal (5.5 mM) glucose levels. While UCB (0.1-40 μM) did not alter ROS production in cells exposed to normal glucose, relatively low ("physiological") UCB concentrations (0.1-5 μM) attenuated ROS generation in both cell lines exposed to high glucose levels. Most strikingly, higher UCB concentrations (20-40 μM) increased ROS generation in bEnd3 cells exposed to high glucose, but not in similarly treated MS1 cells. These results may be of critical importance for understanding the vulnerability of the BBB endothelium upon exposure to increasing UCB levels under hyperglycemic conditions.

  19. Endothelial Cells Derived from the Blood-Brain Barrier and Islets of Langerhans Differ in their Response to the Effects of Bilirubin on Oxidative Stress Under Hyperglycemic Conditions

    PubMed Central

    Kapitulnik, Jaime; Benaim, Clara; Sasson, Shlomo

    2012-01-01

    Unconjugated bilirubin (UCB) is a neurotoxic degradation product of heme. Its toxic effects include induction of apoptosis, and ultimately neuronal cell death. However, at low concentrations, UCB is a potent antioxidant that may protect cells and tissues against oxidative stress by neutralizing toxic metabolites such as reactive oxygen species (ROS). High glucose levels (hyperglycemia) generate reactive metabolites. Endothelial cell dysfunction, an early vascular complication in diabetes, has been associated with hyperglycemia-induced oxidative stress. Both glucose and UCB are substrates for transport proteins in microvascular endothelial cells of the blood-brain barrier (BBB). In the current study we show that UCB (1–40 μM) induces apoptosis and reduces survival of bEnd3 cells, a mouse brain endothelial cell line which serves as an in vitro model of the BBB. These deleterious effects of UCB were enhanced in the presence of high glucose (25 mM) levels. Interestingly, the bEnd3 cells exhibited an increased sensitivity to the apoptotic effects of UCB when compared to the MS1 microcapillary endothelial cell line. MS1 cells originate from murine pancreatic islets of Langerhans, and are devoid of the barrier characteristics of BBB-derived endothelial cells. ROS production was increased in both bEnd3 and MS1 cells exposed to high glucose, as compared with cells exposed to normal (5.5 mM) glucose levels. While UCB (0.1–40 μM) did not alter ROS production in cells exposed to normal glucose, relatively low (“physiological”) UCB concentrations (0.1–5 μM) attenuated ROS generation in both cell lines exposed to high glucose levels. Most strikingly, higher UCB concentrations (20–40 μM) increased ROS generation in bEnd3 cells exposed to high glucose, but not in similarly treated MS1 cells. These results may be of critical importance for understanding the vulnerability of the BBB endothelium upon exposure to increasing UCB levels under hyperglycemic conditions. PMID:22811666

  20. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.

    1988-02-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R{sub a} was matched by a comparable decrease in glucose utilization (R{sub d}), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level wasmore » comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R{sub a} is counterbalanced by equal inhibition of R{sub d}; (2) basal R{sub a} and R{sub d} are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance.« less

  1. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    NASA Technical Reports Server (NTRS)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  2. A closed-loop multi-level model of glucose homeostasis

    PubMed Central

    Uluseker, Cansu; Simoni, Giulia; Dauriz, Marco; Matone, Alice

    2018-01-01

    Background The pathophysiologic processes underlying the regulation of glucose homeostasis are considerably complex at both cellular and systemic level. A comprehensive and structured specification for the several layers of abstraction of glucose metabolism is often elusive, an issue currently solvable with the hierarchical description provided by multi-level models. In this study we propose a multi-level closed-loop model of whole-body glucose homeostasis, coupled with the molecular specifications of the insulin signaling cascade in adipocytes, under the experimental conditions of normal glucose regulation and type 2 diabetes. Methodology/Principal findings The ordinary differential equations of the model, describing the dynamics of glucose and key regulatory hormones and their reciprocal interactions among gut, liver, muscle and adipose tissue, were designed for being embedded in a modular, hierarchical structure. The closed-loop model structure allowed self-sustained simulations to represent an ideal in silico subject that adjusts its own metabolism to the fasting and feeding states, depending on the hormonal context and invariant to circadian fluctuations. The cellular level of the model provided a seamless dynamic description of the molecular mechanisms downstream the insulin receptor in the adipocytes by accounting for variations in the surrounding metabolic context. Conclusions/Significance The combination of a multi-level and closed-loop modeling approach provided a fair dynamic description of the core determinants of glucose homeostasis at both cellular and systemic scales. This model architecture is intrinsically open to incorporate supplementary layers of specifications describing further individual components influencing glucose metabolism. PMID:29420588

  3. Higher glucose levels associated with lower memory and reduced hippocampal microstructure.

    PubMed

    Kerti, Lucia; Witte, A Veronica; Winkler, Angela; Grittner, Ulrike; Rujescu, Dan; Flöel, Agnes

    2013-11-12

    For this cross-sectional study, we aimed to elucidate whether higher glycosylated hemoglobin (HbA1c) and glucose levels exert a negative impact on memory performance and hippocampal volume and microstructure in a cohort of healthy, older, nondiabetic individuals without dementia. In 141 individuals (72 women, mean age 63.1 years ± 6.9 SD), memory was tested using the Rey Auditory Verbal Learning Test. Peripheral levels of fasting HbA1c, glucose, and insulin and 3-tesla MRI scans were acquired to assess hippocampal volume and microstructure, as indicated by gray matter barrier density. Linear regression and simple mediation models were calculated to examine associations among memory, glucose metabolism, and hippocampal parameters. Lower HbA1c and glucose levels were significantly associated with better scores in delayed recall, learning ability, and memory consolidation. In multiple regression models, HbA1c remained strongly associated with memory performance. Moreover, mediation analyses indicated that beneficial effects of lower HbA1c on memory are in part mediated by hippocampal volume and microstructure. Our results indicate that even in the absence of manifest type 2 diabetes mellitus or impaired glucose tolerance, chronically higher blood glucose levels exert a negative influence on cognition, possibly mediated by structural changes in learning-relevant brain areas. Therefore, strategies aimed at lowering glucose levels even in the normal range may beneficially influence cognition in the older population, a hypothesis to be examined in future interventional trials.

  4. Correlation of salivary glucose level with blood glucose level in diabetes mellitus

    PubMed Central

    Gupta, Shreya; Nayak, Meghanand T; Sunitha, JD; Dawar, Geetanshu; Sinha, Nidhi; Rallan, Neelakshi Singh

    2017-01-01

    Background: Saliva is a unique fluid, which is important for normal functioning of the oral cavity. Diabetes mellitus (DM) is a disease of absolute or relative insulin deficiency characterized by insufficient secretion of insulin by pancreatic beta-cells. The diagnosis of diabetes through blood is difficult in children, older adults, debilitated and chronically ill patients, so diagnosis by analysis of saliva can be potentially valuable as collection of saliva is noninvasive, easier and technically insensitive, unlike blood. The aim of the study was to correlate blood glucose level (BGL) and salivary glucose level (SGL) in DM patients. Methodology: A cross-sectional study was conducted in 120 patients, who were categorized as 40 controlled diabetics, 40 uncontrolled diabetics and 40 healthy, age- and sex-matched individuals constituted the controls. The blood and unstimulated saliva samples were collected from the patients at the different intervals for fasting, random and postprandial levels. These samples were then subjected for analysis of glucose in blood and saliva using glucose oxidase/peroxidase reagent in HITACHI 902(R) Automatic analyzer, and the results were recorded. Results: The mean SGLs were higher in uncontrolled and controlled diabetic groups than in nondiabetic group. A highly statistically significant correlation was found between fasting saliva glucose and fasting blood glucose in all the groups. Conclusion: With increase in BGL, increase in SGL was observed in patients with diabetes suggesting that SGL can be used for monitoring glycemic level in DM. PMID:29391704

  5. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats

    PubMed Central

    Xin, Fengjiao; Yu, Xiaobing

    2018-01-01

    Background & Aims Accumulating research has addressed the linkage between the changes to gut microbiota structure and type 2 diabetes (T2D). Inulin is one type of soluble dietary fiber that can alleviate T2D. As a prebiotic, inulin cannot be digested by humans, but rather is digested by probiotics. However, whether inulin treatment can benefit the entire gut bacteria community remains unknown. In this study, we evaluated the differences in gut microbiota composition among diabetic, inulin-treated diabetic, normal control, and inulin-treated normal control rats. Methods A diabetic rat model was generated by a high-fat diet and streptozotocin injections (HF/STZ). Inulin was orally administered to normal and diabetic rats. To determine the composition of the gut microbiota, fecal DNA extraction and 16S rRNA gene 454 pyrosequencing were performed. Results We found that inulin treatment reduced fasting blood glucose levels and alleviated glucose intolerance and blood lipid panels in diabetic rats. Additionally, inulin treatment increased the serum glucagon-like peptide-1 (GLP-1) level, reduced serum IL-6 level, Il6 expression in epididymal adipose tissue, and Pepck, G6pc expression in liver of diabetic rats. Pyrophosphate sequencing of the 16s V3–V4 region demonstrated an elevated proportion of Firmicutes and a reduced abundance of Bacteroidetes at the phylogenetic level in diabetic rats compared to normal control rats. The characteristics of the gut microbiota in control and inulin-treated rats were similar. Inulin treatment can normalize the composition of the gut microbiota in diabetic rats. At the family and genus levels, probiotic bacteria Lactobacillus and short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae, Phascolarctobacterium, and Bacteroides were found to be significantly more abundant in the inulin-treated diabetic group than in the non-treated diabetic group. In addition, inulin-treated rats had a lower abundance of Desulfovibrio, which produce lipopolysaccharide (LPS). The abundance of Lachnospiraceae was negatively correlated with the blood glucose response after a glucose load. Conclusion In summary, diabetic rats have different gut microbiota from control rats. Inulin treatment can alleviate gut microbiota dysbiosis in T2D model rats. Moreover, inulin treatment enhanced serum GLP-1 level to suppress IL-6 secretion and production and hepatic gluconeogenesis, resulted in moderation of insulin tolerance. PMID:29507837

  6. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats.

    PubMed

    Zhang, Qian; Yu, Hongyue; Xiao, Xinhua; Hu, Ling; Xin, Fengjiao; Yu, Xiaobing

    2018-01-01

    Accumulating research has addressed the linkage between the changes to gut microbiota structure and type 2 diabetes (T2D). Inulin is one type of soluble dietary fiber that can alleviate T2D. As a prebiotic, inulin cannot be digested by humans, but rather is digested by probiotics. However, whether inulin treatment can benefit the entire gut bacteria community remains unknown. In this study, we evaluated the differences in gut microbiota composition among diabetic, inulin-treated diabetic, normal control, and inulin-treated normal control rats. A diabetic rat model was generated by a high-fat diet and streptozotocin injections (HF/STZ). Inulin was orally administered to normal and diabetic rats. To determine the composition of the gut microbiota, fecal DNA extraction and 16S rRNA gene 454 pyrosequencing were performed. We found that inulin treatment reduced fasting blood glucose levels and alleviated glucose intolerance and blood lipid panels in diabetic rats. Additionally, inulin treatment increased the serum glucagon-like peptide-1 (GLP-1) level, reduced serum IL-6 level, Il6 expression in epididymal adipose tissue, and Pepck , G6pc expression in liver of diabetic rats. Pyrophosphate sequencing of the 16s V3-V4 region demonstrated an elevated proportion of Firmicutes and a reduced abundance of Bacteroidetes at the phylogenetic level in diabetic rats compared to normal control rats. The characteristics of the gut microbiota in control and inulin-treated rats were similar. Inulin treatment can normalize the composition of the gut microbiota in diabetic rats. At the family and genus levels, probiotic bacteria Lactobacillus and short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae , Phascolarctobacterium , and Bacteroides were found to be significantly more abundant in the inulin-treated diabetic group than in the non-treated diabetic group. In addition, inulin-treated rats had a lower abundance of Desulfovibrio , which produce lipopolysaccharide (LPS). The abundance of Lachnospiraceae was negatively correlated with the blood glucose response after a glucose load. In summary, diabetic rats have different gut microbiota from control rats. Inulin treatment can alleviate gut microbiota dysbiosis in T2D model rats. Moreover, inulin treatment enhanced serum GLP-1 level to suppress IL-6 secretion and production and hepatic gluconeogenesis, resulted in moderation of insulin tolerance.

  7. Evidence based study of antidiabetic potential of C. maxima seeds - In vivo.

    PubMed

    Kushawaha, Devesh Kumar; Yadav, Manjulika; Chatterji, Sanjukta; Srivastava, Amrita Kumari; Watal, Geeta

    2017-10-01

    In vitro antidiabetic efficacy of Cucurbita maxima seed extract (CMSE) has already been studied in our previous findings. Thus, in order to validate these findings in biological system, in vivo antidiabetic activity of aqueous extract was investigated in normal as well as diabetic experimental models. Variable doses of extract were administered orally to normal and STZ induced mild diabetic rats during fasting blood glucose (FBG) and glucose tolerance test (GTT) studies. In order to determine the extract's antidiabetic potential long-term FBG and post prandial glucose (PPG) studies were also carried out. Most effective dose of 200 mg kg -1 of CMSE decreases the blood glucose level (BGL) in normal rats by 29.02% at 6 h during FBG studies and 23.23% at 3 h during GTT. However, the maximum reduction observed in BGL of mild diabetic rats during GTT the same interval of time was 26.15%. Moreover, in case of severely diabetic rats a significant reduction of 39.33% was observed in FBG levels whereas, in case of positive control, rats treated with 2.5 mg kg -1 of glipizide, a fall of 42.9% in FBG levels was observed after 28 days. Results of PPG level also showed a fall of 33.20% in severely diabetic rats as compared to the positive control showing a fall of 44.2% at the end of the 28 days. Thus, the present study validate the hypoglycemic and antidiabetic effect of CMSE and hence this extract could be explored further for developing as a novel antidiabetic agent.

  8. Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction

    PubMed Central

    Lamping, KL; Nuno, DW; Coppey, LJ; Holmes, AJ; Hu, S; Oltman, CL; Norris, AW; Yorek, MA

    2013-01-01

    Aims The ability of dietary enrichment with monounsaturated (MUFA), n-3, or n-6 polyunsaturated fatty acids (PUFA) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). Material and Methods We fed mice a high saturated fat diet (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signaling and reactivity of isolated pressurized gracilis arteries. Results After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance, and indices of insulin signaling (phosphorylated Akt) to normal whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine reduced in MO fed mice compared to normal. Conclusion We conclude that short term enrichment of an ongoing high fat diet with n-3 PUFA rich MO but not MUFA rich OO or n-6 PUFA rich SO reverses glucose tolerance, insulin signaling, and vascular dysfunction. PMID:22950668

  9. Lactose digestion by human jejunal biopsies: the relationship between hydrolysis and absorption.

    PubMed Central

    Dawson, D J; Lobley, R W; Burrows, P C; Miller, V; Holmes, R

    1986-01-01

    The relationship between lactose hydrolysis and absorption of released glucose was investigated by determining the kinetics of lactose digestion by jejunal biopsies incubated in vitro. Lactase activity in intact biopsies correlated with conventional assay of tissue homogenates (r = 0.85, p less than 0.001), and glucose uptake from 28 mM lactose was directly proportional to lactase activity (r = 0.95, p less than 0.001) in 21 subjects with normal lactase levels, six with hypolactasia (primary or secondary to coeliac disease) and two with lactose intolerance but normal lactase activity. Kinetic analysis at 0.56-56 mM lactose in five normal subjects showed saturable kinetics for hydrolysis (app Km = 33.9 +/- 2.2 mM; app Vmax = 26.5 +/- 1.1 nmol/min/mg dry weight) but glucose uptake could be fitted to a model either of saturable uptake (app Kt = 47.2 +/- 0.3 mM; app Jmax = 14.1 +/- 0.2 nmol/min/mg) or saturable uptake plus a linear component (app Kt = 21.3 +/- 1.15; app Jmax = 4.59 +/- 0.12; app Kd = 0.093 +/- 0.010 nmol/min/mg/mM). The proportion of glucose taken into the tissue did not significantly exceed 50% of the total released at any lactose concentration suggesting the lack of an efficient capture mechanism for the released glucose. The results suggest that lactose hydrolysis is the rate limiting step in the overall absorption of glucose from lactose in vitro, and that the relationship between hydrolysis and absorption is the same in normal subjects and in hypolactasic subjects. PMID:3084346

  10. Chronic central leptin infusion modulates the glycemia response to insulin administration in male rats through regulation of hepatic glucose metabolism.

    PubMed

    Burgos-Ramos, Emma; Canelles, Sandra; Rodríguez, Amaia; Gómez-Ambrosi, Javier; Frago, Laura M; Chowen, Julie A; Frühbeck, Gema; Argente, Jesús; Barrios, Vicente

    2015-11-05

    Leptin and insulin use overlapping signaling mechanisms to modify hepatic glucose metabolism, which is critical in maintaining normal glycemia. We examined the effect of an increase in central leptin and insulin on hepatic glucose metabolism and its influence on serum glucose levels. Chronic leptin infusion increased serum leptin and reduced hepatic SH-phosphotyrosine phosphatase 1, the association of suppressor of cytokine signaling 3 to the insulin receptor in liver and the rise in glycemia induced by central insulin. Leptin also decreased hepatic phosphoenolpyruvate carboxykinase levels and increased insulin's ability to phosphorylate insulin receptor substrate-1, Akt and glycogen synthase kinase on Ser9 and to stimulate glucose transporter 2 and glycogen levels. Peripheral leptin treatment reproduced some of these changes, but to a lesser extent. Our data indicate that leptin increases the hepatic response to a rise in insulin, suggesting that pharmacological manipulation of leptin targets may be of interest for controlling glycemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Relationship between red cell membrane fatty acids and adipokines in individuals with varying insulin sensitivity.

    PubMed

    Min, Y; Lowy, C; Islam, S; Khan, F S; Swaminathan, R

    2011-06-01

    Plasma leptin and adiponectin, and membrane phospholipid fatty acid composition are implicated into the mechanism of insulin resistance but no clear pattern has emerged. Hence, this study examined these variables in subjects presenting to the diabetic clinic for a diagnostic glucose tolerance test. Body composition, glucose, glycated hemoglobin, insulin, leptin, adiponectin, and red cell and plasma phospholipid fatty acids were assessed from 42 normal and 28 impaired glucose tolerant subjects. Insulin sensitivity was determined by homeostatic model assessment. The plasma phosphatidylcholine fatty acid composition of the impaired glucose tolerant subjects was similar to that of normal subjects. However, the impaired glucose tolerant subjects had significantly lower linoleic (P<0.05), eicosapentaenoic (P<0.05) and docosahexaenoic (P<0.01) acids in the red cell phosphatidylcholine and phosphatidylethanolamine compared with the normal subjects. Moreover, red cell phosphatidylcholine docosahexaenoic acid correlated positively with adiponectin (r=0.290, P<0.05) but negatively with leptin (r=-0.252, P<0.05), insulin (r=-0.335, P<0.01) and insulin resistance (r=-0.322, P<0.01). Plasma triglycerides, leptin and glucose combined predicted about 60% of variation in insulin level whereas insulin was the only component that predicted the membrane fatty acids. We postulate that membrane phospholipids fatty acids have an indirect role in determining insulin concentration but insulin has a major role in determining membrane fatty acid composition.

  12. Glyceollin-containing fermented soybeans improve glucose homeostasis in diabetic mice.

    PubMed

    Park, Sunmin; Kim, Da Sol; Kim, Jeong Hwan; Kim, Jong Sang; Kim, Hyo Jung

    2012-02-01

    Our previous in vitro study demonstrated that glyceollins help normalize glucose homeostasis by potentiating β-cell function and survival in insulinoma cells as well as improving glucose utilization in adipocytes. Here, we investigated whether fermented soybeans containing glyceollins had an antidiabetic action in type 2 diabetic animals. The diabetic mice, their diabetes induced by intraperitoneal injections of streptozotocin (20 mg/kg bw), were administered a high fat diet with no soybeans (control), 10% unfermented soybeans and 10% fermented soybeans containing glyceollins, respectively, (FSG) for 8 weeks. As positive controls, rosiglitazone (20 mg/kg/bw) was given to diabetic mice fed a no soybean diet and non-diabetic mice were also placed on the same diet. Among the diabetic mice, FSG-treated mice exhibited the lowest peak for blood glucose levels with an elevation of serum insulin levels during the first part of oral glucose tolerance testing. FSG also made blood glucose levels drop quickly after the peak and it decreased blood glucose levels more than the control during insulin tolerance testing. This improvement was associated with increased hepatic glycogen accumulation and decreased triglyceride storage. The phosphorylation of Akt, AMP-kinase, and acetyl-CoA carboxylase in the liver was potentiated by FSG, whereas phosphoenolpyruvate carboxykinase expression decreased. The enhancement of glucose homeostasis was comparable to the effect induced by rosiglitazone, a commercial peroxisome proliferator-activated receptor-γ agonist, but it did not match the level of glucose homeostasis in the non-diabetic mice. Glyceollin-containing FSG improves glucose homeostasis, partly by enhancing hepatic insulin sensitivity in type 2 diabetic mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. [The correlation between serum uric acid level and early-phase insulin secretion in subjects with normal glucose regulation].

    PubMed

    Lu, L; Zheng, F P; Li, H

    2016-05-01

    To investigate the correlation between serum uric acid (SUA) level and early-phase insulin secretion in subjects with normal glucose regulation (NGR). Totally 367 community NGR residents confirmed by a 75g oral glucose tolerance test were enrolled. The insulin resistance index (HOMA-IR) and the early-phase insulin secretion index after a glucose load (ΔI30/ΔG30) were used to estimate the insulin sensitivity and the early-phase insulin secretion, respectively. The subjects were divided into 4 groups according to the SUA level quartiles. Differences in early-phase insulin levels, ΔI30/ΔG30, and HOMA-IR were compared among the 4 groups. Age, BMI, waist circumference, systolic blood pressure, diastolic blood pressure, fasting insulin (FINS), 30 minutes postprandial insulin(30 minINS), 2 hours postprandial insulin(2hINS), HOMA-IR and TG levels increased across the rising categories of SUA levels, while the HDL-C was decreased across the SUA groups (P<0.01). The SUA level was positively correlated with age(r=0.157, P<0.01), BMI(r=0.262, P<0.01), waist circumference(r=0.372, P<0.01), systolic blood pressure(r=0.200, P<0.01), diastolic blood pressure(r=0.254, P<0.01), 30 minutes postprandial plasma glucose(r=0.118, P=0.023), FINS(r=0.249, P<0.01), 30minINS(r=0.189, P<0.01), 2hINS(r=0.206, P<0.01), glycosylated hemoglobin(HbA1c, r=0.106, P=0.042), HOMA-IR(r=0.244, P<0.01), TG(r=0.350, P<0.01), ΔI30/ΔG30(r=0.144, P<0.01), and negatively correlated with HDL-C level(r=-0.321, P<0.01). Multiple stepwise regression analysis showed that SUA(β=0.292, P<0.01) and HOMA-IR(β=29.821, P<0.01) were positively associated with ΔI30/ΔG30. SUA level is closely related with the early-phase insulin secretion in NGR subjects.

  14. Nocturnal hypoglycemia identified by a continuous glucose monitoring system in patients with primary adrenal insufficiency (Addison's Disease).

    PubMed

    Meyer, Gesine; Hackemann, Annika; Reusch, Juergen; Badenhoop, Klaus

    2012-05-01

    Hypoglycemia can be a symptom in patients with Addison's disease. The common regimen of replacement therapy with oral glucocorticoids results in unphysiological low cortisol levels in the early morning, the time of highest insulin sensitivity. Therefore patients with Addison's disease are at risk for unrecognized and potentially severe nocturnal hypoglycemia also because of a disturbed counterregulatory function. Use of a continuous glucose monitoring system (CGMS) could help to adjust hydrocortisone treatment and to avoid nocturnal hypoglycemia in these patients. Thirteen patients with Addison's disease were screened for hypoglycemia wearing a CGMS for 3-5 days. In one patient we identified a hypoglycemic episode at 3:45 a.m. with a blood glucose level of 46 mg/dL, clearly beneath the 95% tolerance interval of minimal glucose levels between 2 and 4 a.m. (53.84 mg/dL). After the hydrocortisone replacement scheme was changed, the minimum blood glucose level between 2 and 4 a.m. normalized to 87 mg/dL. Continuous glucose monitoring can detect nocturnal hypoglycemia in patients with primary adrenal insufficiency and hence prevent in these patients an impaired quality of life and even serious adverse effects.

  15. The effect of intraoperative administration of dexamethasone for PONV prophylaxis on perioperative blood glucose level in obese and normal weight children.

    PubMed

    Gnatzy, Richard; Hempel, Gunther; Kaisers, Udo X; Höhne, Claudia

    2015-11-01

    The incidence of postoperative nausea and vomiting (PONV) can be reduced by dexamethasone. Single-dose administration may cause elevated blood glucose levels in obese adults. No data are available for children. The aim was to evaluate perioperative blood glucose changes related to body weight in children who received dexamethasone. This prospective observational study included 62 children. All patients received total intravenous anesthesia and a single dose of dexamethasone (0.15 mg/kg, maximum 8 mg). Blood glucose levels were measured up to 6 h. Standard deviation scores (SDS) were calculated using age- and gender-specific body mass index (BMI) percentiles, p<0.05. A total of 62 children (11.5±2.9 years, median SDS 0.43, 29% overweight/obese) were included. Blood glucose levels increased from 5.52±0.52 to 6.74±0.84 mmol/L 6 h after dexamethasone without correlation to the BMI-SDS. This study showed an increase of perioperative blood glucose (normoglycemic ranges) after single dose of dexamethasone, but no BMI-dependent effect was observed in children. Therefore, low-dose dexamethasone may be used in obese children for PONV prophylaxis.

  16. Insulin resistance and lipid profile during an oral glucose tolerance test in women with and without gestational diabetes mellitus.

    PubMed

    Liang, Zx; Wu, Y; Zhu, Xy; Fang, Q; Chen, Dq

    2016-01-01

    We aimed to compare changes in insulin levels during an oral glucose tolerance test (OGTT) between women with normal glucose tolerance (NGT) during pregnancy and those with gestational diabetes mellitus (GDM). Overall, 105 pregnant women between 24 and 28 weeks' gestation, 50 with NGT and 55 with GDM according to NDDG standard, were enrolled into the study. The levels of fasting blood glucose, insulin, triglyceride (TG) and total cholesterol (TC) and the insulin levels, blood glucose levels at 1, 2 and 3 hours post oral glucose administration during an OGTT (5.8, 10.6, 9.2 and 8.1 mmol/L, respectively) were measured. Then, insulin resistance (IR) index was calculated. There was no significant difference in fasting, 3-h insulin levels and 3-h blood glucose levels between those with NGT and those with GDM (P > 0.05). However, 1-h and 2-h insulin levels, fasting and 1-h and 2-h blood glucose levels in women with GDM were significantly higher than those in the NGT group (P < 0.05). Fasting TC and TG levels in the GDM group were significantly higher than those with NGT (P = 0.031 and P = 0.025, respectively). Correlation analysis showed that TG and TC levels were positively correlated with homoeostasis model assessment-IR (HOMA-IR) (r = 0.67 and r = 0.78, respectively; P < 0.05). Our findings suggest that insulin sensitivity in women with GDM was significantly lower than that observed in those with NGT. Reducing IR and blood lipids in women with GDM could potentially improve maternal and foetal outcomes.

  17. Coffee consumption and the incidence of type 2 diabetes in men and women with normal glucose tolerance: The Strong Heart Study

    PubMed Central

    Zhang, Ying; Lee, Elisa T.; Cowan, Linda D.; Fabsitz, Richard R.; Howard, Barbara V.

    2009-01-01

    Background and aims It was reported that high coffee consumption was related to decreased diabetes risk. The aim of this study is to examine the association between coffee consumption and the incidence of type 2 diabetes in persons with normal glucose tolerance in a population with a high incidence and prevalence of diabetes. Methods and results In a prospective cohort study, information about daily coffee consumption was collected at the baseline examination (1989-1992) in a population-based sample of American Indian men and women 45-74 years of age. Participants with normal glucose tolerance (N=1141) at the baseline examination were followed for an average of 7.6 years. The incidence of diabetes was compared across the categories of daily coffee consumption. The hazard ratios of diabetes related to coffee consumption were calculated using Cox proportional hazards models, adjusted for potential confounders. Levels of coffee consumption were positively related to levels of current smoking and inversely related to body mass index, waist circumference, female gender, and hypertension. Compared to those who did not drink coffee, participants who drank 12 or more cups of coffee daily had 67% less risk of developing diabetes during the follow-up (hazard ratio: 0.33, 95% confidence interval: 0.13, 0.81). Conclusion In this population, a high level of coffee consumption was associated with a reduced risk of deterioration of glucose metabolism over an average 7.6 years of follow-up. More work is needed to understand whether there is a plausible biological mechanism for this observation. PMID:20171062

  18. Physical activity into the meal glucose-insulin model of type 1 diabetes: in silico studies.

    PubMed

    Man, Chiara Dalla; Breton, Marc D; Cobelli, Claudio

    2009-01-01

    A simulation model of a glucose-insulin system accounting for physical activity is needed to reliably simulate normal life conditions, thus accelerating the development of an artificial pancreas. In fact, exercise causes a transient increase of insulin action and may lead to hypoglycemia. However, physical activity is difficult to model. In the past, it was described indirectly as a rise in insulin. Recently, a new parsimonious model of exercise effect on glucose homeostasis has been proposed that links the change in insulin action and glucose effectiveness to heart rate (HR). The aim of this study was to plug this exercise model into our recently proposed large-scale simulation model of glucose metabolism in type 1 diabetes to better describe normal life conditions. The exercise model describes changes in glucose-insulin dynamics in two phases: a rapid on-and-off change in insulin-independent glucose clearance and a rapid-on/slow-off change in insulin sensitivity. Three candidate models of glucose effectiveness and insulin sensitivity as a function of HR have been considered, both during exercise and recovery after exercise. By incorporating these three models into the type 1 diabetes model, we simulated different levels (from mild to moderate) and duration of exercise (15 and 30 minutes), both in steady-state (e.g., during euglycemic-hyperinsulinemic clamp) and in nonsteady state (e.g., after a meal) conditions. One candidate exercise model was selected as the most reliable. A type 1 diabetes model also describing physical activity is proposed. The model represents a step forward to accurately describe glucose homeostasis in normal life conditions; however, further studies are needed to validate it against data. © Diabetes Technology Society

  19. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    PubMed Central

    Wisetmuen, Eamruthai; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Yutanawiboonchai, Wiboonchai; Itharat, Arunporn

    2013-01-01

    Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion. PMID:23798879

  20. Cerebral glucose deficiency versus oxygen deficiency in neonatal encephalopathy.

    PubMed

    Rudolph, A M

    2018-04-24

    Hypoxic-ischemic encephalopathy (HIE) in newborn infants is generally considered to result from decreased arterial oxygen content or cerebral blood flow. Cerebral injury similar to that of HIE has been noted with hypoglycemia. Studies in fetal lambs have shown that ventilation with 3% oxygen did not change cerebral blood flow, but ventilation with 100% oxygen resulted in marked reduction in cerebral blood flow, glucose delivery and glucose consumption. Blood glucose concentration falls markedly after birth; this, associated with the fall in cerebral blood flow, greatly reduces glucose supply to the brain. In preterm infants, blood glucose levels tend to be very low. Also persistent patency of the ductus arteriosus may reduce cerebral flow in diastole, thus exaggerating the decrease in glucose supply. I propose that glycopenic-ischemic encephalopathy is a more appropriate term for the cerebral insult. We should consider more aggressive management of the low blood glucose concentrations in the neonate, and particularly in preterm infants. Administration of high levels of oxygen in inspired air should be avoided to reduce the enhancement of cerebral vasoconstriction and decreased flow that normally occurs after birth.

  1. [Gestational diabetes mellitus].

    PubMed

    Kautzky-Willer, Alexandra; Harreiter, Jürgen; Bancher-Todesca, Dagmar; Berger, Angelika; Repa, Andreas; Lechleitner, Monika; Weitgasser, Raimund

    2016-04-01

    Gestational diabetes (GDM) is defined as any degree of glucose intolerance with onset during pregnancy and is associated with increased feto-maternal morbidity as well as long-term complications in mothers and offspring. Women detected to have diabetes early in pregnancy receive the diagnosis of overt, non-gestational, diabetes (glucose: fasting > 126 mg/dl, spontaneous > 200 mg/dl or HbA1c > 6.5 % before 20 weeks of gestation). GDM is diagnosed by an oral glucose tolerance test (OGTT) or fasting glucose concentrations (> 92 mg/dl). Screening for undiagnosed type 2 diabetes at the first prenatal visit (Evidence level B) is recommended in women at increased risk using standard diagnostic criteria (high risk: history of GDM or pre-diabetes (impaired fasting glucose or impaired glucose tolerance); malformation, stillbirth, successive abortions or birth weight > 4,500 g in previous pregnancies; obesity, metabolic syndrome, age > 45 years, vascular disease; clinical symptoms of diabetes (e. g. glucosuria)). Performance of the OGTT (120 min; 75 g glucose) may already be indicated in the first trimester in some women but is mandatory between 24 and 28 gestational weeks in all pregnant women with previous non-pathological glucose metabolism (Evidence level B). Based on the results of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study GDM is defined, if fasting venous plasma glucose exceeds 92 mg/dl or 1 h 180 mg/dl or 2 h 153 mg/dl after glucose loading (OGTT; international consensus criteria). In case of one pathological value a strict metabolic control is mandatory. This diagnostic approach was recently also recommended by the WHO. All women should receive nutritional counseling and be instructed in blood glucose self-monitoring and to increase physical activity to moderate intensity levels- if not contraindicated. If blood glucose levels cannot be maintained in the normal range (fasting < 95 mg/dl and 1 h after meals < 140 mg/dl) insulin therapy should be initiated as first choice. Maternal and fetal monitoring is required in order to minimize maternal and fetal/neonatal morbidity and perinatal mortality. After delivery all women with GDM have to be reevaluated as to their glucose tolerance by a 75 g OGTT (WHO criteria) 6-12 weeks postpartum and every 2 years in case of normal glucose tolerance (Evidence level B). All women have to be instructed about their (sevenfold increased relative) risk of type 2 diabetes at follow-up and possibilities for diabetes prevention, in particular weight management and maintenance/increase of physical activity. Monitoring of the development of the offspring and recommendation of healthy lifestyle of the children and family is recommended.

  2. Association between carotid intima-media thickness and fasting blood glucose level: A population-based cross-sectional study among low-income adults in rural China.

    PubMed

    Gao, Liu; Bai, Lingling; Shi, Min; Ni, Jingxian; Lu, Hongyan; Wu, Yanan; Tu, Jun; Ning, Xianjia; Wang, Jinghua; Li, Yukun

    2017-11-01

    Carotid intima-media thickness (CIMT) is an established predictor of cardiovascular disease and stroke. We aimed to identify the association between CIMT and blood glucose, as well as the risk factors associated with increased CIMT in a low-income Chinese population. Stroke-free and cardiovascular disease-free residents aged ≥45 years were recruited. B-mode ultrasonography was carried out to measure CIMT. There were 2,643 participants (71.0%) in the normal group, 549 (14.7%) in the impaired fasting glucose group and 533 (14.3%) in the diabetes mellitus group. The determinants of increased CIMT were older age; male sex; low education; hypertension; smoking; high levels of systolic blood pressure, fasting blood glucose and low-density lipoprotein cholesterol; and low levels of diastolic blood pressure, triglycerides and high-density lipoprotein cholesterol, after adjusting for covariates. Age and hypertension were the common risk factors for increased CIMT in all three groups. Furthermore, male sex, smoking and high low-density lipoprotein cholesterol level were positively associated with the mean CIMT in the normal group; high triglycerides levels were negatively associated with the mean CIMT in the impaired fasting glucose group; and alcohol consumption was an independent risk factor for mean CIMT in the diabetes mellitus group. Hypertension was the greatest risk factor for increased CIMT. These findings suggest that it is crucial to manage and control traditional risk factors in low-income populations in China in order to decelerate the recent dramatic increase in stroke incidence, and to reduce the burden of stroke. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  3. The potential of pigeon pea (Cajanus cajan) beverage as an anti-diabetic functional drink

    NASA Astrophysics Data System (ADS)

    Ariviani, S.; Affandi, D. R.; Listyaningsih, E.; Handajani, S.

    2018-01-01

    The number of patients with diabetes continues to increase. Diabetes complications might induce serious diseases such as kidney, nervous, cardiovascular diseases and stroke. Diabetic complications can be prevented by keeping blood glucose and cholesterol at normal levels. This study aims to determine the potential of pigeon pea beverage for lowering glucose and total cholesterol plasma levels and increasing the antioxidant status of diabetic-hypercholesterolemia rats. The research was conducted using 18 Sprague Dawley male rats aged 3 months old with an average body weight of 154 g. The rats were divided into three groups: normal group, D-H group (diabetic-hypercholesterolemia group), and pigeon pea beverage group. The results showed that pigeon pea beverage diet showed hypoglycemic and hypocholesterolemic activities, and could improve the antioxidant status of diabetic-hypercholesterolemia rats. Plasma glucose and total cholesterol levels of diabetic-hypercholesterolemia rats decreased 33.86% and 19.78% respectively. The improvement of the plasma antioxidant status was indicated by the decrease of plasma MDA (malondialdehyde) level, reaching 37.16%. The research result provides an alternative to diabetes management by using the local bean as an anti-diabetic functional drink.

  4. SET8 is involved in the regulation of hyperglycemic memory in human umbilical endothelial cells.

    PubMed

    Chen, Xiangyuan; Wu, Qichao; Jiang, Hui; Wang, Jiaqiang; Zhao, Yanjun; Xu, Yajun; Zhu, Minmin

    2018-05-14

    Hyperglycemic memory occurs in diabetic cardiovascular complications, but the underlying mechanism remains to be elucidated. Although the depletion of SET8 leads to increased mitochondrial oxidative stress via increasing cellular reactive oxygen species (ROS) production, the role of SET8 in hyperglycemic memory-induced mitochondrial dysfunction is not well understood. Here, we investigated the role of SET8 in this setting. Our results showed that high glucose-induced vascular inflammation, ROS production and apoptosis remained at high levels even when glucose returned to normal level. Elevated glucose reduced SET8 expression, which also remained at low level after returning to normoglycemia. SET8 overexpression protected cells from elevated glucose and hyperglycemic memory-induced endothelial injury by blocking ROS accumulation, attenuating vascular inflammation, and restoring nitric oxide production. Thus, our results suggest that SET8 may be a key mediator in hyperglycemic memory.

  5. We Can Change the Natural History of Type 2 Diabetes

    PubMed Central

    Ratner, Robert E.; Buse, John B.; Kahn, Steven E.

    2014-01-01

    As diabetes develops, we currently waste the first ∼10 years of the natural history. If we found prediabetes and early diabetes when they first presented and treated them more effectively, we could prevent or delay the progression of hyperglycemia and the development of complications. Evidence for this comes from trials where lifestyle change and/or glucose-lowering medications decreased progression from prediabetes to diabetes. After withdrawal of these interventions, there was no “catch-up”—cumulative development of diabetes in the previously treated groups remained less than in control subjects. Moreover, achieving normal glucose levels even transiently during the trials was associated with a substantial reduction in subsequent development of diabetes. These findings indicate that we can change the natural history through routine screening to find prediabetes and early diabetes, combined with management aimed to keep glucose levels as close to normal as possible, without hypoglycemia. We should also test the hypothesis with a randomized controlled trial. PMID:25249668

  6. Hypoglycaemia and hypoxic-ischaemic encephalopathy.

    PubMed

    Boardman, James P; Hawdon, Jane M

    2015-04-01

    The transition from fetal to neonatal life requires metabolic adaptation to ensure that energy supply to vital organs and systems is maintained after separation from the placental circulation. Under normal conditions, this is achieved through the mobilization and use of alternative cerebral fuels (fatty acids, ketone bodies, and lactate) when blood glucose concentration falls. Severe hypoxia-ischaemia is associated with impaired metabolic adaptation, and animal and human data suggest that levels of hypoglycaemia that are tolerated under normal conditions can be harmful in association with hypoxia-ischaemia. The optimal target blood glucose level for ensuring adequate energy provision in hypoxic-ischaemic encephalopathy (HIE) remains unknown. However, recent data support guidance to maintain a blood glucose concentration of 2.5 mmol/L or more in neonates with signs of acute neurological dysfunction, which includes those with HIE, and this is higher than the accepted threshold of 2 mmol/L in infants without signs of neurological dysfunction or hyperinsulinism. © The Authors. Journal compilation © 2015 Mac Keith Press.

  7. Caffeic acid as active principle from the fruit of Xanthium strumarium to lower plasma glucose in diabetic rats.

    PubMed

    Hsu, F L; Chen, Y C; Cheng, J T

    2000-04-01

    The antihyperglycemic effect of caffeic acid, one of the phenolic compounds contained in the fruit of Xanthium strumarium, was investigated. After an intravenous injection of caffeic acid into diabetic rats of both streptozotocin-induced and insulin-resistant models, a dose-dependent decrease of plasma glucose was observed. However, a similar effect was not produced in normal rats. An insulin-independent action of caffeic acid can thus be considered. Otherwise, this compound reduced the elevation of plasma glucose level in insulin-resistant rats receiving a glucose challenge test. Also, glucose uptake into the isolated adipocytes was raised by caffeic acid in a concentration-dependent manner. Increase of glucose utilization by caffeic acid seems to be responsible for the lowering of plasma glucose.

  8. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    PubMed

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  9. Relationship between serum secreted frizzled-related protein 4 levels and the first-phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance.

    PubMed

    Liu, Fang; Qu, Hua; Li, Yingjie; Tang, Qian; Yang, Zesong; Wang, Hang; Deng, Huacong

    2015-01-01

    Recent evidence suggests that serum secreted frizzled-related protein (SFRP) 4 may affect β-cell function. In a cross-sectional clinical study, 56 subjects with type 2 diabetes mellitus (T2DM), 52 subjects with impaired glucose tolerance (IGT) and 42 normal glucose tolerance (NGT) subjects were enrolled to investigate the relationship between SFRP4 levels and the first-phase of glucose-stimulated insulin secretion, glucose metabolism and inflammation. Intravenous glucose tolerance tests were conducted, and acute insulin response (AIR), the area under the curve of the first-phase (0-10 min) insulin secretion (AUC), and the glucose disposition index (GDI) were calculated. The serum levels of SFRP4, IL-1β, plasma glucose, serum lipid, and glycated hemoglobin (HbA1c) were measured. Levels of serum SFRP4 and IL-1β in the T2DM group and IGT group were significantly higher than those in the NGT group (P < 0.01). The AIR, AUC and GDI between the three groups showed a progressive decrease from the NGT to IGT groups with the lowest value in the T2DM groups (P < 0.01). The serum SFRP4 levels were negatively correlated with AIR, AUC, GDI and HOMA-β (P < 0.01) and were positively correlated with fasting plasma glucose, HbA1c, hs-CRP, and IL-1β (P < 0.01). Our study provides evidence that the concentrations of serum SFRP4 in T2DM and IGT subjects were increased and were correlated closely with glycose metabolic disorder, the first-phase of glucose-stimulated insulin secretion and chronic low-grade inflammation. SFRP4 may participate in the development of type 2 diabetes mellitus.

  10. Differences in cardiovascular risk profile based on relationship between post-load plasma glucose and fasting plasma levels.

    PubMed

    Succurro, Elena; Marini, Maria Adelaide; Grembiale, Alessandro; Lugarà, Marina; Andreozzi, Francesco; Sciacqua, Angela; Hribal, Marta Letizia; Lauro, Renato; Perticone, Francesco; Sesti, Giorgio

    2009-05-01

    It has been shown that subjects with normal glucose tolerance (NGT), whose plasma glucose (PG) levels do not return to their fasting PG level within 2 h during an oral glucose tolerance test (OGTT) (Group I), have a significantly higher risk to develop type 2 diabetes than NGT subjects whose 2-h glucose returns to, or drops below, the fasting level (Group I). However, it is still unsettled whether individuals in Group II have a more atherogenic profile than Group I subjects. To address this issue, we examined 266 non-diabetic offspring of type 2 diabetic patients, recruited in the context of EUGENE2 cross-sectional study. All subjects underwent an euglycaemic-hyperinsulinemic clamp to assess glucose tolerance and insulin sensitivity. Furthermore, cardiovascular risk factors and ultrasound measurement of carotid intima-media thickness (IMT) were evaluated. Individuals in Group II exhibited significantly higher waist circumference, blood pressure, triglycerides, 2-h post-load PG, hsC-reactive protein, interleukin-6, insulin-like growth factor-1 (IGF-1), IMT, and lower insulin sensitivity than subjects in Group I. Subjects with NGT, whose PG concentration does not return to their fasting PG level within 2 h during OGTT, have an atherogenic profile, suggesting that performing OGTT with measurement of PG every 30 min may be useful to assess the risk for cardiovascular disease in glucose-tolerant subjects.

  11. [The physiology of the isolated dog pancreas--the influence of the actual blood glucose level on the blood circulation in the pancreas].

    PubMed

    Hempfling, H; Husemann, B

    1975-06-01

    1. Glucose loading tests were undertaken on isolated pancreas or pancreas-duodenal preparations. 2. In 75% of cases a vasodilatation can be observed which leads to enhanced blood circulation under constant pressure in the isolated organ. 3. This vasodilatation persists until the level of blood sugar has normalized. 4. The experiment being carried out on an isolated organ, external factors such as the vagus nerve, do not become active.

  12. Postprandial Glucose Surges after Extremely Low Carbohydrate Diet in Healthy Adults.

    PubMed

    Kanamori, Koji; Ihana-Sugiyama, Noriko; Yamamoto-Honda, Ritsuko; Nakamura, Tomoka; Sobe, Chie; Kamiya, Shigemi; Kishimoto, Miyako; Kajio, Hiroshi; Kawano, Kimiko; Noda, Mitsuhiko

    2017-09-01

    Carbohydrate-restricted diets are prevalent not only in obese people but also in the general population to maintain appropriate body weight. Here, we report that extreme carbohydrate restriction for one day affects the subsequent blood glucose levels in healthy adults. Ten subjects (median age 30.5 years, BMI 21.1 kg/m 2 , and HbA1c 5.5%), wearing with a continuous glucose monitoring device, were given isoenergetic test meals for 4 consecutive days. On day 1, day 2 (D2), and day 4 (D4), they consumed normal-carbohydrate (63-66% carbohydrate) diet, while on day 3, they took low-carbohydrate/high-fat (5% carbohydrate) diet. The daily energy intake was 2,200 kcal for males and 1,700 kcal for females. On D2 and D4, we calculated the mean 24-hr blood glucose level (MEAN/24h) and its standard deviation (SD/24h), the area under the curve (AUC) for glucose over 140 mg/dL within 4 hours after each meal (AUC/4h/140), the mean amplitude of the glycemic excursions (MAGE), the incremental AUC of 24-hr blood glucose level above the mean plus one standard deviation (iAUC/MEAN+SD). Indexes for glucose fluctuation on D4 were significantly greater than those on D2 (SD/24h; p = 0.009, MAGE; p = 0.013, AUC/4h/140 after breakfast and dinner; p = 0.006 and 0.005, and iAUC/MEAN+SD; p = 0.007). The value of MEAN/24h and AUC/4h/140 after lunch on D4 were greater than those on D2, but those differences were not statistically significant. In conclusion, consumption of low-carbohydrate/high-fat diet appears to cause higher postprandial blood glucose on subsequent normal-carbohydrate diet particularly after breakfast and dinner in healthy adults.

  13. β-3AR W64R Polymorphism and 30-Minute Post-Challenge Plasma Glucose Levels in Obese Children

    PubMed Central

    Verdi, Hasibe; Tulgar Kınık, Sibel; Yılmaz Yalçın, Yaprak; Muratoğlu Şahin, Nursel; Yazıcı, Ayşe Canan; Ataç, F. Belgin

    2015-01-01

    Objective: In this study, we aimed to investigate the association of W64R polymorphism of the β3-adrenergic receptor gene (β-3AR) with childhood obesity and related pathologies. Methods: β-3AR gene W64R genotyping was carried out in 251 children aged 6-18 years. Of these subjects, 130 were obese (62 boys) and 121 were normal-weight (53 boys). In the obese group, fasting lipids, glucose and insulin levels were measured. Oral glucose tolerance test (OGTT) was performed in 75 of the obese patients. Results: The frequency of W64R genotype was similar in obese and non-obese children. In obese children, relative body mass index, waist-to-hip ratio, serum lipid, glucose and insulin levels, as well as homeostasis model assessment of insulin resistance (HOMA-IR) scores were not different between Arg allele carriers (W64R and R64R) and noncarriers (W64W). In 75 obese children, OGTT results showed that Arg allele carriers had significantly higher 30-minute glucose levels (p=0.027). Conclusion: W64R polymorphism of the β-3AR gene is not associated with obesity and waist-to-hip ratio in Turkish children. Although there were no relationships between the genotypes and lipid, glucose/insulin levels or HOMA-IR, the presence of W64R variant seemed to have an unfavorable influence on early glucose excursion after glucose loading. PMID:25800470

  14. Measurement of diabetic sugar concentration in human blood using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Nawaz, M.; Ahmed, M.; Anwar, S.; Rehman, A.; Rashid, R.; Mahmood, A.

    2012-06-01

    This study demonstrates the use of Raman spectroscopy for the direct measurement of diabetic sugar in human blood using 532 nm laser system. Raman spectra were collected from whole blood drawn from 21 individuals. We have elicited a reliable glucose signature in diabetic patients, and measured glucose levels in blood serum of normal, healthy diabetic and diabetic patients with other malignancies like cancer and hepatitis. Quantitative predictions of glucose spectra illustrate the predictions based on molecular information carried by the Raman light in highly light-scattering and absorbing media. Raman spectrum peaks for diabetic blood serum are observed at 1168, 1531, 1463, 1021 cm-1 with intensity level 17000 to 18500 pixels attributed to carbohydrates, proteins, lipids, collagen, and skeletal C-C stretch of lipids acyl chains. Raman spectra for normal, diabetic patients having cancer and hepatitis were also recorded. This in vitro glucose monitoring methodology will lead in vivo noninvasive on-line monitoring having painless and at the same time the data will be displayed on-line and in real time. The measured Raman peaks provides detailed bio-chemical fingerprint of the sample and could confer diagnostic benefit in a clinical setting.

  15. The effect of weight loss and treatment with metformin on serum vaspin levels in women with polycystic ovary syndrome.

    PubMed

    Koiou, Ekaterini; Tziomalos, Konstantinos; Dinas, Konstantinos; Katsikis, Ilias; Kalaitzakis, Emmanuil; Delkos, Dimitrios; Kandaraki, Eleni A; Panidis, Dimitrios

    2011-01-01

    Many patients with polycystic ovary syndrome (PCOS) have insulin resistance, obesity (mostly visceral) and glucose intolerance, conditions associated with abnormalities in the production of vaspin, a novel adipokine that appears to preserve insulin sensitivity and glucose tolerance. The aim of the study was to assess serum vaspin levels in PCOS and the effects on vaspin levels of metformin or of weight loss. We studied 79 patients with PCOS and 50 healthy female volunteers. Normal weight patients with PCOS (n=25) were treated with metformin 850 mg bid for 6 months. Overweight/obese patients with PCOS (n=54) were prescribed a normal-protein, energy-restricted diet for 6 months; half of them were also given orlistat 120 mg tid and the rest were given sibutramine 10 mg qd. At baseline and after 6 months, serum vaspin levels and anthropometric, metabolic and hormonal features of PCOS were determined. Overall, patients with PCOS had higher vaspin levels than controls (p=0.021). Normal weight patients with PCOS had higher vaspin levels than normal weight controls (p=0.043). Vaspin levels were non-significantly higher in overweight/obese patients with PCOS than in overweight/obese controls. In normal weight patients with PCOS, metformin reduced vaspin levels non-significantly. In overweight/obese patients with PCOS, diet plus orlistat or sibutramine did not affect vaspin levels. Vaspin levels were independently correlated with body mass index in women with PCOS (p=0.001) and with waist circumference in controls (p=0.015). In conclusion, serum vaspin levels are elevated in PCOS but neither a small weight loss nor metformin affect vaspin levels significantly.

  16. New technologies in the treatment of type 1 diabetes.

    PubMed

    Schmidt, Signe

    2013-11-01

    Type 1 diabetes is a chronic condition characterized by insufficient production of insulin, a hormone needed for proper control of blood glucose levels. People with type 1 diabetes must monitor their blood glucose throughout the day using a glucose meter or a continuous glucose monitor, calculate how much insulin is needed to maintain normal blood glucose levels, and administer the insulin dose by pen injection or insulin pump infusion into the subcutaneous tissue. In recent years, several new technologies for the treatment of type 1 diabetes have been developed. This PhD thesis covers two studies of the effects of commercially available technologies--sensor-augmented pump therapy and automated insulin bolus calculators--when used in clinical practice. Both studies demonstrated that these technologies have the potential to improve diabetes care. In addition, two in-clinic studies related to emerging technologies--closed-loop glucose control and virtual simulation environments--are included in the thesis. The results of these experiments provided proof of concept and will serve as a basis for further research in these fields.

  17. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.

    PubMed

    Yadav, Jyoti; Rani, Asha; Singh, Vijander

    2016-12-01

    This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.

  18. The impact of Roux-en-Y gastric bypass surgery on normal metabolism in a porcine model

    PubMed Central

    Lindqvist, Andreas; Ekelund, Mikael; Garcia-Vaz, Eliana; Ståhlman, Marcus; Pierzynowski, Stefan; Gomez, Maria F.; Rehfeld, Jens F.; Groop, Leif; Hedenbro, Jan

    2017-01-01

    Background A growing body of literature on Roux-en-Y gastric bypass surgery (RYGB) has generated inconclusive results on the mechanism underlying the beneficial effects on weight loss and glycaemia, partially due to the problems of designing clinical studies with the appropriate controls. Moreover, RYGB is only performed in obese individuals, in whom metabolism is perturbed and not completely understood. Methods In an attempt to isolate the effects of RYGB and its effects on normal metabolism, we investigated the effect of RYGB in lean pigs, using sham-operated pair-fed pigs as controls. Two weeks post-surgery, pigs were subjected to an intravenous glucose tolerance test (IVGTT) and circulating metabolites, hormones and lipids measured. Bile acid composition was profiled after extraction from blood, faeces and the gallbladder. Results A similar weight development in both groups of pigs validated our experimental model. Despite similar changes in fasting insulin, RYGB-pigs had lower fasting glucose levels. During an IVGTT RYGB-pigs had higher insulin and lower glucose levels. VLDL and IDL were lower in RYGB- than in sham-pigs. RYGB-pigs had increased levels of most amino acids, including branched-chain amino acids, but these were more efficiently suppressed by glucose. Levels of bile acids in the gallbladder were higher, whereas plasma and faecal bile acid levels were lower in RYGB- than in sham-pigs. Conclusion In a lean model RYGB caused lower plasma lipid and bile acid levels, which were compensated for by increased plasma amino acids, suggesting a switch from lipid to protein metabolism during fasting in the immediate postoperative period. PMID:28257455

  19. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    PubMed

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Retrospective study on the efficacy of a low-carbohydrate diet for impaired glucose tolerance

    PubMed Central

    Maekawa, Satoshi; Kawahara, Tetsuya; Nomura, Ryosuke; Murase, Takayuki; Ann, Yasuyoshi; Oeholm, Masayuki; Harada, Masaru

    2014-01-01

    Background In recent years, the number of people with impaired glucose tolerance (IGT) has increased steadily worldwide. It is clear that the prevention of diabetes is important from the perspective of public health, medical care, and economics. It was recently reported that a low-carbohydrate diet (LCD) is useful for achieving weight loss and glycemic control, but there is no information about the effects of the LCD on IGT. We designed a 7-day in-hospital educational program focused on the LCD for IGT. Methods The subjects were 72 patients with IGT (36 in the LCD group and 36 in the control group) who were enrolled from April 2007–March 2012 and followed for 12 months. We retrospectively compared the LCD group with the control group. Results In 69.4% of the LCD group, blood glucose was normalized at 12 months and the 2-hour plasma glucose level in the oral glucose tolerance test (OGTT) was reduced by 33 mg/dL. In addition, the incidence of diabetes was significantly lower in the LCD group than in the control group at 12 months (0% versus 13.9%, P=0.02). The LCD group showed a significant decrease in fasting plasma glucose, hemoglobin A1c, the homeostasis model of assessment of insulin resistance value, body weight and serum triglycerides (TGs) at 12 months, while there was a significant increase of the serum high-density lipoprotein (HDL) cholesterol level. Conclusion The LCD is effective for normalizing blood glucose and preventing progression to type 2 diabetes in patients with IGT. PMID:24966689

  1. Low cortisol levels in blood from dairy cows with ketosis: a field study

    PubMed Central

    2010-01-01

    Background An elevated plasma glucose concentration has been considered to be a potential risk factor in the pathogenesis of left-displaced abomasums (DA). Therefore the present study was performed to investigate if spontaneous disease (parturient paresis, metritis, ketosis etc) in dairy cows results in elevated concentrations of glucose and cortisol in blood as cortisol is the major regulator of glucose in ruminants. Methods Cortisol, insulin, β-hydroxybutyric acid (BHBA), non esterified fatty acids (NEFA), and serum calcium were analyzed in blood serum and glucose, in whole blood, from 57 spontaneously diseased cows collected at different farms. The cows were grouped according to the disease; parturient paresis, recumbent for other reasons, mastitis, metritis, ketosis, inappetance and others. Results No elevated concentrations of cortisol or glucose were found in cows with metritis and mastitis but both cortisol and glucose were elevated in cows stressed by recumbency. Cows with ketonemia (BHBA > 1.5 mmol/l) did not have low concentration of glucose in blood but significantly low levels of cortisol. Some of these cows even had cortisol concentrations below the detection limit of the analysing method (< 14 nmol/l). Conclusions The study gives patho-physiological support to the treatment strategies of ketosis, recommending glucocorticoids, insulin etc. However further studies of this problem are needed to understand why cows with ketosis have low levels of cortisol and normal levels of glucose. To what extent elevated cortisol and glucose levels in hypocalcemic and recumbent cows are involved in the ethiology and /or the pathogenesis of DA also will need further research. PMID:20487518

  2. Low cortisol levels in blood from dairy cows with ketosis: a field study.

    PubMed

    Forslund, Kristina B; Ljungvall, Orjan A; Jones, Bernt V

    2010-05-20

    An elevated plasma glucose concentration has been considered to be a potential risk factor in the pathogenesis of left-displaced abomasums (DA). Therefore the present study was performed to investigate if spontaneous disease (parturient paresis, metritis, ketosis etc) in dairy cows results in elevated concentrations of glucose and cortisol in blood as cortisol is the major regulator of glucose in ruminants. Cortisol, insulin, beta-hydroxybutyric acid (BHBA), non esterified fatty acids (NEFA), and serum calcium were analyzed in blood serum and glucose, in whole blood, from 57 spontaneously diseased cows collected at different farms. The cows were grouped according to the disease; parturient paresis, recumbent for other reasons, mastitis, metritis, ketosis, inappetance and others. No elevated concentrations of cortisol or glucose were found in cows with metritis and mastitis but both cortisol and glucose were elevated in cows stressed by recumbency. Cows with ketonemia (BHBA > 1.5 mmol/l) did not have low concentration of glucose in blood but significantly low levels of cortisol. Some of these cows even had cortisol concentrations below the detection limit of the analysing method (< 14 nmol/l). The study gives patho-physiological support to the treatment strategies of ketosis, recommending glucocorticoids, insulin etc. However further studies of this problem are needed to understand why cows with ketosis have low levels of cortisol and normal levels of glucose. To what extent elevated cortisol and glucose levels in hypocalcemic and recumbent cows are involved in the ethiology and /or the pathogenesis of DA also will need further research.

  3. A natural protective mechanism against hyperglycaemia in vascular endothelial and smooth-muscle cells: role of glucose and 12-hydroxyeicosatetraenoic acid.

    PubMed Central

    Alpert, Evgenia; Gruzman, Arie; Totary, Hanan; Kaiser, Nurit; Reich, Reuven; Sasson, Shlomo

    2002-01-01

    Bovine aortic endothelial and smooth-muscle cells down-regulate the rate of glucose transport in the face of hyperglycaemia, thus providing protection against deleterious effects of increased intracellular glucose levels. When exposed to high glucose concentrations these cells reduced the mRNA and protein content of their typical glucose transporter, GLUT-1, as well as its plasma-membrane abundance. Inhibition of the lipoxygenase (LO) pathway, and particularly 12-LO, reversed this glucose-induced down-regulatory process and restored the rate of hexose transport to the level seen in vascular cells exposed to normal glucose levels. This reversal was accompanied by increased levels of GLUT-1 mRNA and protein, as well as of its plasma-membrane content. Exposure of the vascular cells to elevated glucose concentrations increased by 2-3-fold the levels of cell-associated and secreted 12-hydroxyeicosatetraenoic acid (12-HETE), the product of 12-LO. Inhibition of 15- and 5-LO, cyclo-oxygenases 1 and 2, and eicosanoid-producing cytochrome P450 did not modify the hexose-transport system in vascular cells. These results suggest a role for HETEs in the autoregulation of hexose transport in vascular cells. 8-Iso prostaglandin F(2alpha), a non-enzymic oxidation product of arachidonic acid, had no effect on the hexose-transport system in vascular cells exposed to hyperglycaemic conditions. Taken together, these findings show that hyperglycaemia increases the production rate of 12-HETE, which in turn mediates the down-regulation of GLUT-1 expression and the glucose-transport system in vascular endothelial and smooth-muscle cells. PMID:11853550

  4. Blood glucose regulation during living-donor liver transplant surgery.

    PubMed

    Gedik, Ender; İlksen Toprak, Hüseyin; Koca, Erdinç; Şahin, Taylan; Özgül, Ülkü; Ersoy, Mehmet Özcan

    2015-04-01

    The goal of this study was to compare the effects of 2 different regimens on blood glucose levels of living-donor liver transplant. The study participants were randomly allocated to the dextrose in water plus insulin infusion group (group 1, n = 60) or the dextrose in water infusion group (group 2, n = 60) using a sealed envelope technique. Blood glucose levels were measured 3 times during each phase. When the blood glucose level of a patient exceeded the target level, extra insulin was administered via a different intravenous route. The following patient and procedural characteristics were recorded: age, sex, height, weight, body mass index, end-stage liver disease, Model for End-Stage Liver Disease score, total anesthesia time, total surgical time, and number of patients who received an extra bolus of insulin. The following laboratory data were measured pre- and postoperatively: hemoglobin, hematocrit, platelet count, prothrombin time, international normalized ratio, potassium, creatinine, total bilirubin, and albumin. No hypoglycemia was noted. The recipients exhibited statistically significant differences in blood glucose levels during the dissection and neohepatic phases. Blood glucose levels at every time point were significantly different compared with the first dissection time point in group 1. Excluding the first and second anhepatic time points, blood glucose levels were significantly different as compared with the first dissection time point in group 2 (P < .05). We concluded that dextrose with water infusion alone may be more effective and result in safer blood glucose levels as compared with dextrose with water plus insulin infusion for living-donor liver transplant recipients. Exogenous continuous insulin administration may induce hyperglycemic attacks, especially during the neohepatic phase of living-donor liver transplant surgery. Further prospective studies that include homogeneous patient subgroups and diabetic recipients are needed to support the use of dextrose plus water infusion without insulin.

  5. Salivary glucose concentration and excretion in normal and diabetic subjects.

    PubMed

    Jurysta, Cedric; Bulur, Nurdan; Oguzhan, Berrin; Satman, Ilhan; Yilmaz, Temel M; Malaisse, Willy J; Sener, Abdullah

    2009-01-01

    The present report aims mainly at a reevaluation of salivary glucose concentration and excretion in unstimulated and mechanically stimulated saliva in both normal and diabetic subjects. In normal subjects, a decrease in saliva glucose concentration, an increase in salivary flow, but an unchanged glucose excretion rate were recorded when comparing stimulated saliva to unstimulated saliva. In diabetic patients, an increase in salivary flow with unchanged salivary glucose concentration and glucose excretion rate were observed under the same experimental conditions. Salivary glucose concentration and excretion were much higher in diabetic patients than in control subjects, whether in unstimulated or stimulated saliva. No significant correlation between glycemia and either glucose concentration or glucose excretion rate was found in the diabetic patients, whether in unstimulated or stimulated saliva. In the latter patients, as compared to control subjects, the relative magnitude of the increase in saliva glucose concentration was comparable, however, to that of blood glucose concentration. The relationship between these two variables was also documented in normal subjects and diabetic patients undergoing an oral glucose tolerance test.

  6. A Soxhlet Extract of Gongronema latifolium Retains Moderate Blood Glucose Lowering Effect and Produces Structural Recovery in the Pancreas of STZ-Induced Diabetic Rats

    PubMed Central

    Al-Hindi, Bassel; Yusoff, Nor A.; Atangwho, Item J.; Ahmad, Mariam; Asmawi, Mohd Z.; Yam, Mun F.

    2016-01-01

    Background: Gongronema latifolium Benth. (GL) possesses considerable glucose lowering effects able to be utilized on a large-scale. This paper investigates the effects of a Soxhlet extract on hyperglycemia, Langerhans islets and glucose uptake by abdominal muscles. Methods: Ethanol and a Soxhlet apparatus were used to obtain GL ethanolic Soxhlet extract (GLES). It was then administered to randomly-segregated male Sprague-Dawley, normal and STZ-induced diabetic rats, using oral gavage to evaluate blood glucose levels (BGLs), serum lipid profile, insulin levels and the pancreas post-treatment. Results: GLES significantly (p < 0.05) decreased BGLs of normal rats in glucose tolerance testing at a dose of 2 g/kg b.w. but failed to do so in diabetic rats undergoing acute 7-h treatment. Given twice-daily, 1 g/kg b.w. of GLES moderately controlled diabetic BGLs starting from day 10. After 14 days of treatment, 1 g/kg and 0.5 g/kg b.w. of GLES caused 44% and 50% respective increases in the average area of Langerhans islets compared to DC. Using isolated rat abdominal muscle, GLES was found to be a mild insulin-sensitizer. GC-MS analysis revealed the presence of the known glucose-lowering phytosterol, Sitostenone. Conclusion: Despite retaining moderate antidiabetic activity, Soxhlet extraction of Gongronema latifolium probably leads to the destruction of active heat-liable compounds. PMID:29083373

  7. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase.

    PubMed

    Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco

    2016-05-01

    (-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.

  8. Adipose Tissues Characteristics of Normal, Obesity, and Type 2 Diabetes in Uygurs Population

    PubMed Central

    Zhang, Jun; Zhang, Zhiwei; Ding, Yulei; Xu, Peng; Wang, Tingting; Xu, Wenjing; Lu, Huan; Li, Jun; Wang, Yan; Li, Siyuan; Liu, Zongzhi; An, Na; Yang, Li; Xie, Jianxin

    2015-01-01

    Our results showed that, at the same BMI level, Uygurs have greater WHR values, abdominal visceral fat content, and diabetes risks than Kazaks. In addition, values of HDL-C in Uygur subjects were lower than those in Kazak subjects, and values of creatinine, uric acid, diastolic blood pressure, blood glucose, and fructosamine in Uygur male subjects were lower than those in Kazak male subjects. In contrast, systolic blood pressure values in Uygur subjects were greater than those in Kazak subjects, and blood glucose values were greater in Uygur female subjects than in Kazak female subjects. Additionally, in Uygurs, visceral adipose tissue expression levels of TBX1 and TCF21 were greater in obesity group than in normal and T2DM groups and lower in T2DM group than in normal group (P < 0.01). The visceral adipose tissue expression levels of APN in normal group was greater than those in obesity and T2DM groups, and visceral adipose tissue expression levels of TNF-α and MCP-1 in normal group were lower than those in obesity and T2DM groups (P < 0.01). In conclusion, T2DM in Uygurs was mainly associated with not only distribution of adipose tissue in body, but also change in metabolic activity and adipocytokines secretion of adipose tissue. PMID:26273678

  9. Response to fifty grams oral glucose challenge test and pattern of preceding fasting plasma glucose in normal pregnant Nigerians.

    PubMed

    Adegbola, Omololu; Ajayi, Godwin Olufemi

    2014-03-01

    Diabetes mellitus in pregnancy has profound implications for the baby and mother and thus active screening for this is desirable. Fifty grams oral glucose challenge test was administered after obtaining consent to 222 women in good health with singleton pregnancies without diabetes mellitus at 24 to 28 weeks gestation after an overnight fast. Venous blood sample was obtained before and 1 hour after the glucose load. A diagnostic 3-hour 100 g oral glucose tolerance test was subsequently performed in all. Two hundred and ten women had a normal response to oral glucose tolerance test i.e. venous plasma glucose below these cut-off levels: fasting 95 mg/dl (5.3 mmol/l), 1 hour 180 mg/dl (10.0 mmol/l), 2 hours 155 mg/dl (8.6 mmol/l) and 3 hours 140 mg/dl (7.8 mmol/l), while 12 were found to have gestational diabetes mellitus and were subsequently excluded from the study. They were appropriately managed. The mean maternal age was 30.9 ± 4.1 years (range 19 to 45 years) and the mean parity was 1.2 ± 1.1 (range 0 to 5). The mean fasting plasma glucose was 74.5 ± 11.5 mg/dl (range 42 to 117 mg/dl), while the mean plasma glucose 1 hour after 50 g glucose challenge test was 115.3 ± 19.1 mg/dl (range 56 to 180 mg/dl). The mean fasting plasma glucose in normal pregnant Nigerians was 74.5 ± 11.5 mg/dl (range 42 to 117 mg/dl). There is a need to re-appraise and possibly review downwards the World Health Organization fasting plasma glucose diagnostic criteria in pregnant Nigerians for better detection of gestational diabetes mellitus. Pregnant women with venous plasma glucose greater than 153.5 mg/dl (8.5 mmol/l) 1 hour after 50 g glucose challenge test are strongly recommended for diagnostic test of gestational diabetes mellitus.

  10. Glucose intolerance in a large cohort of mediterranean women with polycystic ovary syndrome: phenotype and associated factors.

    PubMed

    Gambineri, Alessandra; Pelusi, Carla; Manicardi, Elisa; Vicennati, Valentina; Cacciari, Mauro; Morselli-Labate, Antonio Maria; Pagotto, Uberto; Pasquali, Renato

    2004-09-01

    The aim of this study was to investigate the phenotypic parameters and associated factors characterizing the development of glucose intolerance in polycystic ovary syndrome (PCOS). Among the 121 PCOS female subjects from the Mediterranean region, 15.7 and 2.5% displayed impaired glucose tolerance and type 2 diabetes, respectively. These subjects were included in a single group of overweight or obese subjects presenting with glucose intolerance (GI) states. PCOS women with normal glucose tolerance (81.8%) were subdivided into two groups: those who were overweight or obese and those of normal weight. Metabolic and hormonal characteristics of the GI group included significantly higher fasting and glucose-stimulated insulin levels, more severe insulin resistance, hyperandrogenemia, and significantly higher cortisol and androstenedione responses to 1-24 ACTH stimulation. One important finding was that lower birth weight and earlier age of menarche were associated with GI in PCOS women. Frequency of hirsutism, oligomenorrhea, acne, and acanthosis nigricans did not characterize women with GI. Our findings indicate that PCOS patients with GI represent a subgroup with specific clinical and hormonal characteristics. Our observations may have an important impact in preventative and therapeutic strategies.

  11. Effect of aqueous extract of tops of date palm leaves on blood glucose of diabetic rats.

    PubMed

    Ismail, Mohamed Saleh; Abuzaid, Omar Ibrahim; El-Ashmawy, Ibrahim Mohamed

    2017-09-01

    Present study was carried out to examine the effect of tops of date palm leaves extract on blood glucose of streptozotocin induced diabetic rats. Forty male Sprague Dawely rats (120-130g) were housed individually and randomly allocated to two main groups; diabetic group (n=30), and normal group (n=10) in the animal lab, Faculty of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia. An aqueous extracts were prepared from tops of date palm leaves (EDPL) and were orally administered to rats. Later, the determination of glucose, BUN, creatinine, uric acid, ALT, and AST was examined. Pancreas sample were taken for histopathological examination. It was clear that the higher the concentration of EDPL the lower the weight gain (P<0.001). Glucose concentration of normal group changed by - 0.79% and decreased by -20.4% among diabetic control group, while feeding 1% and 2% EDPL had no significant effects, and the higher the amount of EDPL the higher the concentration of blood glucose. The thought that tea made from date palm leaves decrease blood glucose level has been denied by the results of this study and this tea may worsen diabetes patient's status.

  12. Describing hypoglycemia--definition or operational threshold?

    PubMed

    Rozance, Paul J; Hay, William W

    2010-05-01

    Severe glucose deficiency leads to cerebral energy failure, impaired cardiac performance, muscle weakness, glycogen depletion, and diminished glucose production. Thus, maintenance of glucose delivery to all organs is an essential physiological function. Normal term infants have sufficient alternate energy stores and capacity for glucose production from glycogenolysis and gluconeogenesis to ensure normal glucose metabolism during the transition to extrauterine life and early neonatal period. Milk feedings particularly enhance glucose homeostasis. Energy sources often are low in preterm and growth restricted infants, who are especially vulnerable to glucose deficiency. Plasma glucose concentration is the only practical measure of glucose sufficiency, but by itself is a very limited guide. Key to preventing complications from glucose deficiency is to identify infants at risk, promote early and frequent feedings, normalize glucose homeostasis, measure glucose concentrations early and frequently in infants at risk, and treat promptly when glucose deficiency is marked and symptomatic. 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Describing hypoglycemia - definition or operational threshold?

    PubMed Central

    Rozance, Paul J.; Hay, William W.

    2010-01-01

    Severe glucose deficiency leads to cerebral energy failure, impaired cardiac performance, muscle weakness, glycogen depletion, and diminished glucose production. Thus, maintenance of glucose delivery to all organs is an essential physiological function. Normal term infants have sufficient alternate energy stores and capacity for glucose production from glycogenolysis and gluconeogenesis to ensure normal glucose metabolism during the transition to extrauterine life and early neonatal period. Milk feedings particularly enhance glucose homeostasis. Energy sources often are low in preterm and growth restricted infants, who are especially vulnerable to glucose deficiency. Plasma glucose concentration is the only practical measure of glucose sufficiency, but by itself is a very limited guide. Key to preventing complications from glucose deficiency is to identify infants at risk, promote early and frequent feedings, normalize glucose homeostasis, measure glucose concentrations early and frequently in infants at risk, and treat promptly when glucose deficiency is marked and symptomatic. PMID:20554129

  14. C-reactive protein and lipoprotein-a as markers of coronary heart disease in polycystic ovary syndrome.

    PubMed

    Güdücü, Nilgün; Işçi, Herman; Yiğiter, Alin Başgül; Dünder, Ilkkan

    2012-01-01

    The aim of this study was to investigate the risk factors of coronary heart disease, CRP and Lipoprotein-a in polycystic ovary syndrome patients. Prospectively collected data of polycystic ovary syndrome patients (n=62) and control group (n=40) were compared. PCOS patients had higher HOMA-IR, CRP, DHEAS, free testosterone, FAI, LH and prolactin levels when compared to the control group. Lipoprotein-a levels did not differ between the groups. The obese PCOS group had statistically significantly higher fasting blood glucose, total cholesterol, triglyceride, free testosterone, insulin, CRP and HOMA-IR and statistically significantly lower HDL and SHBG when compared to normal weight PCOS persons. Fasting blood glucose, total cholesterol, LDL, SHBG, CRP, Lipoprotein-a, FSH, LH, TSH, DHEAS and prolactin levels did not differ between the normal weight and obese control groups. CRP levels increase in polycystic ovary syndrome patients and can be used as a marker of coronary heart disease. Future studies can be directed at treatments to decrease CRP levels, including antiinflammatory treatments.

  15. Long-term reversal of diabetes in non-obese diabetic mice by liver-directed gene therapy.

    PubMed

    Ren, Binhai; O'Brien, Bronwyn A; Byrne, Michelle R; Ch'ng, Edwin; Gatt, Prudence N; Swan, M Anne; Nassif, Najah T; Wei, Ming Q; Gijsbers, Rik; Debyser, Zeger; Simpson, Ann M

    2013-01-01

    Type 1 diabetes (T1D) results from an autoimmune attack against the insulin-producing β-cells of the pancreas. The present study aimed to reverse T1D by gene therapy. We used a novel surgical technique, which involves isolating the liver from the circulation before the delivery of a lentiviral vector carrying furin-cleavable human insulin (INS-FUR) or empty vector to the livers of diabetic non-obese diabetic mice (NOD). This was compared with the direct injection of the vector into the portal circulation. Mice were monitored for body weight and blood glucose. Intravenous glucose tolerance tests were performed. Expression of insulin and pancreatic transcription factors was determined by the reverse transcriptase-polymerase chain reaction and immunohistochemistry and immunoelectron microscopy was used to localise insulin. Using the novel surgical technique, we achieved long-term transduction (42% efficiency) of hepatocytes, restored normoglycaemia for 150 days (experimental endpoint) and re-established normal glucose tolerance. We showed the expression of β-cell transcription factors, murine insulin, glucagon and somatostatin, and hepatic storage of insulin in granules. The expression of hepatic markers, C/EBP-β, G6PC, AAT and GLUI was down-regulated in INS-FUR-treated livers. Liver function tests remained normal, with no evidence of intrahepatic inflammation or autoimmune destruction of the insulin-secreting liver tissue. By comparison, direct injection of INS-FUR reduced blood glucose levels, and no pancreatic transdifferentiation or normal glucose tolerance was observed. This gene therapy protocol has, for the first time, permanently reversed T1D with normal glucose tolerance in NOD mice and, as such, represents a novel therapeutic strategy for the treatment of T1D. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Chestnut astringent skin extract, an alpha-amylase inhibitor, retards carbohydrate absorption in rats and humans.

    PubMed

    Tsujita, Takahiro; Takaku, Takeshi; Suzuki, Tsuneo

    2008-02-01

    Inhibitors of carbohydrate-hydrolyzing enzyme play an important role to control postprandial blood glucose levels. In this paper, we investigated the effect of an ethanol extract from chestnut astringent skin (CAS) on alpha-amylase. Chestnut astringent skin extract strongly inhibited human and porcine pancreatic alpha-amylase. We also investigated the effect of CAS extract on carbohydrate absorption in rats and humans. Oral administration of CAS extract to normal rats fed corn starch (2 g/kg body weight), significantly suppressed the increase of blood glucose levels after starch loading in a dose-dependent manner. The effective dose of CAS extract required to achieve 20 and 40% suppression of the rise in blood glucose level was estimated to be 40 and 155 mg/kg body weight, respectively. Chestnut astringent skin extract also suppressed the rise in plasma insulin level and the fall in plasma non-esterified fatty acid level. In the type 2 diabetic rat model, CAS extract significantly suppressed the rise in blood glucose level after starch loading in a dose-dependent manner. Chestnut astringent skin extract also suppressed the rise in plasma glucose level after boiled rice loading in a dose-dependent manner in humans. The amount of CAS extract required to achieve 11 and 23% suppression in the rise in plasma glucose level was 300 and 600 mg/person, respectively. These results suggest that CAS extract retards absorption of carbohydrate and reduces post-prandial hyperglycemia.

  17. Development and Validation of a Rapid (13)C6-Glucose Isotope Dilution UPLC-MRM Mass Spectrometry Method for Use in Determining System Accuracy and Performance of Blood Glucose Monitoring Devices.

    PubMed

    Matsunami, Risë K; Angelides, Kimon; Engler, David A

    2015-05-18

    There is currently considerable discussion about the accuracy of blood glucose concentrations determined by personal blood glucose monitoring systems (BGMS). To date, the FDA has allowed new BGMS to demonstrate accuracy in reference to other glucose measurement systems that use the same or similar enzymatic-based methods to determine glucose concentration. These types of reference measurement procedures are only comparative in nature and are subject to the same potential sources of error in measurement and system perturbations as the device under evaluation. It would be ideal to have a completely orthogonal primary method that could serve as a true standard reference measurement procedure for establishing the accuracy of new BGMS. An isotope-dilution liquid chromatography/mass spectrometry (ID-UPLC-MRM) assay was developed using (13)C6-glucose as a stable isotope analogue to specifically measure glucose concentration in human plasma, and validated for use against NIST standard reference materials, and against fresh isolates of whole blood and plasma into which exogenous glucose had been spiked. Assay performance was quantified to NIST-traceable dry weight measures for both glucose and (13)C6-glucose. The newly developed assay method was shown to be rapid, highly specific, sensitive, accurate, and precise for measuring plasma glucose levels. The assay displayed sufficient dynamic range and linearity to measure across the range of both normal and diabetic blood glucose levels. Assay performance was measured to within the same uncertainty levels (<1%) as the NIST definitive method for glucose measurement in human serum. The newly developed ID UPLC-MRM assay can serve as a validated reference measurement procedure to which new BGMS can be assessed for glucose measurement performance. © 2015 Diabetes Technology Society.

  18. Development and Validation of a Rapid 13C6-Glucose Isotope Dilution UPLC-MRM Mass Spectrometry Method for Use in Determining System Accuracy and Performance of Blood Glucose Monitoring Devices

    PubMed Central

    Matsunami, Risë K.; Angelides, Kimon; Engler, David A.

    2015-01-01

    Background: There is currently considerable discussion about the accuracy of blood glucose concentrations determined by personal blood glucose monitoring systems (BGMS). To date, the FDA has allowed new BGMS to demonstrate accuracy in reference to other glucose measurement systems that use the same or similar enzymatic-based methods to determine glucose concentration. These types of reference measurement procedures are only comparative in nature and are subject to the same potential sources of error in measurement and system perturbations as the device under evaluation. It would be ideal to have a completely orthogonal primary method that could serve as a true standard reference measurement procedure for establishing the accuracy of new BGMS. Methods: An isotope-dilution liquid chromatography/mass spectrometry (ID-UPLC-MRM) assay was developed using 13C6-glucose as a stable isotope analogue to specifically measure glucose concentration in human plasma, and validated for use against NIST standard reference materials, and against fresh isolates of whole blood and plasma into which exogenous glucose had been spiked. Assay performance was quantified to NIST-traceable dry weight measures for both glucose and 13C6-glucose. Results: The newly developed assay method was shown to be rapid, highly specific, sensitive, accurate, and precise for measuring plasma glucose levels. The assay displayed sufficient dynamic range and linearity to measure across the range of both normal and diabetic blood glucose levels. Assay performance was measured to within the same uncertainty levels (<1%) as the NIST definitive method for glucose measurement in human serum. Conclusions: The newly developed ID UPLC-MRM assay can serve as a validated reference measurement procedure to which new BGMS can be assessed for glucose measurement performance. PMID:25986627

  19. Magnesium and the Athlete.

    PubMed

    Volpe, Stella Lucia

    2015-01-01

    Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation in the body. It is a required mineral that is involved in more than 300 metabolic reactions in the body. Magnesium helps maintain normal nerve and muscle function, heart rhythm (cardiac excitability), vasomotor tone, blood pressure, immune system, bone integrity, and blood glucose levels and promotes calcium absorption. Because of magnesium's role in energy production and storage, normal muscle function, and maintenance of blood glucose levels, it has been studied as an ergogenic aid for athletes. This article will cover the general roles of magnesium, magnesium requirements, and assessment of magnesium status as well as the dietary intake of magnesium and its effects on exercise performance. The research articles cited were limited from those published in 2003 through 2014.

  20. Air Pollution and Serum Glucose Levels

    PubMed Central

    Sade, Maayan Yitshak; Kloog, Itai; Liberty, Idit F.; Katra, Itzhak; Novack, Lena; Novack, Victor

    2015-01-01

    Abstract Recent studies demonstrated an adverse effect of chronic exposure to air pollution (AP) on metabolic syndrome and its components. In a population-based study, we investigated the association between exposure to ambient AP and serum glucose (SG), among subjects with normal glucose, impaired fasting glucose (IFG), and diabetes mellitus (DM). We included 1,063,887 SG tests performed in 131,882 subjects (years 2001–2012). Exposure data included daily levels of SO2, NO2 and other pollutants of industrial, traffic, and nonanthropogenic sources. Demographical, clinical, and medications purchase data were assessed. Log-transformed SG levels were analyzed by linear mixed models adjusted for seasonal variables and personal characteristics. SG increases (%increase [95% CI]), among subjects with normal glucose, IFG, and DM, respectively, were associated with 6.36 ppb increase of NO2 measured 24 to 72 hours before the test (0.40% [0.31%; 0.50%], 0.56% [0.40%; 0.71%], and 1.08% [0.86%; 1.29%]); and with 1.17 ppb increase of SO2 measured 24 hours before the test (0.29% [0.22%; 0.36%], 0.20% [0.10%; 0.31%], and 0.33% [0.14%; 0.52%]). Among DM population, weakest association was observed among patients treated with Metformin (0.56% increase in SG [0.18%; 0.95%]). In conclusion, NO2 and SO2 exposure is associated with small but significantly increased levels of SG. Although DM patients were found to be more susceptible to the AP induced SG variations, Metformin treatment seem to have a protective effect. Given the chronic lifetime exposure to AP and the broad coverage of the population, even small associations such as those found in our study can be associated with detrimental health effects and may have profound public health implications. PMID:26166095

  1. Carbohydrate availability of arroz caldo with lambda-carrageenan.

    PubMed

    Dumelod, B D; Ramirez, R P; Tiangson, C L; Barrios, E B; Panlasigui, L N

    1999-07-01

    Total available carbohydrate (sugars and starches) and total dietary fiber (soluble and insoluble) make up the total carbohydrate content of a food. Soluble fiber decreases the availability of glucose by delaying its absorption in the proximal small intestine, thus reducing the postprandial glucose levels (Jenkins et al., 1978; Schneeman, 1987a). Carrageenan, a seaweed extract, is a good source of soluble fiber (Montaño et al., 1985). This study aimed to determine the effect of carrageenan incorporation into arroz caldo on carbohydrate availability by monitoring the postprandial blood glucose levels of normal subjects. Control and experimental arroz caldo samples were prepared and subjected to proximate analysis and feeding studies. The total dietary fiber (TDF) content of the experimental (2.03%) was about thrice that of the control (0.68%). Using randomized crossover design, preweighed 55 g available carbohydrate serving portions of control and experimental arroz caldo samples, with 3.45 and 14.84 g TDF, respectively, were fed to ten fasting normal subjects then their postprandial blood glucose levels were determined at 15, 30, 45, 60 and 90 min intervals. Results of the short-term in vivo study showed that the mean postprandial glycaemic responses of subjects after consuming the experimental sample were significantly lower than the levels after consuming the control at 15, 45, and 90 min (P < or = 0.05) and at 30 min (P < or = 0.001). Likewise, the mean glucose area under the curve was significantly lower (P < or = 0.01) after consumption of experimental (69.22 +/- 32.94) arroz caldo than control (147.29 +/- 53.34). The hypoglycaemic effect of carrageenan may prove useful in the prevention and management of metabolic conditions such as diabetes.

  2. Effect of chromium picolinate on modified forced swimming test in diabetic rats: involvement of serotonergic pathways and potassium channels.

    PubMed

    Khanam, Razia; Pillai, K K

    2006-02-01

    Depression occurs frequently in patients with diabetes mellitus. Chromium picolinate, an essential trace element is recommended for diabetes and also has been reported to benefit depression, but its mechanism is still debated. To investigate the mechanism, we studied its effects on serum insulin, serum glucose and on modified forced swimming test, a behavioural paradigm for depression in rats. The study involving co-administration of sub-active doses of glimepiride, a K(+) channel blocker and chromium picolinate on blood glucose levels and modified forced swimming test was also performed to probe any role of K(+) channels in its antidiabetic and antidepressants effects. Streptozotocin (55 mg/kg, intraperitoneally) was injected in rats to induce diabetes (Type 1). After a week, chromium picolinate (8 microg/ml in drinking water) was administered for 4 weeks. Normal rats received similar drug treatment. The sub-active doses of chromium picolinate (4 microg/ml in drinking water) and glimeperide (2.5 mg/kg, orally) were co-administered and their effects on modified forced swimming test and on glucose levels were measured. Chromium picolinate (8 microg/ml in drinking water) produced hypoglycaemia in diabetic and normal rats. It had no effects on the streptozotocin-induced reduction in insulin levels. Chromium picolinate (8 microg/ml in drinking water) increased swimming with subsequent decrease in immobility. The sub-active doses of chromium picolinate and glimeperide showed significant additive effects in modified forced swimming test and reduction in serum glucose concentrations, though statistically insignificant. In conclusion chromium picolinate shows antidepressant action on modified forced swimming test affecting only swimming that suggests serotonergic pathways involvement. The additive effects on swimming in modified forced swimming test and reduction in serum glucose levels shows involvement of K(+) channels in antidiabetic and antidepressant actions of chromium picolinate.

  3. BI 885578, a Novel IGF1R/INSR Tyrosine Kinase Inhibitor with Pharmacokinetic Properties That Dissociate Antitumor Efficacy and Perturbation of Glucose Homeostasis.

    PubMed

    Sanderson, Michael P; Apgar, Joshua; Garin-Chesa, Pilar; Hofmann, Marco H; Kessler, Dirk; Quant, Jens; Savchenko, Alexander; Schaaf, Otmar; Treu, Matthias; Tye, Heather; Zahn, Stephan K; Zoephel, Andreas; Haaksma, Eric; Adolf, Günther R; Kraut, Norbert

    2015-12-01

    Inhibition of the IGF1R, INSRA, and INSRB receptor tyrosine kinases represents an attractive approach of pharmacologic intervention in cancer, owing to the roles of the IGF1R and INSRA in promoting cell proliferation and survival. However, the central role of the INSRB isoform in glucose homeostasis suggests that prolonged inhibition of this kinase could result in metabolic toxicity. We describe here the profile of the novel compound BI 885578, a potent and selective ATP-competitive IGF1R/INSR tyrosine kinase inhibitor distinguished by rapid intestinal absorption and a short in vivo half-life as a result of rapid metabolic clearance. BI 885578, administered daily per os, displayed an acceptable tolerability profile in mice at doses that significantly reduced the growth of xenografted human GEO and CL-14 colon carcinoma tumors. We found that treatment with BI 885578 is accompanied by increases in circulating glucose and insulin levels, which in turn leads to compensatory hyperphosphorylation of muscle INSRs and subsequent normalization of blood glucose within a few hours. In contrast, the normalization of IGF1R and INSR phosphorylation in GEO tumors occurs at a much slower rate. In accordance with this, BI 885578 led to a prolonged inhibition of cell proliferation and induction of apoptosis in GEO tumors. We propose that the remarkable therapeutic window observed for BI 885578 is achieved by virtue of the distinctive pharmacokinetic properties of the compound, capitalizing on the physiologic mechanisms of glucose homeostasis and differential levels of IGF1R and INSR expression in tumors and normal tissues. ©2015 American Association for Cancer Research.

  4. Glycemic extremes in youth with T1DM: the structural and functional integrity of the developing brain.

    PubMed

    Arbelaez, Ana Maria; Semenkovich, Katherine; Hershey, Tamara

    2013-12-01

    The adult brain accounts for a disproportionally large percentage of the body’s total energy consumption (1). However, during brain development,energy demand is even higher, reaching the adult rate by age 2 and increasing to nearly twice the adult rate by age 10, followed by gradual reduction toward adult levels in the next decade (1,2). The dramatic changes in brain metabolism occurring over the first two decades of life coincide with the initial proliferation and then pruning of synapses to adult levels.The brain derives its energy almost exclusively from glucose and is largely driven by neuronal signaling, biosynthesis, and neuroprotection (3–6).Glucose homeostasis in the body is tightly regulated by a series of hormones and physiologic responses. As a result, hypoglycemia and hyperglycemia are rare occurrences in normal individuals, but they occur commonly inpatients with type 1 diabetes mellitus (T1DM) due to a dysfunction of peripheral glucose-insulin-glucagon responses and non-physiologic doses of exogenous insulin, which imperfectly mimic normal physiology. These extremes can occur more frequently in children and adolescents with T1DM due to the inadequacies of insulin replacement therapy, events leading to the diagnosis [prolonged untreated hyperglycemia and diabetic ketoacidosis (DKA)], and to behavioral factors interfering with optimal treatment. When faced with fluctuations in glucose supply the metabolism of the body and brain change dramatically, largely to conserve resources and, at a cost to other organs, to preserve brain function (7). However,if the normal physiological mechanisms that prevent these severe glucose fluctuations and maintain homeostasis are impaired, neuronal function and potentially viability can be affected (8–11).

  5. Targeting hepatic glucose output in the treatment of type 2 diabetes

    PubMed Central

    Rines, Amy K.; Sharabi, Kfir; Tavares, Clint D. J.; Puigserver, Pere

    2017-01-01

    Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis resulting in hyperglycemia. Although current diabetes treatments have exhibited some success in lowering blood glucose, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycemia. Novel diabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver in order to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes. PMID:27516169

  6. Three-component homeostasis control

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Hong, Hyunsuk; Jo, Junghyo

    2014-03-01

    Two reciprocal components seem to be sufficient to maintain a control variable constant. However, pancreatic islets adapt three components to control glucose homeostasis. They are α (secreting glucagon), β (insulin), and δ (somatostatin) cells. Glucagon and insulin are the reciprocal hormones for increasing and decreasing blood glucose levels, while the role of somatostatin is unknown. However, it has been known how each hormone affects other cell types. Based on the pulsatile hormone secretion and the cellular interactions, this system can be described as coupled oscillators. In particular, we used the Landau-Stuart model to consider both amplitudes and phases of hormone oscillations. We found that the presence of the third component, δ cell, was effective to resist under glucose perturbations, and to quickly return to the normal glucose level once perturbed. Our analysis suggested that three components are necessary for advanced homeostasis control.

  7. Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.).

    PubMed

    Pareek, Hemant; Sharma, Sameer; Khajja, Balvant S; Jain, Kusum; Jain, G C

    2009-11-29

    Diabetes is a metabolic disorder affecting carbohydrate, fat and protein metabolism. Tridax procumbens Linn. (Family-Asteraceae; common name-Dhaman grass) is common herb found in India. Traditionally, the tribal inhabitants of Udaipur district in Rajasthan (India) uses the leaf powder (along with other herb) orally to treat diabetes. There is a need to evaluate extracts of this plant in order to provide scientific proof for it's application in traditional medicine system. Extraction of whole plant of T. procumbens using 50%methanol. The extract was tested for acute and sub-chronic anti-hyperglycemic activity in alloxan induced diabetic rats and for acute toxicity test among normal rats. Observations on body weight as well as on the oral glucose tolerance levels were also recorded. Oral administration of acute and sub chronic doses (250 and 500 mg/kg b.wt.) of T. procumbens extract showed a significant (p < 0.05) reduction in fasting blood glucose levels in diabetic rats, however the decline in blood sugar levels in normal rats was not observed. In acute study the maximum percent blood glucose reduction (68.26% at 250 mg/kg and 71.03% at 500 mg/kg body weight) in diabetic rats was observed at 6 h. The anti-hyperglycemic effects were not dependent of dose and the OGTT and Body weight supported the antihyperglycemic action of the drug. The results of anti-diabetic effect of T. procumbens were compared with the reference standard drug Glibenclamide (10 mg/kg b.wt.). These test results support traditional medicinal use of, T. procumbens for the treatment of diabetes mellitus with corrections in body weight and oral glucose tolerance and no visible signs or symptoms of toxicity in normal rats indicating a high margin of safety. These results warrant follow-up through bioassay-directed isolation of the active principles.

  8. Antihyperglycaemic potential of the water-ethanol extract of Kalanchoe crenata (Crassulaceae).

    PubMed

    Kamgang, René; Mboumi, Rostand Youmbi; Fondjo, Angèle Foyet; Tagne, Michel Archange Fokam; N'dillé, Gabriel Patrice Roland Mengue; Yonkeu, Jeanne Ngogang

    2008-01-01

    Kalanchoe crenata is a vegetable widely used in Cameroon and largely efficient in the treatment of diabetes mellitus. The effect of the water-ethanol extract of this plant (WEKC) on blood glucose levels was investigated in fasting normal and diet-induced diabetic rats (MACAPOS 1) after a short- and medium-term treatment. Diabetes was induced by submitting Wistar rats to a hypercaloric sucrose diet over 4 months. Six hours after a single oral administration of WEKC, 135 and 200 mg kg(-1) body weight extracts significantly (P < 0.01) reduced the blood glucose levels both in normal and diabetic rats without real dose-dependent effect. During the medium-term treatment, 200 mg kg(-1) WEKC administered daily for 4 weeks significantly reduced blood glucose levels within week 1 (P < 0.05), with a maximum effect at week 4 (-52%, P < 0.01), while maintaining glycaemia within the normal range. All the WEKC-treated diabetic rats exhibited significant (P < 0.01) increase in insulin sensitivity index (K (ITT)) compared with the initial time and to the untreated diabetic animals. Animals treated for 4 weeks exhibited a slight resistance in body-weight gain and decrease in food and water intake. The WEKC activities on all parameters assessed were comparable with the glibenclamide effects. Qualitative phytochemical screening revealed that K. crenata contains terpenoids, tannins, polysaccharids, saponins, flavonoids and alkaloids. The data suggest that K. crenata might contain important chemical components that could induce significant improvement in glucose clearance and/or uptake and resistance to body-weight gain and insulin sensitivity, and could be a potent alternative or complementary therapeutic substance in the control of type 2 diabetes and other insulin-resistant conditions.

  9. Plasma Glucose Level Is Predictive of Serum Ammonia Level After Retrograde Occlusion of Portosystemic Shunts.

    PubMed

    Ishikawa, Tsuyoshi; Aibe, Yuki; Matsuda, Takashi; Iwamoto, Takuya; Takami, Taro; Sakaida, Isao

    2017-09-01

    The purpose of this study was to evaluate predictors of reduction in ammonia levels by occlusion of portosystemic shunts (PSS) in patients with cirrhosis. Forty-eight patients with cirrhosis (21 women, 27 men; mean age, 67.8 years) with PSS underwent balloon-occluded retrograde transvenous obliteration (BRTO) at one institution between February 2008 and June 2014. The causes of cirrhosis were hepatitis B in one case, hepatitis C in 20 cases, alcohol in 15 cases, nonalcoholic steatohepatitis in eight cases, and other conditions in four cases. The Child-Pugh classes were A in 24 cases, B in 23 cases, and C in one case. The indication for BRTO was gastric varices in 40 cases and hepatic encephalopathy in eight cases. Testing was conducted before and 1 month after the procedure. Statistical analyses were performed to identify predictors of a clinically significant decline in ammonia levels after BRTO. Occlusion of PSS resulted in a clinically significant decrease in ammonia levels accompanied by increased portal venous flow and improved Child-Pugh score. Univariate analyses showed that a reduction in ammonia levels due to BRTO was significantly related to lower plasma glucose levels, higher RBC counts, and higher hemoglobin concentration before the treatment. Furthermore, multivariate logistic regression identified preoperative plasma glucose level as the strongest independent predictor of a significant ammonia reduction in response to BRTO. In addition, although BRTO resulted in significantly declined ammonia levels in patients with normal glucose tolerance before the procedure, ammonia levels were not significantly decreased after shunt occlusion in patients with diabetes mellitus or impaired glucose tolerance before BRTO, according to 75-g oral glucose tolerance test results. Preoperative plasma glucose level is a useful predictor of clinically significant ammonia reduction resulting from occlusion of PSS in patients with cirrhosis. Even if PSS are present, control of blood ammonia levels by BRTO alone may be difficult in patients with glucose intolerance.

  10. Phytochemical screening, physicochemical properties, acute toxicity testing and screening of hypoglycaemic activity of extracts of Eremurus himalaicus baker in normoglycaemic Wistar strain albino rats.

    PubMed

    Mushtaq, Ahlam; Akbar, Seema; Zargar, Mohammad A; Wali, Adil F; Malik, Akhtar H; Dar, Mohammad Y; Hamid, Rabia; Ganai, Bashir A

    2014-01-01

    In the present study EtOAc, MeOH, and aqueous extracts of Eremurus himalaicus were evaluated for hypoglycaemic effect in normal rats using both oral glucose tolerance test and 14-day oral administration study. Phytochemical and physicochemical screening was also done. In oral glucose tolerance test the aqueous and MeOH extracts of Eremurus himalaicus at a dose level of 500 mg/kg body weight prior to glucose load resulted in a significant fall in blood glucose level within 150 min. of glucose administration. The aqueous extract at a dose level of 250 mg/kg body weight and 500 mg/kg body weight also showed good hypoglycaemic response (P < 0.001); this was followed by MeOH extract at a dose level of 500 mg/kg body weight (P < 0.05), while MeOH extract at dose level of 250 mg/kg body weight and ethyl acetate extract at dose level of 250 mg/kg body weight and 500 mg/kg body weight exhibited insignificant effect. Phytochemical screening of extracts revealed the presence of alkaloids, terpenoids, phenolics, tannins, saponins, cardiac glycosides, and flavonoids. The results indicate that aqueous extract possess significant hypoglycaemic activity in normoglycaemic rats which may be attributed to the above-mentioned chemical constituents.

  11. Nocturnal Hypoglycemia Identified by a Continuous Glucose Monitoring System in Patients with Primary Adrenal Insufficiency (Addison's Disease)

    PubMed Central

    Hackemann, Annika; Reusch, Juergen; Badenhoop, Klaus

    2012-01-01

    Abstract Background Hypoglycemia can be a symptom in patients with Addison's disease. The common regimen of replacement therapy with oral glucocorticoids results in unphysiological low cortisol levels in the early morning, the time of highest insulin sensitivity. Therefore patients with Addison's disease are at risk for unrecognized and potentially severe nocturnal hypoglycemia also because of a disturbed counterregulatory function. Use of a continuous glucose monitoring system (CGMS) could help to adjust hydrocortisone treatment and to avoid nocturnal hypoglycemia in these patients. Methods Thirteen patients with Addison's disease were screened for hypoglycemia wearing a CGMS for 3–5 days. Results In one patient we identified a hypoglycemic episode at 3:45 a.m. with a blood glucose level of 46 mg/dL, clearly beneath the 95% tolerance interval of minimal glucose levels between 2 and 4 a.m. (53.84 mg/dL). After the hydrocortisone replacement scheme was changed, the minimum blood glucose level between 2 and 4 a.m. normalized to 87 mg/dL. Conclusions Continuous glucose monitoring can detect nocturnal hypoglycemia in patients with primary adrenal insufficiency and hence prevent in these patients an impaired quality of life and even serious adverse effects. PMID:22242902

  12. Monitoring blood glucose levels in female mink during the reproductive cycle: 1. Prevention of hyperglycemia during the nursing period

    PubMed Central

    Hynes, Amber M.J.; Rouvinen-Watt, Kirsti

    2007-01-01

    Nursing sickness, the largest cause of death in female adult mink, is a metabolic disorder characterized by hyperglycemia. The impacts of body condition, dietary supplements, and reproductive status on the blood glucose concentration in female mink during the reproductive cycle were investigated. Mink dams on 3 farms were assigned to receive either herring oil (HerO) or chromium picolinate (CrPic) or to be in a control group, receiving only the basal diet, for 6 wk at the onset of lactation. Hyperglycemia was observed throughout the reproductive cycle. Significant differences in blood glucose levels were observed between farms, emphasizing the importance of herd genetics and of animal management and feeding practices in glycemic regulation. Female mink exhibiting hyperglycemia early in the reproductive cycle tended to remain hyperglycemic and to have poorer health and fewer kits. Glucose levels > 7 mmol/L can be considered critical in this regard. Supplementing the diet with CrPic reduced the blood glucose concentration. Results from this study suggest that a diet containing high-quality n-3 polyunsaturated fatty acids, high levels of carbohydrate, and CrPic supplementation may help the nursing mink dam maintain a normal blood glucose concentration during lactation. PMID:17955897

  13. Assessment of metabolic status in young Japanese females using postprandial glucose and insulin levels

    PubMed Central

    Sakuma, Masae; Sasaki, Megumi; Katsuda, Sayaka; Kobayashi, Kana; Takaya, Chiaki; Umeda, Minako; Arai, Hidekazu

    2014-01-01

    Lifestyle-related diseases develop through the accumulation of undesirable lifestyle habits both prior to the onset of disease as well as during normal healthy life. Accordingly, early detection of, and intervention in, metabolic disorders is desirable, but is hampered by the lack of an established evaluation index for young individuals. The purpose of this study was to investigate the utility of a biomarker of health in young female subjects. The subjects were young healthy Japanese females in whom energy expenditure was measured for a period of 210 min after a test meal. In addition, Δplasma glucose and Δserum insulin were calculated from the fasting and 30 min values. ΔPlasma glucose and Δserum insulin levels varied widely compared to fasting levels. Both the area under the curve of carbohydrate oxidation rate and serum free fatty acid levels were higher in individuals in the high Δplasma glucose group. Moreover, Δplasma glucose was higher in individuals in the high Δserum insulin group than in the low Δserum insulin group. We conclude that nutritional balanced liquid loading test using Δplasma glucose and Δserum insulin as the evaluation index is useful for the detection of primary metabolic disorders in young females. PMID:24895484

  14. Assessment of antidiabetic potential of Cynodon dactylon extract in streptozotocin diabetic rats.

    PubMed

    Singh, Santosh Kumar; Kesari, Achyut Narayan; Gupta, Rajesh Kumar; Jaiswal, Dolly; Watal, Geeta

    2007-11-01

    This study was undertaken to investigate the hypoglycemic and antidiabetic effect of single and repeated oral administration of the aqueous extract of Cynodon dactylon (Family: Poaceae) in normal and streptozotocin induced diabetic rats, respectively. The effect of repeated oral administration of aqueous extract on serum lipid profile in diabetic rats was also examined. A range of doses, viz. 250, 500 and 1000mg/kg bw of aqueous extract of Cynodon dactylon were evaluated and the dose of 500mg/kg was identified as the most effective dose. It lowers blood glucose level around 31% after 4h of administration in normal rats. The same dose of 500mg/kg produced a fall of 23% in blood glucose level within 1h during glucose tolerance test (GTT) of mild diabetic rats. This dose has almost similar effect as that of standard drug tolbutamide (250mg/kg bw). Severely diabetic rats were also treated daily with 500mg/kg bw for 14 days and a significant reduction of 59% was observed in fasting blood glucose level. A reduction in the urine sugar level and increase in body weight of severe diabetic rats were additional corroborating factors for its antidiabetic potential. Total cholesterol (TC), low density lipoprotein (LDL) and triglyceride (TG) levels were decreased by 35, 77 and 29%, respectively, in severely diabetic rats whereas, cardioprotective, high density lipoprotein (HDL) was increased by 18%. These results clearly indicate that aqueous extract of Cynodon dactylon has high antidiabetic potential along with significant hypoglycemic and hypolipidemic effects.

  15. Cumulative increased risk of incident type 2 diabetes mellitus with increasing triglyceride glucose index in normal-weight people: The Rural Chinese Cohort Study.

    PubMed

    Zhang, Ming; Wang, Bingyuan; Liu, Yu; Sun, Xizhuo; Luo, Xinping; Wang, Chongjian; Li, Linlin; Zhang, Lu; Ren, Yongcheng; Zhao, Yang; Zhou, Junmei; Han, Chengyi; Zhao, Jingzhi; Hu, Dongsheng

    2017-03-01

    Risk of type 2 diabetes mellitus (T2DM) is increased in metabolically obese but normal-weight people. However, we have limited knowledge of how to prevent T2DM in normal-weight people. We aimed to evaluate the association between triglyceride glucose (TyG) index and incident T2DM among normal-weight people in rural China. We included data from 5706 people with normal body mass index (BMI) (18.5-23.9 kg/m 2 ) without baseline T2DM in a rural Chinese cohort followed for a median of 6.0 years. A Cox proportional-hazard model was used to assess the risk of incident T2DM by quartiles of TyG index and difference in TyG index between follow-up and baseline (TyG-D), estimating hazard ratios (HRs) and 95% confidence intervals (CIs). A generalized additive plot was used to show the nonparametric smoothed exposure-response association between risk of T2DM and TyG index as a continuous variable. TyG was calculated as ln [fasting triglyceride level (mg/dl) × fasting plasma glucose level (mg/dl)/2]. Risk of incident T2DM was increased with quartiles 2, 3 and 4 versus quartile 1 of TyG index (adjusted HR [aHR] 2.48 [95% CI 1.20-5.11], 3.77 [1.83-7.79], and 5.30 [2.21-12.71], P trend  < 0.001 across quartiles of TyG index). Risk of incident T2DM was increased with quartile 4 versus quartile 1 of TyG-D (aHR 3.91 [2.22-6.87]). The results were consistent when analyses were restricted to participants without baseline metabolic syndrome and impaired fasting glucose level. The generalized additive plot showed cumulative increased risk of T2DM with increasing TyG index. Risk of incident T2DM is increased with increasing TyG index among rural Chinese people, so the index might be an important indicator for identifying people at high risk of T2DM.

  16. Normal postprandial nonesterified fatty acid uptake in muscles despite increased circulating fatty acids in type 2 diabetes.

    PubMed

    Labbé, Sébastien M; Croteau, Etienne; Grenier-Larouche, Thomas; Frisch, Frédérique; Ouellet, René; Langlois, Réjean; Guérin, Brigitte; Turcotte, Eric E; Carpentier, André C

    2011-02-01

    Postprandial plasma nonesterified fatty acid (NEFA) appearance is increased in type 2 diabetes. Our objective was to determine whether skeletal muscle uptake of plasma NEFA is abnormal during the postprandial state in type 2 diabetes. Thigh muscle blood flow and oxidative metabolism indexes and NEFA uptake were determined using positron emission tomography coupled with computed tomography (PET/CT) with [(11)C]acetate and 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)FTHA) in seven healthy control subjects (CON) and seven subjects with type 2 diabetes during continuous oral intake of a liquid meal to achieve steady postprandial NEFA levels with insulin infusion to maintain similar plasma glucose levels in both groups. In the postprandial state, plasma NEFA level was higher in type 2 diabetic subjects versus CON (P < 0.01), whereas plasma glucose was at the same level in both groups. Muscle NEFA fractional extraction and blood flow index levels were 56% (P < 0.05) and 24% (P = 0.27) lower in type 2 diabetes, respectively. However, muscle NEFA uptake was similar to that of CON (quadriceps femoris [QF] 1.47 ± 0.23 vs. 1.37 ± 0.24 nmol·g(-1)·min(-1), P = 0.77; biceps femoris [BF] 1.54 ± 0.26 vs. 1.46 ± 0.28 nmol·g(-1)·min(-1), P = 0.85). Muscle oxidative metabolism was similar in both groups. Muscle NEFA fractional extraction and blood flow index were strongly and positively correlated (r = 0.79, P < 0.005). Postprandial muscle NEFA uptake is normal despite elevated systemic NEFA levels and acute normalization of plasma glucose in type 2 diabetes. Lower postprandial muscle blood flow with resulting reduction in muscle NEFA fractional extraction may explain this phenomenon.

  17. Association of serum orosomucoid with 30-min plasma glucose and glucose excursion during oral glucose tolerance tests in non-obese young Japanese women.

    PubMed

    Tsuboi, Ayaka; Minato, Satomi; Yano, Megumu; Takeuchi, Mika; Kitaoka, Kaori; Kurata, Miki; Yoshino, Gen; Wu, Bin; Kazumi, Tsutomu; Fukuo, Keisuke

    2018-01-01

    Inflammatory markers are elevated in insulin resistance (IR) and diabetes. We tested whether serum orosomucoid (ORM) is associated with postload glucose, β-cell dysfunction and IR inferred from plasma insulin kinetics during a 75 g oral glucose tolerance test (OGTT). 75 g OGTTs were performed with multiple postload glucose and insulin measurements over a 30-120 min period in 168 non-obese Japanese women (aged 18-24 years). OGTT responses, serum adiponectin and high-sensitivity C reactive protein (hsCRP) were cross-sectionally analyzed by analysis of variance and then Bonferroni's multiple comparison procedure. Stepwise multivariate linear regression analyses were used to identify most important determinants of ORM. Of 168 women, 161 had normal glucose tolerance. Postload glucose levels and the area under the glucose curve (AUCg) increased in a stepwise fashion from the first through the third ORM tertile. In contrast, there was no or modest, if any, association with fat mass index, trunk/leg fat ratio, adiponectin, hsCRP, postload insulinemia, the Matsuda index and homeostasis model assessment IR. In multivariable models, which incorporated the insulinogenic index, the Matsuda index and HOMA-IR, 30 min glucose (standardized β: 0.517) and AUCg (standardized β: 0.495) explained 92.8% of ORM variations. Elevated circulating orosomucoid was associated with elevated 30 min glucose and glucose excursion in non-obese young Japanese women independently of adiposity, IR, insulin secretion, adiponectin and other investigated markers of inflammation. Although further research is needed, these results may suggest a clue to identify novel pathways that may have utility in monitoring dysglycemia within normal glucose tolerance.

  18. Lipid-free apolipoprotein A-I and discoidal reconstituted high-density lipoproteins differentially inhibit glucose-induced oxidative stress in human macrophages.

    PubMed

    Tabet, Fatiha; Lambert, Gilles; Cuesta Torres, Luisa F; Hou, Liming; Sotirchos, Irene; Touyz, Rhian M; Jenkins, Alicia J; Barter, Philip J; Rye, Kerry-Anne

    2011-05-01

    The goal of this study was to investigate the mechanisms by which apolipoprotein (apo) A-I, in the lipid-free form or as a constituent of discoidal reconstituted high-density lipoproteins ([A-I]rHDL), inhibits high-glucose-induced redox signaling in human monocyte-derived macrophages (HMDM). HMDM were incubated under normal (5.8 mmol/L) or high-glucose (25 mmol/L) conditions with native high-density lipoproteins (HDL) lipid-free apoA-I from normal subjects and from subjects with type 2 diabetes (T2D) or (A-I)rHDL. Superoxide (O2-) production was measured using dihydroethidium fluorescence. NADPH oxidase activity was assessed using lucigenin-derived chemiluminescence and a cyotochrome c assay. p47phox translocation to the plasma membrane, Nox2, superoxide dismutase 1 (SOD1), and SOD2 mRNA and protein levels were determined by real-time polymerase chain reaction and Western blotting. Native HDL induced a time-dependent inhibition of O2- generation in HMDM incubated with 25 mmol/L glucose. Lipid-free apoA-I and (A-I)rHDL increased SOD1 and SOD2 levels and attenuated 25 mmol/L glucose-mediated increases in cellular O2-, NADPH oxidase activity, p47 translocation, and Nox2 expression. Lipid-free apoA-I mediated its effects on Nox2, SOD1, and SOD2 via ABCA1. (A-I)rHDL-mediated effects were via ABCG1 and scavenger receptor BI. Lipid-free apoA-I from subjects with T2D inhibited reactive oxygen species generation less efficiently than normal apoA-I. Native HDL, lipid-free apoA-I and (A-I)rHDL inhibit high-glucose-induced redox signaling in HMDM. The antioxidant properties of apoA-I are attenuated in T2D.

  19. Perceived health status and cardiometabolic risk among a sample of youth in Mexico

    PubMed Central

    Flores, Yvonne N.; Shaibi, Gabriel Q.; Morales, Leo S.; Salmerón, Jorge; Skalicky, Anne M.; Edwards, Todd C.; Gallegos-Carrillo, Katia; Patrick, Donald L.

    2015-01-01

    Purpose To examine differences in self-reported perceived mental and physical health status (PHS), as well as known cardiometabolic risk factors in a sample of normal weight, overweight, and obese Mexican youths. Methods Cross-sectional analysis of 164 youths aged 11-18 years recruited in Cuernavaca, Mexico. Participants completed a self-administered questionnaire that included measures of generic and weight-specific quality of life (QoL), perceived health, physical function, depressive symptoms, and body shape satisfaction. Height, weight and waist circumference were measured and body mass index (BMI) was determined. Fasting blood samples from participants yielded levels of glucose, triglycerides, and cholesterol (total, HDL and LDL). Results Nearly 50% of participants were female, 21% had a normal BMI, 39% were overweight, and 40% were obese. Obese youths reported significantly lower measures of PHS and showed an increase in cardiometabolic risk, compared to normal weight youths. Physical functioning, generic and weight-specific QoL were inversely associated with BMI, waist circumference and glucose. Depressive symptoms were positively correlated with BMI, waist circumference, glucose levels and HDL cholesterol. No correlation was found between PHS and cardiometabolic risk measures after controlling for BMI. Conclusions In this sample of Mexican youths, obesity was associated with a significantly lower PHS and increased cardiometabolic risk. PMID:25648756

  20. Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat.

    PubMed

    Sampath, Sathish; Karundevi, Balasubramanian

    2014-10-01

    Troxerutin is a trihydroxyethylated derivative of the flavonoid, rutin. It has been reported to possess the hepatoprotective, nephroprotective, antioxidant, anti-inflammatory, and antihyperlipidemic activities. Troxerutin treatment reduced the blood glucose and glycosylated hemoglobin levels in high-cholesterol-induced insulin-resistant mice and in type-2 diabetic patients. However, the mechanism by which it exhibits antidiabetic property was unknown. Therefore, the present study was designed to evaluate the effect of troxerutin on insulin signaling molecules in gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic rats. Wistar male albino rats were selected and divided into five groups. Group I: Control. Group II: High fat and sucrose-induced type-2 diabetic rats. Group III: Type-2 diabetic rats treated with troxerutin (150 mg/kg body weight/day orally). Group IV: Type-2 diabetic rats treated with metformin (50 mg/kg body weight/day orally). Group V: Normal rats treated with troxerutin (150 mg/kg body weight/day orally). After 30 days of treatment, fasting blood glucose, oral glucose tolerance, serum lipid profile, and the levels of insulin signaling molecules, glycogen, glucose uptake, and oxidation in gastrocnemius muscle were assessed. Diabetic rats showed impairment in insulin signaling molecules (IR, p-IRS-1(Tyr632), p-Akt(Ser473), β-arrestin-2, c-Src, p-AS160(Thr642), and GLUT4 proteins), glycogen concentration, glucose uptake, and oxidation. Oral administration of troxerutin showed near normal levels of blood glucose, serum insulin, lipid profile, and insulin signaling molecules as well as GLUT4 proteins in type-2 diabetic rats. It is concluded from the present study that troxerutin may play a significant role in the management of type-2 diabetes mellitus, by improving the insulin signaling molecules and glucose utilization in the skeletal muscle.

  1. Prevention Effects and Possible Molecular Mechanism of Mulberry Leaf Extract and its Formulation on Rats with Insulin-Insensitivity.

    PubMed

    Liu, Yan; Li, Xuemei; Xie, Chen; Luo, Xiuzhen; Bao, Yonggang; Wu, Bin; Hu, Yuchi; Zhong, Zhong; Liu, Chang; Li, MinJie

    2016-01-01

    For centuries, mulberry leaf has been used in traditional Chinese medicine for the treatment of diabetes. This study aims to test the prevention effects of a proprietary mulberry leaf extract (MLE) and a formula consisting of MLE, fenugreek seed extract, and cinnamon cassia extract (MLEF) on insulin resistance development in animals. MLE was refined to contain 5% 1-deoxynojirimycin by weight. MLEF was formulated by mixing MLE with cinnamon cassia extract and fenugreek seed extract at a 6:5:3 ratio (by weight). First, the acute toxicity effects of MLE on ICR mice were examined at 5 g/kg BW dose. Second, two groups of normal rats were administrated with water or 150 mg/kg BW MLE per day for 29 days to evaluate MLE's effect on normal animals. Third, to examine the effects of MLE and MLEF on model animals, sixty SD rats were divided into five groups, namely, (1) normal, (2) model, (3) high-dose MLE (75 mg/kg BW) treatment; (4) low-dose MLE (15 mg/kg BW) treatment; and (5) MLEF (35 mg/kg BW) treatment. On the second week, rats in groups (2)-(5) were switched to high-energy diet for three weeks. Afterward, the rats were injected (ip) with a single dose of 105 mg/kg BW alloxan. After four more days, fasting blood glucose, post-prandial blood glucose, serum insulin, cholesterol, and triglyceride levels were measured. Last, liver lysates from animals were screened with 650 antibodies for changes in the expression or phosphorylation levels of signaling proteins. The results were further validated by Western blot analysis. We found that the maximum tolerance dose of MLE was greater than 5 g/kg in mice. The MLE at a 150 mg/kg BW dose showed no effect on fast blood glucose levels in normal rats. The MLE at a 75 mg/kg BW dose and MLEF at a 35 mg/kg BW dose, significantly (p < 0.05) reduced fast blood glucose levels in rats with impaired glucose and lipid metabolism. In total, 34 proteins with significant changes in expression and phosphorylation levels were identified. The changes of JNK, IRS1, and PDK1 were confirmed by western blot analysis. In conclusion, this study demonstrated the potential protective effects of MLE and MLEF against hyperglycemia induced by high-energy diet and toxic chemicals in rats for the first time. The most likely mechanism is the promotion of IRS1 phosphorylation, which leads to insulin sensitivity restoration.

  2. Prevention Effects and Possible Molecular Mechanism of Mulberry Leaf Extract and its Formulation on Rats with Insulin-Insensitivity

    PubMed Central

    Xie, Chen; Luo, Xiuzhen; Bao, Yonggang; Wu, Bin; Hu, Yuchi; Zhong, Zhong; Liu, Chang; Li, MinJie

    2016-01-01

    For centuries, mulberry leaf has been used in traditional Chinese medicine for the treatment of diabetes. This study aims to test the prevention effects of a proprietary mulberry leaf extract (MLE) and a formula consisting of MLE, fenugreek seed extract, and cinnamon cassia extract (MLEF) on insulin resistance development in animals. MLE was refined to contain 5% 1-deoxynojirimycin by weight. MLEF was formulated by mixing MLE with cinnamon cassia extract and fenugreek seed extract at a 6:5:3 ratio (by weight). First, the acute toxicity effects of MLE on ICR mice were examined at 5 g/kg BW dose. Second, two groups of normal rats were administrated with water or 150 mg/kg BW MLE per day for 29 days to evaluate MLE’s effect on normal animals. Third, to examine the effects of MLE and MLEF on model animals, sixty SD rats were divided into five groups, namely, (1) normal, (2) model, (3) high-dose MLE (75 mg/kg BW) treatment; (4) low-dose MLE (15 mg/kg BW) treatment; and (5) MLEF (35 mg/kg BW) treatment. On the second week, rats in groups (2)-(5) were switched to high-energy diet for three weeks. Afterward, the rats were injected (ip) with a single dose of 105 mg/kg BW alloxan. After four more days, fasting blood glucose, post-prandial blood glucose, serum insulin, cholesterol, and triglyceride levels were measured. Last, liver lysates from animals were screened with 650 antibodies for changes in the expression or phosphorylation levels of signaling proteins. The results were further validated by Western blot analysis. We found that the maximum tolerance dose of MLE was greater than 5 g/kg in mice. The MLE at a 150 mg/kg BW dose showed no effect on fast blood glucose levels in normal rats. The MLE at a 75 mg/kg BW dose and MLEF at a 35 mg/kg BW dose, significantly (p < 0.05) reduced fast blood glucose levels in rats with impaired glucose and lipid metabolism. In total, 34 proteins with significant changes in expression and phosphorylation levels were identified. The changes of JNK, IRS1, and PDK1 were confirmed by western blot analysis. In conclusion, this study demonstrated the potential protective effects of MLE and MLEF against hyperglycemia induced by high-energy diet and toxic chemicals in rats for the first time. The most likely mechanism is the promotion of IRS1 phosphorylation, which leads to insulin sensitivity restoration. PMID:27054886

  3. Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells.

    PubMed

    Lavrentyev, Eduard N; Estes, Anne M; Malik, Kafait U

    2007-08-31

    Angiotensin II (Ang II), a circulating hormone that can be synthesized locally in the vasculature, has been implicated in diabetes-associated vascular complications. This study was conducted to determine whether high glucose (HG) (approximately 23.1 mmol/L), a diabetic-like condition, stimulates Ang II generation and the underlying mechanism of its production in rat vascular smooth muscle cells. The contribution of various enzymes involved in Ang II generation was investigated by silencing their expression with small interfering RNA in cells exposed to normal glucose (approximately 4.1 mmol/L) and HG. Angiotensin I (Ang I) was generated from angiotensinogen by cathepsin D in the presence of normal glucose or HG. Although HG did not affect the rate of angiotensinogen conversion, it decreased expression of angiotensin-converting enzyme (ACE), downregulated ACE-dependent Ang II generation, and upregulated rat vascular chymase-dependent Ang II generation. The ACE inhibitor captopril reduced Ang II levels in the media by 90% in the presence of normal glucose and 19% in HG, whereas rat vascular chymase silencing reduced Ang II production in cells exposed to HG but not normal glucose. The glucose transporter inhibitor cytochalasin B, the aldose reductase inhibitor alrestatin, and the advanced glycation end product formation inhibitor aminoguanidine attenuated HG-induced Ang II generation. HG caused a transient increase in extracellular signal-regulated kinase (ERK)1/2 phosphorylation, and ERK1/2 inhibitors reduced Ang II accumulation by HG. These data suggest that polyol pathway metabolites and AGE can stimulate rat vascular chymase activity via ERK1/2 activation and increase Ang II production. In addition, decreased Ang II degradation, which, in part, could be attributable to a decrease in angiotensin-converting enzyme 2 expression observed in HG, contributes to increased accumulation of Ang II in vascular smooth muscle cells by HG.

  4. Reduction of blood serum cholesterol

    NASA Technical Reports Server (NTRS)

    Winitz, M. (Inventor)

    1974-01-01

    By feeding a human subject as the sole source of sustenance a defined diet wherein the carbohydrate consists substantially entirely of glucose, maltose or a polysaccharide of glucose, the blood serum cholesterol level of the human subject is substantially reduced. If 25 percent of the carbohydrate is subsequently supplied in the form of sucrose, an immediate increase from the reduced level is observed. The remainder of the defined diet normally includes a source of amino acids, such as protein or a protein hydrolysate, vitamins, minerals and a source of essential fatty acid.

  5. [Association between the level of fasting blood glucose over 35-year-old and carotid intima-media thickness in Han, Uygur and Kazak population from Xinjiang Uygur Autonomous Region from 2007 to 2010].

    PubMed

    Li, Xiaomei; Li, Haixia; Liu, Fen; Chen, Bangdang; Yang, Yining; Ma, Yitong

    2014-10-01

    To analyze the relationship between different levels of fasting blood glucose over 35-year old and carotid intima-media thickness (IMT) in Han, Uygur and Kazak adult population from Xinjiang Uygur Autonomous Region. From October 2007 to April 2010, the present study was performed in 13 935 inhabitants among Han, Uygur and Kazak adult population of aged 35 years old and over by multi-stage stratified cluster random sampling principles from 7 regions in Xinjiang Uygur Autonomous and we excluded the IMT over 0.9 millimeter, long-term out and the floating population. All subjects were measured fasting blood glucose and IMT values of carotid artery. The subjects were divided into three groups according to different fasting blood glucose levels: normal, impaired fasting glucose (IFG) and diabetes mellitus (DM) and we used the analysis of variance to compare the differences among groups of IMT. Multiple linear regression model was used to explore factors of carotid IMT. The IMT of males of Han, Uygur and Kazak were (0.81 ± 0.29), (0.71 ± 0.27) and (0.79 ± 0.21) mm respectively, the differences were significant (F = 88.50, P < 0.05) . The IMT in DM group ((0.82 ± 0.29) mm) was significantly higher than the normal ((0.77 ± 0.26) mm) and the IFG groups ((0.79 ± 0.27) mm) (F = 7.49, P < 0.05). The IMT of females of Han, Uygur and Kazak were (0.72 ± 0.27), (0.63 ± 0.25) and (0.77 ± 0.22) mm, respectively, the differences were significant (F = 173.93, P < 0.05) . The IMT in DM group ((0.75 ± 0.29) mm) and the IFG groups ((0.74 ± 0.26) mm) were significantly higher than the normal group ((0.70 ± 0.25) mm) (F = 10.46, P < 0.05). Multivariate regression analysis showed that diastolic blood pressure (β = 0.101, P < 0.01) , total cholesterol (β = 0.056, P < 0.05) and fasting blood glucose (β = 0.023, P = 0.009) were independent risk factors of IMT. The level of fasting blood glucose was an independent influence factor of carotid IMT and had a positive correlation in Han, Uygur and Kazak population of Xinjiang Autonomous Region.

  6. Exenatide Is an Effective Antihyperglycaemic Agent in a Mouse Model of Wolfram Syndrome 1

    PubMed Central

    Sedman, Tuuli; Rünkorg, Kertu; Krass, Maarja; Luuk, Hendrik; Plaas, Mario; Vasar, Eero; Volke, Vallo

    2016-01-01

    Wolfram syndrome 1 is a very rare monogenic disease resulting in a complex of disorders including diabetes mellitus. Up to now, insulin has been used to treat these patients. Some of the monogenic forms of diabetes respond preferentially to sulphonylurea preparations. The aim of the current study was to elucidate whether exenatide, a GLP-1 receptor agonist, and glipizide, a sulphonylurea, are effective in a mouse model of Wolfram syndrome 1. Wolframin-deficient mice were used to test the effect of insulin secretagogues. Wolframin-deficient mice had nearly normal fasting glucose levels but developed hyperglycaemia after glucose challenge. Exenatide in a dose of 10 μg/kg lowered the blood glucose level in both wild-type and wolframin-deficient mice when administered during a nonfasted state and during the intraperitoneal glucose tolerance test. Glipizide (0.6 or 2 mg/kg) was not able to reduce the glucose level in wolframin-deficient animals. In contrast to other groups, wolframin-deficient mice had a lower insulin-to-glucose ratio during the intraperitoneal glucose tolerance test, indicating impaired insulin secretion. Exenatide increased the insulin-to-glucose ratio irrespective of genotype, demonstrating the ability to correct the impaired insulin secretion caused by wolframin deficiency. We conclude that GLP-1 agonists may have potential in the treatment of Wolfram syndrome-related diabetes. PMID:27069934

  7. Retinal lipid and glucose metabolism dictates angiogenesis through lipid sensor Ffar1

    PubMed Central

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L.; Shao, Zhuo; Evans, Lucy P.; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M.; Hurst, Christian G.; Hatton, Colman J.; Cui, Zhenghao; Pierce, Kerry A.; Bherer, Patrick; Aguilar, Edith; Powner, Michael B.; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A.; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B.; Smith, Lois E.H.

    2016-01-01

    Tissues with high metabolic rates often use lipid as well as glucose for energy, conferring a survival advantage during feast and famine.1 Current dogma suggests that high-energy consuming photoreceptors depend on glucose.2,3 Here we show that retina also uses fatty acids (FA) β-oxidation for energy. Moreover, we identify a lipid sensor Ffar1 that curbs glucose uptake when FA are available. Very low-density lipoprotein receptor (VLDLR), expressed in tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived FA.4,5 Vldlr is present in photoreceptors.6 In Vldlr−/− retinas, Ffar1, sensing high circulating lipid levels despite decreased FA uptake5, suppresses glucose transporter Glut1. This impaired glucose entry into photoreceptors results in a dual lipid/glucose fuel shortage and reduction in the Krebs cycle intermediate α-ketoglutarate (KG). Low α-KG levels promote hypoxia-induced factor-1α (Hif1a) stabilization and vascular endothelial growth factor (Vegfa) secretion by starved Vldlr−/− photoreceptors, attracting neovessels to supply fuel. These aberrant vessels invading normally avascular photoreceptors in Vldlr−/− retinas are reminiscent of retinal angiomatous proliferation (RAP), a subset of neovascular age-related macular degeneration (AMD)7, associated with high vitreous VEGF levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in neovascular AMD and other retinal diseases. PMID:26974308

  8. Hypoglycemia incidence and risk factors assessment in hospitalized neonates.

    PubMed

    Zhou, Wei; Yu, Jun; Wu, Yiqi; Zhang, Huawei

    2015-03-01

    To assess the incidence and risk factors of hypoglycemia in hospitalized neonates in China. Blood glucose level in hospitalized neonates was monitored routinely. Also, in high-risk newborns and neonates with abnormal blood glucose levels in initial detection, the blood sugar level was monitored daily until it was back to normal and stable. Hypoglycemia was detected in 113 out of 668 hospitalized neonates, and the incidence of hypoglycemia was 16.9%. The statistical analysis also showed that hypoglycemia always occurred within one week after birth, especially within three days after birth. Neonates with premature birth, low birth weight and perinatal asphyxia were susceptible to hypoglycemia. Active and continuous monitoring of blood glucose level should be performed in the early newborns, especially in high-risk children, and attention should be paid to timely feeding for the early diagnosis and treatment of neonatal hypoglycemia to reduce its impact on the newborns.

  9. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring

    PubMed Central

    Weisman, Itamar; Romano, Jacob; Ivics, Zoltán; Izsvák, Zsuzsanna; Barkai, Uriel

    2017-01-01

    Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic patients should normalize these levels in order to avoid short and long term clinical complications. Presently, blood glucose monitoring is dependent on frequent finger pricking and enzyme based systems that analyze the drawn blood. Continuous blood glucose monitors are already on market but suffer from technical problems, inaccuracy and short operation time. A novel approach for continuous glucose monitoring is the development of implantable cell-based biosensors that emit light signals corresponding to glucose concentrations. Such devices use genetically modified cells expressing chimeric genes with glucose binding properties. MSCs are good candidates as carrier cells, as they can be genetically engineered and expanded into large numbers. They also possess immunomodulatory properties that, by reducing local inflammation, may assist long operation time. Here, we generated a novel immortalized human MSC line co-expressing hTERT and a secreted glucose biosensor transgene using the Sleeping Beauty transposon technology. Genetically modified hMSCs retained their mesenchymal characteristics. Stable transgene expression was validated biochemically. Increased activity of hTERT was accompanied by elevated and constant level of stem cell pluripotency markers and subsequently, by MSC immortalization. Furthermore, these cells efficiently suppressed PBMC proliferation in MLR transwell assays, indicating that they possess immunomodulatory properties. Finally, biosensor protein produced by MSCs was used to quantify glucose in cell-free assays. Our results indicate that our immortalized MSCs are suitable for measuring glucose concentrations in a physiological range. Thus, they are appropriate for incorporation into a cell-based, immune-privileged, glucose-monitoring medical device. PMID:28949988

  10. Circulating Betatrophin Correlates with Triglycerides and Postprandial Glucose among Different Glucose Tolerance Statuses--A Case-Control Study.

    PubMed

    Gao, Ting; Jin, Kairui; Chen, Peihong; Jin, Hua; Yang, Lili; Xie, Xinmiao; Yang, Meili; Hu, Cheng; Yu, Xuemei

    2015-01-01

    Previous researches of betatrophin on glucose and lipids metabolism under insulin-resistant condition have reached controversial conclusions. To further identify the possible impact of betatrophin, we measured the circulating betatrophin levels in newly diagnosed type 2 diabetes (T2DM) patients, and in subjects with both impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) and investigated the relationship between serum betatrophin and other clinical parameters in these patients with different glucose tolerance statuses. A total of 460 permanent residents of the Fengxian District, aged 40-60 years, were enrolled. Based on the results of a 75 g oral glucose tolerance test, we selected newly diagnosed T2DM (n = 50) patients and subjects with IGT (n = 51) and NGT (n = 50) according to their age, gender and body mass index (18-28 kg/m2). Anthropometric parameters, glycosylated haemoglobin, blood lipids and fasting insulin were measured. Serum betatrophin concentrations were determined via ELISA. Serum betatrophin levels in T2DM patients were increased significantly compared with IGT and NGT groups, and decreased in subjects with better islet beta cell function. Serum betatrophin was positively correlated with triglyceride, 2-hour postprandial glucose, alanine aminotransferase and aspartate transaminase after adjusting for age, sex and body mass index in all subjects. Multiple regression analysis showed that 2-hour postprandial glucose was independently associated with serum betatrophin significantly. Circulating betatrophin is increased in newly-diagnosed T2DM patients and positively correlated with the triglycerides and postprandial glucose levels. The results suggest that betatrophin may participate in glucose and triglycerides metabolism.

  11. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring.

    PubMed

    Siska, Evangelia K; Weisman, Itamar; Romano, Jacob; Ivics, Zoltán; Izsvák, Zsuzsanna; Barkai, Uriel; Petrakis, Spyros; Koliakos, George

    2017-01-01

    Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic patients should normalize these levels in order to avoid short and long term clinical complications. Presently, blood glucose monitoring is dependent on frequent finger pricking and enzyme based systems that analyze the drawn blood. Continuous blood glucose monitors are already on market but suffer from technical problems, inaccuracy and short operation time. A novel approach for continuous glucose monitoring is the development of implantable cell-based biosensors that emit light signals corresponding to glucose concentrations. Such devices use genetically modified cells expressing chimeric genes with glucose binding properties. MSCs are good candidates as carrier cells, as they can be genetically engineered and expanded into large numbers. They also possess immunomodulatory properties that, by reducing local inflammation, may assist long operation time. Here, we generated a novel immortalized human MSC line co-expressing hTERT and a secreted glucose biosensor transgene using the Sleeping Beauty transposon technology. Genetically modified hMSCs retained their mesenchymal characteristics. Stable transgene expression was validated biochemically. Increased activity of hTERT was accompanied by elevated and constant level of stem cell pluripotency markers and subsequently, by MSC immortalization. Furthermore, these cells efficiently suppressed PBMC proliferation in MLR transwell assays, indicating that they possess immunomodulatory properties. Finally, biosensor protein produced by MSCs was used to quantify glucose in cell-free assays. Our results indicate that our immortalized MSCs are suitable for measuring glucose concentrations in a physiological range. Thus, they are appropriate for incorporation into a cell-based, immune-privileged, glucose-monitoring medical device.

  12. Modelling the regulatory system for diabetes mellitus with a threshold window

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Tang, Sanyi; Cheke, Robert A.

    2015-05-01

    Piecewise (or non-smooth) glucose-insulin models with threshold windows for type 1 and type 2 diabetes mellitus are proposed and analyzed with a view to improving understanding of the glucose-insulin regulatory system. For glucose-insulin models with a single threshold, the existence and stability of regular, virtual, pseudo-equilibria and tangent points are addressed. Then the relations between regular equilibria and a pseudo-equilibrium are studied. Furthermore, the sufficient and necessary conditions for the global stability of regular equilibria and the pseudo-equilibrium are provided by using qualitative analysis techniques of non-smooth Filippov dynamic systems. Sliding bifurcations related to boundary node bifurcations were investigated with theoretical and numerical techniques, and insulin clinical therapies are discussed. For glucose-insulin models with a threshold window, the effects of glucose thresholds or the widths of threshold windows on the durations of insulin therapy and glucose infusion were addressed. The duration of the effects of an insulin injection is sensitive to the variation of thresholds. Our results indicate that blood glucose level can be maintained within a normal range using piecewise glucose-insulin models with a single threshold or a threshold window. Moreover, our findings suggest that it is critical to individualise insulin therapy for each patient separately, based on initial blood glucose levels.

  13. [Effects of the escharectomy during burn shock stage on expression of glucose translator-4 mRNA in skeletal muscle and adipose tissue].

    PubMed

    Shuai, Xiu-rong; Liu, Tong-fa; Guo, Zhen-rong; Yu, Shun-xian; He, Peng-fei; Yuan, Wen-zhou; Li, Feng; He, Li-xin

    2004-04-07

    To investigate the effect of the escharectomy during burn shock stage on expression of glucose translator-4 (GLUT4) mRNA in skeletal muscle and adipose tissue. 30% TBSA scalded rats were employed. Escharectomy were conducted at 8 h, 24 h, 168 h after burns respectively. Insulin, glucagon, cortisol and glucose levels in serum were analyzed. RT-PCR were employed to analyze GLUT4 mRNA expression in skeletal muscle and adipose tissue. Glucagon, cortisol and glucose levels in serum were declined in groups which escharectomy were conducted during burn shock stage. GLUT4 mRNA expression in both skeletal muscle and adipose tissue were downregulated after burns and escharectomy conducted during burn shock stage made it restored to near normal. GLUT4 mRNA expression will declined after major burns in skeletal muscle and adipose tissue. Escharectomy during shock stage could make it upregulated, which will be helpful to improve glucose metabolism and hypermetabolism after major burns.

  14. Dexamethasone reverses the effects of high glucose on human retinal endothelial cell permeability and proliferation in vitro.

    PubMed

    Stewart, E A; Saker, S; Amoaku, W M

    2016-10-01

    Diabetic macular oedema (DMO), a leading cause of preventable visual loss in the working population, is caused by an increase in microvascular endothelial cell permeability, and its prevalence is on the increase in parallel with the rising worldwide prevalence of diabetes. It is known that retinal vascular leakage in DMO is contributed to by VEGF upregulation as well as non-VEGF dependent inflammatory pathways, and the potential use of anti-inflammatory agents such as the glucocorticoids, including dexamethasone are being extensively studied. However, the mechanisms of action of dexamethasone in DMO reduction are not fully understood. Using human primary retinal endothelial cells (REC) the in vitro effect of dexamethasone in modulating the proliferation, permeability and gene expression of key tight and adheren junction components, and the expression of angiopoietins (Ang) 1 and 2 in high (25 mM) glucose conditions were investigated. High glucose decreased REC proliferation, an effect that was reversed by dexamethasone. High glucose conditions significantly increased REC permeability and decreased claudin-5, occludin and JAM-A gene expression; dexamethasone was effective in partially reversing these changes, restoring EC permeability to the normal or near normal state. High glucose levels resulted in reduction of Ang1 secretion, although Ang2 levels were consistently high. DEX increased Ang1 and decreased Ang2, indicating that the balance of Ang1/Ang2 may be important in determining functional changes in REC under high glucose conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of Sleep Fragmentation on Glucose Metabolism in Normal Subjects

    PubMed Central

    Stamatakis, Katherine A.

    2010-01-01

    Background: Sleep disorders are increasingly associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Whether the metabolic toll imposed by sleep-related disorders is caused by poor-quality sleep or due to other confounding factors is not known. The objective of this study was to examine whether experimental sleep fragmentation across all sleep stages would alter glucose metabolism, adrenocortical function, and sympathovagal balance. Methods: Sleep was experimentally fragmented across all stages in 11 healthy, normal volunteers for two nights using auditory and mechanical stimuli. Primary outcomes included insulin sensitivity (SI), glucose effectiveness (SG), and insulin secretion, as determined by the intravenous glucose tolerance test. Secondary outcomes included measures of sympathovagal balance and serum levels of inflammatory markers, adipokines, and cortisol. Results: Following two nights of sleep fragmentation, SI decreased from 5.02 to 3.76 (mU/L)−1min−1 (P < .0001). SG, which is the ability of glucose to mobilize itself independent of an insulin response, also decreased from 2.73 × 10−2 min−1 to 2.16 × 10−2 min−1 (P < .01). Sleep fragmentation led to an increase in morning cortisol levels and a shift in sympathovagal balance toward an increase in sympathetic nervous system activity. Markers of systemic inflammation and serum adipokines were unchanged with sleep fragmentation. Conclusions: Fragmentation of sleep across all stages is associated with a decrease in SI and SG. Increases in sympathetic nervous system and adrenocortical activity likely mediate the adverse metabolic effects of poor sleep quality. PMID:19542260

  16. Comparison of diagnostic criteria to detect undiagnosed diabetes in hyperglycaemic patients with acute coronary syndrome.

    PubMed

    de Mulder, Maarten; Oemrawsingh, Rohit M; Stam, Frank; Boersma, Eric; Umans, Victor A

    2012-01-01

    Elevated plasma glucose levels on admission (APG) are very common in patients with acute coronary syndrome (ACS) and can be the first indication of diabetes mellitus. To provide insight into the prevalence of previously undiagnosed diabetes and to compare different methods of diagnosing diabetes in patients with ACS. Patients with ACS with elevated APG who participated in the BIOMArCS 2 glucose trial underwent an oral glucose tolerance test (OGTT) prior to discharge. 130 patients were included who underwent metabolic assessment. Of these, 109 had an OGTT and 13 patients had pre-existing diabetes. The OGTT results were categorised as (previously) undiagnosed diabetes in 35% of patients (fasting plasma glucose (FPG) ≥7.0 mmol/l or 2-h post-load glucose ≥11.1 mmol/l) and impaired glucose metabolism in 44% (FPG 6.1-6.9 mmol/l or post-load glucose 7.8-11.0 mmol/l), so only 21% had a normal glucose metabolism. Undiagnosed diabetes could not be adequately predicted with APG, FPG or HbA1c (area under the ROC curve 0.61, 0.75 and 0.72, respectively). Patients with abnormal glucose metabolism were significantly older, had higher admission HbA1c values, a higher Killip classification and more often had a prior stroke than patients with normal glucose metabolism. 79% of hyperglycaemic patients with ACS were found to have abnormal glucose metabolism. As APG, HbA1c and FPG had a low sensitivity to detect undiagnosed diabetes, an OGTT appears to be the best test to assess the presence of previously undiagnosed diabetes or impaired glucose metabolism in hyperglycaemic patients with ACS.

  17. The Tellurium compound, AS101, increases SIRT1 level and activity and prevents type 2 diabetes

    PubMed Central

    Halperin-Sheinfeld, Meital; Gertler, Asaf; Okun, Eitan

    2012-01-01

    The histone deacetylase, SIRT1, plays a major role in glucose regulation and lipid metabolism. Ammonium Trichloro (dioxoethylene-o,o') Tellurate, AS101, is a potent in vitro and in vivo immunomodulator, with several potential therapeutic applications. AS101 administration resulted in upregulation of SIRT1 protein expression and activity. These effects were associated with decreased levels of serum insulin like growth factor-1 (IGF-1) and of insulin. The properties of AS101 prompted us to investigate its potential therapeutic role in rats with type 2 diabetes (T2D). T2D was induced by a high fat diet combined with a low dose of Streptozotocin (STZ). Treatment with AS101 before manifestation of hyperglycemia, resulted in increased insulin sensitivity, and decreased blood glucose levels, and prevented symptoms of diabetes including defective glucose clearance, fatty liver, and abnormal distribution of insulin-producing beta cells in the pancreas. Treatment after disease emergence resulted in partial restoration of normal glucose homeostasis. Diabetic rats showed a reduction in liver SIRT1 levels. In both treatment regimens the reduction in SIRT1 levels in the liver were blocked by AS101 consumption. Together, these findings demonstrate the therapeutic potential of AS101 for treating T2D, and for reversing impaired fat and glucose metabolism. PMID:22761194

  18. Serum FGF21 in girls with anorexia nervosa - comparison to normal weight and obese female adolescents.

    PubMed

    Mikolajczak, Agata; Oswiecimska, Joanna M; Swietochowska, Elzbieta; Roczniak, Wojciech; Ziora, Katarzyna T

    2017-07-01

    Fibroblast growth factor 21 (FGF21) is a hepatokine, myokine and adipokine of a potent influence to energy homeostasis. Data according its serum concentrations in AN are contradictory. Analysis of serum FGF21 in girls with acute anorexia nervosa and comparison the results with normal weight and obese female adolescents considering their nutritional status, carbohydrate and lipid metabolism. Serum FGF21 concentrations were evaluated using commercially available ELISA kit in 32 Polish girls with restrictive AN (AN), 29 girls with obesity (O) and 21 healthy controls (C). Anthropometric measurements (weight, height, BMI) and laboratory assays (serum fasting glucose, insulin, HOMA-IR, total cholesterol, HDL, LDL, triglycerides, C-reactive protein) were performed. Mean serum FGF-21 in the AN group was significantly lower, whereas in the O group it was significantly higher than in healthy controls. In all examined girls significant positive correlations between FGF21 and BMI were noted. We also observed significant positive relationships between serum FGF21 levels and fasting glucose, triglycerides, CRP, insulin and HOMA-IR. In all examined girls serum concentrations of this hormone correlated negatively with age and HDL-cholesterol levels. 1) Serum FGF21 concentrations are decreased in AN and elevated in obesity. They are independently and positively related to BMI and insulin resistance; 2) Decreased serum FGF21 in AN may support the maintenance of normal blood glucose through adjustment the insulin levels and insulin sensitivity; 3) Elevated FGF21 levels in obesity may be considered adaptive mechanism preventing insulin resistance and its metabolic consequences.

  19. High blood sugar levels significantly impact the prognosis of colorectal cancer patients through down-regulation of microRNA-16 by targeting Myb and VEGFR2

    PubMed Central

    Huang, Ching-Wen; Lu, Chien-Yu; Miao, Zhi-Feng; Chang, Se-Fen; Juo, Suh-Hang Hank; Wang, Jaw-Yuan

    2016-01-01

    The high prevalence of type 2 diabetes mellitus in colorectal cancer patients is a crucial public health issue worldwide. The deregulation of microRNAs has been shown to be associated with the progression of CRC; however, the effects of high blood sugar levels on miR deregulation and, in turn, CRC remain unexplored. In this study, 520 CRC patients were classified into two groups according to their blood sugar levels (≧110 or <110 mg/dL). Clinicopathologic features, clinical outcomes, and serum miR-16 levels of the two groups were then analyzed, while cell cycles, cell proliferation, migration, and cellular miR-16 expression were investigated via D-(+)-glucose administration. Additionally, the target genes of miR-16 were identified. Through multivariate analysis, both the disease-free survival and overall survival of the CRC patients were found to be associated with the UICC stage, perineural invasion, and blood glucose levels (P < 0.05). Serum miR-16 levels were significantly lower in the high blood glucose patients than in the normal blood glucose patients (P = 0.0329). With D-(+)-glucose administration, the proliferation and migration of CRC cells in vitro increased remarkably (P < 0.05), while their accumulation in the G1 phase decreased significantly. Cellular miR-16 expression was suppressed by D-(+)-glucose administration. The expression levels of two target genes, Myb and VEGFR2, were affected significantly by miR-16, while glucose administration inhibited miR-16 expression and enhanced tumor cell proliferation and migration. Hyperglycemia can impact the clinical outcomes of CRC patients, likely by inhibiting miR-16 expression and the expression of its downstream genes Myb and VEGFR2. PMID:26934556

  20. Effect of decrease in both postprandial blood glucose (PBG) and fasting blood glucose (FBG) levels in normal beagle dogs with nateglinide enteric coated granules and immediate release tablets.

    PubMed

    Makino, Chisato; Ninomiya, Nobutaka; Sakai, Hidetoshi; Orita, Haruo; Okano, Akira; Yabuki, Akira

    2006-04-01

    Nateglinide is a new quick action/short duration (QRSD) type of oral blood glucose regulator, and nateglinide immediate release tablets are used for patients with mild diabetes under the trade name of Fastic((R)) tablets. In this study, we attempted to determine if it was possible to control both post-prandial blood glucose level (PBG) and fasting blood glucose level (FBG) for moderate or severe diabetes through controlled release of nateglinide. Enteric coated granules were selected for the administration form for controlled release of nateglinide, and three types of enteric coated granules were prepared having dissolution pH values of 5.5, 6.5 and 7.2. The three types of enteric coated granules were each administered separately or the enteric coated granules having an dissolution pH of 6.5 were administered simultaneous to administration of nateglinide immediate release tablets to normal beagle dogs just before feeding followed by measurement of plasma nateglinide concentration, plasma insulin concentration and blood glucose level. In the case of administering enteric coated granules alone (nateglinide: 9 mg/kg), the absorption of nateglinide was confirmed to tend to be delayed as the dissolution pH increased. In the case of an dissolution pH of 5.5, decreases in both PBG and FBG were observed. In the case of dissolution pH values of 6.5 and 7.2, only decrease in FBG was observed. In case of nateglinide immediate release tablets (nateglinide: 9 mg/kg), only decrease in PBG was observed. Decreases in both PBG and FBG were observed in the case of simultaneous administration of dissolution pH 6.5 enteric coated granules and nateglinide immediate release tablets just before feeding (nateglinide: 90 mg/head+60 mg/head). A correlation was observed between plasma nateglinide concentrations and blood glucose levels. On the other hand, there were no correlations observed between changes in plasma insulin concentrations and blood glucose levels. In case of nateglinide immediate release tablets (nateglinide: 150 mg/head), Decreases in both PBG and FBG were observed. However, the nateglinide controlled release formulation is more useful than the nateglinide immediate release tablets from the view point of avoidance of side effect, or of easy control of both PBG and FBG. On the basis of these results, the design of a controlled release formulation that contains nateglinide was suggested to enable control of both PBG and FBG for moderate and severe diabetes patients.

  1. A new breakfast cereal containing guar gum reduces postprandial plasma glucose and insulin concentrations in normal-weight human subjects.

    PubMed

    Fairchild, R M; Ellis, P R; Byrne, A J; Luzio, S D; Mir, M A

    1996-07-01

    A new guar-containing wheatflake product was developed to assess its effect on carbohydrate tolerance in normal-weight, healthy subjects. The extruded wheatflake breakfast cereals containing 0 (control) or approximately 90 g guar gum/kg DM were fed to ten fasting, normal-weight, healthy subjects using a repeated measures design. The meals were similar in energy (approximately 1.8 MJ), available carbohydrate (78 g), protein (15 g) and fat (5.4 g) content. The guar gum content of the test meals was 6.3 g. Venous blood samples were taken fasting and at 15, 30, 45, 60, 90, 120, 150 and 240 min after commencing each breakfast and analysed for plasma glucose, insulin and C-peptide. The guar wheatflake meal produced a significant main effect for glucose and insulin at 0-60 min and 0-240 min time intervals respectively, but not for the C-peptide levels compared with the control meal. Significant reductions in postprandial glucose and insulin responses were seen following the guar wheatflake meal compared with the control meal at 15 and 60 min (glucose) and 15, 60, 90 and 120 min (insulin). The 60 and 120 min areas under the curve for glucose and insulin were significantly reduced by the guar gum meal, as was the 240 min area under the curve for insulin. Thus, it can be concluded that the use of a severe method of heat extrusion to produce guar wheatflakes does not diminish the physiological activity of the guar gum.

  2. [Role of visfatin in the pathogenesis of gestational diabetes mellitus and its relationship with insulin resistance].

    PubMed

    Huo, Yan; Liu, Suxin; Feng, Jing; Li, Hongyan; Fan, Yanli; Jin, Ying; Li, Li

    2014-08-01

    To investigate the role of visfatin in the pathogenesis of gestational diabetes mellitus (GDM) and its correlation with insulin resistance. The study recruited 58 pregnant women of 24 to 28 gestational weeks in People's Hospital of Hebei Province from January to June 2013. Among them, 30 were patients with GDM (GDM group), 28 had normal oral glucose tolerance test and was referred as healthy pregnancy group (NGT group). Fourteen age-matched female who were first-degree relatives (FDR1) of type 2 diabetes mellitus patients, and 27 healthy nonpregnant women with normal oral glucose tolerance test were referred as high-risk group and normal controls (NC), respectively. The fasting plasma glucose (FPG), 1 hour and 2 hours postprandial glucose levels were measured by glucose oxidase method. The fasting insulin (FIN) levels were measured by radioimmunoassay and the homeostatic model assessment-insulin resistance index (HOMA- IR) was calculated. The levels of total cholesterol (TC), triglycerdes (TG), high density lipoprotein cholesterol (HDL) and low density lipoprotein cholesterol (LDL) were determined. The visfatin levels were measured by ELISA. (1)The levels of FPG were significantly higher in GDM, FDR1 and NC group [(5.5 ± 0.7), (5.1 ±0.6), (5.2 ± 0.4)mmol/L] than that in NGT group [(4.5 ± 0.3) mmol/L], respectively (P < 0.05). (2) The levels of INS [(14 ± 6)mU/L], HOMA- IR (4.0 ± 2.0), 1 hour [(10.9 ± 1.8) mmol/L] and 2 hours [(8.6 ± 1.8) mmol/L] postprandial glucose levels of GDM group were significantly higher than those in NGT group [(12 ± 4) mU/L, 2.0 ± 1.0, (7. 4 ± 1.3) and (6.2 ± 0.9) mmol/L], respectively (P < 0.05). (3) The levels of TC, TG, HDL and LDL levels in GDM group were (5.5 ± 0.9), (2.8 ± 0.8), (1.8 ± 0.4) and (3.3 ± 0.8) mmol/L, and were(5.9 ± 0.8), (2.5 ± 0.7), (1.9 ± 0.4) and (3.4 ± 0.6) mmol/L in NGT group. The levels of lipid in the two groups were significantly higher than those in FDR1 or NC group, respectively(P < 0.05).(4)The levels of visfatin in GDM group and NGT group [(43 ± 10), (45 ± 12) µg/L] were significantly higher than that in FDR1 or NC group [(29 ± 9), (36 ± 7) µg/L], respectively (P < 0.05), but the visfatin levels in FDR1 group were significantly lower than that in NC group (P < 0.05). The visfatin levels in GDM group were slightly lower than that in NGT group, but the difference was not statistically significant (P > 0.05). (5)The visfatin levels in NGT group were negatively correlated to the levels of FPG, HOMA-IR and TC (r = -0.38, -0.44, -0.47, respectively, P < 0.05). But the visfatin levels in GDM group were not correlated with the levels of FPG, HOMA-IR, TC (r = -0.16, -0.01, 0.33, respectively, P > 0.05). While in NC group, the levels of visfatin were negatively correlated with FPG and 2 hours postprandial glucose(r = -0.48, -0.42, respectively, P < 0.05). Visfatin may be an important adipokine that involved in the carbohydrate and lipid metabolism in GDM, and is related to the pathogensis of GDM and insulin resistance.

  3. Insulin action in hyperthyroidism: a focus on muscle and adipose tissue.

    PubMed

    Mitrou, Panayota; Raptis, Sotirios A; Dimitriadis, George

    2010-10-01

    Hyperthyroidism leads to an enhanced demand for glucose, which is primarily provided by increased rates of hepatic glucose production due to increased gluconeogenesis (in the fasting state) and increased Cori cycle activity (in the late postprandial and fasting state). Adipose tissue lipolysis is increased in the fasting state, resulting in increased production of glycerol and nonesterified fatty acids. Under these conditions, increased glycerol generated by lipolysis and increased amino acids generated by proteolysis are used as substrates for gluconeogenesis. Increased nonesterified fatty acid levels are necessary to stimulate gluconeogenesis and provide substrate for oxidation in other tissues (such as muscle). In the postprandial period, insulin-stimulated glucose uptake by the skeletal muscle has been found to be normal or increased, mainly due to increased blood flow. Under hyperthyroid conditions, insulin-stimulated rates of glycogen synthesis in skeletal muscle are decreased, whereas there is a preferential increase in the rates of lactate formation vs. glucose oxidation leading to increased Cori cycle activity. In hyperthyroidism, the Cori cycle could be considered as a large substrate cycle; by maintaining a high flux through it, a dynamic buffer of glucose and lactate is provided, which can be used by other tissues as required. Moreover, lipolysis is rapidly suppressed to normal after the meal to facilitate the disposal of glucose by the insulin-resistant muscle. This ensures the preferential use of glucose when available and helps to preserve fat stores.

  4. CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Liu, Haoqi; Tang, Wei; Li, Chao; Lv, Pinlei; Wang, Zheng; Liu, Yanlei; Zhang, Cunlei; Bao, Yi; Chen, Haiyan; Meng, Xiangying; Song, Yan; Xia, Xiaoling; Pan, Fei; Cui, Daxiang; Shi, Yongquan

    2015-06-01

    Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats ( p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group, and was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group ( p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

  5. CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats.

    PubMed

    Liu, Haoqi; Tang, Wei; Li, Chao; Lv, Pinlei; Wang, Zheng; Liu, Yanlei; Zhang, Cunlei; Bao, Yi; Chen, Haiyan; Meng, Xiangying; Song, Yan; Xia, Xiaoling; Pan, Fei; Cui, Daxiang; Shi, Yongquan

    2015-12-01

    Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats (p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group which was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group (p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.

  6. In-vivo study for anti-hyperglycemic potential of aqueous extract of Basil seeds (Ocimum basilicum Linn) and its influence on biochemical parameters, serum electrolytes and haematological indices.

    PubMed

    Chaudhary, Sachin; Semwal, Amit; Kumar, Hitesh; Verma, Harish Chandra; Kumar, Amit

    2016-12-01

    The study introduced anti-hyperglycemic influence of aqueous extract of Ocimum basilicum seeds (AEOBS) in Streptozotocin (STZ) induced diabetic rats and estimating its potential to ameliorate altered level of biochemical parameters, serum electrolytes level and haematological indices along with its effect on body weight of treated rats. The albino rats were selected to observe oral glucose tolerance test by oral intake of aq. glucose solution (4g/kg, body weight) in normal rats and estimation of blood glucose level after administration of AEOBS at 250mg/kg, 500mg/kg and standard drug glibenclamide at 0.6mg/kg, body weight. Antidiabetic activity was evaluated in chronic study models by STZ induced diabetes in rats followed by blood glucose estimation. Chronic study model was selected to carry out further studies to evaluate the effect of AEOBS at 250mg/kg, 500mg/kg and standard drug on body weight, alterations in biochemical parameters including AST, ALT, ALP, total bilirubin and total protein, alterations in serum electrolytes like Na + , K + , Cl - , HCO 3 - along with estimation of haematological indices like red blood cells (RBC), white blood cells (WBC), hemoglobin (Hb), lymphocytes, neutrophils, eosinophils, monocytes and basophils. AEOBS significantly reduced the blood glucose level of diabetic rats at both doses. Body weight was also improved significantly. Similarly, the levels of biochemical parameters, serum electrolytes, and haematological indices were significantly ameliorated at both doses of AEOBS. The histopathological results revealed reconstitution of pancreatic islets towards normal cellular architecture in rats treated with AEOBS. The results illustrated that AEOBS have eminent antidiabetic potential in STZ effectuated diabetes in rats and can be extensively used for the treatment of diabetes mellitus-II and its associated complications including anaemia, diabetic nephropathy, liver dysfunction, and immunosuppression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. The validation of the Z-Scan technique for the determination of plasma glucose

    NASA Astrophysics Data System (ADS)

    Alves, Sarah I.; Silva, Elaine A. O.; Costa, Simone S.; Sonego, Denise R. N.; Hallack, Maira L.; Coppini, Ornela L.; Rowies, Fernanda; Azzalis, Ligia A.; Junqueira, Virginia B. C.; Pereira, Edimar C.; Rocha, Katya C.; Fonseca, Fernando L. A.

    2013-11-01

    Glucose is the main energy source for the human body. The concentration of blood glucose is regulated by several hormones including both antagonists: insulin and glucagon. The quantification of glucose in the blood is used for diagnosing metabolic disorders of carbohydrates, such as diabetes, idiopathic hypoglycemia and pancreatic diseases. Currently, the methodology used for this determination is the enzymatic colorimetric with spectrophotometric. This study aimed to validate the use of measurements of nonlinear optical properties of plasma glucose via the Z-Scan technique. For this we used samples of calibrator patterns that simulate commercial samples of patients (ELITech ©). Besides calibrators, serum glucose levels within acceptable reference values (normal control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) and also overestimated (pathological control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) were used in the methodology proposal. Calibrator dilutions were performed and determined by the Z-Scan technique for the preparation of calibration curve. In conclusion, Z-Scan method can be used to determinate glucose levels in biological samples with enzymatic colorimetric reaction and also to apply the same quality control parameters used in biochemistry clinical.

  8. Glucose consumption of inflammatory cells masks metabolic deficits in the brain

    PubMed Central

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A.; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R.; Schroeter, Michael; Graf, Rudolf

    2016-01-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  9. Behavior-associated and post-consumption glucose entry into the nucleus accumbens extracellular space during glucose free-drinking in trained rats

    PubMed Central

    Wakabayashi, Ken T.; Kiyatkin, Eugene A.

    2015-01-01

    Glucose is the primary energetic substrate for the metabolic activity of brain cells and its proper delivery from the arterial blood is essential for neural activity and normal brain functions. Glucose is also a unique natural reinforcer, supporting glucose-drinking behavior without food or water deprivation. While it is known that glucose enters brain tissue via gradient-dependent facilitated diffusion, it remains unclear how glucose levels are changed during natural behavior and whether the direct central action of ingested glucose can be involved in regulating glucose-drinking behavior. Here, we used glucose biosensors with high-speed amperometry to examine the pattern of phasic and tonic changes in extracellular glucose in the nucleus accumbens (NAc) during unrestricted glucose-drinking in well-trained rats. We found that the drinking behavior is highly cyclic and is associated with relatively large and prolonged increases in extracellular glucose levels. These increases had two distinct components: a highly phasic but relatively small behavior-related rise and a larger tonic elevation that results from the arrival of consumed glucose into the brain’s extracellular space. The large post-ingestion increases in NAc glucose began minutes after the cessation of drinking and were consistently associated with periods of non-drinking, suggesting that the central action of ingested glucose could inhibit drinking behavior by inducing a pause in activity between repeated drinking bouts. Finally, the difference in NAc glucose responses found between active, behavior-mediated and passive glucose delivery via an intra-gastric catheter confirms that motivated behavior is also associated with metabolic glucose use by brain cells. PMID:26190984

  10. Association of glycated hemoglobin with carotid intimal medial thickness in Asian Indians with normal glucose tolerance.

    PubMed

    Venkataraman, Vijayachandrika; Amutha, Anandakumar; Anbalagan, Viknesh Prabu; Deepa, Mohan; Anjana, Ranjit Mohan; Unnikrishnan, Ranjit; Vamsi, Mamilla; Mohan, Viswananthan

    2012-01-01

    To assess the association of glycated hemoglobin (HbA1c) levels with carotid intimal medial thickness (CIMT) in Asian Indians with normal glucose tolerance (NGT). Subjects with NGT were recruited from the Chennai Urban Rural Epidemiology Study carried out on a representative population of Chennai, South India. All subjects had fasting plasma glucose <100 mg/dl (5.6 mmol/l) and 2-h post load plasma glucose <140 mg/dl (7.8 mmol/l). HbA1c was measured using the Biorad Variant machine. CIMT was measured on the right common carotid artery using high-resolution B-mode ultrasonography. The study group included 1383 NGT subjects, of whom 760 (54.9%) were women. The mean CIMT value in the 1st quartile of HbA1c (<5.2%) was 0.65 and it increased significantly to 0.73 in the last quartile of HbA1c (>5.8) (p<0.001). Regression analysis showed that HbA1c had a strong association with CIMT after adjusting for age, gender, waist circumference, systolic and diastolic blood pressure, LDL cholesterol, serum triglycerides, HOMA-IR and smoking (ß - 0.046, p=0.047). Even among subjects with NGT, there is a significant increase in CIMT with increasing levels of HbA1c, showing the value of using HbA1c for diagnosis of glucose intolerance. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. [Valsartan inhibits angiotensin II-Notch signaling of mesangial cells induced by high glucose].

    PubMed

    Yuan, Qin; Lyu, Chuan; Wu, Can; Lei, Sha; Shao, Ying; Wang, Qiuyue

    2016-01-01

    To explore the role of angiotensin II (Ang II)-Notch signaling in high glucose-induced secretion of extracellular matrix of rat mesangial cells (RMCs) and to further investigate the protective effect of valsartan (one of Ang II receptor blockers) on kidney. Subcultured RMCs were divided into groups as follows: normal glucose group (5.5 mmol/L glucose); high glucose group (30 mmol/L glucose); high concentration of mannitol as osmotic control group (5.5 mmol/L glucose and 24.5 mmol/L mannitol); normal glucose plus 1 μmol/L N-[N-(3, 5-difluorophenacetyl)-L-alanyl ]-S-phenylglycine t-butyl ester (DAPT) group; normal glucose plus (1, 5, 10) μmol/L valsartan group; high glucose plus 1 μmol/L DAPT group; high glucose plus (1, 5, 10) μmol/L valsartan group. Cells and supernatants were harvested after 12, 24 and 48 hours. Notch1 expression was examined by Western blotting. Secretion of transforming growth factor (TGF-β) and fibronectin (FN) were detected by ELISA. Compared to the normal glucose group, Notch1 expression was elevated in the high glucose group after 12 hours, and peaked at 24 hours. Besides, secretion of TGF-β and FN were much higher in the high glucose group than in the normal glucose group in a time-dependent manner. Compared to the untreated group, Notch1 expression decreased in a dose-dependent manner in the valsartan or DAPT treated group under high glucose after 24 hours. After pre-treatment by either valsartan or DAPT in the high glucose group, secretion of TGF-β and FN obviously decreased as compared to the untreated group. Hyperglycemia could stimulate activation of Notch signaling in cultured RMCs, which may increase secretion of downstream fibrotic factors such as TGF-β and FN. Valsartan may decrease the secretion of downstream FN in a dose-dependent manner via inhibiting AngII-Notch signaling.

  12. Glucose dispersion measurement using white-light LCI

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Bagherzadeh, Morteza; Hitzenberger, Christoph K.; Pircher, Michael; Zawadzki, Robert; Fercher, Adolf F.

    2003-07-01

    We measured second order dispersion of glucose solution using a Michelson Low Coherent Interferometer (LCI). Three different glucose concentrations: 20mg/dl (hypoglycemia), 100mg/dl (normal level), and 500mg/dl (hyperglycemia) are investigated over the wavelength range 0.5μm to 0.85μm, and the investigation shows that different concentrations are associated with different second-order dispersions. The second-order dispersions for wavelengths from 0.55μm to 0.8μm are determined by Fourier analysis of the interferogram. This approach can be applied to measure the second-order dispersion for distinguishing the different glucose concentrations. It can be considered as a potentially noninvasive method to determine glucose concentration in human eye. A brief discussion is presented in this poster as well.

  13. Neuronal regulation of homeostasis by nutrient sensing.

    PubMed

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  14. In Vitro and In Vivo Antidiabetic Evaluation of Selected Culinary-Medicinal Mushrooms (Agaricomycetes).

    PubMed

    Singh, Varinder; Bedi, Gurleen Kaur; Shri, Richa

    2017-01-01

    Management of type 2 diabetes by delaying or preventing glucose absorption using natural products is gaining significant attention. Edible mushrooms are well documented for their nutritional and medicinal properties. This investigation was designed to evaluate the antidiabetic activity of aqueous extracts of selected culinary-medicinal mushrooms, namely, Pleurotus ostreatus, Calocybe indica, and Volvariella volvacea, using in vitro models (α-amylase inhibition assay, glucose uptake by yeast cells, and glucose adsorption capacity). The most active extract was subsequently examined in vivo using the oral starch tolerance test in mice. All prepared extracts showed dose-dependent inhibition of α-amylase and an increase in glucose transport across yeast cells. C. indica extract was the most active α-amylase inhibitor (half-maximal inhibitory concentration, 18.07 ± 0.75 mg/mL) and exhibited maximum glucose uptake by yeast cells (77.53 ± 0.97% at 35 mg/mL). All extracts demonstrated weak glucose adsorption ability. The positive in vitro tests for C. indica paved the way for in vivo studies. C. indica extract (200 and 400 mg/kg) significantly (P < 0.05) reduced postprandial blood glucose peaks in mice challenged with starch. The extract (400 mg/kg) and acarbose normalized blood glucose levels at 180 minutes, when they were statistically similar to values in normal mice. Thus, it may be concluded that the antidiabetic effect of C. indica is mediated by inhibition of starch metabolism (α-amylase inhibition), increased glucose uptake by peripheral cells (promotion of glucose uptake by yeast cells), and mild entrapment (adsorption) of glucose. Hence, C. indica can be developed as antidiabetic drug after detailed pharmacological studies.

  15. Effect of a new hypoglycemic agent, A-4166 [(-)-N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine], on postprandial blood glucose excursion: comparison with voglibose and glibenclamide.

    PubMed

    Ikenoue, T; Okazaki, K; Fujitani, S; Tsuchiya, Y; Akiyoshi, M; Maki, T; Kondo, N

    1997-04-01

    (-)-N-(trans-4-Isopropylcyclohexanecarbonyl)-D-phenylalanine (A-4166) is a new nonsulfonylurea hypoglycemic agent that lowers blood glucose by stimulating insulin release. In the present study, we examined the effects of A-4166, voglibose (an alpha-glucosidase inhibitor), and glibenclamide (a sulfonylurea) on the postprandial glycemic increase in rats with or without diabetes mellitus. Oral administration of A-4166 (25-100 mg/kg) dose-dependently decreased blood glucose with a rapid onset and short duration in normal rats. On the other hand, glibenclamide (1-4 mg/kg) showed a slower onset of its hypoglycemic action, and voglibose (0.2 mg/kg) had no effect. In the case of postprandial glucose excursion, the carbohydrate-induced increase in blood glucose was reduced by oral administration of either A-4166 or voglibose without causing sustained hypoglycemia in both normal and neonatal streptozotocin-induced diabetic rats. However, the efficacy of voglibose varied with the type of carbohydrate load. Glibenclamide produced a prolonged decrease in blood glucose without any appreciable effect on the initial glucose excursion. After sucrose loading, plasma insulin levels during the initial 1 h were significantly higher in A-4166-treated rats than in control rats, while voglibose completely inhibited the insulin response to sucrose. In glibenclamide-treated rats, an augmented insulin response was not seen. In conclusion, unlike other hypoglycemic agents, A-4166 suppresses postprandial glucose excursions by stimulating the early phase of insulin secretion.

  16. Defective glycogenesis contributes toward the inability to suppress hepatic glucose production in response to hyperglycemia and hyperinsulinemia in zucker diabetic fatty rats.

    PubMed

    Torres, Tracy P; Fujimoto, Yuka; Donahue, E P; Printz, Richard L; Houseknecht, Karen L; Treadway, Judith L; Shiota, Masakazu

    2011-09-01

    Examine whether normalizing net hepatic glycogenesis restores endogenous glucose production and hepatic glucose phosphorylation in response to diabetic levels of plasma glucose and insulin in Zucker diabetic fatty rats (ZDF). Hepatic glucose and intermediate fluxes (µmol · kg(-1) · min(-1)) were measured with and without a glycogen phosphorylase inhibitor (GPI) using [2-(3)H]glucose, [3-(3)H]glucose, and [U-(14)C]alanine in 20 h-fasted conscious ZDF and their lean littermates (ZCL) under clamp conditions designed to maintain diabetic levels of plasma glucose and insulin. With infusion of GPI into ZDF (ZDF-GPI+G), compared with vehicle infused ZDF (ZDF-V), high glycogen phosphorylase a activity was decreased and low synthase I activity was increased to that of ZCL. Low net glycogenesis from plasma glucose rose to 75% of ZCL levels (4 ± 1 in ZDF-V, 18 ± 1 in ZDF-GPI+G, and 24 ± 2 in ZCL) and phosphoenolpyruvate 260% (4 ± 2 in ZDF-V, 16 ± 1 in ZDF+GPI-G, and 6 ± 2 in ZCL). High endogenous glucose production was suppressed with GPI infusion but not to that of ZCL (46 ± 4 in ZDF-V, 18 ± 4 in ZDF-GPI+G, and -8 ± 3 in ZCL). This was accompanied by reduction of the higher glucose-6-phosphatase flux (75 ± 4 in ZDF-V, 41 ± 4 in ZDF-GPI+G, and 86 ± 12 in ZCL) and no change in low glucose phosphorylation or total gluconeogenesis. In the presence of hyperglycemic-hyperinsulinemia in ZDF, reduced glycogenic flux partially contributes to a lack of suppression of hepatic glucose production by failing to redirect glucose-6-phosphate flux from production of glucose to glycogen but is not responsible for a lower rate of glucose phosphorylation.

  17. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1.

    PubMed

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L; Shao, Zhuo; Evans, Lucy P; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M; Hurst, Christian G; Hatton, Colman J; Cui, Zhenghao; Pierce, Kerry A; Bherer, Patrick; Aguilar, Edith; Powner, Michael B; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B; Smith, Lois E H

    2016-04-01

    Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy-consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr(-/-) mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr(-/-) photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr(-/-) retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases.

  18. Anti-CD3 Antibody Treatment Induces Hypoglycemia and Super Tolerance to Glucose Challenge in Mice through Enhancing Glucose Consumption by Activated Lymphocytes

    PubMed Central

    Chernatynskaya, Anna V.; Looney, Benjamin; Wan, Suigui; Clare-Salzler, Michael J.

    2014-01-01

    Anti-CD3 antibody has been employed for various immune-mediated disorders. However, whether anti-CD3 administration leads to rapid metabolic alternation has not been well investigated. In the current study, we studied how anti-CD3 treatment affected blood glucose levels in mice. We found that anti-CD3 treatment induced immediate reduction of blood glucose after administration. Furthermore, a single dose of anti-CD3 treatment corrected hyperglycemia in all nonobese diabetic mice with recently diagnosed diabetes. This glucose-lowering effect was not attributable to major T cell produced cytokines. Of interest, when tested in a normal strain of mice (C57BL/6), the serum levels of C-peptide in anti-CD3 treated animals were significantly lower than control mice. Paradoxically, anti-CD3 treated animals were highly tolerant to exogenous glucose challenge. Additionally, we found that anti-CD3 treatment significantly induced activation of T and B cells in vitro and in vivo. Further studies demonstrated that anti-CD3 treatment lowered the glucose levels in T cell culture media and increased the intracellular transportation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2 deoxyglucose (2-NBDG) particularly in activated T and B cells. In addition, injection of anti-CD3 antibodies induced enhanced levels of Glut1 expression in spleen cells. This study suggests that anti-CD3 therapy-induced hypoglycemia likely results from increased glucose transportation and consumption by the activated lymphocytes. PMID:24741590

  19. Diabetes Mellitus: Screening and Diagnosis.

    PubMed

    Pippitt, Karly; Li, Marlana; Gurgle, Holly E

    2016-01-15

    Diabetes mellitus is one of the most common diagnoses made by family physicians. Uncontrolled diabetes can lead to blindness, limb amputation, kidney failure, and vascular and heart disease. Screening patients before signs and symptoms develop leads to earlier diagnosis and treatment, but may not reduce rates of end-organ damage. Randomized trials show that screening for type 2 diabetes does not reduce mortality after 10 years, although some data suggest mortality benefits after 23 to 30 years. Lifestyle and pharmacologic interventions decrease progression to diabetes in patients with impaired fasting glucose or impaired glucose tolerance. Screening for type 1 diabetes is not recommended. The U.S. Preventive Services Task Force recommends screening for abnormal blood glucose and type 2 diabetes in adults 40 to 70 years of age who are overweight or obese, and repeating testing every three years if results are normal. Individuals at higher risk should be considered for earlier and more frequent screening. The American Diabetes Association recommends screening for type 2 diabetes annually in patients 45 years and older, or in patients younger than 45 years with major risk factors. The diagnosis can be made with a fasting plasma glucose level of 126 mg per dL or greater; an A1C level of 6.5% or greater; a random plasma glucose level of 200 mg per dL or greater; or a 75-g two-hour oral glucose tolerance test with a plasma glucose level of 200 mg per dL or greater. Results should be confirmed with repeat testing on a subsequent day; however, a single random plasma glucose level of 200 mg per dL or greater with typical signs and symptoms of hyperglycemia likely indicates diabetes. Additional testing to determine the etiology of diabetes is not routinely recommended.

  20. Psychosocial factors are independent risk factors for the development of Type 2 diabetes in Japanese workers with impaired fasting glucose and/or impaired glucose tolerance1

    PubMed Central

    Toshihiro, M; Saito, K; Takikawa, S; Takebe, N; Onoda, T; Satoh, J

    2008-01-01

    Aims We prospectively studied Japanese workers with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) and analysed possible risk factors for diabetes, including psychosocial factors such as stress. Methods The participants were 128 male Japanese company employees (mean age, 49.3 ± 5.9 years) with IFG and/or IGT diagnosed by oral glucose tolerance test (OGTT). Participants were prospectively studied for 5 years with annual OGTTs. The Kaplan–Meier method and Cox's proportional hazard model were used to analyse the incidence of diabetes and the factors affecting glucose tolerance, including anthropometric, biochemical and social–psychological factors. Results Of 128 participants, 36 (28.1%) developed diabetes and 39 (30.5%) returned to normal glucose tolerance (NGT) during a mean follow-up of 3.2 years. Independent risk factors for diabetes were night duty [hazard ratio (HR) = 5.48, P = 0.002], higher fasting plasma glucose (FPG) levels within 6.1–6.9 mmol/l (HR = 1.05, P = 0.031), stress (HR = 3.81, P = 0.037) and administrative position (HR = 12.70, P = 0.045), while independent factors associated with recovery were lower FPG levels (HR = 0.94, P = 0.017), being a white-collar worker (HR = 0.34, P = 0.033), non-smoking (HR = 0.31, P = 0.040) and lower serum alanine aminotransferase (ALT) levels (HR = 0.97, P = 0.042). Conclusions In addition to FPG levels at baseline, psychosocial factors (night duty, stress and administrative position) are risk factors for Type 2 diabetes, while being a white-collar worker, a non-smoker and lower serum ALT levels are factors associated with return to NGT in Japanese workers with IFG and/or IGT. PMID:19046200

  1. Induction of insulin secretion by a component of Urtica dioica leave extract in perifused Islets of Langerhans and its in vivo effects in normal and streptozotocin diabetic rats.

    PubMed

    Farzami, Bijan; Ahmadvand, D; Vardasbi, S; Majin, F J; Khaghani, Sh

    2003-11-01

    The blood glucose lowering effect of Urtica dioica (Stinging Nettle) as a medicinal plant has been noted in old writings such as those of Avicenna. Recently, there has also been other investigators that indicated the hypoglycemic effect of Urtica dioica. But so far, the mechanism of this effect has not been deduced. In this report, a perifusion system is arranged in which an exact number of Langerhans Islets were exposed to several fractions of extracts of Urtica dioica by TLC. The active ingredient fraction named F(1), caused a marked increase in insulin secretion. A simultaneous assay of glucose showed that the increase in insulin level was associated with a decrease in glucose level. Furthermore, the active component of Urtica dioica was found to increase the insulin content of blood sera in normal and streptozotocin diabetic rats that were injected intraperitoneally (i.p.) with the active ingredient of the extract. The in vivo studies presented in this report show that not only an increase in insulin level of blood sera was observed in rats after 30 min from the initial point of injection but a simultaneous decrease of blood sugar was detected when similar sera was tested for glucose. The increase in insulin level was six times during the 120 min of our determination. The decrease in blood sugar was found to be similar both in the level and time of initiation. On the basis of our findings, we assume that F(1) is the active ingredient of plant leaves extract. The results show that the blood lowering effect of the extract was due to the enhancement of insulin secretion by Langerhance Isletes.

  2. Fabrication of flexible and disposable carbon paste-based electrodes and their electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Aryasomayajula, Lavanya; Varadan, Vijay K.

    2008-03-01

    The paper describes a disposable electrochemical biosensor for glucose monitoring. The sensor is based on carbon paste immobilized with glucose oxidase and upon screen printed electrodes. The sensor has been tested effectively for the blood glucose levels corresponding to normal (70 to 99 mg/dL or 3.9 to5.5 mmol/L), pre-diabetic (100 to 125 mg/dL or 5.6 to 6.9 mmol/L) and diabetic (>126 mg/dL or 7.0 mmol/L). The calibration curve and the sensitivity of the sensor were measured.

  3. Effects of ursolic acid on glucose metabolism, the polyol pathway and dyslipidemia in non-obese type 2 diabetic mice.

    PubMed

    Lee, Jin; Lee, Hae-In; Seo, Kown-Il; Cho, Hyun Wook; Kim, Myung-Joo; Park, Eun-Mi; Lee, Mi-Kyung

    2014-07-01

    Ursolic acid (UA) is a pentacyclic triterpenoid compound that naturally occurs in fruits, leaves and flowers of medicinal herbs. This study investigated the dose-response efficacy of UA (0.01 and 0.05%) on glucose metabolism, the polyol pathway and dyslipidemia in streptozotocin/nicotinamide-induced diabetic mice. Supplement with both UA doses reduced fasting blood glucose and plasma triglyceride levels in non-obese type 2 diabetic mice. High-dose UA significantly lowered plasma free fatty acid, total cholesterol and VLDL-cholesterol levels compared with the diabetic control mice, while LDL-cholesterol levels were reduced with both doses. UA supplement effectively decreased hepatic glucose-6-phosphatase activity and increased glucokinase activity, the glucokinase/glucose-6-phosphatase ratio, GLUT2 mRNA levels and glycogen content compared with the diabetic control mice. UA supplement attenuated hyperglycemia-induced renal hypertrophy and histological changes. Renal aldose reductase activity was higher, whereas sorbitol dehydrogenase activity was lower in the diabetic control group than in the non-diabetic group. However, UA supplement reversed the biochemical changes in polyol pathway to normal values. These results demonstrated that low-dose UA had preventive potency for diabetic renal complications, which could be mediated by changes in hepatic glucose metabolism and the renal polyol pathway. High-dose UA was more effective anti-dyslipidemia therapy in non-obese type 2 diabetic mice.

  4. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway.

    PubMed

    Zhao, Shuzhi; Li, Jun; Wang, Na; Zheng, Bingqing; Li, Tao; Gu, Qing; Xu, Xun; Zheng, Zhi

    2015-10-01

    Inflammation is a major contributing factor in the development of diabetic microvascular complications, regardless of whether improved glycaemic control is achieved. Studies have increasingly indicated that fenofibrate, a lipid‑lowering therapeutic agent in clinical use, exerts a potential anti‑inflammatory effect, which is mediated by sirtuin 1 (SIRT1; an NAD+‑dependent deacetylase) in endothelial cells. The aim of the present study was to investigate the inhibitory effect of fenofibrate on metabolic memory (via the regulation of SIRT1), and inflammatory responses in cell and animal models of diabetic retinopathy (DR). The data demonstrated that high glucose treatment in human retinal endothelial cells (HRECs) inhibited the expression and deacetylase activity of SIRT1. The reduction of SIRT1 expression and deacetylase activity persisted following a return to normal glucose levels. Furthermore, nuclear factor‑κB expression was observed to be negatively correlated with SIRT1 expression and activity in HRECs under high glucose levels and the subsequent return to normal glucose levels. Fenofibrate treatment abrogated these changes. Knockdown of SIRT1 attenuated the effect of fenofibrate on high glucose‑induced NF‑κB expression. In addition, fenofibrate upregulated SIRT1 expression through peroxisome proliferator‑activated receptor α in high glucose‑induced metabolic memory. These findings indicate that fenofibrate is important in anti‑inflammatory processes and suppresses the cellular metabolic memory of high glucose‑induced stress via the SIRT1‑dependent signalling pathway. Thus, treatment with fenofibrate may offer a promising therapeutic strategy for halting the development of DR and other complications of diabetes.

  5. When Blood Sugar is Too High

    MedlinePlus

    ... Videos for Educators Search English Español When Blood Sugar Is Too High KidsHealth / For Kids / When Blood ... this balancing act. The Causes of High Blood Sugar In general, higher than normal blood glucose levels ...

  6. Glucose metabolism in the developing brain.

    PubMed

    Vannucci, R C; Vannucci, S J

    2000-04-01

    As in adults, glucose is the predominant cerebral energy fuel for the fetus and newborn. Studies in experimental animals and humans indicate that cerebral glucose utilization initially is low and increases with maturation with increasing regional heterogeneity. The increases in cerebral glucose utilization with advancing age occurs as a consequence of increasing functional activity and cerebral energy demands. The levels of expression of the 2 primary facilitative glucose transporter proteins in brain, GLUT1 (blood-brain barrier and glia) and GLUT3 (neuronal), display a similar maturational pattern. Alternate cerebral energy fuels, specifically the ketone bodies and lactate, can substitute for glucose, especially during hypoglycemia, thereby protecting the immature brain from potential untoward effects of hypoglycemia. Unlike adults, glucose supplementation during hypoxia-ischemia is protective in the immature brain, whereas hypoglycemia is deleterious. Accordingly, glucose plays a critical role in the developing brain, not only as the primary substrate for energy production but also to allow for normal biosynthetic processes to proceed.

  7. Pregnancy Hyperglycaemia and Risk of Prenatal and Postpartum Depressive Symptoms.

    PubMed

    Huang, Tianyi; Rifas-Shiman, Sheryl L; Ertel, Karen A; Rich-Edwards, Janet; Kleinman, Ken; Gillman, Matthew W; Oken, Emily; James-Todd, Tamarra

    2015-07-01

    Glucose dysregulation in pregnancy may affect maternal depressive symptoms during the prenatal and postpartum periods via both physiologic and psychological pathways. During mid-pregnancy, a combination of 50-g 1-h non-fasting glucose challenge test (GCT) and 100-g 3-h fasting oral glucose tolerance test was used to determine pregnancy glycaemic status among women participating in Project Viva: normal glucose tolerance (NGT), isolated hyperglycaemia (IHG), impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM). Using the Edinburgh Postnatal Depression Scale (EPDS), we assessed depressive symptoms at mid-pregnancy and again at 6 months postpartum. We used logistic regression, adjusted for sociodemographic, anthropometric and lifestyle factors, to estimate the odds of elevated prenatal and postpartum depressive symptoms (EPDS ≥ 13 on 0-30 scale) in relation to GCT glucose levels and GDM status in separate models. A total of 9.6% of women showed prenatal and 8.4% postpartum depressive symptoms. Women with higher GCT glucose levels were at greater odds of elevated prenatal depressive symptoms [multivariable-adjusted odds ratio (OR) per standard deviation (SD) increase in glucose levels (27 mg/dL): 1.25; 95%: 1.07, 1.48]. Compared with NGT women, the association appeared stronger among women with IHG [OR: 1.80; 95% confidence interval (CI): 1.08, 3.00] than among those with GDM (OR: 1.45; 95% CI: 0.72, 2.91) or IGT (OR: 1.43; 95% CI: 0.59, 3.46). Neither glucose levels assessed from the GCT nor pregnancy glycaemic status were significantly associated with elevated postpartum depressive symptoms. Pregnancy hyperglycaemia was cross-sectionally associated with higher risk of prenatal depressive symptoms, but not with postpartum depressive symptoms. © 2015 John Wiley & Sons Ltd.

  8. Hypoglycemic effect of Lupinus mutabilis in healthy volunteers and subjects with dysglycemia.

    PubMed

    Fornasini, M; Castro, J; Villacrés, E; Narváez, L; Villamar, M P; Baldeón, M E

    2012-01-01

    Metabolic syndrome and type-2 diabetes are increasing health problems that negatively affect health care systems worldwide. There is a constant urge to develop new therapies with better effects, lower side effects at lower prices to treat these diseases. Lupinus species and their derivates are good candidates to be used as hypoglycaemic agents. A phase II clinical trial was conducted to assess the role of raw Lupinus mutabilis on blood glucose and insulin in normoglycemic and dysglycemic subjects. Results show that consumption of L. mutabilis by normal weight healthy young individuals did not change importantly blood glucose and insulin levels. On the other hand, consumption of similar doses of lupinus by dysglycemic individuals (fasting glucose > 100 mg/dL) decreased significantly blood glucose. Lupinus effects were greater in those subjects with higher basal glucose levels. Glucose lowering effects of lupinus were not observed after soy intake that was used as control. A statistically significant reduction in insulin levels was also observed in the lupinus group compared with the soy group after 60 minutes of treatment. Furthermore, only treatment with lupinus improved insulin resistance in dysglycemic subjects. These data demonstrate that lupinus consumption could be a feasible and low cost alternative to treat chronic hyperglycemic diseases.

  9. Plasma ghrelin levels and polymorphisms of ghrelin gene in Chinese obese children and adolescents.

    PubMed

    Zhu, J F; Liang, L; Zou, C C; Fu, J F

    2010-09-01

    To evaluate the role of fasting plasma ghrelin levels [ln(ghrelin)] and polymorphisms of ghrelin gene in Chinese obese children. Genotyping for ghrelin polymorphism was performed in 230 obese and 100 normal weight children. Among them, plasma ghrelin levels were measured in 91 obese and 23 health subjects. (1) Bivariate correlation analysis showed the ln(ghrelin) was inversely correlated with abnormality of glucose metabolism (r = -0.240, P = 0.023). Stepwise multiple regression analysis showed that abnormality of glucose metabolism was an independent determinant of plasma ghrelin levels (P = 0.023). (2) There was no difference in frequency of Leu72Met polymorphisms between obese and control groups (36.09 vs. 41.00%). Ghrelin is associated with obesity in childhood, especially associated with the glucose homeostasis. Lower ghrelin levels might be a result of obesity, but not a cause of obesity. The Leu72Met polymorphism of ghrelin gene is not associated with obesity and metabolic syndrome in Chinese children.

  10. Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle.

    PubMed

    Netchiporouk, L; Shram, N; Salvert, D; Cespuglio, R

    2001-04-01

    In the present study, cortical extracellular levels of glucose were monitored for the first time throughout the sleep-wake states of the freely moving rat. For this purpose, polygraphic recordings (electroencephalogram of the fronto-occipital cortices and electromyogram of the neck muscles) were achieved in combination with differential normal pulse voltammetry (DNPV) using a specific glucose sensor. Data obtained reveal that the basal extracellular glucose concentration in the conscious rat is 0.59 +/- 0.3 m M while under chloral hydrate anaesthesia (0.4 g/kg, i.p.) it increases up to 180% of its basal concentration. Regarding the sleep-wake cycle, the existence of spontaneous significant variations in the mean glucose level during slow-wave sleep (SWS = +13%) and paradoxical sleep (PS = -11%) compared with the waking state (100%) is also reported. It is to be noticed that during long periods of active waking, glucose level tends towards a decrease that becomes significant after 15 min (active waking = -32%). On the contrary, during long episodes of slow-wave sleep, it tends towards an increase which becomes significant after 12 min (SWS = +28%). It is suggested that voltammetric techniques using enzymatic biosensors are useful tools allowing direct glucose measurements in the freely moving animal. On the whole, paradoxical sleep is pointed out as a state highly dependent on the availability of energy and slow-wave sleep as a period of energy saving.

  11. Sweat glucose and GLUT2 expression in atopic dermatitis: Implication for clinical manifestation and treatment

    PubMed Central

    Ono, Emi; Mori, Yuki; Yoshioka, Yoshichika; Nomura, Yuko; Munetsugu, Takichi; Yokozeki, Hiroo; Katayama, Ichiro

    2018-01-01

    Sweat includes active components and metabolites, which are needed to maintain skin homeostasis. Component changes in sweat derived from atopic dermatitis (AD) have been reported. To investigate the influence of sweat components on the pathogenesis of AD, we performed a multifaceted assessment, including nuclear magnetic resonance spectroscopy-based metabolomic analysis, and linked these features to clinical features of AD. Distinctive properties of AD sweat are the quite-variation in protein, anti-microbial peptides and glucose concentrations. pH, sodium, and other salt levels in sweat of AD were comparable to that of healthy subjects. Sweat from AD patients with acute inflammation had a more prominent increase in glucose concentration than sweat from healthy individuals or those with AD with chronic inflammation. Topical glucose application delayed recovery of transepidermal water loss in barrier-disrupted mice. Furthermore, the glucose transporter GLUT2 was highly expressed in the lumen of sweat glands from AD patients. AD patients with chronic inflammation had significantly increased GLUT2 mRNA expression and near normal sweat glucose levels. Despite the small sample size in our study, we speculate that the increased glucose levels might be affected by AD severity and phenotype. We hope that this report will bring novel insight into the impact of sweat components on the clinical manifestation of AD. PMID:29677207

  12. Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats.

    PubMed

    Shen, Szu-Chuan; Cheng, Fang-Chi; Wu, Ning-Jung

    2008-11-01

    This study investigated the effect of aqueous and ethanol soluble solid extracts of guava (Psidium guajava Linn.) leaves on hypoglycemia and glucose metabolism in type 2 diabetic rats. Low-dose streptozotocin (STZ) and nicotinamide were injected into Sprague-Dawley (SD) rats to induce type 2 diabetes. Acute and long-term feeding tests were carried out, and an oral glucose tolerance test (OGTT) to follow the changes in plasma glucose and insulin levels was performed to evaluate the antihyperglycemic effect of guava leaf extracts in diabetic rats.The results of acute and long-term feeding tests showed a significant reduction in the blood sugar level in diabetic rats fed with either the aqueous or ethanol extract of guava leaves (p < 0.05). Long-term administration of guava leaf extracts increased the plasma insulin level and glucose utilization in diabetic rats. The results also indicated that the activities of hepatic hexokinase, phosphofructokinase and glucose-6-phosphate dehydrogenase in diabetic rats fed with aqueous extracts were higher than in the normal diabetic group (p < 0.05). On the other hand, diabetic rats treated with the ethanol extract raised the activities of hepatic hexokinase and glucose-6-phosphate dehydrogenase (p < 0.05) only. The experiments provided evidence to support the antihyperglycemic effect of guava leaf extract and the health function of guava leaves against type 2 diabetes.

  13. Insulin mimetic impact of Catechin isolated from Cassia fistula on the glucose oxidation and molecular mechanisms of glucose uptake on Streptozotocin-induced diabetic Wistar rats.

    PubMed

    Daisy, P; Balasubramanian, K; Rajalakshmi, M; Eliza, J; Selvaraj, J

    2010-01-01

    Diabetes mellitus is the most common and serious metabolic disorder among people all over the world. Many plants have successfully been used to overcome this problem. Cassia fistula, an ethnomedicnal plant, is widely used in Indian medicine to treat diabetes. Methanol extract of stem of plant, reduced the blood glucose levels in Streptozotocin-induced diabetic rats. Bioassay guided fractionation was followed to isolate Catechin from methanol extract. Catechin was administered to Streptozotocin (60mg/kg b.w.)-induced diabetic male Wistar rats at different doses (5, 10, 20mg/kg b.w.) for 6 weeks to assess its effect on fasting plasma glucose. The plasma glucose was significantly (p<0.05) reduced when compared to the control. Oral administration of Catechin (20mg/kg b.w.) markedly increased tissue glycogen, and (14)C-glucose oxidation without any change in plasma insulin and C-peptide. Catechin restored the altered Glucokinase, glucose-6 Phosphatase, Glycogen Synthase and Glycogen Phosphorylase levels to near normal. GLUT4 mRNA and protein expression were enhanced after Catechin treatment. The results of this experimental study indicated that Catechin possesses hypo-glycemic, Glucose oxidizing and insulin mimetic activities and hence it could be used as a drug for treating diabetes.

  14. Ibrolipim attenuates high glucose-induced endothelial dysfunction in cultured human umbilical vein endothelial cells via PI3K/Akt pathway.

    PubMed

    Xiao, Guohua; Wang, Zongbao; Zeng, Huaicai; Yu, Jian; Yin, Weidong; Zhang, Sujun; Wang, Yueting; Zhang, Yali

    2011-10-01

    Endothelial dysfunction is a key event in the onset and progression of atherosclerosis associated with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction and contribute to vascular complications. Therefore, we aimed to elucidate the possible role and mechanism of ibrolipim in preventing endothelial dysfunction induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were cultured respectively under normal glucose level (5.5mM), high glucose level (33mM), and high glucose level with ibrolipim treatment. Endothelial dysfunction was identified by the expression of ET-1 and vWF through reverse transcription PCR (RT-PCR). HUVECs apoptosis was assessed by fluorescent staining with Hoechst 33258. Akt activity was analyzed by western blot. High glucose condition significantly increased the rate of apoptotic cells, weakened cell viability, and decreased the expression of ET-1 and vWF. Ibrolipim treatment significantly attenuated these alterations of endothelial dysfunction. The lower concentrations (2, 4, 8 microM) of ibrolipim inhibited apoptosis of cultured HUVECs, improved cell viability, down-regulated the mRNA levels of ET-1, vWF, and attenuated the cytotoxicity; however, higher concentration (16, 32 microM) of ibrolipim aggravated the damage of HUVECs cultured under high glucose level. Meanwhile, high glucose induced a decrease of Akt activity which led to apoptosis, and ibrolipim prevented the decrease and attenuated apoptotic effect induced by high glucose. Furthermore, the PI3K inhibitor LY294002 significantly abolished the anti-apoptotic effect of ibrolipim, and decreased Akt phosphorylation. Although, the expression of Akt mRNA and total protein were not altered in cultured HUVECs. Ibrolipim at lower concentrations can inhibit high glucose-induced apoptosis in cultured HUVECs, which might be related to the alternation of Akt activity. Ibrolipim has the potential to attenuate endothelial dysfunction and lower the risk of diabetes-associated vascular diseases. And it might be a therapeutic agent for diabetic vascular complications.

  15. Association of the hypertriglyceridemic waist phenotype and type 2 diabetes mellitus among adults in China.

    PubMed

    Ren, Yongcheng; Zhang, Ming; Zhao, Jingzhi; Wang, Chongjian; Luo, Xinping; Zhang, Jiatong; Zhu, Tian; Li, Xi; Yin, Lei; Pang, Chao; Feng, Tianping; Wang, Bingyuan; Zhang, Lu; Li, Linlin; Yang, Xiangyu; Zhang, Hongyan; Hu, Dongsheng

    2016-09-01

    To clarify the association of the hypertriglyceridemic waist phenotype and type 2 diabetes mellitus among adults in China. In the present case-control study, we included 1,685 patients with type 2 diabetes mellitus and 7,141 normal glucose-tolerant controls from the Henan Province of China in 2011. Elevated waist circumference (GW) was defined as ≥90 cm for men and ≥80 cm for women. Hypertriglyceridemia (HT) was defined as >1.7 m mol/L triglycerides (TG) level. The association of hypertriglyceridemic waist phenotype and type 2 diabetes mellitus was investigated by sex, body mass index, physical activity, and family history of diabetes. Cases and controls differed in age, waist circumference (WC), weight, TG level, fasting glucose, body mass index, smoking status, diabetic family history, physical activity and hypertriglyceridemic waist phenotype (P < 0.05), but not alcohol drinking (P = 0.63). In the overall sample, as compared with the phenotype of normal TG level and normal WC (NTNW), normal TG level/enlarged WC (NTGW), elevated TG level/normal WC (HTNW) and elevated TG level/enlarged WC (HTGW) were associated with type 2 diabetes mellitus (odds ratio 4.14, 2.42 and 6.23, respectively). Only HTGW was consistently associated with risk of type 2 diabetes mellitus, with or without adjustment. The strongest relationship between HTGW and type 2 diabetes mellitus was for subjects with body mass index <24.0 kg/m(2) (odds ratio 6.54, 95% confidence interval 4.22-10.14) after adjustment for cofounding variables. HTGW was stably and significantly associated with risk of type 2 diabetes mellitus in adult Chinese. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  16. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    PubMed

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (P<0.05). The fasting plasma glucose of rats in high-fat diet group was significantly increased compared with that of normal control rats (6.62 mmol/L vs. 4.96 mmol/L, P<0.05), however there was no significant difference in fasting serum insulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  17. Body Mass Index Is Associated with Increased Creatinine Clearance by a Mechanism Independent of Body Fat Distribution

    PubMed Central

    Gerchman, Fernando; Tong, Jenny; Utzschneider, Kristina M.; Zraika, Sakeneh; Udayasankar, Jayalakshmi; McNeely, Marguerite J.; Carr, Darcy B.; Leonetti, Donna L.; Young, Bessie A.; de Boer, Ian H.; Boyko, Edward J.; Fujimoto, Wilfred Y.; Kahn, Steven E.

    2009-01-01

    Context: Although obesity has been, in general, associated with glomerular hyperfiltration, visceral adiposity has been suggested to be associated with reduced glomerular filtration. Objective: The aim of the study was to evaluate the differential effects of obesity and body fat distribution on glomerular filtration. Design and Setting: We conducted a cross-sectional study of the Japanese-American community in Seattle, Washington. Participants: We studied a representative sample of second-generation Japanese-American men and women with normal glucose tolerance (n = 124) and impaired glucose metabolism (impaired fasting glucose and/or impaired glucose tolerance) (n = 144) residing in King County, Washington. Main Outcome Measures: Glomerular filtration rate was estimated by 24-h urinary creatinine clearance, body size by body mass index (BMI), and intra-abdominal fat (IAF), sc fat (SCF), and lean thigh areas by CT scan. Results: Creatinine clearance was positively correlated with BMI (r = 0.429; P < 0.001), fasting glucose (r = 0.198; P = 0.001), and insulin levels (r = 0.125; P = 0.042), as well as IAF (r = 0.239; P < 0.001), SCF (r = 0.281; P < 0.001), and lean thigh (r = 0.353; P < 0.001) areas. The association between creatinine clearance and BMI remained significant after adjustments for IAF, SCF areas, and fasting insulin levels (r = 0.337; P < 0.001); whereas IAF and SCF areas were not independently associated with creatinine clearance after adjusting for BMI. Creatinine clearance increased with increasing BMI after adjusting for fasting insulin, fasting glucose, IAF and SCF areas in subjects with normal glucose tolerance (r = 0.432; P < 0.001) and impaired glucose metabolism (r = 0.471; P < 0.001). Conclusions: BMI rather than body fat distribution is an independent determinant of creatinine clearance in nondiabetic subjects. Lean body mass, rather than adiposity, may explain this association. PMID:19584179

  18. High glucose-boosted inflammatory responses to lipopolysaccharide are suppressed by statin.

    PubMed

    Nareika, A; Maldonado, A; He, L; Game, B A; Slate, E H; Sanders, J J; London, S D; Lopes-Virella, M F; Huang, Y

    2007-02-01

    It has been established that periodontal diseases are more prevalent and of greater severity in diabetic patients than in nondiabetic patients. Recent studies have underscored the role of monocytes and macrophages in periodontal tissue inflammation and destruction in diabetic patients. Although it has been shown that monocytes isolated from diabetic patients produce more inflammatory cytokines and that gingival crevicular fluid collected from diabetic patients contains higher levels of inflammatory cytokines than that obtained from nondiabetic patients, the underlying mechanisms are not well understood. U937 histiocytes cultured in medium containing either normal (5 mM) or high (25 mM) glucose were treated with 100 ng/ml of lipopolysaccharide for 24h. After the treatment, cytokines in the medium and cytokine mRNA in the cells were quantified using enzyme-linked immunosorbet assay and real-time polymerase chain reaction, respectively. In this study, we demonstrated that the pre-exposure of U937 histiocytes to high glucose concentrations markedly increased the lipopolysaccharide-induced secretion of pro-inflammatory cytokines and chemokines and the cellular inducible nitric oxide level compared with pre-exposure to normal glucose. Our data also showed that the increased secretion of cytokines was a result of increased mRNA expression. Furthermore, the effects of statin and peroxisome proliferators-activated receptor agonists on high glucose-enhanced secretion of cytokines were determined. The results showed that simvastatin, but not fenofibrate or pioglitazone, inhibited high glucose-enhanced cytokine release. This study has shown that high glucose concentrations and lipopolysaccharide act synergistically to stimulate the secretion of inflammatory mediators, and that statin is capable of suppressing the high glucose-boosted proinflammatory response. This study therefore delineates a novel mechanism by which hyperglycemia enhances the inflammatory responses of macrophages and suggests that statin may be useful in the treatment of periodontal disease in diabetic patients.

  19. Do type 2 diabetes patients without diabetic retinopathy or subjects with impaired fasting glucose have impaired colour vision? The Okubo Color Study Report.

    PubMed

    Shoji, T; Sakurai, Y; Sato, H; Chihara, E; Takeuchi, M

    2011-07-01

    To investigate associations between fasting plasma glucose level and the prevalence of acquired colour vision impairment in type 2 diabetes patients without diabetic retinopathy. Participants in this cross-sectional study of male officials aged 20-60 yr in the Japanese Self Defence Force, underwent colour vision testing, ophthalmic examination, a standardized interview and examination of venous blood samples. Ishihara plates, a Lanthony 15-hue desaturated panel and Standard Pseudoisochromatic Plates Part 2 were used to examine colour vision. The Farnsworth-Munsell 100-hue test was performed to define acquired colour vision impairment. Cardiovascular disease risk factors were determined from serum blood samples, physical records and an interview. We performed logistic regression analysis adjusted for age, diagnosed hypertension, dyslipidaemia, cataract, glaucoma, being overweight, smoking status and alcohol intake. Crude and adjusted odds ratios were calculated for three glucose levels, which included normal fasting glucose, impaired fasting glucose and diabetes. Out of a total of 1042 men enrolled, 872 were eligible for the study, and 31 were diagnosed with acquired colour vision impairment. As compared with the subjects with normal fasting glucose (< 5.6 mmol/l), the crude odds ratio for acquired colour vision impairment was 0.93 (95% CI 0.32-2.74) for the subjects with impaired fasting glucose (5.6-6.9 mmol/l) and 8.07 (95% CI 2.48-26.22) for the patients with type 2 diabetes. The multiple-adjusted odds ratios were 0.77 (95% CI 0.25-2.34) for the subjects with impaired fasting glucose and 5.89 (95% CI 1.55-22.40) for the patients with type 2 diabetes. Our findings suggest that there is a dramatically increased prevalence of acquired colour vision impairment in type 2 diabetes patients without diabetic retinopathy which might be attributable to another pathogenesis associated with diabetic retinopathy. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  20. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle

    PubMed Central

    2012-01-01

    Background The heart derives energy from a wide variety of substrates including fatty acids, carbohydrates, ketones, and amino acids. The healthy heart generates up to 30% of its ATP from glucose. Under conditions of cardiac injury or stress, the heart relies even more heavily on glucose as a source of fuel. Glucose is transported into the heart by members of the family of facilitative glucose transporters (GLUTs). While research examining the transport of glucose into the heart has primarily focused on the roles of the classical glucose transporters GLUT1 and GLUT4, little is known about the functions of more newly identified GLUT isoforms in the myocardium. Methods In this study the presence and relative RNA message abundance of each of the known GLUT isoforms was determined in left ventricular tissue from two commonly used inbred laboratory mouse strains (C57BL/6J and FVB/NJ) by quantitative real time PCR. Relative message abundance was also determined in GLUT4 null mice and in murine models of dilated and hypertrophic cardiomyopathy. Results GLUT4, GLUT1, and GLUT8 were found to be the most abundant GLUT transcripts in the normal heart, while GLUT3, GLUT10, and GLUT12 are present at relatively lower levels. Assessment of relative GLUT expression in left ventricular myocardium from mice with dilated cardiomyopathy revealed increased expression of GLUT1 with reduced levels of GLUT4, GLUT8, and GLUT12. Compensatory increase in the expression of GLUT12 was observed in genetically altered mice lacking GLUT4. Conclusions Glucose transporter expression varies significantly among murine models of cardiac dysfunction and involves several of the class III GLUT isoforms. Understanding how these more newly identified GLUT isoforms contribute to regulating myocardial glucose transport will enhance our comprehension of the normal physiology and pathophysiology of the heart. PMID:22681646

  1. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle.

    PubMed

    Aerni-Flessner, Lauren; Abi-Jaoude, Melissa; Koenig, Amanda; Payne, Maria; Hruz, Paul W

    2012-06-08

    The heart derives energy from a wide variety of substrates including fatty acids, carbohydrates, ketones, and amino acids. The healthy heart generates up to 30% of its ATP from glucose. Under conditions of cardiac injury or stress, the heart relies even more heavily on glucose as a source of fuel. Glucose is transported into the heart by members of the family of facilitative glucose transporters (GLUTs). While research examining the transport of glucose into the heart has primarily focused on the roles of the classical glucose transporters GLUT1 and GLUT4, little is known about the functions of more newly identified GLUT isoforms in the myocardium. In this study the presence and relative RNA message abundance of each of the known GLUT isoforms was determined in left ventricular tissue from two commonly used inbred laboratory mouse strains (C57BL/6J and FVB/NJ) by quantitative real time PCR. Relative message abundance was also determined in GLUT4 null mice and in murine models of dilated and hypertrophic cardiomyopathy. GLUT4, GLUT1, and GLUT8 were found to be the most abundant GLUT transcripts in the normal heart, while GLUT3, GLUT10, and GLUT12 are present at relatively lower levels. Assessment of relative GLUT expression in left ventricular myocardium from mice with dilated cardiomyopathy revealed increased expression of GLUT1 with reduced levels of GLUT4, GLUT8, and GLUT12. Compensatory increase in the expression of GLUT12 was observed in genetically altered mice lacking GLUT4. Glucose transporter expression varies significantly among murine models of cardiac dysfunction and involves several of the class III GLUT isoforms. Understanding how these more newly identified GLUT isoforms contribute to regulating myocardial glucose transport will enhance our comprehension of the normal physiology and pathophysiology of the heart.

  2. Leukocyte telomere length correlates with glucose control in adults with recently diagnosed type 2 diabetes.

    PubMed

    Rosa, Erica Carine Campos Caldas; Dos Santos, Renan Renato Cruz; Fernandes, Luis Fernando Amarante; Neves, Francisco de Assis Rocha; Coelho, Michella Soares; Amato, Angelica Amorim

    2018-01-01

    We investigated leukocyte relative telomere length (TL) in patients with type 2 diabetes (T2D) diagnosed for no longer than five years and its association with clinical and biochemical variables. Peripheral blood leukocyte relative TL was investigated in 108 patients with T2D (87 women, 21 men) and 125 (37 women, 88 men) age-matched control subjects with normal glucose tolerance, by quantitative polymerase chain reaction. Multiple linear regression analysis was used to examine the association between relative TL and demographic, anthropometric and biochemical indicators of metabolic control among patients with T2D. Patients with T2D had a median time since diagnosis of 1 year and most were on metformin monotherapy, with satisfactory glucose control determined by HbA1c levels. Median relative TL was not different between patients with T2D and control subjects. However, multiple linear regression analyses showed that relative TL was inversely associated with time since T2D diagnosis, fasting plasma glucose levels and HbA1c levels, but not with HbA1c levels assessed in the preceding 5-12 months, after adjustment for age, sex and body mass index. This study suggests that relative TL is not shorter in patients with recently diagnosed T2D, but is inversely correlated with glucose levels, even among patients with overall satisfactory glucose control. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Circulating Betatrophin Correlates with Triglycerides and Postprandial Glucose among Different Glucose Tolerance Statuses—A Case-Control Study

    PubMed Central

    Chen, Peihong; Jin, Hua; Yang, Lili; Xie, Xinmiao; Yang, Meili; Hu, Cheng; Yu, Xuemei

    2015-01-01

    Purpose Previous researches of betatrophin on glucose and lipids metabolism under insulin-resistant condition have reached controversial conclusions. To further identify the possible impact of betatrophin, we measured the circulating betatrophin levels in newly diagnosed type 2 diabetes (T2DM) patients, and in subjects with both impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) and investigated the relationship between serum betatrophin and other clinical parameters in these patients with different glucose tolerance statuses. Methods A total of 460 permanent residents of the Fengxian District, aged 40–60 years, were enrolled. Based on the results of a 75 g oral glucose tolerance test, we selected newly diagnosed T2DM (n = 50) patients and subjects with IGT (n = 51) and NGT (n = 50) according to their age, gender and body mass index (18–28 kg/m2). Anthropometric parameters, glycosylated haemoglobin, blood lipids and fasting insulin were measured. Serum betatrophin concentrations were determined via ELISA. Results Serum betatrophin levels in T2DM patients were increased significantly compared with IGT and NGT groups, and decreased in subjects with better islet beta cell function. Serum betatrophin was positively correlated with triglyceride, 2-hour postprandial glucose, alanine aminotransferase and aspartate transaminase after adjusting for age, sex and body mass index in all subjects. Multiple regression analysis showed that 2-hour postprandial glucose was independently associated with serum betatrophin significantly. Conclusions Circulating betatrophin is increased in newly-diagnosed T2DM patients and positively correlated with the triglycerides and postprandial glucose levels. The results suggest that betatrophin may participate in glucose and triglycerides metabolism. PMID:26247824

  4. FFA2 Contribution to Gestational Glucose Tolerance Is Not Disrupted by Antibiotics.

    PubMed

    Fuller, Miles; Li, Xiaoran; Fisch, Robert; Bughara, Moneb; Wicksteed, Barton; Kovatcheva-Datchary, Petia; Layden, Brian T

    2016-01-01

    During the insulin resistant phase of pregnancy, the mRNA expression of free fatty acid 2 receptor (Ffar2) is upregulated and as we recently reported, this receptor contributes to insulin secretion and pancreatic beta cell mass expansion in order to maintain normal glucose homeostasis during pregnancy. As impaired gestational glucose levels can affect metabolic health of offspring, we aimed to explore the role of maternal Ffar2 expression during pregnancy on the metabolic health of offspring and also the effects of antibiotics, which have been shown to disrupt gut microbiota fermentative activity (the source of the FFA2 ligands) on gestational glucose homeostasis. We found that maternal Ffar2 expression and impaired glucose tolerance during pregnancy had no effect on the growth rates, ad lib glucose and glucose tolerance in the offspring between 3 and 6 weeks of age. To disrupt short chain fatty acid production, we chronically treated WT mice and Ffar2-/- mice with broad range antibiotics and further compared their glucose tolerance prior to pregnancy and at gestational day 15, and also quantified cecum and plasma SCFAs. We found that during pregnancy antibiotic treatment reduced the levels of SCFAs in the cecum of the mice, but resulted in elevated levels of plasma SCFAs and altered concentrations of individual SCFAs. Along with these changes, gestational glucose tolerance in WT mice, but not Ffar2-/- mice improved while on antibiotics. Additional data showed that gestational glucose tolerance worsened in Ffar2-/- mice during a second pregnancy. Together, these results indicate that antibiotic treatment alone is inadequate to deplete plasma SCFA concentrations, and that modulation of gut microbiota by antibiotics does not disrupt the contribution of FFA2 to gestational glucose tolerance.

  5. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors

    NASA Astrophysics Data System (ADS)

    Lloyd, David J.; St Jean, David J.; Kurzeja, Robert J. M.; Wahl, Robert C.; Michelsen, Klaus; Cupples, Rod; Chen, Michelle; Wu, John; Sivits, Glenn; Helmering, Joan; Komorowski, Renée; Ashton, Kate S.; Pennington, Lewis D.; Fotsch, Christopher; Vazir, Mukta; Chen, Kui; Chmait, Samer; Zhang, Jiandong; Liu, Longbin; Norman, Mark H.; Andrews, Kristin L.; Bartberger, Michael D.; van, Gwyneth; Galbreath, Elizabeth J.; Vonderfecht, Steven L.; Wang, Minghan; Jordan, Steven R.; Véniant, Murielle M.; Hale, Clarence

    2013-12-01

    Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.

  6. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors.

    PubMed

    Lloyd, David J; St Jean, David J; Kurzeja, Robert J M; Wahl, Robert C; Michelsen, Klaus; Cupples, Rod; Chen, Michelle; Wu, John; Sivits, Glenn; Helmering, Joan; Komorowski, Renée; Ashton, Kate S; Pennington, Lewis D; Fotsch, Christopher; Vazir, Mukta; Chen, Kui; Chmait, Samer; Zhang, Jiandong; Liu, Longbin; Norman, Mark H; Andrews, Kristin L; Bartberger, Michael D; Van, Gwyneth; Galbreath, Elizabeth J; Vonderfecht, Steven L; Wang, Minghan; Jordan, Steven R; Véniant, Murielle M; Hale, Clarence

    2013-12-19

    Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.

  7. [Insulin, glucagon and growth hormone responses during glucose, arginine and insulin tolerance tests in children with hyperthyroidism].

    PubMed

    Kato, T; Matsuura, N; Fujita, H; Fujieda, K; Nohara, Y; Mikami, Y; Abe, K; Fukushima, N

    1985-06-20

    There are many reports of glucose intolerance in adult patients with hyperthyroidism but few reports of glucose intolerance in hyperthyroid children. In this study, we measured plasma levels of glucose, insulin, glucagon and growth hormone in hyperthyroid children and control subjects by the use of three kinds of tolerance tests: an oral glucose tolerance test, an arginine tolerance test and an insulin tolerance test. In the oral glucose tolerance test, mean fasting glucose levels (79.6 +/- 1.4 mg/dl) rose to maximum levels (157.3 +/- 4.3 mg/dl) at 30 min in hyperthyroid children which were significantly higher than the levels in control subjects (p less than 0.01). The maximum levels of glucose fell slowly and returned to fasting levels at 180 min. In this test, plasma insulin levels increased from basal levels (12.7 +/- 1.9 microU/ml) to maximum levels (120.8 +/- 22.1 microU/ml) at 30 min in the prepubertal age group of hyperthyroidism. On the other hand, in the pubertal age group of hyperthyroidism, maximum levels of insulin were observed at 60 min, but not at 30 min. These maximum levels of insulin of both hyperthyroid age groups were significantly higher than those in the control subjects (p less than 0.05, p less than 0.01 respectively). There was no difference in insulin-glucose ratio at 30 min (delta IRI/delta BG) and insulinogenic index (I.I.) at 0 to 60 min between these two groups of hyperthyroid children and control subjects. However, I.I. at 0 to 120 min and 0 to 180 min decreased significantly in the pubertal age group of hyperthyroidism as compared with those in the control group (p less than 0.05, p less than 0.02 respectively). In the oral glucose tolerance test, plasma glucagon levels decreased from basal levels (74.1 +/- 4.3 pg/ml) to minimum levels (36.4 +/- 4.7 pg/ml) at 90 min in hyperthyroidism, which were significantly lower than those in the controls (p less than 0.05). However, there was no difference in -epsilon delta IRG/epsilon delta BG (cumulative glucagon response/cumulative glucose response) between the subjects with hyperthyroidism and the controls. On the other hand, lower responses of blood glucose, insulin, glucagon and growth hormone to arginine were observed in subjects with hyperthyroidism than in the controls. Moreover in the insulin tolerance test, there was no difference in glucagon and growth hormone response between the subjects with hyperthyroidism and the controls. Thus our conclusions are as follows: A marked increase in blood glucose after oral glucose load was observed in spite of normal insulin-glucose ratio in hyperthyroid children, suggesting the existence of peripheral insulin resistance.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. A prospective randomized trial of two solutions for intrapartum amnioinfusion: effects on fetal electrolytes, osmolality, and acid-base status.

    PubMed

    Pressman, E K; Blakemore, K J

    1996-10-01

    Our purpose was to compare the effects of intrapartum amnioinfusion with normal saline solution versus lactated Ringer's solution plus physiologic glucose on neonatal electrolytes and acid-base balance. Patients undergoing amnioinfusion for obstetric indications were randomized to receive normal saline solution or lactated Ringer's solution plus physiologic glucose at standardized amnioinfusion rates. Data were collected prospectively on maternal demographics, course of labor, and maternal and neonatal outcome. Arterial cord blood was obtained for analysis of electrolytes, glucose, osmolality, lactic acid, and blood gases. Control subjects with normal fetal heart rate patterns, and clear amniotic fluid not receiving amnioinfusion were studied concurrently. Data were collected on 59 patients (21 normal saline solution, 18 lactated Ringer's solution plus physiologic glucose, and 20 controls). Maternal demographics, course of labor, and neonatal outcome were similar in all three groups. Cesarean sections were performed more often in the amnioinfusion groups (33.3% for normal saline solution, 38.9% for lactated Ringer's solution plus physiologic glucose) than in the control group (5.0%), p < 0.05. Cord arterial electrolytes, glucose, osmolality, lactic acid, and blood gases were not altered by amnioinfusion with either solution. Intrapartum amnioinfusion with normal saline solution or lactated Ringer's solution plus physiologic glucose has no effect on neonatal electrolytes or acid-base balance.

  9. Fasting blood glucose level and prognosis in non-small cell lung cancer (NSCLC) patients.

    PubMed

    Luo, Juhua; Chen, Yea-Jyh; Chang, Li-Jung

    2012-05-01

    Diabetes has been consistently linked to many forms of cancers, such as liver, colorectal, pancreatic, and breast cancer, however, the role of diabetes in outcome among cancer patients remains unclear. In this study, we retrospectively reviewed electronic medical records of 342 inpatients newly diagnosed with NSCLC referred by a teaching hospital cancer center in southern Taiwan between 2005 and 2007 to examine the effects of fasting glucose levels at time of cancer diagnosis on overall survival in patients with non-small cell lung cancer (NSCLC). All patients were followed up until the end of 2010. The Kaplan-Meier method was used to compare survival curves for patients with and without diabetes. The Cox proportional hazards model was used to estimate hazard ratios for the association between diabetes, other prognostic factors and patient survival. We observed that significant prognostic factors for poor overall survival in patients with NSCLC included older age, smoking, poor performance status, advanced stage (stage IIIB or IV), and no cancer-directed surgery treatment. Particularly, we identified that diabetic state defined by fasting blood glucose level ≥126 mg/dl was another independent prognostic factor for these patients. Compared with those who had normal range of fasting glucose level (70-99 mg/dl), patients with high fasting glucose level (≥126 mg/dl) had 69% excess risk of all-cause mortality in patients with NSCLC. Diabetes as indicated by elevated fasting blood glucose was independently associated with a significantly higher risk of all-cause mortality in patients with NSCLC, indicating that diabetes or hyperglycemia effectively controlled may present an opportunity for improving prognosis in NSCLS patients with abnormal glucose level. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2014-05-15

    The present study was designed to evaluate the antihyperglycemic potential of tangeretin on the activities of key enzymes of carbohydrate and glycogen metabolism in control and streptozotocin induced diabetic rats. The daily oral administration of tangeretin (100mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of tangeretin. Further, tangeretin administration to diabetic rats improved hepatic glycogen content suggesting the antihyperglycemic potential of tangeretin in diabetic rats. The effect produced by tangeretin on various parameters was comparable to that of glibenclamide - a standard oral hypoglycemic drug. Thus, these results show that tangeretin modulates the activities of hepatic enzymes via enhanced secretion of insulin and decreases the blood glucose in streptozotocin induced diabetic rats by its antioxidant potential. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Isolated diastolic hypertension associated risk factors among Chinese in Anhui Province, China.

    PubMed

    Wang, Yanchun; Xing, Fengjun; Liu, Rongjuan; Liu, Li; Zhu, Yu; Wen, Yufeng; Sun, Wenjie; Song, Ziwei

    2015-04-22

    To explore potential risk factors of isolated diastolic hypertension (IDH) among young and middle-aged Chinese. A community-based cross-sectional study was conducted among 338 subjects, aged 25 years and above, using random sampling technique. There were 68 cases of IDH, 46 cases of isolated systolic hypertension (ISH), 89 cases of systolic and diastolic hypertension (SDH), and 135 of subjects with normal blood pressure. Cases and controls were matched on sex by frequency matching. Demographic characteristics, blood pressure and other relevant information were collected. Compared with controls, patients with IDH and ISH had significant higher level of triglyceride, high density lipoprotein, blood glucose and body mass index (BMI) (p < 0.05); while patients with SDH had significantly higher level of total cholesterol, triglyceride, glucose and BMI (p < 0.05). Linear mixed effects model showed that drinking tea, family history of hypertension (FHH), higher blood glucose, triglyceride and low density lipoprotein were related with elevated diastolic blood pressure (DBP) (p < 0.01); HFH, blood glucose, creatinine and BMI have positive effect on systolic blood pressure (SBP) (p < 0.05). Drinking tea, FHH, high levels of triglyceride, high density lipoprotein, blood glucose and BMI are associated with IDH among young and middle-aged Chinese.

  12. [Lessening effect of hypoxia-preconditioned rat cerebrospinal fluid on oxygen-glucose deprivation-induced injury of cultured hippocampal neurons in neonate rats and possible mechanism].

    PubMed

    Niu, Jing-Zhong; Zhang, Yan-Bo; Li, Mei-Yi; Liu, Li-Li

    2011-12-25

    The present study was to investigate the effect of cerebrospinal fluid (CSF) from the rats with hypoxic preconditioning (HPC) on apoptosis of cultured hippocampal neurons in neonate rats under oxygen glucose deprivation (OGD). Adult Wistar rats were exposed to 3 h of hypoxia for HPC, and then their CSF was taken out. Cultured hippocampal neurons from the neonate rats were randomly divided into four groups (n = 6): normal control group, OGD group, normal CSF group and HPC CSF group. OGD group received 1.5 h of incubation in glucose-free Earle's solution containing 1 mmol/L Na2S2O4, and normal and HPC CSF groups were subjected to 1 d of corresponding CSF treatments followed by 1.5 h OGD. The apoptosis of neurons was analyzed by confocal laser scanning microscope and flow cytometry using Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in normal control group, whereas the number of apoptotic cells was greatly increased in OGD group. Both normal and HPC CSF could decrease the apoptosis of cultured hippocampal neurons injured by OGD (P < 0.01). Notably, the protective effect of HPC CSF was stronger than that of normal one (P < 0.01). Compared to OGD group, normal and HPC CSF groups both showed significantly higher levels of Bcl-2 (P < 0.01), and Bcl-2 expression level in HPC CSF group was even higher than that in normal CSF group (P < 0.01). Whereas the expressions of Bax in normal and HPC CSF groups were significantly lower than that in OGD group (P < 0.01), and the Bax expression in HPC CSF group was even lower than that in normal CSF group (P < 0.01). These results suggest that CSF from hypoxic-preconditioned rats could degrade apoptotic rate of OGD-injured hippocampal neurons by up-regulating expression of Bcl-2 and down-regulating expression of Bax.

  13. [SOMATOTYPE, NUTRITIONAL STATUS AND BLOOD GLUCOSE LEVEL OF PHYSICAL EDUCATION STUDENTS].

    PubMed

    Valdés-Badilla, Pablo; Salvador Soler, Noemí; Godoy-Cumillaf, Andrés; Carmona-López, María Ines; Fernández, Juan José; Durán-Agüero, Samuel

    2015-09-01

    classical studies have compared the glycemia with the nutritional status in both children and adults; however studies that consider also somatotype are unknown. associating the somatotype and nutritional status with the glycemic level of students of Pedagogy in Physical Education (PPE). the sample included 40 subjects, divided between 13 women and 27 men. It was determined in each subject BMI, somatotype and also a fasting blood glucose sample was obtained. the somatotype in male PPE students was mesomorphic (3-2-2) with a nutritional status of overweight (25 kg/m2) and balanced mesomorphic (4-4-2) with normal weight (22 kg/m2) in women PPE students. While average fasting blood glucose was 69 mg / dl. No association between somatotype and BMI with blood sugar levels of students of PPE, however, women of PEF showed significant positive correlations between mesomorphy and the ICC (0.577) and between glycemia and height (0.650). somatotype and BMI of the students of PPE are consistent with their age and sex, but no association between somatotype and glucose was observed. Moreover, the average blood glucose levels were somewhat lower compared to normative tables, a situation that could be related to physical activity, however, requires further study to confirm it. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  14. Efficacy of the ketogenic diet in the 6-Hz seizure test

    PubMed Central

    Hartman, Adam L.; Lyle, Megan; Rogawski, Michael A.; Gasior, Maciej

    2008-01-01

    SUMMARY Purpose Since the ketogenic diet is effective in drug-resistant epilepsies, we sought to determine whether it is active in the 6-Hz seizure test, which identifies agents with a broader spectrum of activity than conventional antiepileptic screening tests. Methods Male (3–4 week old) NIH Swiss mice were fed a normal or ketogenic diet ad libitum for 2–21 days. The intensity of the corneal stimulation current required to elicit seizures in the 6-Hz test was measured. Blood glucose and β-hydroxybutyrate were measured on the day of seizure testing. Results CC50 (current intensity producing seizures in 50% of mice tested) was 50.6 mA and 15 mA in mice fed for 12 days with a ketogenic or normal diet, respectively (p < 0.001). CC50 was elevated in separate experiments after 16, but not 2, 5, and 21 days of ketogenic diet exposure. CC50 values of growing mice fed the normal diet does not differ, indicating CC50 does not vary with mouse weight during a rapid growth phase. β-Hydroxybutyrate was significantly higher, and glucose was significantly lower in mice fed the ketogenic diet than those fed the normal diet. Blood glucose and β-hydroxybutyrate levels did not correlate with CC50. Discussion The ketogenic diet significantly elevates the seizure threshold in the 6-Hz test in a time-specific manner. Protection from seizures in this model was not related to level of ketosis. CC50 was insensitive to body weight in mice fed the normal diet, demonstrating that the 6-Hz model can assess anticonvulsant regimens where weight is a confounding factor. PMID:18070095

  15. Alpha-mangostin attenuates diabetic nephropathy in association with suppression of acid sphingomyelianse and endoplasmic reticulum stress.

    PubMed

    Liu, Tingting; Duan, Wang; Nizigiyimana, Paul; Gao, Lin; Liao, Zhouning; Xu, Boya; Liu, Lerong; Lei, Minxiang

    2018-02-05

    Diabetic nephropathy is a common complication of diabetes, but there are currently few treatment options. The aim of this study was to gain insight into the effect of alpha-mangostin on diabetic nephropathy and possible related mechanisms. Goto-Kakizaki rats were used as a diabetic model and received alpha-mangostin or desipramine treatment with normal saline as a control. Ten age-matched Sprague Dawley rats were used as normal controls and treated with normal saline. At week 12, blood glucose, albuminuria, apoptosis and renal pathologic changes were assessed. Protein levels for acid sphingomyelinase, glucose-regulated protein 78, phosphorylated PKR-like ER-resident kinase, activated transcription factor 4, CCAAT/enhancer-binding protein, homologous protein), and cleaved-caspase12 were measured. The level of acid sphingomyelinase was significantly increased, and ER stress was activated in diabetic rat kidneys when compared to the control animals. When acid sphingomyelinase was inhibited by alpha-mangostin, the expression of ER stress-related proteins was down-regulated in association with decreased levels of diabetic kidney injury. Alpha-mangostin, an acid sphingomyelinase inhibitor plays a protective role in diabetic neuropathy by relieving ER stress induced-renal cell apoptosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Triglyceride-glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: The Vascular-Metabolic CUN cohort.

    PubMed

    Navarro-González, David; Sánchez-Íñigo, Laura; Pastrana-Delgado, Juan; Fernández-Montero, Alejandro; Martinez, J Alfredo

    2016-05-01

    We evaluated the potential role of the triglyceride-glucose index (TyG index) as a predictor of diabetes in a White European cohort, and compared it to fasting plasma glucose (FPG) and triglycerides. 4820 patients of the Vascular-Metabolic CUN cohort (VMCUN cohort) were examined and followed up for 8.84years (±4.39). We performed a Cox proportional hazard ratio with repeated-measures analyses to assess the risk of developing type 2 diabetes across quartiles of FPG, triglycerides and the TyG index (ln[fasting triglycerides (mg/dl)×fasting plasma glucose (mg/dl)/2]), and plotted a receiver operating characteristics (ROC) curve for discrimination. There were 332 incident cases of type 2 diabetes involving 43,197.32person-years of follow-up. We observed a progressively increased risk of diabetes in subjects with TyG index levels of 8.31 or more. Among those with normal fasting glucose at baseline, <100mg/dl, subjects with the TyG index in the fourth quartile were 6.87 times more likely to develop diabetes (95% CI, 2.76-16.85; P for trend<0.001), as compared with the bottom quartile. The areas under the ROC curves (95% CI) were 0.75 (0.70-0.81) for TyG index, 0.66 (0.60-0.72) for FPG and 0.71 (0.65-0.77) for TG, in subjects with normal fasting glucose (p=0.017). Our data suggest that the TyG index is useful for the early identification of individuals at risk of type 2 diabetes. The TyG index seems to be a better predictor than FPG or triglycerides of the potential development of type 2 diabetes in normoglycemic patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Prevalence of pathogenic yeasts and humoral antibodies to candida in diabetic patients.

    PubMed Central

    Odds, F C; Evans, E G; Taylor, M A; Wales, J K

    1978-01-01

    The prevalence of oral yeasts and humoral precipitating antibodies to candida was estimated in 204 unselected diabetic patients (172 outpatients and 32 inpatients). Yeasts, mainly Candida albicans, were isolated from the mouths of 41% of the outpatients and precipitins were found in 17.5% although none of the patients had clinically overt candidiasis. The extent of oral yeast colonisation and incidence of antibodies was not related to their antidiabetic treatment or to the duration of their diabetes. It was, however, related to the blood glucose and urine sugar levels at the time they were sampled, the highest incidence being among the diabetic inpatients with high blood glucose levels at the time of sampling and the lowest among outpatients with normal blood glucose levels at the time of sampling. There was no such correlation when diabetic control over the previous 12-month period was considered. PMID:711913

  18. High serum fasting peptide YY (3-36) is associated with obesity-associated insulin resistance and type 2 diabetes.

    PubMed

    Ukkola, Olavi H; Puurunen, Veli-Pekka; Piira, Olli-Pekka; Niva, Jarkko T; Lepojärvi, E Samuli; Tulppo, Mikko P; Huikuri, Heikki V

    2011-10-10

    We studied whether serum fasting levels of active form of peptide YY (PYY), PYY(3-36), are associated with obesity and related phenotypes. The study population consisted of 428 patients with coronary artery disease and diagnosed type 2 diabetes and 440 patients with coronary artery disease but without evidence of diabetes from the ARTEMIS study. The patients were recruited from the consecutive series of patients undergoing coronary angiography in the Oulu University Hospital. The patients without diabetes underwent a 2-hour oral glucose tolerance test. PYY(3-36) levels were analyzed by human PYY(3-36) specific radioimmunoassay. Result suggested that when PYY(3-36) tertiles were considered, high serum fasting PYY(3-36) concentration was associated with high body mass index, waist circumference, hemoglobin A1c, fasting blood glucose, leptin, triglyceride (p for all p ≤ 0.001), serum insulin (p=0.013) and with a low high-density lipoprotein cholesterol (p=0.004) concentrations in the analyses adjusted for age, sex and study group. The link high PYY(3-36)-high insulin level was evident in subjects with normal glucose tolerance (p<0.05). The prevalence of diabetes was 72%, 46% and 30% in the highest, medium and lowest PYY(3-36) tertile (p<0.001). The PYY(3-36) concentrations (after adjustment for age, sex and body mass index) were higher in type 2 diabetics compared to subjects with impaired fasting glucose, impaired glucose tolerance and normal glucose tolerance (p<0.001 for trend). In conclusion, fasting PYY(3-36) concentrations in type 2 diabetic subjects are high. Although high PYY(3-36) is strongly linked to obesity and associated insulin resistance, the relation between PYY(3-36) and type 2 diabetes is independent of body fatness. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A randomized controlled trial: branched-chain amino acid levels and glucose metabolism in patients with obesity and sleep apnea.

    PubMed

    Barceló, Antonia; Morell-Garcia, Daniel; Salord, Neus; Esquinas, Cristina; Pérez, Gerardo; Pérez, Antonio; Monasterio, Carmen; Gasa, Merce; Fortuna, Ana Maria; Montserrat, Josep Maria; Mayos, Mercedes

    2017-12-01

    There is evidence that changes in branched-chain amino acid (BCAA) levels may correlate with the efficacy of therapeutic interventions for affecting improvement in metabolic control. The objective of this study was to evaluate whether serum concentrations of BCAAs (leucine, isoleucine, valine) could mediate in insulin sensitivity and glucose tolerance after continuous positive airway pressure (CPAP) treatment in patients with obstructive sleep apnea (OSA). A prospective randomized controlled trial of OSA patients with morbid obesity was conducted. Eighty patients were randomized into two groups: 38 received conservative treatment and 42 received CPAP treatment for 12 weeks. Plasma levels of BCAA, glucose tolerance and insulin resistance were evaluated at baseline and after treatment. After treatment, significant decreases of leucine levels were observed in both groups when compared with baseline levels (P < 0.005). With respect to patients with normal glucose tolerance (NGT), patients with impaired glucose tolerance (IGT) had higher baseline levels of isoleucine (78 ± 16 versus 70 ± 13 μmol L -1 , P = 0.014) and valine (286 ± 36 versus 268 ± 41 μmol L -1 , P = 0.049), respectively. Changes in levels of leucine and isoleucine after treatment were related negatively to changes in fasting plasma glucose and glycosylated haemoglobin values only in the conservative group (P < 0.05). In summary, we found that the treatment with CPAP for 12 weeks caused similar changes in circulating BCAAs concentrations to conservative treatment and a differential metabolic response of CPAP and conservative treatment was observed between the relationship of BCAAs and glucose homeostasis. Additional studies are needed to determine the interplay between branched-chain amino acids and glucose metabolism in patients with sleep apnea. © 2017 European Sleep Research Society.

  20. Evidence-based Critical Evaluation of Glycemic Potential of Cynodon dactylon

    PubMed Central

    Singh, Santosh Kumar; Rai, Prashant Kumar; Jaiswal, Dolly

    2008-01-01

    The present study is an extension of our previous work carried out on Cynodon dactylon. This study deals with the critical evaluation of glycemic potential of ethanolic extract of defatted C. dactylon. The doses of 250, 500 and 750 mg kg−1 bw of the extract were administered orally to normal as well as Streptozotocin-induced diabetic rats to study its glycemic potential. The effect of repeated oral administration of the same doses of ethanolic extract was also studied on serum lipid profile of severely diabetic (SD) rats. The dose of 500 mg kg−1 bw was identified as the most effective dose as it lowered the blood glucose levels of normal by 42.12% and of diabetic by 43.42% during fasting blood glucose (FBG) and glucose tolerance test respectively. The SD rats were also treated daily with this identified dose of 500 mg kg−1 bw for 2 weeks and a significant reduction of 56.34% was observed in FBG level. Total cholesterol, low density lipoprotein and triglyceride levels were also decreased by 32.94, 64.06 and 48.46% respectively in SD rats whereas, cardioprotective high density lipoprotein increased by 16.45%. The reduced urine sugar level and increased body weight are additional advantages. These evidences clearly indicate that the ethanolic extract of defatted C. dactylon has high antidiabetic potential along with good hypolipidemic profile. PMID:18955211

  1. Diet enriched with fresh coconut decreases blood glucose levels and body weight in normal adults.

    PubMed

    Vijayakumar, Venugopal; Shankar, Nagashree R; Mavathur, Ramesh; Mooventhan, A; Anju, Sood; Manjunath, N K

    2018-02-20

    Background There exist controversies about the health effects of coconut. Fresh coconut consumption on human health has not been studied substantially. Fresh coconut consumption is a regular part of the diet for many people in tropical countries like India, and thus there is an increasing need to understand the effects of fresh coconut on various aspects of health. Aim To compare the effects of increased saturated fatty acid (SFA) and fiber intake, provided by fresh coconut, versus monounsaturated fatty acid (MUFA) and fiber intake, provided by a combination of groundnut oil and groundnuts, on anthropometry, serum insulin, glucose levels and blood pressure in healthy adults. Materials Eighty healthy volunteers, randomized into two groups, were provided with a standardized diet along with either 100 g fresh coconut or an equivalent amount of groundnuts and groundnut oil for a period of 90 days. Assessments such as anthropometric measurements, blood pressure, blood sugar and insulin levels were performed before and after the supplementation period. Results Results of this study showed a significant reduction in fasting blood sugar (FBS) in both the groups. However, a significant reduction in body weight was observed in the coconut group, while a significant increase in diastolic pressure was observed in the groundnut group. Conclusions Results of this study suggest that fresh coconut-added diet helps reduce blood glucose levels and body weight in normal healthy individuals.

  2. Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium.

    PubMed

    Wu, Yu-Chieh; Buckner, Benjamin R; Zhu, Meifang; Cavanagh, H Dwight; Robertson, Danielle M

    2012-04-01

    To determine the ratio of IGFBP3:IGF-1 in normal and diabetic human tears, and in telomerase-immortalized human corneal epithelial cells (hTCEpi) cultured under elevated glucose conditions and to correlate these changes with total and phosphorylated levels of IGF-1R. Tear samples were collected noninvasively from diabetic subjects and non-diabetic controls; corneal sensitivity was assessed using a Cochet-Bonnet Aesthesiometer. Conditioned media were collected following culture of hTCEpi cells in normal (5 mM) and elevated (25 mM) glucose conditions; mannitol was used as an osmotic control. IGFBP3, IGF-1, and phosphorylated IGF-1R levels were assessed by ELISA. IGFBP3 and IGF-1R mRNA were assessed by real-time polymerase chain reaction (PCR). Total and phosphorylated IGF-1R expression in whole cell lysates was assessed by western blot. There was a 2.8-fold increase in IGFBP3 in diabetic tears compared to non-diabetic controls (P=0.006); IGF-1 levels were not significantly altered. No difference in corneal sensitivity was detected between groups. The concentration of IGFBP3 in tears was independent of IGF-1. Consistent with human tear measurements in vivo, IGFBP3 secretion was increased 2.2 fold (P<0.001) following culture of hTCEpi cells under elevated glucose conditions in vitro. Treatment with glucose and the mannitol control reduced IGFBP3 mRNA (P<0.001). Total IGF-1R levels were unchanged. The increase in the IGFBP3:IGF-1 ratio detected in diabetic tears compared to normal controls blocked phosphorylation of the IGF-1R by IGF-1 (P<0.001) when tested in vitro. Taken together, these in vivo and confirmatory in vitro findings suggest that the observed increase in IGFBP3 found in human tears may attenuate IGF-1R signaling in the diabetic cornea. A long-term increase in IGFBP3 may contribute to epithelial compromise and the pathogenesis of ocular surface complications reported in diabetes. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium

    PubMed Central

    Wu, Yu-Chieh; Buckner, Benjamin R.; Zhu, Meifang; Cavanagh, H. Dwight; Robertson, Danielle M.

    2012-01-01

    Purpose To determine the ratio of IGFBP3:IGF-1 in normal and diabetic human tears, and in telomerase-immortalized human corneal epithelial cells (hTCEpi) cultured under elevated glucose conditions and to correlate these changes with total and phosphorylated levels of IGF-1R. Methods Tear samples were collected noninvasively from diabetic subjects and non-diabetic controls; corneal sensitivity was assessed using a Cochet-Bonnet Aesthesiometer. Conditioned media were collected following culture of hTCEpi cells in normal (5 mM) and elevated (25 mM) glucose conditions; mannitol was used as an osmotic control. IGFBP3, IGF-1, and phosphorylated IGF-1R levels were assessed by ELISA. IGFBP3 and IGF-1R mRNA were assessed by real time polymerase chain reaction (PCR). Total and phosphorylated IGF-1R expression in whole cell lysates was assessed by western blot. Results There was a 2.8-fold increase in IGFBP3 in diabetic tears compared to non-diabetic controls (P=0.006); IGF-1 levels were not significantly altered. No difference in corneal sensitivity was detected between groups. The concentration of IGFBP3 in tears was independent of IGF-1. Consistent with human tear measurements in vivo, IGFBP3 secretion was increased 2.2 fold (P<0.001) following culture of hTCEpi cells under elevated glucose conditions in vitro. Treatment with glucose and the mannitol control reduced IGFBP3 mRNA (P<0.001). Total IGF-1R levels were unchanged. The increase in the IGFBP3:IGF-1 ratio detected in diabetic tears compared to normal controls blocked phosphorylation of the IGF-1R by IGF-1 (P<0.001) when tested in vitro. Conclusions Taken together, these in vivo and confirmatory in vitro findings suggest that the observed increase in IGFBP3 found in human tears may attenuate IGF-1R signaling in the diabetic cornea. A long-term increase in IGFBP3 may contribute to epithelial compromise and the pathogenesis of ocular surface complications reported in diabetes. PMID:22482470

  4. Modulation of the lipid profile and insulin levels of streptozotocin induced diabetic rats by ethanol extract of Cnidoscolus aconitifolius leaves and some fractions: Effect on the oral glucose tolerance of normoglycemic rats.

    PubMed

    Achi, N K; Ohaeri, O C; Ijeh, I I; Eleazu, C

    2017-02-01

    No study to date has investigated the effect of different polar solvent extracts from Cnidoscolus aconitifolius leaves on glycemic control as used in folk medicine. Hence this study which investigated the effect of ethanol extract and fractions of C. aconitifolius leaves on body weights, relative organ weights, serum levels of glucose, lipid profiles and insulin in streptozotocin induced diabetic rats and on oral glucose tolerance of normoglycemic rats. The ethanol extract was partitioned using methanol, hexane and chloroform to obtain different fractions. The ethanol extract, fractions or glibenclamide demonstrated hypoglycemic/therapeutic actions as seen from the reduction of serum glucose but increase in serum insulin and body weights of the diabetic rats at the end of experimentation following their administration, unlike the diabetic control that had significant alteration of these parameters with respect to the normal control. Whereas the diabetic control had significant increase in pancreatic weights with no alteration in the heart weights, the ethanol extract, fractions or glibenclamide had no effect on these organs. The ethanol extract, methanol fractions or glibenclamide showed better hypoglycemic actions than the n-hexane or chloroform fractions at the doses used and results obtained were corroborated by histology. Furthermore, the ethanol extract, n-hexane (at 250mg/kg) and methanol fractions or glibenclamide improved glucose tolerance in glucose loaded normal rats. The methanol fraction (500mg/kg) demonstrated anti-hypercholesterolemic, anti-hypertriglyceridemic and insulin modulatory properties in a manner akin to glibenclamide. Acute toxicity study revealed the non toxicity of the plant CONCLUSION: The study justifies the use of polar solvent extracts of this plant in the management of diabetes mellitus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Menu variations for diabetes mellitus patients using Goal Programming model

    NASA Astrophysics Data System (ADS)

    Dhoruri, Atmini; Lestari, Dwi; Ratnasari, Eminugroho

    2017-08-01

    Diabetes mellitus (DM) was a chronic metabolic disease characterized by higher than normal blood glucose level (normal blood glucose level = = 80 -120 mg/dl). In this study, type 2 DM which mostly caused by unhealthy eating habits would be investigated. Related to eating habit, DM patients needed dietary menu planning with an extracare regarding their nutrients intake (energy, protein, fat and carbohydrate). Therefore, the measures taken were by organizing nutritious dietary menu for diabetes mellitus patients. Dietary menu with appropriate amount of nutrients was organized by considering the amount of calories, proteins, fats and carbohydrates. In this study, Goal Programming model was employed to determine optimal dietary menu variations for diabetes mellitus patients by paying attention to optimal expenses. According to the data obtained from hospitals in Yogyakarta, optimal menu variations would be analyzed by using Goal Programming model and would be completed by using LINGO computer program.

  6. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes.

    PubMed

    Jabbour, S A; Goldstein, B J

    2008-08-01

    The kidney plays a central role in the regulation of plasma glucose levels, although until recently this has not been widely appreciated or considered a target for therapeutic intervention. The sodium glucose co-transporter type 2 (SGLT2) located in the plasma membrane of cells lining the proximal tubule mediates the majority of renal glucose reabsorption from the tubular fluid, which normally prevents the loss of glucose in the urine. Competitive inhibitors of SGLT2 that provoke the renal excretion of glucose have been discovered, thereby providing a unique mechanism to potentially lower the elevated blood glucose levels in patients with diabetes. To explore the physiology of SGLT2 action and discuss several SGLT2 inhibitors that have entered early clinical development. All publicly available data were identified by searching the internet for 'SGLT2' and 'SGLT2 inhibitor' through 1 November 2007. Published articles, press releases and abstracts presented at national and international meetings were considered. Sodium glucose co-transporter type 2 inhibition is a novel treatment option for diabetes, which has been studied in preclinical models and a few potent and selective SGLT2 inhibitors have been reported and are currently in clinical development. These agents appear to be safe and generally well tolerated, and will potentially be a beneficial addition to the growing battery of oral antihyperglycaemic agents.

  7. LncRNA-TP53TG1 Participated in the Stress Response Under Glucose Deprivation in Glioma.

    PubMed

    Chen, Xin; Gao, Yang; Li, Deheng; Cao, Yiqun; Hao, Bin

    2017-12-01

    Gliomas are the most common brain tumors of the center nervous system. And long non-coding RNAs (lncRNAs) are non-protein coding transcripts, which have been considered as one type of gene expression regulator for cancer development. In this study, we investigated the role of lncRNA-TP53TG1 in response to glucose deprivation in human gliomas. The expression levels of TP53TG1 in glioma tissues and cells were analyzed by qRT-PCR. In addition, the influence of TP53TG1 on glucose metabolism related genes at the mRNA level during both high and low glucose treatment was detected by qRT-PCR. MTT, clonogenicity assays, and flow cytometry were performed to detect the cell proliferation and cell apoptosis. Furthermore, the migration of glioma cells was examined by Transwell assays. The expression of TP53TG1 was significantly higher in human glioma tissues or cell lines compared with normal brain tissue or NHA. Moreover, TP53TG1 and some tumor glucose metabolism related genes, such as GRP78, LDHA, and IDH1 were up-regulated significantly in U87 and LN18 cells under glucose deprivation. In addition, knockdown of TP53TG1 decreased cell proliferation and migration and down-regulated GRP78 and IDH1 expression levels and up-regulated PKM2 levels in U87 cells under glucose deprivation. However, over-expression of TP53TG1 showed the opposite tendency. Moreover, the effects of TP53TG1 were more remarkable in low glucose than that in high glucose. Our data showed that TP53TG1 under glucose deprivation may promote cell proliferation and migration by influencing the expression of glucose metabolism related genes in glioma. J. Cell. Biochem. 118: 4897-4904, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation

    PubMed Central

    Bola, R. Aaron; Kiyatkin, Eugene A.

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels. PMID:26913008

  9. Increased resistance to oxidative stress in normal and glucose-6-phosphate dehydrogenase-deficient hemolysates in the presence of enzyme substrates.

    PubMed

    Yücel, G; Yeşilkaya, A; Aksu, T A; Yeğin, A; Alicigüzel, Y

    1997-01-01

    Erythrocytes and hemolysates from 10 normal and 10 glucose-6-phosphate dehydrogenase-deficient individuals were incubated with cumene hydroperoxide, and free radical-induced lipid peroxidation was monitored by chemiluminescence. Chemiluminescence intensities in erythrocytes of normal and deficient subjects were similar in the presence or absence of glucose-6-phosphate dehydrogenase substrates. Hemolysates of normal and deficient subjects also showed similar chemiluminescence in the absence of substrates. However, with the addition of substrates to the incubation medium, deficient hemolysates reached maximum chemiluminescence intensity within a shorter period, and maximum values were higher than in normal hemolysates. We believe this offers a new means of detection of glucose-6-phosphate dehydrogenase-deficient patients.

  10. Beta-endorphin and islet hormone release in type-2 diabetes mellitus the effects of normoglycemia, enkephalin, naloxone and somatostatin.

    PubMed

    Giugliano, D; Cozzolino, D; Salvatore, T; Ceriello, A; Giunta, R; Torella, R; D'Onofrio, F

    1987-01-01

    The present study was aimed at characterizing the effects of beta-endorphin on plasma glucose, insulin and glucagon plasma levels in subjects with type-2 diabetes mellitus. Infusion of 0.5 mg/h human beta-endorphin produced significant and simultaneous increments in both insulin and glucagon concentrations and decreased plasma glucose levels (-18 +/- 4 mg/dl, 60 min level, p less than 0.01). When the same diabetics were rendered euglycemic by an insulin infusion (1 mU/kg/min), beta-endorphin did not produce the expected decrease in plasma glucose concentrations nor raise plasma insulin levels; only the response of glucagon was preserved. Normal subjects were rendered hyperglycemic by an intravenous glucose infusion to match the plasma glucose levels of diabetic subjects. In this condition, beta-endorphin produced a significant increase of insulin concentrations, whereas glucagon remained suppressed. The intravenous administration of the long-acting met-enkephalin analogue DAMME (0.25 mg) blunted the hormonal responses to the subsequent beta-endorphin infusion in diabetic patients, although the inhibition was short-lived (30-40 min). Naloxone (5 mg), an opiate antagonist, did not produce any significant change in the insulin and glucagon responses to beta-endorphin, while somatostatin (0.25 mg/h) completely abolished the hormonal responses to the opioid.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Hyperandrogenism Accompanies Increased Intra-Abdominal Fat Storage in Normal Weight Polycystic Ovary Syndrome Women.

    PubMed

    Dumesic, Daniel A; Akopians, Alin L; Madrigal, Vanessa K; Ramirez, Emmanuel; Margolis, Daniel J; Sarma, Manoj K; Thomas, Albert M; Grogan, Tristan R; Haykal, Rasha; Schooler, Tery A; Okeya, Bette L; Abbott, David H; Chazenbalk, Gregorio D

    2016-11-01

    Normal weight polycystic ovary syndrome (PCOS) women may have altered adipose structure-function underlying metabolic dysfunction. This study examines whether adipose structure-functional changes exist in normal weight PCOS women and correlate with hyperandrogenism and/or hyperinsulinemia. This is a prospective cohort study. The setting was an academic medical center. Six normal weight PCOS women and 14 age- and body mass index-matched normoandrogenic ovulatory (NL) women were included. All women underwent circulating hormone and metabolic measurements; frequently sampled intravenous glucose tolerance testing; total body dual-energy x-ray absorptiometry; abdominal magnetic resonance imaging; and SC abdominal fat biopsy. Circulating hormones and metabolites, body fat and its distribution, and adipocyte size were compared between PCOS and NL women, and were correlated with each other in all women. Circulating LH and androgen levels were significantly greater in PCOS than NL women, as were fasting insulin levels, pancreatic β-cell responsiveness to glucose, and total abdominal fat mass. Intra-abdominal fat mass also was significantly increased in PCOS women and was positively correlated with circulating androgen, fasting insulin, triglyceride, and non-high-density lipoprotein cholesterol levels in all women. SC abdominal fat mass was not significantly increased in PCOS women, but contained a greater proportion of small SC abdominal adipocytes that positively correlated with serum androgen levels in all women. Hyperandrogenism in normal weight PCOS women is associated with preferential intra-abdominal fat deposition and an increased population of small SC abdominal adipocytes that could constrain SC adipose storage and promote metabolic dysfunction.

  12. Leukocyte telomere length is inversely associated with post-load but not with fasting plasma glucose levels.

    PubMed

    Khalangot, Mykola; Krasnienkov, Dmytro; Vaiserman, Alexander; Avilov, Ivan; Kovtun, Volodymir; Okhrimenko, Nadia; Koliada, Alexander; Kravchenko, Victor

    2017-04-01

    Type 2 diabetes mellitus is characterized by shorter leukocyte telomere length, but the relationship between leukocyte telomere length and type 2 diabetes mellitus development is rather questioned. Fasting and post-load glycaemia associated with different types of insulin resistance and their relation with leukocyte telomere length remains unknown. We compared leukocyte telomere length and fasting or post-load glucose levels in persons who do not receive glucose lowering treatment. For 82 randomly selected rural residents of Ukraine, aged 45+, not previously diagnosed with type 2 diabetes mellitus, the WHO oral glucose tolerance test and anthropometric measurements were performed. Leukocyte telomere length was measured by standardized method of quantitative monochrome multiplex polymerase chain reaction in real time. Spearman's or Pearson's rank correlation was used for correlation analysis between fasting plasma glucose or 2-h post-load plasma glucose levels and leukocyte telomere length. Logistical regression models were used to evaluate risks of finding short or long telomeres associated with fasting plasma glucose or 2-h post-load plasma glucose levels. No association of fasting plasma glucose and leukocyte telomere length was revealed, whereas 2-h post-load plasma glucose levels demonstrated a negative correlation ( P < 0.01) with leukocyte telomere length. Waist circumference and systolic blood pressure were negatively related ( P = 0.03) with leukocyte telomere length in men. Oral glucose tolerance test result-based glycemic categories did not show differences between mean leukocyte telomere length in categories of normal fasting plasma glucose and 2-h post-load plasma glucose (NGT, n = 33); diabetes mellitus (DM), n = 18 and impaired fasting glucose/tolerance (IFG/IGT, n = 31) levels. A correlation relationship between leukocyte telomere length and 2-h post-load plasma glucose level in NGT; IFG/IGT and DM groups ( P = 0.027; 0.029 and 0.049, respectively) was revealed; the association between leukocyte telomere length and fasting plasma glucose was confirmed in DM group only ( P = 0.009). Increase of 2-h post-load plasma glucose (but not fasting plasma glucose) level improves the chances of revealing short telomeres: OR 1.52 (95% CI 1.04-2.22), P = 0.03. After the adjustment for age, gender, waist circumference, systolic blood pressure, and fasting plasma glucose, these phenomena remain significant. We conclude that 2-h post-load plasma glucose but not fasting plasma glucose is inversely associated with leukocyte telomere length. Impact statement • Contradictory epidemiologic data have been obtained about the link between the leucocyte telomere length (LTL) and diabetes. Type 2 diabetes (T2D) is likely to be pathophysiologically heterogeneous, but comparison of the association of LTL separately with fasting plasma glucose (FPG) and 2-h post-load plasma glucose (2hPG) levels has not been done before. Thus, the study of LTL changes associated with different types of hyperglycaemia, that largely determine the heterogenity of T2D is important. • In a population-based study of rural Ukrainians, we were the first to demonstrate that the increase of 2hPG (but not FPG) level increases the chances of revealing short telomeres. • The obtained data can help to clarify the relationship between the LTL shortening and different conditions of the insulin resistance (mainly liver resistance in high FPG and mostly muscle and adipose tissue resistance in high 2hPG).

  13. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection.

    PubMed

    Xu, Chenlong; Song, Zhiqian; Xiang, Qun; Jin, Jian; Feng, Xinjian

    2016-04-14

    We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution.

  14. Hyperinsulinemia prevents prolonged hyperglycemia after intense exercise in insulin-dependent diabetic subjects.

    PubMed

    Sigal, R J; Purdon, C; Fisher, S J; Halter, J B; Vranic, M; Marliss, E B

    1994-10-01

    Hyperglycemia with accompanying hyperinsulinemia occurs after brief, greater than 85% maximum oxygen consumption exercise to exhaustion in normal subjects and persists up to 60 min of recovery. To determine the importance of endogenous insulin secretion during and after intense exercise, responses to exercise of lean fit male post-absorptive insulin-dependent diabetes mellitus (IDDM) subjects, aged 18-34 yr, were compared with those of control subjects (C; n = 6). Three iv insulin protocols were employed: hyperglycemic (HG; n = 7) and euglycemic (EG1; n = 6) with constant insulin infusion, and euglycemic with doubled insulin infusion during recovery (EG2; n = 6). Overnight iv insulin was adjusted to achieve prolonged euglycemia (5.4 +/- 0.3 mmol/L) or hyperglycemia (8.6 +/- 0.3 mmol/L) before exercise. This allowed for comparisons between HG and EG1 (constant infusion) and between C and EG2 (to approximate physiological hyperinsulinemia by doubling the infusion rates at exhaustion for 56 +/- 7 min during recovery). Subjects exercised to 89-98% of their individual maximum oxygen consumption for 12.8 +/- 0.3 min. Glycemia increased to maximum values at 6 min of recovery (9.8 +/- 0.5 in HG, 6.9 +/- 0.4 in EG1, 7.3 +/- 0.3 in EG2, and 6.9 +/- 0.4 mmol/L in C). Whereas in EG2 and C, glucose returned to resting values in 50-80 min, it remained elevated at 120 min recovery in HG and EG1. During exercise, [3-3H]-glucose-determined glucose production increased markedly and exceeded disappearance in all groups, but less so in the HG subjects than in the other groups. An early recovery decline in glucose production did not differ among groups, but MCR (rate of glucose disappearance/glycemia) were markedly lower in HG and EG1, in whom plasma free insulin remained unchanged from 15 min of recovery onward (MCR, 1.6-1.9 vs. 2.3-2.8 mL/kg.min in C). Doubling the insulin infusion rate in EG2 restored the MCR response to that of C subjects. In summary, constant insulin infusion is insufficient to prevent prolonged postexercise hyperglycemia in IDDM subjects, even when provided at a rate sufficient to maintain normal resting glycemia and glucose turnover. The finding that increasing the rate of insulin infusion restored plasma glucose to normal in IDDM subjects suggests that the postexercise increase in insulin levels observed in normal subjects is essential to return plasma glucose to resting levels. Therefore, special strategies, differing from those for less strenuous exercise, are required for the management of insulin therapy in IDDM during and after intense exercise.

  15. High normal post-load plasma glucose, cardiometabolic risk factors and signs of organ damage in obese children.

    PubMed

    Di Bonito, Procolo; Licenziati, Maria Rosaria; Baroni, Marco Giorgio; Congiu, Tiziana; Incani, Michela; Iannuzzi, Arcangelo; Maffeis, Claudio; Perrone, Laura; Valerio, Giuliana; Del Giudice, Emanuele Miraglia

    2014-08-01

    To evaluate normoglycemic overweight/obese (Ow/Ob) children whose post-load plasma glucose (2hPG) cut-point may be significantly associated with cardiometabolic risk factors (CMRFs) and whether this cut-point predicts preclinical signs of organ damage. One thousand seven hundred and thrity four normoglycemic Ow/Ob children were stratified into quintiles of 2hPG, the sixth group was constituted by 101 children with impaired glucose tolerance (IGT). Moving from the lower quintiles of 2hPG to IGT, the groups differed for Prepubertal stage, BMI, fasting PG, insulin levels, blood pressure, and lipids. To evaluate the best cut-off of 2hPG related to CMRFs, the area under the receiver operating characteristic curve and the Youden's index was calculated. Insulin resistance, high blood pressure, and high triglyceride/HDL-C ratio were associated with a 2hPG cut-off of 110 mg/dl. Children with 2hPG ≥110 mg/dl showed 1.3-3.2 fold higher risk to have high levels of ALT (as surrogate of nonalcoholic fatty liver disease) or increased carotid intima-media thickness. This study, performed in a large cohort of Ow/Ob children, shows that an atherogenic risk profile and preclinical signs of organ damage are associated with post-challenge elevations in plasma glucose still considered in the high normal range. Copyright © 2014 The Obesity Society.

  16. Type 2 diabetes and hearing loss in personnel of the Self-Defense Forces.

    PubMed

    Sakuta, Hidenari; Suzuki, Takashi; Yasuda, Hiroko; Ito, Teizo

    2007-02-01

    The association of type 2 diabetes with hearing loss was evaluated in middle-aged male personnel of the Self-Defense Forces (SDFs). Hearing loss was defined as the pure-tone average (PTA) of the thresholds frequency at 0.5, 1, 2, and 4 kHz greater than 25 dB hearing levels (HL) in the worse ear. Diabetes status was determined by self-report of physician-diagnosed diabetes or by oral glucose tolerance test (OGTT). Of 699 subjects studied (age 52.9+/-1.0 years), 103 subjects were classified as having type 2 diabetes. Fasting plasma glucose of diabetic subjects was 120+/-19 mg/dl. Hearing loss levels were (worse) higher among diabetic subjects compared with subjects with normal glucose tolerance (NGT) (30.7+/-13.0 dB versus 27.4+/-12.3 dB, P=0.014). Hearing loss was more prevalent among diabetic subjects than among subjects with normal glucose tolerance (60.2% versus 45.2%, P=0.006). The odds ratio (OR) of type 2 diabetes for the presence of hearing loss was 1.87 (95% confidence interval 1.20-2.91, P=0.006) in a logistic regression analysis adjusted for age, rank, cigarette smoking and ethanol consumption. These results suggest that type 2 diabetes is associated with hearing loss independently of lifestyle factors in middle-aged men.

  17. Glucose-6-phosphate transporter gene therapy corrects metabolic and myeloid abnormalities in glycogen storage disease type Ib mice

    PubMed Central

    Yiu, Wai Han; Pan, Chi-Jiunn; Allamarvdasht, Mohammad; Kim, So Youn; Chou, Janice Y.

    2008-01-01

    Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT), an endoplasmic reticulum-associated transmembrane protein that is ubiquitously expressed. GSD-Ib patients suffer from disturbed glucose homeostasis and myeloid dysfunctions. To evaluate the feasibility of gene replacement therapy for GSD-Ib, we have infused adenoviral (Ad) vector containing human G6PT (Ad-hG6PT) into G6PT-deficient (G6PT-/-) mice that manifest symptoms characteristics of the human disorder. Ad-hG6PT-infusion restores significant levels of G6PT mRNA expression in the liver, bone marrow, and spleen and corrects metabolic as well as myeloid abnormalities in G6PT-/- mice. The G6PT-/- mice receiving gene therapy exhibit improved growth; normalized serum profiles for glucose, cholesterol, triglyceride, uric acid, and lactic acid; and reduced hepatic glycogen deposition. The therapy also corrects neutropenia and lowers the elevated serum levels of granulocyte colony stimulating factor. The development of bone and spleen in the infused G6PT-/- mice is improved and accompanied by increased cellularity and normalized myeloid progenitor cell frequencies in both tissues. This effective use of gene therapy to correct metabolic imbalances and myeloid dysfunctions in GSD-Ib mice holds promise for the future of gene therapy in humans. PMID:17006547

  18. Evaluation of commercial glucometer test strips for potential measurement of glucose in tears.

    PubMed

    Cha, Kyoung Ha; Jensen, Gary C; Balijepalli, Anant S; Cohan, Bruce E; Meyerhoff, Mark E

    2014-02-04

    Tear glucose measurements have been suggested as a potential alternative to blood glucose monitoring for diabetic patients. While previous work has reported that there is a correlation between blood and tear glucose levels in humans, this link has not been thoroughly established and additional clinical studies are needed. Herein, we evaluate the potential of using commercial blood glucose test strips to measure glucose in tears. Of several blood glucose strips evaluated, only one brand exhibits the low detection limit required for quantitating glucose in tears. Calibration of these strips in the range of 0-100 μM glucose with an applied potential of 150 mV to the working electrode yields a sensitivity of 0.127 nA/μM and a limit of quantitation (LOQ) of 9 μM. The strips also exhibit ≤13% error (n = 3) for 25, 50, and 75 μM glucose in the presence of 10 μM acetaminophen, 100 μM ascorbic acid, and 100 μM uric acid. Measurements of glucose in tears from nine normal (nondiabetic) fasting human subjects using strips yielded glucose values within the range of 5-148 μM (mean = 47 μM, median = 43 μM), similar to those for human tears reported by others with more complex LC-MS methods. The glucometer strip method could facilitate more clinical studies to determine whether tear glucose and blood glucose levels sufficiently correlate for application to routine measurements in tears to supplement blood glucose testing. This would be especially helpful for children, adolescents, other Type 1 diabetics, and also for Type 2 diabetics who require treatment with insulin and cannot tolerate multiple finger sticks per day.

  19. Investigation of Antihyperglycaemic Activity of Banana (Musa sp. Var. Nanjangud rasa bale) Flower in Normal and Diabetic Rats.

    PubMed

    Ramu, Ramith; Shirahatti, Prithvi S; Dhanabal, S P; Zameer, Farhan; Dhananjaya, B L; Nagendra Prasad, M N

    2017-10-01

    The vital enzymes of starch digestion and absorption are intestinal α-glucosidases and their inhibition improves postprandial hyperglycaemia, constituting an effective mode of therapy in diabetes. The present study was designed to assess the inhibitory potential of ethanol extract of banana flower (EF) on mammalian α-glucosidases and its pharmacological effects on postprandial hyperglycaemia in normal and alloxan-induced diabetic rats. EF was evaluated for its inhibitory potential and mode of inhibition on mammalian α-glucosidases. Further, the role of EF and its constituents Umbelliferone (C1) and Lupeol (C2) on glucose uptake using isolated rat hemi-diaphragm and insulinotropic activity using RINm5F (rat insulinoma) cell lines were determined. The phytocomponents in EF were also evaluated using GC-MS. EF illustrated a dose-dependent inhibition for rat intestinal sucrase, maltase and p -nitrophenyl-α-D-glucopyranoside (pNPG) hydrolysis (IC 50 values: 18.76±0.22, 25.54±0.10 and 76.42±1.12 µg/ml, respectively) and the mode of inhibition was non-competitive with low Ki values. Oral administration (100-200 mg/kg b.wt.) of EF significantly improved the maltose/glucose-induced postprandial hyperglycaemia in normal and alloxan-induced diabetic rats. EF, C1 and C2 exhibited stimulation of glucose uptake and a dose-dependent glucose-induced insulin secretion at both 4.5 and 16.7 mM glucose concentrations. Further, GC-MS analysis revealed significant levels of steroids (25.61%), diazoprogesterone (21.31%), sesquiterpene (11.78%) and other phytocomponents. EF inhibited α-glucosidases besides promoting glucose uptake and insulin secretion, resulting in antihyperglycaemic effect determining EF as a potent anti-diabetic agent. Abbreviations used: mg/dl: milligramsper deciliter, mM: millimolar, b.wt.: body weight.

  20. Physiological and biochemical effects of 17β estradiol in aging female rat brain.

    PubMed

    Kumar, Pardeep; Taha, Asia; Kale, R K; Cowsik, S M; Baquer, Najma Zaheer

    2011-07-01

    Aging in females and males is considered as the end of natural protection against age related diseases like osteoporosis, coronary heart disease, diabetes, Alzheimer's disease and Parkinson's disease. These changes increase during menopausal condition in females when the level of estradiol is decreased. The objective of this study was to observe the changes in activities of monoamine oxidase, glucose transporter-4 levels, membrane fluidity, lipid peroxidation levels and lipofuscin accumulation occurring in brains of female rats of 3 months (young), 12 months (adult) and 24 months (old) age groups, and to see whether these changes are restored to normal levels after exogenous administration of estradiol (0.1 μg/g body weight for 1 month). The results obtained in the present work revealed that normal aging was associated with significant increases in the activity of monoamine oxidase, lipid peroxidation levels and lipofuscin accumulation in the brains of aging female rats, and a decrease in glucose transporter-4 level and membrane fluidity. Our data showed that estradiol treatment significantly decreased monoamine oxidase activity, lipid peroxidation and lipofuscin accumulation in brain regions of aging rats, and a reversal of glucose transporter-4 levels and membrane fluidity was achieved, therefore it can be concluded from the present findings that estradiol's beneficial effects seemed to arise from its antilipofuscin, antioxidant and antilipidperoxidative effects, implying an overall anti-aging action. The results of this study will be useful for pharmacological modification of the aging process and applying new strategies for control of age related disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Rapidly progressing malignant insulinoma presented with multiple liver metastases: a case report.

    PubMed

    Erdogan, Askin; Askin, Erdogan; Kose, Fatih; Fatih, Kose; Akkaya, Hampar; Hampar, Akkaya; Bascil Tutuncu, Neslihan; Tutuncu, Neslihan Bascil; Ozyilkan, Ozgur; Ozgur, Ozyilkan

    2010-12-01

    A 51-year-old female was admitted to emergency unit with sudden loss of consciousness. Her blood glucose level from fingertip was 33 mg/dl, and insulin level was 55 (normal range, 4-17 IU). Abdominal ultrasonography revealed pancreatic mass with diffuse liver metastases. Biopsy of liver metastases showed differentiated neuroendocrine carcinoma. Diazoxide and chemotherapy stabilized her glucose level for more than 4 months. However, the disease showed progression, and death occurred 8 months later. In conclusion, this case may suggest that biologic behavior may differ from histological behavior in insulinoma and platin-based systemic chemotherapy may provide some benefit in patients those who had diazoxide- and octreotide-resistant tumors.

  2. Glycemic index and postprandial blood glucose response to Japanese strawberry jam in normal adults.

    PubMed

    Kurotobi, Tomoka; Fukuhara, Kimiaki; Inage, Hiroko; Kimura, Shuichi

    2010-01-01

    We investigated in 30 healthy adults the glycemic index (GI) of five strawberry jams made from various sugar compositions. The jam containing the highest ratio of glucose showed a high GI, while that containing a high ratio of fructose, a jam made from polydextrose, showed a low GI. There was a high correlation (r=0.969, p=0.006) between the GI and the predicted GI calculated from the sugar composition of the jams. Moreover, the influence on postprandial blood glucose response after an intake of only 20 g of jam and one slice of bread with 20 g jam was measured in 8 healthy adults. The blood glucose level after an intake of 20 g of the high GI jam containing the high glucose ratio was higher than that of other jams at 15 min, but there was no significant difference after 30 min. Regardless of whether the GI was low or high, differences in the jams were not observed in the postprandial blood glucose level or the area under the curve after eating either one slice of bread (60 g) or one slice of bread with less than 20 g of jam.

  3. Discriminative Ability of Plasma Branched-Chain Amino Acid Levels for Glucose Intolerance in Families At Risk for Type 2 Diabetes.

    PubMed

    Jainandunsing, Sjaam; Wattimena, J L Darcos; Verhoeven, Adrie J M; Langendonk, Janneke G; Rietveld, Trinet; Isaacs, Aaron J; Sijbrands, Eric J G; de Rooij, Felix W M

    2016-04-01

    Insulin resistance and glucose intolerance have been associated with increased plasma levels of branched-chain amino acids (BCAA). BCAA levels do not predict T2DM in the population. We determined the discriminative ability of fasting BCAA levels for glucose intolerance in nondiabetic relatives of patients with T2DM of two different ethnicities. Based on oral glucose tolerance test (OGTT), first-degree relatives of patients with T2DM were categorized as normal glucose tolerance, prediabetes, or T2DM. Included were 34, 12, and 18 Caucasian and 22, 12, and 23 Asian Indian participants, respectively. BCAA levels were measured in fasting plasma together with alanine, phenylalanine, and tyrosine. Insulin sensitivity and beta-cell function were assessed by indices derived from an extended OGTT and their relationship with plasma BCAA levels was assessed in multivariate regression analysis. The value of the amino acids for discriminating prediabetes among nondiabetic family members was determined with the area under the curve of receiver-operated characteristics (c-index). BCAA levels were higher in diabetic than in normoglycemic family members in the Caucasians (P = 0.001) but not in the Asian Indians. In both groups, BCAA levels were associated with waist-hip ratio (β = 0.31; P = 0.03 and β = 0.42; P = 0.001, respectively) but not with indices of insulin sensitivity or beta-cell function. The c-index of BCAA for discriminating prediabetes among nondiabetic participants was 0.83 and 0.74 in Caucasians and Asian Indians, respectively, which increased to 0.84 and 0.79 by also including the other amino acids. The c-index of fasting glucose for discriminating prediabetes increased from 0.91 to 0.92 in Caucasians and 0.85 to 0.97 (P = 0.04) in Asian Indians by inclusion of BCAA+alanine, phenylalanine, and tyrosine. Adding fasting plasma BCAA levels, combined with phenylalanine, tyrosine and alanine to fasting glucose improved discriminative ability for the prediabetic state within Asian Indian families at risk for T2DM. BCAA levels may serve as biomarkers for early development of glucose intolerance in these families.

  4. Pre-transplantation glucose testing for predicting new-onset diabetes mellitus after renal transplantation.

    PubMed

    Ramesh Prasad, G V; Huang, M; Bandukwala, F; Nash, M M; Rapi, L; Montada-Atin, T; Meliton, G; Zaltzman, J S

    2009-02-01

    New-onset diabetes after renal transplantation (NODAT) adversely affects graft and patient survival. However, NODAT risk based on pre-transplant blood glucose (BG) levels has not been defined. Our goal was to identify the best pre-transplant testing method and cut-off values. We performed a case-control analysis of non-diabetic recipients who received a live donor allograft with at least 6 months post-transplant survival. Pre-transplant glucose abnormalities were excluded through 75 g oral glucose tolerance testing (OGTT) and random BG (RBG) measurement. NODAT was defined based on 2003 Canadian Diabetes Association criteria. Multivariate logistic and Cox regression analysis was performed to determine independent predictor variables for NODAT. Receiver-operating-characteristic (ROC) curves were constructed to determine threshold BG values for diabetes risk. 151 recipients met initial entry criteria. 12 had pre-transplant impaired fasting glucose and/or impaired glucose tolerance, among who 7 (58%) developed NODAT. In the remaining 139, 24 (17%) developed NODAT. NODAT risk exceeded 25% for those with pre-transplant RBG > 6.0 mmol/l and 50% if > 7.2 mmol/l. Pre-transplant RBG provided the highest AUC (0.69, p = 0.002) by ROC analysis. Increasing age (p = 0.025), acute rejection (p = 0.011), and RBG > 6.0 mmol/l (p = 0.001) were independent predictors of NODAT. Pre-transplant glucose testing is a specific marker for NODAT. Patients can be counseled of their incremental risk even within the normal BG range if the OGTT is normal.

  5. Yin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor

    PubMed Central

    Lu, Yan; Xiong, Xuelian; Wang, Xiaolin; Zhang, Zhijian; Li, Jin; Shi, Guojun; Yang, Jian; Zhang, Huijie; Ning, Guang; Li, Xiaoying

    2013-01-01

    Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes. PMID:23193188

  6. Arsenite in drinking water produces glucose intolerance in pregnant rats and their female offspring.

    PubMed

    Bonaventura, María Marta; Bourguignon, Nadia Soledad; Bizzozzero, Marianne; Rodriguez, Diego; Ventura, Clara; Cocca, Claudia; Libertun, Carlos; Lux-Lantos, Victoria Adela

    2017-02-01

    Drinking water is the main source of arsenic exposure. Chronic exposure has been associated with metabolic disorders. Here we studied the effects of arsenic on glucose metabolism, in pregnant and post-partum of dams and their offspring. We administered 5 (A5) or 50 (A50) mg/L of sodium arsenite in drinking water to rats from gestational day 1 (GD1) until two months postpartum (2MPP), and to their offspring from weaning until 8 weeks old. Liver arsenic dose-dependently increased in arsenite-treated rats to levels similar to exposed population. Pregnant A50 rats gained less weight than controls and recovered normal weight at 2MPP. Arsenite-treated pregnant animals showed glucose intolerance on GD16-17, with impaired insulin secretion but normal insulin sensitivity; they showed dose-dependent increased pancreas insulin on GD18. All alterations reverted at 2MPP. Offspring from A50-treated mothers showed lower body weight at birth, 4 and 8 weeks of age, and glucose intolerance in adult females, probably due to insulin secretion and sensitivity alterations. Arsenic alters glucose homeostasis during pregnancy by altering beta-cell function, increasing risk of developing gestational diabetes. In pups, it induces low body weight from birth to 8 weeks of age, and glucose intolerance in females, demonstrating a sex specific response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Antidiabetic effects of Cuscuta reflexa Roxb. in streptozotocin induced diabetic rats.

    PubMed

    Rath, Diptirani; Kar, Durga Madhab; Panigrahi, Sandeep Kumar; Maharana, Laxmidhar

    2016-11-04

    Cuscuta reflexa Roxb. (Convolvulaceae) is traditionally used to treat diabetes mellitus by tribal people of north-east India and Bangladesh. To evaluate the anti-diabetic effects of methanol and aqueous extracts of the aerial parts of Cuscuta reflexa Roxb. in normal, glucose loaded and Streptozotocin (STZ) induced diabetic rats. The methanol (MECR) and aqueous (AECR) extracts (200 and 400mg/kg body weight) were administered orally to normal and diabetic rats with Metformin and solvent control as comparison groups. Long term effects like FBG, OGTT, lipid profile, HbA1c, body weight, histopathology of major organs, etc. were investigated. MECR and AECR did not have hypoglycemic effects in normal rats. Both AECR and MECR (400mg/kg) treatments showed significant reduction in blood glucose during OGTT in diabetic rats at 3h. Single oral administration of methanol and aqueous extracts (400mg/kg) to diabetic rats significantly reduced (p<0.05) blood glucose level to 61.90% and 55.39% respectively as compared to the Metformin group i.e. 68.32% at the end of 8h. MECR (400mg/kg body weight for 30 days to diabetic rats) showed a significant decrease (p<0.01) of blood glucose level to 60.00% as compared to other groups. The treatment also resulted an improvement in body weights, decreased HbA1c and restored lipid profile. Histopathological injury was not observed, rather repair of beta cells was seen in extract treated diabetic rats. Methanolic extract of C. reflexa has significant antidiabetic effects and improves metabolic alterations thereby justifying its traditional folkloric claims. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Effectiveness of Medium-Chain Triglyceride Oil Therapy in Two Japanese Citrin-Deficient Siblings: Evaluation Using Oral Glucose Tolerance Tests.

    PubMed

    Otsuka, Hiroki; Sasai, Hideo; Abdelkreem, Elsayed; Kawamoto, Norio; Kawamoto, Minako; Kamiya, Toshiya; Tanimoto, Yasuo; Kikuchi, Atsuo; Kure, Shigeo; Numakura, Chikahiko; Hayasaka, Kiyoshi; Fukao, Toshiyuki

    2016-12-01

    Citrin deficiency, an inherited defect of the liver-type mitochondrial aspartate/glutamate carrier isoform (citrin), may cause impairment of glycolysis because of an increase in the cytosolic NADH/NAD + ratio. We report a Japanese boy whose main complaint was recurrent hypoglycemic episodes. He was suspected as having citrin deficiency because of his peculiar preference for protein- and fat-rich food. His young sister also had a similar food preference. Both siblings were diagnosed with citrin deficiency by genetic analysis. The brother and sister underwent an oral glucose tolerance test (OGTT) at 10 and 7 yr of age, respectively. Blood glucose, ammonia, lactic acid, pyruvic acid, and insulin levels were monitored before starting the test, and then every 30 min. During this test, they maintained blood glucose levels until 180 min. At 210 min, they experienced vomiting, feeling ill, and decreased blood glucose levels (2.9 and 2.8 mmol/l in the brother and sister, respectively). The sister and brother recovered uneventfully by intravenous glucose injection. In a second OGTT, 4 months after medium-chain triglyceride (MCT) oil supplementation, they had no major symptoms and normal glucose levels were maintained, even after 240 min. Additionally, after MCT oil therapy, their food preference slightly changed as they started eating more carbohydrates. Our OGTT data suggest excess carbohydrate intake has adverse consequences in patients with citrin deficiency, including hypoglycemia after a few hours. MCT oil therapy may be effective in preventing such hypoglycemia and improving metabolic derangement, even during the so-called apparently healthy period.

  9. Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from high glucose-induced apoptosis.

    PubMed

    Zou, Yu-Ling; Luo, Wen-Bin; Xie, Lin; Mao, Xin-Bang; Wu, Chao; You, Zhi-Peng

    2018-06-01

    Diabetic retinopathy (DR) is a major vision threatening disease mainly induced by high glucose. Despite great efforts were made to explore the etiology of DR, the exact mechanism responsible for its pathogenesis remains elusive. In our study, we constructed diabetic rats via Streptozotocin (STZ) injection. TUNEL assay was employed to examine retinal cell apoptosis. The levels of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed via flow cytometry. The mRNA and protein levels of mitochondrial respiratory chain were investigated by RT-qPCR and western blot. Compared with normal rats, the retinal cell apoptosis rate in diabetic rats was significantly upregulated. What's more, the signals of 8-OHdG and the levels of Cytochrome C in diabetic rats were enhanced; however, the MnSOD signals and NADPH-1 levels were reduced. We investigated the effect of mitochondrialy targeted hOGG1 (MTS-hOGG1) on the primary rRECs under high glucose. Compared with vector-transfected cells, MTS-hOGG1-expressing cells blocked high glucose-induced cell apoptosis, the loss of MMP and the overproduction of ROS. In addition, under high glucose, MTS-hOGG1 transfection blocked the expression of Cytochrome C, but enhanced the expression of cytochrome c oxidase subunit 1 and NADPH-1. These findings indicated that high glucose induced cell apoptosis by causing the loss of MMP, the overproduction of ROS and mtDNA damage. Targeting DNA repair enzymes hOGG1 in mitochondria partly mitigated the high glucose-induced consequences, which shed new light for DR therapy.

  10. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    PubMed

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  11. Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.)

    PubMed Central

    2009-01-01

    Background Diabetes is a metabolic disorder affecting carbohydrate, fat and protein metabolism. Tridax procumbens Linn. (Family-Asteraceae; common name-Dhaman grass) is common herb found in India. Traditionally, the tribal inhabitants of Udaipur district in Rajasthan (India) uses the leaf powder (along with other herb) orally to treat diabetes. There is a need to evaluate extracts of this plant in order to provide scientific proof for it's application in traditional medicine system. Methods Extraction of whole plant of T. procumbens using 50%methanol. The extract was tested for acute and sub-chronic anti-hyperglycemic activity in alloxan induced diabetic rats and for acute toxicity test among normal rats. Observations on body weight as well as on the oral glucose tolerance levels were also recorded. Results Oral administration of acute and sub chronic doses (250 and 500 mg/kg b.wt.) of T. procumbens extract showed a significant (p < 0.05) reduction in fasting blood glucose levels in diabetic rats, however the decline in blood sugar levels in normal rats was not observed. In acute study the maximum percent blood glucose reduction (68.26% at 250 mg/kg and 71.03% at 500 mg/kg body weight) in diabetic rats was observed at 6 h. The anti-hyperglycemic effects were not dependent of dose and the OGTT and Body weight supported the antihyperglycemic action of the drug. The results of anti-diabetic effect of T. procumbens were compared with the reference standard drug Glibenclamide (10 mg/kg b.wt.). Conclusion These test results support traditional medicinal use of, T. procumbens for the treatment of diabetes mellitus with corrections in body weight and oral glucose tolerance and no visible signs or symptoms of toxicity in normal rats indicating a high margin of safety. These results warrant follow-up through bioassay-directed isolation of the active principles. PMID:19943967

  12. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1G93A mouse model of amyotrophic lateral sclerosis.

    PubMed

    Tefera, Tesfaye W; Borges, Karin

    2018-01-01

    Although alterations in energy metabolism are known in ALS, the specific mechanisms leading to energy deficit are not understood. We measured metabolite levels derived from injected [1- 13 C]glucose and [1,2- 13 C]acetate (i.p.) in cerebral cortex and spinal cord extracts of wild type and hSOD1 G93A mice at onset and mid disease stages using high-pressure liquid chromatography, 1 H and 13 C nuclear magnetic resonance spectroscopy. Levels of spinal and cortical CNS total lactate, [3- 13 C]lactate, total alanine and [3- 13 C]alanine, but not cortical glucose and [1- 13 C]glucose, were reduced mostly at mid stage indicating impaired glycolysis. The [1- 13 C]glucose-derived [4- 13 C]glutamate, [4- 13 C]glutamine and [2- 13 C]GABA amounts were diminished at mid stage in cortex and both time points in spinal cord, suggesting decreased [3- 13 C]pyruvate entry into the TCA cycle. Lack of changes in [1,2- 13 C]acetate-derived [4,5- 13 C]glutamate, [4,5- 13 C]glutamine and [1,2- 13 C]GABA levels indicate unchanged astrocytic 13 C-acetate metabolism. Reduced levels of leucine, isoleucine and valine in CNS suggest compensatory breakdown to refill TCA cycle intermediate levels. Unlabelled, [2- 13 C] and [4- 13 C]GABA concentrations were decreased in spinal cord indicating that impaired glucose metabolism contributes to hyperexcitability and supporting the use of treatments which increase GABA amounts. In conclusion, CNS glucose metabolism is compromised, while astrocytic TCA cycling appears to be normal in the hSOD1 G93A mouse model at symptomatic disease stages.

  13. Determination of glucose in a biological matrix by multivariate analysis of multiple band-pass-filtered Fourier transform near-infrared interferograms.

    PubMed

    Mattu, M J; Small, G W; Arnold, M A

    1997-11-15

    A multivariate calibration method is described in which Fourier transform near-infrared interferogram data are used to determine clinically relevant levels of glucose in an aqueous matrix of bovine serum albumin (BSA) and triacetin. BSA and triacetin are used to model the protein and triglycerides in blood, respectively, and are present in levels spanning the normal human physiological range. A full factorial experimental design is constructed for the data collection, with glucose at 10 levels, BSA at 4 levels, and triacetin at 4 levels. Gaussian-shaped band-pass digital filters are applied to the interferogram data to extract frequencies associated with an absorption band of interest. Separate filters of various widths are positioned on the glucose band at 4400 cm-1, the BSA band at 4606 cm-1, and the triacetin band at 4446 cm-1. Each filter is applied to the raw interferogram, producing one, two, or three filtered interferograms, depending on the number of filters used. Segments of these filtered interferograms are used together in a partial least-squares regression analysis to build glucose calibration models. The optimal calibration model is realized by use of separate segments of interferograms filtered with three filters centered on the glucose, BSA, and triacetin bands. Over the physiological range of 1-20 mM glucose, this 17-term model exhibits values of R2, standard error of calibration, and standard error of prediction of 98.85%, 0.631 mM, and 0.677 mM, respectively. These results are comparable to those obtained in a conventional analysis of spectral data. The interferogram-based method operates without the use of a separate background measurement and employs only a short section of the interferogram.

  14. Protective effects of Ficus carica leaves on glucose and lipids levels, carbohydrate metabolism enzymes and β-cells in type 2 diabetic rats.

    PubMed

    Stephen Irudayaraj, Santiagu; Christudas, Sunil; Antony, Stalin; Duraipandiyan, Veeramuthu; Naif Abdullah, Al-Dhabi; Ignacimuthu, Savarimuthu

    2017-12-01

    The decoctions of Ficus carica Linn. (Moraceae) leaves are used in the folklore treatment of diabetes. To evaluate the effect of F. carica on glucose and lipids levels, carbohydrate metabolism enzymes and β-cells protective effects in type 2 diabetes. Diabetes was induced in 15 days high-fat diet (HFD)-fed Wistar rats by intraperitoneal injection of streptozotocin (STZ) (40 mg/kg). The ethyl acetate extract (250 and 500 mg/kg) of F. carica leaves was administered for 28 days. Oral glucose tolerance (OGTT) and intraperitoneal insulin tolerance tests (ITT) were evaluated on 15th and 25th days, respectively. The ethyl acetate extract (250 and 500 mg/kg) of n F. carica leaves showed significant effect (p < 0.005) in the levels of blood glucose, total cholesterol (TC), triglycerides (TG), body weight and hepatic glycogen. In OGTT, F. carica (250 and 500 mg/kg) significantly (p < 0.005) detained the increase in blood glucose levels at 60 and 120 min and in ITT, F. carica enhanced the glucose utilization significantly (p < 0.005) over 30 and 60 min compared to diabetic control. Further, the altered activities of key carbohydrate metabolizing enzymes such as glucose-6-phosphatase, fructose-1,6-bisphosphatase and hexokinase in the liver tissue of diabetic rats were significantly (p < 0.005) reverted to near normal levels upon treatment with F. carica. Immumohistochemical studies of islets substantiated the cytoprotective effect on pancreatic β-cells. F. carica leaves exerted significant effect on carbohydrate metabolism enzymes with promising hypoglycemic and hypolipidemic activities in type 2 diabetic rats.

  15. Enzymatic activity of Glucose Oxidase from Aspergillus niger IPBCC.08.610 On Modified Carbon Paste Electrode as Glucose Biosensor

    NASA Astrophysics Data System (ADS)

    Rohmayanti, T.; Ambarsari, L.; Maddu, A.

    2017-03-01

    Glucose oxidase (GOx) has been developed as glucose sensor for measuring blood glucose level because of its specificity to glucose oxidation. This research aimed to determine kinetic parameters of GOx activity voltametrically and further test its potential as a glucose biosensor. GOx, in this research, was produced by local fungi Aspergillus niger IPBCC.08.610 which was isolated from local vine in Tarakan, East Borneo, Indonesia. GOx was immobilized with glutaraldehyde, which cross-linked onto modified carbon paste electrode (MCPE) nanofiber polyaniline. Intracellular GOx activity was higher than extracellular ones. Immobilized GOx used glutaraldehyde 2.5% and dripped on the surface of MCPE nanofiber polyaniline. MCPE have a high conductance in copper with the diameter of 3 mm. The concentration of glucose in the lowest concentration of 0.2 mM generated a current value of 0.413 mA while 2 mM of glucose induced a current of 3,869 mA value. Km and Imax of GOx in MCPE activities polyaniline nanofiber were 2.88 mM and 3.869 mA,respectively, with turnover (Kcat) of 13 s-1. Sensitivity was 1.09 mA/mM and response time to produce a maximum peak current was 25 seconds. Km value was then converted into units of mg/dL and obtained 56.4 mg/dL. GOximmo-IPB|MCPE electrode is potential to be able to detect blood glucose level in a normal condition and hypoglycemia conditions

  16. The effect of gold nanoparticles modified electrode on the glucose sensing performance

    NASA Astrophysics Data System (ADS)

    Zulkifli, Zulfa Aiza; Ridhuan, Nur Syafinaz; Nor, Noorhashimah Mohamad; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-07-01

    In this work, 20 nm, 30 nm, 40 nm, 50 nm and 60 nm colloidal gold nanoparticles (AuNPs) were synthesized using the seeding growth method. AuNPs produced had spherical shape with uniform size. The AuNPs also are well dispersed in colloidal form that was proven by low polydispersity index. The produced AuNPs were used to modify electrode for glucose sensor. The produced AuNPs were deposited on indium tin oxide substrate (ITO), followed by immobilization of glucose oxidase (GOx) on it. After that, Nafion was deposited on the GOx/AuNPs/ITO. Electrooxidation of glucose with AuNPs-modified electrode was examined by cyclic voltammeter (CV) in 15 mM glucose mixed with 0.01 M PBS. The optimum size of AuNPs was 30 nm with optical density 3.0. AuNPs were successfully immobilized with glucose oxidase (GOx) and proved to work well as a glucose sensor. Based on the high electrocatalytic activity of Nafion/GOx/AuNPs/ITO, the sensitivity of the glucose sensors was further examined by varying the concentration of glucose solution from 2 mM to 20 mM in 0.01 M phosphate buffer solution (PBS) solution. Good linear relationship was observed between the catalytic current and glucose concentration in the range of 2 mM to 20 mM. The sensitivity of the Nafion/GOx/AuNPs/ITO electrode calculated from the slope of linear square calibration was 0.909 µA mM-1 cm-2 that is comparable with other published work. The linear fitting to the experimental data gives R-square of 0.991 at 0.9 V and a detection limit of 2.03 mM. This detection range is sufficient to be medically useful in monitoring human blood glucose level in which the normal blood glucose level is in the range of 4.4 to 6.6 mM and diabetic blood glucose level is above 7 mM.

  17. Effect of Glycemic Control on Chylomicron Metabolism and Correlation between Postprandial Metabolism of Plasma Glucose and Chylomicron in Patients with Type 2 Diabetes Treated with Basal-bolus Insulin Therapy with or without Vildagliptin

    PubMed Central

    Emoto, Naoya; Kato, Katsuhito; Sugihara, Hitoshi

    2017-01-01

    Aim: Glucagon-like peptide-1 can reduce both postprandial plasma glucose (PG) and chylomicron (CM) levels in patients with type 2 diabetes. However, there have been no reports regarding the relationship between the postprandial metabolism of PG and CM. Methods: Patients with type 2 diabetes who were admitted for glycemic control were randomized to insulin alone (Ins; n = 16) or insulin plus vildagliptin 100 mg (InsV; n = 16) groups. The insulin dose was adjusted to maintain normal blood glucose levels. The daily profiles of serum TG, remnant lipoprotein cholesterol (RemL-C), and apolipoprotein B48 (ApoB48) were estimated by frequent blood collection on admission and before discharge, and the daily glucose fluctuation profile was also estimated using continuous glucose monitoring (CGM) before discharge. Results: The daily profiles of serum TG and RemL-C indicated a significant decrease before discharge compared with on admission; however, no significant changes in serum ApoB48 levels were observed in either group. At discharge, daily glucose fluctuation profile and the change in the serum ApoB48 level from fasting to the peak of the daily profile was significantly smaller in the InsV group than in the Ins group. The increment of serum ApoB48 level was significantly correlated with the mean amplitude of glycemic excursions calculated using CGM data only in the Ins group (R2 = 0.5242, P <0.001). Conclusions: Short-term glycemic control decreased serum TG and RemL-C levels, but not ApoB48 levels, and the postprandial metabolism of PG and CM might be regulated by the same mechanism except GLP-1 effect. PMID:27397060

  18. Effect of Glycemic Control on Chylomicron Metabolism and Correlation between Postprandial Metabolism of Plasma Glucose and Chylomicron in Patients with Type 2 Diabetes Treated with Basal-bolus Insulin Therapy with or without Vildagliptin.

    PubMed

    Okajima, Fumitaka; Emoto, Naoya; Kato, Katsuhito; Sugihara, Hitoshi

    2017-02-01

    Glucagon-like peptide-1 can reduce both postprandial plasma glucose (PG) and chylomicron (CM) levels in patients with type 2 diabetes. However, there have been no reports regarding the relationship between the postprandial metabolism of PG and CM. Patients with type 2 diabetes who were admitted for glycemic control were randomized to insulin alone (Ins; n=16) or insulin plus vildagliptin 100 mg (InsV; n=16) groups. The insulin dose was adjusted to maintain normal blood glucose levels. The daily profiles of serum TG, remnant lipoprotein cholesterol (RemL-C), and apolipoprotein B48 (ApoB48) were estimated by frequent blood collection on admission and before discharge, and the daily glucose fluctuation profile was also estimated using continuous glucose monitoring (CGM) before discharge. The daily profiles of serum TG and RemL-C indicated a significant decrease before discharge compared with on admission; however, no significant changes in serum ApoB48 levels were observed in either group. At discharge, daily glucose fluctuation profile and the change in the serum ApoB48 level from fasting to the peak of the daily profile was significantly smaller in the InsV group than in the Ins group. The increment of serum ApoB48 level was significantly correlated with the mean amplitude of glycemic excursions calculated using CGM data only in the Ins group (R 2 = 0.5242,P<0.001). Short-term glycemic control decreased serum TG and RemL-C levels, but not ApoB48 levels, and the postprandial metabolism of PG and CM might be regulated by the same mechanism except GLP-1 effect.

  19. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2016-12-01

    The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50  = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50  = 2.68 ± 0.75 %) or without (GU 50  = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

  20. Glucose consumption of inflammatory cells masks metabolic deficits in the brain.

    PubMed

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R; Schroeter, Michael; Graf, Rudolf

    2016-03-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Subjects with impaired fasting glucose: evolution in a period of 6 years.

    PubMed

    Leiva, E; Mujica, V; Orrego, R; Wehinger, S; Soto, A; Icaza, G; Vásquez, M; Díaz, L; Andrews, M; Arredondo, M

    2014-01-01

    To study the evolution of impaired fasting glucose (IFG), considering glucose and HbA1c levels and risk factors associated, in a period of 6 years. We studied 94 subjects with impaired fasting glucose (IFG) that were diagnosed in 2005 and followed up to 2012. Glucose and HbA1c levels were determined. A descriptive analysis of contingence charts was performed in order to study the evolution in the development of type-2 diabetes mellitus (T2DM). Twenty-eight of ninety-four subjects became T2DM; 51/94 remained with IFG; and 20/94 presented normal fasting glucose. From the 28 diabetic subjects, 9 had already developed diabetes and were under treatment with oral hypoglycemic agents; 5 were diagnosed with plasma glucose < 126 mg/dL, but with HbA1c over 6.5%. In those who developed diabetes, 15/28 had a family history of T2DM in first relative degree. Also, diabetic subjects had a BMI significantly higher than nodiabetics (t test: P < 0.01). The individuals that in 2005 had the highest BMI are those who currently have diabetes. The IFG constitutes a condition of high risk of developing T2DM in a few years, especially over 110 mg/dL and in obesity patients.

  2. Persimmon-Tannin, an α-Amylase Inhibitor, Retards Carbohydrate Absorption in Rats.

    PubMed

    Tsujita, Takahiro

    2016-01-01

    Inhibitors of carbohydrate-hydrolyzing enzymes play an important role in controlling postprandial blood glucose levels. Thus the effect of persimmon tannin on pancreatic α-amylase and intestinal α-glucosidase has been investigated. Persimmon tannin inhibits pancreatic α-amylase and intestinal α-glucosidase in a concentration-dependent manner with the 50% inhibition concentration (IC50) for amylase, maltase and sucrase being 1.7 μg/mL, 632 μg/mL and 308 μg/mL, respectively. The effect of persimmon-tannin extract on carbohydrate absorption in rats has also been investigated. Oral administration of persimmon tannin to normal rats fed cornstarch (2 g/kg body weight) significantly suppressed the increase in blood glucose levels and the area under the curve (AUC) after starch loading in a dose-dependent manner. The effective dose of persimmon tannin required to achieve 50% suppression of the rise in blood glucose level was estimated to be 300 mg/kg body weight. Administration of persimmon tannin to rats fed maltose or sucrose delayed the increase of blood glucose level and slightly suppressed AUC, but not significantly. These results suggest that persimmon tannin retards absorption of carbohydrate and reduces post-prandial hyperglycemia mainly through inhibition of α-amylase.

  3. Hypothalamic control of energy and glucose metabolism.

    PubMed

    Sisley, Stephanie; Sandoval, Darleen

    2011-09-01

    The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.

  4. [Impact of streptozotocininduced hyperglycemia on anxiety level and physical fatigue of Wistar rats].

    PubMed

    Sidorova, Yu S; Shipelin, V A; Zorin, S N; Mazo, V K; Petrov, N A; Kochetkova, A A

    2015-01-01

    The aim of the study was to evaluate type 2 diabetes medicamental biomodel in 70-days experiment. Control group animals were provided with water ad libitum throughout the experiment, experimental group animals for the first two weeks were provided with 20% solution of fructose ad libitum instead of water. On the 15th day, experimental group animals (average body weight 257±8 g) were injected abdominally with streptozotocin (STZ) in dosage 40 mg/kg of body weight. For the next three weeks on the 22nd, 28th and 36th days, glucose level in blood taken from the tail vein was measured using portable electrochemical glucometer. On the 37th day animals with blood glucose level 11.0 mmol/L or higher were included in experimental group for further research. On the 44th and 60th day control measurements of glucose level were conducted. On the 70th day animals were taken out of experiment by decapitation under ether anesthesia. The concentration of glucose, glycosylated hemoglobin, triglycerides, cholesterine, HLD and LDL were measured in blood serum. Additionally anxiety level of animals was evaluated before and after STZ injection using Elevated plusmaze. The comparison of physical fatigue of control and experimental groups was performed using treadmill. On the 37th day blood glucose concentration of control group animals was 6.6±0.4 mmol/L. 33% of animals (13 of 40) with glucose level 11.0 mmol/L or higher formed the experimental group (average glucose level 16.2±1.3 mmol/L), other 27 rats had normal glucose level. The anxiety level of diabetic rats was higher than in control group. Diabetic rats showed significantly lower physical fatigue than control rats. On the 44th and 60th day of experiment glucose level in experimental rats from group 2 (15.5±1.4 и 14.8±1.2 mmol/L) was significantly higher than of control animals (7.0±0.5 и 6.8±0.3 mmol/L). Glycated hemoglobin level in blood serum of diabetic group (7.2±0.7%) was significantly higher than of control group (3.3±0.2%). This proves the progression of stable long-term hyperglycemia. According to results represented model can be used for initial experimental evaluation of tested antidiabetic biologically active substances.

  5. Normal Postprandial Nonesterified Fatty Acid Uptake in Muscles Despite Increased Circulating Fatty Acids in Type 2 Diabetes

    PubMed Central

    Labbé, Sébastien M.; Croteau, Etienne; Grenier-Larouche, Thomas; Frisch, Frédérique; Ouellet, René; Langlois, Réjean; Guérin, Brigitte; Turcotte, Eric E.; Carpentier, André C.

    2011-01-01

    OBJECTIVE Postprandial plasma nonesterified fatty acid (NEFA) appearance is increased in type 2 diabetes. Our objective was to determine whether skeletal muscle uptake of plasma NEFA is abnormal during the postprandial state in type 2 diabetes. RESEARCH DESIGN AND METHODS Thigh muscle blood flow and oxidative metabolism indexes and NEFA uptake were determined using positron emission tomography coupled with computed tomography (PET/CT) with [11C]acetate and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (18FTHA) in seven healthy control subjects (CON) and seven subjects with type 2 diabetes during continuous oral intake of a liquid meal to achieve steady postprandial NEFA levels with insulin infusion to maintain similar plasma glucose levels in both groups. RESULTS In the postprandial state, plasma NEFA level was higher in type 2 diabetic subjects versus CON (P < 0.01), whereas plasma glucose was at the same level in both groups. Muscle NEFA fractional extraction and blood flow index levels were 56% (P < 0.05) and 24% (P = 0.27) lower in type 2 diabetes, respectively. However, muscle NEFA uptake was similar to that of CON (quadriceps femoris [QF] 1.47 ± 0.23 vs. 1.37 ± 0.24 nmol ⋅ g−1 ⋅ min−1, P = 0.77; biceps femoris [BF] 1.54 ± 0.26 vs. 1.46 ± 0.28 nmol ⋅ g−1 ⋅ min−1, P = 0.85). Muscle oxidative metabolism was similar in both groups. Muscle NEFA fractional extraction and blood flow index were strongly and positively correlated (r = 0.79, P < 0.005). CONCLUSIONS Postprandial muscle NEFA uptake is normal despite elevated systemic NEFA levels and acute normalization of plasma glucose in type 2 diabetes. Lower postprandial muscle blood flow with resulting reduction in muscle NEFA fractional extraction may explain this phenomenon. PMID:21228312

  6. Clinical benefits of tight glycaemic control: focus on the intensive care unit.

    PubMed

    Mesotten, Dieter; Van den Berghe, Greet

    2009-12-01

    While stress hyperglycaemia has traditionally been regarded as an adaptive, beneficial response, it is clear that hyperglycaemia and hypoglycaemia are associated with increased risk of death in critically ill intensive care unit (ICU) patients. Recent studies on blood-glucose control failed to fully clarify whether this association is causal. Early proof-of-concept single-centre randomised controlled studies found that maintaining normoglycaemia by intensive insulin therapy, as compared with tolerating hyperglycaemia as an adaptive response, improved patient outcome. However, recent large multicentre studies VISEP, GLUCONTROL and NICE-SUGAR) could not confirm this survival benefit. Methodological disparity in the execution of the complex intervention of tight glycaemic control may have contributed significantly to the contradicting results. First, different target ranges for blood glucose were used in the control group of the GLUCONTROL and 'Normoglycemia in intensive care evaluation and survival using glucose algorithm' regulation' (NICE-SUGAR) studies. Second, problems to steer blood-glucose levels within target range in the intervention group resulted in a significant overlap of the treatment groups. Third, allowing inaccurate blood-glucose measurement devices, in combination with different blood sampling sites and types of infusion pumps, may have led to unnoticed swings in blood-glucose levels. Fourth, the level of expertise of the intensive care nurses with the therapy may have been variable due to low number of study patients per centre. Finally, the studies on tight blood-glucose control were done with vastly different nutritional and end-of-life strategies. The currently available studies do not allow to confidently recommend one optimal target for glucose in heterogeneous ICU patient groups and settings. Provided that adequate devices for blood-glucose measurement and insulin administration are available, together with an extensive experience of the nursing staff, blood-glucose levels should be controlled as close to normal as possible, without evoking unacceptable fluctuations and hypoglycaemia.

  7. A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses.

    PubMed

    Weedon, Michael N; Clark, Vanessa J; Qian, Yudong; Ben-Shlomo, Yoav; Timpson, Nicholas; Ebrahim, Shah; Lawlor, Debbie A; Pembrey, Marcus E; Ring, Susan; Wilkin, Terry J; Voss, Linda D; Jeffery, Alison N; Metcalf, Brad; Ferrucci, Luigi; Corsi, Anna Maria; Murray, Anna; Melzer, David; Knight, Bridget; Shields, Bev; Smith, George Davey; Hattersley, Andrew T; Di Rienzo, Anna; Frayling, Tim M

    2006-12-01

    Fasting glucose is associated with future risk of type 2 diabetes and ischemic heart disease and is tightly regulated despite considerable variation in quantity, type, and timing of food intake. In pregnancy, maternal fasting glucose concentration is an important determinant of offspring birth weight. The key determinant of fasting glucose is the enzyme glucokinase (GCK). Rare mutations of GCK cause fasting hyperglycemia and alter birth weight. The extent to which common variation of GCK explains normal variation of fasting glucose and birth weight is not known. We aimed to comprehensively define the role of variation of GCK in determination of fasting glucose and birth weight, using a tagging SNP (tSNP) approach and studying 19,806 subjects from six population-based studies. Using 22 tSNPs, we showed that the variant rs1799884 is associated with fasting glucose at all ages in the normal population and exceeded genomewide levels of significance (P=10-9). rs3757840 was also highly significantly associated with fasting glucose (P=8x10-7), but haplotype analysis revealed that this is explained by linkage disequilibrium (r2=0.2) with rs1799884. A maternal A allele at rs1799884 was associated with a 32-g (95% confidence interval 11-53 g) increase in offspring birth weight (P=.002). Genetic variation influencing birth weight may have conferred a selective advantage in human populations. We performed extensive population-genetics analyses to look for evidence of recent positive natural selection on patterns of GCK variation. However, we found no strong signature of positive selection. In conclusion, a comprehensive analysis of common variation of the glucokinase gene shows that this is the first gene to be reproducibly associated with fasting glucose and fetal growth.

  8. Glucose Counterregulatory Responses to Hypoglycemia

    PubMed Central

    Sprague, Jennifer E.; Arbeláez, Ana María

    2013-01-01

    The brain relies almost exclusively on glucose for fuel. Therefore, adequate uptake of glucose from the plasma is key for normal brain function and survival. Despite wide variations in glucose flux (i.e. fed state, fasting state, etc), blood glucose is maintained in a very narrow range. This is accomplished by a series of hormonal and physiologic responses. As a result, hypoglycemia is a rare occurrence in normal individuals. However, glucose counterregulatory responses are altered in patients with diabetes treated with insulin especially after repeated hypoglycemia or antecedent exercise. PMID:22783644

  9. Hypoglycemic action of karanjin.

    PubMed

    Mandal, B; Maity, C R

    1986-01-01

    The hypoglycemic activity of karanjin, 3-methoxy flavono 7,8-furan, was investigated in normal and alloxan-induced diabetic albino rats. Oral administration of karanjin at a dose of 2 mg/kg/day for 7 days caused a significant reduction in blood sugar level both in normal and in alloxan-induced diabetic rats. Acute treatment with a single dose of karanjin, 0.5 mg/kg i.p., produced a significant fall in blood sugar level in normal rats while in alloxan-induced diabetic rats it was ineffective. Impaired glucose tolerance was also improved by karanjin treatment. It is concluded that karanjin has a significant hypoglycemic effect in albino rats.

  10. Featured Article: Inhibition of diabetic cataract by glucose tolerance factor extracted from yeast

    PubMed Central

    Cohen, Revital; Eliaz, Anat; Dovrat, Ahuva

    2016-01-01

    Diabetes leads to many complications; among them is the development of cataract. Hyperglycemia brings to increased polyol concentration in the lens, to glycation of lens proteins, and to elevated level of ROS (Reactive Oxygen Species) causing oxidative stress. The glucose tolerance factor (GTF) was found by several groups to decrease hyperglycemia and oxidative stress both in diabetic animals and humans. The aim of our study was to explore the damages induced by high glucose to the eye lens and to assess the protective effects of GTF both in vivo and in vitro. The in vivo study included control healthy rats, streptozotocin (STZ) diabetic untreated rats, and STZ diabetic rats orally treated with 15 doses of GTF. The diabetic untreated rats developed cataracts, whereas the development of cataract was totally or partially prevented in GTF treated animals. In vitro studies were done on bovine lenses incubated for 14 days. Half of the lenses were incubated in normal glucose conditions, and half in high glucose conditions (450 mg%). To one group of the normal or high glucose condition GTF was added. The optical quality of all the lenses was measured daily by an automated scanning laser system. The control lenses, whether with or without GTF addition, did not show any reduction in their quality. High glucose conditions induced optical damage to the lenses. Addition of GTF to high glucose conditions prevented this damage. High glucose conditions affected the activity of aldose reductase and sodium potassium ATPase in lens epithelial cell. Addition of GTF decreased the destructive changes induced by high glucose conditions. The amount of soluble cortical lens proteins was decreased and structural changes were detected in lenses incubated in high glucose medium. These changes could be prevented when GTF was added to high glucose medium. Our findings demonstrate the anticataractogenic potential of GTF. PMID:26825353

  11. The effect of varying glucose levels on the ex vivo crystalline lens: implications for hyperglycaemia-induced refractive changes.

    PubMed

    Mehta, Vikram V; Hull, Christopher C; Lawrenson, John G

    2015-01-01

    Refractive changes in diabetic eyes have long been reported but with equivocal results. The lens has been a more recent focus as the source of any change but it is possible that multiple sources of variation have made it difficult to demonstrate a systematic change clinically. The aim of this study was therefore to use a bovine lens model to investigate the optical changes in hyperglycaemia and when lenses are returned to normal glucose levels as would occur following commencement of treatment. Bovine eyes were obtained and their lenses excised under sterile conditions before placing them in culture medium within an incubator using standard tissue culture techniques. In the first experiment, lenses were transferred into culture medium containing 5 mm (n = 12), 15 mm (n = 12) and 30 mm (n = 12) glucose. Measurements were made of the change in back vertex focusing distance with equatorial lens diameter using the ScanTox(™) measurement system. From these measurements, the back vertex focal length and primary longitudinal spherical aberration were derived. In a second experiment, lenses maintained at 30 mm glucose (n = 7) were stepped down to 5 mm glucose to simulate starting diabetic therapy and measured in the same way. Changes over time were assessed with a linear regression model. A trend towards myopia was observed with increasing hyperglycaemia, this was not statistically significant. When lenses were stepped-down from hyperglycaemia to normal physiological levels of glucose, a hyperopic shift was observed in line with published clinical studies that again failed to reach statistical significance. High variability in the measurement on longitudinal spherical aberration prevented any significant trends being measured. Our results suggest that there are no consistent crystalline lens-induced refractive changes following exposure to hyperglycaemia for time-periods up to 5 days used in the current study. It is possible that bovine lenses are able to offset the raised osmotic pressure from high glucose levels in the short-term by a process of osmoregulation and that repeated osmotic stress or longer term exposure may be required to induce the changes in refraction that are seen clinically. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  12. Soluble interleukin-13rα1: a circulating regulator of glucose.

    PubMed

    Rachmin, Inbal; O'Meara, Caitlin C; Ricci-Blair, Elisabeth M; Feng, Yilin; Christensen, Emily M; Duffy, Jeanne F; Zitting, Kirsi M; Czeisler, Charles A; Pancoast, James R; Cannon, Christopher P; O'Donoghue, Michelle L; Morrow, David A; Lee, Richard T

    2017-12-01

    Soluble IL-13 receptor-α1, or sIL13rα1, is a soluble protein that binds to interleukin-13 (IL-13) that has been previously described in mice. The function of sIL13rα1 remains unclear, but it has been hypothesized to act as a decoy receptor for IL-13. Recent studies have identified a role for IL-13 in glucose metabolism, suggesting that a decoy receptor for IL-13 might increase circulating glucose levels. Here, we report that delivery of sIL13rα1 to mice by either gene transfer or recombinant protein decreases blood glucose levels. Surprisingly, the glucose-lowering effect of sIL13rα1 was preserved in mice lacking IL-13, demonstrating that IL-13 was not required for the effect. In contrast, deletion of IL-4 in mice eliminated the hypoglycemic effect of sIL13rα1. In humans, endogenous blood levels of IL13rα1 varied substantially, although there were no differences between diabetic and nondiabetic patients. There was no circadian variation of sIL13rα1 in normal human volunteers. Delivery of sIL13rα1 fused to a fragment crystallizable (Fc) domain provided sustained glucose lowering in mice on a high-fat diet, suggesting a potential therapeutic strategy. These data reveal sIL13rα1 as a circulating human protein with an unexpected role in glucose metabolism. Copyright © 2017 the American Physiological Society.

  13. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: results from the Diabetes Prevention Program Outcomes Study.

    PubMed

    Perreault, Leigh; Pan, Qing; Mather, Kieren J; Watson, Karol E; Hamman, Richard F; Kahn, Steven E

    2012-06-16

    Our objective was to quantify and predict diabetes risk reduction during the Diabetes Prevention Program Outcomes Study (DPPOS) in participants who returned to normal glucose regulation at least once during the Diabetes Prevention Program (DPP) compared with those who consistently met criteria for prediabetes. DPPOS is an ongoing observational study of participants from the DPP randomised trial. For this analysis, diabetes cumulative incidence in DPPOS was calculated for participants with normal glucose regulation or prediabetes status during DPP with and without stratification by previous randomised treatment group. Cox proportional hazards modelling and generalised linear mixed models were used to quantify the effect of previous (DPP) glycaemic status on risk of later (DPPOS) diabetes and normal glucose regulation status, respectively, per SD in change. Included in this analysis were 1990 participants of DPPOS who had been randomly assigned to treatment groups during DPP (736 intensive lifestyle intervention, 647 metformin, 607 placebo). These studies are registered at ClinicalTrials.gov, NCT00004992 (DPP) and NCT00038727 (DPPOS). Diabetes risk during DPPOS was 56% lower for participants who had returned to normal glucose regulation versus those who consistently had prediabetes (hazard ratio [HR] 0·44, 95% CI 0·37-0·55, p<0·0001) and was unaffected by previous group assignment (interaction test for normal glucose regulation and lifestyle intervention, p=0·1722; normal glucose regulation and metformin, p=0·3304). Many, but not all, of the variables that increased diabetes risk were inversely associated with the chance of a participant reaching normal glucose regulation status in DPPOS. Specifically, previous achievement of normal glucose regulation (odds ratio [OR] 3·18, 95% CI 2·71-3·72, p<0·0001), increased β-cell function (OR 1·28; 95% CI 1·18-1·39, p<0·0001), and insulin sensitivity (OR 1·16, 95% CI 1·08-1·25, p<0·0001) were associated with normal glucose regulation in DPPOS, whereas the opposite was true for prediction of diabetes, with increased β-cell function (HR 0·80, 95% CI 0·71-0·89, p<0·0001) and insulin sensitivity (HR 0·83, 95% CI 0·74-0·94, p=0·0001) having a protective effect. Among participants who did not return to normal glucose regulation in DPP, those assigned to the intensive lifestyle intervention had a higher diabetes risk (HR 1·31, 95% CI 1·03-1·68, p=0·0304) and lower chance of normal glucose regulation (OR 0·59, 95% CI 0·42-0·82, p=0·0014) than did the placebo group in DPPOS. We conclude that prediabetes is a high-risk state for diabetes, especially in patients who remain with prediabetes despite intensive lifestyle intervention. Reversion to normal glucose regulation, even if transient, is associated with a significantly reduced risk of future diabetes independent of previous treatment group. US National Institutes of Health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Elevated 1-hour postload plasma glucose levels identify subjects with normal glucose tolerance but impaired β-cell function, insulin resistance, and worse cardiovascular risk profile: the GENFIEV study.

    PubMed

    Bianchi, Cristina; Miccoli, Roberto; Trombetta, Maddalena; Giorgino, Francesco; Frontoni, Simona; Faloia, Emanuela; Marchesini, Giulio; Dolci, Maria A; Cavalot, Franco; Cavallo, Gisella; Leonetti, Frida; Bonadonna, Riccardo C; Del Prato, Stefano

    2013-05-01

    In subjects with normal glucose tolerance (NGT) 1-hour postload plasma glucose (1-h oral glucose tolerance test [OGTT]) of >155 mg/dL predicts type 2 diabetes (T2DM) and is associated with subclinical atherosclerosis. The purpose of this study was to evaluate β-cell function, insulin resistance, and cardiovascular risk profile in subjects with NGT with a 1-h OGTT glucose of >155 mg/dL. The GENFIEV (Genetics, PHYsiopathology, and Evolution of Type 2 diabetes) study is a multicenter study recruiting individuals at high risk of T2DM. A total of 926 subjects underwent a 75-g OGTT for assessment of plasma glucose and C-peptide for mathematical modeling of β-cell function (derivative and proportional control). Fasting insulin, lipid profile, and clinical parameters were determined as well. A 1-hour OGTT glucose of >155 mg/dL was found in 39% of subjects with NGT, 76% with impaired fasting glucose (IFG), 90% with impaired glucose tolerance (IGT), and 99% and 98% with IFG + IGT or newly diagnosed T2DM, respectively. Among subjects with NGT (n = 474), those with 1-hour OGTT glucose of >155 mg/dL were more insulin-resistant and had worse β-cell function than those with 1-hour OGTT glucose of ≤155 mg/dL. Moreover, glycosylated hemoglobin, blood pressure, low-density lipoprotein cholesterol, and triglycerides were higher in subjects with NGT with 1-hour OGTT glucose of >155 mg/dL, whereas high-density lipoprotein cholesterol was lower compared with that in subjects with NGT with 1-hour OGTT glucose of ≤155 mg/dL. Compared with subjects with IGT, those with NGT with 1-hour OGTT glucose of >155 mg/dL had comparable cardiovascular risk profile and insulin resistance but slightly better β-cell function. Among subjects with NGT, those with 1-hour OGTT glucose of >155 mg/dL showed lower insulin sensitivity, impaired β-cell function, and worse cardiovascular risk profile and therefore are at greater risk of developing T2DM and cardiovascular disease.

  15. Efficacy of azelaic acid on hepatic key enzymes of carbohydrate metabolism in high fat diet induced type 2 diabetic mice.

    PubMed

    Muthulakshmi, Shanmugam; Saravanan, Ramalingam

    2013-06-01

    Azelaic acid (AzA), a C9 linear α,ω-dicarboxylic acid, is found in whole grains namely wheat, rye, barley, oat seeds and sorghum. The study was performed to investigate whether AzA exerts beneficial effect on hepatic key enzymes of carbohydrate metabolism in high fat diet (HFD) induced type 2 diabetic C57BL/6J mice. C57BL/6J mice were fed high fat diet for 10 weeks and subjected to intragastric administration of various doses (20 mg, 40 mg and 80 mg/kg BW) of AzA daily for the subsequent 5 weeks. Rosiglitazone (RSG) was used as reference drug. Body weight, food intake, plasma glucose, plasma insulin, blood haemoglobin (Hb), blood glycosylated haemoglobin (HbA1c), liver glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes(glucose-6-phosphatase and fructose-1,6-bisphosphatase), liver glycogen, plasma and liver triglycerides were examined in mice fed with normal standard diet (NC), high fat diet (HFD), HFD with AzA (HFD + AzA) and HFD with rosiglitazone (HFD + RSG). Among the three doses, 80 mg/kg BW of AzA was able to positively regulate plasma glucose, insulin, blood HbA1c and haemoglobin levels by significantly increasing the activity of hexokinase and glucose-6-phosphate dehydrogenase and significantly decreasing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase thereby increasing the glycogen content in the liver. From this study, we put forward that AzA could significantly restore the levels of plasma glucose, insulin, HbA1c, Hb, liver glycogen and carbohydrate metabolic key enzymes to near normal in diabetic mice and hence, AzA may be useful as a biomaterial in the development of therapeutic agents against high fat diet induced T2DM. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Integrated ZnO nanoparticles on paper-based microfluidic: toward efficient analytical device for glucose detection based on impedance and FTIR measurement

    NASA Astrophysics Data System (ADS)

    Yuwono, Rio Akbar; Izdiharruddin, Mokhammad Fahmi; Wahyuono, Ruri Agung

    2016-11-01

    Microfluidic paper-based analytical devices decorated with ZnO nanospherical (nanoSPs) aggregates (ZnO-μPAD) for glucose detection have been fabricated. ZnO nanoSPs were prepared by wet chemical synthesis and integrated on the optimized geometry of ZnO-μPAD has 0.2 and 0.4 mm of channel width and length, respectively. Glucose detection measurements were based on electrochemical and infrared transmission measurements. The glucose concentrations were adjusted as 5, 6.5, and 9 mmol, i.e. typical glucose level for normal, pre-diabetes and diabetes, in a mixture of ringer lactate as simulated biological fluid and red blood cells. ZnO nanoSPs in this study possess an average aggregate size of 160 nm formed by clustered 18 nm crystallite size and ordered porous matrix as well as a surface area of 15 m2·g-1.The separation process of the glucose sample on ZnO-μPAD requires approximately 45 s. The glucose detection results show that both electrochemical-based and FTIR-based measurements perform a linear measurement system (R2 of 0.81 to 0.99) with a relatively high sensitivity. A linearly decreasing impedance spanning from 2.2 - 0.6 Ohm and linearly increasing ΔIR transmission spanning from 3 - 19% are obtained for glucose level ranging from 5 - 9 mmol.

  17. [Design and implementation of real-time continuous glucose monitoring instrument].

    PubMed

    Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian

    2017-12-01

    Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.

  18. Plasma-equivalent glucose at the point-of-care: evaluation of Roche Accu-Chek Inform and Abbott Precision PCx glucose meters.

    PubMed

    Ghys, Timothy; Goedhuys, Wim; Spincemaille, Katrien; Gorus, Frans; Gerlo, Erik

    2007-01-01

    Glucose testing at the bedside has become an integral part of the management strategy in diabetes and of the careful maintenance of normoglycemia in all patients in intensive care units. We evaluated two point-of-care glucometers for the determination of plasma-equivalent blood glucose. The Precision PCx and the Accu-Chek Inform glucometers were evaluated. Imprecision and bias relative to the Vitros 950 system were determined using protocols of the Clinical Laboratory Standards Institute (CLSI). The effects of low, normal, and high hematocrit levels were investigated. Interference by maltose was also studied. Within-run precision for both instruments ranged from 2-5%. Total imprecision was less than 5% except for the Accu-Chek Inform at the low level (2.9 mmol/L). Both instruments correlated well with the comparison instrument and showed excellent recovery and linearity. Both systems reported at least 95% of their values within zone A of the Clarke Error Grid, and both fulfilled the CLSI quality criteria. The more stringent goals of the American Diabetes Association, however, were not reached. Both systems showed negative bias at high hematocrit levels. Maltose interfered with the glucose measurements on the Accu-Chek Inform but not on the Precision PCx. Both systems showed satisfactory imprecision and were reliable in reporting plasma-equivalent glucose concentrations. The most stringent performance goals were however not met.

  19. Factors affecting the supply of glucose to the heart of the rat, in vivo.

    PubMed Central

    Daniel, P M; Love, E R; Pratt, O E

    1980-01-01

    1. The influx of glucose into the heart of intact, living, anaesthetized rats was measured when the levels of insulin the blood were (a) low (as a result of fasting), (b) normal, and (c) high (as a result of injecting insulin). The findings showed that the transport of glucose into cardiac cells is carrier-mediated and is strongly insulin-independent. 2. The major barrier to the supply glucose to the heart from the circulating blood is at the surface membrane of the cardiac cells, rather than at the endothelium of the cardiac capillaries. 3. The extracellular space of the heart was measured and was found to be approximately 25% of the cardiac tissue. 4. During life, glucose, as well as its analogue, 3-O-methylglucose passes across the membranes of the cells of the heart by means of a transport system which is strongly dependent upon insulin and appears to be carried-mediated. A likely explanation for the effect of insulin is that it increases considerably the affinity of the transport carrier for glucose. Saturation of the carrier takes place when the levels of insulin and of glucose in the blood are high. However, when the concentration of insulin is low, e.g. during a fast, the affinity of the carrier for glucose is reduced so that saturation cannot be demonstrated. 5. It is suggested that the low level of insulin that is found in the blood in the early morning, which is due to the night fast, may lead to the cardiac dysfunction which often develops at that time. PMID:6788938

  20. Natural progress of blood glucose in full-term low-grade low-birthweight infants.

    PubMed

    Ishikawa, Norio

    2002-12-01

    Although various authors have suggested the risk of hypoglycemia in practical medicine for low-birthweight infants is exaggerated, convincing evidence using recent definitions of hypoglycemia is not documented. To evaluate the risk of hypoglycemia in low grade low-birthweight infants (LGLBWI) (2100 g < birthweight < 2500 g) whose only abnormality is low-birthweight, whole blood glucose (BGw) was measured five times (0, 0.5, 1, and 4 h after birth and just before the first bottle feeding) in 49 LGLBWI and 38 normal birthweight infants. Whole blood glucose was not lower in LGLBWI with a gestational age of 38-40 weeks (GT38LGLBWI) than in normal birthweight individuals with a gestational age of 38-40 weeks at each of the five measuring times. No case of GT38LGLBWI, not even in small for gestational age infants, required treatment for hypoglycemia. The BGw was significantly lower in 37-week gestational age LGLBWI than in GT38LGLBWI at 0.5 h and 1 h after birth (P < 0.05). However, in all cases with low BGw value (below 30 mg/dL at 1 h after birth), BGw value increased naturally to the normal level 1.5 h after birth. No symptoms of hypoglycemia were observed. In the care of hypoglycemia in LGLBWI, attention should be paid first to gestational age, namely, tendency to prematurity. In this study, however, no hypoglycemia that required treatment was found among full-term normal LGLBWI, even those who were small for gestational age. Frequent blood glucose measurement for those infants is therefore unnecessary.

  1. Observations on cardiovascular and neuroendocrine disturbance in the Guillain-Barré syndrome

    PubMed Central

    Davies, A. G.; Dingle, H. R.

    1972-01-01

    Cardiovascular disturbances were found to be a common feature of patients with the Guillian-Barré syndrome who were severely paralysed, requiring assisted ventilation. Glycosuria was noted in association with these disturbances, and in five patients investigated we found impaired glucose tolerance tests at the height of the paralysis. Catecholamine and 17-hydroxycorticosteroid urinary excretions were found to be high in four patients investigated when the neuropathy was most severe, and in one patient plasma cortisol levels were high with loss of diurnal variation. With recovery from paralysis cardiovascular disturbances became less marked, catecholamine and 17-hydroxycorticosteroid urinary excretions reverted to normal, glucose tolerance improved but remained abnormal in three patients during the period of observation. It is suggested that increased levels of catecholamines and cortisol contributed to the development of impaired glucose tolerance and cardiovascular disturbances. PMID:4113954

  2. Quantifying the Contribution of the Liver to Glucose Homeostasis: A Detailed Kinetic Model of Human Hepatic Glucose Metabolism

    PubMed Central

    König, Matthias; Bulik, Sascha; Holzhütter, Hermann-Georg

    2012-01-01

    Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases. PMID:22761565

  3. SIDT2 is involved in the NAADP-mediated release of calcium from insulin secretory granules.

    PubMed

    Chang, Guoying; Yang, Rui; Cao, Yanan; Nie, Aifang; Gu, Xuefan; Zhang, Huiwen

    2016-04-01

    The Sidt2 global knockout mouse (Sidt2(-/-)) has impaired insulin secretion. The aim of this study was to assess the role of SIDT2 protein in glucose-induced insulin secretion in primary cultured mouse β-cells. The major metabolic and electrophysiological steps of glucose-induced insulin secretion of primary cultured β-cells from Sidt2(-/-) mice were investigated. The β-cells from Sidt2(-/-) mice had normal NAD(P)H responses and KATP and KV currents. However, they exhibited a lower [Ca(2+)]i peak height when stimulated with 20mM glucose compared with those from WT mice. Furthermore, it took a longer time for the [Ca(2+)]i of β-cell from Sidt2(-/-) mice to reach the peak. Pretreatment with ryanodine or 2-aminoethoxydiphenyl borate (2-APB) did not change [Ca(2+)]i the response pattern to glucose in Sidt2(-/-) cells. Extraordinarily, pretreatment with bafilomycin A1(Baf-A1) led to a comparable [Ca(2+)]i increase pattern between these two groups, suggesting that calcium traffic from the intracellular acidic compartment is defective in Sidt2(-/-) β-cells. Bath-mediated application of 50nM nicotinic acid adenine dinucleotide phosphate (NAADP) normalized the [Ca(2+)]i response of Sidt2(-/-) β-cells. Finally, glucose-induced CD38 expression increased to a comparable level between Sidt2(-/-) and WT islets, suggesting that Sidt2(-/-) islets generated NAADP normally. We conclude that Sidt2 is involved in NAADP-mediated release of calcium from insulin secretory granules and thus regulates insulin secretion. © 2016 Society for Endocrinology.

  4. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization

    PubMed Central

    O-Sullivan, InSug; Zhang, Wenwei; Wasserman, David H.; Liew, Chong Wee; Liu, Jonathan; Paik, Jihye; DePinho, Ronald A.; Stolz, Donna Beer; Kahn, C. Ronald; Schwartz, Michael W.; Unterman, Terry G.

    2016-01-01

    FoxO proteins are major targets of insulin action. To better define the role of FoxO1 in mediating insulin effects in the liver, we generated liver-specific insulin receptor knockout (LIRKO) and IR/FoxO1 double knockout (LIRFKO) mice. Here we show that LIRKO mice are severely insulin resistant based on glucose, insulin and C-peptide levels, and glucose and insulin tolerance tests, and genetic deletion of hepatic FoxO1 reverses these effects. 13C-glucose and insulin clamp studies indicate that regulation of both hepatic glucose production (HGP) and glucose utilization is impaired in LIRKO mice, and these defects are also restored in LIRFKO mice corresponding to changes in gene expression. We conclude that (1) inhibition of FoxO1 is critical for both direct (hepatic) and indirect effects of insulin on HGP and utilization, and (2) extrahepatic effects of insulin are sufficient to maintain normal whole-body and hepatic glucose metabolism when liver FoxO1 activity is disrupted. PMID:25963540

  5. Effect of dihydroxyacetone and pyruvate on plasma glucose concentration and turnover in noninsulin-dependent diabetes mellitus.

    PubMed

    Stanko, R T; Mitrakou, A; Greenawalt, K; Gerich, J

    1990-01-01

    Consumption of dihydroxyacetone and pyruvate (DHP) increases muscle extraction of glucose in normal men. To test the hypothesis that these three-carbon compounds would improve glycemic control in diabetes, we evaluated the effect of DHP on plasma glucose concentration, turnover, recycling, and tolerance in 7 women with noninsulin-dependent diabetes. The subjects consumed a 1,500-calorie diet (55% carbohydrate, 30% fat, 15% protein), randomly containing 13% of the calories as DHP (1/1) or Polycose (placebo; PL), as a drink three times daily for 7 days. On the 8th day, primed continuous infusions of [6-3H]-glucose and [U-14C]-glucose were begun at 05.00 h, and at 09.00 h a 3-hour glucose tolerance test (75 g glucola) was performed. Two weeks later the subjects repeated the study with the other diet. The fasting plasma glucose level decreased by 14% with DHP (DHP = 8.0 +/- 0.9 mmol/l; PL = 9.3 +/- 1.0 mmol/l, p less than 0.05) which accounted for lower postoral glucose glycemia (DHP = 13.1 +/- 0.8 mmol/l, PL = 14.7 +/- 0.8 mmol/l, p less than 0.05). [6-3H]-glucose turnover (DHP = 1.50 +/- 0.19 mg.kg-1.min-1, PL = 1.77 +/- 0.21 mg.kg-1.min-1, p less than 0.05) and glucose recycling, the difference in [6-3H]-glucose and [U-14C]-glucose turnover rates, decreased with DHP (DHP = 0.25 +/- 0.07 mg.kg-1.min-1, PL = 0.54 +/- 0.10 mg.kg-1.min-1, p less than 0.05). Fasting and postoral glucose, plasma insulin, glucagon, and C peptide levels were unaffected by DHP.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Effect of eating vegetables before carbohydrates on glucose excursions in patients with type 2 diabetes

    PubMed Central

    Imai, Saeko; Fukui, Michiaki; Kajiyama, Shizuo

    2014-01-01

    The aim of this review was to evaluate whether eating vegetables before carbohydrates could reduce the postprandial glucose, insulin, and improve long-term glycemic control in Japanese patients with type 2 diabetes. We studied the effect of eating vegetables before carbohydrates on postprandial plasma glucose, insulin, and glycemic control for 2.5 y in patients with type 2 diabetes. The postprandial glucose and insulin levels decreased significantly when the patients ate vegetables before carbohydrates compared to the reverse regimen, and the improvement of glycemic control was observed for 2.5 y. We also compared the postprandial glucose and glucose fluctuations assessed by continuous glucose monitoring system for 72-h in patients with type 2 diabetes and subjects with normal glucose tolerance when subjects ate vegetables before carbohydrates and carbohydrates before vegetables in a randomized crossover design. The glycemic excursions and incremental glucose peak were significantly lower when the subjects ate vegetables before carbohydrates compared to the reverse regimen. This evidence supports the effectiveness of eating vegetables before carbohydrates on glucose excursions in the short-term and glycemic control in the long-term in patients with type 2 diabetes. PMID:24426184

  7. Effect of eating vegetables before carbohydrates on glucose excursions in patients with type 2 diabetes.

    PubMed

    Imai, Saeko; Fukui, Michiaki; Kajiyama, Shizuo

    2014-01-01

    The aim of this review was to evaluate whether eating vegetables before carbohydrates could reduce the postprandial glucose, insulin, and improve long-term glycemic control in Japanese patients with type 2 diabetes. We studied the effect of eating vegetables before carbohydrates on postprandial plasma glucose, insulin, and glycemic control for 2.5 y in patients with type 2 diabetes. The postprandial glucose and insulin levels decreased significantly when the patients ate vegetables before carbohydrates compared to the reverse regimen, and the improvement of glycemic control was observed for 2.5 y. We also compared the postprandial glucose and glucose fluctuations assessed by continuous glucose monitoring system for 72-h in patients with type 2 diabetes and subjects with normal glucose tolerance when subjects ate vegetables before carbohydrates and carbohydrates before vegetables in a randomized crossover design. The glycemic excursions and incremental glucose peak were significantly lower when the subjects ate vegetables before carbohydrates compared to the reverse regimen. This evidence supports the effectiveness of eating vegetables before carbohydrates on glucose excursions in the short-term and glycemic control in the long-term in patients with type 2 diabetes.

  8. Chromium Supplementation Improves Glucose Tolerance in Diabetic Goto-Kakizaki Rats

    PubMed Central

    Abdourahman, Aicha; Edwards, John G.

    2016-01-01

    Summary Chromium supplementation (Cr) may be useful in the management of diabetes and appears to improve some aspects of glucose handling. However, several studies have used either high doses of Cr supplementation or have placed control animals on a Cr-deficient diet. We therefore wanted to test whether Cr dosages in the ranges that more closely approximate recommended levels of supplementation in humans are efficacious in glycemic control under normal dietary conditions. Euglycemic Wistar or diabetic Goto-Kakizaki (GK) rats (a model of nonobese NIDDM) were assigned to water (control) or chromium picolinate (Cr-P) supplementation (1 or 10 mg/kg/day) groups for up to 32 weeks. Glucose tolerance was tested following an overnight fast by injecting sterile glucose (1.0 g/kg, i.p.) and then measuring blood glucose at select times to determine the sensitivity to glucose by calculation of the area under the curve. Cr-P did not significantly alter the growth of the animals. In the euglycemic Wistar rats, Cr-P supplementation did not alter the response to a glucose tolerance test. In the GK rats, Cr-P supplementation significantly improved glucose tolerance at both levels of Cr-P supplementation (1 mg/kg/day: H20; 100 ± 11%; Cr-P 70 6 8%; 10 mg/kg/day: H20; 100 ± 10%; Cr-P 66 ± 9 %). Cr-P supplementation produced a small improvement in some indices of glycemic control. There were no differences observed for the two levels of Cr-P supplementation suggested that we did not identify a threshold for Cr-P effects, and future studies may use lower doses to find a threshold effect for improving glucose tolerance in diabetics. PMID:18629917

  9. Treatment with PPARδ agonist alleviates non-alcoholic fatty liver disease by modulating glucose and fatty acid metabolic enzymes in a rat model.

    PubMed

    Li, Xiuli; Li, Jin; Lu, Xiaolan; Ma, Huihui; Shi, Haitao; Li, Hong; Xie, Danhong; Dong, Lei; Liang, Chunlian

    2015-09-01

    Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition which is associated with certain features of metabolic syndrome and insulin resistance. Peroxisome proliferator‑activated receptor (PPAR)δ is an important regulator of energy metabolism and insulin resistance in diabetes. However, the function of PPARδ in NAFLD has not yet been fully elucidated. In the present study, in order to explore the function of PPARδ in NAFLD, we created a rat model of NALFD induced by a high-fat diet (HFD) and treated the rats with GW501516, a PPARδ agonist. We found that the lipid levels decreased, and hepatocellular ballooning and inflammatory cell infiltration were also significantly decreased following treatment of the rats with GW501516 compared to the untreated rats. Treatment with GW501516 also significantly decreased the homeostasis model assessment of insulin resistance (HOMA-IR) index, as well as the low‑density lipoprotein (LDL) levels. In addition, treatment with GW501516 increased the levels of insulin‑like growth factor‑1 (IGF-1) and high‑density lipoprotein (HDL) compared to the HFD group. Furthermore, the elevated levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma‑glutamyl transpeptidase (GGT) and alkaline phosphatase (ALP) in the HFD group were all restored to the normal control levels following treatment with GW501516. RT‑qPCR and immunohistochemical staining revealed that the expression levels of sterol regulatory element binding protein‑1c (SREBP‑1c) and glucose transporter 2 (GLUT‑2) were both restored to normal control levels following treatment with GW501516. Also, the levels of enzymes related to lipid metabolism were increased following treatment with GW501516. In conclusion, our findings demonstrate that treatment with GW501516 alleviates NAFLD by modulating glucose and fatty acid metabolism.

  10. Serum glycerophosphate levels are increased in Japanese men with type 2 diabetes.

    PubMed

    Daimon, Makoto; Soga, Tomoyoshi; Hozawa, Atsushi; Oizumi, Toshihide; Kaino, Wataru; Takase, Kaoru; Karasawa, Shigeru; Jimbu, Yumi; Wada, Kiriko; Kameda, Wataru; Susa, Shinji; Kayama, Takamasa; Saito, Kaori; Tomita, Masaru; Kato, Takeo

    2012-01-01

    To identify metabolites showing changes in serum levels among Japanese male with diabetes. We performed metabolite profiling by coupling capillary electrophoresis with electrospray ionization time-of-flight mass spectrometry using fasting serum samples from Japanese male subjects with diabetes (n=17), impaired glucose tolerance (IGT; n=5) and normal glucose tolerance (NGT; n=14). Other than the expected differences in characteristics related to abnormal glucose metabolism, the percent body fat was significantly different among subjects with diabetes, IGT and NGT (27.3±6.2, 22.2±4.5 and 19.2±6.0%, respectively, p=0.0022). Therefore, percent body fat was considered as a possible confounding factor in subsequent analyses. Of 560 metabolites detected using our platform, the levels of 74 metabolites were quantified in all of the serum samples. Significant differences between diabetes and NGT were observed for 24 metabolites. The top-ranked metabolite was glycerol-3-phophate (glycerophosphate), which was significantly higher in subjects with diabetes than in those with NGT, even after Bonferroni correction for multiple testing (11.7±3.6 vs. 6.4±1.9 µM, respectively; corrected p=0.0222). Stepwise multiple regression analyses revealed that serum glycerophosphate levels were significantly correlated with 2-h plasma glucose after a 75-g oral glucose tolerance test (r=0.553, p=0.0005), independently of other characteristics, including FPG and HbA1c. Serum glycerophosphate levels were found to be elevated in Japanese men with diabetes, and correlated with 2-h PG, independent of FPG and HbA1c. Namely, serum glycerophosphate level at fasting condition can be a marker for predicting glucose intolerance. These results warrant further studies to evaluate the relevance of glycerophosphate in the pathophysiology of diabetes.

  11. Antidiabetic Evaluation of Momordica charantia L Fruit Extracts

    PubMed Central

    Tahira, S; Hussain, F

    2014-01-01

    To investigate hypoglycaemic, hypolipidaemic and pancreatic beta cell regeneration activities of Momordica charantia L fruits (MC). Alloxan-induced diabetic rabbits were treated with methanolic and ethanolic MC extract. Effects of plant extracts and the drug glibenclamide on serum glucose, lipid profile and pancreatic beta cell were determined after two weeks of treatment. Serum glucose and lipid profiles were assayed by kit methods. Pancreatic tissue histopathology was performed to study pancreatic beta cell regeneration. Momordica charantia extracts produced significant hypoglycaemic effects (p < 0.05). Hypolipidaemic activity of MC was negligible. Momordica charantia supplementations were unable to normalize glucose and lipid profiles. Glibenclamide, a standard drug, not only lowered hyperglycaemia and hyperlipidaemia but also restored the normal levels. Regeneration of pancreatic beta cells by MC extracts was minimal, with fractional improvement produced by glibenclamide. The most significant finding of the present study was a 28% reduction in hyperglycaemia by MC ethanol extracts. To determine reliable antidiabetic potentials of MC, identification of the relevant antidiabetic components and underlying mechanisms is warranted. PMID:25429471

  12. Effects of the 2-ethylthiobenzimidazole hydrobromide (bemithyl) on carbohydrate metabolism in cirrhotic rat liver.

    PubMed

    Kudryavtseva, Margarita V; Bezborodkina, Natalia N; Okovity, Sergey V; Kudryavtsey, Boris N

    2003-03-01

    The effect of the actoprotector bemithyl (2-ethylthiobenzimidazole hydrobromide) on the content of glycogen and activities of glycogen synthase, glycogen phosphorylase, and glucose-6-phosphatase was studied in the cirrhotic rat liver. The content of glycogen and its fraction was determined by a cytofluorimetric method (Kudryavtseva et al. 1974). It has been shown that in cirrhosis the content of total glycogen in hepatocytes increases about 3 times and the content of its stable fraction increases 7.5 times. The activity of glucose-6-phosphatase fell to a level as low as 25% of normal. Activities of glycogen synthase and glycogen phosphorylase in the cirrhotic liver did not differ from normal. In the cirrhotic liver, bemithyl produced a decrease of the total glycogen content which was associated with a decrease of the glycogen synthase activity and an increase of the glucose-6-phosphatase and glycogen phosphorylase activities. Thus, the results of our studies indicate a favorable effect of bemithyl on the cirrhotic liver.

  13. Effect of Sclerocarya birrea (Anacardiaceae) stem bark methylene chloride/methanol extract on streptozotocin-diabetic rats.

    PubMed

    Dimo, Théophile; Rakotonirina, Silvere V; Tan, Paul V; Azay, Jacqueline; Dongo, Etienne; Kamtchouing, Pierre; Cros, Gérard

    2007-04-04

    Sclerocarya birrea (Anacardiaceae) is used as a traditional treatment of diabetes in Cameroon. In this study, we investigated the possible antidiabetic effect of the stem bark extract in diabetic rats. Diabetes was induced by intravenous injection of streptozotocin (STZ, 55 mg/kg) to male Wistar rats. Experimental animals (six per group), were treated by oral administration of plant extract (150 and 300 mg/kg body weight) and metformin (500 mg/kg; reference drug) for comparison, during 21 days. The stem bark methanol/methylene chloride extract of Sclerocarya birrea exhibited at termination, a significant reduction in blood glucose and increased plasma insulin levels in diabetic rats. The extract also prevented body weight loss in diabetic rats. The effective dose of the plant extract (300 mg/kg) tended to reduce plasma cholesterol, triglyceride and urea levels toward the normal levels. Four days after diabetes induction, an oral glucose tolerance test (OGTT) was also performed in experimental diabetic rats. The results showed a significant improvement in glucose tolerance in rats treated with Sclerocarya birrea extract. Metformin, a known antidiabetic drug (500 mg/kg), significantly decreased the integrated area under the glucose curve. These data indicate that Sclerocarya birrea treatment may improve glucose homeostasis in STZ-induced diabetes which could be associated with stimulation of insulin secretion.

  14. Isolated Diastolic Hypertension Associated Risk Factors among Chinese in Anhui Province, China

    PubMed Central

    Wang, Yanchun; Xing, Fengjun; Liu, Rongjuan; Liu, Li; Zhu, Yu; Wen, Yufeng; Sun, Wenjie; Song, Ziwei

    2015-01-01

    Objective: To explore potential risk factors of isolated diastolic hypertension (IDH) among young and middle-aged Chinese. Methods: A community-based cross-sectional study was conducted among 338 subjects, aged 25 years and above, using random sampling technique. There were 68 cases of IDH, 46 cases of isolated systolic hypertension (ISH), 89 cases of systolic and diastolic hypertension (SDH), and 135 of subjects with normal blood pressure. Cases and controls were matched on sex by frequency matching. Demographic characteristics, blood pressure and other relevant information were collected.Results: Compared with controls, patients with IDH and ISH had significant higher level of triglyceride, high density lipoprotein, blood glucose and body mass index (BMI) (p < 0.05); while patients with SDH had significantly higher level of total cholesterol, triglyceride, glucose and BMI (p < 0.05). Linear mixed effects model showed that drinking tea, family history of hypertension (FHH), higher blood glucose, triglyceride and low density lipoprotein were related with elevated diastolic blood pressure (DBP) (p < 0.01); HFH, blood glucose, creatinine and BMI have positive effect on systolic blood pressure (SBP) (p < 0.05). Conclusions: Drinking tea, FHH, high levels of triglyceride, high density lipoprotein, blood glucose and BMI are associated with IDH among young and middle-aged Chinese. PMID:25913184

  15. Clinical characteristics and beta cell function in Chinese patients with newly diagnosed type 2 diabetes mellitus with different levels of serum triglyceride.

    PubMed

    Zheng, Shuang; Zhou, Huan; Han, Tingting; Li, Yangxue; Zhang, Yao; Liu, Wei; Hu, Yaomin

    2015-04-29

    To explore clinical characteristics and beta cell function in Chinese patients with newly diagnosed drug naive type 2 diabetes mellitus (T2DM) with different levels of serum triglyceride (TG). Patients with newly diagnosed T2DM (n = 624) were enrolled and divided into different groups according to levels of serum TG. All patients underwent oral glucose tolerance tests and insulin releasing tests. Demographic data, lipid profiles, glucose levels, and insulin profiles were compared between different groups. Basic insulin secretion function index (homeostasis model assessment for beta cell function index, HOMA-β), modified beta cell function index (MBCI), glucose disposition indices (DI), and early insulin secretion function index (insulinogenic index, IGI) were used to evaluate the beta cell function. Patients of newly diagnosed T2DM with hypertriglyceridemia were younger, fatter and had worse lipid profiles, glucose profiles, and high insulin levels than those with normal TG. There is no difference in early phase insulin secretion among groups of newly diagnosed T2DM patients with different TG levels. The basal beta cell function (HOMA-β and MBCI) initially increased along rising TG levels and then decreased as the TG levels rose further. The insulin sensitivity was relatively high in patients with a low level of TG and low with a high level of TG. Hypertriglyceridemia influences clinical characteristics and β cell function of Chinese patients with newly diagnosed T2DM. A better management of dyslipidemia may, to some extent, reduce the effect of lipotoxicity, thereby improving glucose homeostasis in patients with newly diagnosed T2DM.

  16. Blood and urine responses to ingesting fluids of various salt and glucose concentrations. [to combat orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Frey, Mary A.; Riddle, Jeanne; Charles, John B.; Bungo, Michael W.

    1991-01-01

    To compensate for the reduced blood and fluid volumes that develop during weightlessness, the Space Shuttle crewmembers consume salt tablets and water equivalent to 1 l of normal saline, about 2 hrs before landing. This paper compares the effects on blood, urine, and cardiovascular variables of the ingestion of 1 l of normal (0.9 percent) saline with the effects of distilled water, 1 percent glucose, 0.74 percent saline with 1 percent glucose, 0.9 percent saline with 1 percent glucose, and 1.07 percent saline. It was found that the expansion of plasma volume and the concentration of urine were greater 4 hrs after ingestion of 1.07 percent saline solution than after ingestion of normal saline and that the solutions containig glucose did not enhance any variables as compared with normal saline.

  17. Effect of an aqueous extract of Scoparia dulcis on plasma and tissue glycoproteins in streptozotocin induced diabetic rats.

    PubMed

    Latha, M; Pari, L

    2005-02-01

    The influence of Scoparia dulcis, a traditionally used plant for the treatment of diabetes mellitus, was examined in streptozotocin diabetic rats on dearrangement in glycoprotein levels. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin. An aqueous extract of Scoparia dulcis plant was administered orally for 6 weeks. The effect of the Scoparia dulcis extract on blood glucose, plasma insulin, plasma and tissue glycoproteins studied was in comparison to glibenclamide. The levels of blood glucose and plasma glycoproteins were increased significantly whereas the level of plasma insulin was significantly decreased in diabetic rats. There was a significant decrease in the level of sialic acid and elevated levels of hexose, hexosamine and fucose in the liver and kidney of streptozotocin diabetic rats. Oral administration of Scoparia dulcis plant extract (SPEt) to diabetic rats led to decreased levels of blood glucose and plasma glycoproteins. The levels of plasma insulin and tissue sialic acid were increased whereas the levels of tissue hexose, hexosamine and fucose were near normal. The present study indicates that Scoparia dulcis possesses a significant beneficial effect on glycoproteins in addition to its antidiabetic effect.

  18. [Clinical value of insulin resistance in fasting normoglycemia].

    PubMed

    Perova, N V; Ozerova, I N; Aleksandrovich, O V; Metel'skaia, V A; Shal'nova, S A

    2011-01-01

    Aim of the study was to clarify the question of the presence of manifestations of insulin resistance (IR) in fasting normoglycemia and to assess their association with risk of development and presence of clinically overt cardiovascular diseases (CVD) caused by atherosclerosis. We included into this study 1127 men and women older than 55 years with normal blood serum level of glucose in fasting state (<6.1 mmol/l) without diabetes mellitus selected from a random sample of Moscow inhabitants (n=1186). In participants selected for this study we determined risk factors, calculated indexes of IR (HOMA-IR) and functional capacity of pancreatic -cells (HOMA-%B) using fasting levels of glucose and insulin. The examined subsample was divided into quartiles according to values of HOMA-IR. It was shown that in the 4-th quartile HOMA-%B was substantially higher than in other quartiles. With this values of body mass index and waist circumference were also highest in the 4-th quartile. Fasting insulin level compared with glucose level contributed more to determination of values of indexes of both IR and functional capacity of pancreatic -cells. In the upper 4-th quartile signs of atherogenic dyslipidemia appearing as higher concentration of triglycerides and lowered concentration of high density lipoprotein cholesterol manifested to the greatest degree. At statistical analysis of probability of CVD with clinical manifestations it was shown that in the 4-th quartile of distribution of HOMA-IR (>2.7) values of odds ratio (OR) of development of arterial hypertension (AH), total CVD, angina pectoris, history of brain stroke were elevated. With that in the 3-rd quartile of distribution i.e. at HOMA-IR >1.9 there were higher ORs of development of AH, CVD, angina pectoris. Thus even in the range of normal fasting glucose concentrations in subjects older than 55 years we detected IR associated with elevated risk of development of atherosclerosis related CVD. For detection of IR it is appropriate to measure in blood serum not only concentration of glucose but also fasting insulin level with subsequent calculation of HOMA-IR and HOMA-%B indexes.

  19. Assessment of circulating betatrophin concentrations in lean glucose-tolerant women with polycystic ovary syndrome.

    PubMed

    Erol, Onur; Özel, Mustafa Kemal; Ellidağ, Hamit Yaşar; Toptaş, Tayfun; Derbent, Aysel Uysal; Yılmaz, Necat

    2017-07-01

    The aims of the current study were to investigate the betatrophin levels in lean glucose-tolerant women with polycystic ovary syndrome (PCOS), and to explore the relationships between these levels and antropometric, hormonal and metabolic parameters. The study population consisted of 50 lean (body mass index [BMI] < 25 kg/m 2 ) women diagnosed with PCOS using the Rotterdam criteria, and 60 age- and BMI-matched healthy controls without any features of clinical or biochemical hyperandrogenism. Before recruitment, glucose tolerance was evaluated in all of the subjects using the 2-h 75 g oral glucose-tolerance test, and only those exhibiting normal glucose tolerance were enrolled. Serum betatrophin levels were significantly higher in women with PCOS (median 322.3; range 44.7-1989.3 ng/L) compared to the controls (median 199.9; range 6.2-1912.9 ng/L; p = .005). In the control group, no significant correlation was evident between betatrophin levels and clinical or biochemical parameters. In the PCOS group, betatrophin levels were positively correlated with prolactin levels (r = .286, p = .046) and negatively correlated with BMI (r = -.283, p = .049), waist/hip ratio (r = -.324, p = .023), and low-density lipoprotein cholesterol levels (r = -.385, p = .006). Impact statement What is already known on this subject: Several studies have suggested that primary alteration in beta-cell function is a pathophysiological feature of PCOS, and insulin resistance is the most significant predictor of beta-cell dysfunction independent of obesity. Betatrophin is a circulating protein that is primarily expressed in the liver in humans. Early experimental investigations demonstrated that overexpression of betatrophin significantly promoted pancreatic beta-cell proliferation, insulin production and improved glucose tolerance. Few studies have investigated the association between PCOS and betatrophin. However, in contrast to our study, the authors included overweight/obese patients and glucose tolerance was not evaluated before recruitment. What the results of this study add: Our results showed that serum betatrophin levels were significantly higher in lean glucose-tolerant PCOS women than in age- and BMI-matched healthy controls. What are the implications of these findings for clinical practice and/or further research: Elevated betatrophin levels in PCOS women, in the absence of obesity and glucose intolerance, may reflect a compensatory mechanism in order to counteract metabolic syndrome-related risk factors.

  20. The effect of intra-articular triamcinolone preparations on blood glucose levels in diabetic patients: a controlled study.

    PubMed

    Habib, George S; Miari, Walid

    2011-09-01

    The objective of the study was to evaluate the effect of intra-articular (IA) triamcinolone hexacetonide (TAH) and triamcinolone acetonide (TA) on blood glucose levels in patients with controlled diabetes with symptomatic osteoarthritis of the knee (OAK). Patients with controlled diabetes with symptomatic OAK who failed nonsteroidal anti-inflammatory medication and physical therapy and use modern versions of self-monitoring blood glucose devices were offered an IA injection of either 20 mg of TAH or 40 mg of TA. If agreed, patients were asked to document blood glucose levels before and 2 hr after meals for 1 week before and daily for 5 days then every other day for 1 week following the injection. The type of IA preparation was given on an alternating pattern. A sex- and aged-matched group of patients with controlled diabetes with symptomatic OAK of the knee was offered an IA hyaluronic acid (HA) injection. Significantly increased blood glucose level following the IA injection was defined as higher by at least 2 SDs than the mean comparable level before the injection. Thirty patients completed the study: 12 patients in the TAH, 12 patients in the TA group, and 6 in the HA group. All the patients who received triamcinolone preparations had significantly increased blood glucose levels with median initial levels of 227.5 and 201 mg% seen at a median of 8.5 and 13 hr following the IA injection and median peak levels of 288 and 239.5 mg% seen after a median of 24.5 and 32.5 hr following the IA injection of TA and TAH, respectively. Levels returned to normal after ∼2.5 to ∼4 days. There was no significant increase in the HA group except in 1 measurement only with marginal level in 2 patients. Intra-articular injection of either TAH or TA is associated with significantly increased blood glucose levels in patients with controlled diabetes with OAK. This increase is quite solely due to the injected steroids.

  1. Glucose deprivation elicits phenotypic plasticity via ZEB1-mediated expression of NNMT

    PubMed Central

    Kanska, Justyna; Aspuria, Paul-Joseph P.; Taylor-Harding, Barbie; Spurka, Lindsay; Funari, Vincent; Orsulic, Sandra; Karlan, Beth Y.; Wiedemeyer, W. Ruprecht

    2017-01-01

    Glucose is considered the primary energy source for all cells, and some cancers are addicted to glucose. Here, we investigated the functional consequences of chronic glucose deprivation in serous ovarian cancer cells. We found that cells resistant to glucose starvation (glucose-restricted cells) demonstrated increased metabolic plasticity that was dependent on NNMT (Nicotinamide N-methyltransferase) expression. We further show that ZEB1 induced NNMT, rendered cells resistant to glucose deprivation and recapitulated metabolic adaptations and mesenchymal gene expression observed in glucose-restricted cells. NNMT depletion reversed metabolic plasticity in glucose-restricted cells and prevented de novo formation of glucose-restricted colonies. In addition to its role in glucose independence, we found that NNMT was required for other ZEB1-induced phenotypes, such as increased migration. NNMT protein levels were also elevated in metastatic and recurrent tumors compared to matched primary carcinomas, while normal ovary and fallopian tube tissue had no detectable NNMT expression. Our studies define a novel ZEB1/NNMT signaling axis, which elicits mesenchymal gene expression, as well as phenotypic and metabolic plasticity in ovarian cancer cells upon chronic glucose starvation. Understanding the causes of cancer cell plasticity is crucial for the development of therapeutic strategies to counter intratumoral heterogeneity, acquired drug resistance and recurrence in high-grade serous ovarian cancer (HGSC). PMID:28412735

  2. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    PubMed

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  3. Assay for hypoglycemic functional food of cocoyam (Xanthosoma sagittifolium (L.) Schott.) tuber

    NASA Astrophysics Data System (ADS)

    Handajani, N. S.; Harini, M.; Yuliningsih, R.; Afianatuzzahra, S.; Hasanah, U.; Widiyani, T.

    2018-03-01

    Diabetes Mellitus (DM) type II is a degenerative disease that is a major killer in many countries. It is characterized by an increase of the blood glucose level above normal. It is important to choose an appropriate food sources using glycemic index (GI) concept in order to prevent blood glucose increase. One of Indonesian traditional carbohydrate source is cocoyam (Xanthosoma sagittifolium (L.) Schott.) tuber. The tuber is assumed having a higher carbohydrate content with lower GI. The research aims to measure GI of cocoyam tuber (CT) and determine glucose and glycogen level in animal model after CT fed. Experimental research was carried out by using completely randomized design. We used twenty four male rats as animal models. They were grouped in to 4 different treatments. Group I was treated with standard feed, group II was treated with standard feed and glucose, group III was treated with steamed CT, and group IV was treated hypoglicemic agent standard, glibencamide. The research results that GI of steamed CT was low. It was 54. Blood glucose of diabetic rats after fed by CT decreased significantly (p<0.05), similar to diabetic rats after treated by glibencamide. Whereas glycogen level in diabetic rats after fed by CT was higher than in diabetic rats after fed by standard feed. Cocoyam tuber increased glycogen level in diabetic rats significantly (p<0,05). Glycogen level in diabetic rats fed by CT was as high as in healthy rats. Therefore CT is potential consumed for DM type II patients.

  4. Astrocytes in the nucleus of the solitary tract are activated by low glucose or glucoprivation: evidence for glial involvement in glucose homeostasis.

    PubMed

    McDougal, David H; Hermann, Gerlinda E; Rogers, Richard C

    2013-01-01

    Glucose homeostasis is maintained through interplay between central and peripheral control mechanisms which are aimed at storing excess glucose following meals and mobilizing these same stores during periods of fasting. The nucleus of the solitary tract (NST) in the dorsal medulla has long been associated with the central detection of glucose availability and the control of glucose homeostasis. Recent evidence has emerged which supports the involvement of astrocytes in glucose homeostasis. The aim of the present study was to investigate whether NST-astrocytes respond to physiologically relevant decreases in glucose availability, in vitro, as well as to the presence of the glucoprivic compound 2-deoxy-D-Glucose. This report demonstrates that some NST-astrocytes are capable of responding to low glucose or glucoprivation by increasing cytoplasmic calcium; a change that reverses with restoration of normal glucose availability. While some NST-neurons also demonstrate an increase in calcium signaling during low glucose availability, this effect is smaller and somewhat delayed compared to those observed in adjacent astrocytes. TTX did not abolish these hypoglycemia mediated responses of astrocytes, suggesting that NST-astrocytes may be directly sensing low glucose levels as opposed to responding to neuronal detection of hypoglycemia. Thus, chemodetection of low glucose by NST-astrocytes may play an important role in the autonomic regulation of glucose homeostasis.

  5. Glucose-6-phosphate dehydrogenase deficiency in neonatal hyperbilirubinaemia: Hacettepe experıence.

    PubMed

    Celik, H Tolga; Günbey, Ceren; Unal, Sule; Gümrük, Fatma; Yurdakök, Murat

    2013-05-01

    The aim of this study was to investigate the prevalence of glucose-6-phospate dehydrogenase (G6PD) deficiency in newborn infants with neonatal hyperbilirubinaemia and to compare the clinical features of G6PD-deficient and G6PD-normal newborn infants. A total of 4906 term and preterm neonates with indirect hyperbilirubinaemia were retrospectively evaluated according to demographic, neonatal features, bilirubin levels, erythrocyte G6PD levels, other risk factors and treatments. Among 4906 newborn infants with indirect hyperbilirubinaemia, 55 (1.12%) neonates were G6PD-deficient. In our study, no statistically significant difference was detected between G6PD-deficient and G6PD-normal infants in relation to the time of onset of jaundice, bilirubin levels and duration of phototherapy. However, the incidence of exchange transfusion in G6PD-deficient infants was 16.4% while it was only 3.3% in G6PD normal infants (P < 0.05). Testing for G6PD must be ordered to all newborns who are receiving phototherapy and especially to those who are coming from the high incident geographical regions and less responsive to phototherapy. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  6. Alpha2delta-1 in SF1+ Neurons of the Ventromedial Hypothalamus Is an Essential Regulator of Glucose and Lipid Homeostasis.

    PubMed

    Felsted, Jennifer A; Chien, Cheng-Hao; Wang, Dongqing; Panessiti, Micaella; Ameroso, Dominique; Greenberg, Andrew; Feng, Guoping; Kong, Dong; Rios, Maribel

    2017-12-05

    The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1 + neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Methylglyoxal produces more changes in biochemical and biophysical properties of human IgG under high glucose compared to normal glucose level

    PubMed Central

    Khan, Mohd Adnan; Arif, Zarina; Khan, Mohd Asad; Moinuddin

    2018-01-01

    Hyperglycaemia triggers increased production of methylglyoxal which can cause gross modification in proteins’ structure vis-a-vis function though advanced glycation end products (AGEs). The AGEs may initiate vascular and nonvascular pathologies. In this study, we have examined the biochemical and biophysical changes in human IgG under normal and high glucose after introducing methylglyoxal into the assay mixture. This non-enzymatic reaction mainly engaged lysine residues as indicated by TNBS results. The UV results showed hyperchromicity in modified-IgG samples while fluorescence data supported AGEs formation during the course of reaction. Shift in amide I and amide II band position indicated perturbations in secondary structure. Increase carbonyl content and decrease in sulfhydryl suggests that the modification is accompanied by oxidative stress. All modified-IgG samples showed more thermostability than native IgG; the highest Tm was shown by IgG-high glucose-MGO variant. Results of ANS, Congo red and Thioflavin T dyes clearly suggest increase in hydrophobic patches and aggregation, respectively. SEM and TEM images support aggregates generation in modified-IgG samples. PMID:29351321

  8. Hyperandrogenism Accompanies Increased Intra-Abdominal Fat Storage in Normal Weight Polycystic Ovary Syndrome Women

    PubMed Central

    Akopians, Alin L.; Madrigal, Vanessa K.; Ramirez, Emmanuel; Margolis, Daniel J.; Sarma, Manoj K.; Thomas, Albert M.; Grogan, Tristan R.; Haykal, Rasha; Schooler, Tery A.; Okeya, Bette L.; Abbott, David H.; Chazenbalk, Gregorio D.

    2016-01-01

    Context: Normal weight polycystic ovary syndrome (PCOS) women may have altered adipose structure-function underlying metabolic dysfunction. Objective: This study examines whether adipose structure-functional changes exist in normal weight PCOS women and correlate with hyperandrogenism and/or hyperinsulinemia. Design: This is a prospective cohort study. Setting: The setting was an academic medical center. Patients: Six normal weight PCOS women and 14 age- and body mass index-matched normoandrogenic ovulatory (NL) women were included. Intervention(s): All women underwent circulating hormone and metabolic measurements; frequently sampled intravenous glucose tolerance testing; total body dual-energy x-ray absorptiometry; abdominal magnetic resonance imaging; and SC abdominal fat biopsy. Main Outcome Measure(s): Circulating hormones and metabolites, body fat and its distribution, and adipocyte size were compared between PCOS and NL women, and were correlated with each other in all women. Results: Circulating LH and androgen levels were significantly greater in PCOS than NL women, as were fasting insulin levels, pancreatic β-cell responsiveness to glucose, and total abdominal fat mass. Intra-abdominal fat mass also was significantly increased in PCOS women and was positively correlated with circulating androgen, fasting insulin, triglyceride, and non-high-density lipoprotein cholesterol levels in all women. SC abdominal fat mass was not significantly increased in PCOS women, but contained a greater proportion of small SC abdominal adipocytes that positively correlated with serum androgen levels in all women. Conclusion: Hyperandrogenism in normal weight PCOS women is associated with preferential intra-abdominal fat deposition and an increased population of small SC abdominal adipocytes that could constrain SC adipose storage and promote metabolic dysfunction. PMID:27571186

  9. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome

    PubMed Central

    Lanaspa, Miguel A; Ishimoto, Takuji; Li, Nanxing; Cicerchi, Christina; Orlicky, David J.; Ruzicky, Philip; Rivard, Christopher; Inaba, Shinichiro; Roncal-Jimenez, Carlos A.; Bales, Elise S.; Diggle, Christine P.; Asipu, Aruna; Petrash, J. Mark; Kosugi, Tomoki; Maruyama, Shoichi; Sanchez-Lozada, Laura G.; McManaman, James L.; Bonthron, David T; Sautin, Yuri Y.; Johnson, Richard J.

    2013-01-01

    Carbohydrates with high glycemic index are proposed to promote the development of obesity, insulin resistance and fatty liver, but the mechanism by which this occurs remains unknown. High serum glucose concentrations glucose are known to induce the polyol pathway and increase fructose generation in the liver. Here we show that this hepatic, endogenously-produced fructose causes systemic metabolic changes. We demonstrate that mice unable to metabolize fructose are protected from an increase in energy intake and body weight, visceral obesity, fatty liver, elevated insulin levels and hyperleptinemia after exposure to 10% glucose for 14 weeks. In normal mice, glucose consumption is accompanied by aldose reductase and polyol pathway activation in steatotic areas. In this regard, we show that aldose reductase deficient mice were protected against glucose-induced fatty liver. We conclude that endogenous fructose generation and metabolism in the liver represents an important mechanism whereby glucose promotes the development of metabolic syndrome. PMID:24022321

  10. PPARγ activation attenuates glucose intolerance induced by mTOR inhibition with rapamycin in rats.

    PubMed

    Festuccia, William T; Blanchard, Pierre-Gilles; Belchior, Thiago; Chimin, Patricia; Paschoal, Vivian A; Magdalon, Juliana; Hirabara, Sandro M; Simões, Daniel; St-Pierre, Philippe; Carpinelli, Angelo; Marette, André; Deshaies, Yves

    2014-05-01

    mTOR inhibition with rapamycin induces a diabetes-like syndrome characterized by severe glucose intolerance, hyperinsulinemia, and hypertriglyceridemia, which is due to increased hepatic glucose production as well as reduced skeletal muscle glucose uptake and adipose tissue PPARγ activity. Herein, we tested the hypothesis that pharmacological PPARγ activation attenuates the diabetes-like syndrome associated with chronic mTOR inhibition. Rats treated with the mTOR inhibitor rapamycin (2 mg·kg(-1)·day(-1)) in combination or not with the PPARγ ligand rosiglitazone (15 mg·kg(-1)·day(-1)) for 15 days were evaluated for insulin secretion, glucose, insulin, and pyruvate tolerance, skeletal muscle and adipose tissue glucose uptake, and insulin signaling. Rosiglitazone corrected fasting hyperglycemia, attenuated the glucose and insulin intolerances, and abolished the increase in fasting plasma insulin and C-peptide levels induced by rapamycin. Surprisingly, rosiglitazone markedly increased the plasma insulin and C-peptide responses to refeeding in rapamycin-treated rats. Furthermore, rosiglitazone partially attenuated rapamycin-induced gluconeogenesis, as evidenced by the improved pyruvate tolerance and reduced mRNA levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Rosiglitazone also restored insulin's ability to stimulate glucose uptake and its incorporation into glycogen in skeletal muscle of rapamycin-treated rats, which was associated with normalization of Akt Ser(473) phosphorylation. However, the rapamycin-mediated impairments of adipose tissue glucose uptake and incorporation into triacylglycerol were unaffected by rosiglitazone. Our findings indicate that PPARγ activation ameliorates some of the disturbances in glucose homeostasis and insulin action associated with chronic rapamycin treatment by reducing gluconeogenesis and insulin secretion and restoring muscle insulin signaling and glucose uptake.

  11. Insulin resistance in porphyria cutanea tarda.

    PubMed

    Calcinaro, F; Basta, G; Lisi, P; Cruciani, C; Pietropaolo, M; Santeusanio, F; Falorni, A; Calafiore, R

    1989-06-01

    It has been reported that patients with porphyria cutanea tarda (PCT) develop carbohydrate (CHO) intolerance and manifest diabetes melitus (DM) more frequently than the normal population. In order to verify whether this is due to insulin resistance we studied 5 patients with PCT and 5 normal subjects matched for age, sex and weight. In all the patients an evaluation consisted of the glycemic curve and insulin response to an iv glucose tolerance test (IVGTT: 0.33 g/kg) as well as of an evaluation of the circulating monocyte insulin receptors. Blood samples were drawn in the basal state to measure plasma levels of NEFA, glycerol, and intermediate metabolites. The patients with PCT showed normal glucose tolerance which was obtained, however, at the expense of the elevated insulin levels: therefore a condition of insulin resistance was demonstrated in these subjects. An involvement of the lipid metabolism, observed by the raised levels of plasma NEFA and glycerol, was also evident. The insulin binding to circulating monocytes was reduced but not enough to justify the degree of insulin resistance observed. Therefore, it could be hypothesized, in agreement with similar studies, that a postreceptor defect is responsible for the insulin-resistance observed in patients with PCT and that the reduction of insulin receptors is determined by the down regulation in response to elevated insulinemic levels. An alteration of the porphyrin metabolism might be responsible for this disorder.

  12. Depressive symptoms, antidepressant medication use, and new onset of diabetes in participants of the diabetes prevention program and the diabetes prevention program outcomes study.

    PubMed

    Marrero, David G; Ma, Yong; de Groot, Mary; Horton, Edward S; Price, David W; Barrett-Connor, Elizabeth; Carnethon, Mercedes R; Knowler, William C

    2015-04-01

    To assess in the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study whether diagnosis of diabetes predicted elevated depressive symptoms (DS) or use of antidepressant medicine (ADM) following diagnosis; whether diabetes status or duration had significant effect on DS or ADM use; and to determine the associations between A1C, fasting plasma glucose (FPG), normalization of FPG, and DS or ADM use after diagnosis. Diabetes Prevention Program participants in three treatment arms (intensive life style, metformin, placebo) were assessed for diabetes, glucose control, ADM use, and DS, measured using the Beck Depression Inventory (BDI). Among 3234 participants, 1285 developed diabetes. Depression levels were measured before and after diabetes diagnosis. Neither DS nor use of ADM increased after diagnosis; higher FPG was associated with greater ADM use in the intensive life style arm; a 10-mg/dl rise in FPG is associated with greater odds of ADM use. Higher FPG and A1C were associated with higher BDI scores in all three arms; A 10-mg/dl rise in FPG had a 0.07 increase in BDI. A 1% higher A1c was associated with a 0.21-point increase in BDI. Normalization of FPG was associated with lower BDI. When FPG had normalized, there was a decrease of 0.30 points in the BDI score compared when FPG had not normalized. Contrary to clinical attributions, diabetes diagnosis did not show an immediate impact on BDI scores or ADM use. Higher glucose levels after diagnosis were associated with a small but significantly higher BDI score and more ADM use. DPPOS: NCT00038727; DPP: NCT00004992.

  13. Baseline adiponectin levels do not influence the response to pioglitazone in ACT NOW.

    PubMed

    Tripathy, Devjit; Clement, Stephen C; Schwenke, Dawn C; Banerji, MaryAnn; Bray, George A; Buchanan, Thomas A; Gastaldelli, Amalia; Henry, Robert R; Kitabchi, Abbas E; Mudaliar, Sunder; Ratner, Robert E; Stentz, Frankie B; Musi, Nicolas; Reaven, Peter D; DeFronzo, Ralph A

    2014-06-01

    Plasma adiponectin levels are reduced in type 2 diabetes mellitus (T2DM) and other insulin-resistant states. We examined whether plasma adiponectin levels at baseline and after pioglitazone treatment in impaired glucose tolerance (IGT) subjects were associated with improved insulin sensitivity (SI) and glucose tolerance status. A total of 602 high-risk IGT subjects in ACT NOW were randomized to receive pioglitazone or placebo with a median follow-up of 2.4 years. Pioglitazone reduced IGT conversion to diabetes by 72% in association with improved β-cell function by 64% (insulin secretion/insulin resistance index) and increased tissue sensitivity by 88% (Matsuda index). In pioglitazone-treated subjects, plasma adiponectin concentration increased threefold from 13 ± 0.5 to 38 ± 2.5 μg/mL (P < 0.001) and was strongly correlated with the improvement in SI (r = 0.436, P < 0.001) and modestly correlated with glucose area under the curve during oral glucose tolerance test (r = 0.238, P < 0.005) and insulin secretion/insulin resistance index (r = 0.306, P < 0.005). The increase in adiponectin was a strong predictor of reversion to normal glucose tolerance and prevention of T2DM. In the placebo group, plasma adiponectin did not change and was not correlated with changes in glucose levels. There was an inverse association between baseline plasma adiponectin concentration and progression to diabetes in the placebo group but not in the pioglitazone group. Baseline adiponectin does not predict the response to pioglitazone. The increase in plasma adiponectin concentration after pioglitazone therapy in IGT subjects is strongly related to improved glucose tolerance status and enhanced tissue sensitivity to insulin. © 2014 by the American Diabetes Association.

  14. Baseline Adiponectin Levels Do Not Influence the Response to Pioglitazone in ACT NOW

    PubMed Central

    Tripathy, Devjit; Clement, Stephen C.; Schwenke, Dawn C.; Banerji, MaryAnn; Bray, George A.; Buchanan, Thomas A.; Gastaldelli, Amalia; Henry, Robert R.; Kitabchi, Abbas E.; Mudaliar, Sunder; Ratner, Robert E.; Stentz, Frankie B.; Musi, Nicolas; Reaven, Peter D.

    2014-01-01

    OBJECTIVE Plasma adiponectin levels are reduced in type 2 diabetes mellitus (T2DM) and other insulin-resistant states. We examined whether plasma adiponectin levels at baseline and after pioglitazone treatment in impaired glucose tolerance (IGT) subjects were associated with improved insulin sensitivity (SI) and glucose tolerance status. RESEARCH DESIGN AND METHODS A total of 602 high-risk IGT subjects in ACT NOW were randomized to receive pioglitazone or placebo with a median follow-up of 2.4 years. RESULTS Pioglitazone reduced IGT conversion to diabetes by 72% in association with improved β-cell function by 64% (insulin secretion/insulin resistance index) and increased tissue sensitivity by 88% (Matsuda index). In pioglitazone-treated subjects, plasma adiponectin concentration increased threefold from 13 ± 0.5 to 38 ± 2.5 μg/mL (P < 0.001) and was strongly correlated with the improvement in SI (r = 0.436, P < 0.001) and modestly correlated with glucose area under the curve during oral glucose tolerance test (r = 0.238, P < 0.005) and insulin secretion/insulin resistance index (r = 0.306, P < 0.005). The increase in adiponectin was a strong predictor of reversion to normal glucose tolerance and prevention of T2DM. In the placebo group, plasma adiponectin did not change and was not correlated with changes in glucose levels. There was an inverse association between baseline plasma adiponectin concentration and progression to diabetes in the placebo group but not in the pioglitazone group. CONCLUSIONS Baseline adiponectin does not predict the response to pioglitazone. The increase in plasma adiponectin concentration after pioglitazone therapy in IGT subjects is strongly related to improved glucose tolerance status and enhanced tissue sensitivity to insulin. PMID:24705615

  15. Effects of intraoperative administration of carbohydrates during long-duration oral and maxillofacial surgery on the metabolism of carbohydrates, proteins, and lipids.

    PubMed

    Yamamoto, Toru; Yoshida, Mitsuhiro; Watanabe, Seiji; Kawahara, Hiroshi

    2015-12-01

    Insulin resistance in patients undergoing invasive surgery impairs glucose and lipid metabolism and increases muscle protein catabolism, which may result in delayed recovery and prolonged hospital stay. We examined whether intraoperative administration of carbohydrates during long-duration oral and maxillofacial surgery under general anesthesia affects carbohydrate, proteins, and lipid metabolism and the length of hospital stay. We studied 16 patients with normal liver, kidney, and endocrine functions, and ASA physical status I or II, but without diabetes. Patients were randomly assigned to receive 0.1 g/kg/h of (n = 8) or lactated Ringer's solution (n = 8). Blood was collected before (T0) and 4 h after (T1) the start of surgery. We analyzed the plasma levels of glucose, ketone bodies, 3-methylhistidine (3-MH), and the length of hospital stay. At T0, no statistically significant differences were observed in the levels of glucose, ketone bodies, and 3-MH between the groups. At T1, no statistically significant difference in glucose levels was found between the groups. However, ketone bodies were significantly lower, and the changes in 3-MH levels were significantly less pronounced in the glucose-treated group compared with controls. No significant differences were observed between the groups in terms of length of hospital stay. The administration of low doses of glucose during surgery was safe, did not cause hyperglycemia or hypoglycemia, and inhibited lipid metabolism and protein catabolism. Additional experiments with larger cohorts will be necessary to investigate whether intraoperative management with glucose facilitates postoperative recovery of patients with oral cancer.

  16. D-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro

    PubMed Central

    Kim, Eunju; Kim, Yoo-Sun; Kim, Kyung-Mi; Jung, Sangwon; Yoo, Sang-Ho

    2016-01-01

    BACKGROUND/OBJECTIVES Type 2 diabetes (T2D) is more frequently diagnosed and is characterized by hyperglycemia and insulin resistance. D-Xylose, a sucrase inhibitor, may be useful as a functional sugar complement to inhibit increases in blood glucose levels. The objective of this study was to investigate the anti-diabetic effects of D-xylose both in vitro and stretpozotocin (STZ)-nicotinamide (NA)-induced models in vivo. MATERIALS/METHODS Wistar rats were divided into the following groups: (i) normal control; (ii) diabetic control; (iii) diabetic rats supplemented with a diet where 5% of the total sucrose content in the diet was replaced with D-xylose; and (iv) diabetic rats supplemented with a diet where 10% of the total sucrose content in the diet was replaced with D-xylose. These groups were maintained for two weeks. The effects of D-xylose on blood glucose levels were examined using oral glucose tolerance test, insulin secretion assays, histology of liver and pancreas tissues, and analysis of phosphoenolpyruvate carboxylase (PEPCK) expression in liver tissues of a STZ-NA-induced experimental rat model. Levels of glucose uptake and insulin secretion by differentiated C2C12 muscle cells and INS-1 pancreatic β-cells were analyzed. RESULTS In vivo, D-xylose supplementation significantly reduced fasting serum glucose levels (P < 0.05), it slightly reduced the area under the glucose curve, and increased insulin levels compared to the diabetic controls. D-Xylose supplementation enhanced the regeneration of pancreas tissue and improved the arrangement of hepatocytes compared to the diabetic controls. Lower levels of PEPCK were detected in the liver tissues of D-xylose-supplemented rats (P < 0.05). In vitro, both 2-NBDG uptake by C2C12 cells and insulin secretion by INS-1 cells were increased with D-xylose supplementation in a dose-dependent manner compared to treatment with glucose alone. CONCLUSIONS In this study, D-xylose exerted anti-diabetic effects in vivo by regulating blood glucose levels via regeneration of damaged pancreas and liver tissues and regulation of PEPCK, a key rate-limiting enzyme in the process of gluconeogenesis. In vitro, D-xylose induced the uptake of glucose by muscle cells and the secretion of insulin cells by β-cells. These mechanistic insights will facilitate the development of highly effective strategy for T2D. PMID:26865911

  17. Herb-drug interaction of Nisha Amalaki and Curcuminoids with metformin in normal and diabetic condition: A disease system approach.

    PubMed

    Shengule, Sushant; Kumbhare, Kalyani; Patil, Dada; Mishra, Sanjay; Apte, Kishori; Patwardhan, Bhushan

    2018-05-01

    Nisha Amalaki (NA), formulation with Curcuma longa Linn (Turmeric, Haridra, Nisha in Sanskrit; Family: Zingiberaceae) and Phyllanthus emblica Linn (Indian gooseberry, Amlaki in Sanskrit; Family: Phyllanthaceae) which is described for various diseases including diabetes in ayurvedic texts and Nighantus. The aim of the present study was to assess the pharmacokinetic (PK) and pharmacodynamic (PD) interactions of chemically standardized NA and Curcuminoids (CE) with metformin (MET) in normal and diabetic animals. Oral administration of NA (200 mg/kg) and CE (30 mg/kg) was carried out for seven days followed by co-administration of MET till fifteen days. MET plasma PK parameters including C max , AUC 0-∞ , t 1/2 , CL and V d were measured on the eighth day. PD parameters including plasma glucose AUC followed by oral glucose tolerance test, high-density lipoproteins (HDL), total cholesterol (TC) and triglycerides (TG) were measured on the fifteenth day. In normal animals, co-administration of NA + MET and CE + MET resulted in significant increase (p < 0.05) in C max , AUC 0-∞ , t 1/2, and reduction of CL and V d . We report that co-administration of NA + MET and CE + MET significantly (p < 0.01, p < 0.001) reduced plasma glucose level, HDL level while a notable reduction in TG and TC level was observed. Interestingly, in diabetic condition, co-administration of NA + MET and CE + MET indicated a significant decrease (p < 0.05) in C max , AUC 0-∞ , t 1/2 and enhanced CL and V d. Hence, to conclude, co-administration of NA + MET and CE + MET resulted in beneficial PK and PD interactions leading to antihyperglycemic and antihyperlipidemic effects in both conditions. However, PK interaction was drastically different in diabetic and normal conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Glucose-Responsive Implantable Polymeric Microdevices for "Smart" Insulin Therapy of Diabetes

    NASA Astrophysics Data System (ADS)

    Chu, Michael Kok Loon

    Diabetes mellitus is a chronic illness manifested by improper blood glucose management, affecting over 350 million worldwide. As a result, all type 1 patients and roughly 20% of type 2 patients require exogenous insulin therapy to survive. Typically, daily multiple injections are taken to maintain normal glucose levels in response glucose spikes from meals. However, patient compliance and dosing accuracy can fluctuate with variation in meals, exercise, glucose metabolism or stress, leading to poor clinical outcomes. A 'smart', closed-loop insulin delivery system providing on-demand release kinetics responding to circulating glucose levels would be a boon for diabetes patients, replacing constant self monitoring and insulin. This thesis focuses on the development of a novel, 'smart' insulin microdevice that can provide on-demand insulin release in response to blood glucose levels. In the early stage, the feasibility of integrating a composite membrane with pH-responsive nanoparticles embedded in ethylcellulose membrane to provide pH-responsive in vitro release was examined and confirmed using a model drug, vitamin B12. In the second microdevice, glucose oxidase for generating pH signals from glucose oxidation, catalase and manganese dioxide nanoparticles, as peroxide scavengers, were used in a bioinorganic, albumin-based membrane cross-linked with a polydimethylsiloxane (PDMS) grid-microdevice system. This prototype device demonstrated insulin release in response to glucose levels in vitro and regulating plasma glucose in type 1 diabetic rats when implanted intraperitoneally. Advancement allowing for subcutaneous implantation and improved biocompatibility was achieved with surface modification of PDMS microdevices grafted with activated 20 kDa polyethylene glycol (PEG) chains, dramatically reducing immune response and local inflammation. When implanted subcutaneously in diabetic rats, glucose-responsive insulin delivery microdevices showed short and long-term efficacy up to an 18 day period. Finally, to improve insulin stability within microdevice reservoirs, an in situ gelling zinc-insulin formulation was designed. High concentration insulin gel complexed with zinc provided physical and chemical stability against thermal denaturation over a 30 day period. Long-term stability of the zinc-insulin gel formulation shows potential for sustained release application, providing low-level, basal insulin release. These combined technologies present significant progress towards the goal of an 'artificial pancreas' to combat diabetes through 'smart' insulin therapy.

  19. Clinical significance of the glucose breath test in patients with inflammatory bowel disease.

    PubMed

    Lee, Ji Min; Lee, Kang-Moon; Chung, Yoon Yung; Lee, Yang Woon; Kim, Dae Bum; Sung, Hea Jung; Chung, Woo Chul; Paik, Chang-Nyol

    2015-06-01

    Small intestinal bacterial overgrowth which has recently been diagnosed with the glucose breath test is characterized by excessive colonic bacteria in the small bowel, and results in gastrointestinal symptoms that mimic symptoms of inflammatory bowel disease. This study aimed to estimate the positivity of the glucose breath test and investigate its clinical role in inflammatory bowel disease. Patients aged > 18 years with inflammatory bowel disease were enrolled. All patients completed symptom questionnaires. Fecal calprotectin level was measured to evaluate the disease activity. Thirty historical healthy controls were used to determine normal glucose breath test values. A total of 107 patients, 64 with ulcerative colitis and 43 with Crohn's disease, were included. Twenty-two patients (20.6%) were positive for the glucose breath test (30.2%, Crohn's disease; 14.1%, ulcerative colitis). Positive rate of the glucose breath test was significantly higher in patients with Crohn's disease than in healthy controls (30.2% vs 6.7%, P=0.014). Bloating, flatus, and satiety were higher in glucose breath test-positive patients than glucose breath test-negative patients (P=0.021, 0.014, and 0.049, respectively). The positivity was not correlated with the fecal calprotectin level. The positive rate of the glucose breath test was higher in patients with inflammatory bowel disease, especially Crohn's disease than in healthy controls; gastrointestinal symptoms of patients with inflammatory bowel disease were correlated with this positivity. Glucose breath test can be used to manage intestinal symptoms of patients with inflammatory bowel disease. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  20. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature.

    PubMed

    Li, Wei; Maloney, Ronald E; Aw, Tak Yee

    2015-08-01

    We previously demonstrated that in normal glucose (5mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG-occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG-occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

Top