DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, J.E.; Buckner, C.D.; Leonard, J.M.
One hundred thirty-seven patients had gonadal function evaluated 1-11 years after marrow transplantation. All 15 women less than age 26 and three of nine older than age 26 who were treated with 200 mg/kg cyclophosphamide recovered normal gonadotropin levels and menstruation. Five have had five pregnancies resulting in three live births, one spontaneous abortion, and one elective abortion. Three of 38 women who were prepared with 120 mg/kg cyclophosphamide and 920-1200 rad total-body irradiation had normal gonadotropin levels and menstruation. Two had pregnancies resulting in one spontaneous and one elective abortion. Of 31 men prepared with 200 mg/kg cyclophosphamide, 30more » had normal luteinizing hormone levels, 20 had normal follicle-stimulating hormone levels, and 10 of 15 had spermatogenesis. Four have fathered five normal children. Thirty-six of 41 men prepared with 120 mg/kg cyclophosphamide and 920-1750 rad total-body irradiation had normal luteinizing hormone levels, ten had normal follicle-stimulating hormone levels, and 2 of 32 studied had spermatogenesis. One has fathered two normal children. It was concluded that cyclophosphamide does not prevent return of normal gonadal function in younger women and in most men. Total-body irradiation prevents return of normal gonadal function in the majority of patients.« less
Mutation of Gonadal soma-derived factor induces medaka XY gonads to undergo ovarian development.
Imai, Takuto; Saino, Kentaro; Matsuda, Masaru
2015-11-06
Gonochoristic species have a bipotential gonad that develops into a testis or an ovary. In species whose sex is determined by a genetic factor, the expression of a sex-determining gene is the first cue that directs the development of a bipotential gonad. Subsequent expression of downstream genes induces the gonad to develop into a testis or an ovary. The TGF-ß family member Gonadal soma-derived factor (Gsdf) is thought to be an important gene for gonadal development in teleost fish, and it is expressed at higher levels in the testis than in the ovary from early to mature stages. However, there is little functional information about the gene. In this study, we targeted the Gsdf coding region in the medaka fish Oryzias latipes using transcription activator-like effector nucleases (TALENs) and studied the phenotypes of the Gsdf mutant medaka. Although normal and heterozygous XY gonads developed into a testis, all XY gonads with a homozygous mutation in Gsdf developed into an ovary at early developmental stages. However, two-thirds of Gsdf mutant XY gonads developed into testes in the adult stages. These results demonstrate that although a gonad can develop into a complete testis in the absence of Gsdf, Gsdf function is critical for directing the bipotential gonad at early developmental stages. Therefore, Gsdf is an endogenous inducer of testicular development similar to a master sex-determining gene. Copyright © 2015 Elsevier Inc. All rights reserved.
Molassiotis, A; van den Akker, O B; Milligan, D W; Boughton, B J
1995-08-01
Gonadal function and psychosexual adjustment were evaluated in 29 male patients after autologous and allogeneic BMT (mean post-BMT time 35.6 months). Patients were divided into groups according to their interval from transplant in order to evaluate gonadal function throughout the post-BMT years. Thyroid-stimulating hormone (TSH) and free thyroxine (FT4) were normal throughout the post-BMT years. Follicle-stimulating hormone (FSH) and luteinising hormone (LH) were increased throughout the years after BMT, suggesting moderate compensated hypogonadism. Hyperprolactinaemia was observed only in the 2nd year post-BMT and testosterone levels were normal, suggesting that Leydig cells can withstand alkylating agents or TBI. Psychosexual functioning in BMT survivors was compared with that of a group of mixed-diagnosis cancer patients (n = 30) and a group of healthy young subjects (n = 119). Long-term BMT survivors had similar psychosexual adjustment to that of other cancer patients who had received less intensive chemotherapy. Half the patients were dissatisfied with their current sex life. Major problems included impotence/erectile difficulties (37.9%), low sexual desire (37.9%) and altered body image (20.7%). However, both BMT survivors and cancer patients had significantly higher psychosexual dysfunction compared with healthy subjects. The type of chemotherapy, TBI (either single-dose or fractionated), type of transplant and post-BMT time did not correlate with either gonadal or psychosexual functioning.
Somali, Maria; Mpatakoias, Vassilios; Avramides, Avraam; Sakellari, Ioanna; Kaloyannidis, Panayotis; Smias, Christos; Anagnostopoulos, Achilleas; Kourtis, Anargyros; Rousso, David; Panidis, Dimitrios; Vagenakis, Apostolos
2005-07-01
Gonadal dysfunction in adult long-term survivors of hematopoietic stem cell transplantation (HSCT) is an adverse effect of conditioning regimens consisting of chemotherapy and total body irradiation (TBI). The impact of conditioning regimens consisting of chemotherapy alone on the function of the hypothalamic-pituitary-gonadal (HPG) axis was evaluated in a series of 41 female and 31 male patients who had undergone either autologous or allogeneic bone marrow/peripheral blood stem cell transplantation; mean age at transplantation was 32.6 years and mean time interval from transplantation was 1.5 years (range 0.2-9.8 years). Provocative testing of the HPG axis by administration of luteinizing hormone-releasing hormone was included in the first endocrinological evaluation. The follow-up period extended to three consecutive years. Gonadal dysfunction was not reported by any of the patients prior to their underlying illness. Hypergonadotrophic hypogonadism was observed in 97% of female and 19% of male patients. Leydig cell strain (normal testosterone, high luteinizing hormone levels) was evident in 32% and spermatogenesis damage (high follicle-stimulating hormone levels) in 68% of the male population. At the conclusion of the study four women (10%) had regained spontaneous menses and all hypogonadal men had resumed normal testosterone levels. Our results indicate a high incidence of gonadal dysfunction due to target organ failure in HSCT recipients not treated by TBI.
Topaloglu, A Kemal; Reimann, Frank; Guclu, Metin; Yalin, Ayse Serap; Kotan, L Damla; Porter, Keith M; Serin, Ayse; Mungan, Neslihan O; Cook, Joshua R; Imamoglu, Sazi; Akalin, N Sema; Yuksel, Bilgin; O'Rahilly, Stephen; Semple, Robert K
2009-03-01
The timely secretion of gonadal sex steroids is essential for the initiation of puberty, the postpubertal maintenance of secondary sexual characteristics and the normal perinatal development of male external genitalia. Normal gonadal steroid production requires the actions of the pituitary-derived gonadotropins, luteinizing hormone and follicle-stimulating hormone. We report four human pedigrees with severe congenital gonadotropin deficiency and pubertal failure in which all affected individuals are homozygous for loss-of-function mutations in TAC3 (encoding Neurokinin B) or its receptor TACR3 (encoding NK3R). Neurokinin B, a member of the substance P-related tachykinin family, is known to be highly expressed in hypothalamic neurons that also express kisspeptin, a recently identified regulator of gonadotropin-releasing hormone secretion. These findings implicate Neurokinin B as a critical central regulator of human gonadal function and suggest new approaches to the pharmacological control of human reproduction and sex hormone-related diseases.
Hanai, Miho; Esashi, Takatoshi
2007-04-01
The purpose of this study was to clarify the effects of nutrients on the gonadal development of male rats kept under constant darkness as a model of disturbed daily rhythm. The present study examined protein and vitamins, and their interactions. This study was based on three-way ANOVA; the three factors were lighting conditions, dietary protein and dietary vitamins, respectively. The levels of dietary protein were low or normal: 9% casein or 20% casein. The levels of dietary vitamins were low, normal or high: 1/3.3 of normal (AIN-93G diet) content, normal content, or three times the normal content, respectively. Other compositions were the same as those of the AIN-93G diet, and six kinds of experimental diet were prepared. Four-week-old rats (Fischer 344 strain) were kept under constant darkness or normal lighting (12-h light/dark cycle) for 4 wk. After 4 wk, the gonadal weights and serum testosterone content were evaluated. In the constant darkness groups (D-groups), the low-protein diet induced reduction of gonadal organ weights and serum testosterone concentrations. This reduction of gonadal organ weights was exacerbated by progressively higher levels of dietary vitamins. In the case of a normal-protein diet, the depression of gonadal development was not accelerated by high-vitamin intake. In the normal lighting groups (N-groups), the low-protein and high-vitamin diet slightly depressed gonadal development. These results suggest that the metabolism of protein and vitamins is different in rats being kept under constant darkness, and that excess dietary vitamins have an adverse effect on gonadal development in rats fed a low-protein diet.
Ebert, Kristin M; Hewitt, Geri D; Indyk, Justin A; McCracken, Katherine A; Nahata, Leena; Jayanthi, Venkata R
2018-04-01
Patients with gonadal dysgenesis (GD) with a Y chromosome have an increased risk of gonadal neoplasm. Few data exist on the ability of imaging to detect malignancy in intra-abdominal gonads in these patients. We aimed to determine the correlation between preoperative imaging findings and gonadal pathology in GD patients with Y chromosome material. A retrospective review was performed of patients with XY or XO/XY GD who underwent gonadectomy at our institution from 2003 to 2017. Patients were assessed preoperatively with ultrasonography; some additionally underwent MRI. The series consisted of 10 patients, all with female gender and non-palpable gonads. Median age was 13.1 years (range 2.4-18.3 years). Overall, four of the ten patients (40%) had a tumor (gonadoblastoma or dysgerminoma) on final pathology. Four patients had a gonad or gonads that were definitively seen on ultrasonography. All visualized gonads were described as "normal" or "small" with the exception of one patient, who had a normal MRI. Three of the four patients in this group had a tumor on final pathology. The remaining six patients had a gonad or gonads that were not definitively visualized on ultrasound; one patient in this group had a tumor on final pathology. Overall, five of seven gonads (71%) definitively visualized on ultrasound had tumor on final pathology, and two of thirteen gonads (15%) not visualized on ultrasound had tumor on final pathology; this difference was statistically significant (p = 0.012). Three patients were imaged with MRI. Of the gonads that could be visualized on MRI, no definitive abnormalities were seen. All patients imaged with MRI had tumors on final pathology. Both ultrasound and MRI are relatively poor at identifying and characterizing intra-abdominal gonads in GD patients. The majority of patients who had a neoplasm had normal imaging findings. Gonads that were definitively visualized on ultrasound were more likely to contain neoplasms that could not be visualized, which perhaps because of tumor growth. No other consistent imaging findings of malignancy were found. Our study included ultrasound evaluations that were completed over 10 years ago and not performed by pediatric ultrasonographers, which may have biased the results. However, results suggest that when discussing gonadectomy with GD patients, one should not be reassured by "normal" imaging findings. Neither ultrasound nor MRI should be relied on for surveillance in GD patients who decide against gonadectomy. A normal ultrasound or MRI does not rule out neoplasm in GD patients with intra-abdominal gonads. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
De Schepper, Jean; Belva, Florence; Schiettecatte, Johan; Anckaert, Ellen; Tournaye, Herman; Bonduelle, Maryse
2009-01-01
Little is known about the gonadal function of boys conceived by intracytoplasmic sperm injection (ICSI) from fathers with compromised spermatogenesis. To evaluate the potential risk of tubular dysfunction in these boys, we assessed morphological and functional gonadal parameters and their correlation with paternal sperm characteristics. In a group of 88 eight-year-old ICSI boys, we measured testicular and penile size. Serum concentrations of anti-mullerian hormone (AMH) and inhibin B were analyzed in 59 of them. Except for two boys with micropenis, penis length and mean testicular length were normal in all boys. In 7 boys inhibin B concentrations were below the lower limit for age, while all AMH results were within normal limits. Serum Sertoli cell markers correlated significantly with each other (p < 0.005), but were independent of paternal sperm parameters. Our data suggest that penile and testicular growth as well as Sertoli cell function are normal in the majority of prepubertal ICSI boys. Serum AMH and inhibin B levels were found to be independent of sperm quality of the father. Further follow-up of these prepubertal children is needed to examine whether normal Sertoli cell markers will be followed by a normal spermatogenesis in puberty. 2009 S. Karger AG, Basel
Etiology and treatment of hypogonadism in adolescents.
Viswanathan, Vidhya; Eugster, Erica A
2009-12-01
Adequate functioning at all levels of the hypothalamic-pituitary-gonadal axis is necessary for normal gonadal development and subsequent sex steroid production. Deficiencies at any level of the axis can lead to a hypogonadal state. The causes of hypogonadism are heterogeneous and may involve any level of the reproductive system. This review discusses various causes of hypogonadism, describes the evaluation of hypogonadal states, and outlines treatment options for the induction of puberty in affected adolescents. Whereas some conditions are clearly delineated, the exact etiology and underlying pathogenesis of many disorders is unknown.
Germ cells are not the primary factor for sexual fate determination in goldfish.
Goto, Rie; Saito, Taiju; Takeda, Takahiro; Fujimoto, Takafumi; Takagi, Misae; Arai, Katsutoshi; Yamaha, Etsuto
2012-10-01
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells. Copyright © 2012 Elsevier Inc. All rights reserved.
A novel morphological approach to gonads in disorders of sex development.
Lepais, Laureline; Morel, Yves; Mouriquand, Pierre; Gorduza, Daniela; Plotton, Ingrid; Collardeau-Frachon, Sophie; Dijoud, Frédérique
2016-11-01
Disorders of sex development are defined as congenital conditions with discordance between the phenotype, the genotype, the karyotype, and the hormonal profile. The disorders of sex development consensus classification established in 2005 are mainly based on chromosomal and biological data. However, histological anomalies are not considered. The aims of this study were to define the specific pathological features of gonads in various groups of disorders of sex development in order to clarify the nosology of histological findings and to evaluate the tumor risk in case of a conservative approach. One hundred and seventy-five samples from 86 patients with disorders of sex development were analyzed following a strict histological reading protocol. The term 'gonadal dysgenesis' for the histological analysis was found confusing and therefore excluded. The concept of 'dysplasia' was subsequently introduced in order to describe the architectural disorganization of the gonad (various degrees of irregular seminiferous tubules, thin albuginea, fibrous interstitium). Five histological types were identified: normal gonad, hypoplastic testis, dysplastic testis, streak gonad, and ovotestis. The analysis showed an association between undifferentiated gonadal tissue, a potential precursor of gonadoblastoma, and dysplasia. Dysplasia and undifferentiated gonadal tissue were only encountered in cases of genetic or chromosomal abnormality ('dysgenesis' groups in the disorders of sex development consensus classification). 'Dysgenetic testes', related to an embryonic malformation of the gonad, have variable histological presentations, from normal to streak. Conversely, gonads associated with hormonal deficiencies always display a normal architecture. A loss of expression of AMH and α-inhibin was identified in dysplastic areas. Foci of abnormal expression of the CD117 and OCT4 immature germ cells markers in dysplasia and undifferentiated gonadal tissue were associated with an increased risk of neoplasia. This morphological analysis aims at clarifying the histological classification and gives an indication of tumor risk of gonads in disorders of sex development.
Hala, D
2017-03-21
The interconnected topology of transcriptional regulatory networks (TRNs) readily lends to mathematical (or in silico) representation and analysis as a stoichiometric matrix. Such a matrix can be 'solved' using the mathematical method of extreme pathway (ExPa) analysis, which identifies uniquely activated genes subject to transcription factor (TF) availability. In this manuscript, in silico multi-tissue TRN models of brain, liver and gonad were used to study reproductive endocrine developmental programming in zebrafish (Danio rerio) from 0.25h post fertilization (hpf; zygote) to 90 days post fertilization (dpf; adult life stage). First, properties of TRN models were studied by sequentially activating all genes in multi-tissue models. This analysis showed the brain to exhibit lowest proportion of co-regulated genes (19%) relative to liver (23%) and gonad (32%). This was surprising given that the brain comprised 75% and 25% more TFs than liver and gonad respectively. Such 'hierarchy' of co-regulatory capability (brain
Dmrt1 is necessary for male sexual development in zebrafish
Webster, Kaitlyn A.; Schach, Ursula; Ordaz, Angel; Steinfeld, Jocelyn S.; Draper, Bruce W.; Siegfried, Kellee R.
2018-01-01
The dmrt1 (doublesex and mab-3 related transcription factor 1) gene is a key regulator of sex determination and/or gonadal sex differentiation across metazoan animals. This is unusual given that sex determination genes are typically not well conserved. The mechanisms by which zebrafish sex is determined have remained elusive due to the lack of sex chromosomes and the complex polygenic nature of sex determination in domesticated strains. To investigate the role of dmrt1 in zebrafish sex determination and gonad development, we isolated mutations disrupting this gene. We found that the majority of dmrt1 mutant fish develop as fertile females suggesting a complete male-to-female sex reversal in mutant animals that would have otherwise developed as males. A small percentage of mutant animals became males, but were sterile and displayed testicular dysgenesis. Therefore zebrafish dmrt1 functions in male sex determination and testis development. Mutant males had aberrant gonadal development at the onset of gonadal sex-differentiation, displaying reduced oocyte apoptosis followed by development of intersex gonads and failed testis morphogenesis and spermatogenesis. By contrast, female ovaries developed normally. We found that Dmrt1 is necessary for normal transcriptional regulation of the amh (anti-Müllerian hormone) and foxl2 (forkhead box L2) genes, which are thought to be important for male or female sexual development respectively. Interestingly, we identified one dmrt1 mutant allele that cooperates with a linked segregation distorter locus to generate an apparent XY sex determination mechanism. We conclude that dmrt1 is dispensable for ovary development but necessary for testis development in zebrafish, and that dmrt1 promotes male development by transcriptionally regulating male and female genes as has been described in other animals. Furthermore, the strong sex-ratio bias caused by dmrt1 reduction-of-function points to potential mechanisms through which sex chromosomes may evolve. PMID:27940159
Etiology and treatment of hypogonadism in adolescents.
Viswanathan, Vidhya; Eugster, Erica A
2011-10-01
Adequate functioning at all levels of the hypothalamic-pituitary-gonadal axis is necessary for normal gonadal development and subsequent sex steroid production. Deficiencies at any level of the axis can lead to a hypogonadal state. The causes of hypogonadism are heterogeneous and may involve any level of the reproductive system. This review discusses various causes of hypogonadism, describes the evaluation of hypogonadal states, and outlines treatment options for the induction of puberty in affected adolescents. Whereas some conditions are clearly delineated, the exact etiology and underlying pathogenesis of many disorders is unknown. Copyright © 2011 Elsevier Inc. All rights reserved.
[The mixed gonadal dysgenesis. Diagnostic criteria and surgical treatment].
Blanco, J A; Martínez-Mora, J; Granada, M; Toran, N; Isnard, R M; Castellví, A; Casasa, J M
1997-01-01
The Mixed Gonadal Dysgenesis represents the 7.6% of all our patients with intersexual states. We report 14 patients who present Mixed Gonadal Dysgenesis. We have studied: diagnosis age; external genitalia description; sex assigned in birth and if has changed; the karyotype; sex chromatine; hormonal study; genitography; internal genitalia and internal Mullerians ducts structures; gonadal histologycal study; surgical treatment and hormonal treatment. The results show that 50% of the cases presents a 46XY karyotype and the other 50% mosaicisme 45XO/46XY. The histological study is very distinctive. A vulvovagynoplasty and clitoroplasty was made in all the cases. Four patients must follow an hormonal treatment after reaching puberal age. Summing up, with patients having ambiguous genitalia we can suspect it consists of a Mixed Gonadal Dysgenesis. The diagnosis must be precocious. And this diagnosis will be based in an ambiguous genitalia, with a karyotype 46XY or 45XO/46XY, the persistence of the internal Müllerian duct structures, and the histological study with a dysgenetic testis. These patients should be raised as females because they can obtain a good morphological and functional development like a normal female.
Blijdorp, Karin; van Dorp, Wendy; Laven, Joop S E; Pieters, Rob; de Jong, Frank H; Pluijm, Saskia M F; van der Lely, Aart Jan; van den Heuvel-Eibrink, Marry M; Neggers, Sebastian J C M M
2014-08-01
Although obesity is associated with gonadal dysfunction in the general population, gonadotoxic treatment might diminish the impact of obesity in childhood cancer survivors (CCS). The aim was to evaluate whether altered body composition is associated with gonadal dysfunction in male CCS, independent of gonadotoxic cancer treatment. Three hundred fifty-one male CCS were included. Median age at diagnosis was 5.9 years (0-17.8) and median age at follow-up 25.6 years (18.0-45.8). Total and non-SHBG-bound testosterone, sex hormone-binding globulin, inhibin B, and follicle-stimulating hormone (FSH) were studied. Potential determinants were BMI, waist circumference, waist-hip ratio, and body composition measures (dual energy X-ray absorptiometry). Non-SHBG-bound testosterone was significantly decreased in survivors with BMI ≥ 30 kg/m(2) (adjusted mean 9.1 nmol/L vs. 10.2 nmol/L, P = 0.015), high fat percentage (10.0 vs. 11.2, P = 0.004), and high waist circumference (>102 cm) (9.0 vs. 11.0, P = 0.020). Survivors with high fat percentage (≥25%) had significantly lower inhibin B/FSH ratios (inhibin B/FSH ratio: β -34%, P = 0.041). Obesity is associated with gonadal dysfunction in male CCS, independent of the irreversible effect of previous cancer treatment. Randomized controlled trials are required to evaluate whether weight normalization could improve gonadal function, especially in obese survivors with potential other mechanisms than lifestyle causing their obesity. Copyright © 2014 The Obesity Society.
Various chemicals in the environment can disrupt normal endocrine function, including steroid hormone synthesis, causing deleterious effects. Because these compounds can act at different levels of the hypothalamus-pituitary-gonadal (HPG) axis, their effects can lead to a mixture...
Glucocorticoids, stress, and fertility.
Whirledge, S; Cidlowski, J A
2010-06-01
Modifications of the hypothalamo-pituitary-adrenal axis and associated changes in circulating levels of glucocorticoids form a key component of the response of an organism to stressful challenges. Increased levels of glucocorticoids promote gluconeogenesis, mobilization of amino acids, and stimulation of fat breakdown to maintain circulating levels of glucose necessary to mount a stress response. In addition to profound changes in the physiology and function of multiple tissues, stress and elevated glucocorticoids can also inhibit reproduction, a logical effect for the survival of self. Precise levels of glucocorticoids are required for proper gonadal function; where the balance is disrupted, so is fertility. Glucocorticoids affect gonadal function at multiple levels in hypothalamo-pituitary-gonadal axis: 1) the hypothalamus (to decrease the synthesis and release of gonadotropin-releasing hormone [GnRH]); 2) the pituitary gland (to inhibit the synthesis and release of luteinizing hormone [LH] and follicle stimulating hormone [FSH]); 3) the testis/ovary (to modulate steroidogenesis and/or gametogenesis directly). Furthermore, maternal exposure to prenatal stress or exogenous glucocorticoids can lead to permanent modification of hypothalamo-pituitary-adrenal function and stress-related behaviors in offspring. Glucocorticoids are vital to many aspects of normal brain development, but fetal exposure to superabundant glucocorticoids can result in life-long effects on neuroendocrine function. This review focuses on the molecular mechanisms believed to mediate glucocorticoid inhibition of reproductive functions and the anatomical sites at which these effects take place.
Budak, Erdal; Fernández Sánchez, Manuel; Bellver, José; Cerveró, Ana; Simón, Carlos; Pellicer, Antonio
2006-06-01
To summarize the effects of novel hormones (leptin, ghrelin, adiponectin, resistin, and PYY3-36) secreted from adipose tissue and the gastrointestinal tract that have been discovered to exert different effects on several reproductive functions, such as the hypothalamic-pituitary-gonadal axis, embryo development, implantation physiology, and clinically relevant conditions. A MEDLINE computer search was performed to identify relevant articles. Leptin and ghrelin exert important roles on body weight regulation, eating behavior, and reproduction, acting on the central nervous system and target reproductive organs. As a marker of adequate nutritional stores, these hormones may act on the central nervous system to initiate the complex process of puberty and maintain normal reproductive function. In addition, leptin and ghrelin and their receptors are involved in reproductive events such as gonadal function, embryo development, and embryo-endometrial interaction. Leptin and ghrelin and other adipose tissue-secreted hormones have significant effects on reproduction. Acting through the brain, these hormones may serve as links between adipose tissue and the reproductive system to supply and regulate energy needs for normal reproduction and pregnancy. Future studies are needed to further clarify the role of these hormones in reproductive events and other related gynecological conditions.
Vitamin D deficiency in type 2 diabetic patients with hypogonadism.
Bellastella, Giuseppe; Maiorino, Maria Ida; Olita, Laura; Capuano, Annalisa; Rafaniello, Concetta; Giugliano, Dario; Esposito, Katherine
2014-02-01
Both type 2 diabetes and secondary hypogonadism may be associated with low vitamin D levels. The aim of this study was to evaluate 25-hydroxyvitamin D (25(OH)D) concentrations in type 2 diabetic males with and without hypogonadism. We performed a case-control study among 122 male adults with type 2 diabetes, 51 with associated hypogonadism (Group 1) and 71 with normal gonadal function (Group 2). One hundred age-matched nondiabetic males with normal gonadal function served as a control group. Levels of 25(OH)D were assessed by a chemiluminescent immunoassay in all patients. Morning testosterone, pituitary, thyroid, parathyroid hormones, fasting glucose, and hemoglobin A1c were also evaluated. The overall diabetic population showed a mean 25(OH)D concentration (22.3 ± 6.09 ng/mL) significantly lower than the control group (34.3 ± 7.2, P < 0.001), with 81% of diabetic patients presenting 25(OH)D deficiency (<20 ng/mL) or insufficiency (20-29.9 ng/mL). The lowest 25(OH)D concentration was found in Group 1 (20.1 ± 6.58 ng/mL). Concentration of 25(OH)D was significantly lower in the 42 patients with hypogonadotropic hypogonadism as compared with the 9 patients with hypergonadotropic hypogonadism (19.4 ± 7.06 vs. 23.8 ± 6.11 ng/mL, P < 0.001). No difference in erectile dysfunction (ED) prevalence between Group 1 and Group 2 was found, nor was there a correlation between the severity of ED and vitamin D levels (r = -0.10, P = 0.39). These results show that type 2 diabetic patients with hypogonadism present lower 25(OH)D concentration and higher prevalence of vitamin D deficiency, compared with patients without hypogonadism. The finding that 25(OH)D concentrations were similar between type 2 diabetic patients with hypergonadotropic hypogonadism and those with normal gonadal function deserves further study. © 2013 International Society for Sexual Medicine.
[Pure gonad dysgenesia or Swyer sindrome. A case report having tumoral development: melanoma].
Russo, D; Blanco, M; Falke, G; Rocca Rivarola, M; Séller, R; Puigdevall, J C; Bergada, C
2006-10-01
A 14 year old girl having 10-days lumbar pain, polaquiuria and moderate pain to palpation is reported. Blood and urine analysis were normal. Abdominal ultrasound scan showed cavity free and solid, rounded, heterogeneous, intrapelvic mass compressing bladder and uterus. Magnetic resonance image was performed showing right gonad compromise with extensive liver and sacro-lumbar spine invasion. Tumoral markers were ruled out. During surgery, primary tumor mass localizad in the right gonad was completely excised. Melanotic peritoneal and hepatic disemination were observed. The patient had left streak gonad and infantile uterus (2 x 3 cm). As gonad dysgenesia was suspected, high resolution cromosomic study was performed and resulted in cariotype 46 XY. Microscopy of the resected gonad showed primary gonad melanoma. Chemotherapy was instituted with no tumor response and the patient died two month later.
Zhou, Dongsheng; Zhuo, Yong; Che, Lianqiang; Lin, Yan; Fang, Zhengfeng; Wu, De
2014-07-01
People on a diet to lose weight may be at risk of reproductive failure. To investigate the effects of nutrient restriction on reproductive function and the underlying mechanism, changes of reproductive traits, hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis were examined in postpubertal gilts at anestrus induced by nutrient restriction. Gilts having experienced two estrus cycles were fed a normal (CON, 2.86 kg/d) or nutrient restricted (NR, 1 kg/d) food regimens to expect anestrus. NR gilts experienced another three estrus cycles, but did not express estrus symptoms at the anticipated fourth estrus. Blood samples were collected at 5 days' interval for consecutive three times for measurement of hormone concentrations at the 23th day of the fourth estrus cycle. Individual progesterone concentrations of NR gilts from three consecutive blood samples were below 1.0 ng/mL versus 2.0 ng/mL in CON gilts, which was considered anestrus. NR gilts had impaired development of reproductive tract characterized by absence of large follicles (diameter ≥ 6 mm), decreased number of corepus lutea and atrophy of uterus and ovary tissues. Circulating concentrations of IGF-I, kisspeptin, estradiol, progesterone and leptin were significantly lower in NR gilts than that in CON gilts. Nutrient restriction down-regulated gene expressions of kiss-1, G-protein coupled protein 54, gonadotropin-releasing hormone, estrogen receptor α, progesterone receptor, leptin receptor, follicle-stimulating hormone and luteinizing hormone and insulin-like growth factor I in hypothalamus-pituitary-gonadal axis of gilts. Collectively, nutrient restriction resulted in impairment of reproductive function and changes of hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis, which shed light on the underlying mechanism by which nutrient restriction influenced reproductive function.
Rey, R A; Grinspon, R P; Gottlieb, S; Pasqualini, T; Knoblovits, P; Aszpis, S; Pacenza, N; Stewart Usher, J; Bergadá, I; Campo, S M
2013-01-01
Normal testicular physiology results from the integrated function of the tubular and interstitial compartments. Serum markers of interstitial tissue function are testosterone and insulin-like factor 3 (INSL3), whereas tubular function can be assessed by sperm count, morphology and motility, and serum anti-Müllerian hormone (AMH) and inhibin B. The classical definition of male hypogonadism refers to testicular failure associated with androgen deficiency, without considering potential deficiencies in germ and Sertoli cells. Furthermore, the classical definition does not consider the fact that low basal serum testosterone cannot be equated to hypogonadism in childhood, because Leydig cells are normally quiescent. A broader clinical definition of hypogonadism that could be applied to male patients in different periods of life requires a comprehensive consideration of the physiology of the hypothalamic-pituitary-testicular axis and its disturbances along development. Here we propose an extended classification of male hypogonadism based on the pathophysiology of the hypothalamic-pituitary-testicular axis in different periods of life. The clinical and biochemical features of male hypogonadism vary according to the following: (i) the level of the hypothalamic-pituitary-testicular axis primarily affected: central, primary or combined; (ii) the testicular cell population initially impaired: whole testis dysfunction or dissociated testicular dysfunction, and: (iii) the period of life when the gonadal function begins to fail: foetal-onset or postnatal-onset. The evaluation of basal testicular function in infancy and childhood relies mainly on the assessment of Sertoli cell markers (AMH and inhibin B). Hypergonadotropism should not be considered a sine qua non condition for the diagnosis of primary hypogonadism in childhood. Finally, the lack of elevation of gonadotropins in adolescents or adults with primary gonadal failure is indicative of a combined hypogonadism involving the gonads and the hypothalamic-pituitary axis. © 2012 American Society of Andrology and European Academy of Andrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortin, T.T.; Shostak, C.A.; Donaldson, S.S.
To ascertain the impact of therapy on gonadal function and reproductive outcome among children treated for Hodgkin's disease, we reviewed the experience at Stanford University Medical Center during the years 1965-1986. There were 240 children 15 years of age or younger, 92 girls and 148 boys; with median follow-up of 9 years, maximum follow-up was 26 years. Of this cohort, data on gonadal function were available on 20 boys, 5 of whom were considered prepubescent; they had no clinical evidence of sexual maturation and were less than 13 years of age. Evaluation of the boys included testicular biopsy, semen analysesmore » and the ability to procreate. Serum gonadotropin hormone levels (FSH, LH) were studied in 11 boys who also had semen analyses. Sexual maturation was attained in all boys without the need for androgen replacement. Among the eight boys treated with radiation alone, four were able to father a child (3 following 40-45 Gy pelvic radiation dose, 1 without pelvic radiation) from 3-19 years following treatment. Three others who received 30-44 Gy pelvic radiation were oligospermic when tested at 10 to 15 years post-treatment. Semen analyses in 10 of 12 (83%) boys who had been treated with six cycles of MOPP with or without pelvic radiation revealed absolute azoospermia with no evidence of recovery as along as 11 years of follow-up. Following prolonged azoospermia, 2 of the 12 boys (17%) had recovery of fertility, with normalization of sperm count and/or ability to procreate at 12 and 15 years following treatment. There was no correlation with serum gonadotropin levels and sterility. Data on menstrual history, pregnancy and offspring were available in 86 (92%) of the girls. Seventy-five of the 86 girls (87%) have normal menstrual function. However, none of the females who underwent pelvic radiation without prior oophoropexy has maintained ovarian function.« less
Alaniz, V I; Kobernik, E K; Dillman, J; Quint, E H
2016-12-01
To evaluate ultrasonography and magnetic resonance imaging (MRI) in identifying gonads in patients with disorders of sex development (DSD) who undergo prophylactic gonadectomy, and to assess the capacity of preoperative imaging to detect premalignant and malignant transformation. Retrospective cohort at a tertiary referral center of 39 patients with DSD who underwent MRI and/or ultrasonography before prophylactic gonadectomy. None. Identification of gonads on preoperative imaging. Thirty-three patients underwent ultrasonography, which identified 54% (35/65) of gonads and 14 patients had MRI, which identified 41% (11/27) of gonads. There was no significant difference between imaging modalities in the proportion of gonads identified (P = .25). The proportion of pathology-confirmed dysgenetic gonads identified was higher on ultrasound compared with MRI (51% vs 8%; P = .02). There was no difference in the proportion of pathology-confirmed testes identified on ultrasound and MRI (54% vs 71%; P = .33). Eleven out of 39 patients (28%) were diagnosed with a premalignant lesion, and there were no distinguishing characteristics documented on imaging reports to suggest transformation. The only diagnosed malignancy in this series had imaging describing a "normal-sized ovary." Ultrasonography and MRI identified 40%-50% of gonads in patients with DSD who underwent prophylactic gonadectomy, with no significant difference between the 2 modalities. Clinicians should, therefore, consider ultrasonography as a first-line imaging modality. Premalignant lesions were not detected on either imaging modality. The only malignancy was described as a "normal-sized ovary" which should raise concern in a patient with complete gonadal dysgenesis expected to have streak gonads. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
Çatlı, Gönül; Alparslan, Caner; Can, P. Şule; Akbay, Sinem; Kelekçi, Sefa; Atik, Tahir; Özyılmaz, Berk; Dündar, Bumin N.
2015-01-01
46,XY pure gonadal dysgenesis (Swyer syndrome) is characterized by normal female genitalia at birth. It usually first becomes apparent in adolescence with delayed puberty and amenorrhea. Rarely, patients can present with spontaneous breast development and/or menstruation. A fifteen-year-old girl presented to our clinic with the complaint of primary amenorrhea. On physical examination, her external genitals were completely female. Breast development and pubic hair were compatible with Tanner stage V. Hormonal evaluation revealed a hypergonadotropic state despite a normal estrogen level. Chromosome analysis revealed a 46,XY karyotype. Pelvic ultrasonography showed small gonads and a normal sized uterus for age. SRY gene expression was confirmed by multiplex polymerase chain reaction. Direct sequencing on genomic DNA did not reveal a mutation in the SRY, SF1 and WT1 genes. After the diagnosis of Swyer syndrome was made, the patient started to have spontaneous menstrual cycles and therefore failed to attend her follow-up visits. After nine months, the patient underwent diagnostic laparoscopy. Frozen examination of multiple biopsies from gonad tissues revealed gonadoblastoma. With this report, we emphasize the importance of performing karyotype analysis, which is diagnostic for Swyer syndrome, in all cases with primary or secondary amenorrhea even in the presence of normal breast development. We also suggest that normal pubertal development in patients with Swyer syndrome may be associated with the presence of a hormonally active tumor. PMID:26316442
Çatlı, Gönül; Alparslan, Caner; Can, P Şule; Akbay, Sinem; Kelekçi, Sefa; Atik, Tahir; Özyılmaz, Berk; Dündar, Bumin N
2015-06-01
46,XY pure gonadal dysgenesis (Swyer syndrome) is characterized by normal female genitalia at birth. It usually first becomes apparent in adolescence with delayed puberty and amenorrhea. Rarely, patients can present with spontaneous breast development and/or menstruation. A fifteen-year-old girl presented to our clinic with the complaint of primary amenorrhea. On physical examination, her external genitals were completely female. Breast development and pubic hair were compatible with Tanner stage V. Hormonal evaluation revealed a hypergonadotropic state despite a normal estrogen level. Chromosome analysis revealed a 46,XY karyotype. Pelvic ultrasonography showed small gonads and a normal sized uterus for age. SRY gene expression was confirmed by multiplex polymerase chain reaction. Direct sequencing on genomic DNA did not reveal a mutation in the SRY, SF1 and WT1 genes. After the diagnosis of Swyer syndrome was made, the patient started to have spontaneous menstrual cycles and therefore failed to attend her follow-up visits. After nine months, the patient underwent diagnostic laparoscopy. Frozen examination of multiple biopsies from gonad tissues revealed gonadoblastoma. With this report, we emphasize the importance of performing karyotype analysis, which is diagnostic for Swyer syndrome, in all cases with primary or secondary amenorrhea even in the presence of normal breast development. We also suggest that normal pubertal development in patients with Swyer syndrome may be associated with the presence of a hormonally active tumor.
Stickels, Robert; Clark, Kevin; Heider, Thomas N; Mattiske, Deidre M; Renfree, Marilyn B; Pask, Andrew J
2015-01-01
The nuclear receptor subfamily 0, group B, member 1 (NR0B1) gene is an orphan nuclear receptor that is X-linked in eutherian mammals and plays a critical role in the establishment and function of the hypothalamic-pituitary-adrenal-gonadal axis. Duplication or overexpression of NR0B1 in eutherian males causes male to female sex reversal, and mutation and deletions of NR0B1 cause testicular defects. Thus, gene dosage is critical for the function of NR0B1 in normal gonadogenesis. However, NR0B1 is autosomal in all noneutherian vertebrates, including marsupials and monotreme mammals, and two active copies of the gene are compatible with both male and female gonadal development. In the current study, we examined the evolution and expression of autosomal NR0B1 during gonadal development in a marsupial (the tammar wallaby) as compared to the role of its X-linked orthologues in a eutherian (the mouse). We show that NR0B1 underwent rapid evolutionary change when it relocated from its autosomal position in the nonmammalian vertebrates, monotremes, and marsupials to an X-linked location in eutherian mammals. Despite the acquisition of a novel genomic location and a unique N-terminal domain, NR0B1 protein distribution was remarkably similar between mice and marsupials both throughout gonadal development and during gamete formation. A conserved accumulation of NR0B1 protein was observed in developing oocytes, where its function appears to be critical in the early embryo, prior to zygotic genome activation. Together these findings suggest that NR0B1 had a conserved role in gonadogenesis that existed long before it moved to the X chromosome and despite undergoing significant evolutionary change. © 2015 by the Society for the Study of Reproduction, Inc.
Bogani, Debora; Siggers, Pam; Brixey, Rachel; Warr, Nick; Beddow, Sarah; Edwards, Jessica; Williams, Debbie; Wilhelm, Dagmar; Koopman, Peter; Flavell, Richard A.; Chi, Hongbo; Ostrer, Harry; Wells, Sara; Cheeseman, Michael; Greenfield, Andy
2009-01-01
Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel entry point into the molecular and cellular mechanisms underlying sex determination in mice and disorders of sexual development in humans. PMID:19753101
A rare case of 46,XX gonadal dysgenesis and Mayer-Rokitansky-Kuster-Hauser syndrome.
Manne, Sriharibabu; Veeraabhinav, C H; Jetti, Mounica; Himabindu, Yalamanchali; Donthu, Kiranmai; Badireddy, Mutyalarayudu
2016-01-01
46,XX gonadal dysgenesis is a rare genetically heterogeneous disorder characterized by underdeveloped ovaries with consequent, impuberism, primary amenorrhea, and hypergonadotropic hypogonadism. Mullerian agenesis or Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome is characterized by congenital aplasia of the uterus and the upper part (2/3) of the vagina in a woman with normal development of secondary sexual characteristics and a normal 46,XX karyotype. The phenotypic manifestations of MRKH syndrome may sometimes overlap with various other syndromes and require accurate delineation. The coexistence of both these disorders is extremely rare. Here, we report a case of 46,XX gonadal dysgenesis and MRKH syndrome with anatomically dispersed congenital anomalies unique among reported cases.
Ovarian Gonadoblastoma with Dysgerminoma in a Young Girl with 46, XX Karyotype: A Case Report
Kanagal, Deepa V; Prasad, Kishan; Rajesh, Aparna; Kumar, Rohan G; Cherian, Sara; Shetty, Harish; Shetty, Prasanna Kumar
2013-01-01
Gonadoblastoma is a rare gonadal tumour consisting of a mixture of germ cells and sex cord stromal derivatives resembling immature granulosa and Sertoli cells. It usually arises in various types of gonadal dysgenesis containing Y chromosome like pure or mixed gonadal dysgenesis. Occurrence in phenotypically and chromosomally normal women is very rare. We report here a case of gonadoblastoma with dysgerminoma in a 14–years–old girl who presented with a huge tumour, virilisation and normal 46XX karyotype. Association of dysgerminoma is seen in 50% cases of gonadoblastomas. Elevated tumour markers like hCG and alpha Fetoprotein may make the diagnosis challenging. PMID:24179931
Sex, stress, and mood disorders: at the intersection of adrenal and gonadal hormones.
Fernández-Guasti, A; Fiedler, J L; Herrera, L; Handa, R J
2012-07-01
The risk for neuropsychiatric illnesses has a strong sex bias, and for major depressive disorder (MDD), females show a more than 2-fold greater risk compared to males. Such mood disorders are commonly associated with a dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis. Thus, sex differences in the incidence of MDD may be related with the levels of gonadal steroid hormone in adulthood or during early development as well as with the sex differences in HPA axis function. In rodents, organizational and activational effects of gonadal steroid hormones have been described for the regulation of HPA axis function and, if consistent with humans, this may underlie the increased risk of mood disorders in women. Other developmental factors, such as prenatal stress and prenatal overexposure to glucocorticoids can also impact behaviors and neuroendocrine responses to stress in adulthood and these effects are also reported to occur with sex differences. Similarly, in humans, the clinical benefits of antidepressants are associated with the normalization of the dysregulated HPA axis, and genetic polymorphisms have been found in some genes involved in controlling the stress response. This review examines some potential factors contributing to the sex difference in the risk of affective disorders with a focus on adrenal and gonadal hormones as potential modulators. Genetic and environmental factors that contribute to individual risk for affective disorders are also described. Ultimately, future treatment strategies for depression should consider all of these biological elements in their design. © Georg Thieme Verlag KG Stuttgart · New York.
Oktem, Ozgur; Paduch, Darius A; Xu, Kangpu; Mielnik, Anna; Oktay, Kutluk
2007-03-01
Diploid/triploid mosaicism (mixoploidy) is a rare chromosomal abnormality characterized by mental and growth retardation, hypotonia, and dysmorphic features such as facial asymmetry, low-set ears, and syndactyly. All 46,XX/69,XXY cases fall into three phenotypic groups: male with testicular development, ovotestis disorder of sex development (DSD), or undervirilized male DSD. All phenotypic females with diploid/triploid mosaic reported so far had 46,XX/69,XXX karyotype. We report an 8-year-old girl conceived after in vitro fertilization-intracytoplasmic sperm injection with normal internal/external genital and ovarian development despite 46,XX/69,XXY mosaicism and normal expression of sex-determining region of Y chromosome (SRY) in her gonads. Because of the increased risk of gonadoblastoma resulting from Y chromosome mosaicism, her ovaries were removed by laparoscopy. Ovarian tissue was analyzed histologically as well as by fluorescence in situ hybridization, PCR, and RT-PCR amplification to determine the localization of Y chromosome and expression of SRY and DAX1 mRNA. Methylation-specific PCR was used to assess the inactivation pattern of X chromosomes. By laparoscopy, internal female genital anatomy appeared to be normal. Cytogenetic and molecular methods confirmed the presence of intact and functionally active Y chromosome in the ovary. Strikingly, histological assessment of the gonads showed normal ovarian architecture with abundant primordial follicles despite the presence of the Y chromosome in ovarian follicles and the expression of SRY mRNA in gonadal tissue. This case illustrates that normal ovarian development is possible in the presence of Y chromosome in ovarian follicles and despite the expression of SRY in ovarian tissue. Furthermore, this is the first documented case of mixoploidy after in vitro fertilization-intracytoplasmic sperm injection and the only phenotypic female with 46,XX/69,XXY karyotype.
Hanai, Miho; Esashi, Takatoshi
2012-01-01
The purpose of this study was to clarify the effects of nutrients on the gonadal development of male rats kept under constant darkness as a model of disturbed daily rhythm. In the present study we examined the effects of nine water-soluble vitamins. We selected 7 water-soluble vitamins (choline, nicotinic acid (NA), pantothenic acid (PA), vitamin B6 (VB6), vitamin B1 (VB1), vitamin B2 (VB2) and folic acid (FA)) as experimental factors for the first experiment (Ex. 1) and biotin and vitamin B12 (VB12) as experimental factors for the second experiment (Ex. 2). The dietary content of these vitamins was normal or six times the normal content. Lighting condition (L.C.) was also added as a factor. Four-week-old male rats (Fischer 344 strain) were kept under constant darkness or normal lighting (12-h light/dark cycle) for 4 wk. The depression of gonadal development in the constant darkness groups (D-groups) was shown. The L.C., PA, VB6 and VB1 influenced testes development, and these three vitamins had interactions with L.C. Among the normal lighting groups (N-groups), the highest value for testes weight was observed under the normal-PA, high-VB6 and high-B1 diet; on the other hand, among the D-groups, it was observed under the high-PA, normal-VB6 and normal-VB1 diet. The results showed that the depression of gonadal development in rats kept under disturbed daily rhythm was improved by getting a high amount of PA and normal amount of VB6 and VB1.
O'Hara, William A; Azar, Walid J; Behringer, Richard R; Renfree, Marilyn B; Pask, Andrew J
2011-12-01
Desert hedgehog (DHH) belongs to the hedgehog gene family that act as secreted intercellular signal transducers. DHH is an essential morphogen for normal testicular development and function in both mice and humans but is not present in the avian lineage. Like other hedgehog proteins, DHH signals through the patched (PTCH) receptors 1 and 2. Here we examine the expression and protein distribution of DHH, PTCH1 and PTCH2 in the developing testes of a marsupial mammal (the tammar wallaby) to determine whether DHH signalling is a conserved factor in gonadal development in all therian mammals. DHH, PTCH1 and PTCH2 were present in the marsupial genome and highly conserved with their eutherian orthologues. Phylogenetic analyses indicate that DHH has recently evolved and is a mammal-specific hedgehog orthologue. The marsupial PTCH2 receptor had an additional exon (exon 21a) not annotated in eutherian PTCH2 proteins. Interestingly we found evidence of this exon in humans and show that its translation would result in a truncated protein with functions similar to PTCH1. We also show that DHH expression was not restricted to the testes during gonadal development (as in mice), but was also expressed in the developing ovary. Expression of DHH, PTCH1 and PTCH2 in the adult tammar testis and ovary was consistent with findings in the adult mouse. These data suggest that there is a highly conserved role for DHH signalling in the differentiation and function of the mammalian testis and that DHH may be necessary for marsupial ovarian development. The receptors PTCH1 and PTCH2 are highly conserved mediators of hedgehog signalling in both the developing and adult marsupial gonads. Together these findings indicate DHH is an essential therian mammal-specific morphogen in gonadal development and gametogenesis.
XX males SRY negative: a confirmed cause of infertility.
Vetro, Annalisa; Ciccone, Roberto; Giorda, Roberto; Patricelli, Maria Grazia; Della Mina, Erika; Forlino, Antonella; Zuffardi, Orsetta
2011-10-01
SOX9 is a widely expressed transcription factor playing several relevant functions during development and essential for testes differentiation. It is considered to be the direct target gene of the protein encoded by SRY and its overexpression in an XX murine gonad can lead to male development in the absence of Sry. Recently, a family was reported with a 178 kb duplication in the gene desert region ending about 500 kb upstream of SOX9 in which 46,XY duplicated persons were completely normal and fertile whereas the 46,XX ones were males who came to clinical attention because of infertility. We report a family with two azoospermic brothers, both 46,XX, SRY negative, having a 96 kb triplication 500 kb upstream of SOX9. Both subjects have been analyzed trough oligonucleotide array-CGH and the triplication was confirmed and characterised through qPCR, defining the minimal region of amplification upstream of SOX9 associated with 46,XX infertile males, SRY negative. Our results confirm that even in absence of SRY, complete male differentiation may occur, possibly driven by overexpression of SOX9 in the gonadal ridge, as a consequence of the amplification of a gene desert region. We hypothesize that this region contains gonadal specific long-range regulation elements whose alteration may impair the normal sex development. Our data show that normal XX males, with alteration in copy number or, possibly, in the critical sequence upstream to SOX9 are a new category of infertility inherited in a dominant way with expression limited to the XX background.
French, J.B.; Henry, P.F.P.; Rattner, B.A.; Ottinger, M.A.
1998-01-01
Diverse field and experimental studies suggest that abnormal sexual and reproductive development in wildlife could be caused by endocrine-like action of pollutants on embryos, and that functional deficits would be evident only later in life, during breeding. We tested these hypotheses in American kestrels (Falco sparverius). Aroclor 1242 is a commercial mixture of PCB congeners shown to be estrogenic in mice and the mixture approximates the environmental exposure of Common terns (Sterna hirundo) where abnormal development of gonads in male tern chicks was seen. Pairs of kestrels were exposed to high and low levels of Aroclor in food resulting in mean egg concentrations of 80.4 and 9.4 ppm respectively. The gonadal orphology of hatchlings was consistent with their genetic sex, and male testes showed only little histological intersexuality; fledglings had nomal gonadal morphology and histology. Female hatchlings tended to show increased androgen and decreased estrogen in their serum with increased dose of Aroclor. Similarly exposed siblings were raised to breeding age and displayed some differences in incubation behavior, but no difference in reproductive output from controls. Overall, kestrels exposed to Aroclor 1242 as embryos showed some moderate disruption of normal development, but siblings showed little functional deficit at breeding age.
ATRX has a critical and conserved role in mammalian sexual differentiation
2011-01-01
Background X-linked alpha thalassemia, mental retardation syndrome in humans is a rare recessive disorder caused by mutations in the ATRX gene. The disease is characterised by severe mental retardation, mild alpha-thalassemia, microcephaly, short stature, facial, skeletal, genital and gonadal abnormalities. Results We examined the expression of ATRX and ATRY during early development and gonadogenesis in two distantly related mammals: the tammar wallaby (a marsupial) and the mouse (a eutherian). This is the first examination of ATRX and ATRY in the developing mammalian gonad and fetus. ATRX and ATRY were strongly expressed in the developing male and female gonad respectively, of both species. In testes, ATRY expression was detected in the Sertoli cells, germ cells and some interstitial cells. In the developing ovaries, ATRX was initially restricted to the germ cells, but was present in the granulosa cells of mature ovaries from the primary follicle stage onwards and in the corpus luteum. ATRX mRNA expression was also examined outside the gonad in both mouse and tammar wallaby whole embryos. ATRX was detected in the developing limbs, craniofacial elements, neural tissues, tail and phallus. These sites correspond with developmental deficiencies displayed by ATR-X patients. Conclusions There is a complex expression pattern throughout development in both mammals, consistent with many of the observed ATR-X syndrome phenotypes in humans. The distribution of ATRX mRNA and protein in the gonads was highly conserved between the tammar and the mouse. The expression profile within the germ cells and somatic cells strikingly overlaps with that of DMRT1, suggesting a possible link between these two genes in gonadal development. Taken together, these data suggest that ATRX has a critical and conserved role in normal development of the testis and ovary in both the somatic and germ cells, and that its broad roles in early mammalian development and gonadal function have remained unchanged for over 148 million years of mammalian evolution. PMID:21672208
ATRX has a critical and conserved role in mammalian sexual differentiation.
Huyhn, Kim; Renfree, Marilyn B; Graves, Jennifer A; Pask, Andrew J
2011-06-14
X-linked alpha thalassemia, mental retardation syndrome in humans is a rare recessive disorder caused by mutations in the ATRX gene. The disease is characterised by severe mental retardation, mild alpha-thalassemia, microcephaly, short stature, facial, skeletal, genital and gonadal abnormalities. We examined the expression of ATRX and ATRY during early development and gonadogenesis in two distantly related mammals: the tammar wallaby (a marsupial) and the mouse (a eutherian). This is the first examination of ATRX and ATRY in the developing mammalian gonad and fetus. ATRX and ATRY were strongly expressed in the developing male and female gonad respectively, of both species. In testes, ATRY expression was detected in the Sertoli cells, germ cells and some interstitial cells. In the developing ovaries, ATRX was initially restricted to the germ cells, but was present in the granulosa cells of mature ovaries from the primary follicle stage onwards and in the corpus luteum. ATRX mRNA expression was also examined outside the gonad in both mouse and tammar wallaby whole embryos. ATRX was detected in the developing limbs, craniofacial elements, neural tissues, tail and phallus. These sites correspond with developmental deficiencies displayed by ATR-X patients. There is a complex expression pattern throughout development in both mammals, consistent with many of the observed ATR-X syndrome phenotypes in humans. The distribution of ATRX mRNA and protein in the gonads was highly conserved between the tammar and the mouse. The expression profile within the germ cells and somatic cells strikingly overlaps with that of DMRT1, suggesting a possible link between these two genes in gonadal development. Taken together, these data suggest that ATRX has a critical and conserved role in normal development of the testis and ovary in both the somatic and germ cells, and that its broad roles in early mammalian development and gonadal function have remained unchanged for over 148 million years of mammalian evolution.
Anti-müllerian hormone and sertoli cell function in paediatric male hypogonadism.
Grinspon, Romina P; Rey, Rodolfo A
2010-01-01
In the prepubertal male, Sertoli cells are the most active testicular cell population. Without stimulation tests, prepubertal hypogonadism can only be evidenced if Sertoli cell function is assessed. Anti-müllerian hormone (AMH) is a distinctive marker of the prepubertal Sertoli cell. Serum AMH is high from fetal life until puberty. In postnatal life, AMH testicular production is stimulated by FSH and potently inhibited by androgens. In anorchid patients, AMH is undetectable. In prepubertal males with fetal- or childhood-onset primary or central hypogonadism affecting the whole gonad, serum AMH is low. Conversely, when hypogonadism only affects Leydig cells (i.e., LH/human chorionic gonadotrophin receptor or steroidogenic enzyme defects), serum AMH is normal/high. AMH is also normal/high in patients with androgen insensitivity. In patients of pubertal age with central hypogonadism, AMH is low for Tanner stage - reflecting lack of FSH stimulus, - but high for age - reflecting lack of testosterone inhibitory effect. FSH treatment results in serum AMH rise, whereas human chorionic gonadotrophin treatment increases testosterone levels which inhibit AMH production. In conclusion, AMH determination is helpful in assessing gonadal function, without need for stimulation tests, and orientates the aetiological diagnosis of paediatric male hypogonadism. Furthermore, serum AMH is an excellent marker of FSH and androgen action in the testis. Copyright 2010 S. Karger AG, Basel.
Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.
Leerberg, Dena M; Sano, Kaori; Draper, Bruce W
2017-09-01
The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.
Lowered reference limits for hCG improve follow-up of patients with hCG-producing tumors.
Nome, Ragnhild V; Bjøro, Trine; Paus, Elisabeth; Bjerner, Johan; Fosså, Sophie D; Steen, Rita; Nustad, Kjell; Bolstad, Nils
2018-02-01
Human Chorionic Gonadotropin (hCG) is produced by germ cell tumors, but can also be elevated in benign conditions such as primary hypogonadism, where hCG is produced by the pituitary gland. In our experience, the reference limits for hCG (Elecsys hCG+β-assay, Roche Diagnostics), were unnecessarily high and did not reflect levels encountered in clinical practice. We wanted to establish new reference limits to increase the clinical utility of the hCG-assay. We analysed hCG in serum samples from a healthy adult population and in a cohort of testicular cancer survivors. The gonadotropins LH and FSH were measured in the cohort and in a selection of the reference population to assess gonadal function. We found low hCG levels for all men and women <45years (97.5 percentiles 0.1 and 0.2IU/L, respectively) from the healthy population (n=795) having normal FSH and LH. Due to assay limitations, we suggest a common reference limit of <0.3IU/L. For the age group ≥45, the 97.5 percentiles in the healthy population were 0.5IU/L for men and 6.0IU/L for women. In all subjects from both the reference population and the cohort (n=732), hCG levels exceeding the reference limit could be fully explained by reduced gonadal function indicated by elevated LH and FSH levels. The Elecsys hCG+β-assay should have lower reference limits than recommended by the manufacturer, with important implications for tumor follow-up. Elevated hCG is rare with intact gonadal function, both in a normal population and among survivors of testicular cancer, and should lead to further investigations when encountered in clinical practice. Copyright © 2017 Oslo University Hospital. Published by Elsevier Inc. All rights reserved.
Bratic, Ivana; Hench, Jürgen; Henriksson, Johan; Antebi, Adam; Bürglin, Thomas R; Trifunovic, Aleksandra
2009-01-01
A number of studies showed that the development and the lifespan of Caenorhabditis elegans is dependent on mitochondrial function. In this study, we addressed the role of mitochondrial DNA levels and mtDNA maintenance in development of C. elegans by analyzing deletion mutants for mitochondrial polymerase gamma (polg-1(ok1548)). Surprisingly, even though previous studies in other model organisms showed necessity of polymerase gamma for embryonic development, homozygous polg-1(ok1548) mutants had normal development and reached adulthood without any morphological defects. However, polg-1 deficient animals have a seriously compromised gonadal function as a result of severe mitochondrial depletion, leading to sterility and shortened lifespan. Our results indicate that the gonad is the primary site of mtDNA replication, whilst the mtDNA of adult somatic tissues mainly stems from the developing embryo. Furthermore, we show that the mtDNA copy number shows great plasticity as it can be almost tripled as a response to the environmental stimuli. Finally, we show that the mtDNA copy number is an essential limiting factor for the worm development and therefore, a number of mechanisms set to maintain mtDNA levels exist, ensuring a normal development of C. elegans even in the absence of the mitochondrial replicase. PMID:19181702
Yada-Hashimoto, Namiko; Komura, Hiroko; Nagata, Shigenori; Kubo, Chiaki; Fujita, Masami; Kamiura, Shoji
2018-06-01
Patients with Swyer syndrome, which is also known as 46,XY pure gonadal dysgenesis, are at an increased risk of gonadoblastoma and germ cell tumor. Prophylactic gonadectomy is recommended for these patients. We report a case of stage IIA dysgerminoma arising in a streak gonad in a patient with Swyer syndrome, which was not diagnosable preoperatively and intraoperatively. The patient was primarily amenorrheic and identified as female phenotypically. She underwent gonadectomy at 27 years of age. Preoperative image analysis showed a relatively small uterus without adnexal masses. Laparoscopic findings showed bilateral streak gonads. Postoperatively, histopathological examination revealed that the patient had dysgerminoma in her left streak gonad. Preoperative and intraoperative diagnosis of dysgerminoma in normal size ovaries is thought to be difficult. Although it is rare, considering the occurrence of dysgerminoma in streak gonad with extension to the mesosalpinx, prompt prophylactic gonadectomy is strongly recommended for these patients regardless of the size of the ovaries.
Chen, Sijie; Zhang, Hefei; Wang, Fenghua; Zhang, Wei; Peng, Gang
2016-09-15
Sex determinations are diverse in vertebrates. Although many sex-determining genes and pathways are conserved, the mechanistic roles of these genes and pathways in the genetic sex determination are not well understood. DAX1 (encoded by the NR0B1 gene) is a vertebrate specific orphan nuclear receptor that regulates gonadal development and sexual determination. In human, duplication of the NR0B1 gene leads to male-to-female sex reversal. In mice, Nr0b1 shows both pro-testis and anti-testis functions. We generated inheritable nr0b1 mutation in the zebrafish and found the nr0b1 mutation caused homozygous mutants to develop as fertile males due to female-to-male sex reversal. The nr0b1 mutation did not increase Caspase-3 labeling nor tp53 expression in the developing gonads. Introduction of a tp53 mutation into the nr0b1 mutant did not rescue the sex-reversal phenotype. Further examination revealed reduction in cell proliferation and abnormal somatic cell differentiation in the nr0b1 mutant gonads at the undifferentiated and bi-potential ovary stages. Together, our results suggest nr0b1 regulates somatic cell differentiation and cell proliferation to ensure normal sex development in the zebrafish. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Freneau, G E; Sá, V A; Franci, C R; Vieira, D; Freneau, B N
2017-01-01
In order to achieve successful captive breeding the Podocnemis expansa, it is necessary to study their reproductive endocrinology. The purpose of this research was to evaluate and characterize plasma concentrations in gonadotrophic, gonadic, corticosterone and prolactin hormones from Giant Amazon Turtles under captive conditions. Blood samples were collected over a 15 month period. The samples were assayed by the use of radioimmunoassay, prolactin, corticosterone, LH, FSH, testosterone, 17β-estradiol and progesterone. We verified significant seasonal pattern increase in 17β-estradiol levels and decrease in progesterone levels in the course of a year, which indicates vitellogenesis. This is related to normal ovarian cycles and possibly to the functional integrity of the hypothalamus-pituitary-gonad axis of captive females. There were negative correlations between testosterone and corticosterone in the male samples, suggestive of stress (management stress) on the reproductive system. The plasma concentrations of gonadotrophic, gonadic, prolactin and corticosterone hormones may be used as a reference for further research and possible therapeutic approaches. The data collected during this research are unprecedented for this species and may serve as a reference for future research regarding the reproductive cycle of this turtle, also allowing reproductive management while in captivity. Information about these hormones must be gathered from wild populations during different periods of the year for better clarification of the reproductive physiology of this species.
WNT4 signaling in female gonadal development.
Pellegrino, Miriam; Maiorino, Raffaella; Schonauer, Sergio
2010-06-01
WNT4 signaling pathways represent an important step in the multi-faceted process of mammalian gonadal differentiation and the development of internal genitalia. WNT4 protein controls the cytoplasmatic stability of specific transcriptional coactivator beta catenin during both embriogenesis and adult homeostasis. The biological significance of WNT4 consists in determining the final female reproductive system, inhibiting Wolff ducts' differentiation, male steroidogenesis and vascular cell migration. An overview of WNT4 cellular mechanisms is given in order to understand its critical role in the genesis of various human diseases such as congenital malformations and gynecological disorders like polycystic ovary syndrome (PCOS). The final discussion focusses on several possible therapeutic uses of Wnt4 both during pregnancy in order to correct the genetic loss of function of the protein and during adulthood in order to normalize fertility in PCOS-affected females planning pregnancy.
Rare successful pregnancy in a patient with Swyer Syndrome.
Taneja, Jyoti; Ogutu, David; Ah-Moye, Michael
2016-10-01
To report a rare successful pregnancy after fertility treatment in a patient with Swyer syndrome. Case report. Herts & Essex Fertility Centre, Cheshunt, UK. A 36-year-old patient with 46, XY gonadal dysgenesis. 31 year old husband with normal sperm analysis. Chromosomal analysis, Saline infusion sonography, Pipelle endometrial scratch, ICSI using donor eggs, Embryo Transfer, and Caesarean delivery. Successful pregnancy and live birth. Successful treatment with donor eggs, pregnancy, and delivery. A patient with 46, XY gonadal dysgenesis in a specially tailored fertility program, can maintain a normal pregnancy and delivery.
Effects of simvastatin and pravastatin on gonadal function in male hypercholesterolemic patients.
Dobs, A S; Miller, S; Neri, G; Weiss, S; Tate, A C; Shapiro, D R; Musliner, T A
2000-01-01
Inhibition of cholesterol biosynthesis by hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors could, in theory, adversely affect male gonadal function because cholesterol is a precursor of steroid hormones. The objective of this randomized double-blind trial was to compare the effects of simvastatin, pravastatin, and placebo on gonadal testosterone production and spermatogenesis. After a 6-week placebo and lipid-lowering diet run-in period, 159 male patients aged 21 to 55 years with type IIa or IIb hypercholesterolemia, low-density lipoprotein (LDL) cholesterol between 145 and 240 mg/dL, and normal basal levels of testosterone were randomly assigned to treatment with simvastatin 20 mg (n = 40), simvastatin 40 mg (n = 41), pravastatin 40 mg (n = 39), or placebo (n = 39) once daily. After 24 weeks of treatment, mean total cholesterol levels were decreased 24% to 27% and mean LDL cholesterol was decreased 30% to 34% in the 3 active-treatment groups (P < .001 for all comparisons to placebo). At 24 weeks, there were no statistically significant differences between the placebo group and any of the active-treatment groups for the change from baseline in testosterone, human chorionic gonadotropin (hCG)stimulated testosterone, free testosterone index, follicle-stimulating hormone (FSH), luteinizing hormone (LH), or sex hormone-binding globulin (SHBG). Moreover, there were no statistically significant differences at week 12 or week 24 for the change from baseline in sperm concentration, ejaculate volume, or sperm motility for any active treatment relative to placebo. Both simvastatin and pravastatin were well tolerated. In summary, we found no evidence for clinically meaningful effects of simvastatin or pravastatin on gonadal testosterone production, testosterone reserve, or multiple parameters of semen quality.
Ranitidine does not affect gonadal function in man.
Wang, C; Wong, K L; Lam, K C; Lai, C L
1983-01-01
We studied the effect of ranitidine on gonadal function in 20 male subjects with chronic duodenal ulcer. Eleven were treated with ranitidine 150 mg twice daily for 3 months and 150 mg at night for 9 months, nine with placebo for 3 months. Similar to placebo, treatment with ranitidine did not influence basal serum concentrations of testosterone (T), luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL). No significant changes were found in sperm concentration, motility or morphology. Ranitidine does not affect gonadal function in man. PMID:6313029
Buscara, Laurine; Montazer-Torbati, Fatemeh; Chadi, Sead; Auguste, Aurélie; Laubier, Johann; Chassot, Anne-Amandine; Renault, Lauriane; Passet, Bruno; Costa, José; Pannetier, Maëlle; Vilotte, Marthe; Chaboissier, Marie-Christine; Vilotte, Jean-Luc; Pailhoux, Eric; Le Provost, Fabienne
2009-08-01
RSPO1 is a newly discovered gene involved in sex differentiation. Two goat BAC clones encompassing the RSPO1 gene (gRSPO1) were injected into mouse oocytes and several transgenic lines derived. Both clones induced gRSPO1 over-expression in various tissues, including male and female gonads, with no obvious phenotype and normal sex-ratios. Introgression of the gRSPO1 transgene into a mouse RSPO1 knockout genotype resulted in the rescue of the fertility and the disappearance of the masculinized gonadic features of the females, demonstrating the functionality of the goat protein in a mouse context. On the contrary, over-expression of gRSPO1 within a mSRY or a gSRY-XX genotypes did not interfere with the SRY-induced male phenotype.
Ribas, Laia; Liew, Woei Chang; Díaz, Noèlia; Sreenivasan, Rajini; Orbán, László; Piferrer, Francesc
2017-02-07
Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a "male-like" gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario.
Dalla Costa, M; Bonanni, G; Masiero, S; Faggian, D; Chen, S; Furmaniak, J; Rees Smith, B; Perniola, R; Radetti, G; Garelli, S; Chiarelli, S; Albergoni, M P; Plebani, M; Betterle, C
2014-01-01
Steroidogenic enzyme autoantibodies (SEAbs) are frequently present and are markers of autoimmune premature ovarian failure (POF) in females with autoimmune Addison's disease (AAD). The prevalence and significance of SEAbs in males with AAD have not yet been defined. We studied the prevalence of SEAbs in a large cohort of males with AAD and assessed the relationship between SEAbs positivity and testicular function. A total of 154 males with AAD (mean age 34 years) were studied. SEAbs included autoantibodies to steroid-producing cells (StCA), detected by immunofluorescence, and steroid 17α-hydroxylase (17α-OHAbs) and side chain cleavage enzyme (SCCAbs) measured by immunoprecipitation assays. Gonadal function was evaluated by measuring follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone (TT), sex hormone-binding globulin (SHGB), anti-müllerian hormone (AMH) and inhibin-B (I-B). Twenty-six males, 10 SEAbs(+) and 16 SEAbs(–), were followed-up for a mean period of 7·6 years to assess the behaviour of SEAbs and testicular function. SEAbs were found in 24·7% of males with AAD, with the highest frequency in patients with autoimmune polyendocrine syndrome type 1 (APS-1). The levels of reproductive hormones in 30 SEAbs(+) males were in the normal range according to age and were not significantly different compared to 55 SEAbs(–) males (P > 0·05). During follow-up, both SEAbs(+) and SEAbs(–) patients maintained normal testicular function. SEAbs were found with high frequency in males with AAD; however, they were not associated with testicular failure. This study suggests that the diagnostic value of SEAbs in males with AAD differs compared to females, and this may be related to the immunoprivileged status of the testis. PMID:24666377
Dalla Costa, M; Bonanni, G; Masiero, S; Faggian, D; Chen, S; Furmaniak, J; Rees Smith, B; Perniola, R; Radetti, G; Garelli, S; Chiarelli, S; Albergoni, M P; Plebani, M; Betterle, C
2014-06-01
Steroidogenic enzyme autoantibodies (SEAbs) are frequently present and are markers of autoimmune premature ovarian failure (POF) in females with autoimmune Addison's disease (AAD). The prevalence and significance of SEAbs in males with AAD have not yet been defined. We studied the prevalence of SEAbs in a large cohort of males with AAD and assessed the relationship between SEAbs positivity and testicular function. A total of 154 males with AAD (mean age 34 years) were studied. SEAbs included autoantibodies to steroid-producing cells (StCA), detected by immunofluorescence, and steroid 17α-hydroxylase (17α-OHAbs) and side chain cleavage enzyme (SCCAbs) measured by immunoprecipitation assays. Gonadal function was evaluated by measuring follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone (TT), sex hormone-binding globulin (SHGB), anti-müllerian hormone (AMH) and inhibin-B (I-B). Twenty-six males, 10 SEAbs((+)) and 16 SEAbs((-)), were followed-up for a mean period of 7·6 years to assess the behaviour of SEAbs and testicular function. SEAbs were found in 24·7% of males with AAD, with the highest frequency in patients with autoimmune polyendocrine syndrome type 1 (APS-1). The levels of reproductive hormones in 30 SEAbs((+)) males were in the normal range according to age and were not significantly different compared to 55 SEAbs((-)) males (P > 0·05). During follow-up, both SEAbs((+)) and SEAbs((-)) patients maintained normal testicular function. SEAbs were found with high frequency in males with AAD; however, they were not associated with testicular failure. This study suggests that the diagnostic value of SEAbs in males with AAD differs compared to females, and this may be related to the immunoprivileged status of the testis. © 2014 British Society for Immunology.
[Late evaluation of the pituitary-gonadal axis in survivors of severe traumatic brain injury].
Hohl, Alexandre; Daltrozo, Jordana Bernardi; Pereira, Camila Girardi; Weber, Thaís Rossoni; Pinto, Heyde Francine; Gullo, Jackson da Silva; Bernardini, Juçara Deitos; Coral, Marisa Helena César; Walz, Roger
2009-11-01
The purpose of this study is to evaluate pituitary function impairment in order to verify the prevalence of sex hormone deficiency and to analyze the profile of TBI population. Thirty patients were studied, 22 were male and 8 were female. All patients had their gonadal function assessed and they were evaluated at a median of 4 years post-trauma. The average age of the men was 38 years at the time of the evaluation, while the mean age of women was 42 years. The majority of TBI was related to traffic accidents (63.3%). Three patients (10%) had low FSH and only 1 patient (3.3%) had low LH. There was no biochemical evidence of hypogonadism in women. Two male patients presented low testosterone (9.1%) and were diagnosed with hypogonadism. Prolactin levels were normal in all patients. Two cases of hypogonadism (9.1%) were diagnosed among men in this study. It is therefore necessary that medical professionals involved in the management of TBI patients are aware of hypogonadism as a complication of TBI, in order to diagnose it early.
Chen, Yu; Yu, Hongshi; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B
2017-01-01
Sex determination and sexual differentiation pathways are highly conserved between marsupials and eutherians. There are 2 different pathways of prostaglandin D2 (PGD2) synthesis: prostaglandin D synthase (PTGDS) and haematopoietic prostaglandin D synthase (HPGDS). PGD2 regulates the subcellular localization of SOX9 during gonadal sexual differentiation. To investigate the function of PGD2 in the tammar gonad, we cultured undifferentiated male gonads in the presence of the HPGDS inhibitor HQL-79 and female gonads with exogenous PGD2 to mimic activation of the PTGDS-PGD2 pathway. Tammar PTGDS and HPGDS have only 50% similarity with mouse and human orthologues, but functional domains are conserved. The expression of SOX9 was unchanged by the treatments in cultured gonads, but its subcellular localization was markedly affected. SOX9 remained cytoplasmic in the Sertoli cells of testes treated with HQL-79. Treated testes developed a thickened ovary-like surface epithelium. In contrast, SOX9 became nuclear in the granulosa cells of developing ovaries treated with PGD2 and the surface epithelium was thin, as in testes. These results demonstrate that PGD2 regulates the subcellular localization of SOX9 and subsequent gonadal development in the developing marsupial gonads, as it does in mice, and that it must have been an ancestral mechanism. © 2017 S. Karger AG, Basel.
Experiment K-7-19: Pineal Physiology After Spaceflight: Relation to Rat Gonadal Function
NASA Technical Reports Server (NTRS)
Holley, D. C.; Soliman, M. R. I.; Krasnov, I.; Asadi, H.
1994-01-01
The function of pineal exposed to microgravity and spaceflight is studied. It is found that the spaceflight resulted in a stress response as indicated by adrenal hypertrophy, that gonadal function was compromised, and that the pineal may be linked as part of the mechanisms of the response noted.
On the role of germ cells in mammalian gonad development: quiet passengers or back-seat drivers?
Rios-Rojas, Clarissa; Bowles, Josephine; Koopman, Peter
2015-04-01
In addition to their role as endocrine organs, the gonads nurture and protect germ cells, and regulate the formation of gametes competent to convey the genome to the following generation. After sex determination, gonadal somatic cells use several known signalling pathways to direct germ cell development. However, the extent to which germ cells communicate back to the soma, the molecular signals they use to do so and the significance of any such signalling remain as open questions. Herein, we review findings arising from the study of gonadal development and function in the absence of germ cells in a range of organisms. Most published studies support the view that germ cells are unimportant for foetal gonadal development in mammals, but later become critical for stabilisation of gonadal function and somatic cell phenotype. However, the lack of consistency in the data, and clear differences between mammals and other vertebrates and invertebrates, suggests that the story may not be so simple and would benefit from more careful analysis using contemporary molecular, cell biology and imaging tools. © 2015 Society for Reproduction and Fertility.
Abdulkader, Marwah M; Yousef, Mohammad M; Abdelhadi, Mohamad K; Amr, Samir S; Alabsi, Eyad S; Al-Abbadi, Mousa A
2013-05-01
We present a 27-yr-old female with gonadal dysgenesis (46, XY), who presented to our hospital with poor consciousness, aphasia, restlessness, and visual hallucination. Physical examination revealed normal breast development and normal external female genetalia. Computed tomography scan of the head and neck revealed the presence of brain edema, hydrocephalous, and a localized hypodense lesion in the hypothalamus. Her serum was positive for the anti-Ma2, which is associated with paraneoplastic encephalitis syndrome. Computed tomography of the abdomen revealed the presence of a 7.5×5.3×3.0 cm solid pelvic mass. Interestingly, a single microscopic focus of dysgerminoma was identified in a background of stromal fibrosis and focal dystrophic calcifications. No ovarian stroma or testicular tissue was identified. To our knowledge, this is the first case of gonadal dysgenesis presenting with anti-Ma2 paraneoplastic encephalitis with dysgerminoma. A discussion about paraneoplastic encephalitis with a microscopic dysgerminoma associated with anti-Ma2 antibody is presented.
ERIC Educational Resources Information Center
Huang, Bin; Hillman, Jennifer; Biro, Frank M.; Ding, Lili; Dorn, Lorah D.; Susman, Elizabeth J.
2012-01-01
Adolescent sexual maturation is staged using Tanner criteria assessed by clinicians, parents, or adolescents. The physiology of sexual maturation is driven by gonadal hormones. We investigate Tanner stage progression as a function of increasing gonadal hormone concentration and compare performances of different raters. Fifty-six boys (mean age,…
Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary.
Minkina, Anna; Lindeman, Robin E; Gearhart, Micah D; Chassot, Anne-Amandine; Chaboissier, Marie-Christine; Ghyselinck, Norbert B; Bardwell, Vivian J; Zarkower, David
2017-04-15
Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the Dmrt1 mutant somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldh1a1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not prevent granulosa cell specification and oogenesis or abolish fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function. Copyright © 2017 Elsevier Inc. All rights reserved.
Mixed gonadal dysgenesis with Turner`s phenotype and mosaic karyotype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarim, O.; Lieber, E.
1994-09-01
A 14 8/12-year-old white female patient was evaluated for short stature and amenorrhea. The past and family history were unremarkable. The physical examination revealed a short girl (131.4 cm; height age: 9) with a weight of 39.5kg (weight age: 11-6/12). The blood pressure was in the normal range in all four extremities and the peripheral pulses were positive. She had stigmata of Turner`s syndrome including short neck and slight webbing, cubitus valgus, and shield chest. There was no heart murmur. The only pubertal sign was pubic hair of Tanner stage II. The chromosome study showed a mosaic pattern. A totalmore » of 67 cultured lymphocytes from peripheral blood were analyzed which revealed 13 cells with 45,XO; 14 with 46,XY,r(Y); 39 with 46,XY. The patient had a normal vagina and hypoplastic uterus by sonogram. The diagnosis of mixed gonadal dysgenesis was confirmed by exploratory laparotomy and bilateral gonadectomy. The histologic examination of the gonads showed a testicle on the left and a streak ovary on right. The karyotype of the testicular tissue revealed 45,XO in 32 out of 40 and 46,XY in the remaining 8 cells. Pre-operative hormonal evaluation showed elevated gonadotropin levels of FSH 73.5 and LH 12.5 mIU/ml, low estradiol level of 5 pg/ml, normal testosterone level of 18 and DHEA-S of 181 mcg/dl, and normal thyroid function test with T4 of 6 mcg/dl and TSH of 4.2 mIU/ml. Her bone age was 12 years. The patient was also found to have subnormal growth hormone (GH) secretion by overnight GH study (1.55 ng/ml), clonidine stimulation test (7.3ng/ml), and insulin stimulation test (9.2 ng/ml). She responded well to human synthetic GH treatment with a growth velocity of 11.5 cm in two years. Replacement of sex hormones will be initiated after the completion of growth.« less
The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila.
Li, Michelle A; Alls, Jeffrey D; Avancini, Rita M; Koo, Karen; Godt, Dorothea
2003-11-01
Interactions between somatic and germline cells are critical for the normal development of egg and sperm. Here we show that the gene traffic jam (tj) produces a soma-specific factor that controls gonad morphogenesis and is required for female and male fertility. tj encodes the only large Maf factor in Drosophila melanogaster, an orthologue of the atypical basic Leu zipper transcription factors c-Maf and MafB/Kreisler in vertebrates. Expression of tj occurs in somatic gonadal cells that are in direct contact with germline cells throughout development. In tj mutant gonads, somatic cells fail to inter-mingle and properly envelop germline cells, causing an early block in germ cell differentiation. In addition, tj mutant somatic cells show an increase in the level of expression for several adhesion molecules. We propose that tj is a critical modulator of the adhesive properties of somatic cells, facilitating germline-soma interactions that are essential for germ cell differentiation.
2017-01-01
Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a “male-like” gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario. PMID:28115725
Kato, Yuichi; Moriwaki, Takahito; Funakoshi, Masafumi; Zhang-Akiyama, Qiu-Mei
2015-02-01
Apurinic/apyrimidinic (AP) sites are the major DNA damage generated continuously even under normal conditions, and inhibit DNA replication/transcription. AP endonucleases are ubiquitous enzymes required for the repair of AP sites and 3' blocking ends, but their physiological roles in multicellular organisms are not fully understood. In this study, we investigated how an AP endonuclease functions in a multicellular organism (Caenorhabditis elegans (C. elegans)). EXO-3 is one of the AP endonucleases in C. elegans. Using an exo-3 mutant worm, we found that deletion of the exo-3 gene caused shortened lifespan in an ung-1-dependent manner. UNG-1 is a uracil DNA glycosylase in C. elegans, and the present finding suggested that UNG-1 is the major producer of AP sites that affects lifespan, and EXO-3 contributes to longevity by completing the repair of uracil. Next we found that the exo-3 gene was abundantly expressed in the gonads, and AP sites in the gonad were efficiently repaired, suggesting that EXO-3 functioned particularly in the gonad. Deletion of the exo-3 gene resulted in a significant decrease in self-brood size. This was rescued by deficiency of NTH-1, which is a bifunctional DNA glycosylase in C. elegans that recognizes oxidative base damage. This result suggested that the major substrate of EXO-3 in the gonad was 3' blocking end generated by NTH-1, and that EXO-3 played an important role in reproduction. A contribution of EXO-3 to reproduction was also suggested by our finding here that the decrease of self-brood size of the exo-3 mutant became more marked when worms were treated with methyl methanesulfonate (MMS) and sodium bisulfite (NaHSO3). This study demonstrated differential roles of EXO-3 in somatic cells and germ cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Gonen, Nitzan; Quinn, Alexander; O'Neill, Helen C; Koopman, Peter; Lovell-Badge, Robin
2017-01-01
During mouse sex determination, transient expression of the Y-linked gene Sry up-regulates its direct target gene Sox9, via a 3.2 kb testis specific enhancer of Sox9 (TES), which includes a core 1.4 kb element, TESCO. SOX9 activity leads to differentiation of Sertoli cells, rather than granulosa cells from the bipotential supporting cell precursor lineage. Here, we present functional analysis of TES/TESCO, using CRISPR/Cas9 genome editing in mice. Deletion of TESCO or TES reduced Sox9 expression levels in XY fetal gonads to 60 or 45% respectively relative to wild type gonads, and reduced expression of the SOX9 target Amh. Although human patients heterozygous for null mutations in SOX9, which are assumed to have 50% of normal expression, often show XY female sex reversal, mice deleted for one copy of Sox9 do not. Consistent with this, we did not observe sex reversal in either TESCO-/- or TES-/- XY embryos or adult mice. However, embryos carrying both a conditional Sox9 null allele and the TES deletion developed ovotestes. Quantitative analysis of these revealed levels of 23% expression of Sox9 compared to wild type, and a significant increase in the expression of the granulosa cell marker Foxl2. This indicates that the threshold in mice where sex reversal begins to be seen is about half that of the ~50% levels predicted in humans. Our results demonstrate that TES/TESCO is a crucial enhancer regulating Sox9 expression in the gonad, but point to the existence of additional enhancers that act redundantly.
O’Neill, Helen C.; Koopman, Peter; Lovell-Badge, Robin
2017-01-01
During mouse sex determination, transient expression of the Y-linked gene Sry up-regulates its direct target gene Sox9, via a 3.2 kb testis specific enhancer of Sox9 (TES), which includes a core 1.4 kb element, TESCO. SOX9 activity leads to differentiation of Sertoli cells, rather than granulosa cells from the bipotential supporting cell precursor lineage. Here, we present functional analysis of TES/TESCO, using CRISPR/Cas9 genome editing in mice. Deletion of TESCO or TES reduced Sox9 expression levels in XY fetal gonads to 60 or 45% respectively relative to wild type gonads, and reduced expression of the SOX9 target Amh. Although human patients heterozygous for null mutations in SOX9, which are assumed to have 50% of normal expression, often show XY female sex reversal, mice deleted for one copy of Sox9 do not. Consistent with this, we did not observe sex reversal in either TESCO-/- or TES-/- XY embryos or adult mice. However, embryos carrying both a conditional Sox9 null allele and the TES deletion developed ovotestes. Quantitative analysis of these revealed levels of 23% expression of Sox9 compared to wild type, and a significant increase in the expression of the granulosa cell marker Foxl2. This indicates that the threshold in mice where sex reversal begins to be seen is about half that of the ~50% levels predicted in humans. Our results demonstrate that TES/TESCO is a crucial enhancer regulating Sox9 expression in the gonad, but point to the existence of additional enhancers that act redundantly. PMID:28045957
Control of molt in birds: association with prolactin and gonadal regression in starlings.
Dawson, Alistair
2006-07-01
Despite the importance of molt to birds, very little is known about its environmental or physiological control. In starlings Sturnus vulgaris, and other species, under both natural conditions and experimental regimes, gonadal regression coincides with peak prolactin secretion. The prebasic molt starts at the same time. The aim of this series of experiments was to keep starlings on photo-schedules that would challenge the normally close relationship between gonadal regression and molt, to determine how closely the start of molt is associated with gonadal regression and/or associated changes in prolactin concentrations. In one series of experiments, photosensitive starlings were moved from a short photoperiod, 8 h light per day (8L), to 13 or 18L, and from 13 to 18L or 13 to 8L during testicular maturation. Later, photorefractory birds under 13L that had finished molting were moved to 18L. In another series of experiments, photorefractory starlings were moved from 18 to 8L for 7 weeks, 4 weeks, 2 weeks, 1 week, 3 days, 1 day, or 0 days, before being returned to 18L. There was no consistent relationship between photoperiod, or the increase in photoperiod, and the timing of the start of molt. Nor was there a consistent relationship with gonadal regression and the start of molt-molt could be triggered in the absence of a gonadal cycle. However, there was always an association between the start of molt and prolactin. In all cases where molt was induced, there had been an earlier increase in prolactin. However, the timing of molt was related to the time of peak prolactin, not the magnitude of that peak. This relationship between peak prolactin and the start of molt could explain the normally close relationship between the end of breeding activity and the start of molt.
[Fertility preservation in patients with hematological malignancies].
Kanda, Yoshinobu
2015-03-01
Antineoplastic chemotherapy and irradiation affect gonadal function and may lead to infertility. Recovery of gonadal function is frequently observed after conventional chemotherapy in young patients with hematological malignancies, but conditioning regimens before hematopoietic stem cell transplantation result in permanent gonadal failure. Cryopreservation of sperm is effective for male patients, but it becomes difficult even after a single cycle of chemotherapy and therefore should be accomplished before starting chemotherapy. Embryo freezing after in vitro fertilization of harvested oocytes is an established method to preserve fertility in female patients. In addition, harvesting and freezing of unfertilized oocytes is also being evaluated in a clinical study. However, collection of good oocytes after chemotherapy is difficult. In addition, oocyte harvesting is an invasive procedure and may be associated with hemorrhage or infectious complications. Ovarian shielding during total body irradiation allows ovary preservation in most female patients, but this cannot be performed in patients with active malignancies. Strategies for gonadal function preservation should be planned before starting treatment for hematological malignancies.
Papoulias, D.M.; Villalobos, Sergio A.; Meadows, J.; Noltie, Douglas B.; Giesy, J.P.; Tillitt, D.E.
2003-01-01
Despite being banned in many countries, dichlorodiphenyltrichloroethane (DDT) and its metabolites dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) continue to be found in fish tissues at concentrations of concern. Like o,p -DDT, o,p -DDE is estrogenic and is believed to exert its effects through binding to the estrogen receptor. The limited toxicologic data for o,p -DDE suggest that it decreases fecundity and fertility of fishes. We conducted an egg injection study using the d-rR strain of medaka and environmentally relevant concentrations of o,p -DDE to examine its effects on sexual differentiation and development. The gonads of exposed fish showed no evidence of sex reversal or intersex. However, other gonad abnormalities occurred in exposed individuals. Females exhibited few vitellogenic oocytes and increased atresia. Male testes appeared morphologically normal but were very small. Gonadosomatic index values for both sexes were lower for exposed fish. Our observations of abnormal female and very small male gonads after in ovo o,p -DDE exposure may be indicative of effects on early endocrine processes important for normal ovarian and testicular development.
Callander, Davon C; Alcorn, Melissa R; Birsoy, Bilge; Rothman, Joel H
2014-06-01
Anatomical left-right (L/R) asymmetry in C. elegans is established in the four-cell embryo as a result of anteroposterior skewing of transverse mitotic spindles with a defined handedness. This event creates a chiral embryo and ultimately an adult body plan with fixed L/R positioning of internal organs and components of the nervous system. While this "dextral" configuration is invariant in hermaphrodites, it can be reversed by physical manipulation of the early embryo or by mutations that interfere with mitotic spindle orientation, which leads to viable, mirror-reversed (sinistral) animals. During normal development of the C. elegans male, the gonad develops on the right of the midline, with the gut bilaterally apposed on the left. However, we found that in males of the laboratory N2 strain and Hawaiian ("Hw") wild isolate, the gut/gonad asymmetry is frequently reversed in a temperature-dependent manner, independent of normal embryonic chirality. We also observed sporadic errors in gonad migration occurring naturally during early larval stages of these and other wild strains; however, the incidence of such errors does not correlate with the frequency of L/R gut/gonad reversals in these strains. Analysis of N2/Hw hybrids and recombinant inbred advanced intercross lines (RIAILs) indicate that the L/R organ reversals are likely to result from recessively acting variations in multiple genes. Thus, unlike the highly reproducible L/R asymmetries of most structures in hermaphrodites, the L/R asymmetry of the male C. elegans body plan is less rigidly determined and subject to natural variation that is influenced by a multiplicity of genes. © 2014 Wiley Periodicals, Inc.
Barbaro, Michela; Oscarson, Mikael; Schoumans, Jacqueline; Staaf, Johan; Ivarsson, Sten A; Wedell, Anna
2007-08-01
Testis development is a tightly regulated process that requires an efficient and coordinated spatiotemporal action of many factors, and it has been shown that several genes involved in gonadal development exert a dosage effect. Chromosomal imbalances have been reported in several patients presenting with gonadal dysgenesis as part of severe dysmorphic phenotypes. We screened for submicroscopic DNA copy number variations in two sisters with an apparent normal 46,XY karyotype and female external genitalia due to gonadal dysgenesis, and in which mutations in known candidate genes had been excluded. By high-resolution tiling bacterial artificial chromosome array comparative genome hybridization, a submicroscopic duplication at Xp21.2 containing DAX1 (NR0B1) was identified. Using fluorescence in situ hybridization, multiple ligation probe amplification, and PCR, the rearrangement was further characterized. This revealed a 637-kb tandem duplication that in addition to DAX1 includes the four MAGEB genes, the hypothetical gene CXorf21, GK, and part of the MAP3K7IP3 gene. Sequencing and analysis of the breakpoint boundaries and duplication junction suggest that the duplication originated through a coupled homologous and nonhomologous recombination process. This represents the first duplication on Xp21.2 identified in patients with isolated gonadal dysgenesis because all previously described XY subjects with Xp21 duplications presented with gonadal dysgenesis as part of a more complex phenotype, including mental retardation and/or malformations. Thus, our data support DAX1 as a dosage sensitive gene responsible for gonadal dysgenesis and highlight the importance of considering DAX1 locus duplications in the evaluation of all cases of 46,XY gonadal dysgenesis.
Bourdon, M; Torres-Rovira, L; Monniaux, D; Faure, C; Levy, R; Tarrade, A; Rousseau-Ralliard, D; Chavatte-Palmer, P; Jolivet, G
2018-06-18
The aim of the present work was to address experimentally the possible impact of exposure to air pollution during gestation on the differentiation and function of the gonads of the offspring using a rabbit model. Rabbits were exposed daily to diluted diesel exhaust gas or filtered air from the 3rd until the 27th day of gestation, during which time germ cells migrate in genital ridges and divide, and fetal sex is determined. Offspring gonads were collected shortly before birth (28th day of gestation) or after puberty (7.5 months after birth). The structure of the gonads was analyzed by histological and immunohistological methods. Serum concentrations of testosterone and anti-Müllerian hormone were determined using ELISA. The morphology and the endocrine function of the gonads collected just at the arrest of the exposure were similar in polluted and control animals in both sexes. No differences were observed as well in gonads collected after puberty. Sperm was collected at the head of the epididymis in adults. Sperm motility and DNA fragmentation were measured. Among all parameters analyzed, only the sperm DNA fragmentation rate was increased three-fold in exposed males. Mechanisms responsible for these modifications and their physiological consequences are to be further clarified.
[Structure and ultrastructure of the ovary of Cichlasoma urophthalmus (Osteichthyes: Cichlidae)].
Viedma, Rubí; Franco, Jonathan; Bedia, Carlos; Guedea Fernández, Guadalupe; Villa Zevallos, Héctor Barrera; Barrera Escorcia, Héctor
2011-06-01
The study of the normal development, differentiation, structure and function of various components of developing follicles in the ovaries of numerous fish species have been a consistent focus of comparative reproduction. The structural and ultrastructural features of gonads from Cichlasoma urophthalmus have received scarce attention. In this work, we realized a descriptive study of female gonads of Cichlasoma urophthalmus. A total of 40 samples were collected in the Veracruz Alvarado Lagoon, Mexico in 2007-2008 period including the windy, dry and rainy seasons. Female gonads were extracted and a portion was fixed in 4% formaldehyde for treatment for routine histology hematoxylin and eosin (HE) and another part was processed for transmission electron microscopy (TEM). The gonads were fixed in 3% glutaraldehyde and 2% osmium tetroxide, followed by dehydrated in ethanol 50%, 70%, 80%, 95% and 100% for inclusion in Epon, thin sections were then prepared and were contrasted with lead citrate and uranyl acetate. The process of oocyte development can be divided into five distinct stages (formation of oocytes from oogonia, primary growth, lipid stage, vitellogenesis and maturation). In this work, we found that the primary growth stage is characterized by intense RNA synthesis and the differentiation of the vitelline envelope. Secondary growth starts with the accumulation of lipid droplets in the oocyte cytoplasm (lipid stage), which is then followed by massive uptake and processing of proteins into yolk platelets (vitellogenic stage). During the maturation stage, the lipid inclusions coalesce into a single oil droplet, and hydrolysis of the yolk platelets leads to the formation of a homogeneous mass of fluid yolk in mature eggs. In conclusion, further studies should elucidate structure and ultrastructural changes in the ovarian follicular components, in C. urophthalmus during different stages of oocyte growth.
Fonseca, Ana Luiza Vidal; Chimelli, Leila; Santos, Mario José C Felippe; Santos, Alair Augusto S M Damas dos; Violante, Alice Helena Dutra
2002-09-01
To study the influence of hyperprolactinemia and tumoral size in the pituitary function in clinically nonfunctioning pituitary macroadenomas. Twenty three patients with clinically nonfunctioning pituitary macroadenomas were evaluated by image studies (computed tomography or magnetic resonance) and basal hormonal level; 16 had preoperative hypothalamus-hypophysial function tests (megatests). All tumors had histological diagnosis and in seventeen immunohistochemical study for adenohypophysial hormones was also performed. Student's t test, chi square test, exact test of Fisher and Mc Neman test were used for the statistics analysis. The level of significance adopted was 5% (p<0.05). Tumoral diameter varied of 1.1 to 4.7 cm (average=2.99 cm +/- 1.04). In the preoperative, 5 (21.7%) patients did not show laboratorial hormonal deficit, 9 (39.1%) developed hyperprolactinemia, 13 (56,5%) normal levels of prolactin (PRL) and 1 (4.3%) subnormal; 18 (78.3%) patients developed hypopituitarism (4 pan-hypopituitarism). Nineteen patients (82.6%) underwent transsfenoidal approach, 3 (13%) craniotomy and 1 (4.4%) combined access. Only 6 patients had total tumoral resection. Of the 17 immunohistochemical studies, 5 tumours were immunonegatives, 1 compound, 1 LH+, 1 FSH +, 1 alpha sub-unit and 8 focal or isolated immunorreactivity for one of the pituitary hormones or sub-units; of the other six tumours, 5 were chromophobe and 1 chromophobe/acidophile. No significant statistic difference was noted between tumoral size and preoperative PRL levels (p=0.82), nor between tumoral size and postoperative hormonal state, except in the GH and gonadal axis. Significant statistic was noted: between tumoral size and preoperative hormonal state (except in the gonadal axis); between normal PRL levels, associated to none or little preoperative hypophysial disfunction, and recovery of postoperative pituitary function. Isolated preoperative hyperprolactinemia and tumoral size have not been predictable for the recovery of postoperative pituitary function.
Barbaro, Michela; Cook, Jackie; Lagerstedt-Robinson, Kristina; Wedell, Anna
2012-01-01
A 160 kb minimal common region in Xp21 has been determined as the cause of XY gonadal dysgenesis, if duplicated. The region contains the MAGEB genes and the NR0B1 gene; this is the candidate for gonadal dysgenesis if overexpressed. Most patients present gonadal dysgenesis within a more complex phenotype. However, few independent cases have recently been described presenting with isolated XY gonadal dysgenesis caused by relatively small NR0B1 locus duplications. We have identified another NR0B1 duplication in two sisters with isolated XY gonadal dysgenesis with an X-linked inheritance pattern. We performed X-inactivation studies in three fertile female carriers of three different small NR0B1 locus duplications identified by our group. The carrier mothers did not show obvious skewing of X-chromosome inactivation, suggesting that NR0B1 overexpression does not impair ovarian function. We furthermore emphasize the importance to investigate the NR0B1 locus also in patients with isolated XY gonadal dysgenesis. PMID:22518125
FGFR2 mutation in 46,XY sex reversal with craniosynostosis
Bagheri-Fam, Stefan; Ono, Makoto; Li, Li; Zhao, Liang; Ryan, Janelle; Lai, Raymond; Katsura, Yukako; Rossello, Fernando J.; Koopman, Peter; Scherer, Gerd; Bartsch, Oliver; Eswarakumar, Jacob V.P.; Harley, Vincent R.
2015-01-01
Patients with 46,XY gonadal dysgenesis (GD) exhibit genital anomalies, which range from hypospadias to complete male-to-female sex reversal. However, a molecular diagnosis is made in only 30% of cases. Heterozygous mutations in the human FGFR2 gene cause various craniosynostosis syndromes including Crouzon and Pfeiffer, but testicular defects were not reported. Here, we describe a patient whose features we would suggest represent a new FGFR2-related syndrome, craniosynostosis with XY male-to-female sex reversal or CSR. The craniosynostosis patient was chromosomally XY, but presented as a phenotypic female due to complete GD. DNA sequencing identified the FGFR2c heterozygous missense mutation, c.1025G>C (p.Cys342Ser). Substitution of Cys342 by Ser or other amino acids (Arg/Phe/Try/Tyr) has been previously reported in Crouzon and Pfeiffer syndrome. We show that the ‘knock-in’ Crouzon mouse model Fgfr2cC342Y/C342Y carrying a Cys342Tyr substitution displays XY gonadal sex reversal with variable expressivity. We also show that despite FGFR2c-Cys342Tyr being widely considered a gain-of-function mutation, Cys342Tyr substitution in the gonad leads to loss of function, as demonstrated by sex reversal in Fgfr2cC342Y/− mice carrying the knock-in allele on a null background. The rarity of our patient suggests the influence of modifier genes which exacerbated the testicular phenotype. Indeed, patient whole exome analysis revealed several potential modifiers expressed in Sertoli cells at the time of testis determination in mice. In summary, this study identifies the first FGFR2 mutation in a 46,XY GD patient. We conclude that, in certain rare genetic contexts, maintaining normal levels of FGFR2 signaling is important for human testis determination. PMID:26362256
Behringer, Karolin; Mueller, Horst; Goergen, Helen; Thielen, Indra; Eibl, Angelika Diana; Stumpf, Volker; Wessels, Carsten; Wiehlpütz, Martin; Rosenbrock, Johannes; Halbsguth, Teresa; Reiners, Katrin S; Schober, Thomas; Renno, Jorg H; von Wolff, Michael; van der Ven, Katrin; Kuehr, Marietta; Fuchs, Michael; Diehl, Volker; Engert, Andreas; Borchmann, Peter
2013-01-10
To optimize fertility advice in patients with Hodgkin lymphoma (HL) before therapy and during survivorship, information on the impact of chemotherapy is needed. Therefore, we analyzed gonadal functions in survivors of HL. Women younger than age 40 and men younger than 50 years at diagnosis in ongoing remission at least 1 year after therapy within the German Hodgkin Study Group HD13 to HD15 trials for early- and advanced-stage HL were included. Hormone parameters, menstrual cycle, symptoms of hypogonadism, and offspring were evaluated. A total of 1,323 (55%) of 2,412 contacted female and male survivors were evaluable for the current analysis (mean follow-up, 46 and 48 months, respectively). Follicle-stimulating hormone, anti-Müllerian hormone, and inhibin B levels correlated significantly with therapy intensity (P < .001). Low birth rates were observed in survivors after advanced-stage treatment within the observation time (women, 6.5%; men, 3.3%). Regular menstrual cycle was reported by more than 90% of female survivors of early-stage HL (recovery time mostly ≤ 12 months). After six to eight cycles of bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone, menstrual activity was strongly related to age (< v ≥ 30 years: 82% v 45%, respectively; P < .001; prolonged recovery time). Thirty-four percent of women age ≥ 30 years suffered severe menopausal symptoms (three- to four-fold more frequently than expected). In contrast, male survivors had mean levels of testosterone within the normal range and reported no increased symptoms of hypogonadism. The present analysis in a large group of survivors of HL provides well-grounded information on gonadal toxicity of currently used treatment regimens and allows risk-adapted fertility preservation and comprehensive support during therapy and follow-up.
Merhi, Zaher; Pollack, Staci E
2013-01-01
To report a case of persistently elevated low levels of hCG to increase awareness of pituitary origin of persistently elevated hCG in patients with gonadal failure. Case report and literature review. Large university-affiliated infertility practice. A 16-year-old patient with primary amenorrhea, normal secondary sex characteristics, ovarian failure, and a 46,XY karyotype. Her past medical history was significant for focal segmental glomerulosclerosis, leading to a diagnosis of Frasier syndrome. At age 31 years, she desired pregnancy by oocyte donation and was found to have persistently elevated low levels of hCG (>35 mIU/mL). Pituitary hCG. Both serum free β-hCG and hyperglycosylated hCG were undetectable. Total serum hCG diluted appropriately was not blocked by blocking agent and was detected in the urine. Subsequent treatment with exogenous E(2), in preparation of a donor oocyte cycle, suppressed her hCG levels (down to 8 mIU/mL). These results indicated a pituitary source of the serum hCG. This report reinforces the need to consider pituitary hCG as the origin of persistently elevated hCG levels in patients with gonadal failure. Although levels of hCG <14 mIU/mL have been considered normal in postmenopausal women, our case suggests that patients with gonadal failure at younger ages might have a higher pituitary output of hCG. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Wolff, Stephanie E.; Veldhoen, Nik; Helbing, Caren C.; Ramirez, Claire A.; Malpas, Janae M.; Propper, Catherine R.
2015-01-01
Wildlife and human populations are exposed to anthropogenic mixtures of chemicals in the environment that may adversely influence normal reproductive function and development. We determined the effects of exposure to estrogenic chemicals and wastewater effluent (WWE) on developing gonads of the American bullfrog, Rana (Lithobates) catesbeiana, a species whose widespread distribution make it an ideal model for environmental monitoring for endocrine effects of chemical contaminants. Premetamorphic bullfrog tadpoles were exposed to treatment vehicle, 17β-estradiol (E2; 10−9 M) or 4-tert-octylphenol (OP; 10−9 M, 10−8 M, and 10−7 M). Additionally, gonadal differentiation was evaluated in bullfrog tadpoles from a WWE-containing site versus those from a reference location receiving no WWE. In both studies, phenotypic sex, steroidogenic factor-1 (nr5a1), and aromatase (cyp19a1) mRNA levels using quantitative real-time PCR were determined. Exposure to E2 or OP did not alter sex ratios. In controls, both nr5a1 and cyp19a1 transcript levels exhibited sexual dimorphism, with males demonstrating higher levels of nr5a1 and females greater abundance of cyp19a1. However, E2 exposure increased cyp19a1 mRNA abundance in testes and decreased levels in ovaries, eliminating the sexual dimorphism observed in controls. E2-exposed males exhibited increased nr5a1 transcript levels in the testes compared to controls, while females demonstrated no E2 effect. OP treatment had no effect on female cyp19a1 mRNA abundance, but exposure to 10−7 M OP increased testicular transcript levels. Treatment with 10−9 and 10−8 M OP, but not 10−7 M, resulted in decreased abundance of nr5a1 transcript in both ovaries and testes. Animals from the field had sexually dimorphic gonadal levels of cyp19a1, but both sexes from the WWE site exhibited elevated cyp19a1 transcript abundance compared to the reference location. Individual chemical compounds and anthropogenic wastewater effluent dispersed within the environment influence the levels of gonadal mRNA encoding key proteins involved in gonadal differentiation. PMID:25863316
Autism Spectrum Disorder in a Girl with a De Novo X;19 Balanced Translocation
Baruffi, Marcelo Razera; de Souza, Deise Helena; Bicudo da Silva, Rosana Aparecida; Ramos, Ester Silveira; Moretti-Ferreira, Danilo
2012-01-01
Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process. PMID:23074688
XY (SRY-positive) Ovarian Disorder of Sex Development in Cattle.
De Lorenzi, Lisa; Arrighi, Silvana; Rossi, Elena; Grignani, Pierangela; Previderè, Carlo; Bonacina, Stefania; Cremonesi, Fausto; Parma, Pietro
2018-06-13
In mammals, the sex of the embryo depends on the SRY gene. In the presence of at least one intact and functional copy of this genetic factor (XY embryo) undifferentiated gonads will develop as testicles that subsequently determine the male phenotype. When this factor is not present, i.e., in subjects with 2 X chromosomes, an alternative pathway induces the development of ovaries, hence a female phenotype. In this case study, we describe a female cattle affected by a disorder of sex development (DSD). The subject, despite having a chromosomal XY constitution, did not develop testicles but ovaries, although they were underdeveloped. Moreover, genetic analysis highlighted the presence of the SRY gene with a normal coding region in both blood- and tissue-derived DNA. A chimeric condition was excluded in blood by sexing more than 350 cells and by allele profile investigation of 18 microsatellite markers. Array CGH analysis showed the presence of a not yet described 99-kb duplication (BTA18), but its relationship with the phenotype remains to be demonstrated. Gonadal histology demonstrated paired ovaries: the left one containing a large corpus luteum and the right one showing an underdeveloped aspect and very few early follicles. To our knowledge, we describe the first case of XY (SRY+) DSD in cattle with a normal SRY gene coding sequence. © 2018 S. Karger AG, Basel.
Haas, R.; Alenciks, E.; Meddle, S.; Fraley, G. S.
2017-01-01
Abstract Several putative deep brain photoreceptors (DBPs) have been identified, such as melanopsin, opsin 5, and vertebrate ancient opsin. The aim of this study was to elucidate the role of DBPs in gonadal regulation in the Pekin drake. As previously reported, we observed opsin-like immunoreactivity (-ir) in the lateral septum (LS), melanopsin-ir in the premammillary nucleus (PMM), and opsin 5-ir in the periventricular organ. To determine the sensitivity of the DBPs to specific wavelengths of light, drakes were given an acute exposure to red, blue, or white light. Blue light stimulated an increase (P < 0.01) in the immediate early gene fra-2-ir co-expression in melanopsin-ir neurons in the PMM, and red light increased (P < 0.05) fra-2-ir co-expression in opsin-ir neurons, suggesting these neurons are blue- and red-receptive, respectively. To further investigate this photoperiodic response, we exposed drakes to chronic red, long-day white, short-day white, or blue light. Blue light elicited gonadal regression, as testes weight (P < 0.001) and plasma luteinizing hormone (LH) levels (P < 0.001) were lower compared to drakes housed under long-day white light. Photo-regressed drakes experienced complete gonadal recrudescence when housed under long-day red and blue light. qRT-PCR analyses showed that gonadally regressed drakes showed reduced levels (P < 0.01) of gonadotropin releasing hormone (GnRH) mRNA but not photoreceptor or GnIH mRNAs compared to gonadally functional drakes. Our data suggest DBP in the LS may be rhodosin and multiple DBPs are required to fully maintain gonadal function in Pekin drakes. PMID:28339754
Grinspon, Romina P; Rey, Rodolfo A
2011-11-01
Sertoli cells are the most active cell population in the testis during infancy and childhood. In these periods of life, hypogonadism can only be evidenced without stimulation tests, if Sertoli cell function is assessed. AMH is a useful marker of prepubertal Sertoli cell activity and number. Serum AMH is high from fetal life until mid-puberty. Testicular AMH production increases in response to FSH and is potently inhibited by androgens. Serum AMH is undetectable in anorchidic patients. In primary or central hypogonadism affecting the whole gonad and established in fetal life or childhood, serum AMH is low. Conversely, when hypogonadism affects only Leydig cells (e.g. LHβ mutations, LH/CG receptor or steroidogenic enzyme defects), serum AMH is normal or high. In pubertal males with central hypogonadism, AMH is low for Tanner stage (reflecting lack of FSH stimulus), but high for the age (indicating lack of testosterone inhibitory effect). Treatment with FSH provokes an increase in serum AMH, whereas hCG administration increases testosterone levels, which downregulate AMH. In conclusion, assessment of serum AMH is helpful to evaluate gonadal function, without the need for stimulation tests, and guides etiological diagnosis of pediatric male hypogonadism. Furthermore, serum AMH is an excellent marker of FSH and androgen action on the testis.
Hayes, Tyrone B.; Stuart, A. Ali; Mendoza, Magdalena; Collins, Atif; Noriega, Nigel; Vonk, Aaron; Johnston, Gwynne; Liu, Roger; Kpodzo, Dzifa
2006-01-01
Atrazine is a potent endocrine disruptor that both chemically castrates and feminizes male amphibians. It depletes androgens in adult frogs and reduces androgen-dependent growth of the larynx in developing male larvae. It also disrupts normal gonadal development and feminizes the gonads of developing males. Gonadal malformations induced by atrazine include hermaphrodites and males with multiple testes [single sex polygonadism (SSP)], and effects occur at concentrations as low as 0.1 ppb (μg/L). Here, we describe the frequencies at which these malformations occur and compare them with morphologies induced by the estrogen, 17β-estradiol (E2), and the antiandrogen cyproterone acetate, as a first step in testing the hypothesis that the effects of atrazine are a combination of demasculinization and feminization. The various forms of hermaphroditism did not occur in controls. Nonpigmented ovaries, which occurred at relatively high frequencies in atrazine-treated larvae, were found in four individuals out of more than 400 controls examined (1%). Further, we show that several types of gonadal malformations (SSP and three forms of hermaphroditism) are produced by E2 exposure during gonadal differentiation, whereas a final morphology (nonpigmented ovaries) appears to be the result of chemical castration (disruption of androgen synthesis and/or activity) by atrazine. These experimental findings suggest that atrazine-induced gonadal malformations result from the depletion of androgens and production of estrogens, perhaps subsequent to the induction of aromatase by atrazine, a mechanism established in fish, amphibians, reptiles, and mammals (rodents and humans). PMID:16818259
Mazzoni, Talita Sarah; Lo Nostro, Fabiana Laura; Antoneli, Fernanda Natália; Quagio-Grassiotto, Irani
2018-01-01
Teleostei present great plasticity regarding sex change. During sex reversal, the whole gonad including the germinal epithelium undergoes significant changes, remodeling, and neoformation. However, there is no information on the changes that occur within the interstitial compartment. Considering the lack of information, especially on the role played by metalloproteinases (MMPs) in fish gonadal remodeling, the aim of this study was to evaluate the action of MMPs on gonads of sex reversed females of Synbranchus marmoratus, a fresh water protogynic diandric fish. Gonads were processed for light microscopy and blood samples were used for the determination of plasma sex steroid levels. During sex reversal, degeneration of the ovaries occurred and were gradually replaced by the germinal tissue of the male. The action of the MMPs induces significant changes in the interstitial compartment, allowing the reorganization of germinal epithelium. Leydig cells also showed an important role in female to male reversion. The gonadal transition coincides with changes in circulating sex steroid levels throughout sex reversion. The action of the MMPs, in the gonadal remodeling, especially on the basement membrane, is essential for the establishment of a new functional germinal epithelium. PMID:29695033
Piro, Eugenia; Abati, Laura; Zocca, Veronica; Brugnoni, Marta; D'Alessio, Antonio
2017-06-23
Polyorchidism is an anomaly characterized by more than two gonads; triorchidism is the most common variant. Its management is controversial, mostly when surgical treatment is occasional. CB, 14 year-old, came to the hospital due to right-sided testicular torsion. During surgery, testis was rotated and the contralateral testis, which presented as an anatomically continuum with a gonadic structure similar to the other testes but with a smaller diameter, was fixed. We performed biopsy on both left testes and decided to preserve the supernumerary one. Following the anatomic and functional classification of polyorchidism by Singer, preservation is justified on the grounds of the presence of a supernumerary testis that drains into the epididymis of the normal testis, merging into one single deferent duct (Singer Type 1). At biopsy, both testes had a valid spermatogenic asset. The diagnostic follow-up at 6 and 12 months did not show any pathological alteration. Diagnosis of polyorchidism is occasional. Its treatment varies depending on the site, dimension, and anatomy of the drainage system of the supernumerary testis. If the supernumerary testis is preserved, a standardized diagnostic follow-up is recommended.
Fagegaltier, Delphine; König, Annekatrin; Gordon, Assaf; Lai, Eric C; Gingeras, Thomas R; Hannon, Gregory J; Shcherbata, Halyna R
2014-10-01
MiRNAs bear an increasing number of functions throughout development and in the aging adult. Here we address their role in establishing sexually dimorphic traits and sexual identity in male and female Drosophila. Our survey of miRNA populations in each sex identifies sets of miRNAs differentially expressed in male and female tissues across various stages of development. The pervasive sex-biased expression of miRNAs generally increases with the complexity and sexual dimorphism of tissues, gonads revealing the most striking biases. We find that the male-specific regulation of the X chromosome is relevant to miRNA expression on two levels. First, in the male gonad, testis-biased miRNAs tend to reside on the X chromosome. Second, in the soma, X-linked miRNAs do not systematically rely on dosage compensation. We set out to address the importance of a sex-biased expression of miRNAs in establishing sexually dimorphic traits. Our study of the conserved let-7-C miRNA cluster controlled by the sex-biased hormone ecdysone places let-7 as a primary modulator of the sex-determination hierarchy. Flies with modified let-7 levels present doublesex-related phenotypes and express sex-determination genes normally restricted to the opposite sex. In testes and ovaries, alterations of the ecdysone-induced let-7 result in aberrant gonadal somatic cell behavior and non-cell-autonomous defects in early germline differentiation. Gonadal defects as well as aberrant expression of sex-determination genes persist in aging adults under hormonal control. Together, our findings place ecdysone and let-7 as modulators of a somatic systemic signal that helps establish and sustain sexual identity in males and females and differentiation in gonads. This work establishes the foundation for a role of miRNAs in sexual dimorphism and demonstrates that similar to vertebrate hormonal control of cellular sexual identity exists in Drosophila. Copyright © 2014 by the Genetics Society of America.
Functional insights into the testis transcriptome of the edible sea urchin Loxechinus albus
Gaitán-Espitia, Juan Diego; Sánchez, Roland; Bruning, Paulina; Cárdenas, Leyla
2016-01-01
The edible sea urchin Loxechinus albus (Molina, 1782) is a keystone species in the littoral benthic systems of the Pacific coast of South America. The international demand for high-quality gonads of this echinoderm has led to an extensive exploitation and decline of its natural populations. Consequently, a more thorough understanding of L. albus gonad development and gametogenesis could provide valuable resources for aquaculture applications, management, conservation and studies about the evolution of functional and structural pathways that underlie the reproductive toolkit of marine invertebrates. Using a high-throughput sequencing technology, we explored the male gonad transcriptome of this highly fecund sea urchin. Through a de novo assembly approach we obtained 42,530 transcripts of which 15,544 (36.6%) had significant alignments to known proteins in public databases. From these transcripts, approximately 73% were functionally annotated allowing the identification of several candidate genes that are likely to play a central role in developmental processes, nutrient reservoir activity, sexual reproduction, gamete generation, meiosis, sex differentiation, sperm motility, male courtship behavior and fertilization. Additionally, comparisons with the male gonad transcriptomes of other echinoderms revealed several conserved orthologous genes, suggesting that similar functional and structural pathways underlie the reproductive development in this group and other marine invertebrates. PMID:27805042
Piprek, Rafal P; Damulewicz, Milena; Kloc, Malgorzata; Kubiak, Jacek Z
Development of the gonads is a complex process, which starts with a period of undifferentiated, bipotential gonads. During this period the expression of sex-determining genes is initiated. Sex determination is a process triggering differentiation of the gonads into the testis or ovary. Sex determination period is followed by sexual differentiation, i.e. appearance of the first testis- and ovary-specific features. In Xenopus laevis W-linked DM-domain gene (DM-W) had been described as a master determinant of the gonadal female sex. However, the data on the expression and function of other genes participating in gonad development in X. laevis, and in anurans, in general, are very limited. We applied microarray technique to analyze the expression pattern of a subset of X. laevis genes previously identified to be involved in gonad development in several vertebrate species. We also analyzed the localization and the expression level of proteins encoded by these genes in developing X. laevis gonads. These analyses pointed to the set of genes differentially expressed in developing testes and ovaries. Gata4, Sox9, Dmrt1, Amh, Fgf9, Ptgds, Pdgf, Fshr, and Cyp17a1 expression was upregulated in developing testes, while DM-W, Fst, Foxl2, and Cyp19a1 were upregulated in developing ovaries. We discuss the possible roles of these genes in development of X. laevis gonads. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costin, G.
1988-08-01
Spontaneous growth hormone (GH) secretory dynamics and hypothalamic-pituitary function were studied in 16 long-term survivors of acute lymphoblastic leukemia who were aged 9 to 15 1/2 years and had been treated with prophylactic central nervous system radiation and combined chemotherapy. At the time of study, the mean height was -1.5 SD score below the mean, less than genetic potential, and significantly less than the mean pretreatment height of -0.25 SD score. Height velocity was subnormal for age and sexual stage in all patients. Two patients had compensated hypothyroidism, and four had evidence of gonadal failure. In 11 patients, the peakmore » GH level after two provocative tests was below 10 micrograms/L, which was consistent with GH deficiency. In ten of 13 patients tested, spontaneous GH secretion determined by a 24-hour GH concentration (GHC), GH pulse amplitude, frequency of GH pulses greater than or equal to 5 micrograms/L, and GH peak during wake and sleep hours was significantly less than in normal height controls. Although in three pubertal patients the 24-hour GHC was within normal limits, the GHC during sleep hours, GH pulse amplitude during 24 hours and sleep hours, and peak GH during wake hours were significantly less than in normal height controls. In all pubertal and in two of the prepubertal patients, the somatomedin C (SmC) level was significantly less than in controls. The 24-hour GHC correlated well with the GHC during sleep, peak-stimulated GH level, gonadal steroid level, and the SmC level, but not with height velocity, dose of radiation, or age at radiation. A significant increase in height velocity and the SmC level was noted in all patients treated with GH. These results indicate that GH deficiency occurs after 18 to 24 Gy of cranial radiation and that the puberty-associated growth spurt may mask the decline in height velocity owing to GH deficiency.« less
Baldinotti, Fulvia; Cavallaro, Tiziana; Dati, Eleonora; Baroncelli, Giampiero I; Bertini, Veronica; Valetto, Angelo; Massart, Francesco; Fabrizi, Gian Maria; Zanette, Giampietro; Peroni, Diego; Bertelloni, Silvano
2018-01-01
In humans, Desert Hedgehog (DHH) gene mutations are a very rare cause of 46,XY gonadal dysgenesis (GD), eventually associated with peripheral neuropathy. Clinical records of 12 patients with 46,XY GD and unknown genetic background were reviewed and a 46,XY woman with peripheral neuropathy was individuated. Her 46,XX sister affected by similar neuropathy was also investigated. Genomic DNA was extracted and DHH exons sequenced and analyzed. A comparative genomic hybridization array was also performed. In both the 46,XY and 46,XX sisters, a homozygous c.554C>A mutation in exon 2 of the DHH gene was found, determining a premature termination codon (p.Ser 185*). Heterozygous consanguineous carrier parents showed neither reproductive problems nor peripheral neuropathy. In the proband and her sister, a 499-kb duplication in 9p22.1 was also found. A 46,XY European woman with 46,XY GD and a novel homozygous DHH pathogenic variant is reported, confirming that this gene plays a key role in male gonadal development. Her 46,XX sister, harboring the same mutation, showed normal internal and external female phenotype. Thus, DHH seems not to be involved in the ovarian development pathway or its postpubertal function. Homozygous DHH mutations cause a specific peripheral neuropathy in humans with both 46,XY and 46,XX karyotypes. © 2018 S. Karger AG, Basel.
Lambeth, Luke S; Ayers, Katie; Cutting, Andrew D; Doran, Timothy J; Sinclair, Andrew H; Smith, Craig A
2015-12-01
In mammals, the primary role of anti-Müllerian hormone (AMH) during development is the regression of Müllerian ducts in males. These structures otherwise develop into fallopian tubes, oviducts, and upper vagina, as in females. This highly conserved function is retained in birds and is supported by the high levels of AMH expression in developing testes. In mammals, AMH expression is controlled partly by the transcription factor, SOX9. However, in the chicken, AMH mRNA expression precedes that of SOX9 , leading to the view that AMH may lie upstream of SOX9 and play a more central role in avian testicular development. To help define the role of AMH in chicken gonad development, we suppressed AMH expression in chicken embryos using RNA interference. In males, AMH knockdown did not affect the expression of key testis pathway genes, and testis cords developed normally. However, a reduction in the size of the mesonephros and gonads was observed, a phenotype that was evident in both sexes. This growth defect occurred as a result of the reduced proliferative capacity of the cells of these tissues, and male gonads also had a significant reduction in germ cell numbers. These data suggest that although AMH does not directly contribute to testicular or ovarian differentiation, it is required in a sex-independent manner for proper cell proliferation and urogenital system growth. © 2015 by the Society for the Study of Reproduction, Inc.
González-Giraldo, Yeimy; Garcia-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E
2018-05-01
Obesity has been associated with increased chronic neuroinflammation and augmented risk of neurodegeneration. This is worsened during the normal aging process when the levels of endogenous gonadal hormones are reduced. In this study, we have assessed the protective actions of tibolone, a synthetic steroid with estrogenic actions, on T98G human astrocytic cells exposed to palmitic acid, a saturated fatty acid used to mimic obesity in vitro. Tibolone improved cell survival, and preserved mitochondrial membrane potential in palmitic acid-treated astrocytic cells. Although we did not find significant actions of tibolone on free radical production, it modulated astrocytic morphology after treatment with palmitic acid. These data suggest that tibolone protects astrocytic cells by preserving both mitochondrial functionality and morphological complexity.
Pang, S; Levine, L S; Stoner, E; Opitz, J M; Pollack, M S; Dupont, B; New, M I
1983-04-01
In studies of a 6-yr-old boy and his non-HLA identical 8-yr-old sister, we demonstrated 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) deficiency in the biosynthetic pathways of glucocorticoids and androgens, but not mineralocorticoids. The sister did not manifest abnormal genital development at birth, but developed premature adrenarche at the age of 4 yr, with clitoromegaly and advanced bone age. The brother had perineal hypospadias at birth and developed premature adrenarche at the age of 6 yr. In both siblings, baseline and ACTH-stimulated delta 5 steroids were markedly elevated. The baseline and ACTH-stimulated ratios of delta 5 to delta 4 steroids remained extremely high, and all steroids promptly suppressed with dexamethasone (DEX). Normal baseline PRA and serum and urinary aldosterone (Aldo) levels increased after stimulation with a low Na+ diet. Renal Na+ conservation was normal after dietary Na+ deprivation with and without DEX administration. The PRA to pH 1 Aldo ratio remained normal with normal and low Na+ diets, regardless of DEX administration, indicating normal glomerulosa function with renin stimulation. In both siblings, ACTH increased PRA and Aldo levels, maintaining the PRA to pH 1 Aldo ratio unchanged from the baseline value. In contrast, in control children, PRA was suppressed, while Aldo increased, resulting in a fall of the PRA to pH 1 Aldo ratio. The increase in PRA with exogenous ACTH in these siblings suggests there may be an ACTH-stimulable mineralocorticoid antagonist. During prolonged DEX administration, hCG administration caused a slight increase in 17-hydroxypregnenolone and dehydroepiandrosterone in both the siblings, while testosterone (T) rose poorly in the brother, and estradiol did not rise at all in the sister. These results suggest the possibility of a deficiency of 3 beta-HSD in the gonads as well as the adrenals. After [3H]dehydroepiandrosterone iv infusion, there was normal conversion to [3H]-conjugated testosterone glucuronide, suggesting the presence of normal peripheral 3 beta-HSD activity. We propose that in these siblings, there is a deficiency of 3 beta-HSD in the adrenal zona fasciculata and zona reticularis, whereas 3 beta-HSD activity is intact in the zona glomerulosa. In addition, in these siblings, 3 beta-HSD deficiency was present in the gonads, while peripheral 3 beta-HSD activity appeared to be intact. These cases demonstrate further the heterogeneity of congenital adrenal hyperplasia due to 3 beta-HSD deficiency.
Sex determination and maintenance: the role of DMRT1 and FOXL2
Huang, Shengsong; Ye, Leping; Chen, Haolin
2017-01-01
In many species, including mammals, sex determination is genetically based. The sex chromosomes that individuals carry determine sex identity. Although the genetic base of phenotypic sex is determined at the moment of fertilization, the development of testes or ovaries in the bipotential early gonads takes place during embryogenesis. During development, sex determination depends upon very few critical genes. When one of these key genes functions inappropriately, sex reversal may happen. Consequently, an individual's sex phenotype may not necessarily be consistent with the sex chromosomes that are present. For some time, it has been assumed that once the fetal choice is made between male and female in mammals, the gonadal sex identity of an individual remains stable. However, recent studies in mice have provided evidence that it is possible for the gonadal sex phenotype to be switched even in adulthood. These studies have shown that two key genes, doublesex and mad-3 related transcription factor 1 (Dmrt1) and forkhead box L2 (Foxl2), function in a Yin and Yang relationship to maintain the fates of testes or ovaries in adult mammals, and that mutations in either gene might have a dramatic effect on gonadal phenotype. Thus, adult gonad maintenance in addition to fetal sex determination may both be important for the fertility. PMID:28091399
A DWARF MUTATION IN THE RABBIT
Greene, Harry S. N.
1940-01-01
An hereditary type of dwarfism in the rabbit has been described. In contrast to the dwarfs described in other animals, this type is evident at birth and conforms to the classification, nannosomia primordialis, as used in human pathology. In homozygous form the variation is lethal and produces a miniature individual approximately one-third the size of its normal sibs. Heterozygous animals are approximately two-thirds the size of normal sibs at birth and never attain an equal stature. The expression of the variation is modified by genetic factors carried by a line of cretinoid animals and, rarely, dwarfs derived from crosses with this line survive for 1 to 2 months. The striking changes in such survivors are hypertrophy and hyperplasia of the acidophilic cells of the pituitary and atrophy of the gonads. Such changes are not present in ordinary dwarfs and it is concluded that the acidophilic hyperplasia represents the influence of the modifying factors of the cretinoid line and supplies the growth hormone responsible for survival. The gonadotropic hormone is not supplied by the secretory activity of these cells and as a result the gonads atrophy. The evidence at hand indicates that the primary effect of the dwarfing gene is an inhibition of the secretory functions of the pituitary. In homozygous individuals, the inhibition is complete and the variation is expressed as a lethal dwarf. In heterozygous animals, the function of the organ is altered, producing an undersized individual. The modifying factors of the cretinoid line act either to partially remove the inhibition or to alter the constitution of the animal so that life is possible for a short period without the full complement of pituitary hormones. PMID:19871001
Splenogonadal fusion with limb deficiency and micrognathia.
Moore, P J; Hawkins, E P; Galliani, C A; Guerry-Force, M L
1997-11-01
Splenogonadal fusion (SGF) is a rare abnormality with two known types. In the continuous type, the spleen is connected to the gonad, and there are often limb defects, micrognathia, or other congenital malformations such as ventricular septal defect, anal atresia, microgastria, spina bifida, craniosynostosis, thoracopagus, diaphragmatic hernia, hypoplastic lung and abnormal lung fissures, polymicrogyria, deficient coccyx, and bifid spine C6-T3. The discontinuous type is usually not associated with congenital defects, and the gonad that fused with an accessory spleen has no connection with the native spleen. The etiology of SGF is not known. Conceivably, a teratogenic insult occurring between 5 weeks' and 8 weeks' gestation could interfere with the normal development of the spleen, gonads, and limb buds. We describe a case of splenogonadal fusion in a stillborn black boy with associated micrognathia and limb deformities. Also, we review the possible teratogenic etiologies and embryonic basis of SGF.
Final height and gonad function after total body irradiation during childhood.
Couto-Silva, A-C; Trivin, C; Esperou, H; Michon, J; Baruchel, A; Lemaire, P; Brauner, R
2006-09-01
Short stature and gonad failure can be a side effect of total body irradiation (TBI). The purpose of the study was to evaluate the factors influencing final height and gonad function after TBI. Fifty young adults given TBI during childhood were included. Twenty-seven had been treated with growth hormone (GH). Those given single 10 Grays (Gy) or fractionated 12 Gy TBI had similar characteristics, GH peaks, final heights and gonad function. After the end of GH treatment, 11/20 patients evaluated had GH peak >10 microg/l. Final height was <-2s.d. in 29 (58%). The height loss between TBI and final height (2.4+/-1.1 s.d.) was greater in those who were younger when irradiated (P<0.0001). When the GH-treated and -untreated patients were analyzed separately, this loss was correlated with the age at TBI at 4-8 years for the GH-treated and at 6-8 years for the untreated. Boys showed negative correlations between testicular volume and plasma follicle-stimulating hormone (FSH, P=0.0008) and between plasma FSH and inhibin B (P=0.005) concentrations. We concluded that the indications for GH treatment should be mainly based on the age at irradiation, taking into account the GH peak. The plasma FSH and inhibin B concentrations may predict sperm function. Published online 31 July 2006.
Spreading the Clinical Window for Diagnosing Fetal-Onset Hypogonadism in Boys
Grinspon, Romina P.; Loreti, Nazareth; Braslavsky, Débora; Valeri, Clara; Schteingart, Helena; Ballerini, María Gabriela; Bedecarrás, Patricia; Ambao, Verónica; Gottlieb, Silvia; Ropelato, María Gabriela; Bergadá, Ignacio; Campo, Stella M.; Rey, Rodolfo A.
2014-01-01
In early fetal development, the testis secretes – independent of pituitary gonadotropins – androgens and anti-Müllerian hormone (AMH) that are essential for male sex differentiation. In the second half of fetal life, the hypothalamic–pituitary axis gains control of testicular hormone secretion. Follicle-stimulating hormone (FSH) controls Sertoli cell proliferation, responsible for testis volume increase and AMH and inhibin B secretion, whereas luteinizing hormone (LH) regulates Leydig cell androgen and INSL3 secretion, involved in the growth and trophism of male external genitalia and in testis descent. This differential regulation of testicular function between early and late fetal periods underlies the distinct clinical presentations of fetal-onset hypogonadism in the newborn male: primary hypogonadism results in ambiguous or female genitalia when early fetal-onset, whereas it becomes clinically undistinguishable from central hypogonadism when established later in fetal life. The assessment of the hypothalamic–pituitary–gonadal axis in male has classically relied on the measurement of gonadotropin and testosterone levels in serum. These hormone levels normally decline 3–6 months after birth, thus constraining the clinical evaluation window for diagnosing male hypogonadism. The advent of new markers of gonadal function has spread this clinical window beyond the first 6 months of life. In this review, we discuss the advantages and limitations of old and new markers used for the functional assessment of the hypothalamic–pituitary–testicular axis in boys suspected of fetal-onset hypogonadism. PMID:24847309
There is international concern about chemicals that alter endocrine system function in humans and/or wildlife and subsequently cause adverse effects. We previously developed a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minno...
The objective of this study was to evaluate temporal effects of the model steroidogenesis inhibitor ketoconazole (KTC) on aspects of reproductive endocrine function controlled by the hypothalamic-pituitary-gonadal (HPG) axis in the fathead minnow (Pimephales promelas). Ketoconazo...
The objective of this study was to evaluate temporal effects of the model steroidogenesis inhibitor ketoconazole (KTC) on aspects of reproductive endocrine function controlled by the hypothalamic-pituitary-gonadal (HPG) axis in the fathead minnow (Pimephales promelas). Ketoconazo...
The objective of this study was to evaluate temporal effects of the model steroidogenesis inhibitor ketoconazole (KTC) on aspects of reproductive endocrine function controlled by the hypothalamic-pituitary-gonadal (HPG) axis in the fathead minnow (Pimephales promelas). Ketoconaz...
Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch.
Agate, Robert J; Grisham, William; Wade, Juli; Mann, Suzanne; Wingfield, John; Schanen, Carolyn; Palotie, Aarno; Arnold, Arthur P
2003-04-15
In mammals and birds, sex differences in brain function and disease are thought to derive exclusively from sex differences in gonadal hormone secretions. For example, testosterone in male mammals acts during fetal and neonatal life to cause masculine neural development. However, male and female brain cells also differ in genetic sex; thus, sex chromosome genes acting within cells could contribute to sex differences in cell function. We analyzed the sexual phenotype of the brain of a rare gynandromorphic finch in which the right half of the brain was genetically male and the left half genetically female. The neural song circuit on the right had a more masculine phenotype than that on the left. Because both halves of the brain were exposed to a common gonadal hormone environment, the lateral differences indicate that the genetic sex of brain cells contributes to the process of sexual differentiation. Because both sides of the song circuit were more masculine than that of females, diffusible factors such as hormones of gonadal or neural origin also likely played a role in sexual differentiation.
Sano, Hiroko; Kunwar, Prabhat S; Renault, Andrew D; Barbosa, Vitor; Clark, Ivan B N; Ishihara, Shuji; Sugimura, Kaoru; Lehmann, Ruth
2012-01-01
Organs develop distinctive morphologies to fulfill their unique functions. We used Drosophila embryonic gonads as a model to study how two different cell lineages, primordial germ cells (PGCs) and somatic gonadal precursors (SGPs), combine to form one organ. We developed a membrane GFP marker to image SGP behaviors live. These studies show that a combination of SGP cell shape changes and inward movement of anterior and posterior SGPs leads to the compaction of the spherical gonad. This process is disrupted in mutants of the actin regulator, enabled (ena). We show that Ena coordinates these cell shape changes and the inward movement of the SGPs, and Ena affects the intracellular localization of DE-cadherin (DE-cad). Mathematical simulation based on these observations suggests that changes in DE-cad localization can generate the forces needed to compact an elongated structure into a sphere. We propose that Ena regulates force balance in the SGPs by sequestering DE-cad, leading to the morphogenetic movement required for gonad compaction.
Global Survey of Protein Expression during Gonadal Sex Determination in Mice*
Ewen, Katherine; Baker, Mark; Wilhelm, Dagmar; Aitken, R. John; Koopman, Peter
2009-01-01
The development of an embryo as male or female depends on differentiation of the gonads as either testes or ovaries. A number of genes are known to be important for gonadal differentiation, but our understanding of the regulatory networks underpinning sex determination remains fragmentary. To advance our understanding of sexual development beyond the transcriptome level, we performed the first global survey of the mouse gonad proteome at the time of sex determination by using two-dimensional nanoflow LC-MS/MS. The resulting data set contains a total of 1037 gene products (154 non-redundant and 883 redundant proteins) identified from 620 peptides. Functional classification and biological network construction suggested that the identified proteins primarily serve in RNA post-transcriptional modification and trafficking, protein synthesis and folding, and post-translational modification. The data set contains potential novel regulators of gonad development and sex determination not revealed previously by transcriptomics and proteomics studies and more than 60 proteins with potential links to human disorders of sexual development. PMID:19617587
The case of an Sry-negative XX male Pug with an inguinal gonad.
Rota, A; Cucuzza, A Starvaggi; Iussich, S; Delorenzi, L; Parma, P
2010-08-01
A case of intersexuality in a Pug that was bought as a male in a pet shop is described. The dog was presented at the Veterinary Teaching Hospital, University of Turin, for a reddish mass protruding from the prepuce. The mass had the aspect of an enlarged clitoris, with a caudoventral direction and a dorsal urethral ostium. A gonad was palpable in the left inguinal region. Laparotomy confirmed ultrasound detection of an abdominal uterine structure together with the right gonad. The histology of both gonads was similar, showing an exclusively masculine character, with seminiferous tubules lined only by Sertoli cells; the uterus showed a normal histological structure. Karyological analysis revealed a female karyotype (78,XX), and polymerase chain reaction showed the absence of Sry. The diagnosis was an XX male. The pathogenesis of the XX sex reversal syndrome in dogs is not completely understood, as Sry, the master gene regulating testis differentiation, is not present; to date, no genetic cause has been identified for this phenotypic condition in dogs. This case is unusual because the dog showed an inguinal testis, implying a partial activity of the mechanisms leading to abdominal testis translocation along a gubernaculum and transinguinal migration.
Amyloid beta precursor protein regulates male sexual behavior.
Park, Jin Ho; Bonthius, Paul J; Tsai, Houng-Wei; Bekiranov, Stefan; Rissman, Emilie F
2010-07-28
Sexual behavior is variable between individuals, ranging from celibacy to sexual addictions. Within normal populations of individual men, ranging from young to middle aged, testosterone levels do not correlate with libido. To study the genetic mechanisms that contribute to individual differences in male sexual behavior, we used hybrid B6D2F1 male mice, which are a cross between two common inbred strains (C57BL/6J and DBA/2J). Unlike most laboratory rodent species in which male sexual behavior is highly dependent upon gonadal steroids, sexual behavior in a large proportion of these hybrid male mice after castration is independent of gonadal steroid hormones and their receptors; thus, we have the ability to discover novel genes involved in this behavior. Gene expression arrays, validation of gene candidates, and transgenic mice that overexpress one of the genes of interest were used to reveal genes involved in maintenance of male sexual behavior. Several genes related to neuroprotection and neurodegeneration were differentially expressed in the hypothalamus of males that continued to mate after castration. Male mice overexpressing the human form of one of these candidate genes, amyloid beta precursor protein (APP), displayed enhanced sexual behavior before castration and maintained sexual activity for a longer duration after castration compared with controls. Our results reveal a novel and unexpected relationship between APP and male sexual behavior. We speculate that declining APP during normal aging in males may contribute to the loss of sexual function.
Holmes, Melissa M; Wade, Juli
2005-09-05
The copulatory neuromuscular system of green anoles is sexually dimorphic and differentiates during embryonic development, although details of the process were unknown. In Experiment 1, we determined the time course of normal ontogeny. Both male and female embryos possessed bilateral copulatory organs (hemipenes) and associated muscles until incubation day 13; the structures completely regressed in female embryos by incubation day 19 (total incubation 34 days). In Experiment 2, we treated eggs with testosterone, dihydrotestosterone, estradiol, or vehicle on both incubation days 10 and 13 to determine whether these steroid hormones mediate sexual differentiation. These time points fall between gonadal differentiation, which was determined in Experiment 1 to complete before day 10, and regression of the peripheral copulatory system in females. Tissue was collected on the day of hatching. Gonads were classified as testes or ovaries; presence versus absence of hemipenes and muscles, and the number and size of copulatory motoneurons were determined. Copulatory system morphology of vehicle-treated animals matched their gonadal sex. Hemipenes and muscles were absent in estradiol-treated animals, and androgens rescued the hemipenes and muscles in most females. Both testosterone and dihydrotestosterone treatment also caused hypertrophy of the hemipenes, which were everted in animals treated with these steroids. Copulatory motoneurons, assessed on the day of hatching in both experiments, were not dimorphic in size or number. Steroid treatment significantly increased motoneuron size and number overall, but no significant differences were detected in pairwise comparisons. These data demonstrate that differentiation of peripheral copulatory neuromuscular structures occurs during embryonic development and is influenced by gonadal steroids (regression by estradiol and enhancement by androgens), but associated motoneurons do not differentiate until later in life.
miRNAome expression profiles in the gonads of adult Melopsittacus undulatus
Jiang, Lan; Wang, Qingqing; Yu, Jue; Gowda, Vinita; Johnson, Gabriel; Yang, Jianke
2018-01-01
The budgerigar (Melopsittacus undulatus) is one of the most widely studied parrot species, serving as an excellent animal model for behavior and neuroscience research. Until recently, it was unknown how sexual differences in the behavior, physiology, and development of organisms are regulated by differential gene expression. MicroRNAs (miRNAs) are endogenous short non-coding RNA molecules that can post-transcriptionally regulate gene expression and play a critical role in gonadal differentiation as well as early development of animals. However, very little is known about the role gonadal miRNAs play in the early development of birds. Research on the sex-biased expression of miRNAs in avian gonads are limited, and little is known about M. undulatus. In the current study, we sequenced two small non-coding RNA libraries made from the gonads of adult male and female budgerigars using Illumina paired-end sequencing technology. We obtained 254 known and 141 novel miRNAs, and randomly validated five miRNAs. Of these, three miRNAs were differentially expressed miRNAs and 18 miRNAs involved in sexual differentiation as determined by functional analysis with GO annotation and KEGG pathway analysis. In conclusion, this work is the first report of sex-biased miRNAs expression in the budgerigar, and provides additional sequences to the avian miRNAome database which will foster further functional genomic research. PMID:29666766
Dickerson, Sarah M.; Walker, Deena M.; Reveron, Maria E.; Duvauchelle, Christine L.; Gore, Andrea C.
2009-01-01
Reproductive function involves an interaction of three regulatory levels: hypothalamus, pituitary, and gonad. The primary drive upon this system comes from hypothalamic gonadotropin-releasing hormone (GnRH) neurosecretory cells, which receive afferent inputs from other neurotransmitter systems in the central nervous system to result in the proper coordination of reproduction and the environment. Here, we hypothesized that the recreational drug ±-3,4-Methylenedioxymethamphetamine (MDMA; “ecstasy”), which acts through several of the neurotransmitter systems that affect GnRH neurons, suppresses the hypothalamic-pituitary-gonadal (HPG) reproductive axis of male rats. Adult male Sprague-Dawley rats self-administered saline or MDMA or saline either once (acute) or for 20 days (chronic), and were euthanized 7 days following last administration. We quantified hypothalamic GnRH mRNA, serum luteinizing hormone (LH) concentrations, and serum testosterone levels, as indices of hypothalamic, pituitary, and gonadal functions, respectively. The results indicate that the hypothalamic and gonadal levels of the HPG axis are significantly altered by MDMA, with GnRH mRNA and serum testosterone levels suppressed in rats administered MDMA compared to saline. Furthermore, our finding that hypothalamic GnRH mRNA levels are suppressed in the context of low testosterone concentrations suggests that the central GnRH neurosecretory system may be a primary target of inhibitory regulation by MDMA usage. PMID:18309234
Carré, Gwenn-Aël; Siggers, Pam; Xipolita, Marilena; Brindle, Paul; Lutz, Beat; Wells, Sara; Greenfield, Andy
2018-01-01
Abstract CREB-binding protein (CBP, CREBBP, KAT3A) and its closely related paralogue p300 (EP300, KAT3B), together termed p300/CBP, are histone/lysine acetyl-transferases that control gene expression by modifying chromatin-associated proteins. Here, we report roles for both of these chromatin-modifying enzymes in mouse sex determination, the process by which the embryonic gonad develops into a testis or an ovary. By targeting gene ablation to embryonic gonadal somatic cells using an inducible Cre line, we show that gonads lacking either gene exhibit major abnormalities of XY gonad development at 14.5 dpc, including partial sex reversal. Embryos lacking three out of four functional copies of p300/Cbp exhibit complete XY gonadal sex reversal and have greatly reduced expression of the key testis-determining genes Sry and Sox9. An analysis of histone acetylation at the Sry promoter in mutant gonads at 11.5 dpc shows a reduction in levels of the positive histone mark H3K27Ac. Our data suggest a role for CBP/p300 in testis determination mediated by control of histone acetylation at the Sry locus and reveal a novel element in the epigenetic control of Sry and mammalian sex determination. They also suggest possible novel causes of human disorders of sex development (DSD). PMID:29145650
Narayanan, Vidya Kanamkote; Kharbanda, Mira; Donaldson, Malcolm
2016-12-01
Gonadal dysgenesis with an apparently normal 46,XX karyotype is a rare cause of hypergonadotrophic hypogonadism. Tall stature is not a widely recognized association. A 15-year-old girl presented with primary amenorrhoea. Examination showed a non-dysmorphic girl of normal intellect with no breast development (Tanner stage B1P4A1) who was tall compared with her parents: height standard deviation score (SDS) +1.56 vs. midparental height of +0.23 SDS, and slim build (weight -0.13 SDS). Investigations showed a 46,XX karyotype, elevated gonadotropins (FSH 119 and LH 33.7 IU/L), serum estradiol <5 pmol/L, uterine length 3.75 cm with cylindrical shape, and absent ovaries on ultrasound. Initially, a 364055-bp deletion on Xp21.2 was reported on array CGH. However, repeat analysis using BlueGnome CytoChip ISCA 4x180k v2.0 array was normal. With oral ethinyl estradiol induction puberty progressed to B4P4A2 but aged 18.4 years, the patient was remarkably tall with height SDS +2.88, weight SDS +0.97. Caution is needed in interpreting small changes with array CGH, particularly with the older assays. We postulate that the genetic change causing 46,XX gonadal dysgenesis in our patient may have also resulted in unsuppressed somatic growth. More critical height assessment, including parental height measurement, of future patients with 46,XX gonadal dysgenesis is recommended in order to determine whether or not a true association with tall stature may be present in certain cases.
Roth, Lawrence M; Cheng, Liang
2015-11-01
In this study, we compare the expression of OCT4, SALL4, and TSPYL1 in mixed germ cell-sex cord stromal tumor (MGC-SCST) of either gonad to that of normal adult testis, classic and spermatocytic seminoma, intratubular germ cell neoplasia, unclassified, gonadoblastoma, and dysgerminoma to determine the entity or entities that most closely resemble MGC-SCST by immunohistochemistry of germ cells. The most useful transcription factor was OCT4. In addition, to its already described value in distinguishing germinoma and embryonal carcinoma from yolk sac tumor and in differentiating classic from spermatocytic seminoma, we found that OCT4 is useful in confirming or ruling out potential malignancy in MGC-SCST of either gonad. Expression of OCT4 in most ovarian MGC-SCSTs resembles that of dysgerminoma, whereas most testicular examples resemble that of spermatocytic seminoma and normal adult testis. Thus, most MGC-SCSTs of the ovary are potentially malignant, and corresponding tumors of the testis are mostly benign; however, exceptions likely can be detected by the use of OCT4, potentially leading to more appropriate clinical management in some cases. SALL4 is an underutilized transcription factor that is useful in distinguishing testicular MGC-SCST from sex cord stromal tumor, unclassified in those neoplasms where the germ cells are sparse or unevenly distributed. Compared with other transcription factors studied, TSPY and its congener TSPYL1 have little value in the assessment of germ cell tumors because of their relatively wide range of expression in normal adult testis and in germ cell tumors.
Transgenic expression of Map3k4 rescues T-associated sex reversal (Tas) in mice
Warr, Nick; Siggers, Pam; Carré, Gwenn-Aël; Bogani, Debora; Brixey, Rachel; Akiyoshi, Mika; Tachibana, Makoto; Teboul, Lydia; Wells, Sara; Sanderson, Jeremy; Greenfield, Andy
2014-01-01
Disorders of sex development in the human population range in severity from mild genital defects to gonadal sex reversal. XY female development has been associated with heterozygous mutations in several genes, including SOX9, WT1 and MAP3K1. In contrast, XY sex reversal in mice usually requires complete absence of testis-determining gene products. One exception to this involves T-associated sex reversal (Tas), a phenomenon characterized by the formation of ovotestes or ovaries in XY mice hemizygous for the hairpin-tail (Thp) or T-Orleans (TOrl) deletions on proximal mouse chromosome 17. We recently reported that mice heterozygous for a null allele of Map3k4, which resides in the Thp deletion, exhibit XY ovotestis development and occasional gonadal sex reversal on the sensitized C57BL/6J-YAKR (B6-YAKR) genetic background, reminiscent of the Tas phenotype. However, these experiments did not exclude the possibility that loss of other loci in the Thp deletion, or other effects of the deletion itself, might contribute to Tas. Here, we show that disruption to Sry expression underlies XY gonadal defects in B6-YAKR embryos harbouring the Thp deletion and that a functional Map3k4 bacterial artificial chromosome rescues these abnormalities by re-establishing a normal Sry expression profile. These data demonstrate that Map3k4 haploinsufficiency is the cause of T-associated sex reversal and that levels of this signalling molecule are a major determinant of the expression profile of Sry. PMID:24452333
Gonadal status in long-term male survivors of childhood cancer.
Brignardello, E; Felicetti, F; Castiglione, A; Nervo, A; Biasin, E; Ciccone, G; Fagioli, F; Corrias, A
2016-05-01
To evaluate the prevalence of gonadal dysfunction and the associated risk factors in a cohort of male childhood cancer survivors (CCS). Gonadal function was evaluated measuring FSH, LH, inhibin B and total testosterone levels. Patients with total testosterone <3 ng/dl were considered to have hypogonadism. Patients with FSH >10 UI/l and inhibin B <100 pg/ml were considered to have spermatogenesis damage (SD). To assess the impact of risk factors, we estimated crude and adjusted OR performing logistic regression models. One hundred and ninety-nine male CCS were enrolled; the median follow-up time was 14.01 years. SD was diagnosed in 68 patients, 16 CCS had primary hypogonadism, and 13 had central hypogonadism. The prevalence of gonadal dysfunction (SD or primary hypogonadism) was 45 %, similar in the three considered periods of pediatric cancer diagnosis (1985-1989, 1990-1999, >2000). The adjusted risk of gonadal dysfunction was higher in patients treated with radiotherapy (OR = 8.72; 95 % CI 3.94-19.30) and in those exposed to both alkylating and platinum-derived agents (OR = 9.22; 95 % CI 2.17-39.23). Sarcomas were the cancer diagnosis associated with the higher risk of gonadal dysfunction (OR = 3.69; 95 % CI 1.11-12.22). An extremely high rate of gonadal dysfunction was detected in patients who underwent hematopoietic stem cell transplantation and/or total body irradiation. Gonadal dysfunction still remains a significant late effect of anticancer therapies; thus, it is mandatory to inform patients (and parents) about this risk, and semen cryopreservation should be offered to all boys who are able to produce semen.
Milnes, Matthew R; Roberts, Robert N; Guillette, Louis J
2002-01-01
During embryogenesis, incubation temperature and the hormonal environment influence gonadal differentiation of some reptiles, including all crocodilians. Current evidence suggests that aromatase, the enzyme that converts androgens to estrogens, has a role in sexual differentiation of species that exhibit temperature-dependent sex determination (TSD). During the temperature-sensitive period (TSP) of sex determination, we compared aromatase activity in the brain and gonads of putative male and female alligator embryos to determine if aromatase activity in the embryonic brain could provide the hormonal environment necessary for ovarian development in a TSD species. In addition, we assessed the pattern of aromatase activity in the brain and gonads of embryos treated with estradiol-17beta (E(2)) and incubated at male-producing temperatures to compare enzyme activity in E(2) sex-reversed females to control males and females. This has particular significance regarding wildlife species living in areas contaminated with suspected environmental estrogens. Gonadal aromatase activity remained low during the early stages of the TSP in both sexes and increased late in the TSP only in females. Aromatase activity in the brain increased prior to gonadal differentiation in both sexes. These results suggest that aromatase activity in the brain is not directly responsible for mediating differentiation of the gonad. E(2) exposure at male-producing temperatures resulted in sex-reversed females that had intermediate gonad function and masculinized brain activity. This study indicates the need to examine multiple end points and to determine the persistence of developmental alterations in contaminant-exposed wildlife populations. PMID:12060834
Datsenko, Z M; Volkov, H L; Kryvenko, O M; Nechytaĭlo, L O; Shovkun, S A; Khmel', T O; Perederiĭ, O F
2002-01-01
As a result of the experimental researches conducted it has been shown that administration of some normal animal marine phospholipids (PL) including in their structure omega-3 polyunsaturated fatty acids (PUFA) provides for quantitative changes of individual PL, fatty acids (FA) content and quantity in general and individual PL of liver, heart, brain and gonads microsomes. While estimating general microsomal PL fraction FA content under the action of PL omega-3 PUFA FA concentration change, unsaturation index (omega 6/omega 3) and relation of arachidonic acid to docosahexenic (AA/DHA) decrease have been identified. The decrease of AA/DHA relationship occurs due to AA and DHA quantitative changes. In the case of AA increase in some tissues there is observed the decrease of docosapentaenic acid and increase of DHA and eucosapentaenic (EPA) acidds. As a result of studying FA content in the individual PL composition it has been identified that certain PL classes characteristic for some tissues respond by changes of some certain FA. The relationship omega 6/omega 3 has been shown as decreasing in phosphatidilcholine (PC) all tissues microsomes (liver, gonads, heart, brain), in phosphatidilethanolamine (PEA) of liver and cardiac microsomes, in phosphatidilserine (PS) this relationship relationship decreases in the liver, brain and heart, for phosphatidilinositole (PI) the changes take place in liver, gonads, brain. Simultaneously, the decrease of AA/DHA relationship in the individual PL decrease of AA and increase of EPA and DHA depend on the tested tissues. The marine phospholipids might be supposed to render their effect on AA metabolism resulting in AA/DHA relationship in PEA and PS relationship displays itself as specific and depends on the tissues functions. The preference of PEA and PS use by certain tissues microsomes could be explained by their membrane protective capability.
Saito, Taiju; Goto-Kazeto, Rie; Arai, Katsutoshi; Yamaha, Etsuro
2008-01-01
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.
The role of estrogen in turtle sex determination and the effect of PCBs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crews, D.; Bergeron, J.M.; McLachlan, J.A.
1995-10-01
Gonadal sex is fixed at fertilization by specific chromosomes, a process known as genotypic sex determination (GSD). Only after the gonad is formed do hormones begin to exert an influence that modifies specific structures that eventually will differ between the sexes. Many egg-laying reptiles do not exhibit GSD but rather depend on the temperature of the incubating egg to determine the gonadal sex of the offspring, a process termed temperature-dependent sex determination (TSD). Research on TSD indicates that gonadal sex is not irrevocably set by the genetic composition inherited at fertilization but depends ultimately on which genes encoding for steroidogenicmore » enzymes and hormone receptors are activated during the midtrimester of embryonic development by temperature. Incubation temperature modifies the activity as well as the temporal and spatial sequence of enzymes and hormone receptors to determine gonad type. Estrogen is the physiologic equivalent of incubation temperature and the proximate cue that initiates female sex determination. increasing evidence indicates some polychlorinated biphenyl (PCB) compounds are capable of disrupting reproductive and endocrine function in fish, birds, and mammals, including humans. Reproductive disorders resulting from exposure to these xenobiotic compounds may include reductions in fertility, hatch rate in fish and birds, and viability of offspring, as well as alterations in hormone levels or adult sexual behaviors. Research on the mechanism through which these compounds may be acting to alter reproductive function indicates estrogenic activity, by which the compounds may be altering sexual differentiation. In TSD turtles, the estrogenic effect of some PCBs reverses gonadal sex in individuals incubating at an otherwise male-producing temperature. Furthermore, certain PCBs are synergistic in their effect at very low concentrations. 19 refs., 3 figs., 1 tab.« less
Arokoyo, Dennis Seyi; Oyeyipo, Ibukun Peter; Du Plessis, Stefan Simon; Aboua, Yapo Guillaume
2018-01-01
Oxidative stress is frequently identified as a key element in the pathophysiology of many complications of diabetes mellitus, including reproductive complications. The antioxidant potential of medicinal plants have been suggested for therapeutic focus of diseases in recent reports. To investigate the effect of Basella alba (Ba) aqueous leave extract on diabetes-induced oxidative stress. Forty male Wistar rats (8-10 weeks) were randomly divided into four groups ( n = 10) and treated as follows; Control (C + Ns) and Diabetic (D + Ns) animals received oral normal saline 0.5 ml/100 g body weight daily, while Healthy Treatment (H + Ba) and Diabetic Treatment (D + Ba) rats were given Ba extract at an oral dose of 200 mg/kg body weight daily. Treatment was by gavage and lasted 4 weeks in all groups. Diabetes was induced in D + Ns and D + Ba rats by single intraperitoneal injection of streptozotocin (55 mg/kg) and fasting blood sugar (FBS) recorded weekly in all rats afterwards. Animals were euthanized at the end of the experiment and blood samples, pancreas, testes, and epididymis were preserved for analysis of oxidative stress biomarkers. Oral administration of aqueous leave extract of Ba significantly ( P < 0.0001) lowered FBS in D + Ba rats. There was significantly higher blood superoxide dismutase activity and serum ferric reducing antioxidant power, but lower serum concentration of conjugated dienes and thiobarbituric acid reactive substances in D + Ba compared to D + Ns rats ( P < 0.05). Ba exerts antioxidant effects in the gonads by enhancing antioxidant parameters in circulating blood, but not necessarily in the gonadal tissues. Oral treatment of diabetic rats with aqueous leave extract of Basella alba exerts antioxidant effects in the gonads by enhancing antioxidant parameters in circulating blood, but not necessarily in the gonadal tissues. Abbreviations Used: AP - Antioxidant parameters, Ba - Basella alba , CAT - Catalase, CDs - Conjugated dienes, DM - Diabetes mellitus, FBS - Fasting blood sugar, FRAP - Ferric reducing antioxidant power, GSH - reduced glutathione, Ns - Normal saline, ORAC - oxygen radical antioxidant capacity, RNS - reactive nitrogen species, ROS - reactive oxygen species, SOD - superoxide dismutase, TAC - Total antioxidant capacity, TBARS - thiobarbituric acid reactive substances, TEAC - trolox equivalent antioxidant capacity.
Nishiyama, Maki; Uchida, Katsuhisa; Abe, Nozomi; Nozaki, Masumi
2015-02-01
Since hagfishes are considered the most primitive vertebrate known, extant or extinct, studies on their reproduction are indispensable for understanding phylogenetic aspects of vertebrate reproduction. However, little information is available on the endocrine regulation of the gonadal function in the hagfish. Based on EST analysis of the testis of the brown hagfish (Paramyxine atami), P450 side chain cleavage (CYP11A), which is the first and essential enzyme for steroidogenesis in jawed vertebrates, was cloned. The deduced amino acid sequence of hagfish CYP11A shows high identity to other animal forms especially in two functional domains, adrenodoxin binding domain and heme-binding domain. In the phylogenetic analysis, hagfish CYP11A forms a clade with the vertebrate CYP11A. Following the real-time PCR analysis, CYP11A mRNA expression levels were clearly correlated to the developmental stages of gonads in both sexes of the brown hagfish. By in situ hybridization, CYP11A mRNA signals were found in the theca cells of the ovarian follicles and Leydig cells and the tubule-boundary cells of the testis. These molecular and histological evidences are suggesting that CYP11A plays functional roles as a steroidogenic enzyme in gonadal development. Moreover, native GTH purified from hagfish pituitary stimulated the transcriptional levels of CYP11A in the organ-cultured testis in vitro, clearly suggesting that the steroidogenic activity of the hagfish is under the control of the pituitary GTH. It is suggested that vertebrates, during their early evolution, have established the pituitary-gonadal reproductive system. Copyright © 2015 Elsevier Inc. All rights reserved.
Han, Wei; Zou, Jianmin; Wang, Kehua; Su, Yijun; Zhu, Yunfen; Song, Chi; Li, Guohui; Qu, Liang; Zhang, Huiyong; Liu, Honglin
2015-01-01
Onset of the rapid gonad growth is a milestone in sexual development that comprises many genes and regulatory factors. The observations in model organisms and mammals including humans have shown a potential link between miRNAs and development timing. To determine whether miRNAs play roles in this process in the chicken (Gallus gallus), the Solexa deep sequencing was performed to analyze the profiles of miRNA expression in the hypothalamus of hens from two different pubertal stages, before onset of the rapid gonad development (BO) and after onset of the rapid gonad development (AO). 374 conserved and 46 novel miRNAs were identified as hypothalamus-expressed miRNAs in the chicken. 144 conserved miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) during the transition from BO to AO. Five differentially expressed miRNAs were validated by real-time quantitative RT-PCR (qRT-PCR) method. 2013 putative genes were predicted as the targets of the 15 most differentially expressed miRNAs (fold-change > 4.0, P < 0.01). Of these genes, 7 putative circadian clock genes, Per2, Bmal1/2, Clock, Cry1/2, and Star were found to be targeted multiple times by the miRNAs. qRT-PCR revealed the basic transcription levels of these clock genes were much higher (P < 0.01) in AO than in BO. Further functional analysis suggested that these 15 miRNAs play important roles in transcriptional regulation and signal transduction pathways. The results provide new insights into miRNAs functions in timing the rapid development of chicken gonads. Considering the characteristics of miRNA functional conservation, the results will contribute to the research on puberty onset in humans.
Normal development of the female reproductive system
The embryonic development of the female reproductive system involves a progression of events that is conserved across vertebrate species. The early gonad progresses from a form that is undifferentiated in both genotypic males and females. Rudimentary male (Wolffian) and female (M...
The C. elegans VAPB homolog VPR-1 is a permissive signal for gonad development.
Cottee, Pauline A; Cole, Tim; Schultz, Jessica; Hoang, Hieu D; Vibbert, Jack; Han, Sung Min; Miller, Michael A
2017-06-15
VAMP/synaptobrevin-associated proteins (VAPs) contain an N-terminal major sperm protein domain (MSPd) that is associated with amyotrophic lateral sclerosis. VAPs have an intracellular housekeeping function, as well as an extracellular signaling function mediated by the secreted MSPd. Here we show that the C. elegans VAP homolog VPR-1 is essential for gonad development. vpr-1 null mutants are maternal effect sterile due to arrested gonadogenesis following embryo hatching. Somatic gonadal precursor cells and germ cells fail to proliferate fully and complete their respective differentiation programs. Maternal or zygotic vpr-1 expression is sufficient to induce gonadogenesis and fertility. Genetic mosaic and cell type-specific expression studies indicate that vpr-1 activity is important in the nervous system, germ line and intestine. VPR-1 acts in parallel to Notch signaling, a key regulator of germline stem cell proliferation and differentiation. Neuronal vpr-1 expression is sufficient for gonadogenesis induction during a limited time period shortly after hatching. These results support the model that the secreted VPR-1 MSPd acts at least in part on gonadal sheath cell precursors in L1 to early L2 stage hermaphrodites to permit gonadogenesis. © 2017. Published by The Company of Biologists Ltd.
The C. elegans VAPB homolog VPR-1 is a permissive signal for gonad development
Cole, Tim; Hoang, Hieu D.; Han, Sung Min
2017-01-01
VAMP/synaptobrevin-associated proteins (VAPs) contain an N-terminal major sperm protein domain (MSPd) that is associated with amyotrophic lateral sclerosis. VAPs have an intracellular housekeeping function, as well as an extracellular signaling function mediated by the secreted MSPd. Here we show that the C. elegans VAP homolog VPR-1 is essential for gonad development. vpr-1 null mutants are maternal effect sterile due to arrested gonadogenesis following embryo hatching. Somatic gonadal precursor cells and germ cells fail to proliferate fully and complete their respective differentiation programs. Maternal or zygotic vpr-1 expression is sufficient to induce gonadogenesis and fertility. Genetic mosaic and cell type-specific expression studies indicate that vpr-1 activity is important in the nervous system, germ line and intestine. VPR-1 acts in parallel to Notch signaling, a key regulator of germline stem cell proliferation and differentiation. Neuronal vpr-1 expression is sufficient for gonadogenesis induction during a limited time period shortly after hatching. These results support the model that the secreted VPR-1 MSPd acts at least in part on gonadal sheath cell precursors in L1 to early L2 stage hermaphrodites to permit gonadogenesis. PMID:28634273
Perrault's syndrome in two sisters.
Bösze, P; Skripeczky, K; Gaál, M; Tóth, A; László, J
1983-10-01
We report on two sisters with Perrault's syndrome, i.e., autosomal recessive ovarian dysgenesis associated with sensorineural deafness. They were deaf-mute and of normal height with a few minor somatic anomalies. Both had streak gonads and an apparently normal female 46,XX chromosome constitution. The parents were apparently not consanguineous. The mother had normal hearing. Other relatives were not available for study. Epilepsy, which occurred in three relatives including one of the index patients, may have been inherited coincidentally from the mother's family.
The use of anti-Müllerian hormone as diagnostic for gonadectomy status in dogs.
Themmen, Axel P N; Kalra, Bhanu; Visser, Jenny A; Kumar, Ajay; Savjani, Gopal; de Gier, Jeffrey; Jaques, Scott
2016-10-01
In the veterinary practice, there is a need for a diagnostic tool to check the gonadal status in female dogs because it may be difficult to determine whether a female animal has been spayed or whether there are ovarian remnants. Although less prevalent, a similar situation pertains to male dogs. Anti-Müllerian hormone (AMH) is an important regulator of gonadal function and is a specific gonadal product that can be determined in circulation. The objective of this study was to develop and test a canine blood AMH assay as a diagnostic tool to determine the presence of functional gonadal tissue in dogs. A prospective study with a training-validation set paradigm was used. A canine AMH assay was developed and serum and plasma AMH concentrations were determined in blood samples from 46 intact female dogs, 48 spayed females, 50 intact males, and 48 castrated males collected at two separate institutes. Using a training-validation set paradigm, it was found that using cutoff values of 1.1 ng/mL (female) and 5.5 ng/mL (male) AMH, the assay reported excellent specificity and sensitivity of 100% and 90% in female dogs, and good specificity and sensitivity of 100% and 76%, in male dogs, respectively. The sensitivity in male dogs could be further enhanced by including a serum testosterone determination. This newly developed canine AMH assay is a valuable diagnostic tool to determine gonadal status in veterinary medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
Marina, Djordje; Klose, Marianne; Nordenbo, Annette; Liebach, Annette; Feldt-Rasmussen, Ulla
2015-06-01
Severe brain injury may increase the risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective of the present study was to assess the pattern and prevalence of pituitary hormone alterations 3 months after a severe brain injury with relation to functional outcome at a 1-year follow-up. Prospective study at a tertiary university referral centre. A total of 163 patients admitted to neurorehabilitation after severe traumatic brain injury (TBI, n=111) or non-TBI (n=52) were included. The main outcome measures were endocrine alterations 3.3 months (median) after the brain injury and their relationship to the functioning and ability of the patients at a 1-year follow-up, as measured by the Functional Independence Measure and the Glasgow Outcome Scale-Extended. Three months after the injury, elevated stress hormones (i.e. 30 min stimulated cortisol, prolactin and/or IGF1) and/or suppressed gonadal or thyroid hormones were recorded in 68 and 32% of the patients respectively. At 1 year after the injury, lower functioning level (Functional Independence Measure) and lower capability of performing normal life activities (Glasgow Outcome Scale-Extended) were related to both the elevated stress hormones (P≤0.01) and the reduced gonadal and/or thyroid hormones (P≤0.01) measured at 3 months. The present study suggests that brain injury-related endocrine alterations that mimic secondary hypogonadism and hypothyroidism and that occur with elevated stress hormones most probably reflect a prolonged stress response 2-5 months after severe brain injury, rather than pituitary insufficiency per se. These endocrine alterations thus seem to reflect a more severe disease state and relate to 1-year functional outcome. © 2015 European Society of Endocrinology.
Oyola, Mario G; Handa, Robert J
2017-09-01
Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.
Kim, Seon Mi; Yoo, Taekyung; Lee, So Young; Kim, Eun Jeong; Lee, Soo Min; Lee, Min Hee; Han, Min Young; Jung, Seung-Hyun; Choi, Jung-Hye; Ryu, Keun Ho; Kim, Hun-Taek
2015-10-15
Suppression of the hypothalamic-pituitary-gonadal axis has been widely utilized for the management of gonadal-hormone-dependent diseases such as endometriosis. Efforts to develop orally available gonadotropin-releasing hormone (GnRH) antagonists for the treatment of gonadal-hormone-dependent diseases led to the discovery of SKI2670, a novel non-peptide GnRH antagonist. The present study was undertaken to pharmacologically characterize SKI2670 in vitro and in vivo. We measured binding affinity and antagonistic activity of SKI2670 for the GnRH receptors. Immediate suppression of gonadotropins by single dosing of SKI2670 was examined in castrated monkeys. Subsequently, influence on gonadal hormones by prolonged administration of SKI2670 was assessed in naive female monkeys. To investigate in vivo efficacy of SKI2670, regression of ectopic implants by repeated administration of SKI2670 was examined in a rat endometriosis model. SKI2670 is a potent functional antagonist for the human GnRH receptor, with subnanomolar binding affinity. In castrated monkeys, single administration of SKI2670 lowered serum luteinizing hormone (LH) levels stronger with longer duration when compared to elagolix at equivalent doses. Moreover, repeated dosing of SKI2670 suppressed serum levels of gonadotropins and gonadal hormones in intact female monkeys while elagolix suppressed serum LH levels only. Finally, it exhibited regressive effects on ectopic implants in a rat endometriosis model without bone loss. Our findings demonstrate robust GnRH antagonistic efficacy of SKI2670 in animal models, suggesting that SKI2670-induced suppression of the hypothalamic-pituitary-gonadal axis may be beneficial for the treatment of gonadal-hormone-dependent diseases such as endometriosis in humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Oyola, Mario G.; Handa, Robert J.
2018-01-01
Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic–pituitary–adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism’s response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic–pituitary–gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life. PMID:28859530
Effects of the insecticide fipronil on reproductive endocrinology in the fathead minnow
Gamma aminobutyric acid (GABA) and GABA receptors play an important role in neuroendocrine regulation in fish. Disruption of the GABAergic system by environmental contaminants could interfere with normal regulation of the hypothalamic pituitary gonadal (HPG) axis, leading to imp...
Meng, Xian-liang; Liu, Ping; Jia, Fu-long; Li, Jian; Gao, Bao-Quan
2015-01-01
The swimming crab Portunus trituberculatus is a commercially important crab species in East Asia countries. Gonadal development is a physiological process of great significance to the reproduction as well as commercial seed production for P. trituberculatus. However, little is currently known about the molecular mechanisms governing the developmental processes of gonads in this species. To open avenues of molecular research on P. trituberculatus gonadal development, Illumina paired-end sequencing technology was employed to develop deep-coverage transcriptome sequencing data for its gonads. Illumina sequencing generated 58,429,148 and 70,474,978 high-quality reads from the ovary and testis cDNA library, respectively. All these reads were assembled into 54,960 unigenes with an average sequence length of 879 bp, of which 12,340 unigenes (22.45% of the total) matched sequences in GenBank non-redundant database. Based on our transcriptome analysis as well as published literature, a number of candidate genes potentially involved in the regulation of gonadal development of P. trituberculatus were identified, such as FAOMeT, mPRγ, PGMRC1, PGDS, PGER4, 3β-HSD and 17β-HSDs. Differential expression analysis generated 5,919 differentially expressed genes between ovary and testis, among which many genes related to gametogenesis and several genes previously reported to be critical in differentiation and development of gonads were found, including Foxl2, Wnt4, Fst, Fem-1 and Sox9. Furthermore, 28,534 SSRs and 111,646 high-quality SNPs were identified in this transcriptome dataset. This work represents the first transcriptome analysis of P. trituberculatus gonads using the next generation sequencing technology and provides a valuable dataset for understanding molecular mechanisms controlling development of gonads and facilitating future investigation of reproductive biology in this species. The molecular markers obtained in this study will provide a fundamental basis for population genetics and functional genomics in P. trituberculatus and other closely related species. PMID:26042806
Storrs-Méndez, Sara I; Semlitsch, Raymond D
2010-01-15
The paucity of data on sexual development of anuran amphibians has played an important role in the recent controversy over atrazine exposure. Although some studies have demonstrated the presence of abnormal gonads in control treatments, others have not, leading to varying interpretations of the effects of atrazine exposure on sexual development. However, the timing of development varies among anuran amphibians such that, at any snapshot in time, different species may exhibit different stages of sexual differentiation. We examined three species representing each of the differentiation rates (Bufo americanus=retarded rate; Hyla versicolor=basic rate; Rana sphenocephala=accelerated rate), to examine the natural time course of sexual development along with the influence of atrazine exposure. For each species, exposure to atrazine (1, 3, 10, 30 parts per billion), 17-beta-estradiol or control water occurred throughout larval life. Gonad histology was performed at 3-week intervals during the larval period or at a juvenile stage to examine the proportion of males, females, underdeveloped testes, testicular oocytes (TO; testes with 0-30% oocytes), and ovotestes (OVTs; testes with>30% oocytes). Our results illustrate that a phase of intersex gonads (TO or OVT) is normal during R. sphenocephala sexual development, a species representing the accelerated differentiation rate. Further, intersex gonads were found in juvenile stages of B. americanus and H. versicolor, representing retarded and basic rates, respectively, suggesting that a phase of intersex may be common regardless of differentiation rate. Moreover, these data highlight the importance of longitudinal studies rather than snapshots in time. (c) 2009 Wiley-Liss, Inc.
The Number of X Chromosomes Causes Sex Differences in Adiposity in Mice
Chen, Xuqi; McClusky, Rebecca; Chen, Jenny; Beaven, Simon W.; Tontonoz, Peter
2012-01-01
Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the “four core genotypes,” to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism. PMID:22589744
Molecular mechanisms associated with 46,XX disorders of sex development.
Knarston, Ingrid; Ayers, Katie; Sinclair, Andrew
2016-03-01
In the female gonad, distinct signalling pathways activate ovarian differentiation while repressing the formation of testes. Human disorders of sex development (DSDs), such as 46,XX DSDs, can arise when this signalling is aberrant. Here we review the current understanding of the genetic mechanisms that control gonadal development, with particular emphasis on those that drive or inhibit ovarian differentiation. We discuss how disruption to these molecular pathways can lead to 46,XX disorders of ovarian development. Finally, we look at recently characterized novel genes and pathways that contribute and speculate how advances in technology will aid in further characterization of normal and disrupted human ovarian development. © 2016 Authors; published by Portland Press Limited.
[Disorders of sex development and proximal hypospadias].
Oswald, J
2016-01-01
Children with ambiguous genitalia due to different chromosome or gonadal sex are a particular challenge concerning the diagnostic and therapeutic implications. Proximal hypospadias patients with normal gonadal development should be distinguished from children with DSD (disorders of sex development) to guarantee normal gender identity and the best possible surgical therapy. This paper focuses on the terminology, embryology, and pathophysiology of the different manifestations of DSD. The state of knowledge about this disease pattern with particular emphasis on proximal hypospadias based on national and international scientific discussions is presented. The different clinical pictures as well as therapeutic options of DSD with a special focus on recent literature and giving particular attention to patients with proximal hypospadias are presented. Because of the complexity of patients suffering from disorders of sex development an interdisciplinary DSD healthcare team including a paediatric endocrinologist as well as paediatric urologist should be provided. These specialists enable an accurate diagnosis in severe hypospadias patients without reference to DSD diseases patterns.
Petersen, Ann M.; Dillon, Danielle; Bernhardt, Richard A.; Torunsky, Roberta; Postlethwait, John H.; von Hippel, Frank A.; Buck, C. Loren; Cresko, William A.
2014-01-01
Perchlorate, an environmental contaminant, disrupts normal functioning of the thyroid. We previously showed that perchlorate disrupts behavior and gonad development, and induces external morphological changes in a vertebrate model organism, the threespine stickleback. Whether perchlorate alters these phenotypes via a thyroid-mediated mechanism, and the extent to which the effects depend on dose, are unknown. To address these questions, we chronically exposed stickleback to control conditions and to three concentrations of perchlorate (10, 30 and 100 ppm) at various developmental stages from fertilization to reproductive maturity. Adults chronically exposed to perchlorate had increased numbers of thyroid follicles and decreased numbers of thyrocytes. Surprisingly, T4 and T3 levels in larval, juvenile, and adult whole fish chronically exposed to perchlorate did not differ from controls, except at the lowest perchlorate dose, suggesting a non-monotonic dose response curve. We found no detectable abnormalities in external phenotype at any dose of perchlorate, indicating that the increased number of thyroid follicles compensated for the disruptive effects of these doses. In contrast to external morphology, gonadal development was altered substantially, with the highest dose of perchlorate causing the largest effects. Perchlorate increased the number both of early stage ovarian follicles in females and of advanced spermatogenic stages in males. Perchlorate also disrupted embryonic androgen levels. We conclude that chronic perchlorate exposure may not result in lasting adult gross morphological changes but can produce lasting modifications to gonads when compensation of T3 and T4 levels occurs by thyroid follicle hyperplasia. Perchlorate may therefore affect vertebrate development via both thyroidal and non-thyroidal mechanisms. PMID:25448260
Reproductive toxicity: Male and female reproductive systems as targets for chemical injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattison, D.R.; Plowchalk, D.R.; Meadows, M.J.
On the basis of current knowledge of reproductive biology and toxicology, it is apparent that chemicals affecting reproduction may elicit their effects at a number of sites in both the male and the female reproductive system. This multiplicity of targets is attributable to the dynamic nature of the reproductive system, in which the hypothalamic-pituitary-gonadal axis is controlled by precise positive and negative feedback mechanisms among its components. Interference by a xenobiotic at any level in either the male or the female reproductive system may ultimately impair hypothalamic or pituitary function. Normal gonadal processes such as spermatogenesis or oogenesis, ejaculation ormore » ovulation, hormone production by Leydig or granulosa cells, and the structure or function of the accessory reproductive structures (e.g., epididymis, fallopian tube) also appear vulnerable to xenobiotics. The reproductive system is a complex one that requires local and circulating hormones for control. This brief review illustrates a system for characterizing the mechanism of action of reproductive toxicants, as well as for defining the sites available for disruption of reproduction. Unfortunately, at present, data addressing the actual vulnerability of reproduction are sorely lacking. However, when experiments have been conducted and combined with epidemiologic data or clinical observation, it has been possible to demonstrate impairment of reproductive processes by xenobiotics. The role of environmental exposure to xenobiotics in the increase in infertility that has been observed remains to be defined. 87 references.« less
Therapy Insight: preserving fertility in cyclophosphamide-treated patients with rheumatic disease.
Dooley, Mary Anne; Nair, Raj
2008-05-01
Cyclophosphamide remains a necessary treatment for severe rheumatic diseases, despite the continued search for alternative therapies with less gonadal toxicity. The risk of premature gonadal failure and sterility might lead young patients to delay treatment with cyclophosphamide. The patient's age at treatment and the cumulative dose received remain important risk factors for cyclophosphamide-induced gonadal failure in both males and females. Estrogen-containing oral contraceptives for females and testosterone for males are suggested to reduce the gonadal toxicity of cyclophosphamide, although few studies support these interventions. Owing to increased side effects, hormonal therapy is often avoided in patients with edema, hypertension, nephrotic syndrome or antiphospholipid antibodies. Agonists and antagonists of gonadotropin receptors are under study. Gonadotropin-receptor agonists might have beneficial effects in addition to suppression of sex-hormone production. The outcome of attempted cryopreservation of eggs, embryos or ovaries remains uncertain for women seeking to preserve their reproductive potential. Storing male gametes before chemotherapy is widely practiced and technically successful. As recovery of menses or production of testosterone does not predict individual fertility, identification of biomarkers of gonadal function and reserve, including serum levels of several hormones, ultrasonographic measurements of ovarian volume and antral follicle count, are necessary.
Ponglowhapan, S; Church, D B; Khalid, M
2009-05-01
As pituitary gonadotrophins can induce prostaglandin (PG) synthesis and receptors for LH and FSH are present in the canine lower urinary tract (LUT), the objectives of this study were to (i) investigate the expression of COX-2, a key rate-limiting enzyme in PG production, in the canine LUT and (ii) determine if COX-2 expression differs between gender, gonadal status (intact and gonadectomised) and LUT regions. Four regions (body and neck of the bladder as well as proximal and distal urethra) of the LUT were obtained from 20 clinically healthy dogs (5 intact males, 5 intact anoestrous females, 4 castrated males, 6 spayed females). In situ hybridization and immunohistochemistry were performed to determine the presence of COX-2 mRNA and protein, respectively. The mRNA and protein expression was semi-quantitatively assessed. The scoring system combined both the distribution and intensity of positive staining and was carried out separately on the three tissue layers (epithelium, sub-epithelial stroma and muscle) for each of four regions of the LUT. In comparison to intact dogs, lower expression (P<0.001) of COX-2 and its mRNA in gonadectomised males and females was observed in all tissue layers of each region of the LUT except in the distal urethra where there was no difference in mRNA expression between gonadal statuses. Regardless of region and tissue layer, intact females expressed more (P<0.05) COX-2 and its mRNA than intact males. However, in gonadectomised dogs, mRNA expression of COX-2 did not differ between genders; males had higher (P<0.001) protein level of COX-2 compared to females. In conclusion, both COX-2 and its mRNA were expressed in the canine LUT and COX-2-regulated PG synthesis in the canine LUT may differ between gonadal statuses and genders. The lower expression of COX-2 in gonadectomised dogs may impair normal function of the LUT and probably implicated in the development of neutering-induced urinary incontinence in the dog.
Li, Zan; Liu, Xiumei; Sun, Yan; Liu, Jinxiang; Liu, Yuezhong; Wang, Mengxun; Zhang, Quanqi; Wang, Xubo
2017-01-16
GATA-binding protein 6 (GATA6), a highly-conserved transcription factor of the GATA family plays an important role in gonadal cell proliferation, differentiation and endoderm development. In this study, the full-length cDNA of GATA6 of Paralichthys olivaceus (Japanese flounder) was obtained. Phylogenetic, gene structure and synteny analyses demonstrated that GATA6 of P. olivaceus is homologous to that of teleosts and tetrapods. The P. olivaceus GATA6 transcript showed higher expression in testis than in ovary, demonstrating a sexually dimorphic gene expression. During embryonic development, the expression of P. olivaceus GATA6 increased at the blastula stage, demonstrating that GATA6 is involved in morphogenesis. Results of in situ hybridization showed that GATA6 signals were detected in Sertoli cells, oogonia and oocytes. Moreover, 17α methyl testosterone, a male hormone, could moderately upregulate P. olivaceus GATA6 and downregulate P. olivaceus aromatase CYP19A1 in testis cells. These results suggest that GATA6 may play an important role in gonadal development in P. olivaceus . This study provides valuable information on the function of P. olivaceus GATA6, laying the foundation for further development of breeding techniques in this species.
Li, Zan; Liu, Xiumei; Sun, Yan; Liu, Jinxiang; Liu, Yuezhong; Wang, Mengxun; Zhang, Quanqi; Wang, Xubo
2017-01-01
GATA-binding protein 6 (GATA6), a highly-conserved transcription factor of the GATA family plays an important role in gonadal cell proliferation, differentiation and endoderm development. In this study, the full-length cDNA of GATA6 of Paralichthys olivaceus (Japanese flounder) was obtained. Phylogenetic, gene structure and synteny analyses demonstrated that GATA6 of P. olivaceus is homologous to that of teleosts and tetrapods. The P. olivaceus GATA6 transcript showed higher expression in testis than in ovary, demonstrating a sexually dimorphic gene expression. During embryonic development, the expression of P. olivaceus GATA6 increased at the blastula stage, demonstrating that GATA6 is involved in morphogenesis. Results of in situ hybridization showed that GATA6 signals were detected in Sertoli cells, oogonia and oocytes. Moreover, 17α methyl testosterone, a male hormone, could moderately upregulate P. olivaceus GATA6 and downregulate P. olivaceus aromatase CYP19A1 in testis cells. These results suggest that GATA6 may play an important role in gonadal development in P. olivaceus. This study provides valuable information on the function of P. olivaceus GATA6, laying the foundation for further development of breeding techniques in this species. PMID:28275215
Effect of immune stress on body weight regulation is altered by ovariectomy in female rats.
Iwasa, Takeshi; Matsuzaki, Toshiya; Kinouchi, Riyo; Gereltsetseg, Ganbat; Murakami, Masahiro; Nakazawa, Hiroshi; Fujisawa, Shinobu; Yamamoto, Satoshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru
2011-09-01
It has been suggested that obesity and loss of ovarian function alter the inflammatory response to immune stress. Ovariectomized (OVX) rats, which are used as a model of human menopause, exhibit both hyperphagia-induced obesity and gonadal steroid deficiency. To evaluate the effects of ovariectomy on inflammatory responses, we compared the anorectic response to LPS in OVX rats and gonad intact female rats. As leptin and hypothalamic interleukin-1β (IL1β) play pivotal roles in the anorectic response to immune stress, these factors were also measured. It was found that the OVX rats exhibited an increased anorectic response to LPS compared with the sham-operated rats. The OVX rats showed higher serum leptin concentrations and a greater increase in hypothalamic IL1β mRNA expression after LPS injection. In addition, in order to determine whether gonadal steroid deficiency contributes to the changes in the inflammatory responses of OVX rats, we compared responses between OVX rats treated with gonadal steroids and untreated OVX rats. There were no differences in appetite, the serum leptin level, and hypothalamic IL1β mRNA expression between the two groups after LPS injection. These findings suggest that the loss of ovarian function increases the induction of leptin and hypothalamic IL1β synthesis and consequently increases the anorectic response under immune stress conditions. It is possible that these alterations are caused by OVX-induced obesity rather than the direct effects of gonadal steroid deficiency. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Bergamaschi, S; Ronchi, C L; Giavoli, C; Ferrante, E; Verrua, E; Ferrari, D I; Lania, A; Rusconi, R; Spada, A; Beck-Peccoz, P
2010-01-01
A 3.4-year-old girl was admitted to the Pediatric Department because of tall stature (116.0 cm, +5.1 SDS) and increased height velocity (16.3 cm/year, +6.1 SDS). Basal hormonal evaluation revealed elevated insulin-like growth factor I (IGF-I) levels (938 ng/ml, nv 40-190), prolactin (PRL) (98.0 ng/ml, nv 1.7-24.0) and mean growth hormone (GH) nocturnal concentration (147 ng/ml). Basal adrenal, gonadal and thyroid functions were normal. Hand-wrist bone age was 3.6 years. Magnetic resonance imaging revealed a macroadenoma with moderate suprasellar invasion. The adenoma was surgically removed and histological characterization confirmed the diagnosis of GH/PRL-secreting adenoma. The patient was admitted to our Endocrine Unit when 7.9 years old, because of the persistence of elevated GH, IGF-I and PRL levels, although there was a slight height velocity reduction and absence of tumor recurrence. Treatment with cabergoline was initiated, but only PRL levels normalized. Afterwards, octreotide long-acting release (LAR) was added without reaching the normalization of GH and IGF-I levels. Thus, treatment with octreotide LAR was discontinued and pegvisomant was added to cabergoline, leading to the normalization of IGF-I levels and height velocity without side effects. Other anterior pituitary functions were always normal. To conclude, treatment of pituitary gigantism with pegvisomant was effective and well tolerated in a young giant unresponsive to combined cabergoline and octreotide treatment.
Modulation by vitamin D status of the responsiveness of rat bone to gonadal steroids.
Sömjen, D; Kaye, A M; Harell, A; Weisman, Y
1989-10-01
We have previously demonstrated that gonadal steroids stimulate [3H]thymidine incorporation and creatine kinase specific activity in skeletal tissues. In the present study we report that in 20-day-old vitamin D-deficient Wistar-derived rats, 17 beta-estradiol (E2; 5 micrograms/rat) or testosterone (50 micrograms/rat) failed to stimulate [3H]thymidine incorporation into diaphyses of long bones and that the response to these hormones in terms of increased creatine kinase specific activity was less than half the value in normally fed rats. Two daily ip injections of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3; 0.5 ng/g BW], but not 24,25-(OH)2D3 (5 ng/g BW), partially restored the biological responses to E2 in bone of 21-day-old vitamin D-deficient female rats. Vitamin D deficiency did not impair the responsiveness to gonadal steroids in the epiphysis of long bones, uterus, or prostate, in contrast to its effect on diaphysis. In 21-day-old normally fed female rats, neither vitamin D metabolite enhanced the response to E2. When cultures of rat epiphyseal cells were treated daily for 5 days with either 1,25-(OH)2D3 (1 nM) or 24,25-(OH)2D3 (10 nM), followed by E2 (30 nM) for 24 h, creatine kinase activity was significantly higher than in cultures treated daily for 5 days with vehicle alone, and then with E2. The same treatment of rat embryo calvaria bone cells showed that 1,25-(OH)2D3, but not 24,25-(OH)2D3, significantly increased the creatine kinase activity response to E2. These findings suggest that vitamin D metabolites selectively affect the biological responses of skeletal tissues to gonadal steroids.
Schoeller, Erica L.; Albanna, Gabriella; Frolova, Antonina I.; Moley, Kelle H.
2012-01-01
The mechanism responsible for poor reproductive outcomes in type 1 diabetic males is not well understood. In light of new evidence that the Sertoli cells of the testis secrete insulin, it is currently unclear whether diabetic subfertility is the result of deficiency of pancreatic insulin, testicular insulin, or both. In this study, the Akita mouse diabetic model, which expresses a mutant, nonfunctional form of ins2 in testes and pancreas, was used to distinguish between systemic and local effects of insulin deficiency on the process of spermatogenesis and fertility. We determined that Akita homozygous male mice are infertile and have reduced testis size and abnormal morphology. Spermatogonial germ cells are still present but are unable to mature into spermatocytes and spermatids. Exogenous insulin treatment regenerates testes and restores fertility, but this plasma insulin cannot pass through the blood-testis barrier. We conclude that insulin does not rescue fertility through direct interaction with the testis; instead, it restores function of the hypothalamic-pituitary-gonadal axis and, thus, normalizes hormone levels of luteinizing hormone and testosterone. Although we show that the Sertoli cells of the testis secrete insulin protein, this insulin does not appear to be critical for fertility. PMID:22522616
Zhong, Chan; Sun, Le-Chang; Yan, Long-Jie; Lin, Yi-Chen; Liu, Guang-Ming; Cao, Min-Jie
2018-01-24
In this study, production of bioactive peptides with angiotensin converting enzyme (ACE) inhibitory activity from sea cucumber (Stichopus japonicus) gonad using commercial protamex was optimised by response surface methodology (RSM). As a result, the optimal condition to achieve the highest ACE inhibitory activity in sea cucumber gonad hydrolysate (SCGH) was hydrolysis for 1.95 h and E/S of 0.75%. For further characterisation, three individual peptides (EIYR, LF and NAPHMR) were purified and identified. The peptide NAPHMR showed the highest ACE inhibitory activity with IC 50 of 260.22 ± 3.71 μM. NAPHMR was stable against simulated gastrointestinal digestion and revealed no significant cytotoxicity toward Caco-2 cells. Molecular docking study suggested that Arg, His and Asn residues in NAPHMR interact with the S2 pocket or Zn 2+ binding motifs of ACE via hydrogen or π-bonds, potentially contributing to ACE inhibitory effect. Sea cucumber gonad is thus a potential resource to produce ACE inhibitory peptides for preparation of functional foods.
Gonadoblastoma: evidence for a stepwise progression to dysgerminoma in a dysgenetic ovary.
Pauls, Katharina; Franke, Folker E; Büttner, Reinhard; Zhou, Hui
2005-09-01
Gonadoblastomas are neoplasms of dysgenetic gonads which may undergo regression or become overgrown by malignant germ cell tumors (mGCTs). Since little is known about their relationship to normal gonadal development and mGCTs, we studied the phenotype and antigenic profile of gonadoblastomas in comparison with adjacent dysgerminomas and fetal gonads. Three cases of gonadoblastomas and fetal gonads of both sexes were analyzed using oncofetal markers to M2A-antigen (M2A), germ cell alkaline phosphatase (PLAP/GCAP), receptor tyrosine kinase c-kit (c-kit), and somatic angiotensin converting enzyme (sACE) as well as the proliferation marker MIB-1. Morphologically, microfollicular pattern of gonadoblastomas showed a fetal germ cell organization reminiscent of oocytic clusters of fetal ovaries. They contained both cell types, similar to oocytes (M2A-, GCAP-, c-kit+/-, sACE-) and oogonia (M2A+, GCAP+, c-kit+, sACE+). The percentage of germ cells immunoreactive for oncofetal markers and the proliferation index increased from microfollicular over coronary patterns to adjacent dysgerminomas. Supportive cells of gonadoblastomas showed a uniform phenotype (CK18+, vimentin+, sACE+, alpha-inhibin+, M2A-) but in contrast to fetal germ cells lacked a clear equivalence to fetal tissues. Our results show that gonadoblastomas mimic female fetal ovary and exhibit a stepwise progression from follicular pattern to coronary pattern and finally to dysgerminomas.
SRY protein is expressed in ovotestis and streak gonads from human sex-reversal.
Salas-Cortés, L; Jaubert, F; Nihoul-Feketé, C; Brauner, R; Rosemblatt, M; Fellous, M
2000-01-01
In mammals, a master gene located on the Y chromosome, the testis-determining gene SRY, controls sex determination. SRY protein is expressed in the genital ridge before testis determination, and in the testis it is expressed in Sertoli and germ cells. Completely sex-reversed patients are classified as either 46,XX males or 46,XY females. SRY mutations have been described in only 15% of patients with 46,XY complete or partial gonadal dysgenesis. However, although incomplete or partial sex-reversal affects 46,XX true hermaphrodites, 46,XY gonadal dysgenesis, and 46,XX/46,XY mosaicism, only 15% of the 46,XX true hermaphrodites analyzed have the SRY gene. Here, we demonstrate that the SRY protein is expressed in the tubules of streak gonads and rete testis, indicating that the SRY protein is normally expressed early during testis determination. Based on these results, we propose that some factors downstream from SRY may be mutated in these 46,XY sex-reversal patients. We have also analyzed SRY protein expression in the ovotestis from 46,XX true hermaphrodites and 46,XX/46,XY mosaicism, demonstrating SRY protein expression in both testicular and ovarian portions in these patients. This suggests that the SRY protein does not inhibit ovary development. These results confirm that other factors are needed for complete testis development, in particular, those downstream of the SRY protein. Copyright 2001 S. Karger AG, Basel
Dogliero, Andrea; Rossi, Giacomo; Mauthe von Degerfeld, Mitzy; Quaranta, Giuseppe; Rota, Ada
2017-10-15
Celioscopy is routinely used in birds for sex determination and diagnostic purposes. Aim of this work was to validate celioscopy for the assessment of male gonads functionality in wild raptors, comparing the results of direct observation with morphometrical and histological characteristics. The work was done at the 'Centro Animali Non Convenzionali' of the University of Turin, Italy, on 31 endoscopically evaluated raptors that died or were euthanized. Through celioscopic observation, the birds were classified in adults or immatures and maturity categories were defined according to the adrenal-gonad size ratio and to the degree of blood filling of testicular vessels. The gonads were removed immediately after death/euthanasia and measured. Albuginea tunic thickness, diameter of seminiferous tubules, number of meiosis figures, tubular development degree, tubular degeneration degree and germinal cells production degree were evaluated. Testicular size tended to increase from immature to adult birds and from 'out of' to 'in' breeding season; albuginea tunic thickness tended to be higher out of the reproductive season while diameter of the seminiferous tubules, germinative epithelium thickness and number of meiosis figures were higher in the breeding season. In season adults generally showed higher values in tubular development and germinal cells production, and lower degrees of tubular cells degeneration and fibrosis. From the interpretation of all the morphometrical and histological aspects, a general reproductive degree of activity was given to the birds and compared with celioscopic results. A perfect concordance was found in 23 out of 31 cases and a good concordance in six ones; histology could describe obviously better sub-clinical conditions undetectable at direct observation. These preliminary results suggest that celioscopy could be a useful tool to assess male gonads functionality in wild raptors, with the future goal to select the better potential semen donors. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magliulo-Cepriano, L.; Schreibman, M.P.
1999-07-01
In all vertebrates, the neuroendocrine system serves as the primary and essential link between the external and internal environments and a multitude of physiological systems, including the reproductive system. In response to changes in the environment and fluctuations in levels of circulating humoral agents, the neuroendocrine system is able to reverse, maintain or advance physiological events. Endocrine disrupting compounds are believed to wreak havoc on reproduction and development by interfering in the normal flow of information along the brain-pituitary-gonad axis. While the final effects of these compounds may be easily determined in a number of species, utilization of non-traditional researchmore » animals, such as some fishes in which the pattern of information flow along the brain-pituitary-gonad axis has been meticulously detailed and documented, will provide excellent and novel means of elucidating not only the final effects but the cytological, histological and systemic mechanisms of action of these endocrine disruptors. This report presents methods of assessing the effects of endocrine disrupting compounds on a variety of physiological and morphological parameters in fishes.« less
Pain and sex hormones: a review of current understanding.
Maurer, Adrian J; Lissounov, Alexei; Knezevic, Ivana; Candido, Kenneth D; Knezevic, Nebojsa Nick
2016-01-01
Multiple epidemiologic studies have demonstrated an increased prevalence for women in several chronic pain disorders. Clinical and experimental investigations have consistently demonstrated sex-specific differences in pain sensitivity and pain threshold. Even though the underlying mechanisms responsible for these differences have not yet been elucidated, the logical possibility of gonadal hormone influence on nociceptive processing has garnered recent attention. In this review, we evaluated the complex literature regarding gonadal hormones and their influence on pain perception. We reviewed the numerous functions of gonadal hormones, discussed the influence of these hormones on several common chronic pain syndromes (migraine, tension and cluster headaches, fibromyalgia, temporomandibular syndrome, rheumatoid arthritis and back pain, among others), and have attempted to draw conclusions from the available data.
NASA Astrophysics Data System (ADS)
Li, Siping; He, Feng; Wen, Haishen; Li, Jifang; Si, Yufeng; Liu, Mingyuan; He, Huiwen; Huang, Zhengju
2017-04-01
Increasingly arisen environmental constraints may contribute to heritable phenotypic variation including methylation changes, which can help the animals with development, growth and survival. In this study, we assessed the DNA methylation levels in three tissues (gonad, kidney and gill) of half smooth tongue sole under the salinity stress. The methylation-sensitive amplification polymorphism (MSAP) technique was applied to illustrate the regulation of epigenetic mechanism in environmental stimuli. Fish were subjected to 15 salinity treatment for 7 and 60 days, respectively. A total of 11259 fragments were amplified with 8 pairs of selective primers. The levels of methylated DNA in different tissues of females and males without salinity stress were analyzed, which were 32.76% and 47.32% in gonad; 38.13% and 37.69% in kidney; 37.58% and 34.96% in gill, respectively. In addition, the significant difference was observed in gonad between females and males, indicating that discrepant regulation in gonadal development and differentiation may involve sex-related genes. Further analysis showed that total and hemi-methylation were significantly decreased under 15 salinity for 7 days, probably resulting in up-regulating salt-tolerance genes expression to adjust salt changing. With the adjustment for 60 days, total and hemi-methylation prominently went back to its normal levels to obtain equilibrium. Particularly, full methylation levels were steady along with salinity stress to maintain the stability of gene expression. Additionally, the data showed that gonads in females and gills in males were superior in adaptability. As a result, DNA methylation regulates tissue- specific epiloci, and may respond to salinity stress by regulating gene expression to maintain animal survival and activity.
Germ cells in the teleost fish medaka have an inherent feminizing effect
Nishimura, Toshiya; Yamada, Kazuki; Fujimori, Chika; Kikuchi, Mariko; Kawasaki, Toshihiro; Siegfried, Kellee R.; Sakai, Noriyoshi
2018-01-01
Germ cells give rise to eggs or sperm. However, recent analyses in medaka (Oryzias latipes) showed that germ cells are also important for feminization of gonads, although this novel role of germ cells has not been characterized in detail. Here, we show that the feminizing effect is inherent to germ cells and is not affected by gametogenic stages or the sexual fate of germ cells. Three medaka mutants were generated to demonstrate this effect: figlα mutants, in which follicle formation is disrupted; meioC mutants, in which germ cells are unable to commit to gametogenesis and meiosis; and dazl mutants, in which germ cells do not develop into gonocytes. All these different stages of germ cells in XX mutants have an ability to feminize the gonads, resulting in the formation of gonads with ovarian structures. In addition to normal ovarian development, we also suggest that the increased number of gonocytes is sufficient for male to female sex reversal in XY medaka. These results may genetically demonstrate that the mechanism underlying the feminizing effect of germ cells is activated before the sexual fate decision of germ cells and meiosis, probably by the time of gonocyte formation in medaka. Author summary Germ cells are the only cells that can transfer genetic materials to the next generation via the sperm or egg. However, recent analyses in teleosts revealed another essential role of germ cells: feminizing the gonads. In our study, medaka mutants in which gametogenesis was blocked at specific stages provides the novel view that the feminizing effect of germ cells occurs in parallel with other reproductive elements, such as meiosis, the sexual fate decision of germ cells, and gametogenesis. Germ cells in medaka may have a potential to feminize gonads at the moment they have developed. PMID:29596424
Alternative life-history and transmission strategies in a parasite: first come, first served?
Poulin, R; Lefebvre, F
2006-01-01
Alternative transmission strategies are common in many parasitic organisms, often representing discrete phenotypes adopted in response to external cues. The facultative truncation of the normal 3-host life-cycle to a 2-host cycle in many trematodes provides an example: some individuals mature precociously, via progenesis, in their intermediate host and produce eggs without the need to reach a definitive host. The factors that determine how many and which individuals adopt the truncated life-cycle within a parasite population remain unknown. We investigated the occurrence of progenesis in the trematode Stegodexamene anguillae within its fish intermediate host. Location within the host was a key determinant of progenesis. Although the size and egg output of progenetic metacercariae encysted in host gonads did not differ from those of the few progenetic metacercariae in other host tissues, the likelihood of metacercariae becoming progenetic was much higher for those in the gonads than those elsewhere in the host. Progenetic parasites can only evacuate their eggs along with host eggs or sperm, providing a link between the parasite's transmission strategy and its location in the host. Host size and sex, and the presence of other parasite species in the host, did not affect the occurrence of progenesis in S. anguillae. However, the proportion of metacercariae in host gonads and the proportion of progenetic metacercariae both decreased with increasing numbers of S. anguillae per host. These results suggest that progenesis is adopted mostly by the parasites that successfully establish in host gonads. These are generally the first to infect a fish; subsequent arrivals settle in other tissues as the gonads quickly become saturated with parasites. In this system, the site of encystment within the fish host both promotes and constrains the adoption of a facultative, truncated life-cycle by the parasite.
Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis
White, Stefan; Ohnesorg, Thomas; Notini, Amanda; Roeszler, Kelly; Hewitt, Jacqueline; Daggag, Hinda; Smith, Craig; Turbitt, Erin; Gustin, Sonja; van den Bergen, Jocelyn; Miles, Denise; Western, Patrick; Arboleda, Valerie; Schumacher, Valerie; Gordon, Lavinia; Bell, Katrina; Bengtsson, Henrik; Speed, Terry; Hutson, John; Warne, Garry; Harley, Vincent; Koopman, Peter; Vilain, Eric; Sinclair, Andrew
2011-01-01
Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases. PMID:21408189
Du, Xinxin; Liu, Xiaobing; Zhang, Kai; Liu, Yuxiang; Cheng, Jie; Zhang, Quanqi
2018-05-16
The spotted knifejaw (Oplegnathus punctatus) is a newly emerging economical fishery species in China. Studies focused on the regulation of gonadal development and gametogenesis of spotted knifejaw are still insufficient. As a key post-transcriptional regulator, miRNAs have been shown to play important roles in development and reproduction systems. In this study, small RNA deep sequencing in ovary and testis of spotted knifejaw were performed to screen miRNA expression patterns. After sequencing and bioinformatics analysis, a total of 247 conserved known miRNAs and 41 novel miRNAs were identified in spotted knifejaw gonads for the first time. In addition, 36 miRNAs were differentially expressed between testis and ovary. The putative target genes of differentially expressed (DE) miRNAs were significantly enriched in several pathways related to sexual differentiation and gonadal development, such as steroid hormone biosynthesis. Sequencing data was validated through qRT-PCR analysis of selected DE miRNAs. Dual-luciferase reporter analyses of filtered miRNA-target gene pairs confirmed that opu-miR-27b-3p targeted in piwi2 and mov10l1 3' UTRs and down-regulated their expressions in spotted knifejaw. The notion that mov10l1 and piwi2 enhance germ cells proliferation and regulate gonadal development and gametogenesis suggests that opu-miR-27b-3p may attenuated this process in the gonads of spotted knifejaw. These findings provided insights into regulatory roles of gonadal miRNAs and supplied fundamental resources for further studies on miRNA-mediated post-transcriptional regulation in reproductive system of spotted knifejaw. Copyright © 2018. Published by Elsevier Inc.
Oncofertility and preservation of reproductive capacity in children and young adults.
Wallace, W Hamish B
2011-05-15
With increasing numbers of survivors from cancer at a young age, the issue of fertility preservation has assumed greater importance. This review describes normal ovarian and testicular function and summarizes what is known about the effect of chemotherapy and radiotherapy on the gonads and uterus. All young patients with cancer or leukemia should have their fertility prognosis discussed before the initiation of treatment. Sperm and embryo cryopreservation should be considered standard practice and be widely available for those at significant risk of infertility. For prepubertal girls, ovarian tissue cryopreservation should be considered if the risk of premature menopause is high, but for the prepubertal boy there are no established techniques in current practice. © 2011 American Cancer Society
Obesity-related hypogonadism: a reversible condition.
Zouras, Stamatios; Stephens, Jeffrey W; Price, David
2017-06-23
Obesity is associated with hypogonadism. While this association is widely accepted, the underlying mechanisms remain unclear. Furthermore, obesity is a risk factor for hypogonadism and conversely hypogonadism may be a risk factor for obesity. We present the case of a morbidly obese man aged 30 years with hypogonadotrophic hypogonadism that underwent a Roux-en-Y gastric bypass operation. Following the surgical treatment of his obesity, the testosterone level returned to normal with improvements in hypogonadal symptoms, which allowed discontinuation of exogenous testosterone therapy. This case report demonstrates reversal of hypogonadism following weight loss with restoration of gonadal function. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
The "yin and yang" of the adrenal and gonadal systems in elite military men.
Taylor, Marcus K; Hernández, Lisa M; Kviatkovsky, Shiloah A; Schoenherr, Matthew R; Stone, Michael S; Sargent, Paul
2017-05-01
We recently established daily, free-living profiles of the adrenal hormone cortisol, the (primarily adrenal) anabolic precursor dehydroepiandrosterone (DHEA) and the (primarily gonadal) anabolic hormone testosterone in elite military men. A prevailing view is that adrenal and gonadal systems reciprocally modulate each other; however, recent paradigm shifts prompted the characterization of these systems as parallel, cooperative processes (i.e. the "positive coupling" hypothesis). In this study, we tested the positive coupling hypothesis in 57 elite military men by evaluating associations between adrenal and gonadal biomarkers across the day. Salivary DHEA was moderately and positively coupled with salivary cortisol, as was salivary testosterone. Anabolic processes (i.e. salivary DHEA and testosterone) were also positively and reliably coupled across the day. In multivariate models, salivary DHEA and cortisol combined to account for substantial variance in salivary testosterone concentrations across the day, but this was driven almost exclusively by DHEA. This may reflect choreographed adrenal release of DHEA with testicular and/or adrenal release of testosterone, systemic conversion of DHEA to testosterone, or both. DHEA and testosterone modestly and less robustly predicted cortisol concentrations; this was confined to the morning, and testosterone was the primary predictor. Altogether, top-down co-activation of adrenal and gonadal hormone secretion may complement bottom-up counter-regulatory functions to foster anabolic balance and neuronal survival; hence, the "yin and yang" of adrenal and gonadal systems. This may be an adaptive process that is amplified by stress, competition, and/or dominance hierarchy.
Wu, Xue-yan; Nie, Min; Lu, Shuang-yu; Mao, Jiang-feng
2011-03-15
To investigate the clinical values of luteinizing hormone-releasing hormone (LHRH) α (triptorelin) stimulating test in the differential diagnoses of hypothalamus-pituitary-gonad axis (HPGA) disorders. A total of 229 male patients with various HPGA disorders were recruited for triptorelin stimulating test. And all patients were followed up for 12 - 48 months until a definite diagnosis was made. The values of triptorelin stimulating test in the differential diagnoses of HPGA disorders were assessed by examining the close relationship between LHmax and the final clinical diagnosis. (1) LH levels rose steady after an intramuscular injection of triptorelin 100 µg and the time of LHmax appeared at 45 - 60 min. (2) LHmax < 4 U/L indicated the function of HPGA was not activated. LHmax in the range of 4 - 12 U/L indicated the patients might have constitutional delayed puberty development. LHmax > 12 U/L indicated the fulfilled puberty development. Triptorelin stimulating test can precisely evaluate the functions of HPGA in various HPGA disorders and provide valuable information for the differential diagnoses in constitutional delayed puberty development, hypogonadotropic hypogonadism, central and peripheral precocious puberty disorders.
Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs.
Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S
2013-12-01
Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P < 0.05) between gonadal and subcutaneous adipose tissue in obese and lean dogs respectively. Of the adipose depot-specific differences in gene expression, 162 were present in both lean and obese dogs, with the majority (85%) expressed in the same direction. Both lean and obese dog gene lists had enrichment of the complement and coagulation cascade and systemic lupus erythematosus pathways. Obese dogs had enrichment of lysosome, extracellular matrix-receptor interaction, renin-angiotensin system and hematopoietic cell lineage pathways. Lean dogs had enrichment of glutathione metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.
Strange, Kevin; Yan, Xiaohui; Lorin-Nebel, Catherine; Xing, Juan
2007-01-01
Summary The nematode Caenorhabditis elegans provides numerous experimental advantages for developing an integrative molecular understanding of physiological processes and has proven to be a valuable model for characterizing Ca2+ signaling mechanisms. This review will focus on the role of Ca2+ release activated Ca2+ (CRAC) channel activity in function of the worm gonad and intestine. Inositol 1,4,5-trisphosphate (IP3)-dependent oscillatory Ca2+ signaling regulates contractile activity of the gonad and rhythmic posterior body wall muscle contraction (pBoc) required for ovulation and defecation, respectively. The C. elegans genome contains a single homolog of both STIM1 and Orai1, proteins required for CRAC channel function in mammalian and Drosophila cells. C. elegans STIM-1 and ORAI-1 are coexpressed in the worm gonad and intestine and give rise to robust CRAC channel activity when coexpressed in HEK293 cells. STIM-1 or ORAI-1 knockdown causes complete sterility demonstrating that the genes are essential components of gonad Ca2+ signaling. Knockdown of either protein dramatically inhibits intestinal cell CRAC channel activity, but surprisingly has no effect on pBoc, intestinal Ca2+ oscillations or intestinal ER Ca2+ store homeostasis. CRAC channels thus do not play obligate roles in all IP3-dependent signaling processes in C. elegans. Instead, we suggest that CRAC channels carry out highly specialized and cell specific signaling roles and that they may function as a failsafe mechanism to prevent Ca2+ store depletion under pathophysiological and stress conditions. PMID:17376526
ENDOCRINE DISRUPTORS AS A THREAT TO NEUROLOGICAL FUNCTION
Weiss, Bernard
2011-01-01
Endocrine disruption is a concept and principle whose origins can be traced to the beginnings of the environmental movement in the 1960s. It began with puzzlement about and the flaring of research on the decline of wildlife, particularly avian species. The proposed causes accented pesticides, especially persistent organochlorines such as DDT. Its scope gradually widened beyond pesticides, and, as endocrine disruption offered an explanation for the wildlife phenomena, it seemed to explain, as well, changes in fertility and disorders of male reproduction such as testicular cancer. Once disturbed gonadal hormone function became the most likely explanation, it provoked other questions. The most challenging arose because of how critical gonadal hormones are to brain function, especially as determinants of brain sexual differentiation. Pursuit of such connections has generated a robust literature embracing a broad swath of chemical classes. How endocrine disrupting chemicals influence the adult and aging brain is a question, so far mostly ignored because of the emphasis on early development, that warrants vigorous investigation. Gonadal hormones are crucial to optimal brain function during maturity and even senescence. They are pivotal to the processes of neurogenesis. They exert protective actions against neurodegenerative disorders such as dementia and support smoothly functioning cognitive activities. The limited research conducted so far on endocrine disruptors, aging, and neurogenesis argues that they should be overlooked no longer. PMID:21474148
Romero, Yannick; Conne, Béatrice; Truong, Vy; Papaioannou, Marilena D.; Schaad, Olivier; Docquier, Mylène; Herrera, Pedro Luis; Wilhelm, Dagmar; Nef, Serge
2013-01-01
Mouse sex determination provides an attractive model to study how regulatory genetic networks and signaling pathways control cell specification and cell fate decisions. This study characterizes in detail the essential role played by the insulin receptor (INSR) and the IGF type I receptor (IGF1R) in adrenogenital development and primary sex determination. Constitutive ablation of insulin/IGF signaling pathway led to reduced proliferation rate of somatic progenitor cells in both XX and XY gonads prior to sex determination together with the downregulation of hundreds of genes associated with the adrenal, testicular, and ovarian genetic programs. These findings indicate that prior to sex determination somatic progenitors in Insr;Igf1r mutant gonads are not lineage primed and thus incapable of upregulating/repressing the male and female genetic programs required for cell fate restriction. In consequence, embryos lacking functional insulin/IGF signaling exhibit (i) complete agenesis of the adrenal cortex, (ii) embryonic XY gonadal sex reversal, with a delay of Sry upregulation and the subsequent failure of the testicular genetic program, and (iii) a delay in ovarian differentiation so that Insr;Igf1r mutant gonads, irrespective of genetic sex, remained in an extended undifferentiated state, before the ovarian differentiation program ultimately is initiated at around E16.5. PMID:23300479
Sifuentes-Romero, Itzel; Merchant-Larios, Horacio; Milton, Sarah L; Moreno-Mendoza, Norma; Díaz-Hernández, Verónica; García-Gasca, Alejandra
2013-06-07
The autosomal Sry-related gene, Sox9, encodes a transcription factor, which performs an important role in testis differentiation in mammals. In several reptiles, Sox9 is differentially expressed in gonads, showing a significant upregulation during the thermo-sensitive period (TSP) at the male-promoting temperature, consistent with the idea that SOX9 plays a central role in the male pathway. However, in spite of numerous studies, it remains unclear how SOX9 functions during this event. In the present work, we developed an RNAi-based method for silencing Sox9 in an in vitro gonad culture system for the sea turtle, Lepidochelys olivacea. Gonads were dissected as soon as the embryos entered the TSP and were maintained in organ culture. Transfection of siRNA resulted in the decrease of both Sox9 mRNA and protein. Furthermore, we found coordinated expression patterns for Sox9 and the anti-Müllerian hormone gene, Amh, suggesting that SOX9 could directly or indirectly regulate Amh expression, as it occurs in mammals. These results demonstrate an in vitro method to knockdown endogenous genes in gonads from a sea turtle, which represents a novel approach to investigate the roles of important genes involved in sex determination or differentiation pathways in species with temperature-dependent sex determination.
Manuylov, Nikolay L.; Fujiwara, Yuko; Adameyko, Igor I.; Poulat, Francis
2007-01-01
We have previously established an in vivo requirement for GATA4 and FOG2 transcription factors in sexual differentiation. Fog2 null mouse fetuses or fetuses homozygous for a targeted mutation in Gata4 (Gata4ki), which cripples the GATA4-FOG2 interaction, exhibit a profound and early block in testis differentiation in both sexes. Others have shown that XX mice with the Ods transgenic insertion or the Wt1-Sox9 YAC transgene overexpress the testis differentiation gene, Sox9. Thus, these XX animals undergo dominant sex-reversal by developing into phenotypically normal, but sterile, males. Now we have determined that Fog2 haploinsufficiency prevents (suppresses) this dominant sex-reversal and Fog2+/− Wt1-Sox9 or Ods XX animals develop normally - as fertile females. The suppression of sex-reversal in Fog2 heterozygous females results from approximately 50% downregulation of the expression from the transgene-associated allele of Sox9. The GATA4/FOG2-dependent sex reversal observed in the transgenic XX gonads has to rely on gene targets other than the Y chromosome-linked Sry gene. Importantly, Fog2 null or Gata4ki/ki embryos (either XX or XY) fail to express detectable levels of Sox9 despite carrying the Ods mutation or Wt1-Sox9 transgene. Fog2 haploinsufficiency leads to a decreased amount of SOX9-positive cells in XY gonads. We conclude that FOG2 is a limiting factor in the formation of a functional GATA4/FOG2 transcription complex that is required for Sox9 expression during gonadogenesis. PMID:17540364
Gynecomastia as the initial manifestation of hyperthyroidism.
Gordon, D L; Brown, J L; Emanuele, N V; Hall, L
1997-01-01
To present two new cases of gynecomastia as the initial manifestation of hyperthyroidism. We describe detailed case reports of two men with breast enlargement who were found to have hyperthyroidism, and we review the related literature. Two men sought medical assistance because of unilateral tender gynecomastia. In one of these patients, thyroid, gonadal, and prostate examinations showed normal findings at the time of initial assessment, and symptoms of hyperthyroidism developed later. In our other patient with gynecomastia, other symptoms of hyperthyroidism--for example, nervousness, irritability, palpitations, and fatigue--had been present for a prolonged period but had been considered "normal" by the patient. In both patients, the hyperthyroidism was treated with radioiodine. Breast pain disappeared in both patients, and breast enlargement disappeared in one patient and was decreased in the other patient after euthyroidism was achieved. Review of the literature disclosed only two similar cases. Because of the rarity of gynecomastia as the initial symptom of hyperthyroidism, we believe that thyroid function tests are not indicated in the workup of patients whose major complaint is gynecomastia.
Disorders of sexual development and associated changes in the pituitary-gonadal axis in dogs.
Buijtels, J J C W M; de Gier, J; Kooistra, H S; Grinwis, G C M; Naan, E C; Zijlstra, C; Okkens, A C
2012-10-15
Normal sexual differentiation depends on completion of chromosomal sex determination, gonadal differentiation, and development of the phenotypic sex. An irregularity in any of these three steps can lead to a disorder in sexual development (DSD). We examined nine dogs with DSD by abdominal ultrasonography, laparotomy, histologic examination of the gonads, and reproductive tract, cytogenetic analysis, and mRNA expression of the SRY gene. We also determined the plasma concentrations of luteinizing hormone (LH), estradiol-17β, and testosterone before and after administration of gonadotropin-releasing hormone (GnRH) and compared these results with those obtained in anestrous bitches and male control dogs. The gonads of three dogs with DSD contained both testicular and ovarian tissue, while in the other six only testicular tissue was found. Each of the dogs had a uterus. Based on gynecologic examination, cytogenetic analysis, and the histology of the gonads, seven of the nine dogs appeared to be XX sex reversals. Three of these were XX true hermaphrodites and four were XX males; the other two dogs had incomplete XY gonadal dysgenesis. All seven XX sex-reversed dogs were found to be negative for the SRY gene by polymerase chain reaction. The basal plasma luteinizing hormone (LH) concentration was significantly higher in dogs with DSD than in anestrous bitches but not significantly different from that in male dogs. The basal plasma LH concentration increased significantly after GnRH administration in all dogs with DSD. The basal plasma estradiol concentration was significantly higher in dogs with DSD than in anestrous bitches but not significantly different from that in male dogs. The basal plasma testosterone concentration was lower in dogs with DSD than in male dogs. In all dogs with DSD both the basal and GnRH-induced plasma testosterone concentrations were above the upper limit of their respective ranges in the anestrous bitches. In conclusion, the secretion of LH and estradiol in these dogs with DSD, all of which had testicular tissue in their gonads, was similar to that in male control dogs. These results indicate that the basal and/or GnRH-stimulated plasma testosterone concentration might be used to detect the presence of testicular tissue in dogs with DSD. Copyright © 2012 Elsevier Inc. All rights reserved.
Normal echoanatomy of the red-eared slider terrapin (Trachemys scripta elegans).
Martorell, J; Espada, Y; Ruiz de Gopegui, R
2004-10-02
Thirty red-eared slider terrapins (Trachemys scripta elegans) were examined by ultrasound to establish the normal ultrasonographic appearance of their coelomic structures. They were not sedated, and owing to their small size they were examined through the inguinal window of the carapace. High resolution transducers (7.5 and 11 MHz) enhanced the ultrasonographic imaging of the bowel, urinary bladder, liver, gall bladder, heart, kidney and gonads, but the pancreas, adrenal glands, thyroid glands and spleen could not be visualised.
Ramsey, Mary; Crews, David
2007-08-01
Many turtles, including the red-eared slider turtle (Trachemys scripta elegans) have temperature-dependent sex determination in which gonadal sex is determined by temperature during the middle third of incubation. The gonad develops as part of a heterogenous tissue complex that comprises the developing adrenal, kidney, and gonad (AKG complex). Owing to the difficulty in excising the gonad from the adjacent tissues, the AKG complex is often used as tissue source in assays examining gene expression in the developing gonad. However, the gonad is a relatively small component of the AKG, and gene expression in the adrenal-kidney (AK) compartment may interfere with the detection of gonad-specific changes in gene expression, particularly during early key phases of gonadal development and sex determination. In this study, we examine transcript levels as measured by quantitative real-time polymerase chain reaction for five genes important in slider turtle sex determination and differentiation (AR, ERalpha, ERbeta, aromatase, and Sf1) in AKG, AK, and isolated gonad tissues. In all cases, gonad-specific gene expression patterns were attenuated in AKG versus gonad tissue. All five genes were expressed in the AK in addition to the gonad at all stages/temperatures. Inclusion of the AK compartment masked important changes in gonadal gene expression. In addition, AK and gonad expression patterns are not additive, and gonadal gene expression cannot be predicted from intact AKG measurements. (c) 2007 Wiley-Liss, Inc.
Group management influences reproductive function of the male cheetah (Acinonyx jubatus).
Koester, Diana C; Freeman, Elizabeth W; Wildt, David E; Terrell, Kimberly A; Franklin, Ashley D; Meeks, Karen; Crosier, Adrienne E
2017-03-01
Although the free-ranging cheetah is generally socially solitary, as many as 60% of males live in same-sex (usually sibling) coalitions. Under ex situ conditions, the cheetah experiences low reproductive success with only ~18% of males having ever produced young. Most male cheetahs (85%) are managed in captivity in coalitions, but with no data on the influence of social grouping on reproductive parameters. We examined the influence of singleton versus coalition management on various male cheetah physiological traits, including ejaculate quality and gonadal and adrenal hormone metabolite concentrations. We also assessed behaviour within coalitions for evidence of social hierarchy through initiation of interactions with group mates and relatedness to physiological traits. Ejaculate quality (including total motile and structurally normal spermatozoa per ejaculate) and androgen concentration profiles were higher (P<0.05) in coalition compared with singleton males. These results support the conclusion that testis function in the cheetah, specifically related to the development of normal, motile spermatozoa and androgen production, is influenced by management with same-sex conspecifics. The findings have implications for ex situ conservation breeding programs by suggesting that reproductive quality can be enhanced through group maintenance of cheetah males.
Kersten, W; Molenaar, G J; Emmen, J M; van der Schoot, P
1996-01-01
The genital system of a dog with bilateral intra-abdominal testes is described. External virilisation was normal except for an empty scrotum. Internally there was a prostate of normal macroscopic and histological appearances and, bilaterally, a fully developed male genital tract. Testicular vasculature was normal. Cranial to each testis, there was a strong ligament lying at the free edge of the gonadal/genital mesentery and running between the cranial tip of the testis/epididymis and the area craniolateral of the ipsilateral kidney. It was impossible to push the testes into the inguinal canal because of this strong ligament. Caudal to each testis, there was an elongated whitish structure between the caudal pole of the epididymis and the area of the internal inguinal ring. On closer inspection this structure appeared to be the inverted and elongated processus vaginalis sac. There was a minor ligament at the free border of the inguinal fold of the genital mesentery between the tip of this inverted processus vaginalis and the adjacent junction of the cauda epididymidis and vas deferens. The findings suggest that persistence of the fetal cranial gonadal suspensory ligaments could have been the major aetiological factor in this case of cryptorchidism. Their persistence could have prevented caudal outgrowth of the processus vaginalis with its consequent development into an intra-abdominal papilla-like structure. Inappropriate persistence of the cranial suspensory ligaments in male rodents, pig, and cattle has been associated with insufficient exposure of their primordia to androgen during fetal life. It is uncertain whether a similar deficiency could underlie persistence of these structures in the present specimen. The findings add further weight to the hypothesis that regression of the cranial gonadal suspensory ligament in males is a key event in the process of testis descent. The human homologue of this ligament deserves more attention in the analysis and treatment of human cryptorchidism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:8771408
Mantovani, Giovanna; Maghnie, Mohamad; Weber, Giovanna; De Menis, Ernesto; Brunelli, Valeria; Cappa, Marco; Loli, Paola; Beck-Peccoz, Paolo; Spada, Anna
2003-09-01
Heterozygous inactivating mutations in the Gs alpha gene cause Albright's hereditary osteodystrophy. Consistent with the observation that only maternally inherited mutations lead to resistance to hormone action [pseudohypoparathyroidism type Ia (PHP Ia)], recent studies provided evidence for a predominant maternal origin of Gs alpha transcripts in endocrine organs, such as thyroid, gonad, and pituitary. The aim of this study was to investigate the presence of pituitary resistance to hypothalamic hormones acting via Gs alpha-coupled receptors in patients with PHP Ia. Six of nine patients showed an impaired GH responsiveness to GHRH plus arginine, consistent with a complete GH deficiency (GH peak from 2.6-8.6 microg/liter, normal > 16.5), and partial (GH peak 13.9 and 13.6 microg/liter) and normal responses were found in two and one patient, respectively. Accordingly, IGF-I levels were below and in the low-normal range in seven and two patients. All patients had a normal cortisol response to 1 microg ACTH test, suggesting a normal corticotroph function that was confirmed by a normal ACTH and cortisol response to CRH test in three patients. In conclusion, we report that in addition to PTH and TSH resistance, patients with PHP Ia display variable degrees of GHRH resistance, consistent with Gs alpha imprinting in human pituitary.
Campos, Mônica S; Ribeiro, Naiara C S; de Lima, Rodrigo F; Santos, Mariana B; Vilamaior, Patrícia S L; Regasini, Luis O; Biancardi, Manoel F; Taboga, Sebastião R; Santos, Fernanda C A
2018-03-07
Chrysin is a bioflavonoid found in fruits, flowers, tea, honey and wine, which has antioxidant, anti-inflammatory, antiallergic and anticarcinogenic properties. This flavone has also been considered as beneficial for reproduction due its testosterone-boosting potential. Thus, the aim of this study was to evaluate the effects of chrysin on the prostate and gonads of male and female adult gerbils. In addition, a comparative analysis of the effects of testosterone on these same organs was conducted. Ninety-day-old male and female gerbils were treated with chrysin (50mgkg-1day-1) or testosterone cypionate (1mgkg-1week-1) for 21 days. The ventral male prostate and female prostate were dissected out for morphological, morphometric-stereological and ultrastructural assays. Testes and ovaries were submitted to morphological and morphometric---stereological analyses. Chrysin treatment caused epithelial hyperplasia and stromal remodelling of the ventral male and female prostate. Ultrastructurally, male and female prostatic epithelial cells in the chrysin group presented marked development of the organelles involved in the biosynthetic-secretory pathway, whereas cellular toxicity was observed only in female glands. Chrysin preserved normal testicular morphology and increased the number of growing ovarian follicles. Comparatively, testosterone treatment was detrimental to the prostate and gonads, since foci of prostatic intraepithelial neoplasia and gonadal degeneration were observed in both sexes. Thus, under the experimental conditions of this study, chrysin was better tolerated than testosterone in the prostate and gonads.
Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads
Maatouk, Danielle M.; Mork, Lindsey; Hinson, Ashley; Kobayashi, Akio; McMahon, Andrew P.; Capel, Blanche
2012-01-01
The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells. PMID:23091613
Martin, Bronwen; Pearson, Michele; Brenneman, Randall; Golden, Erin; Wood, William; Prabhu, Vinayakumar; Becker, Kevin G.; Mattson, Mark P.; Maudsley, Stuart
2009-01-01
Reproductive capacity and nutritional input are tightly linked and animals' specific responses to alterations in their physical environment and food availability are crucial to ensuring sustainability of that species. We have assessed how alterations in dietary energy intake (both reductions and excess), as well as in food availability, via intermittent fasting (IF), affect the gonadal transcriptome of both male and female rats. Starting at four months of age, male and female rats were subjected to a 20% or 40% caloric restriction (CR) dietary regime, every other day feeding (IF) or a high fat-high glucose (HFG) diet for six months. The transcriptional activity of the gonadal response to these variations in dietary energy intake was assessed at the individual gene level as well as at the parametric functional level. At the individual gene level, the females showed a higher degree of coherency in gonadal gene alterations to CR than the males. The gonadal transcriptional and hormonal response to IF was also significantly different between the male and female rats. The number of genes significantly regulated by IF in male animals was almost 5 times greater than in the females. These IF males also showed the highest testosterone to estrogen ratio in their plasma. Our data show that at the level of gonadal gene responses, the male rats on the IF regime adapt to their environment in a manner that is expected to increase the probability of eventual fertilization of females that the males predict are likely to be sub-fertile due to their perception of a food deficient environment. PMID:19127293
NASA Astrophysics Data System (ADS)
Choi, Young-Ung; Park, Miae; Lee, Kyun-Woo; Oh, Chulhong; Park, Heung-Sik
2014-12-01
This study was conducted to investigate the reproductive characteristics of the humbug damselfish, Dascyllus aruanus, through the measurement of gonadosomatic indices (GSI) and histological examination of the gonads. Fish were collected from Chuuk Lagoon, Micronesia (7°27'N; 151°53'E), between August 2009 and July 2010. Overall, the functional sex ratio was approximately 1:1; however, there was a female bias in the smaller size range (35-40 mm standard length [SL]) and male bias in the larger size range (45-60 mm in SL). The process of oocyte development exhibited a group synchronous pattern, from the vitellogenic phase oocytes in the gonads following the two clutches of oocytes, as the primary growth stage and yolk vesicle stage. The testis with an ovarian lumen exists as a central slit, and the sperm ducts extend into the medial hilar region of the gonads, indicating that males of D. aruanus have a secondary testis of protogynous species. Monthly variations in the GSI and evolution of gonad status indicated that reproductive activity in this species occurs throughout the year in Chuuk Lagoon, Micronesia.
Li, Wei-Dong; Huang, Min; Lü, Wen-Gang; Chen, Xiao; Shen, Ming-Hui; Li, Xiang-Min; Wang, Rong-Xia; Ke, Cai-Huan
2015-01-01
The small abalone Haliotis diversicolor is an economically important mollusk that is widely cultivated in Southern China. Gonad precocity may affect the aquaculture of small abalone. Polyamines, which are small cationic molecules essential for cellular proliferation, may affect gonadal development. Ornithine decarboxylase (ODC) and antizyme (AZ) are essential elements of a feedback circuit that regulates cellular polyamines. This paper presents the molecular cloning and characterization of AZ from small abalone. Sequence analysis showed that the cDNA sequence of H. diversicolor AZ (HdiODCAZ) consisted of two overlapping open reading frames (ORFs) and conformed to the +1 frameshift property of the frame. Thin Layer chromatography (TLC) analysis suggested that the expressed protein encoded by +1 ORF2 was the functional AZ that targets ODC to 26S proteasome degradation. The result demonstrated that the expression level of AZ was higher than that of ODC in the ovary of small abalone. In addition, the expression profiles of ODC and AZ at the different development stages of the ovary indicated that these two genes might be involved in the gonadal development of small abalone.
Lü, Wen-Gang; Chen, Xiao; Shen, Ming-Hui; Li, Xiang-Min; Wang, Rong-Xia; Ke, Cai-Huan
2015-01-01
The small abalone Haliotis diversicolor is an economically important mollusk that is widely cultivated in Southern China. Gonad precocity may affect the aquaculture of small abalone. Polyamines, which are small cationic molecules essential for cellular proliferation, may affect gonadal development. Ornithine decarboxylase (ODC) and antizyme (AZ) are essential elements of a feedback circuit that regulates cellular polyamines. This paper presents the molecular cloning and characterization of AZ from small abalone. Sequence analysis showed that the cDNA sequence of H. diversicolor AZ (HdiODCAZ) consisted of two overlapping open reading frames (ORFs) and conformed to the +1 frameshift property of the frame. Thin Layer chromatography (TLC) analysis suggested that the expressed protein encoded by +1 ORF2 was the functional AZ that targets ODC to 26S proteasome degradation. The result demonstrated that the expression level of AZ was higher than that of ODC in the ovary of small abalone. In addition, the expression profiles of ODC and AZ at the different development stages of the ovary indicated that these two genes might be involved in the gonadal development of small abalone. PMID:26313647
46,XY female sex reversal syndrome with bilateral gonadoblastoma and dysgerminoma.
DU, Xue; Zhang, Xuhong; Li, Yongmei; Han, Yukun
2014-10-01
Sex reversal syndrome is a rare congenital condition of complete or disordered gonadal development leading to discordance between the genetic, gonadal and phenotypic sexes, including 46,XX and 46,XY. The gonadoblastoma on the Y-chromosome (GBY) region is associated with an increased risk of developing type II germ cell tumors/cancer. The present study reports a unique case of a phenotypically normal female (age 17 years), presenting with primary amenorrhea and later diagnosed with 46,XY female sex reversal syndrome. Following bilateral gonadectomy, bilateral gonadoblastoma and dysgerminoma were diagnosed. Thus, estrogen replacement therapy was administered periodically to promote the development of secondary sexual characteristics and menstruation, and to prevent osteoporosis. A four year follow-up showed no tumor recurrence and a regular menstrual cycle in this patient.
Experiment K-6-19. Pineal physiology in microgravity: Relation to rat gonadal function
NASA Technical Reports Server (NTRS)
Holley, D.; Soliman, M. R. I.; Kaddis, F.; Markley, C.; Krasnov, I.
1990-01-01
One of the most interesting concomitants to spaceflight and exposure to microgravity has been the disturbing alteration in calcium metabolism and resulting skeletal effects. It was recognized as early as 1685 (cited in Kitay and Altschule, 1954) that the pineal of humans calcified with age. However, little can be found in the literature relating calcification and pineal function. Given the link between exposure to microgravity and perturbation of calcium metabolism and the fact that the pineal is apparently one of the only soft tissues to calcify, researchers examined pineal calcium content following the spaceflight. Researchers concluded that the spaceflight resulted in a stress response as indicated by adrenal hypertrophy, that gonadal function was compromised, and that the pineal may be linked as part of the mechanism of the responses noted.
Gender Differences in Neurodevelopment and Epigenetics
Chung, Wilson C.J.; Auger, Anthony P.
2013-01-01
Summary The concept that the brain differs in make-up between males and females is not new. For example, it is well-established that anatomists in the nineteenth century found sex differences in human brain weight. The importance of sex differences in the organization of the brain cannot be overstated as they may directly affect cognitive functions, such as verbal skills and visio-spatial tasks in a sex-dependent fashion. Moreover, the incidence of neurological and psychiatric diseases is also highly dependent on sex. These clinical observations reiterate the importance that gender must be taken into account as a relevant possible contributing factor in order to understand the pathogenesis of neurological and psychiatric disorders. Gender-dependent differentiation of the brain has been detected at every levels of organization: morphological, neurochemical, and functional, and have been shown to be primarily controlled by sex differences in gonadal steroid hormone levels during perinatal development. In this review, we discuss how the gonadal steroid hormone testosterone and its metabolites, affect downstream signaling cascades, including gonadal steroid receptor activation, and epigenetic events in order to differentiate the brain in a gender-dependent fashion. PMID:23503727
Luo, Lianzhong; Zhang, Qinghong; Kong, Xue; Huang, Heqing; You, Weiwei; Ke, Caihuan
2017-10-01
Oysters accumulate Zn as an adaptation to Zn exposure; however, it is not known whether male and female oysters respond differently to Zn exposure. Proteomic and real-time polymerase chain reaction analyses were used to investigate differential responses of male and female oysters (Crassostrea angulata) to Zn exposure. After exposure to 50 μg L -1 or 500 μg L -1 Zn for 30 d, gonads of female oysters accumulated more Zn than those of males, and gonadal development was accelerated in females but was abnormal in males. Differentially expressed proteins after exposure to Zn were identified and shown to function in Zn transport, Ca transport, phosphate metabolism, energy metabolism, immune regulation, oxidative stress responses, gene expression regulation, and fat metabolism. Proteins with functions in Zn transportation and storage, and multifunctional proteins, such as hemicentin-1 and histidinol dehydrogenase, were expressed at significantly higher levels in the gonads of female than male oysters after Zn exposure. Environ Toxicol Chem 2017;36:2602-2613. © 2017 SETAC. © 2017 SETAC.
Laron, Zvi
2006-01-01
Laron syndrome (LS) or primary GH insensitivity is a unique human model to study the effects of congenital IGF-I deficiency. Within our cohort of 63 patients with LS, 15 female patients were regularly followed since birth or infancy, throughout puberty. We observed that they were short at birth, with small genitalia and gonads -- during puberty, developed delayed puberty but eventually reached between 16 and 19 1/2 years full sexual development. Reproduction is unaffected at a young adult age. It is concluded that IGF-I in concert with the sex hormones has a modulatory but not essential function on female sexual development and maturation.
Galea, L A M; Wainwright, S R; Roes, M M; Duarte-Guterman, P; Chow, C; Hamson, D K
2013-11-01
The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress. © 2013 British Society for Neuroendocrinology.
Gonadal steroids and bone metabolism in men.
Leder, Benjamin
2007-06-01
Over the past decade, our increasing awareness of the clinical importance of osteoporosis in men has stimulated intense interest in trying to better understand male skeletal physiology and pathophysiology. The present review focuses on a major focus of research in this area, namely the attempt to define the influence and therapeutic potential of gonadal steroids in male bone metabolism. Building on previous work defining the relative roles of androgens and estrogens in the developing male skeleton and in maintaining normal bone turnover, recent studies have begun to define these issues from epidemiologic, physiologic and therapeutic perspectives. With access to data from large prospectively defined populations of men, investigators are confirming and challenging existing hypotheses and forwarding new concepts. Clinical trials have expanded beyond standard androgen replacement studies to explore more complex hormonal interventions. Physiologic investigation has continued to probe the mechanisms underlying the differential and independent roles of androgens and estrogens in male bone metabolism. Recent work has added significantly to our understanding of the role of gonadal steroids in male skeletal physiology. Nonetheless, further research is necessary to build on these initial human studies and to capitalize on rapidly emerging advances in our understanding of the basic biology of bone metabolism.
Attempt to rescue sex-reversal by transgenic expression of the PISRT1 gene in XX PIS-/- goats.
Boulanger, L; Kocer, A; Daniel, N; Pannetier, M; Chesné, P; Heyman, Y; Renault, L; Mandon-Pépin, B; Chavatte-Palmer, P; Vignon, X; Vilotte, J-L; Cotinot, C; Renard, J-P; Pailhoux, E
2008-01-01
The Polled Intersex Syndrome (PIS mutation) in goats leads to an absence of horn and to an early sex-reversal of the XX gonads. This mutation is a deletion of an 11.7-kb DNA fragment showing a tissue-specific regulatory activity. Indeed, in XX PIS(-/-) gonads the deletion of PIS leads to the transcriptional extinction of at least 3 neighboring genes, FOXL2, PFOXic and PISRT1. Among them, only FOXL2 is a 'classical' gene, encoding a highly conserved transcription factor. On the other hand, knock-out of Foxl2 in mice results in an early blocking of follicle formation without sex-reversal. This phenotype discrepancy leads to two hypotheses, either FOXL2 is responsible for XX sex-reversal in goat assuming distinct functions of its protein during ovarian differentiation in different mammals, or other PIS-regulated genes are involved. To assess the second possibility, PISRT1 expression was constitutively restored in XX PIS(-/-) gonads. Six transgenic fetuses were obtained by nuclear transfer and studied at 2 developmental stages, 41 and 46 days post-reconstruction. The gonads of these fetuses appear phenotypically identical to those of cloned non-transgenic controls. Conclusively, this result argues for FOXL2 being responsible for the PIS gonad-associated phenotype. Its invalidation in goat will help to better understand this complex syndrome. Copyright 2008 S. Karger AG, Basel.
Xu, Pingwen; Zhu, Liangru; Saito, Kenji; Yang, Yongjie; Wang, Chunmei; He, Yanlin; Yan, Xiaofeng; Hyseni, Ilirjana; Tong, Qingchun; Xu, Yong
2017-05-01
Brain estrogen receptor-α (ERα) is essential for estrogenic regulation of energy homeostasis and reproduction. We previously showed that ERα expressed by pro-opiomelanocortin (POMC) neurons mediates estrogen's effects on food intake, body weight, negative regulation of hypothalamic-pituitary-gonadal axis (HPG axis) and fertility. We report here that global deletion of a key downstream receptor for POMC peptide, the melanocortin 4 receptor (MC4R), did not affect normal negative feedback regulation of estrogen on the HPG axis, estrous cyclicity and female fertility. Furthermore, loss of the MC4R did not influence estrogenic regulation on food intake and body weight. These results indicate that the MC4R is not required for estrogen's effects on metabolic and reproductive functions. Copyright © 2016 Elsevier Inc. All rights reserved.
Zohar, Y
1980-01-01
The use of a dorsal aorta catheterization technique to study gonadotropin secretion patterns in the rainbow trout was tested. Heparin used to flush the cannula between repetitive samplings did not have any effect on plasma GTH levels. Catheterization resulted in a slight short-term change in those levels. The gonadotropin levels returned to their initial values as soon as 30 min to 6 hrs after the operation. From then on, the GTH levels remained close to the initial values in fish exhibiting normal feeding behaviour, whereas they tended to decrease in "stressed" females which did not eat normally. The fish which adapted well to dorsal aortic catheterization did not show any changes in the diurnal pattern of GTH levels or in normal gonadal function and GTH profiles during the processes of oocyte maturation and ovulation. It is concluded that individual catheterized trout can be used advantageously for studying gonadotropin secretion patterns after a 3-day recovery period and the elimination of those fish which neither resume normal feeding nor return to initial, pre-operative GTH levels. Using this technique, it was demonstrated that hypophysial GTH release in trout with oocytes undergoing active vitellogenesis is probably effected by short-term bursts (pulses) of secretion.
[Pituitary function of dysgenesic femal rats. Studies with grafting method].
Vanhems, E; Busquet, J
1975-01-01
Misulban administered to pregnant rats on the 15th day of gestation provoked gonadal dysgenesia in the offspring. Study of the pituitary function of dysgenesic female rats, realized by grafting method, showed gonadotrophic hypersecretion.
GPCRs Direct Germline Development and Somatic Gonad Function in Planarians
Saberi, Amir; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A.
2016-01-01
Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development. PMID:27163480
GPCRs Direct Germline Development and Somatic Gonad Function in Planarians.
Saberi, Amir; Jamal, Ayana; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A
2016-05-01
Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development.
Liu, Wei; Li, Shi-Zhu; Li, Zhi; Wang, Yang; Li, Xi-Yin; Zhong, Jian-Xiang; Zhang, Xiao-Juan; Zhang, Jun; Zhou, Li; Gui, Jian-Fang
2015-11-18
Gynogenesis is one of unisexual reproduction modes in vertebrates, and produces all-female individuals with identical genetic background. In sexual reproduction vertebrates, the roles of primordial germ cells on sexual dimorphism and gonadal differentiation have been largely studied, and two distinct functional models have been proposed. However, the role of primordial germ cells remains unknown in unisexual animals, and it is also unclear whether the functional models in sexual reproduction animals are common in unisexual animals. To solve these puzzles, we attempt to utilize the gynogenetic superiority of polyploid Carassius gibelio to create a complete germ cell-depleted gonad model by a similar morpholino-mediated knockdown approach used in other examined sexual reproduction fishes. Through the germ cell-depleted gonad model, we have performed comprehensive and comparative transcriptome analysis, and revealed a complete alteration of sex-biased gene expression. Moreover, the expression alteration leads to up-regulation of testis-biased genes and down-regulation of ovary-biased genes, and results in the occurrence of sterile all-males with testis-like gonads and secondary sex characteristics in the germ cell-depleted gynogenetic Carassius gibelio. Our current results have demonstrated that unisexual gynogenetic embryos remain keeping male sex determination information in the genome, and the complete depletion of primordial germ cells in the all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence.
Multiscale mathematical modeling of the hypothalamo-pituitary-gonadal axis.
Clément, Frédérique
2016-07-01
Although the fields of systems and integrative biology are in full expansion, few teams are involved worldwide into the study of reproductive function from the mathematical modeling viewpoint. This may be due to the fact that the reproductive function is not compulsory for individual organism survival, even if it is for species survival. Alternatively, the complexity of reproductive physiology may be discouraging. Indeed, the hypothalamo-pituitary-gonadal (HPG) axis involves not only several organs and tissues but also intricate time (from the neuronal millisecond timescale to circannual rhythmicity) and space (from molecules to organs) scales. Yet, mathematical modeling, and especially multiscale modeling, can renew our approaches of the molecular, cellular, and physiological processes underlying the control of reproductive functions. In turn, the remarkable dynamic features exhibited by the HPG axis raise intriguing and challenging questions to modelers and applied mathematicians. In this article, we draw a panoramic review of some mathematical models designed in the framework of the female HPG, with a special focus on the gonadal and central control of follicular development. On the gonadal side, the modeling of follicular development calls to the generic formalism of structured cell populations, that allows one to make mechanistic links between the control of cell fate (proliferation, differentiation, or apoptosis) and that of the follicle fate (ovulation or degeneration) or to investigate how the functional interactions between the oocyte and its surrounding cells shape the follicle morphogenesis. On the central, mainly hypothalamic side, models based on dynamical systems with multiple timescales allow one to represent within a single framework both the pulsatile and surge patterns of the neurohormone GnRH. Beyond their interest in basic research investigations, mathematical models can also be at the source of useful tools to study the encoding and decoding of the (neuro-) hormonal signals at play within the HPG axis and detect complex, possibly hidden rhythms, in experimental time series. Copyright © 2016 Elsevier Inc. All rights reserved.
Lehmann, V; Keim, M C; Nahata, L; Shultz, E L; Klosky, J L; Tuinman, M A; Gerhardt, C A
2017-11-01
Do young adult survivors of childhood cancer know their fertility status, in the context of their parenthood goals and screening for gonadal functioning? While 80% of survivors (who were without children) wanted children in the future, most did not know their fertility status, and screening for gonadal functioning was underutilized. Survivors of childhood cancer are at risk for infertility, but fertility counseling and assessment are underutilized. Separate studies indicated that survivors' fertility-related knowledge is poor and that they often wanted to have children. Yet, studies have not investigated the intersection of both issues, as well as potential distress if parenthood goals are not met. Young adult male and female survivors of childhood cancer (N = 149) completed cross-sectional surveys, and data for those without children (n = 105, 70.5%) are presented here. Participants were 20-40 years old (M = 26.5), diagnosed 5-33 years prior to study participation, and completed questionnaires online. Knowledge of fertility status, parenthood goals, and potential distress if survivors were unable to have children were assessed. Medical records were reviewed for hormone levels as indicators of screening for gonadal functioning. Most survivors (n = 81; 77.1%) did not know their fertility status, while over 80% (n = 89) wanted children (neither aspect varied by socio-demographic/cancer-specific factors). Two-thirds of survivors indicated they would be distressed if parenthood goals remained unfulfilled; especially female (versus male, t = 2.64; P = 0.01) or partnered (versus single, t = -3.45; P < 0.001) survivors. Forty survivors (38.1%) had documented assessments of gonadal functioning, of which 33 (82.5%) reported not knowing their fertility status. Relevant risk factors may have not been identified owing to limited sample size and missing treatment information. The underutilization of screening for gonadal functioning needs further exploration in other pediatric centers. Most adult childhood cancer survivors want to become parents, but do not know their fertility status, which could cause significant psychological distress. Healthcare providers should continuously address fertility among survivors, but more research is needed on how to implement routine fertility counseling and/or testing. This study was funded by the Research Institute at Nationwide Children's Hospital (V.L.) and Dutch Cancer Society (RUG2009-4442, M.A.T.). All authors have no conflict of interest to declare. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villeneuve, Daniel L.; Blake, Lindsey S.; Brodin, Jeffrey
2007-08-01
This study evaluated changes in the expression of steroidogenesis-related genes in male fathead minnows exposed to ketoconazole (KTC) or vinclozolin (VZ) for 21 days. The aim was to evaluate links between molecular changes and higher level outcomes after exposure to endocrine-active chemicals (EACs) with different modes of action. To aid our analysis and interpretation of EAC-related effects, we first examined variation in the relative abundance of steroidogenesis-related gene transcripts in the gonads of male and female fathead minnows as a function of age, gonad development, and spawning status, independent of EAC exposure. Gonadal expression of several genes varied with agemore » and/or gonadal somatic index in either males or females. However, with the exception of aromatase, steroidogenesis-related gene expression did not vary with spawning status. Following the baseline experiments, expression of the selected genes in male fathead minnows exposed to KTC or VZ was evaluated in the context of effects observed at higher levels of organization. Exposure to KTC elicited changes in gene transcription that were consistent with an apparent compensatory response to the chemical's anticipated direct inhibition of steroidogenic enzyme activity. Exposure to VZ, an antiandrogen expected to indirectly impact steroidogenesis, increased pituitary expression of follicle-stimulating hormone beta-subunit as well as testis expression of 20beta-hydroxysteroid dehydrogenase and luteinizing hormone receptor transcripts. Results of this study contribute to ongoing research aimed at understanding responses of the teleost hypothalamic-pituitary-gonadal axis to different types of EACs and how changes in molecular endpoints translate into apical outcomes reflective of either adverse effect or compensation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, A.; Kammerer, S.; Cleve, H.
1993-03-01
Recently, the gene for the determination of maleness has been identified in the sex-determining region on the short arm of the Y chromosome (SRY) between the Y-chromosomal pseudoautosomal boundary (PABY) and the ZFY gene locus. Experiments with transgenic mice confirmed that SRY is a part of the testis-determining factor (TDF). The authors describe a sporadic case of a patient with intersexual genitalia and the histological finding of ovotestes in the gonad, which resembles the mixed type of gonadal tissue without primordial follicle structures. The karyotype of the patient was 46,XY. By PCR amplification, they tested for the presence of SRYmore » by using DNA obtained from histological gonadal slices. The SRY products of both DNA preparations were further analyzed by direct sequencing. All three parts of the sex-determining region of the Y chromosome could be amplified from leukocytic DNA. The patient's and the father's SRY sequences were identical with the published sequence. In the SRY PCR product of gonadal DNA, the wild-type and two point mutations were present in the patient's sequence, simulating a heterozygous state of a Y-chromosomal gene: one of the mutations was silent, while the other encoded for a nonconservative amino acid substitution from leucine to histidine. Subcloning procedures showed that the two point mutations always occurred together. The origin of the patient's intersexuality is a postzygotic mutation of the SRY occurring in part of the gonadal tissue. This event caused the loss of the testis-determining function in affected cells. 37 refs., 6 figs.« less
Kumar, Pankaj; Chaturvedi, Chandra Mohini
2008-06-01
Nitric oxide (NO), a highly reactive and short-lived radical, is considered to be an important trigger molecule for several physiological mechanisms including gonadotrophin releasing hormone (GnRH) secretion in mammals, although there is no such information in avian literature. On the other hand, specific temporal phase relation of circadian neural (serotonergic and dopaminergic) oscillations is reported to modulate reproductive activity in many avian species including Japanese quail. The present study was undertaken to investigate the correlation of NO activity and gonadal function of Japanese quail. In experiment I, the effect of serotonin and dopamine precursors, (5-hydroxytryptophan (5-HTP) and L-dihydroxyphenyalanine (L-DOPA) respectively; 5 mg per 100g body weight) administered at intervals of 8 or 12h over a period of 13 days, was studied on reproductive responses and NO activity. Measurements of body weight, cloacal gland size, testosterone concentration, spermatogenesis, nitrite-nitrate concentration in plasma, hypothalamus and testes, and NADPH-diaphorase (NADPH-d) activity in testes were made on the 2nd, 3rd, 6th and 11th days of treatment and 2nd and 30th day post-treatment. In experiment II, quail were divided into five groups including the control. One experimental group received 13 daily injections of 5-HTP and L-DOPA at intervals of 8h along with 0.1 ml of normal saline administered orally (8-hr+Veh), while another group of 8-hr quail received NO donor (sodium nitroprusside (SNP), 5 mg per 100 g body weight) orally (8-hr+SNP). The third experimental group received 5-HTP and L-DOPA at intervals of 12h along with normal saline (12-hr+Veh), while the fourth group of quail along with 5-HTP and L-DOPA at intervals of 12h also received the NOS inhibitor (N-nitro-L-arginine methyl ester, L-NAME, 25 microg per 100 g body weight) intraperitoneally (12-hr+L-NAME) for 13 days. This experiment was terminated after 21 days of the treatment. Results indicate that 5-HTP and L-DOPA administered 8h apart (8-hr) suppressed but if given 12h apart (12-hr) stimulated the reproductive system and NO activity compared to the control. These effects were apparent on the 6th day of injections and were maintained 30 days following the termination of the treatment. A significant decrease in nitrite and nitrate concentration and NADPH-d activity in reproductively inhibited 8-hr group and an increase in reproductively stimulated 12-hr quail was also evident. In contrast, these activities were stimulated in 8-hr+SNP quail and were suppressed in 12-hr+L-NAME group quail. It is concluded that activity of the reproductive system and NO activity waxes and wanes simultaneously in Japanese quail. Moreover, experimental modulation of gonadal activity (following changes in the phase relation of serotonergic and dopaminergic activity) or NO activity (following the administration of NO modulator or inhibitor) affects each other maintaining a parallel relation between the two systems. Further, it is interesting to note that the gonado-stimulatory effect of SNP overpowers the gonado-inhibitory effects of the 8-hr time interval and inhibitory effects of L-NAME mask the stimulatory effects of 12-hr temporal relation of 5-HTP and L-DOPA administration. These findings strongly suggest that reproductive effects may be induced via changes in NO activity, however the exact mechanism by which NO drives gonadal axis needs to be ascertained.
Goulis, Dimitrios G; Iliadou, Paschalia K; Papanicolaou, Athanasios; Georgiou, Ioannis; Chatzikyriakidou, Anthi; Gerou, Spiridon; Bondis, Ioannis N; Papadimas, Ioannis
2006-01-01
An 18-year old, phenotypically female individual was examined for primary amenorrhea. Three months before her referral, the patient underwent surgery and a pelvic mass was removed. The physical examination revealed normal female external genitalia, normal breast development, sparse pubic hair and absence of axillary hair. The gynecological examination revealed a short blind vagina pouch and absence of cervix and uterus. Serum testosterone and dihydrotestosterone levels were very high. Karyotype was that of a normal male (46,XY). The transabdominal ultrasound, computed tomography (CT) and Magnetic resonance imaging (MRI) showed absence of uterus and fallopian tubes and revealed testis-like gonads located at the internal opening of the inguinal canal bilaterally. Bilateral gonadectomy was subsequently performed. The pathology report was that of "hamartomatous testes" and associated paratesticular leiomyoma. The clinical, laboratory, imaging, genetic and histological findings confirmed the diagnosis of complete androgen insensitivity syndrome. DNA analysis revealed a R831X mutation in exon 7 of the androgen receptor gene. A Sertoli-cell dynamic test showed elevated basal serum inhibin-B and anti-Müllerian hormone levels without further rise following FSH stimulation. The patient was started on hormone replacement therapy with conjugated estrogens. Complete androgen insensitivity syndrome must be considered in any case of primary amenorrhea. Gonadectomy must be planned to eliminate the risk of gonadal malignancy.
Berardelli, Rita; Gianotti, Laura; Karamouzis, Ioannis; Picu, Andreea; Giordano, Roberta; D'Angelo, Valentina; Zinnà, Domenico; Lanfranco, Fabio; Ghigo, Ezio; Arvat, Emanuela
2011-10-01
Gonadotropin Releasing Hormone (GnRH) antagonists (GnRHa) suppress gonadotropin and sex-steroid secretion. In normal women, acute GnRHa administration induces inhibitory effect on pituitary-gonadal axis, followed by Luteinizing Hormone (LH) rebound. Functional hypothalamic amenorrhea (HA) is characterised by impaired gonadotropin secretion and hypogonadism secondary to blunted GnRH pulsatility. We studied the effects of a GnRHa, cetrorelix (CTX 3.0 mg), in six women with HA (age 30.7 ± 3.2 years; BMI 21.5 ± 1.7 kg/m(2)) and six control subjects (CS, 28.2 ± 0.6 years; 22.6 ± 0.9 kg/m(2)) on LH, Follicle-Stimulating Hormone (FSH) and oestradiol levels over 4 h (08.00-12.00 am) before, +24 h and +96 h after CTX; LH, FSH, and oestradiol were also evaluated at +6, +8, +12, +48, +72 h after CTX. CS: CTX reduced (p < 0.05) LH, FSH, and oestradiol (nadir at +12 h, +24 h, and +24 h); LH rebounded at +96 h, FSH and oestradiol recovered at +48 h and +72 h. The 4-h evaluation showed LH and FSH reduction (p < 0.05) at +24 h, with LH rebound at +96 h. HA: CTX reduced (p < 0.05) LH, FSH, and oestradiol, (nadir at +24 h, +48 h, and +48 h, recovery at +48 h, +72 h, and +96 h). The 4-h evaluation showed gonadotropin reduction (p < 0.05) 24 h after CTX, without any rebound effect. One single CTX dose still modulates gonadotropin secretion in HA. Its 'paradoxical' stimulatory effect on gonadotropins needs to be verified after prolonged administration.
Guillette, L J; Gross, T S; Masson, G R; Matter, J M; Percival, H F; Woodward, A R
1994-01-01
The reproductive development of alligators from a contaminated and a control lake in central Florida was examined. Lake Apopka is adjacent to an EPA Superfund site, listed due to an extensive spill of dicofol and DDT or its metabolites. These compounds can act as estrogens. Contaminants in the lake also have been derived from extensive agricultural activities around the lake that continue today and a sewage treatment facility associated with the city of Winter Garden, Florida. We examined the hypothesis that an estrogenic contaminant has caused the current failure in recruitment of alligators on Lake Apopka. Supporting data include the following: At 6 months of age, female alligators from Lake Apopka had plasma estradiol-17 beta concentrations almost two times greater than normal females from the control lake, Lake Woodruff. The Apopka females exhibited abnormal ovarian morphology with large numbers of polyovular follicles and polynuclear oocytes. Male juvenile alligators had significantly depressed plasma testosterone concentrations comparable to levels observed in normal Lake Woodruff females but more than three times lower than normal Lake Woodruff males. Additionally, males from Lake Apopka had poorly organized testes and abnormally small phalli. The differences between lakes and sexes in plasma hormone concentrations of juvenile alligators remain even after stimulation with luteinizing hormone. Our data suggest that the gonads of juveniles from Lake Apopka have been permanently modified in ovo, so that normal steroidogenesis is not possible, and thus normal sexual maturation is unlikely. Images p680-a Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 3. C Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 5. A Figure 5. B Figure 5. C PMID:7895709
Radicioni, A F; Di Giorgio, G; Grugni, G; Cuttini, M; Losacco, V; Anzuini, A; Spera, S; Marzano, C; Lenzi, A; Cappa, M; Crinò, A
2012-01-01
Hypogonadism in Prader-Willi syndrome (PWS) is generally attributed to hypothalamic dysfunction or to primary gonadal defect, but pathophysiology is still unclear. To investigate the aetiology of hypothalamic-pituitary-gonadal axis dysfunction in PWS males. Clinical examination and blood sampling for luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone, inhibin B and sexhormone-binding globulin (SHBG) were performed in 34 PWS patients, age 5·1-42·7 years, and in 125 healthy males of same age range. All participants were divided into two groups : < or ≥13·5 years. Pubertal PWS patients showed an arrest of pubertal development. Patients <13·5 years had normal LH, FSH, testosterone and 7/10 had low inhibin B. Among those ≥13·5 years, 8/24 patients had normal LH and testosterone, high FSH and low inhibin B. 5/24 had low FSH, LH, testosterone and inhibin B; one showed normal LH and FSH despite low testosterone and inhibin B; 4/24 had low testosterone and LH but normal FSH despite low inhibin B; 6/24 showed high FSH, low inhibin B and normal LH despite low testosterone. Compared with controls, patients <13·5 years had lower LH, inhibin B, similar FSH, testosterone, SHBG levels and testicular volume; those ≥13·5 years had smaller testicular volume, near-significantly lower LH, testosterone, SHBG, inhibin B and higher FSH. PWS patients display heterogeneity of hypogonadism: (i) hypogonadotropic hypogonadism of central origin for LH and/or FSH; (ii) early primary testicular dysfunction (Sertoli cells damage); and (iii) a combined hypogonadism (testicular origin for FSH-inhibin B axis and central origin for LH-T axis). © 2011 Blackwell Publishing Ltd.
Sex steroids effects in normal endocrine pancreatic function and diabetes.
Morimoto, Sumiko; Jiménez-Trejo, Francisco; Cerbón, Marco
2011-01-01
Traditionally the role of sexual steroid hormones was focused primarily on reproductive organs: the breast, female reproductive tract (uterus, mammary gland, and ovary), and male reproductive tract (testes, epididymis and prostate), however our current understanding of tissue-specific effects of sex steroids has elucidated new aspects in its functionality. Recent data have shown that many other tissues are targets of those hormones in addition to classical reproductive organs. The pancreas (which performs both endocrine and exocrine functions), has proven to be an extragonadal target of sexual steroid hormone action. The endocrine pancreas has a pivotal role on carbohydrate homeostasis and deterioration in function produces diabetes. Diabetes is a metabolic disorder that has high prevalence worldwide, particularly in developing countries. It has been shown that steroid hormones have an important role in susceptibility and development of diabetes in animal models, in humans its role is less clear, however the most evident effect is on the perimenopausal women, in this stage the decrease in gonadal steroids produces an increase on susceptibility to develop diabetes mellitus; in men, hypoandrogenism is associated with an increased prevalence of insulin resistance. This review focused on the effects of sexual steroids on pancreatic function and diabetes.
Treosulfan induces distinctive gonadal toxicity compared with busulfan
Levi, Mattan; Stemmer, Salomon M.; Stein, Jerry; Shalgi, Ruth; Ben-Aharon, Irit
2018-01-01
Treosulfan (L-treitol-1,4-bis-methanesulfonate) has been increasingly incorporated as a main conditioning protocol for hematopoietic stem cell transplantation in pediatric malignant and non-malignant diseases. Treosulfan presents lower toxicity profile than other conventional alkylating agents containing myeloablative and immunosuppressive traits such as busulfan. Yet, whereas busulfan is considered highly gonadotoxic, the gonadal toxicity profile of treosulfan remains to be elucidated. To study the gonadotoxicity of treosulfan, pubertal and prepubertal male and female mice were injected with treosulfan or busulfan and sacrificed one week, one month or six months later. Testicular function was assessed by measurements of sperm properties, testes and epididymides weights as well as markers for testicular reserve, proliferation and apoptosis. Ovarian function was assessed by measurements of ovary weight and markers for ovarian reserve, proliferation and apoptosis. Treosulfan testicular toxicity was milder than that of busulfan toxicity; possibly by sparing the stem spermatogonia in the testicular sanctuary. By contrast, ovarian toxicity of both treosulfan and busulfan was severe and permanent and displayed irreversible reduction of reserve primordial follicles in the ovaries. Our data indicate that treosulfan exerts a different gonadal toxicity profile from busulfan, manifested by mild testicular toxicity and severe ovarian toxicity. PMID:29721205
Characterization of gonadal transcriptomes from the turbot (Scophthalmus maximus).
Hu, Yulong; Huang, Meng; Wang, Weiji; Guan, Jiantao; Kong, Jie
2016-01-01
The mechanisms underlying sexual reproduction and sex ratio determination remains unclear in turbot, a flatfish of great commercial value. And there is limited information in the turbot database regarding genes related to the reproductive system. Here, we conducted high-throughput transcriptome profiling of turbot gonad tissues to better understand their reproductive functions and to supply essential gene sequence information for marker-assisted selection programs in the turbot industry. In this study, two gonad libraries representing sex differences in Scophthalmus maximus yielded 453 818 high-quality reads that were assembled into 24 611 contigs and 33 713 singletons by using 454 pyrosequencing, 13 936 contigs and singletons (CS) of which were annotated using BLASTx. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses revealed that various biological functions and processes were associated with many of the annotated CS. Expression analyses showed that 510 genes were differentially expressed in males versus females; 80% of these genes were annotated. In addition, 6484 and 6036 single nucleotide polymorphisms (SNPs) were identified in male and female libraries, respectively. This transcriptome resource will serve as the foundation for cDNA or SNP microarray construction, gene expression characterization, and sex-specific linkage mapping in turbot.
Florecki, Mônica M.; Hartfelder, Klaus
2012-01-01
As key factors in intercellular adhesion processes, cadherins play important roles in a plethora of developmental processes, including gametogenesis. In a previous study on cadherin localization in the gonads of honey bees, performed with heterologous pan-cadherin antibodies, we detected these proteins as (i) associated with cell membranes, (ii) as homogeneously distributed throughout the cytoplasm, and (iii) as nuclear foci in both somatic and germline cells, raising the possibility of alternative functions. To further investigate such unusual intracellular cadherin localization we produced specific antibodies against the N- and C-terminal domains of honey bee N- and E-cadherin. A 160 kDa protein was recognized by the E-cadherin antibodies as well as one of approximately 300 kDa from those raised against N-cadherin. In gonad preparations, both proteins were detected as dispersed throughout the cytoplasm and as nuclear foci in both germline and somatic cells of queen and worker ovarioles, as well as in the testioles of drones. This leads us to infer that cadherins may indeed be involved in certain signaling pathways and/or transcriptional regulation during gametogenesis. In late oogenesis stages, immunolabeling for both proteins was observed at the cell cortex, in conformity with a role in cell adhesion. In testioles, E-cadherin was seen in co-localization with fusomes, indicating a possible role in cyst organization. Taken together, the distribution of N- and E-cadherins in honey bee gonads is suggestive of alternative roles for cadherins in gametogenesis of both sexes. PMID:26466735
Florecki, Mônica M; Hartfelder, Klaus
2012-11-22
As key factors in intercellular adhesion processes, cadherins play important roles in a plethora of developmental processes, including gametogenesis. In a previous study on cadherin localization in the gonads of honey bees, performed with heterologous pan-cadherin antibodies, we detected these proteins as (i) associated with cell membranes, (ii) as homogeneously distributed throughout the cytoplasm, and (iii) as nuclear foci in both somatic and germline cells, raising the possibility of alternative functions. To further investigate such unusual intracellular cadherin localization we produced specific antibodies against the N- and C-terminal domains of honey bee N- and E-cadherin. A 160 kDa protein was recognized by the E-cadherin antibodies as well as one of approximately 300 kDa from those raised against N-cadherin. In gonad preparations, both proteins were detected as dispersed throughout the cytoplasm and as nuclear foci in both germline and somatic cells of queen and worker ovarioles, as well as in the testioles of drones. This leads us to infer that cadherins may indeed be involved in certain signaling pathways and/or transcriptional regulation during gametogenesis. In late oogenesis stages, immunolabeling for both proteins was observed at the cell cortex, in conformity with a role in cell adhesion. In testioles, E-cadherin was seen in co-localization with fusomes, indicating a possible role in cyst organization. Taken together, the distribution of N- and E-cadherins in honey bee gonads is suggestive of alternative roles for cadherins in gametogenesis of both sexes.
Gonadal and Sexual Dysfunction in Childhood Cancer Survivors.
Yoon, Ju Young; Park, Hyeon Jin; Ju, Hee Young; Yoon, Jong Hyung; Chung, Jin Soo; Hwang, Sang Hyun; Lee, Dong Ock; Shim, Hye Young; Park, Byung-Kiu
2017-10-01
Few studies have addressed gonadal and sexual dysfunctions in childhood cancer survivors. We evaluated the prevalence rates and risk factors for gonadal failure among adolescent/young adult childhood cancer survivors and their sexual function. Subjects were childhood cancer survivors aged 15-29 years who had completed therapy more than 2 years ago. Demographic and medical characteristics were obtained from the patients' medical records. In addition, hormonal evaluation and semen analysis were performed and sexual function was evaluated via questionnaire. The study included 105 survivors (57 males, 48 females), of which 61 were adults (age > 19 years) and 44 were adolescents. In both males and females, the proportion of survivors with low sex hormone levels did not differ among age groups or follow-up period. Thirteen female subjects (27.1%) needed sex hormone replacement, while five males subjects (8.8%) were suspected of having hypogonadism, but none were receiving sex hormone replacement. Of 27 semen samples, 14 showed azospermia or oligospermia. The proportion of normospermia was lower in the high cyclophosphamide equivalent dose (CED) group (CED ≥ 8,000 mg/m2) than the low CED group (27.3% vs. 62.5%, p=0.047). Among adults, none were married and only 10 men (35.7%) and eight women (34.3%) were in a romantic relationship. Though a significant proportion (12.0% of males and 5.3% of females) of adolescent survivors had experienced sexual activity, 13.6% had not experienced sex education. The childhood cancer survivors in this study showed a high prevalence of gonadal/sexual dysfunction; accordingly, proper strategies are needed to manage these complications.
Xia, Xiaohua; Zhao, Jie; Du, Qiyan; Chang, Zhongjie
2010-08-01
The Sox9 gene attracts a lot of attention because of its connection with gonadal development and differentiation. However, Sox8, belonging to the same subgroup SoxE, has rarely been studied. To investigate the function as well as the evolutionary origin of SOXE subgroup, we amplified the genomic DNA of Paramisgurnus dabryanu using a pair of degenerate primers. Using rapid amplification of the cDNA ends (RACE), it was discovered that P. dabryanu has two duplicates: Sox8a and Sox8b. Each has an intron of different length in the conserved HMG-box region. The overall sequence similarity of the deduced amino acid of PdSox8a and PdSox8b was 46.26%, and only two amino acids changed in the HMG-box. This is the first evidence showing that there are two distinct duplications of Sox8 genes in Cypriniformes. Southern blot analysis showed only one hybrid band, with lengths 7.4 or 9.2 kb. Both semi-quantitative RT-PCR and real-time quantitative PCR assay displayed that both PdSox8a and PdSox8b are downregulated during early embryonic development. In adult tissues, the two Sox8 genes expressed ubiquitously, and expression levels are particularly high in the gonads and brain. In gonads, both PdSox8a and PdSox8b are expressed at a higher level in the tesis than in the ovary. PdSox8a and PdSox8b may have functional overlaps and are essential for the neuronal development and differentiation of gonads.
Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis
Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Nguyen-Johnson, Alexandria; Asakawa, Kazuhide; Kawakami, Koichi; Postlethwait, John H.
2010-01-01
The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination. PMID:20661450
microRNA in Human Reproduction.
Eisenberg, Iris; Kotaja, Noora; Goldman-Wohl, Debra; Imbar, Tal
2015-01-01
microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.
Wagner, Amy K; Brett, Christopher A; McCullough, Emily H; Niyonkuru, Christian; Loucks, Tammy L; Dixon, C Edward; Ricker, Joseph; Arenth, Patricia; Berga, Sarah L
2012-01-01
Acute hypogonadotropic hypogonadism (AHH) occurs frequently after TBI, as does chronic hypogonadotropic hypogonadism. However, AHH and persistent hypogonadotropic hypogonadism (PHH) after TBI are not well studied. The objective of this study was to characterize longitudinal hormone profiles and the impact of AHH and PHH on outcome. In this prospective cohort study, men with severe TBI (n = 38) had serum gonadal and gonadotropic hormones measured during weeks 1-52 post-injury. AHH, PHH and/or early resolving hypogonadotropic hypogonadism (ERHH) were based on temporal hormone assessments. PHH and hormone profiles were then compared to multiple outcome measures 6-12 months post-TBI. AHH affected 100% of the population, while 37% subsequently developed PHH. Acute testosterone (TEST) and estradiol/testosterone (E2/TEST) ratios were associated with PHH and outcome. Over time, post-acute TEST and E2 levels for the ERHH group approached normal range, while levels for the PHH group remained low. Post-acute gonadotrophin levels were within the normal range for both groups. PHH, along with lower post-acute TEST and E2 profiles, was associated with worse functional and cognitive outcomes at 6 and 12 months post-injury. These results support screening for post-acute secondary hypogonadism and further research to assess the mechanisms underlying PHH and associated functional and cognitive deficits.
Body fat mass, leptin and puberty.
Kiess, W; Müller, G; Galler, A; Reich, A; Deutscher, J; Klammt, J; Kratzsch, J
2000-07-01
Leptin, the ob gene product, provides a molecular basis for the lipostatic theory of the regulation of energy balance. Leptin circulates as a monomeric 16 kDa protein in rodent and human plasma and is also bound to leptin binding proteins that may form large high molecular weight complexes. Initial models of leptin action included leptin-deficient ob/ob mice and leptin-insensitive db/db mice. Peripheral or central administration of leptin reduced body weight, adiposity, and food intake in ob/ob mice but not in db/db mice. In ob/ob mice leptin treatment restored fertility. Leptin interacts with many messenger molecules in the brain. For example, leptin suppresses neuropeptide Y (NPY) expression in the arcuate nucleus. Increased NPY activity has an inhibitory effect on the gonadotropin axis and represents a direct mechanism for inhibiting sexual maturation and reproductive function in conditions of food restriction and/or energy expenditure. By modulating the hypothalamo-pituitary-gonadal axis both directly and indirectly, leptin may thus serve as the signal from fat to the brain about the adequacy of fat stores for pubertal development and reproduction. Normal leptin secretion is necessary for normal reproductive function to proceed and leptin may be a signal allowing for the point of initiation of and progression toward puberty.
Sexual and reproductive health in rheumatic disease.
Østensen, Monika
2017-08-01
Family size is reduced among patients with rheumatic diseases. The causes for the low number of children are multifactorial and include impaired sexual function, decreased gonadal function, pregnancy loss, therapy and personal choices. Sexuality contributes to quality of life in patients with rheumatic disease, but is often ignored by health professionals. Both disease-related factors and psychological responses to chronic disease can impair sexual functioning. Toxic effects of anti-inflammatory and immunosuppressive drugs can induce transient or permanent gonadal failure in women and men. Furthermore, permanent infertility can be a consequence of treatment with cyclophosphamide, whereas transient infertility can be caused by NSAIDs in women and sulfasalazine in men. These adverse effects must be communicated to the patients, and measures to preserve fertility should be initiated before the start of gonadotoxic therapy. Management of patients of both genders should include regular family planning, effective treatment of high disease activity, sexual counselling, and, if necessary, infertility treatment.
Adolescent girls, the menstrual cycle, and bone health.
Adams Hillard, Paula J; Nelson, Lawrence M
2003-05-01
In adolescent girls, amenorrhea is sometimes viewed as a variant of normal; in fact, however, during the first gynecologic year, the 95th percentile for cycle length is 90 days. Although early menstrual cycles are frequently anovulatory and may be somewhat irregular, girls with menses coming less frequently than every 90 days may have significant pathology associated with hypoestrogenism. Hypoestrogenism is a known risk factor for the development of osteoporosis. Causes of oligomenorrhea and amenorrhea include the relatively common conditions of hyperandrogenism, eating disorders, and exercise-induced amenorrhea, as well as uncommon conditions such as pituitary tumor, gonadal dysgenesis, and premature ovarian failure. Even functional hypothalamic oligomenorrhea has been linked to reduced bone density. Attention to menstrual irregularity and the earlier diagnosis of conditions causing it may lead to interventions that will benefit life-long bone health.
Guillette, L J; Gross, T S; Gross, D A; Rooney, A A; Percival, H F
1995-01-01
The ubiquitous distribution of many contaminants and the nonlethal, multigenerational effects of such contaminants on reproductive, endocrine, and immune systems have led to concerns that wildlife worldwide are affected. Although the causal agents and effects are known for some species, the underlying physiological mechanisms associated with contaminant-induced reproductive modifications are still poorly understood and require extensive research. We describe a study examining the steroidogenic activity of gonads removed from juvenile alligators (Alligator mississippiensis) obtained from contaminated or control lakes in central Florida. Synthesis of estradiol-17 beta (E2) was significantly different when ovaries from the contaminated and control lakes were compared in vitro. Additionally, testes from males obtained from the contaminated lake. Lake Apopka, synthesized significantly higher concentrations of E2 when compared to testes obtained from control males. In contrast, testosterone (T) synthesis from all testes examined in this study displayed a normal pattern and produced concentrations greater than that observed from ovaries obtained from either lake. Interestingly, the pattern of gonadal steroidogenesis differs from previously reported plasma concentrations of these hormones obtained from the same individuals. We suggest that the differences between the in vivo and in vitro patterns are due to modifications in the hepatic degradation of plasma sex steroid hormones. PMID:7556021
Rivero-Wendt, C L G; Miranda-Vilela, A L; Ferreira, M F N; Borges, A M; Grisolia, C K
2013-09-23
The synthetic hormone, 17-α-methyltestosterone (MT), is used in fish hatcheries to induce male monosex. Androgenic effects on various fish species have been reported; however, few studies have assessed possible genotoxic effects, although there are concerns about such effects in target and non-target species. We evaluated genotoxic and gonadal effects of MT in adult tilapia (Oreochromis niloticus) and Astyanax bimaculatus (a common native non-target fish in Brazil). Fish were fed for 28 days with ration containing MT (60 mg/L), a normal dose used in fish farming. Evaluation of MT genotoxicity was carried out through micronucleus test, nuclear abnormality, and comet assay analyses on peripheral erythrocyte cells collected by cardiac puncture. There were no significant differences in micronucleus frequencies and DNA damage in both species; however, MT caused cytogenetic toxicity in the non-target species, A. bimaculatus, with significantly increased erythrocyte nuclear abnormalities. Histopathological analyses of the female gonads of O. niloticus revealed that MT significantly inhibited the development of mature oocytes, while in A. bimaculatus it provoked significant inhibition of spermatozoa production. We concluded that discharge of fish-hatcheries water onto the surface of aquatic ecosystems should be avoided due to risks to reproduction of native species.
Neuropeptides in the Gonads: From Evolution to Pharmacology
McGuire, Nicolette L.; Bentley, George E.
2010-01-01
Vertebrate gonads are the sites of synthesis and binding of many peptides that were initially classified as neuropeptides. These gonadal neuropeptide systems are neither well understood in isolation, nor in their interactions with other neuropeptide systems. Further, our knowledge of the control of these gonadal neuropeptides by peripheral hormones that bind to the gonads, and which themselves are under regulation by true neuropeptide systems from the hypothalamus, is relatively meager. This review discusses the existence of a variety of neuropeptides and their receptors which have been discovered in vertebrate gonads, and the possible way in which such systems could have evolved. We then focus on two key neuropeptides for regulation of the hypothalamo-pituitary-gonadal axis: gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH). Comparative studies have provided us with a degree of understanding as to how a gonadal GnRH system might have evolved, and they have been responsible for the discovery of GnIH and its gonadal counterpart. We attempt to highlight what is known about these two key gonadal neuropeptides, how their actions differ from their hypothalamic counterparts, and how we might learn from comparative studies of them and other gonadal neuropeptides in terms of pharmacology, reproductive physiology and evolutionary biology. PMID:21607065
3-M syndrome: description of six new patients with review of the literature.
van der Wal, G; Otten, B J; Brunner, H G; van der Burgt, I
2001-10-01
3-M syndrome combines pre- and postnatal growth retardation and dysmorphic facial features with autosomal recessive inheritance. Six new patients with 3-M syndrome are described and compared with 28 cases from the literature. Our six patients have a growth pattern, which parallels that of Silver-Russell syndrome (SRS). Final height is ISD less in 3-M syndrome than in SRS. Growth hormone treatment significantly increased final height in two of our patients. 3-M syndrome can be differentiated from other types of dwarfism by clinical criteria and by the demonstration of characteristically slender long bones and foreshortened vertebral bodies. We propose that calculating the metacarpal and vertebral indices can be used to measure and document this important diagnostic feature. While the gonadal status of female patients with 3-M syndrome is completely normal, male patients have a gonadal dysfunction and sub- or infertility.
Mann, J R; Corkery, J J; Fisher, H J; Cameron, A H; Mayerová, A; Wolf, U; Kennaugh, A A; Woolley, V
1983-08-01
Five phenotypic females in one family had the genotype 46,XY and all had gonadal germ cell tumours. Studies of the family pedigree suggest that this form of XY gonadal dysgenesis is inherited in an X linked recessive manner. G banding of elongated metaphase chromosomes from two subjects with XY gonadal dysgenesis and a female carrier showed no aberrations of the X chromosome. The titres of H-Y antigen in three girls with XY gonadal dysgenesis were in the male control range. Thus it appears that, in the X linked form, XY gonadal dysgenesis may be caused by a point deletion or mutation of a gene on the X chromosome, which controls the gonad specific receptor for the H-Y antigen. Studies of Xg blood groups were uninformative about linkage of Xg with the X borne gene causing the XY gonadal dysgenesis. Dermatoglyphic studies in the girls with XY gonadal dysgenesis and female carriers revealed high a-b palmar ridge counts and a tendency for the A mainline to terminate in the thenar area. Both of these features have been described in patients with Turner's syndrome.
Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z
2017-10-01
Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.
Long-term complications following bone marrow transplantation in children.
Giri, N; Davis, E A; Vowels, M R
1993-06-01
Seventeen children who underwent bone marrow transplantation (BMT) between 1975 and 1985 and survived for more than 2 years were evaluated for growth and development. The patients had a follow up of 2.1-13.1 years. Prior to transplant, children with malignancy had received multi-agent chemotherapy and nine had also received central nervous system irradiation. Transplant preparation for malignancy (group 1; n = 13) included high-dose cyclophosphamide (CPA) 120-200 mg/kg and total body irradiation (TBI) 10-13.2 Gy, whereas conditioning for non-malignant disorders (group 2; n = 4) included high-dose CPA 200 mg/kg with or without busulphan. Patients in group 1 showed a steady decline in height velocity following initial chemotherapy and cranial irradiation and the decline was even greater following BMT. Growth hormone (GH) deficiency developed in eight of nine children tested, hypergonadotrophic hypogonadism developed in 11 who reached puberty, thyroid hormone abnormalities were encountered in four out of 10 tested and 11 of 13 developed cataracts. Patients in group 2 did not show decline in linear growth rate, thyroid hormone abnormalities or cataracts after BMT. The only child tested had normal GH levels and the two patients who reached puberty showed delayed but complete gonadal recovery. Our data demonstrate that TBI leads to significant late effects on growth and gonadal function. Contrary to previous reports, a high incidence of cataract formation is observed after fractionated TBI. Conditioning regimens TBI should be considered in children undergoing BMT.
Baxi, Kunal; Ghavidel, Ata; Waddell, Brandon; Harkness, Troy A; de Carvalho, Carlos E
2017-09-01
Aging in eukaryotes is accompanied by widespread deterioration of the somatic tissue. Yet, abolishing germ cells delays the age-dependent somatic decline in Caenorhabditis elegans In adult worms lacking germ cells, the activation of the DAF-9/DAF-12 steroid signaling pathway in the gonad recruits DAF-16 activity in the intestine to promote longevity-associated phenotypes. However, the impact of this pathway on the fitness of normally reproducing animals is less clear. Here, we explore the link between progeny production and somatic aging and identify the loss of lysosomal acidity-a critical regulator of the proteolytic output of these organelles-as a novel biomarker of aging in C. elegans The increase in lysosomal pH in older worms is not a passive consequence of aging, but instead is timed with the cessation of reproduction, and correlates with the reduction in proteostasis in early adult life. Our results further implicate the steroid signaling pathway and DAF-16 in dynamically regulating lysosomal pH in the intestine of wild-type worms in response to the reproductive cycle. In the intestine of reproducing worms, DAF-16 promotes acidic lysosomes by upregulating the expression of v-ATPase genes. These findings support a model in which protein clearance in the soma is linked to reproduction in the gonad via the active regulation of lysosomal acidification. Copyright © 2017 by the Genetics Society of America.
Mutation of foxl2 or cyp19a1a Results in Female to Male Sex Reversal in XX Nile Tilapia.
Zhang, Xianbo; Li, Mengru; Ma, He; Liu, Xingyong; Shi, Hongjuan; Li, Minghui; Wang, Deshou
2017-08-01
It is well accepted that Forkhead box protein L2 (Foxl2) and aromatase (Cyp19a1; the enzyme responsible for estrogen synthesis) are critical for ovarian development in vertebrates. Knockouts of Foxl2 and Cyp19a1 in goat, mouse, and zebrafish have revealed similar but not identical functions across species. Functional analyses of these two genes in other animals are needed to elucidate their conserved roles in vertebrate sexual development. In this study, we established foxl2 and cyp19a1a mutant lines in Nile tilapia. Both foxl2-/- and cyp19a1a-/- XX fish displayed female-to-male sex reversal. Sf1, Dmrt1, and Gsdf were upregulated in the foxl2-/- and the cyp19a1a-/- XX gonads. Downregulation of Cyp19a1a and serum estradiol-17β level, and upregulation of Cyp11b2 and serum 11-ketotestosterone level were observed in foxl2-/- XX fish. The mutant phenotype of foxl2-/- XX individuals could be rescued by 17β-estradiol treatment from 5 to 30 days after hatching (dah). Upregulation of Star1, the enzyme involved in androgen production in tilapia, was also observed in the foxl2-/- XX gonad at 30 and 90 dah. In vitro promoter analyses consistently demonstrated that Foxl2 could suppress the transcription of star1 in a dose-dependent manner. In addition, compared with the control XX gonad, fewer germ cells were detected in the foxl2-/- XX, cyp19a1a-/- XX, and control XY gonads 10 dah. These results demonstrate that Foxl2 promotes ovarian development by upregulating Cyp19a1a expression and repressing male pathway gene expression. These results extend the study of Foxl2 and Cyp19a1a loss of function to a commercially important fish species. Copyright © 2017 Endocrine Society.
Avella, Matteo A.; Place, Allen; Du, Shao-Jun; Williams, Ernest; Silvi, Stefania; Zohar, Yonathan; Carnevali, Oliana
2012-01-01
Endogenous microbiota play essential roles in the host’s immune system, physiology, reproduction and nutrient metabolism. We hypothesized that a continuous administration of an exogenous probiotic might also influence the host’s development. Thus, we treated zebrafish from birth to sexual maturation (2-months treatment) with Lactobacillus rhamnosus, a probiotic species intended for human use. We monitored for the presence of L. rhamnosus during the entire treatment. Zebrafish at 6 days post fertilization (dpf) exhibited elevated gene expression levels for Insulin-like growth factors -I and -II, Peroxisome proliferator activated receptors -α and -β, VDR-α and RAR-γ when compared to untreated-10 days old zebrafish. Using a gonadotropin-releasing hormone 3 GFP transgenic zebrafish (GnRH3-GFP), higher GnRH3 expression was found at 6, 8 and 10 dpf upon L. rhamnosus treatment. The same larvae exhibited earlier backbone calcification and gonad maturation. Noteworthy in the gonad development was the presence of first testes differentiation at 3 weeks post fertilization in the treated zebrafish population -which normally occurs at 8 weeks- and a dramatic sex ratio modulation (93% females, 7% males in control vs. 55% females, 45% males in the treated group). We infer that administration of L. rhamnosus stimulated the IGF system, leading to a faster backbone calcification. Moreover we hypothesize a role for administration of L. rhamnosus on GnRH3 modulation during early larval development, which in turn affects gonadal development and sex differentiation. These findings suggest a significant role of the microbiota composition on the host organism development profile and open new perspectives in the study of probiotics usage and application. PMID:23029107
Kohno, S; Katsu, Y; Urushitani, H; Ohta, Y; Iguchi, T; Guillette, L J
2010-01-01
Sex determination in the American alligator depends on the incubation temperature experienced during a thermo-sensitive period (TSP), although sex determination can be 'reversed' by embryonic exposure to an estrogenic compound. Thus, temperature and estrogenic signals play essential roles during temperature-dependent sex determination (TSD). The genetic basis for TSD is poorly understood, although previous studies observed that many of the genes associated with genetic sex determination (GSD) are expressed in species with TSD. Heat shock proteins (HSPs), good candidates because of their temperature-sensitive expression, have not been examined in regard to TSD but HSPs have the ability to modify steroid receptor function. A number of HSP cDNAs (HSP27, DNAJ, HSP40, HSP47, HSP60, HSP70A, HSP70B, HSP70C, HSP75, HSP90alpha, HSP90beta, and HSP108) as well as cold-inducible RNA binding protein (CIRBP) and HSP-binding protein (HSPBP) were cloned, and expression of their mRNA in the gonadal-adrenal-mesonephros complex (GAM) was investigated. Embryonic and neonatal GAMs exhibited mRNA for all of the HSPs examined during and after the TSP. One-month-old GAMs were separated into 3 portions (gonad, adrenal gland, and mesonephros), and sexual dimorphism in the mRNA expression of gonadal HSP27 (male > female), gonadal HSP70A (male < female), and adrenal HSP90 alpha (male > female) was observed. These findings provide new insights on TSD and suggest that further studies examining the role of HSPs during gonadal development are needed. (c) 2009 S. Karger AG, Basel.
Song, Feibiao; Wang, Lanmei; Zhu, Wenbin; Fu, Jianjun; Dong, Juanjuan; Dong, Zaijie
2016-01-01
Since the insulin-like growth factor 3 (igf3) gene was recently discovered in fish ovary, its function in the gonads has received much attention. In this study, we isolated two igf3 subtypes from common carp (Cyprinus carpio), which comprised full-length cDNA of 707 and 1153 nucleotides encoding 205 and 198 amino acids (aa), respectively. The Igf3 aa sequence had the highest gene homology of 72% with the corresponding sequence in zebrafish (Danio rerio). Phylogenetic tree construction revealed that the C. carpio igf3 gene was first clustered with D. rerio and then with other teleost species. Igf3 mRNA was widely expressed, with expression being highest in the gonads and blood. In the gonad development stage, igf3a mRNA expression was highest in the maturity and recession stage of the ovary, and decline phase of the testis, while igf3b was highest in the recession and fully mature periods of the ovaries and testes, respectively. Western blotting of testis protein samples showed two bands of approximately 21 kDa and 34 kDa corresponding to the calculated molecular mass of the two Igf3 subtypes; no signal was detected in the ovary. The Igf3 protein was localized in the ovary granulosa cells and testis spermatogonium and spermatids. 17β-Ethinylestradiol treatment increased both ovary and testis igf3 mRNA expression. These findings suggest that Igf3 may play an important role in C. carpio gonadal development.
Zhu, Wenbin; Fu, Jianjun; Dong, Juanjuan; Dong, Zaijie
2016-01-01
Since the insulin-like growth factor 3 (igf3) gene was recently discovered in fish ovary, its function in the gonads has received much attention. In this study, we isolated two igf3 subtypes from common carp (Cyprinus carpio), which comprised full-length cDNA of 707 and 1153 nucleotides encoding 205 and 198 amino acids (aa), respectively. The Igf3 aa sequence had the highest gene homology of 72% with the corresponding sequence in zebrafish (Danio rerio). Phylogenetic tree construction revealed that the C. carpio igf3 gene was first clustered with D. rerio and then with other teleost species. Igf3 mRNA was widely expressed, with expression being highest in the gonads and blood. In the gonad development stage, igf3a mRNA expression was highest in the maturity and recession stage of the ovary, and decline phase of the testis, while igf3b was highest in the recession and fully mature periods of the ovaries and testes, respectively. Western blotting of testis protein samples showed two bands of approximately 21 kDa and 34 kDa corresponding to the calculated molecular mass of the two Igf3 subtypes; no signal was detected in the ovary. The Igf3 protein was localized in the ovary granulosa cells and testis spermatogonium and spermatids. 17β-Ethinylestradiol treatment increased both ovary and testis igf3 mRNA expression. These findings suggest that Igf3 may play an important role in C. carpio gonadal development. PMID:28002497
Valero, Yulema; Arizcun, Marta; Esteban, M. Ángeles; Bandín, Isabel; Olveira, José G.; Patel, Sonal; Cuesta, Alberto; Chaves-Pozo, Elena
2015-01-01
Viruses are threatening pathogens for fish aquaculture. Some of them are transmitted through gonad fluids or gametes as occurs with nervous necrosis virus (NNV). In order to be transmitted through the gonad, the virus should colonize and replicate inside some cell types of this tissue and avoid the subsequent immune response locally. However, whether NNV colonizes the gonad, the cell types that are infected, and how the immune response in the gonad is regulated has never been studied. We have demonstrated for the first time the presence and localization of NNV into the testis after an experimental infection in the European sea bass (Dicentrarchus labrax), and in the gilthead seabream (Sparus aurata), a very susceptible and an asymptomatic host fish species, respectively. Thus, we localized in the testis viral RNA in both species using in situ PCR and viral proteins in gilthead seabream by immunohistochemistry, suggesting that males might also transmit the virus. In addition, we were able to isolate infective particles from the testis of both species demonstrating that NNV colonizes and replicates into the testis of both species. Blood contamination of the tissues sampled was discarded by completely fish bleeding, furthermore the in situ PCR and immunocytochemistry techniques never showed staining in blood vessels or cells. Moreover, we also determined how the immune and reproductive functions are affected comparing the effects in the testis with those found in the brain, the main target tissue of the virus. Interestingly, NNV triggered the immune response in the European sea bass but not in the gilthead seabream testis. Regarding reproductive functions, NNV infection alters 17β-estradiol and 11-ketotestosterone production and the potential sensitivity of brain and testis to these hormones, whereas there is no disruption of testicular functions according to several reproductive parameters. Moreover, we have also studied the NNV infection of the testis in vitro to assess local responses. Our in vitro results show that the changes observed on the expression of immune and reproductive genes in the testis of both species are different to those observed upon in vivo infections in most of the cases. PMID:26691348
Sánchez, Lucas; Chaouiya, Claudine
2016-05-26
Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules. Relying on a comprehensive revision of the literature, we define a logical model that integrates the current knowledge of the regulatory network controlling this developmental process. Our analysis indicates the necessity for some genes to operate at distinct functional thresholds and for specific developmental conditions to ensure the reproducibility of the sexual pathways followed by bi-potential gonads developing into either testes or ovaries. Our model thus allows studying the dynamics of wild type and mutant XX and XY gonads. Furthermore, the model analysis reveals that the gonad sexual fate results from the operation of two sub-networks associated respectively with an initiation and a maintenance phases. At the core of the process is the resolution of two connected feedback loops: the mutual inhibition of Sox9 and ß-catenin at the initiation phase, which in turn affects the mutual inhibition between Dmrt1 and Foxl2, at the maintenance phase. Three developmental signals related to the temporal activity of those sub-networks are required: a signal that determines Sry activation, marking the beginning of the initiation phase, and two further signals that define the transition from the initiation to the maintenance phases, by inhibiting the Wnt4 signalling pathway on the one hand, and by activating Foxl2 on the other hand. Our model reproduces a wide range of experimental data reported for the development of wild type and mutant gonads. It also provides a formal support to crucial aspects of the gonad sexual development and predicts gonadal phenotypes for mutations not tested yet.
Chi, Wei; Gao, Yu; Hu, Qing; Guo, Wei; Li, Dapeng
2017-01-01
The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes' expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, J.E. Jr.; Platoff, G.E.; Kubrock, C.A.
1982-01-01
Among 17 men who had received seemingly curative treatment for unilateral non-seminomatous germ cell tumors for the testis and who had consistently normal serum human chorionic gonadotropin (HCG) levels at a reference laboratory, 7 (41%) had at least one falsely positive commercial serum HCG determination. To investigate the cause of these falsely positive determinations the authors measured the cross reactivity of luteinizing hormone (LH) and follicle stimulating hormone (FSH) standards in the commercial HCG assay, and studied the relationships between commercial HCG levels and serum LH levels, serum FSH levels and gonadal status in men with and without normal gonadalmore » function. The falsely positive HCG determinations appeared to be due to elevated serum LH levels and cross reactivity of LH in the commercial HCG assay because: 1) there was substantial cross reactivity of the LH standards in the commercial assay, 2) the serum LH was elevated in four of six men with solitary testes, 3) there was a striking correlation between elevated serum LH levels and falsely elevated commercial HCG levels in ten men with solitary or absent testes, and 4) there were no falsely positive HCG determinations in 13 normal men but there were falsely positive HCG determinations in seven of ten anorchid men.« less
The Need for Speed: Neuroendocrine Regulation of Socially-controlled Sex Change.
Lamm, Melissa S; Liu, Hui; Gemmell, Neil J; Godwin, John R
2015-08-01
Socially-controlled functional sex change in fishes is a dramatic example of adaptive reproductive plasticity. Functional gonadal sex change can occur within a week while behavioral sex change can begin within minutes. Significant progress has been made in understanding the neuroendocrine bases of this phenomenon at both the gonadal and the neurobiological levels, but a detailed mechanistic understanding remains elusive. We are working with sex-changing wrasses to identify evolutionarily-conserved neuroendocrine pathways underlying this reproductive adaptation. One key model is the bluehead wrasse (Thalassoma bifasciatum), in which sex change is well studied at the behavioral, ecological, and neuroendocrine levels. Bluehead wrasses show rapid increases in aggressive and courtship behaviors with sex change that do not depend on the presence of gonads. The display of male-typical behavior is correlated with the expression of arginine vasotocin, and experiments support a role for this neuropeptide. Estrogen synthesis is also critical in the process. Female bluehead wrasses have higher abundance of aromatase mRNA in the brain and gonads, and estrogen implants block behavioral sex change. While established methods have advanced our understanding of sex change, a full understanding will require new approaches and perspectives. First, contributions of other neuroendocrine systems should be better characterized, particularly glucocorticoid and thyroid signaling. Second, advances in genomics for non-traditional model species should allow conserved mechanisms to be identified with a key next-step being manipulative tests of these mechanisms. Finally, advances in genomics now also allow study of the role of epigenetic modifications and other regulatory mechanisms in the dramatic alterations across the sex-change process. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Majhi, Sullip Kumar; Hattori, Ricardo Shohei; Rahman, Sheikh Mustafizur; Strüssmann, Carlos Augusto
2014-01-01
Germ cell transplantation (GCT) is a promising assisted reproductive technology for the conservation and propagation of endangered and valuable genetic resources. In teleost fish, GCT in adult gonads has been achieved only in male recipients, limiting greatly the usefulness of this technique in situations where both sexes need equal and timely attention for conservation and/or propagation. Here we describe a simplified GCT approach that ultimately leads to production of donor-derived eggs and sperm in considerably short time. Donor germ cells isolated from young pejerrey Odontesthes bonariensis (Atherinopsidae) were transplanted non-surgically through the genital papilla into the sexually mature gonads of Patagonian pejerrey O. hatcheri recipients whose gonads have been depleted of endogenous GCs by heat (26°C) and chemical treatment (four doses of Busulfan at 30 mg/kg and 40 mg/kg for females and males, respectively). Transplanted spermatogonial and oogonial cells were able to recolonize the recipients' gonads and produce functional donor origin eggs and sperm within 7 months from the GCT. We confirmed the presence of donor-derived gametes by PCR in 17% and 5% of the surrogate O. hatcheri fathers and mothers, respectively. The crosses between surrogate fathers and O. bonariensis mothers yielded 12.6-39.7% pure O. bonariensis and that between a surrogate mother and an O. bonariensis father yielded 52.2% pure O. bonariensis offspring. Our findings confirm that transplantation of germ cells into sexually competent adult fish by non-surgical methods allows the production of functional donor-derived eggs and sperm in a considerably short time. The methods described here could play a vital role in conservation and rapid propagation of endangered fish genetic resources.
Majhi, Sullip Kumar; Hattori, Ricardo Shohei; Rahman, Sheikh Mustafizur; Strüssmann, Carlos Augusto
2014-01-01
Germ cell transplantation (GCT) is a promising assisted reproductive technology for the conservation and propagation of endangered and valuable genetic resources. In teleost fish, GCT in adult gonads has been achieved only in male recipients, limiting greatly the usefulness of this technique in situations where both sexes need equal and timely attention for conservation and/or propagation. Here we describe a simplified GCT approach that ultimately leads to production of donor-derived eggs and sperm in considerably short time. Donor germ cells isolated from young pejerrey Odontesthes bonariensis (Atherinopsidae) were transplanted non-surgically through the genital papilla into the sexually mature gonads of Patagonian pejerrey O. hatcheri recipients whose gonads have been depleted of endogenous GCs by heat (26°C) and chemical treatment (four doses of Busulfan at 30 mg/kg and 40 mg/kg for females and males, respectively). Transplanted spermatogonial and oogonial cells were able to recolonize the recipients' gonads and produce functional donor origin eggs and sperm within 7 months from the GCT. We confirmed the presence of donor-derived gametes by PCR in 17% and 5% of the surrogate O. hatcheri fathers and mothers, respectively. The crosses between surrogate fathers and O. bonariensis mothers yielded 12.6–39.7% pure O. bonariensis and that between a surrogate mother and an O. bonariensis father yielded 52.2% pure O. bonariensis offspring. Our findings confirm that transplantation of germ cells into sexually competent adult fish by non-surgical methods allows the production of functional donor-derived eggs and sperm in a considerably short time. The methods described here could play a vital role in conservation and rapid propagation of endangered fish genetic resources. PMID:24748387
Shi, Yu; Liu, Wenguang; He, Maoxian
2018-04-01
Bivalve mollusks exhibit hermaphroditism and sex reversal/differentiation. Studies generally focus on transcriptional profiling and specific genes related to sex determination and differentiation. Few studies on sex reversal/differentiation have been reported. A combination analysis of gonad proteomics and transcriptomics was conducted on Chlamys nobilis to provide a systematic understanding of sex reversal/differentiation in bivalves. We obtained 4258 unique peptides and 93,731 unigenes with good correlation between messenger RNA and protein levels. Candidate genes in sex reversal/differentiation were found: 15 genes differentially expressed between sexes were identified and 12 had obvious sexual functions. Three novel genes (foxl2, β-catenin, and sry) were expressed highly in intersex individuals and were likely involved in the control of gonadal sex in C. nobilis. High expression of foxl2 or β-catenin may inhibit sry and activate 5-HT receptor and vitellogenin to maintain female development. High expression of sry may inhibit foxl2 and β-catenin and activate dmrt2, fem-1, sfp2, sa6, Amy-1, APCP4, and PLK to maintain male function. High expression of sry, foxl2, and β-catenin in C. nobilis may be involved in promoting and maintaining sex reversal/differentiation. The downstream regulator may not be dimorphic expressed genes, but genes expressed in intersex individuals, males and females. Different expression patterns of sex-related genes and gonadal histological characteristics suggested that C. nobilis may change its sex from male to female. These findings suggest highly conserved sex reversal/differentiation with diverged regulatory pathways during C. nobilis evolution. This study provides valuable genetic resources for understanding sex reversal/differentiation (intersex) mechanisms and pathways underlying bivalve reproductive regulation.
de Bruin, Christiaan; Mericq, Verónica; Andrew, Shayne F.; van Duyvenvoorde, Hermine A.; Verkaik, Nicole S.; Losekoot, Monique; Porollo, Aleksey; Garcia, Hernán; Kuang, Yi; Hanson, Dan; Clayton, Peter; van Gent, Dik C.; Wit, Jan M.; Hwa, Vivian
2015-01-01
Context: Severe short stature can be caused by defects in numerous biological processes including defects in IGF-1 signaling, centromere function, cell cycle control, and DNA damage repair. Many syndromic causes of short stature are associated with medical comorbidities including hypogonadism and microcephaly. Objective: To identify an underlying genetic etiology in two siblings with severe short stature and gonadal failure. Design: Clinical phenotyping, genetic analysis, complemented by in vitro functional studies of the candidate gene. Setting: An academic pediatric endocrinology clinic. Patients or Other Participants: Two adult siblings (male patient [P1] and female patient 2 [P2]) presented with a history of severe postnatal growth failure (adult heights: P1, −6.8 SD score; P2, −4 SD score), microcephaly, primary gonadal failure, and early-onset metabolic syndrome in late adolescence. In addition, P2 developed a malignant gastrointestinal stromal tumor at age 28. Intervention(s): Single nucleotide polymorphism microarray and exome sequencing. Results: Combined microarray analysis and whole exome sequencing of the two affected siblings and one unaffected sister identified a homozygous variant in XRCC4 as the probable candidate variant. Sanger sequencing and mRNA studies revealed a splice variant resulting in an in-frame deletion of 23 amino acids. Primary fibroblasts (P1) showed a DNA damage repair defect. Conclusions: In this study we have identified a novel pathogenic variant in XRCC4, a gene that plays a critical role in non-homologous end-joining DNA repair. This finding expands the spectrum of DNA damage repair syndromes to include XRCC4 deficiency causing severe postnatal growth failure, microcephaly, gonadal failure, metabolic syndrome, and possibly tumor predisposition. PMID:25742519
Shen, Cong; Li, Mingrui; Zhang, Pan; Guo, Yueshuai; Zhang, Hao; Zheng, Bo; Teng, Hui; Zhou, Tao; Guo, Xuejiang; Huo, Ran
2018-01-01
Generation of haploid gametes by meiosis is a unique property of germ cells and is critical for sexual reproduction. Leaving mitosis and entering meiosis is a key step in germ cell development. Several inducers or intrinsic genes are known to be important for meiotic initiation, but the regulation of meiotic initiation, especially at the protein level, is still not well understood. We constructed a comparative proteome profile of female mouse fetal gonads at specific time points (11.5, 12.5, and 13.5 days post coitum), spanning a critical window for initiation of meiosis in female germ cells. We identified 3666 proteins, of which 473 were differentially expressed. Further bioinformatics analysis showed that these differentially expressed proteins were enriched in the mitochondria, especially in the electron transport chain and, notably, 9 proteins in electron transport chain Complex I were differentially expressed. We disrupted the mitochondrial electron transport chain function by adding the complex I inhibitor, rotenone to 11.5 days post coitum female gonads cultured in vitro. This treatment resulted in a decreased proportion of meiotic germ cells, as assessed by staining for histone γH2AX. Rotenone treatment also caused decreased ATP levels, increased reactive oxygen species levels and failure of the germ cells to undergo premeiotic DNA replication. These effects were partially rescued by adding Coenzyme Q10. Taken together, our results suggested that a functional electron transport chain is important for meiosis initiation. Our characterization of the quantitative proteome of female gonads provides an inventory of proteins, useful for understanding the mechanisms of meiosis initiation and female fertility. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Tam, Yuk Him; Wong, Yuen Shan; Pang, Kristine Kit Yi; To, Ka Fai; Yiu, Alice Ka Wah; Wong, Hei Yi; Tsui, Siu Yan; Mou, Jennifer Wai Cheung; Chan, Kin Wai; Lee, Kim Hung
2016-09-01
To investigate the risk of gonadal germ cell neoplasms (GCN) in children with 45,X/46,XY gonadal dysgenesis and its relation to the clinical presentations. We conducted a retrospective study reviewing the clinical and gonadal features of all consecutive children with 45,X/46,XY gonadal dysgenesis who received gonadal management in a tertiary center from 1985 to 2015. Study subjects were divided into Group I(significant genitalia anomaly), Group II(female phenotype) and Group III(male phenotype). 21 children were studied (Group I=8; Group II=11; Group III=2). All 19 children of Group I and II eventually underwent bilateral gonadectomy. One patient of Group III underwent gonadal biopsy which showed increase in fibrous tissue in the testes without any GCN. 3/8(37.5%) and 6/11(54.5%) of patients in Group I and II respectively had either gonadoblastoma (GB) or carcinoma-in-situ (CIS) or both affecting one or both gonads. Among Group I patients, the 4 dysgenetic testes affected by CIS in 3 patients were intraabdominal (n=1), inguinal (n=1) and scrotal (n=2) in positions. Among Group II patients, 6/20 streak gonads had GB and 2/2 dysgenetic testes had GB or CIS. 45,X/46,XY children with significant genitalia anomaly or female phenotype are both at high risk of gonadal GCN. Copyright © 2016 Elsevier Inc. All rights reserved.
XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication.
Moalem, Sharon; Babul-Hirji, Riyana; Stavropolous, Dmitri J; Wherrett, Diane; Bägli, Darius J; Thomas, Paul; Chitayat, David
2012-07-01
Differentiation of the bipotential gonad into testis is initiated by the Y chromosome-linked gene SRY (Sex-determining Region Y) through upregulation of its autosomal direct target gene SOX9 (Sry-related HMG box-containing gene 9). Sequence and chromosome homology studies have shown that SRY most probably evolved from SOX3, which in humans is located at Xq27.1. Mutations causing SOX3 loss-of-function do not affect the sex determination in mice or humans. However, transgenic mouse studies have shown that ectopic expression of Sox3 in the bipotential gonad results in upregulation of Sox9, resulting in testicular induction and XX male sex reversal. However, the mechanism by which these rearrangements cause sex reversal and the frequency with which they are associated with disorders of sex development remains unclear. Rearrangements of the SOX3 locus were identified recently in three cases of human XX male sex reversal. We report on a case of XX male sex reversal associated with a novel de novo duplication of the SOX3 gene. These data provide additional evidence that SOX3 gain-of-function in the XX bipotential gonad causes XX male sex reversal and further support the hypothesis that SOX3 is the evolutionary antecedent of SRY. Copyright © 2012 Wiley Periodicals, Inc.
Wu, Yimin; Lu, Yunzhe; Hu, Yanfen; Li, Rong
2005-11-01
In response to gonadotropins, the elevated level of intracellular-cyclic AMP (cAMP) in ovarian granulosa cells triggers an ordered activation of multiple ovarian genes, which in turn promotes various ovarian functions including folliculogenesis and steroidogenesis. Identification and characterization of transcription factors that control ovarian gene expression are pivotal to the understanding of the molecular basis of the tissue-specific gene regulation programs. The recent discovery of the mouse TATA binding protein (TBP)-associated factor 105 (TAF(II)105) as a gonad-selective transcriptional co-activator strongly suggests that general transcription factors such as TFIID may play a key role in regulating tissue-specific gene expression. Here we show that the human TAF(II)105 protein is preferentially expressed in ovarian granulosa cells. We also identified a novel TAF(II)105 mRNA isoform that results from alternative exon inclusion and is predicted to encode a dominant negative mutant of TAF(II)105. Following stimulation by the adenylyl cyclase activator forskolin, TAF(II)105 in granulosa cells undergoes rapid and transient phosphorylation that is dependent upon protein kinase A (PKA). Thus, our work suggests that pre-mRNA processing and post-translational modification represent two important regulatory steps for the gonad-specific functions of human TAF(II)105. Copyright 2005 Wiley-Liss, Inc.
LINKIN, a new transmembrane protein necessary for cell adhesion
Kato, Mihoko; Chou, Tsui-Fen; Yu, Collin Z; DeModena, John; Sternberg, Paul W
2014-01-01
In epithelial collective migration, leader and follower cells migrate while maintaining cell–cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG–GAP domains in the extracellular domain, which potentially folds into a β-propeller structure resembling the α-integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and α-tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain. DOI: http://dx.doi.org/10.7554/eLife.04449.001 PMID:25437307
[The influence of melatonin on human reproduction].
Boczek-Leszczyk, Emilia; Juszczak, Marlena
2007-08-01
This paper reviews the possible participation of melatonin in the process of human reproduction. The results of several studies have shown the clear correlation between melatonin and gonadotropins and/or sexual steroids, which suggest that melatonin may be involved in the sexual maturation, ovulation or menopause. Decreased secretion of melatonin which coexists with increased fertility in the summer is specific for women living on the north hemisphere. Moreover, abnormal levels of melatonin in the blood are associated with several disorders of the hypothalamus-pituitary-gonads axis activity, i.e., precocious or delayed pubertas, hypogonadotrophic or hypergonadotrophic hypogonadism or amenorrhoea. Melatonin binding sites have been demonstrated in the central nervous system (mainly in the pars dystalis of the pituitary and hypothalamic suprachiasmatic nucleus) as well as in the reproductive organs, e.g., human granulosa cells, prostate and spermatozoa. Melatonin can, therefore, influence the gonadal function indirectly--via its effect on gonadotropin-releasing hormone and/or gonadotropins secretion. It may also act directly; several data show that melatonin can be synthesized in gonads.
Raimundo, Joana; Vale, Carlos; Martins, Inês; Fontes, Jorge; Graça, Gonçalo; Caetano, Miguel
2015-11-15
Concentrations of V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Cd and Pb were determined in muscle, liver and gonads of two ecologically contrasting fishes, Helicolenus dactylopterus (benthic) and Pagellus bogaraveo (benthopelagic). Elevated concentrations of As, Se and Cd found in tissues of both species appear to mirror the contribution of volcanic activity to the natural inputs of elements to Azorean waters. Results showed different element accumulation between the two species. Whereas higher concentrations were found in the liver of P. bogaraveo, elevated values were observed in the muscle of H. dactylopterus. Differences in accumulation are most likely related to metabolic rates, diet specificities and habitat. Concentrations in gonads varied up to four orders of magnitude, being higher and more variable in P. bogaraveo than H. dactylopterus. Elevated values of Cd were detected in gonads of both species despite its non-essential role on metabolic functions, presumably related to elimination. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sun, Yunlv; Yang, Shijie; Li, Minghui; Zeng, Sheng; Huang, Baofeng; Wang, Deshou
2013-01-01
Four pairs of XX and XY gonads from Nile tilapia were sequenced at four developmental stages, 5, 30, 90, and 180 days after hatching (dah) using Illumina HiseqTM technology. This produced 28 Gb sequences, which were mapped to 21,334 genes. Of these, 259 genes were found to be specifically expressed in XY gonads, and 69 were found to be specific to XX gonads. Totally, 187 XX- and 1,358 XY-enhanced genes were identified, and 2,978 genes were found to be co-expressed in XX and XY gonads. Almost all steroidogenic enzymes, including cyp19a1a, were up-regulated in XX gonads at 5 dah; but in XY gonads these enzymes, including cyp11b2, were significantly up-regulated at 90 dah, indicating that, at a time critical to sex determination, the XX fish produced estrogen and the XY fish did not produce androgens. The most pronounced expression of steroidogenic enzyme genes was observed at 30 and 90 dah for XX and XY gonads, corresponding to the initiation of germ cell meiosis in the female and male gonads, respectively. Both estrogen and androgen receptors were found to be expressed in XX gonads, but only estrogen receptors were expressed in XY gonads at 5 dah. This could explain why exogenous steroid treatment induced XX and XY sex reversal. The XX-enhanced expression of cyp19a1a and cyp19a1b at all stages suggests an important role for estrogen in female sex determination and maintenance of phenotypic sex. This work is the largest collection of gonadal transcriptome data in tilapia and lays the foundation for future studies into the molecular mechanisms of sex determination and maintenance of phenotypic sex in non-model teleosts. PMID:23658843
Chen, Xuqi; Wang, Lixin; Loh, Dawn H; Colwell, Christopher S; Taché, Yvette; Reue, Karen; Arnold, Arthur P
2015-09-01
We measured diurnal rhythms of food intake, as well as body weight and composition, while varying three major classes of sex-biasing factors: activational and organizational effects of gonadal hormones, and sex chromosome complement (SCC). Four Core Genotypes (FCG) mice, comprising XX and XY gonadal males and XX and XY gonadal females, were either gonad-intact or gonadectomized (GDX) as adults (2.5months); food intake was measured second-by-second for 7days starting 5weeks later, and body weight and composition were measured for 22weeks thereafter. Gonadal males weighed more than females. GDX increased body weight/fat of gonadal females, but increased body fat and reduced body weight of males. After GDX, XX mice had greater body weight and more fat than XY mice. In gonad-intact mice, males had greater total food intake and more meals than females during the dark phase, but females had more food intake and meals and larger meals than males during the light phase. GDX reduced overall food intake irrespective of gonad type or SCC, and eliminated differences in feeding between groups with different gonads. Diurnal phase of feeding was influenced by all three sex-biasing variables. Gonad-intact females had earlier onset and acrophase (peak) of feeding relative to males. GDX caused a phase-advance of feeding, especially in XX mice, leading to an earlier onset of feeding in GDX XX vs. XY mice, but earlier acrophase in GDX males relative to females. Gonadal hormones and SCC interact in the control of diurnal rhythms of food intake. Copyright © 2015 Elsevier Inc. All rights reserved.
Uban, K A; Herting, M M; Wozniak, J R; Sowell, E R
2017-09-01
Despite accumulating evidence from animal models demonstrating that prenatal alcohol exposure (PAE) results in life-long neuroendocrine dysregulation, very little is known on this topic among humans with fetal alcohol spectrum disorders (FASD). We expected that alterations in gonadal hormones might interfere with the typical development of white matter (WM) myelination, and in a sex-dependent manner, in human adolescents with FASD. In order to investigate this hypothesis, we used diffusion tensor imaging (DTI) to assess: 1) whether or not sex moderates the impact of PAE on WM microstructure; and 2) how gonadal hormones relate to alterations in WM microstructure in children and adolescents affected by PAE. 61 youth (9 to 16 yrs.; 49% girls; 50% PAE) participated as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD). DTI scans and passive drool samples were obtained to examine neurodevelopmental associations with testosterone (T) and dehydroepiandrosterone (DHEA) levels in boys and girls, and estradiol (E2) and progesterone (P) levels in girls. Tract-based spatial statistics were utilized to generate fractional anisotropy (FA) and mean diffusivity (MD) for 9 a priori WM regions of interest (ROIs). As predicted, alterations in FA were observed in adolescents with PAE relative to controls, and these differences varied by sex. Girls with PAE exhibited lower FA (Inferior fronto-occipital and Uncinate fasciculi) while boys with PAE exhibited higher FA (Callosal body, Cingulum, Corticospinal tract, Optic radiation, Superior longitudinal fasciculus) relative to age-matched controls. When gonadal hormone levels were examined in relation to DTI measures, additional group differences in FA were revealed, demonstrating that neuroendocrine factors are associated with PAE-related brain alterations. These findings provide human evidence that PAE relates to sex-specific differences in WM microstructure, and underlying alterations in gonadal hormone function may, in part, contribute to these effects. Determining PAE-effects on neuroendocrine function among humans is an essential first step towards developing novel clinical (e.g., assessment or intervention) tools that target hormone systems to improve on-going brain development among children and adolescents with FASD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cardoso, Rodolfo C.; Burns, Ashleigh; Moeller, Jacob; Skinner, Donal C.
2016-01-01
Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype. PMID:27792406
Cardoso, Rodolfo C; Burns, Ashleigh; Moeller, Jacob; Skinner, Donal C; Padmanabhan, Vasantha
2016-12-01
Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype.
Peranandam, Revathi; Palanisamy, Iyapparaj; Lourdaraj, Arockia Vasanthi; Natesan, Munuswamy; Vimalananthan, Arun Prasanna; Thangaiyan, Suganya; Perumal, Anantharaman; Muthukalingan, Krishnan
2014-01-01
The impact of tributyltin (TBT) on the female gonad and the endocrine system in Macrobrachium rosenbergii was studied. Prawns were exposed to environmentally realistic concentrations of 10, 100, and 1000 ng/L of TBT for 6 months. Dose dependent effects were noticed in TBT exposed prawns. At 1000 ng/L TBT caused ovotestis formation (formation of male germ cells in ovary). Presence immature oocytes, fusion of developing oocytes, increase in interstitial connective tissues, and its modification into tubular like structure and abundance of spermatogonia in the ovary of TBT treated prawns. The control prawn ovary showed normal architecture of cellular organelles such as mature oocytes with type 2 yolk globules, lipid droplets, normal appearance of yolk envelop, and uniformly arranged microvilli. On the other hand, type 1 yolk globules, reduced size of microvilli, spermatogonial cells in ovary, spermatogonia with centrally located nucleus, and chromatin distribution throughout the nucleoplasm were present in the TBT treated group. Immunofluorescence staining indicated a reduction in vitellin content in ovary of TBT treated prawn. Moreover, TBT had inhibited the vitellogenesis by causing hormonal imbalance in M. rosenbergii. Thus, the present investigation demonstrates that TBT substantially affects sexual differentiation and gonadal development in M. rosenbergii. PMID:25121096
Peranandam, Revathi; Palanisamy, Iyapparaj; Lourdaraj, Arockia Vasanthi; Natesan, Munuswamy; Vimalananthan, Arun Prasanna; Thangaiyan, Suganya; Perumal, Anantharaman; Muthukalingan, Krishnan
2014-01-01
The impact of tributyltin (TBT) on the female gonad and the endocrine system in Macrobrachium rosenbergii was studied. Prawns were exposed to environmentally realistic concentrations of 10, 100, and 1000 ng/L of TBT for 6 months. Dose dependent effects were noticed in TBT exposed prawns. At 1000 ng/L TBT caused ovotestis formation (formation of male germ cells in ovary). Presence immature oocytes, fusion of developing oocytes, increase in interstitial connective tissues, and its modification into tubular like structure and abundance of spermatogonia in the ovary of TBT treated prawns. The control prawn ovary showed normal architecture of cellular organelles such as mature oocytes with type 2 yolk globules, lipid droplets, normal appearance of yolk envelop, and uniformly arranged microvilli. On the other hand, type 1 yolk globules, reduced size of microvilli, spermatogonial cells in ovary, spermatogonia with centrally located nucleus, and chromatin distribution throughout the nucleoplasm were present in the TBT treated group. Immunofluorescence staining indicated a reduction in vitellin content in ovary of TBT treated prawn. Moreover, TBT had inhibited the vitellogenesis by causing hormonal imbalance in M. rosenbergii. Thus, the present investigation demonstrates that TBT substantially affects sexual differentiation and gonadal development in M. rosenbergii.
The role of Fanconi anemia/BRCA genes in zebrafish sex determination.
Rodríguez-Marí, Adriana; Postlethwait, John H
2011-01-01
Fanconi anemia (FA) is a human disease of bone marrow failure, leukemia, squamous cell carcinoma, and developmental anomalies, including hypogonadism and infertility. Bone marrow transplants improve hematopoietic phenotypes but do not prevent other cancers. FA arises from mutation in any of the 15 FANC genes that cooperate to repair double stranded DNA breaks by homologous recombination. Zebrafish has a single ortholog of each human FANC gene and unexpectedly, mutations in at least two of them (fancl and fancd1(brca2)) lead to female-to-male sex reversal. Investigations show that, as in human, zebrafish fanc genes are required for genome stability and for suppressing apoptosis in tissue culture cells, in embryos treated with DNA damaging agents, and in meiotic germ cells. The sex reversal phenotype requires the action of Tp53 (p53), an activator of apoptosis. These results suggest that in normal sex determination, zebrafish oocytes passing through meiosis signal the gonadal soma to maintain expression of aromatase, an enzyme that converts androgen to estrogen, thereby feminizing the gonad and the individual. According to this model, normal male and female zebrafish differ in genetic factors that control the strength of the late meiotic oocyte-derived signal, probably by regulating the number of meiotic oocytes, which environmental factors can also alter. Transcripts from fancd1(brca2) localize at the animal pole of the zebrafish oocyte cytoplasm and are required for normal oocyte nuclear architecture, for normal embryonic development, and for preventing ovarian tumors. Embryonic DNA repair and sex reversal phenotypes provide assays for the screening of small molecule libraries for therapeutic substances for FA. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Muthiga, N. A.; Kawaka, J. A.; Ndirangu, S.
2009-09-01
The sea cucumber Holothuria scabra is a widely distributed and economically important species that has been harvested in Kenya for decades. No previous studies have been carried out on the reproduction of this species in Kenya. Standard gonad index methods were used to analyze reproductive patterns of individuals collected monthly in 1998-1999, 2000-2001 and 2006-2007. Morphological characteristics, gonad tubule lengths and fecundity were also measured. Mean monthly gonad indices were significantly correlated between males and females indicating synchronous gonad development between the sexes. Gonad indices showed a biannual pattern that was consistent in all three years with a minor spawning event occurring between August and September and a major spawning event between November and December. The pattern of gonad growth showed significant variability between years and between months. Temporal changes in gonad growth correlated significantly with gonad tubule length and absolute fecundity. Monthly gonad indices also correlated significantly with monthly measurements of air temperature and light suggesting a possible role for both factors in timing gametogenesis and spawning. There was a shift in sex ratio from unity in the 1998-1999 and 2000-2001 samples to significantly more males in the 2006-2007 samples, as well as a significant reduction in mean sizes (body wall weight) and reproductive output (gonad index) which suggests that the reproductive success of this species is potentially negatively affected by fishing.
Female gonadal shielding with automatic exposure control increases radiation risks.
Kaplan, Summer L; Magill, Dennise; Felice, Marc A; Xiao, Rui; Ali, Sayed; Zhu, Xiaowei
2018-02-01
Gonadal shielding remains common, but current estimates of gonadal radiation risk are lower than estimated risks to colon and stomach. A female gonadal shield may attenuate active automatic exposure control (AEC) sensors, resulting in increased dose to colon and stomach as well as to ovaries outside the shielded area. We assess changes in dose-area product (DAP) and absorbed organ dose when female gonadal shielding is used with AEC for pelvis radiography. We imaged adult and 5-year-old equivalent dosimetry phantoms using pelvis radiograph technique with AEC in the presence and absence of a female gonadal shield. We recorded DAP and mAs and measured organ absorbed dose at six internal sites using film dosimetry. Female gonadal shielding with AEC increased DAP 63% for the 5-year-old phantom and 147% for the adult phantom. Absorbed organ dose at unshielded locations of colon, stomach and ovaries increased 21-51% in the 5-year-old phantom and 17-100% in the adult phantom. Absorbed organ dose sampled under the shield decreased 67% in the 5-year-old phantom and 16% in the adult phantom. Female gonadal shielding combined with AEC during pelvic radiography increases absorbed dose to organs with greater radiation sensitivity and to unshielded ovaries. Difficulty in proper use of gonadal shields has been well described, and use of female gonadal shielding may be inadvisable given the risks of increasing radiation.
The role of adiponectin in reproduction: from polycystic ovary syndrome to assisted reproduction
Michalakis, Konstantinos G.; Segars, James H.
2011-01-01
Objective To summarize the effects of the adipokine adiponectin on the reproductive endocrine system, from the hypothalamic-pituitary axis to the gonads and target tissues of the reproductive system. Design A Medline computer search was performed to identify relevant articles. Setting Research institution. Intervention(s) None. Result(s) Adiponectin is a hormone secreted by adipose tissue that acts to reduce insulin resistance and atherogenic damage, but it also exerts actions in other tissues. Adiponectin mediates its actions in the periphery mainly via two receptors, AdipoR1 and AdipoR2. Adiponectin receptors are present in many reproductive tissues, including the central nervous system, ovaries, oviduct, endometrium, and testes. Adiponectin influences gonadotropin release, normal pregnancy, and assisted reproduction outcomes. Conclusion(s) Adiponectin, a beneficial adipokine, represents a major link between obesity and reproduction. Higher levels of adiponectin are associated with improved menstrual function and better outcomes in assisted reproductive cycles. PMID:20561616
Ghosh, Somenath; Singh, Amaresh K; Haldar, Chandana
2014-11-01
Role of melatonin in regulation of immunity and reproduction has never been studied in detail in goats. The aim of the present study was to explore hormonal regulation of immunity in goats with special reference to melatonin. Plasma of male and female goats (n = 18 per sex per season) was processed for hormonal (estrogen, testostrone, and melatonin) and cytokine (interleukin [IL-2], IL-6, and tumor necrosis factor α) measurements during three seasons, i.e., summer, monsoon, and winter. To assess cell-mediated immune response, percent stimulation ratio of thymocytes was recorded during three seasons. To support and establish the modulation by hormones, Western blot analysis for expressions of melatonin receptors (MT1, MT2), androgen receptor, and estrogen receptor α and estimations of marker enzymes, arylalkylamine N-acetyltransferase for melatonin and 3β-hydroxysteroid dehydrogenase activities for steroidogenesis were performed in thymus. All the hormones and cytokines were estimated by commercial kits. Biochemical, immunologic, and Western blot analyses were done by standardized protocols. We noted a significant increase in estrogen and testosterone levels (P < 0.05) in circulation during monsoon along with melatonin (P < 0.05) presenting a parallel relationship. Expressions of melatonin receptors (MT1 and MT2) in thymus of both the sexes were significantly high (P < 0.01) during winter. Estrogen receptor α expression in female thymus was significantly high during monsoon (P < 0.05). However, androgen receptor showed almost static expression pattern in male thymus during three seasons. Further, both arylalkylamineN-acetyltransferase and 3β-hydroxysteroid dehydrogenase enzyme activities were significantly high (P < 0.05; P < 0.01, respectively) during monsoon. These results suggest that there may be a functional parallelism between gonadal steroids and melatonin as melatonin is progonadotrophic in goats. Cell-mediated immune parameters (percent stimulation ratio of thymocytes) and circulatory levels of cytokines (IL-2, IL-6, and tumor necrosis factor α) were significantly high (P < 0.01) during monsoon. In vitro supplementation of gonadal steroids to T-cell culture suppressed immunity but cosupplementation with melatonin restored it. Further, we may also suggest that reproductive and immune seasonality are maintained by variations in circulatory hormones and local synthesis of melatonin and gonadal steroids. These functional interactions between melatonin and gonadal steroid might be of great importance in regulating the goat immunity by developing some hormonal microcircuit (gonadal steroid and melatonin) in lymphatic organs. Copyright © 2014 Elsevier Inc. All rights reserved.
Estay, Francisco; Colihueque, Nelson; Araneda, Cristian
2012-01-01
This study compares the gonadosomatic index (GSI), oocyte growth (OG), gonadal histology, and plasma level concentrations of sex hormones (estradiol-17β (E2) and vitellogenin (V)) of twice-spawning (T-SP) and once-spawning (O-SP) females of rainbow trout throughout the additional and the normal reproductive cycle, respectively. In T-SP, the GSI values rapidly increase from May to November, in contrast to O-SP, which showed low and constant GSI values (1.19 to 14.5 and 1.19 to 0.63, resp.). T-SP exhibited a marked increase of OG in the same period, reaching a maximum diameter of 4,900 ± 141.42 μm, in contrast to O-SP, which presented a slow OG. The gonadal histology of T-SP agreed with the general pattern of ovogenesis observed for O-SP (vitellogenesis, ovulation, and recrudescence); however, this process was nonsynchronous between the two breeder groups. Plasma steroid levels showed significant variation during oogenesis, which agreed with the GSI, OG, and gonadal histology patterns. The level of E2 increased to a maximum value of 26.2 ng/mL and 36.0 ng/mL in O-SP and T-SP, respectively, one or two months before the spawning event where vitellogenesis was fully active. The V concentrations followed a pattern similar to those of E2. PMID:23213308
Milisenda, Giacomo; Rosa, Sara; Fuentes, Veronica L; Boero, Ferdinando; Guglielmo, Letterio; Purcell, Jennifer E; Piraino, Stefano
2014-01-01
In recent years, jellyfish blooms have attracted considerable scientific interest for their potential impacts on human activities and ecosystem functioning, with much attention paid to jellyfish as predators and to gelatinous biomass as a carbon sink. Other than qualitative data and observations, few studies have quantified direct predation of fish on jellyfish to clarify whether they may represent a seasonally abundant food source. Here we estimate predation frequency by the commercially valuable Mediterranean bogue, Boops boops on the mauve stinger jellyfish, Pelagia noctiluca, in the Strait of Messina (NE Sicily). A total of 1054 jellyfish were sampled throughout one year to quantify predation by B. boops from bite marks on partially eaten jellyfish and energy density of the jellyfish. Predation by B. boops in summer was almost twice that in winter, and they selectively fed according to medusa gender and body part. Calorimetric analysis and biochemical composition showed that female jellyfish gonads had significantly higher energy content than male gonads due to more lipids and that gonads had six-fold higher energy content than the somatic tissues due to higher lipid and protein concentrations. Energetically, jellyfish gonads represent a highly rewarding food source, largely available to B. boops throughout spring and summer. During the remainder of the year, when gonads were not very evident, fish predation switched towards less-selective foraging on the somatic gelatinous biomass. P. noctiluca, the most abundant jellyfish species in the Mediterranean Sea and a key planktonic predator, may represent not only a nuisance for human leisure activities and a source of mortality for fish eggs and larvae, but also an important resource for fish species of commercial value, such as B. boops.
Fuentes, Veronica L.; Boero, Ferdinando; Guglielmo, Letterio; Purcell, Jennifer E.; Piraino, Stefano
2014-01-01
In recent years, jellyfish blooms have attracted considerable scientific interest for their potential impacts on human activities and ecosystem functioning, with much attention paid to jellyfish as predators and to gelatinous biomass as a carbon sink. Other than qualitative data and observations, few studies have quantified direct predation of fish on jellyfish to clarify whether they may represent a seasonally abundant food source. Here we estimate predation frequency by the commercially valuable Mediterranean bogue, Boops boops on the mauve stinger jellyfish, Pelagia noctiluca, in the Strait of Messina (NE Sicily). A total of 1054 jellyfish were sampled throughout one year to quantify predation by B. boops from bite marks on partially eaten jellyfish and energy density of the jellyfish. Predation by B. boops in summer was almost twice that in winter, and they selectively fed according to medusa gender and body part. Calorimetric analysis and biochemical composition showed that female jellyfish gonads had significantly higher energy content than male gonads due to more lipids and that gonads had six-fold higher energy content than the somatic tissues due to higher lipid and protein concentrations. Energetically, jellyfish gonads represent a highly rewarding food source, largely available to B. boops throughout spring and summer. During the remainder of the year, when gonads were not very evident, fish predation switched towards less-selective foraging on the somatic gelatinous biomass. P. noctiluca, the most abundant jellyfish species in the Mediterranean Sea and a key planktonic predator, may represent not only a nuisance for human leisure activities and a source of mortality for fish eggs and larvae, but also an important resource for fish species of commercial value, such as B. boops. PMID:24727977
Extraction and analysis of carotenoids from the New Zealand sea urchin Evechinus chloroticus gonads.
Garama, Daniel; Bremer, Phil; Carne, Alan
2012-01-01
Sea urchin gonad (roe) is a highly valued food in Japan and North America. Gonad price is strongly influenced by quality, with appearance, especially colour being a major determinant. Previous attempts to extract a carotenoid profile from the New Zealand sea urchin species Evechinus chloroticus have been challenging due to the large amount of lipid present in the gonad. A carotenoid extraction and high performance liquid chromatography (HPLC) analysis method was developed to reduce lipid contamination by incorporating a saponification and lipid cold precipitation in the extraction procedure. This method enabled greater carotenoid purity and enhanced analysis by HPLC. Echinenone was found to be the main carotenoid present in all E. chloroticus gonads. Dark coloured gonads contained higher levels of fucoxanthin/fucoxanthinol, β-carotene and xanthophylls such as astaxanthin and canthaxanthin. This information on the modification and deposition of carotenoids will help in the development of diets to enhance gonad colour.
Teleosts vary widely in patterns of gonadal sex differentiation, which might lead to differences in how gonadal development is affected by the presence of estrogenic compounds. This makes it difficult to apply our knowledge of model species such as medaka and fathead minnow to o...
Cell-autonomous sex determination outside of the gonad
Arnold, Arthur P.; Chen, Xuqi; Link, Jenny C.; Itoh, Yuichiro; Reue, Karen
2013-01-01
The classic model of sex determination in mammals states that the sex of the individual is determined by the type of gonad that develops, which in turn determines the gonadal hormonal milieu that creates sex differences outside of the gonads. However, XX and XY cells are intrinsically different because of the cell-autonomous sex-biasing action of X and Y genes. Recent studies of mice, in which sex chromosome complement is independent of gonadal sex, reveal that sex chromosome complement has strong effects contributing to sex differences in phenotypes such as metabolism. Adult mice with two X chromosomes (relative to mice with one X chromosome) show dramatically greater increases in body weight and adiposity after gonadectomy, irrespective of their gonadal sex. When fed a high fat diet, XX mice develop striking hyperinsulinemia and fatty liver, relative to XY mice. The sex chromosome effects are modulated by the presence of gonadal hormones, indicating an interaction of the sex-biasing effects of gonadal hormones and sex chromosome genes. Other cell-autonomous sex chromosome effects are detected in mice in many phenotypes. Birds (relative to eutherian mammals) are expected to show more widespread cell-autonomous sex determination in non-gonadal tissues, because of ineffective sex chromosome dosage compensation mechanisms. PMID:23361913
Otani, Ayano; Nakajima, Tadaaki; Okumura, Tomomi; Fujii, Shiro; Tomooka, Yasuhiro
2017-04-01
Many molluscs perform sex reversal, and sex hormones may be involved in the process. In adult scallops, Patinopecten yessoensis, gonadotropin releasing hormone and 17β-estradiol (E 2 ) are involved in male sexual maturation, however, little is known about the effects of E 2 and testosterone (T) on the gonadal differentiation in young scallops. In the present study, scallop gonadal development was analyzed to determine the sex reversal stage in Funka bay, and effects of E 2 and T were examined. In Funka bay, almost all scallops were male at month 12. Scallops equipped with ambiguous gonads were 61.1% at month 16 and disappeared at month 18. Therefore, sex reversal in Funka bay occurs at around month 16. For establishment of organ culture systems for bivalves, Manila clam gonads were cultured in 15% L-15 medium diluted with HBSS containing 10% KSR on agarose gel at 10°C, and the gonads survived for 14 days. Scallop gonads were also able to be cultured in 30% L15 medium diluted with ASW containing 10% KSR on agarose gel for seven days. At mature stage, Foxl2 and Tesk were predominantly expressed in ovary and testis, respectively. When scallop gonads at sex reversal stage were organ-cultured, sex steroid treatment decreased Tesk expression in the majority of scallop gonads at sex reversal stage. However, no obvious change in Foxl2 and Tesk expression was detected in mature gonads in response to either E 2 or T in culture, suggesting sex steroid treatment might affect gonadal development at sex reversal stage.
Equine fetal adrenal, gonadal and placental steroidogenesis.
Legacki, Erin L; Ball, Barry A; Corbin, C Jo; Loux, Shavahn C; Scoggin, Kirsten E; Stanley, Scott D; Conley, Alan J
2017-10-01
Equine fetuses have substantial circulating pregnenolone concentrations and thus have been postulated to provide significant substrate for placental 5α-reduced pregnane production, but the fetal site of pregnenolone synthesis remains unclear. The current studies investigated steroid concentrations in blood, adrenal glands, gonads and placenta from fetuses (4, 6, 9 and 10 months of gestational age (GA)), as well as tissue steroidogenic enzyme transcript levels. Pregnenolone and dehydroepiandrosterone (DHEA) were the most abundant steroids in fetal blood, pregnenolone was consistently higher but decreased progressively with GA. Tissue steroid concentrations generally paralleled those in serum with time. Adrenal and gonadal tissue pregnenolone concentrations were similar and 100-fold higher than those in allantochorion. DHEA was far higher in gonads than adrenals and progesterone was higher in adrenals than gonads. Androstenedione decreased with GA in adrenals but not in gonads. Transcript analysis generally supported these data. CYP17A1 was higher in fetal gonads than adrenals or allantochorion, and HSD3B1 was higher in fetal adrenals and allantochorion than gonads. CYP11A1 transcript was also significantly higher in adrenals and gonads than allantochorion and CYP19 and SRD5A1 transcripts were higher in allantochorion than either fetal adrenals or gonads. Given these data, and their much greater size, the fetal gonads are the source of DHEA and likely contribute more than fetal adrenal glands to circulating fetal pregnenolone concentrations. Low CYP11A1 but high HSD3B1 and SRD5A1 transcript abundance in allantochorion, and low tissue pregnenolone, suggests that endogenous placental pregnenolone synthesis is low and likely contributes little to equine placental 5α-reduced pregnane secretion. © 2017 Society for Reproduction and Fertility.
NASA Astrophysics Data System (ADS)
Hu, Peng; Liu, Bin; Meng, Zhen; Liu, Xinfu; Jia, Yudong; Yang, Zhi; Lei, Jilin
2017-05-01
The aim of the present study was to investigate the long-term effects of 17β-estradiol (E2) exposure on gonadal development in the tiger puff er ( Takifugu rubripes), which has a genetic sex determination system of male homogametic XY-XX. Tiger puff er larvae were exposed to 1, 10 and 100 μg/L E2 from 15 to 100 days post-hatch (dph) and then maintained in clean seawater until 400 dph. Changes in sex ratio, gonadal structure and gonadosomatic index (GSI) were monitored at 100, 160, 270 and 400 dph. Sex-associated single nucleotide polymorphism (SNP) markers were used to analyze the genetic sex of samples, except those at 100 dph. Exposure had a positive effect on the conversion of genetically male gonads into phenotypically female gonads at 100 dph. However, gonads from 60% of genetic XY males in the 1-μg/L E2 group and 100% in the 10-μg/L E2 group developed intersexual gonads at 160 dph; gonads of all genetic XY males in the two treatment groups reverted to testis by 270 dph. While 38%, 57% and 44% of gonads of XY fish in the 100-μg/L E2 group reverted to intersexual gonads at 160, 270 and 400 dph, respectively, none reverted to testis after E2 treatment. In addition, E2 exposure inhibited gonadal growth of both genetic sexes, as indicated by the clear dose-dependent decrease in GSI at 270 and 400 dph. The results showed that exposure to E2 during the early life stages of tiger puff er disrupted gonadal development, but that fish recovered after migration to clean seawater. The study suggests the potential use of tiger puff er as a valuable indicator species to evaluate the effects of environmental estrogens on marine fish, thereby protecting valuable fishery resources.
Cytoplasmic and nuclear localization of cadherin in honey bee (Apis mellifera L.) gonads.
Florecki, Mônica M; Hartfelder, Klaus
2011-01-01
Cadherins are crucial molecules mediating cell-cell interactions between somatic and germline cells in insect and mammalian male and female gonads. We analysed the presence and localization of cadherins in ovaries of honeybee queens and in testes of drones. Transcripts representing two classical cadherins, E-cadherin (shotgun) and N-cadherin, as well as three protocadherins (Starry night, Fat and Fat-like) were detected in gonads of both sexes. Pan-cadherin antibodies, which most probably detect a honeybee N-cadherin, were used in immunolocalization analyses. In the germarium of ovarioles, cadherin-IR (cadherin immunoreactivity) was evidenced as homogeneously distributed in the cytoplasm and as nuclear foci, in both germline and somatic cells. It was also detected in polyfusomes and ring canals. In testiolar tubules, cadherin-IR showed a cytoplasmic and nuclear distributon alike in ovaries. The unexpected nuclear localization and cytoplasmic distribution in ovaries and testes were corroborated by immunogold electron microscopy, which revealed cadherin aggregates associated with electron-dense nuclear structures. With respect to cadherin localization, the honeybee differs from Drosophila, the model for gametogenesis in insects, raising the question as to how differences among solitary and social species may be built into and generated from the general architecture of polytrophic meroistic ovaries. It also indicates the possibility of divergent roles for cadherin in the functional architecture of insect gonads, in general, especially in taxa with high reproductive output.
Nozu, Ryo; Horiguchi, Ryo; Murata, Ryosuke; Kobayashi, Yasuhisa; Nakamura, Masaru
2013-02-01
The three-spot wrasse (Halichoeres trimaculatus), which inhabits the coral reefs of Okinawa, changes sex from female to male. Sex change in this species is controlled by a social system. Oocytes disappear completely from the ovary, and male germ cells and somatic cells comprising testicular tissue arise a new during the sex change process. However, little is known of the fate and origin of the gonadal tissue-forming cells during sex change. In particular, the fate of ovarian somatic cells has not been determined, although the ovarian tissue regresses histologically. To approach this question, we analyzed apoptosis and cell proliferation in the sex-changing gonads. Unexpectedly, we found that few apoptotic somatic cells were present during sex change, suggesting that ovarian somatic cells might survive during the regression of the ovarian tissue. On the other hand, cell proliferation was detected in many granulosa cells surrounding the degenerating oocytes, a few epithelial cells covering ovigerous lamella and a few somatic cells associated with gonial germ cells at an early stage of sex change. Then, we found that proliferative ovarian somatic cells remained in the gonads late in the sex change process. Based on these results, we concluded that some functional somatic cells of the ovary are reused as testicular somatic cells during the gonadal sex change in the three-spot wrasse.
Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata).
In, Vu Van; Ntalamagka, Nikoleta; O'Connor, Wayne; Wang, Tianfang; Powell, Daniel; Cummins, Scott F; Elizur, Abigail
2016-08-01
The Sydney Rock Oyster, Saccostrea glomerata, is a socioeconomically important species in Australia, yet little is known about the molecular mechanism that regulates its reproduction. To address this gap, we have performed a combination of high throughput transcriptomic and peptidomic analysis, to identify genes and neuropeptides that are expressed in the key regulatory tissues of S. glomerata; the visceral ganglia and gonads. Neuropeptides are known to encompass a diverse class of peptide messengers that play functional roles in many aspects of an animal's life, including reproduction. Approximately 28 neuropeptide genes were identified, primarily within the visceral ganglia transcriptome, that encode precursor proteins containing numerous neuropeptides; some were confirmed through mass spectral peptidomics analysis of the visceral ganglia. Of those, 28 bioactive neuropeptides were synthesized, and then tested for their capacity to induce gonad development and spawning in S. glomerata. Egg laying hormone, gonadotropin-releasing hormone, APGWamide, buccalin, CCAP and LFRFamide were neuropeptides found to trigger spawning in ripe animals. Additional testing of APGWa and buccalin demonstrated their capacity to advance conditioning and gonadal maturation. In summary, our analysis of S. glomerata has identified neuropeptides that can influence the reproductive cycle of this species, specifically by accelerating gonadal maturation and triggering spawning. Other molluscan neuropeptides identified in this study will enable further research into understanding the neuroendocrinology of oysters, which may benefit their cultivation. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Targeted Disruption of ALK Reveals a Potential Role in Hypogonadotropic Hypogonadism
Nord, Christoffer; Ahlgren, Ulf; Eriksson, Maria; Vernersson-Lindahl, Emma; Helland, Åslaug; Alexeyev, Oleg A.; Hallberg, Bengt; Palmer, Ruth H.
2015-01-01
Mice lacking ALK activity have previously been reported to exhibit subtle behavioral phenotypes. In this study of ALK of loss of function mice we present data supporting a role for ALK in hypogonadotropic hypogonadism in male mice. We observed lower level of serum testosterone at P40 in ALK knock-out males, accompanied by mild disorganization of seminiferous tubules exhibiting decreased numbers of GATA4 expressing cells. These observations highlight a role for ALK in testis function and are further supported by experiments in which chemical inhibition of ALK activity with the ALK TKI crizotinib was employed. Oral administration of crizotinib resulted in a decrease of serum testosterone levels in adult wild type male mice, which reverted to normal levels after cessation of treatment. Analysis of GnRH expression in neurons of the hypothalamus revealed a significant decrease in the number of GnRH positive neurons in ALK knock-out mice at P40 when compared with control littermates. Thus, ALK appears to be involved in hypogonadotropic hypogonadism by regulating the timing of pubertal onset and testis function at the upper levels of the hypothalamic-pituitary gonadal axis. PMID:25955180
Enhanced response to ozone exposure during the follicular phase of the menstrual cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, S.D.; Adams, W.C.; Brookes, K.A.
Exposure to ozone (O[sub 3]), a toxic component of photochemical smog, results in significant airway inflammation, respiratory discomfort, and pulmonary function impairment. These effects can be reduced via pretreatment with anti-inflammatory agents. Progesterone, a gonadal steroid, is known to reduce general inflammation in the uterine endometrium. However, it is not known whether fluctuation in blood levels of progesterone, which are experienced during the normal female menstrual cycle, could alter O[sub 3] inflammatory-induced pulmonary responses. In this study, we tested the hypothesis that young, adult females are more responsive to O[sub 3] inhalation with respect to pulmonary function impairment during theirmore » follicular (F) menstrual phase when progesterone levels are lowest that during their mid-luteal (ML) phase when progesterone levels are highest. Nine subjects with normal ovarian function were exposed in random order for 1 hour each to filtered air and to 0.30 ppm O[sub 3] in their F and ML menstrual phases. Ozone responsiveness was measured by percent change in pulmonary function from pre- to postexposure. Significant gas concentration effects (filtered air versus O[sub 3]) were observed for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1]), and forced expiratory flow between 25 and 75% of FVC (FEF[sub 25-75]), showed a significant menstrual phase and gas concentration interaction effect, with larger decrements observed in the F menstrual phase when progesterone concentrations were significantly lower. We conclude that young, adult females appear to be more responsive to acute O[sub 3] exposure during the F phase than during the ML phase of their menstrual cycles. This difference in pulmonary function response could be related to the anti-inflammatory effects of increased progesterone concentrations during the luteal phase.« less
Wolfe, Andrew; Divall, Sara; Wu, Sheng
2014-01-01
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. PMID:24929098
Renault, Andrew D.; Kunwar, Prabhat S.; Lehmann, Ruth
2010-01-01
In Drosophila, germ cell survival and directionality of migration are controlled by two lipid phosphate phosphatases (LPP), wunen (wun) and wunen-2 (wun2). wun wun2 double mutant analysis reveals that the two genes, hereafter collectively called wunens, act redundantly in primordial germ cells. We find that wunens mediate germ cell-germ cell repulsion and that this repulsion is necessary for germ cell dispersal and proper transepithelial migration at the onset of migration and for the equal sorting of the germ cells between the two embryonic gonads during their migration. We propose that this dispersal function optimizes adult fecundity by assuring maximal germ cell occupancy of both gonads. Furthermore, we find that the requirement for wunens in germ cell survival can be eliminated by blocking germ cell migration. We suggest that this essential function of Wunen is needed to maintain cell integrity in actively migrating germ cells. PMID:20431117
Association of carotene rich diet with hypogonadism in a male athlete.
Adamopoulos, Dimitrios; Venaki, Evangelia; Koukkou, Eftychia; Billa, Evangelia; Kapolla, Niki; Nicopoulou, Stamatina
2006-07-01
To report on a unique case of hypogonadism associated with excessive carotene intake in a young male athlete. A 20-year-old patient presented with a gradual decline in muscular and physical activity, sexual interest and erectile ability associated with a high in carotene and low in animal fat diet of his own design a year prior to the clinical manifestations. Clinically, he presented with very overt signs of carotene excess: his palms and soles were yellow. Moreover, 2 weeks after normalization of his diet, carotene B levels were at the upper end of the normal range. Repeated stimulation tests of hypothalamic, pituitary and testicular function were performed before and at 3, 6 and 12 months after the introduction of a balanced diet. Very low basal and stimulated values for gonadotropins and gonadal steroids were found at the initial evaluation with a progressive recovery shown after months of a balanced diet and carotene B restoration. Complete androgen secretion and sexual response recovery were observed only after 9-12 months from diagnosis. This is the first report associating excessive carotene intake with a hypothalamic form of hypogonadism in a young man.
Group III secreted phospholipase A2 regulates epididymal sperm maturation and fertility in mice
Sato, Hiroyasu; Taketomi, Yoshitaka; Isogai, Yuki; Miki, Yoshimi; Yamamoto, Kei; Masuda, Seiko; Hosono, Tomohiko; Arata, Satoru; Ishikawa, Yukio; Ishii, Toshiharu; Kobayashi, Tetsuyuki; Nakanishi, Hiroki; Ikeda, Kazutaka; Taguchi, Ryo; Hara, Shuntaro; Kudo, Ichiro; Murakami, Makoto
2010-01-01
Although lipid metabolism is thought to be important for the proper maturation and function of spermatozoa, the molecular mechanisms that underlie this dynamic process in the gonads remains incompletely understood. Here, we show that group III phospholipase A2 (sPLA2-III), a member of the secreted phospholipase A2 (sPLA2) family, is expressed in the mouse proximal epididymal epithelium and that targeted disruption of the gene encoding this protein (Pla2g3) leads to defects in sperm maturation and fertility. Although testicular spermatogenesis in Pla2g3–/– mice was grossly normal, spermatozoa isolated from the cauda epididymidis displayed hypomotility, and their ability to fertilize intact eggs was markedly impaired. Transmission EM further revealed that epididymal spermatozoa in Pla2g3–/– mice had both flagella with abnormal axonemes and aberrant acrosomal structures. During epididymal transit, phosphatidylcholine in the membrane of Pla2g3+/+ sperm underwent a dramatic shift in its acyl groups from oleic, linoleic, and arachidonic acids to docosapentaenoic and docosahexaenoic acids, whereas this membrane lipid remodeling event was compromised in sperm from Pla2g3–/– mice. Moreover, the gonads of Pla2g3–/– mice contained less 12/15-lipoxygenase metabolites than did those of Pla2g3+/+ mice. Together, our results reveal a role for the atypical sPLA2 family member sPLA2-III in epididymal lipid homeostasis and indicate that its perturbation may lead to sperm dysfunction. PMID:20424323
Production of Zebrafish Offspring from Cultured Female Germline Stem Cells
Wong, Ten-Tsao; Tesfamichael, Abraham; Collodi, Paul
2013-01-01
Zebrafish female germline stem cell (FGSC) cultures were generated from a transgenic line of fish that expresses Neo and DsRed under the control of the germ cell specific promoter, ziwi [Tg(ziwi:neo);Tg(ziwi:DsRed)]. Homogeneous FGSC cultures were established by G418 selection and continued to express ziwi for more than 6 weeks along with the germ cell markers nanos3, dnd, dazl and vasa. A key component of the cell culture system was the use of a feeder cell line that was initiated from ovaries of a transgenic line of fish [Tg(gsdf:neo)] that expresses Neo controlled by the zebrafish gonadal soma derived factor (gsdf) promoter. The feeder cell line was selected in G418 and engineered to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and glial-cell-line derived neurotrophic factor (Gdnf). These factors were shown to significantly enhance FGSC growth, survival and germline competency in culture. Results from cell transplantation experiments revealed that the cultured FGSCs were able to successfully colonize the gonad of sterile recipient fish and generate functional gametes. Up to 20% of surviving recipient fish that were injected with the cultured FGSCs were fertile and generated multiple batches of normal offspring for at least 6 months. The FGSC cultures will provide an in vitro system for studies of zebrafish germ cell growth and differentiation and their high frequency of germline transmission following transplantation could form the basis of a stem cell-mediated strategy for gene transfer and manipulation of the zebrafish genome. PMID:23671620
Estrogen Responsiveness of the TFIID Subunit TAF4B in the Normal Mouse Ovary and in Ovarian Tumors1
Wardell, Jennifer R.; Hodgkinson, Kendra M.; Binder, April K.; Seymour, Kimberly A.; Korach, Kenneth S.; Vanderhyden, Barbara C.; Freiman, Richard N.
2013-01-01
ABSTRACT Estrogen signaling in the ovary is a fundamental component of normal ovarian function, and evidence also indicates that excessive estrogen is a risk factor for ovarian cancer. We have previously demonstrated that the gonadally enriched TFIID subunit TAF4B, a paralog of the general transcription factor TAF4A, is required for fertility in mice and for the proliferation of ovarian granulosa cells following hormonal stimulation. However, the relationship between TAF4B and estrogen signaling in the normal ovary or during ovarian tumor initiation and progression has yet to be defined. Herein, we show that Taf4b mRNA and TAF4B protein, but not Taf4a mRNA or TAF4A protein, are increased in whole ovaries and granulosa cells of the ovary after exposure to 17beta-estradiol or the synthetic estrogen diethylstilbestrol and that this response occurs within hours after stimulation. Furthermore, this increase occurs via nuclear estrogen receptors both in vivo and in a mouse granulosa cancer cell line, NT-1. We observe a significant increase in Taf4b mRNA in estrogen-supplemented mouse ovarian tumors, which correlates with diminished survival of these mice. These data highlight the novel response of the general transcription factor TAF4B to estrogen in the normal ovary and during ovarian tumor progression in the mouse, suggesting its potential role in regulating actions downstream of estrogen stimulation. PMID:24068106
Estrogen responsiveness of the TFIID subunit TAF4B in the normal mouse ovary and in ovarian tumors.
Wardell, Jennifer R; Hodgkinson, Kendra M; Binder, April K; Seymour, Kimberly A; Korach, Kenneth S; Vanderhyden, Barbara C; Freiman, Richard N
2013-11-01
Estrogen signaling in the ovary is a fundamental component of normal ovarian function, and evidence also indicates that excessive estrogen is a risk factor for ovarian cancer. We have previously demonstrated that the gonadally enriched TFIID subunit TAF4B, a paralog of the general transcription factor TAF4A, is required for fertility in mice and for the proliferation of ovarian granulosa cells following hormonal stimulation. However, the relationship between TAF4B and estrogen signaling in the normal ovary or during ovarian tumor initiation and progression has yet to be defined. Herein, we show that Taf4b mRNA and TAF4B protein, but not Taf4a mRNA or TAF4A protein, are increased in whole ovaries and granulosa cells of the ovary after exposure to 17beta-estradiol or the synthetic estrogen diethylstilbestrol and that this response occurs within hours after stimulation. Furthermore, this increase occurs via nuclear estrogen receptors both in vivo and in a mouse granulosa cancer cell line, NT-1. We observe a significant increase in Taf4b mRNA in estrogen-supplemented mouse ovarian tumors, which correlates with diminished survival of these mice. These data highlight the novel response of the general transcription factor TAF4B to estrogen in the normal ovary and during ovarian tumor progression in the mouse, suggesting its potential role in regulating actions downstream of estrogen stimulation.
Chen, Yadong; Xia, Yongtao; Shao, Changwei; Han, Lei; Chen, Xuejie; Yu, Mengjun; Sha, Zhenxia
2016-07-01
As the Russian sturgeon (Acipenser gueldenstaedtii) is an important food and is the main source of caviar, it is necessary to discover the genes associated with its sex differentiation. However, the complicated life and maturity cycles of the Russian sturgeon restrict the accurate identification of sex in early development. To generate a first look at specific sex-related genes, we sequenced the transcriptome of gonads in different development stages (1, 2, and 5 yr old stages) with next-generation RNA sequencing. We generated >60 million raw reads, and the filtered reads were assembled into 263,341 contigs, which produced 38,505 unigenes. Genes involved in signal transduction mechanisms were the most abundant, suggesting that development of sturgeon gonads is under control of signal transduction mechanisms. Differentially expressed gene analysis suggests that more genes for protein synthesis, cytochrome c oxidase subunits, and ribosomal proteins were expressed in female gonads than in male. Meanwhile, male gonads expressed more transposable element transposase, reverse transcriptase, and transposase-related genes than female. In total, 342, 782, and 7,845 genes were detected in intersex, male, and female transcriptomes, respectively. The female gonad expressed more genes than the male gonad, and more genes were involved in female gonadal development. Genes (sox9, foxl2) are differentially expressed in different sexes and may be important sex-related genes in Russian sturgeon. Sox9 genes are responsible for the development of male gonads and foxl2 for female gonads. Copyright © 2016 the American Physiological Society.
Maturity Gonad Sea Cucumber Holothuria scabra Under The Month Cycle
NASA Astrophysics Data System (ADS)
Penina Tua Rahantoknam, Santi
2017-10-01
Gonad maturity level of the sea cucumber Holothuria scabra is important to note for selection of parent ready spawn. Sea cucumbers are giving a reaction to the treatment of excitatory spawn mature individuals only. For the determination of the level of maturity of gonads of sea cucumbers, the necessary observation of the gonads are microscopic, macroscopic and gonad maturity gonado somatic indeks (GSI). GSI value is important to know the changes that occur in the gonads quantitatively, so that time can be presumed spawning (Effendie, 1997). Reproductive cycle can be determined by observing the evolution of GSI. The study of sea cucumbers Holothuria scabra gonad maturity conducted in Langgur, Southeast Maluku. Observations were made at every cycle of the moon is the full moon phase (BP) and new moon (BB) in the period January 29, 2017 until July 23, 2017. Observations H. scabra gonad maturity level is done with surgery, observation and calculation GSI gonad histology. GSI highest value obtained in May that full moon cycle at 90% of individuals that are in the spawning stage (phase 5), then 70% of the individuals that are in the spawning stage (phase 5) in March that the full moon cycle. The results obtained show that the peak spawning H. scabra period January 2017 to July 2017 occurred on the full moon cycle in May.
Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development.
Lee, Stephanie Ling Jie; Horsfield, Julia A; Black, Michael A; Rutherford, Kim; Fisher, Amanda; Gemmell, Neil J
2017-07-24
Sex hormones play important roles in teleost ovarian and testicular development. In zebrafish, ovarian differentiation appears to be dictated by an oocyte-derived signal via Cyp19a1a aromatase-mediated estrogen production. Androgens and aromatase inhibitors can induce female-to-male sex reversal, however, the mechanisms underlying gonadal masculinisation are poorly understood. We used histological analyses together with RNA sequencing to characterise zebrafish gonadal transcriptomes and investigate the effects of 17α-methyltestosterone on gonadal differentiation. At a morphological level, 17α-methyltestosterone (MT) masculinised gonads and accelerated spermatogenesis, and these changes were paralleled in masculinisation and de-feminisation of gonadal transcriptomes. MT treatment upregulated expression of genes involved in male sex determination and differentiation (amh, dmrt1, gsdf and wt1a) and those involved in 11-oxygenated androgen production (cyp11c1 and hsd11b2). It also repressed expression of ovarian development and folliculogenesis genes (bmp15, gdf9, figla, zp2.1 and zp3b). Furthermore, MT treatment altered epigenetic modification of histones in zebrafish gonads. Contrary to expectations, higher levels of cyp19a1a or foxl2 expression in control ovaries compared to MT-treated testes and control testes were not statistically significant during early gonad development (40 dpf). Our study suggests that both androgen production and aromatase inhibition are important for androgen-induced gonadal masculinisation and natural testicular differentiation in zebrafish.
Conrad, Cheryl D; Bimonte-Nelson, Heather A
2010-01-01
Life expectancies have increased substantially in the last century, dramatically amplifying the proportion of individuals who will reach old age. As individuals age, cognitive ability declines, although the rate of decline differs amongst the forms of memory domains and for different individuals. Memory domains especially impacted by aging are declarative and spatial memories. The hippocampus facilitates the formation of declarative and spatial memories. Notably, the hippocampus is particularly vulnerable to aging. Genetic predisposition and lifetime experiences and exposures contribute to the aging process, brain changes and subsequent cognitive outcomes. In this review, two factors to which an individual is exposed, the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis, will be considered regarding the impact of age on hippocampal-dependent function. Spatial memory can be affected by cumulative exposure to chronic stress via glucocorticoids, released from the HPA axis, and from gonadal steroids (estrogens, progesterone and androgens) and gonadotrophins, released from the HPG axis. Additionally, this review will discuss how these hormones impact age-related hippocampal function. We hypothesize that lifetime experiences and exposure to these hormones contribute to the cognitive makeup of the aged individual, and contribute to the heterogeneous aged population that includes individuals with cognitive abilities as astute as their younger counterparts, as well as individuals with severe cognitive decline or neurodegenerative disease. Copyright 2010 Elsevier B.V. All rights reserved.
The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.
Gould, E; Woolley, C S; McEwen, B S
1991-01-01
The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.
Neural Versus Gonadal GnIH: Are they Independent Systems? A Mini-Review.
Bentley, George E; Wilsterman, Kathryn; Ernst, Darcy K; Lynn, Sharon E; Dickens, Molly J; Calisi, Rebecca M; Kriegsfeld, Lance J; Kaufer, Daniela; Geraghty, Anna C; viviD, Dax; McGuire, Nicolette L; Lopes, Patricia C; Tsutsui, Kazuyoshi
2017-12-01
Based on research in protochordates and basal vertebrates, we know that communication across the first endocrine axes likely relied on diffusion. Because diffusion is relatively slow, rapid responses to some cues, including stress-related cues, may have required further local control of axis outputs (e.g., steroid hormone production by the gonads). Despite the evolution of much more efficient circulatory systems and complex nervous systems in vertebrates, production of many "neuro"transmitters has been identified outside of the hypothalamus across the vertebrate phylogeny and these neurotransmitters are known to locally regulate endocrine function. Our understanding of tissue-specific neuropeptide expression and their role coordinating physiological/behavioral responses of the whole organism remains limited, in part, due to nomenclature and historic dogma that ignores local regulation of axis output. Here, we review regulation of gonadotropin-inhibitory hormone (GnIH) across the reproductive axis in birds and mammals to bring further attention to context-dependent disparities and similarities in neuropeptide production by the brain and gonads. We find that GnIH responsiveness to cues of stress appears conserved across species, but that the response of specific tissues and the direction of GnIH regulation varies. The implications of differential regulation across tissues remain unclear in most studies, but further work that manipulates and contrasts function in different tissues has the potential to inform us about both organism-specific function and endocrine axis evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation.
Kocer, Ayhan; Pinheiro, Iris; Pannetier, Maëlle; Renault, Lauriane; Parma, Pietro; Radi, Orietta; Kim, Kyung-Ah; Camerino, Giovanna; Pailhoux, Eric
2008-04-02
Up to now, two loci have been involved in XX sex-reversal in mammals following loss-of-function mutations, PIS (Polled Intersex Syndrome) in goats and R-spondin1 (RSPO1) in humans. Here, we analyze the possible interaction between these two factors during goat gonad development. Furthermore, since functional redundancy between different R-spondins may influence gonad development, we also studied the expression patterns of RSPO2, 3 and 4. Similarly to the mouse, RSPO1 shows a sex-dimorphic expression pattern during goat gonad development with higher levels in the ovaries. Interestingly, the PIS mutation does not seem to influence its level of expression. Moreover, using an RSPO1 specific antibody, the RSPO1 protein was localized in the cortical area of early differentiating ovaries (36 and 40 dpc). This cortical area contains the majority of germ cell that are surrounded by FOXL2 negative somatic cells. At latter stages (50 and 60 dpc) RSPO1 protein remains specifically localized on the germ cell membranes. Interestingly, a time-specific relocation of RSPO1 on the germ cell membrane was noticed, moving from a uniform distribution at 40 dpc to a punctuated staining before and during meiosis (50 and 60 dpc respectively). Interestingly, also RSPO2 and RSPO4 show a sex-dimorphic expression pattern with higher levels in the ovaries. Although RSPO4 was found to be faintly and belatedly expressed, the expression of RSPO2 increases at the crucial 36 dpc stage, as does that of FOXL2. Importantly, RSPO2 expression appears dramatically decreased in XX PIS-/- gonads at all three tested stages (36, 40 and 50 dpc). During goat ovarian development, the pattern of expression of RSPO1 is in agreement with its possible anti-testis function but is not influenced by the PIS mutation. Moreover, our data suggest that RSPO1 may be associated with germ cell development and meiosis. Interestingly, another RSPO gene, RSPO2 shows a sex-dimorphic pattern of expression that is dramatically influenced by the PIS mutation.
R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation
Kocer, Ayhan; Pinheiro, Iris; Pannetier, Maëlle; Renault, Lauriane; Parma, Pietro; Radi, Orietta; Kim, Kyung-Ah; Camerino, Giovanna; Pailhoux, Eric
2008-01-01
Background Up to now, two loci have been involved in XX sex-reversal in mammals following loss-of-function mutations, PIS (Polled Intersex Syndrome) in goats and R-spondin1 (RSPO1) in humans. Here, we analyze the possible interaction between these two factors during goat gonad development. Furthermore, since functional redundancy between different R-spondins may influence gonad development, we also studied the expression patterns of RSPO2, 3 and 4. Results Similarly to the mouse, RSPO1 shows a sex-dimorphic expression pattern during goat gonad development with higher levels in the ovaries. Interestingly, the PIS mutation does not seem to influence its level of expression. Moreover, using an RSPO1 specific antibody, the RSPO1 protein was localized in the cortical area of early differentiating ovaries (36 and 40 dpc). This cortical area contains the majority of germ cell that are surrounded by FOXL2 negative somatic cells. At latter stages (50 and 60 dpc) RSPO1 protein remains specifically localized on the germ cell membranes. Interestingly, a time-specific relocation of RSPO1 on the germ cell membrane was noticed, moving from a uniform distribution at 40 dpc to a punctuated staining before and during meiosis (50 and 60 dpc respectively). Interestingly, also RSPO2 and RSPO4 show a sex-dimorphic expression pattern with higher levels in the ovaries. Although RSPO4 was found to be faintly and belatedly expressed, the expression of RSPO2 increases at the crucial 36 dpc stage, as does that of FOXL2. Importantly, RSPO2 expression appears dramatically decreased in XX PIS-/- gonads at all three tested stages (36, 40 and 50 dpc). Conclusion During goat ovarian development, the pattern of expression of RSPO1 is in agreement with its possible anti-testis function but is not influenced by the PIS mutation. Moreover, our data suggest that RSPO1 may be associated with germ cell development and meiosis. Interestingly, another RSPO gene, RSPO2 shows a sex-dimorphic pattern of expression that is dramatically influenced by the PIS mutation. PMID:18384673
Giri, N; Vowels, M R; Barr, A L; Mameghan, H
1992-07-01
We report successful pregnancies in two young women (aged 24 and 20 years) following allogeneic bone marrow transplantation (BMT) for acute non-lymphoblastic leukaemia. Conditioning therapy consisted of cyclophosphamide (120 mg/kg) and total body irradiation (TBI, 12 Gy) in 2 Gy fractions once daily for 6 days or twice daily for 3 days. Graft-versus-host disease prophylaxis was with methotrexate alone. Both women were amenorrhoeic after BMT and gonadal testing indicated hypergonadotrophic hypogonadism. Both women had normal pregnancies (2 years and 5 years after BMT) resulting in normal healthy infants. Previously successful pregnancy has been reported after TBI in three women in whom the TBI dose was less than 8 Gy. Our cases illustrate that normal outcome of pregnancy is possible at even higher doses of TBI.
Assessment of wastewater treatment plant effluent effects on fish reproduction
Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...
Rodríguez-Marí, Adriana; Wilson, Catherine; Titus, Tom A; Cañestro, Cristian; BreMiller, Ruth A; Yan, Yi-Lin; Nanda, Indrajit; Johnston, Adam; Kanki, John P; Gray, Erin M; He, Xinjun; Spitsbergen, Jan; Schindler, Detlev; Postlethwait, John H
2011-03-01
Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53) rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture.
Rodríguez-Marí, Adriana; Wilson, Catherine; Titus, Tom A.; Cañestro, Cristian; BreMiller, Ruth A.; Yan, Yi-Lin; Nanda, Indrajit; Johnston, Adam; Kanki, John P.; Gray, Erin M.; He, Xinjun; Spitsbergen, Jan; Schindler, Detlev; Postlethwait, John H.
2011-01-01
Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53) rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture. PMID:21483806
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocova, M.; Siegel, S.F.; Wenger, S.L.
1995-02-13
In some cases of gonadal dysgenesis, cytogenetic analysis seems to be discordant with the phenotype of the patients. We have applied techniques such as Southern blot analysis and fluorescent in situ hybridization (FISH) to resolve the phenotype/genotype discrepancy in a patient with ambiguous genitalia in whom the peripheral blood karotype was 45,X. Gonadectomy at age 7 months showed the gonadal tissue to be prepubertal testis on the left side and a streak gonad on the right. The karyotype obtained from the left gonad was 45,X/46,XXq- and that from the right gonad was 45,X. Three different techniques, PCR amplification, FISH, andmore » chromosome painting for X and Y chromosomes, confirmed the presence of Y chromosome sequences. Five different tissues were evaluated. The highest percentage of Y chromosome positive cells were detected in the left gonad, followed by the peripheral blood lymphocytes, skin fibroblasts, and buccal mucosa. No Y chromosomal material could be identified in the right gonad. Since the Xq- chromosome is present in the left gonad (testis), it is likely that the Xq- contains Y chromosomal material. Sophisticated analysis in this patient showed that she has at least 2 cell lines, one of which contains Y chromosomal material. These techniques elucidated the molecular basis of the genital ambiguity for this patient. When Y chromosome sequences are present in patients with Ullrich-Turner syndrome or gonadal dysgenesis, the risk for gonadal malignancy is significantly increased. Hence, molecular diagnostic methods to ascertain for the presence of Y chromosome sequences may expedite the evaluation of patients with the ambiguous genitalia. 21 refs., 4 figs., 2 tabs.« less
Nixon, R; Cerqueira, V; Kyriakou, A; Lucas-Herald, A; McNeilly, J; McMillan, M; Purvis, A I; Tobias, E S; McGowan, R; Ahmed, S F
2017-10-01
What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)? An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases. Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear. This study was a retrospective review of investigations performed on 122 boys. All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1-11). Details of phenotype, endocrine and genetic investigations were obtained from case records. An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1-10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5-11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5-11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1-9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations. A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It is also possible that the yield of single gene variants may have been higher than reported if the investigators had used a more extended gene panel. The lack of a clear association between the extent of under-masculinization and presence of endocrine and genetic abnormalities suggests a role for parallel endocrine and genetic investigations in cases of suspected XY DSD. RN was supported by the James Paterson Bursary and the Glasgow Children's Hospital Charity Summer Scholarship. SFA, RM and EST are supported by a Scottish Executive Health Department grant 74250/1 for the Scottish Genomes Partnership. EST is also supported by MRC/EPSRC Molecular Pathology Node and Wellcome Trust ISSF funding. There are no conflicts of interest. None. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
de Solla, Shane R; Martin, Pamela A; Fernie, Kimberly J; Park, Brad J; Mayne, Gregory
2006-02-01
The herbicide atrazine has been suspected of affecting sexual development by inducing aromatase, resulting in the increased conversion of androgens to estrogens. We used snapping turtles (Chelydra serpentina), a species in which sex is dependent on the production of estrogen through aromatase activity in a temperature-dependent manner, to investigate if environmentally relevant exposures to atrazine affected gonadal development. Eggs were incubated in soil to which atrazine was applied at a typical field application rate (3.1 L/ha), 10-fold this rate (31 L/ha), and a control rate (no atrazine) for the duration of embryonic development. The incubation temperature (25 degrees C) was selected to produce only males. Although some males with testicular oocytes and females were produced in the atrazine-treated groups (3.3-3.7%) but not in the control group, no statistical differences were found among treatments. Furthermore, snapping turtle eggs collected from natural nests in a corn field were incubated at the pivotal temperature (27.5 degrees C) at which both males and females normally would be produced, and some males had oocytes in the testes (15.4%). The presence of low numbers of males with oocytes may be a natural phenomenon, and we have limited evidence to suggest that the presence of normal males with oocytes may represent a feminizing effect of atrazine. Histological examination of the thyroid gland revealed no effect on thyroid morphology.
Plasma kisspeptin levels in male cases with hypogonadism.
Kotani, Masato; Katagiri, Fumihiko; Hirai, Tsuyoshi; Kagawa, Jiro
2014-01-01
The hypothalamic hormone kisspeptin (metastin) regulates human reproduction by modulating gonadotropin-releasing hormone (GnRH) secretion. Kisspeptin is detected in peripheral blood, although GnRH is not. In this study, we measured plasma kisspeptin levels in four male cases with hypogonadism and seven normal male controls using enzyme immunoassay (EIA) to elucidate the clinical implications of kisspeptin levels in male hypogonadism. The results showed a variety of plasma kisspeptin levels: 6.0 fmol/mL in a male with isolated hypogonadotropic hypogonadism (IHH), 43.2 fmol/mL in a male with Kallmann's syndrome, 40.7 fmol/mL in a male with azoospermia, 323.2 fmol/mL in a male with hypergonadotropic hypogonadism, and 12.3 ± 2.5 fmol/mL (mean ± SD) in seven normal controls. Except for the case with IHH, the plasma kisspetin levels were elevated in the three cases with Kallmann's syndrome, azoospermia, and hypergonadotropic hypogonadism. The reason why the three cases had high values was their lesions were downstream of the kisspeptin neuron in the hypothalamic-pituitary-gonadal axis, suggesting that elevated kisspeptin levels were implicated in hypothalamic kisspeptin secretion under decreased negative feedback of gonadal steroids. The result that the plasma kisspeptin levels were decreased by gonadotropin therapy in the case with Kallmann's syndrome supported this hypothesis. In conclusion, to measure plasma kisspeptin levels could be useful for better understanding of male hypogonadism.
Chorionic morphine, naltrexone and pentoxifylline effect on hypophyso-gonadal hormones of male rats.
Moradi, M; Mahmoodi, M; Raoofi, A; Ghanbari, A
2015-01-01
Knowledge about harmful effects of morphine on hormone secretion seems to be necessary. The aim of the present study was to evaluate the effect of pentoxifylline on side effects derived by morphine on hypophyso-gonadal hormones of male rats. 32 male rats were divided into the 4 groups of OSS: control (received 40 g Sucrose/l drinking water and intraperitoneal injection of 1 l/kg normal saline), OMS: morphine group (received 0.4 mg/l + 40 g Sucrose/l in drinking water and intraperitoneal injection of 1 l/kg normal saline), NMS: morphine+naltrexane group (received 0.4 mg/l + 40 g Sucrose/l in drinking water and IP injection dose of 10 mg/kg/ml/day Naltrexane) and PMS: morphine + pentoxifylline group (received 0.4 mg/dl + 40 g Sucrose/l in drinking water and IP injection dose of 12 mg/kg/ml/day Pentoxifylline) for 56 days, respectively. Serum levels of testosterone, LH, FSH hormones were measured. Pentoxifylline increased serum levels of testosterone, LH, FSH hormones compared to control, morphine and morphine-naltrexane groups. Pentoxifylline has a significant efficacy for increasing serum levels of sexual hormones. Considering that Pentoxifylline is safe and cheap, with easy application, we suggest for the usage of this drug for improving semen parameter's quality before performing ART for the treatment of morphine addicts (Fig. 1, Ref. 31).
Yan, Xiaohui; Xing, Juan; Lorin-Nebel, Catherine; Estevez, Ana Y.; Nehrke, Keith; Lamitina, Todd; Strange, Kevin
2006-01-01
1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling regulates gonad function, fertility, and rhythmic posterior body wall muscle contraction (pBoc) required for defecation in Caenorhabditis elegans. Store-operated Ca2+ entry (SOCE) is activated during endoplasmic reticulum (ER) Ca2+ store depletion and is believed to be an essential and ubiquitous component of Ca2+ signaling pathways. SOCE is thought to function to refill Ca2+ stores and modulate Ca2+ signals. Recently, stromal interaction molecule 1 (STIM1) was identified as a putative ER Ca2+ sensor that regulates SOCE. We cloned a full-length C. elegans stim-1 cDNA that encodes a 530–amino acid protein with ∼21% sequence identity to human STIM1. Green fluorescent protein (GFP)–tagged STIM-1 is expressed in the intestine, gonad sheath cells, and spermatheca. Knockdown of stim-1 expression by RNA interference (RNAi) causes sterility due to loss of sheath cell and spermatheca contractile activity required for ovulation. Transgenic worms expressing a STIM-1 EF-hand mutant that constitutively activates SOCE in Drosophila and mammalian cells are sterile and exhibit severe pBoc arrhythmia. stim-1 RNAi dramatically reduces STIM-1∷GFP expression, suppresses the EF-hand mutation–induced pBoc arrhythmia, and inhibits intestinal store-operated Ca2+ (SOC) channels. However, stim-1 RNAi surprisingly has no effect on pBoc rhythm, which is controlled by intestinal oscillatory Ca2+ signaling, in wild type and IP3 signaling mutant worms, and has no effect on intestinal Ca2+ oscillations and waves. Depletion of intestinal Ca2+ stores by RNAi knockdown of the ER Ca2+ pump triggers the ER unfolded protein response (UPR). In contrast, stim-1 RNAi fails to induce the UPR. Our studies provide the first detailed characterization of STIM-1 function in an intact animal and suggest that SOCE is not essential for certain oscillatory Ca2+ signaling processes and for maintenance of store Ca2+ levels in C. elegans. These findings raise interesting and important questions regarding the function of SOCE and SOC channels under normal and pathophysiological conditions. PMID:16966474
Yan, Xiaohui; Xing, Juan; Lorin-Nebel, Catherine; Estevez, Ana Y; Nehrke, Keith; Lamitina, Todd; Strange, Kevin
2006-10-01
1,4,5-trisphosphate (IP(3))-dependent Ca(2+) signaling regulates gonad function, fertility, and rhythmic posterior body wall muscle contraction (pBoc) required for defecation in Caenorhabditis elegans. Store-operated Ca(2+) entry (SOCE) is activated during endoplasmic reticulum (ER) Ca(2+) store depletion and is believed to be an essential and ubiquitous component of Ca(2+) signaling pathways. SOCE is thought to function to refill Ca(2+) stores and modulate Ca(2+) signals. Recently, stromal interaction molecule 1 (STIM1) was identified as a putative ER Ca(2+) sensor that regulates SOCE. We cloned a full-length C. elegans stim-1 cDNA that encodes a 530-amino acid protein with approximately 21% sequence identity to human STIM1. Green fluorescent protein (GFP)-tagged STIM-1 is expressed in the intestine, gonad sheath cells, and spermatheca. Knockdown of stim-1 expression by RNA interference (RNAi) causes sterility due to loss of sheath cell and spermatheca contractile activity required for ovulation. Transgenic worms expressing a STIM-1 EF-hand mutant that constitutively activates SOCE in Drosophila and mammalian cells are sterile and exhibit severe pBoc arrhythmia. stim-1 RNAi dramatically reduces STIM-1GFP expression, suppresses the EF-hand mutation-induced pBoc arrhythmia, and inhibits intestinal store-operated Ca(2+) (SOC) channels. However, stim-1 RNAi surprisingly has no effect on pBoc rhythm, which is controlled by intestinal oscillatory Ca(2+) signaling, in wild type and IP(3) signaling mutant worms, and has no effect on intestinal Ca(2+) oscillations and waves. Depletion of intestinal Ca(2+) stores by RNAi knockdown of the ER Ca(2+) pump triggers the ER unfolded protein response (UPR). In contrast, stim-1 RNAi fails to induce the UPR. Our studies provide the first detailed characterization of STIM-1 function in an intact animal and suggest that SOCE is not essential for certain oscillatory Ca(2+) signaling processes and for maintenance of store Ca(2+) levels in C. elegans. These findings raise interesting and important questions regarding the function of SOCE and SOC channels under normal and pathophysiological conditions.
Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia
2015-05-18
A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development.
Cross-species Extrapolation of EDC Toxicity: Consequences for Screening Programs
Many structural and functional aspects of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis are known to be highly conserved, but the full significance of this from a toxicological perspective has received comparatively little attention. High-quality data generated through...
Nakata, Daisuke; Masaki, Tsuneo; Tanaka, Akira; Yoshimatsu, Mie; Akinaga, Yumiko; Asada, Mari; Sasada, Reiko; Takeyama, Michiyasu; Miwa, Kazuhiro; Watanabe, Tatsuya; Kusaka, Masami
2014-01-15
TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer. Copyright © 2013 Elsevier B.V. All rights reserved.
Huang, Yonglan; Zheng, Jipeng; Xie, Ting; Xiao, Qing; Lu, Shaomei; Li, Xiuzhen; Cheng, Jing; Chen, Lihe; Liu, Li
2014-12-01
3β- hydroxysteroid dehydrogenase deficiency (3βHSD), a rare form of congenital adrenal hyperplasia (CAH) resulted from mutations in the HSD3B2 gene that impair steroidogenesis in both adrenals and gonads. We report clinical features and the results of HSD3B2 gene analysis of a Chinese pubertal girl with salt wasting 3βHSD deficiency. We retrospectively reviewed clinical presentations and steroid profiles of the patient diagnosed in Guangzhou Women and Children's Medical Center in 2013. PCR and direct sequencing were used to identify any mutation in the HSD3B2 gene. A 13-year-old girl was diagnosed as CAH after birth because of salt-wasting with mild clitorimegaly and then was treated with glucocorticoid replacement. Breast and pubic hair development were normal, and menarche occurred at 12 yr, followed by menstrual bleeding about every 45 days. In the last one year laparoscopic operation and ovariocentesis were performed one after another for recurrent ovary cysts. Under corticoid acetate therapy, ACTH 17.10 pmol/L (normal 0-10.12), testosterone 1.31 nmol/L (normal <0.7), dehydroepiandrosterone sulfate 13.30 µmol/L (normal 0.95 - 11.67), cortisol 720 nmol/L (normal 130-772.8), androstenedione, 17-hydroxyprogesterone and progesterone were normal. Estradiol 461 pmol/L, follicle-stimulating hormone 3.04 IU/L, luteinizing hormone 8.52 IU/L in follicular phase. A pelvic ultrasound showed lateral ovaries cysts (58 mm × 50 mm × 35 mm) and a midcycle-type endometrium. A novel nonsense mutation c.73G >T (p.E25X) was identified in HSD3B2 gene. The girl was homozygous and her mother was heterozygous, while her father was not identified with this mutation. A classic 3βHSD deficiency is characterized by salt wasting and mild virilization in female. Ovary cysts may be the one of features of gonad phenotype indicating ovary 3βHSD deficiency. A novel homozygous mutation c.73G >T(p.E25X) was related to the classical phenotype.
Triploid or hybrid tetra: Which is the ideal sterile host for surrogate technology?
Piva, Lucas Henrique; de Siqueira-Silva, Diógenes Henrique; Goes, Caio Augusto Gomes; Fujimoto, Takafumi; Saito, Taiju; Dragone, Letícia Veroni; Senhorini, José Augusto; Porto-Foresti, Fabio; Ferraz, José Bento Sterman; Yasui, George Shigueki
2018-03-01
This work was aimed at developing an effective procedure to obtain sterile ideal host fish in mass scale with no endogenous germ cells in the germinal epithelium, owning permanent stem-cell niches able to be colonized by transplanted germ cells in surrogate technology experiments. Thus, triploids, diploid hybrids, and triploid hybrids were produced. To obtain hybrid offspring, oocytes from a single Astyanax altiparanae female were inseminated by sperm from five males (A. altiparanae, A. fasciatus, A. schubarti, Hyphessobrycon anisitsi, and Oligosarcus pintoi). Triploidization was conducted by inhibition of the second polar body release using heat shock treatment at 40 °C for 2 min. At 9-months of age, the offspring from each crossing was histologically evaluated to access the gonadal status of the fish. Variable morphological characteristics of the gonads were found in the different hybrids offspring: normal gametogenesis, gametogenesis without production of gametes, sterile specimens holding germ cells, and sterile specimens without germ cells, which were considered "ideal hosts". However, only in the hybrid derived from crossing between A. altiparanae and A. fasciatus, 100% of the individuals were completely sterile. Among them 83.3% of the male did not present germ cells inside germinal epithelium, having only somatic cells in the gonad. The other 16.7% also presented spermatogonia inside the niches. Such a methodology allows the production of sterile host in mass scale, opening new insights for application of surrogate technologies. Copyright © 2017 Elsevier Inc. All rights reserved.
Ohta, Kohei; Sakai, Mami; Sundaray, Jittendra Kumar; Kitano, Takeshi; Takeda, Tatsusuke; Yamaguchi, Akihiko; Matsuyama, Michiya
2012-11-01
Sex steroids have been suggested to be involved in gonadal sex change in hermaphrodite fish. Aromatase, the enzyme that catalyzes the conversion of androgens into estrogens, is a principal enzyme regulating gonadal sex. However, the detailed functions of each steroid hormone remain to be evaluated. Recent studies have demonstrated that estradiol-17β (E2) is synthesized via estrone (E1) in some hermaphrodite species. On the other hand, 11-ketotestosterone (11KT) is produced in the testis via testosterone (T). In this study, we hypothesized that E1 and T are also involved in the sex change as precursors for E2 and 11KT, respectively. We implanted females of the wrasse, Pseudolabrus sieboldi, with T and 11KT, and males with E1 and E2, by use of sustained-release capsules. In females, testicular tissues and body color change were observed after androgen administration, in which 11KT was more effective than T. In contrast, after estrogen administration, the gonads of males contained oocytes. In females, the administration of T and 11KT resulted in reduced serum E2 levels. Conversely, serum 11KT levels decreased in the E1- and E2-treated males. Thus, we successfully induced bidirectional sex change in the gonad by estrogen and androgen administration in vivo. Moreover, this study raises the possibility that E1 and T are involved in the sex change as precursors for E2 and 11KT, respectively. Copyright © 2012 Wiley Periodicals, Inc.
Miranda, Leandro Andrés; Chalde, Tomás; Elisio, Mariano; Strüssmann, Carlos Augusto
2013-10-01
The ongoing of global warming trend has led to an increase in temperature of several water bodies. Reproduction in fish, compared with other physiological processes, only occurs in a bounded temperature range; therefore, small changes in water temperature could significantly affect this process. This review provides evidence that fish reproduction may be directly affected by further global warming and that abnormal high water temperature impairs the expression of important genes throughout the brain-pituitary-gonad axis. In all fishes studied, gonads seem to be the organ more readily damaged by heat treatments through the inhibition of the gene expression and subsequent synthesis of different gonadal steroidogenic enzymes. In view of the feedback role of sex steroids upon the synthesis and release of GnRH and GtHs in fish, it is possible that the inhibition observed at brain and pituitary levels in treated fish is consequence of the sharp decrease in plasma steroids levels. Results of in vitro studies on the inhibition of pejerrey gonad aromatase expression by high temperature corroborate that ovary functions are directly disrupted by high temperature independently of the brain-pituitary axis. For the reproductive responses obtained in laboratory fish studies, it is plausible to predict changes in the timing and magnitude of reproductive activity or even the total failure of spawning season may occur in warm years, reducing annual reproductive output and affecting future populations. Copyright © 2013 Elsevier Inc. All rights reserved.
The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development.
Schulz, Kalynn M; Sisk, Cheryl L
2016-11-01
Adolescence is a developmental period characterized by dramatic changes in cognition, risk-taking and social behavior. Although gonadal steroid hormones are well-known mediators of these behaviors in adulthood, the role gonadal steroid hormones play in shaping the adolescent brain and behavioral development has only come to light in recent years. Here we discuss the sex-specific impact of gonadal steroid hormones on the developing adolescent brain. Indeed, the effects of gonadal steroid hormones during adolescence on brain structure and behavioral outcomes differs markedly between the sexes. Research findings suggest that adolescence, like the perinatal period, is a sensitive period for the sex-specific effects of gonadal steroid hormones on brain and behavioral development. Furthermore, evidence from studies on male sexual behavior suggests that adolescence is part of a protracted postnatal sensitive period that begins perinatally and ends following adolescence. As such, the perinatal and peripubertal periods of brain and behavioral organization likely do not represent two discrete sensitive periods, but instead are the consequence of normative developmental timing of gonadal hormone secretions in males and females. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arafa, Soumaya; Chouaibi, Moncef; Sadok, Saloua; El Abed, Amor
2012-01-01
Seasonal variation in the gonad weight and biochemical composition of the sea urchin Paracentrotus lividus from the Golf of Tunis (Tunisia) were studied between September 2003 and August 2004. The highest gonad indices occurred in March (16.71%). The spawning period occurred between April and July and resulted in a fall in gonad indices to low level (7.12 ± 0.12%). Protein constituted the main component of the gonad, and lipid and carbohydrate were found at appreciable amounts. Consistent with the gonad cycle, sea urchin biochemical components showed clear seasonal variation with a significant decrease during the spawning period. The polyunsaturated fatty acid (PUFA) group was found at high level (40% of the total fatty acids). Of the PUFA group, eicosapentaenoic (C20:5 n - 3) and eicosatetraenoic (C20:4 n - 3) were the most abundant gonadal lipids. The level of PUFA was significantly affected by temperature variation showing an increase during the cold months and a decrease in the hot months.
Arafa, Soumaya; Chouaibi, Moncef; Sadok, Saloua; El Abed, Amor
2012-01-01
Seasonal variation in the gonad weight and biochemical composition of the sea urchin Paracentrotus lividus from the Golf of Tunis (Tunisia) were studied between September 2003 and August 2004. The highest gonad indices occurred in March (16.71%). The spawning period occurred between April and July and resulted in a fall in gonad indices to low level (7.12 ± 0.12%). Protein constituted the main component of the gonad, and lipid and carbohydrate were found at appreciable amounts. Consistent with the gonad cycle, sea urchin biochemical components showed clear seasonal variation with a significant decrease during the spawning period. The polyunsaturated fatty acid (PUFA) group was found at high level (40% of the total fatty acids). Of the PUFA group, eicosapentaenoic (C20:5 n − 3) and eicosatetraenoic (C20:4 n − 3) were the most abundant gonadal lipids. The level of PUFA was significantly affected by temperature variation showing an increase during the cold months and a decrease in the hot months. PMID:22629206
The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development
Schulz, Kalynn M.; Sisk, Cheryl L.
2016-01-01
Adolescence is a developmental period characterized by dramatic changes in cognition, risk-taking and social behavior. Although gonadal steroid hormones are well-known mediators of these behaviors in adulthood, the role gonadal steroid hormones play in shaping the adolescent brain and behavioral development has only come to light in recent years. Here we discuss the sex-specific impact of gonadal steroid hormones on the developing adolescent brain. Indeed, the effects of gonadal steroid hormones during adolescence on brain structure and behavioral outcomes differs markedly between the sexes. Research findings suggest that adolescence, like the perinatal period, is a sensitive period for the sex-specific effects of gonadal steroid hormones on brain and behavioral development. Furthermore, evidence from studies on male sexual behavior suggests that adolescence is part of a protracted postnatal sensitive period that begins perinatally and ends following adolescence. As such, the perinatal and peripubertal periods of brain and behavioral organization likely do not represent two discrete sensitive periods, but instead are the consequence of normative developmental timing of gonadal hormone secretions in males and females. PMID:27497718
Transcriptional regulation of Drosophila gonad formation.
Tripathy, Ratna; Kunwar, Prabhat S; Sano, Hiroko; Renault, Andrew D
2014-08-15
The formation of the Drosophila embryonic gonad, involving the fusion of clusters of somatic gonadal precursor cells (SGPs) and their ensheathment of germ cells, provides a simple and genetically tractable model for the interplay between cells during organ formation. In a screen for mutants affecting gonad formation we identified a SGP cell autonomous role for Midline (Mid) and Longitudinals lacking (Lola). These transcriptional factors are required for multiple aspects of SGP behaviour including SGP cluster fusion, germ cell ensheathment and gonad compaction. The lola locus encodes more than 25 differentially spliced isoforms and we have identified an isoform specific requirement for lola in the gonad which is distinct from that in nervous system development. Mid and Lola work in parallel in gonad formation and surprisingly Mid overexpression in a lola background leads to additional SGPs at the expense of fat body cells. Our findings support the idea that although the transcription factors required by SGPs can ostensibly be assigned to those being required for either SGP specification or behaviour, they can also interact to impinge on both processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Hirsch, H J; Eldar-Geva, T; Bennaroch, F; Pollak, Y; Gross-Tsur, V
2015-11-01
At what age does the type of hypogonadism, namely hypothalamic or primary gonadal defect, become established in men and women with Prader-Willi syndrome (PWS)? The type of hypogonadism becomes established only in late adolescence and early adulthood. The etiology of hypogonadism in PWS is heterogeneous and the clinical expression is variable. Primary testicular failure is common in PWS men, while combinations of ovarian dysfunction and gonadotrophin deficiency are seen in women. This is a prospective study of a cohort of 106 PWS patients followed for a mean duration of 4.5 years. Serial blood samples were obtained and assayed for gonadotrophins, inhibin B, anti-Mullerian hormone (AMH), dehydroepiandrosterone sulfate (DHEAS), testosterone (males), and estradiol (females). Results were compared with normal reference values obtained from the literature. For the purpose of this study, we defined the following age groups: infants <1 year; children 1-10 years; adolescents 11-20 years and adults >20 years. Study participants were 49 males (aged 2 months to 36 years) and 57 females (aged 1 month to 37 years) with genetically confirmed diagnoses of PWS (deletions 60, uniparental disomy 54, imprinting center defect 2) followed in the Israel national multidisciplinary PWS clinic. Serum LH levels were in the normal range (1.0-6.0 mIU/ml) for 7/10 adult men, and high in 3, while FSH (normal range 1.0-6.1 mIU/ml) was elevated (34.4 ± 11.5 mIU/ml) in 6 and normal (3.5 ± 1.6 mIU/ml) in 4 men. Testosterone was low (5.7 ± 3.4 nmol/l) compared with the normal range of 12.0-34.5 nmol/l in the reference population in all men >20 years. AMH showed a normal decrease with age, despite low testosterone levels. Inhibin B was normal (241 ± 105 pg/ml) in infant boys, but low or undetectable in most adult men. Hormonal profiles were more heterogeneous in women than in men. Estradiol was consistently detectable in only 7/13 adult women. Inhibin B was low or undetectable in all PWS females although occasional samples showed levels within the normal range of 15-95 pg/ml. Vaginal bleeding was reported to occur for the first time in eight women at a median age of 20 years (13-34 years), but only one had regular monthly menses. The type of hypogonadism (primary or secondary) in PWS can be determined only after age 20 years. The study cohort was heterogeneous, showing variability in BMI, cognitive disability and medical treatment. Demonstration of the natural history of reproductive hormone development in PWS suggests that androgen replacement may be indicated for most PWS boys in mid-adolescence. Recommendations for hormone replacement in PWS women need to be individually tailored, serial measurements of inhibin B should be performed, and contraception should be considered in those women who may have the potential for fertility. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Neural Compensations After Lesion of the Cerebral Cortex
Kolb, Bryan; Brown, Russell; Witt-Lajeunesse, Alane; Gibb, Robbin
2001-01-01
Functional improvement after cortical injury can be stimulated by various factors including experience, psychomotor stimulants, gonadal hormones, and neurotrophic factors. The, timing of the administration of these factors may be critical, however. For example, factors such as gonadal hormones, nerve growth factor, or psychomotor stimulants may act to either enhance or retard recovery, depending upon the timing of administration. Nicotine, for instance, stimulates recovery if given after an injury but is without neuroprotective effect and may actually retard recovery if it is given only preinjury. A related timing problem concerns the interaction of different treatments. For example, behavioral therapies may act, in part, via their action in stimulating the endogenous production of trophic factors. Thus, combining behavioral therapies with pharmacological administration of compounds to increase the availability of trophic factors enhances functional outcome. Finally, anatomical evidence suggests that the mechanism of action of many treatments is through changes in dendritic arborization, which presumably reflects changes in synaptic organization. Factors that enhance dendritic change stimulate functional compensation, whereas factors that retard or block dendritic change block or retard compensation. PMID:11530881
Body size and symbiotic status influence gonad development in Aiptasia pallida anemones.
Carlisle, Judith F; Murphy, Grant K; Roark, Alison M
2017-01-01
Pale anemones ( Aiptasia pallida ) coexist with dinoflagellates (primarily Symbiodinium minutum ) in a mutualistic relationship. The purpose of this study was to investigate the role of these symbionts in gonad development of anemone hosts. Symbiotic and aposymbiotic anemones were subjected to light cycles that induced gametogenesis. These anemones were then sampled weekly for nine weeks, and gonad development was analyzed histologically. Anemone size was measured as mean body column diameter, and oocytes or sperm follicles were counted for each anemone. Generalized linear models were used to evaluate the influence of body size and symbiotic status on whether gonads were present and on the number of oocytes or sperm follicles produced. Body size predicted whether gonads were present, with larger anemones being more likely than smaller anemones to develop gonads. Both body size and symbiotic status predicted gonad size, such that larger and symbiotic anemones produced more oocytes and sperm follicles than smaller and aposymbiotic anemones. Overall, only 22 % of aposymbiotic females produced oocytes, whereas 63 % of symbiotic females produced oocytes. Similarly, 6 % of aposymbiotic males produced sperm follicles, whereas 60 % of symbiotic males produced sperm follicles. Thus, while gonads were present in 62 % of symbiotic anemones, they were present in only 11 % of aposymbiotic anemones. These results indicate that dinoflagellate symbionts influence gonad development and thus sexual maturation in both female and male Aiptasia pallida anemones. This finding substantiates and expands our current understanding of the importance of symbionts in the development and physiology of cnidarian hosts.
USE OF THE LABORATORY RAT AS A MODEL IN ENDOCRINE DISRUPTOR SCREENING AND TESTING
The screening and testing program the US Environmental Protection Agency is currently developing to detect endocrine-disrupting chemicals (EDCs) is described. EDCs have been shown to alter the following activities: hypothalamic-pituitary-gonadal [HPG] function; estrogen, androge...
SIGNIFICANCE OF EXPERIMENTAL STUDIES FOR ASSESSING ADVERSE EFFECTS OF ENDOCRINE-DISRUPTING CHEMICALS
The U.S. Environmental Protection Agency (US EPA) is developing an endocrine disruptor screening and testing program to detect chemicals that alter hypothalamic-pituitary-gonadal (HPG) function, estrogen, androgen, and thyroid (EAT) hormone synthesis or metabolism and induce andr...
The end of gonad-centric sex determination in mammals
Arnold, Arthur P.
2011-01-01
The 20th century theory of mammalian sex determination states that the embryo is sexually indifferent until the differentiation of gonads, after which sex differences in phenotype are caused by differential effects of gonadal hormones. That theory is inadequate because some sex differences precede differentiation of the gonads and/or are determined by non-gonadal effects of the sexual inequality in number and type of sex chromosomes. A general theory of sex determination is proposed, which recognizes multiple parallel primary sex-determining pathways initiated by genes or factors encoded by the sex chromosomes. The separate sex-specific pathways interact to synergize with or antagonize each other, enhancing or reducing sex differences in phenotype. PMID:22078126
Henry, M; Benlinmame, N; Belhsen, O K; Jule, Y; Mathieu, M
1995-02-01
The Phe-Met-Arg-Phe NH2 (FMRFamide)-like immunoreactivity was detected in neurons of the cerebro-pedal and visceral ganglia of the scallop Pecten maximus using immunohistochemical techniques. FMRFamide-like immunoreactivity was also found in nerve fibers localized in the connective tissue and the epithelial wall of the gonad. Electron microscopy study carried out on the gonads indicates the existence of numerous nerve fibers crossing the connective tissue; nerve terminals apposed to highly secretory cells were seen in the gonad wall. All in all, the present immunohistochemical and electron microscopic data suggest that FMRFamide might play an unusual secretagogue role in the gonad wall.
Effects of centrifugation on gonadal and adrenocortical steroids in rats
NASA Technical Reports Server (NTRS)
Kakihana, R.; Butte, J. C.
1980-01-01
Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.
Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity.
Darricarrère, Nicole; Liu, Na; Watanabe, Toshiaki; Lin, Haifan
2013-01-22
The Piwi protein subfamily is essential for Piwi-interacting RNA (piRNA) biogenesis, transposon silencing, and germ-line development, all of which have been proposed to require Piwi endonuclease activity, as validated for two cytoplasmic Piwi proteins in mice. However, recent evidence has led to questioning of the generality of this mechanism for the Piwi members that reside in the nucleus. Drosophila offers a distinct opportunity to study the function of nuclear Piwi proteins because, among three Drosophila Piwi proteins--called Piwi, Aubergine, and Argonaute 3--Piwi is the only member of this subfamily that is localized in the nucleus and expressed in both germ-line and somatic cells in the gonad, where it is responsible for piRNA biogenesis and regulatory functions essential for fertility. In this study, we demonstrate beyond doubt that the slicer activity of Piwi is not required for any known functions in vivo. We show that, in transgenic flies with the DDX catalytic triad of PIWI mutated, neither primary nor secondary piRNA biogenesis is detectably affected, transposons remain repressed, and fertility is normal. Our observations demonstrate that the mechanism of Piwi is independent of its in vitro endonuclease activity. Instead, it is consistent with the alternative mode of Piwi function as a molecule involved in the piRNA-directed guidance of epigenetic factors to chromatin.
Matsumoto, Yuiko; Buemio, Alvin; Chu, Randy; Vafaee, Mozhgon; Crews, David
2013-01-01
In the red-eared slider turtle (Trachemys scripta), a species with temperature-dependent sex determination (TSD), the expression of the aromatase gene during gonad development is strictly limited to the female-producing temperature. The underlying mechanism remains unknown. In this study, we identified the upstream 5′-flanking region of the aromatase gene, gonad-specific promoter, and the temperature-dependent DNA methylation signatures during gonad development in the red-eared slider turtle. The 5′-flanking region of the slider aromatase exhibited sequence similarities to the aromatase genes of the American alligator, chicken, quail, and zebra finch. A putative TATA box was located 31 bp upstream of the gonad-specific transcription start site. DNA methylation at the CpG sites between the putative binding sites of the fork head domain factor (FOX) and vertebrate steroidogenic factor 1 (SF1) and adjacent TATA box in the promoter region were significantly lower in embryonic gonads at the female-producing temperature compared the male-producing temperature. A shift from male- to female-, but not from female- to male-, producing temperature changed the level of DNA methylation in gonads. Taken together these results indicate that the temperature, particularly female-producing temperature, allows demethylation at the specific CpG sites of the promoter region which leads the temperature-specific expression of aromatase during gonad development. PMID:23762231
Zhang, Caiqiao; Fang, Changge; Liu, Li; Xia, Guoliang; Qiao, Huili
2002-01-01
Polychlorinated biphenyls (PCBs) are worldwide persistent pollutants that have produced detrimental effects on endocrine function and reproduction in a variety of species. The present study revealed effects of PCBs on gonadal development and functions in chickens of different ages. Aroclor 1254 (0-100 microg/egg) was injected into Hyline chicken eggs before incubation. The adult chickens received Aroclor 1254 by gavage (50 mg/kg BW). It was observed that in day 5 embryos, PCBs resulted in a dose-dependent decrease of primordial germ cell (PGC) numbers, and caused PGCs pyknosis and vacuolation. Clomiphen failed to block the effects of PCBs. In the newly hatched chicken, PCBs induced a marked decrease in area of the transverse sections, diameter and relative area of the testicular tubules. The differentiation of germ cells was retarded after PCB treatment. In contrast, the area of the left ovarian transverse sections, the thickness of ovarian cortex and the number of oocytes increased dramatically in the female chickens after PCB exposure. In the adult chickens, PCBs caused no significant changes in body weight, respiration, heart rate, body temperature, red and white blood cell number, but induced a marked decrease in the testicular weight, and severe damage of the seminiferous tubules. The number of the spermatogenic cells and serum testosterone level were decreased significantly by PCBs. On the contrary, in the laying hens there was no significant effect of PCB on egg quality except a slight decrease in egg weight. These results indicated that PCBs exerted its disrupting effects on chicken reproduction with a sex and stage-related pattern, and in vivo disruption of gonadal development represents a possible model for risk assessment of environmental endocrine disrupters by in ovo treatment.
Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, J.S.; Klibanski, A.; Neer, R.M.
To assess the effects of gonadal steroid replacement on bone density in men with osteoporosis due to severe hypogonadism, we measured cortical bone density in the distal radius by 125I photon absorptiometry and trabecular bone density in the lumbar spine by quantitative computed tomography in 21 men with isolated GnRH deficiency while serum testosterone levels were maintained in the normal adult male range for 12-31 months (mean +/- SE, 23.7 +/- 1.1). In men who initially had fused epiphyses (n = 15), cortical bone density increased from 0.71 +/- 0.02 to 0.74 +/- 0.01 g/cm2 (P less than 0.01), whilemore » trabecular bone density did not change (116 +/- 9 compared with 119 +/- 7 mg/cm3). In men who initially had open epiphyses (n = 6), cortical bone density increased from 0.62 +/- 0.01 to 0.70 +/- 0.03 g/cm2 (P less than 0.01), while trabecular bone density increased from 96 +/- 13 to 109 +/- 12 mg/cm3 (P less than 0.01). Cortical bone density increased 0.03 +/- 0.01 g/cm2 in men with fused epiphyses and 0.08 +/- 0.02 g/cm2 in men with open epiphyses (P less than 0.05). Despite these increases, neither cortical nor trabecular bone density returned to normal levels. Histomorphometric analyses of iliac crest bone biopsies demonstrated that most of the men had low turnover osteoporosis, although some men had normal to high turnover osteoporosis. We conclude that bone density increases during gonadal steroid replacement of GnRH-deficient men, particularly in men who are skeletally immature.« less
Filby, Amy L; Tyler, Charles R
2007-01-01
Background Attempts to develop a mechanistic understanding of the effects of environmental estrogens on fish are increasingly conducted at the level of gene expression. Appropriate application of real-time PCR in such studies requires the use of a stably expressed 'housekeeping' gene as an internal control to normalize for differences in the amount of starting template between samples. Results We sought to identify appropriate genes for use as internal controls in experimental treatments with estrogen by analyzing the expression of eight functionally distinct 'housekeeping' genes (18S ribosomal RNA [18S rRNA], ribosomal protein l8 [rpl8], elongation factor 1 alpha [ef1a], glucose-6-phosphate dehydrogenase [g6pd], beta actin [bactin], glyceraldehyde-3-phosphate dehydrogenase [gapdh], hypoxanthine phosphoribosyltransferase 1 [hprt1], and tata box binding protein [tbp]) following exposure to the environmental estrogen, 17α-ethinylestradiol (EE2), in the fathead minnow (Pimephales promelas). Exposure to 10 ng/L EE2 for 21 days down-regulated the expression of ef1a, g6pd, bactin and gapdh in the liver, and bactin and gapdh in the gonad. Some of these effects were gender-specific, with bactin in the liver and gapdh in the gonad down-regulated by EE2 in males only. Furthermore, when ef1a, g6pd, bactin or gapdh were used for normalization, the hepatic expression of two genes of interest, vitellogenin (vtg) and cytochrome P450 1A (cyp1a) following exposure to EE2 was overestimated. Conclusion Based on the data presented, we recommend 18S rRNA, rpl8, hprt1 and/or tbp, but not ef1a, g6pd, bactin and/or gapdh, as likely appropriate internal controls in real-time PCR studies of estrogens effects in fish. Our studies show that pre-validation of control genes considering the scope and nature of the experiments to be performed, including both gender and tissue type, is critical for accurate assessments of the effects of environmental estrogens on gene expression in fish. PMID:17288598
Methods for the Study of Gonadal Development.
Piprek, Rafal P
2016-01-01
Current knowledge on gonadal development and sex determination is the product of many decades of research involving a variety of scientific methods from different biological disciplines such as histology, genetics, biochemistry, and molecular biology. The earliest embryological investigations, followed by the invention of microscopy and staining methods, were based on histological examinations. The most robust development of histological staining techniques occurred in the second half of the nineteenth century and resulted in structural descriptions of gonadogenesis. These first studies on gonadal development were conducted on domesticated animals; however, currently the mouse is the most extensively studied species. The next key point in the study of gonadogenesis was the advancement of methods allowing for the in vitro culture of fetal gonads. For instance, this led to the description of the origin of cell lines forming the gonads. Protein detection using antibodies and immunolabeling methods and the use of reporter genes were also invaluable for developmental studies, enabling the visualization of the formation of gonadal structure. Recently, genetic and molecular biology techniques, especially gene expression analysis, have revolutionized studies on gonadogenesis and have provided insight into the molecular mechanisms that govern this process. The successive invention of new methods is reflected in the progress of research on gonadal development.
Laparoscopic Removal of Streak Gonads in Turner Syndrome.
Mandelberger, Adrienne; Mathews, Shyama; Andikyan, Vaagn; Chuang, Linus
To demonstrate the skills necessary for complete resection of bilateral streak gonads in Turner syndrome. Video case presentation with narration highlighting the key techniques used. The video was deemed exempt from formal review by our institutional review board. Turner syndrome is a form of gonadal dysgenesis that affects 1 in 2500 live births. Patients often have streak gonads and may present with primary amenorrhea or premature ovarian failure. Patients with a mosaic karyotype that includes a Y chromosome are at increased risk for gonadoblastoma and subsequent transformation into malignancy. Gonadectomy is recommended for these patients, typically at adolescence. Streak gonads can be difficult to identify, and tissue margins are often in close proximity to critical retroperitoneal structures. Resection can be technically challenging and requires a thorough understanding of retroperitoneal anatomy and precise dissection techniques to ensure complete removal. Laparoscopic approach to bilateral salpingo-oophorectomy of streak gonads. Retroperitoneal dissection and ureterolysis are performed, with the aid of the Ethicon Harmonic Ace, to ensure complete gonadectomy. Careful and complete resection of gonadal tissue in the hands of a skilled laparoscopic surgeon is key for effective cancer risk reduction surgery in Turner syndrome mosaics. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
GONAD DOSES IN THE X IRRADIATION OF SOME SO-CALLED MILD ILLNESSES (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glauner, R.; Messner, D.; Thelen, P.O.
1958-10-01
Measurements of gonad doses were carried out on men and women using ionization chambers. In women the measurements were made in the vagina. Gonad doses were measured in patients who received x-ray therapy for puerperal mastitis, sweat gland abscesses in the axilla, and furunculi of the face. The conditions of irradiation, as well as the single and total doses, are briefiy discussed. Various means of reducing gonad dose are discussed in detail. (auth)
Gonadal dysgenesis, Turner syndrome with 46,XX,del(18p)3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telvi, L.; Ion, R.; Bernheim, A.
1994-09-01
The authors report a case of a female infant with gonadal dysgenesis, clinical features of Turner syndrome and a de novo del(18p). The factors controlling gonadal dysgenesis and Turner syndrome are unknown to date. The genes involved could be located not only on X chromosome but also on autosomes. The present case suggests that one of these genes is situated on the short arm of chromosome 18. We conclude that patients with del(18p) syndrome should be evaluated for gonadal dysgenesis.
Acute and chronic stressors activate the hypothalamic-pituitary-adrenal (lIPA) axis and are known to suppress reproductive function through central negative feedback of the gonadal axis by glucocorticoids. Recently, several environmental chemicals known to attenuate or suppress t...
STRATEGIES TO REDUCE OR REPLACE THE USE OF ANIMALS IN THE ENDOCRINE SCREENING AND TESTING PROGRAM.
Abstract: The US Environmental Protection Agency (EPA) is developing a screening and testing program for endocrine disrupting chemicals (EDCs) to detect alterations of hypothalamic-pituitary-gonadal (HPG) function, estrogen, androgen and thyroid hormone synthesis and androgen (AR...
Wang, Chao; Xue, Changhu; Xue, Yong; Li, Zhaojie; Lv, Yingchun; Zhang, Hao
2012-01-15
Sea urchin gonads are highly valued seafood that degenerates rapidly during the storage period. To study the influence of dissolved oxygen concentration on quality changes of sea urchin (Strongylocentrotus nudus) gonads, they were stored in artificial seawater saturated with oxygen, nitrogen or air at 5 ± 1 °C for 12 days. The sensory acceptability limit was 11-12, 6-7 and 7-8 days for gonads with oxygen, nitrogen or air packaging, respectively. Total volatile basic nitrogen (TVB-N) values reached 22.60 ± 1.32, 32.37 ± 1.37 and 24.91 ± 1.54 mg 100 g(-1) for gonads with oxygen, nitrogen or air packaging at the points of near to, exceeding and reaching the limit of sensory acceptability, indicating that TVB-N values of about 25 mg 100 g(-1) should be regarded as the limit of acceptability for sea urchin gonads. Relative ATP content values were 56.55%, 17.36% and 18.75% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. K-values were 19.37%, 25.05% and 29.02% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. Both pH and aerobic plate count values showed no significant difference (P > 0.05) for gonads with the three treatments. Gonads with oxygen packaging had lower sensory demerit point (P < 0.05) and TVB-N values (P < 0.05), and higher relative ATP content (P < 0.01) and K-values (P < 0.05), than that with nitrogen or air packaging, with an extended shelf life of 4-5 days during storage in artificial seawater at 5 ± 1 °C. Copyright © 2011 Society of Chemical Industry.
Pineal physiology in microgravity - Relation to rat gonadal function aboard Cosmos 1887
NASA Technical Reports Server (NTRS)
Holley, Daniel C.; Markley, Carol L.; Soliman, Magdi R. I.; Kaddis, Farida; Krasnov, Igor'
1991-01-01
Results are reported from an analysis of pineal glands obtained for five male rats flown aboard an orbiting satellite for their melatonin, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIA), and calcium content. Plasma 5-HT and 5-HIAA were measured. These parameters were compared to indicators of gonadal function: plasma testosterone concentration and spermatogonia development. Plasma melotonin was found to be low at the time of euthanasia and was not different among the experimental groups. Pineal calcium of flight animals was not different from ground controls. Pineal 5-HT and 5-HIAA in the flight group were significantly higher than those in ground controls. These findings suggest a possible increase in pineal 5-HT turnover in flight animals which may result in increased melatonin secretion. It is argued that the alteration of pinal 5-HT turnover and its expected effects on melatonin secretion may partially explain the lower plasma testosterone levels and 4-11 percent fewer spermatogonia cells observed in flight animals.
Peroxisome Proliferator-Activated Receptors in Female Reproduction and Fertility
Carta, Gaspare; Artini, Paolo Giovanni
2016-01-01
Reproductive functions may be altered by the exposure to a multitude of endogenous and exogenous agents, drug or environmental pollutants, which are known to affect gene transcription through the peroxisome proliferator-activated receptors (PPARs) activation. PPARs act as ligand activated transcription factors and regulate metabolic processes such as lipid and glucose metabolism, energy homeostasis, inflammation, and cell proliferation and differentiation. All PPARs isotypes are expressed along the hypothalamic-pituitary-gonadal axis and are strictly involved in reproductive functions. Since female fertility and energy metabolism are tightly interconnected, the research on female infertility points towards the exploration of potential PPARs activating/antagonizing compounds, mainly belonging to the class of thiazolidinediones (TZDs) and fibrates, as useful agents for the maintenance of metabolic homeostasis in women with ovarian dysfunctions. In the present review, we discuss the recent evidence about PPARs expression in the hypothalamic-pituitary-gonadal axis and their involvement in female reproduction. Finally, the therapeutic potential of their manipulation through several drugs is also discussed. PMID:27559343
Wolfe, Andrew; Divall, Sara; Wu, Sheng
2014-10-01
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.
Ruttle, Paula L.; Shirtcliff, Elizabeth A.; Essex, Marilyn J.; Susman, Elizabeth J.
2014-01-01
Substantial research has implicated the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes independently in adolescent mental health problems, though this literature remains largely inconclusive. Given the cross-talk between the HPA and HPG axes and their increased activation in adolescence, a dual-axis approach that examines both axes simultaneously is proposed to predict the emergence and persistence of adolescent mental health problems. After briefly orienting readers to HPA and HPG axis functioning, we review the literature examining associations between hormone levels and changes with behavior during adolescence. Then, we provide a review of the literature supporting examination of both axes simultaneously and present the limited research that has taken a dual-axis approach. We propose future directions including consideration of between-person and within-person approaches to address questions of correlated changes in HPA and HPG hormones. Potential moderators are considered to increase understanding of the nuanced hormone–behavior associations during key developmental transitions. PMID:24729154
Kley, H K; Abendroth, H; Hehrmann, R; Müller, A; Keck, E; Schneitler, H; Elsässer, H; Krüskemper, H L
1984-01-16
Digoxin was studied to see whether it impairs adrenal function and feminizes male subjects by changing plasma sexual hormones; both have been reported on previously. In eight healthy male subjects neither estrone (38.7 +/- 7.7 vs 35.4 +/- 3.2 pg/ml) nor estradiol (35.8 +/- 6.4 vs 32.2 +/- 3.9 pg/ml) nor testosterone (6.32 +/- 0.74 vs 6.45 +/- 0.73 ng/ml) were found to be altered by digoxin administration (plasma levels 1.55 +/0- 0.27 ng/ml) lasting 35 days. The same was true of free testosterone (147 +/- 24 vs 142 +/- 19 pg/ml) and free estradiol (657 +/- 77 vs 615 +/- 78 fg/ml). Even maximal stimulation of the adrenal and gonadal glands by adrenocorticotropic hormone (ACTH) and human chorionic gonadotropin (hCG) did not exhibit any digoxin-induced alterations in the synthesizing capacity of steroid hormones, as shown by plasma cortisol (increase from 128 +/- 18 to 389 +/- 18 ng/ml) and testosterone (from 5.96 +/- 0.90 to 10.33 +/- 1.19 ng/ml). Furthermore, seven subjects on digoxin were observed over a period of 150-210 days; they did not show any increase of estrogens. This was also found in three subjects when estrogen levels were elevated initially due to extreme obesity. Also, 35 patients who took beta-methyldigoxin (n = 8), beta-acetyldigoxin (n = 20) and digitoxin (n = 7) from 1 to 9 (mean: 1.9) years demonstrated normal plasma concentrations of gonadal and adrenal steroids, irrespective of duration of application or the digitalis compound.(ABSTRACT TRUNCATED AT 250 WORDS)
Yoder, Kathleen M.; Vicario, David S.
2012-01-01
Gonadal hormones modulate behavioral responses to sexual stimuli, and communication signals can also modulate circulating hormone levels. In several species, these combined effects appear to underlie a two-way interaction between circulating gonadal hormones and behavioral responses to socially salient stimuli. Recent work in songbirds has shown that manipulating local estradiol levels in the auditory forebrain produces physiological changes that affect discrimination of conspecific vocalizations and can affect behavior. These studies provide new evidence that estrogens can directly alter auditory processing and indirectly alter the behavioral response to a stimulus. These studies show that: 1. Local estradiol action within an auditory area is necessary for socially-relevant sounds to induce normal physiological responses in the brains of both sexes; 2. These physiological effects occur much more quickly than predicted by the classical time-frame for genomic effects; 3. Estradiol action within the auditory forebrain enables behavioral discrimination among socially-relevant sounds in males; and 4. Estradiol is produced locally in the male brain during exposure to particular social interactions. The accumulating evidence suggests a socio-neuro-endocrinology framework in which estradiol is essential to auditory processing, is increased by a socially relevant stimulus, acts rapidly to shape perception of subsequent stimuli experienced during social interactions, and modulates behavioral responses to these stimuli. Brain estrogens are likely to function similarly in both songbird sexes because aromatase and estrogen receptors are present in both male and female forebrain. Estrogenic modulation of perception in songbirds and perhaps other animals could fine-tune male advertising signals and female ability to discriminate them, facilitating mate selection by modulating behaviors. Keywords: Estrogens, Songbird, Social Context, Auditory Perception PMID:22201281
NASA Astrophysics Data System (ADS)
Pu, Fei; Yang, Bingye; Ke, Caihuan
2015-07-01
Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and validate seven reference genes, including actin-2 ( ACT-2), elongation factor 1 alpha ( EF-1α), elongation factor 1 beta ( EF-1β), glyceraldehyde-3-phosphate dehydrogenase ( GAPDH), ubiquitin ( UBQ), β-tubulin ( β-TUB), and 18S ribosomal RNA, from Crassostrea angulata, a valuable marine bivalve cultured worldwide. Transcript levels of the candidate reference genes were examined using qPCR analysis and showed differential expression patterns in the mantle, gill, adductor muscle, labial palp, visceral mass, hemolymph and gonad tissues. Quantitative data were analyzed using the geNorm software to assess the expression stability of the candidate reference genes, revealing that β-TUB and UBQ were the most stable genes. The commonly used GAPDH and 18S rRNA showed low stability, making them unsuitable candidates in this system. The expression pattern of the G protein β-subunit gene ( Gβ) across tissue types was also examined and normalized to the expression of each or both of UBQ and β-TUB as internal controls. This revealed consistent trends with all three normalization approaches, thus validating the reliability of UBQ and β-TUB as optimal internal controls. The study provides the first validated reference genes for accurate data normalization in transcript profiling in Crassostrea angulata, which will be indispensable for further functional genomics studies in this economically valuable marine bivalve.
NASA Astrophysics Data System (ADS)
Passakas, T.; Tesch, F.-W.
1980-06-01
Yellow eels (Anguilla anguilla) taken during summer from random commercial trapnet samples in the littoral area of Helgoland (n=116) and from a freshwater area of the River Elbe near Hamburg (n=109) were examined with regard to their karyological (i.e. existence of female sex chromosomes) and gonadal sex. In 47 % and 21 % of the two samples, respectively, chromosomes were unidentifiable because of insufficient numbers of mitotic plates. All eels from Helgoland, except one phenotypically undetermined fish, exhibited female gonads: 48 had female sex chromosomes and 13 were karyologically males. As found previously in the River Elbe, eels with male gonads predominated (n=55); 25 were undifferentiated. Of the gonadal males 26 were karyological males and 16 karyological females; the rest could not be identified by chromosome patterns. In contrast, all but one of the Elbe eels with female gonads (n=28) had female sex chromosomes. Some aspects of the sex reversal documented in the eel are considered.
Gonadal morphogenesis and gene expression in reptiles with temperature-dependent sex determination.
Merchant-Larios, H; Díaz-Hernández, V; Marmolejo-Valencia, A
2010-01-01
In reptiles with temperature-dependent sexual determination, the thermosensitive period (TSP) is the interval in which the sex is defined during gonadal morphogenesis. One-shift experiments in a group of eggs define the onset and the end of the TSP as all and none responses, respectively. Timing for sex-undetermined (UG) and -determined gonads (DG) differs at male- (MPT) or female-producing temperatures (FPT). During the TSP a decreasing number of embryos respond to temperature shifts indicating that in this period embryos with both UG and DG exist. Although most UG correspond to undifferentiated gonads, some embryos extend UG after the onset of histological differentiation. Thus, temperature affects gonadal cells during the process of morphogenesis, but timing of commitment depends on individual embryos. A correlation between gonadal morphogenesis, TSP, and gene expression suggests that determination of the molecular pathways modulated by temperature in epithelial cells (surface epithelium and medullary cords) holds the key for a unifying hypothesis on temperature-dependent sex determination. (c) 2010 S. Karger AG, Basel.
Hari Kumar, K. V. S.; Garg, Anurag; Ajai Chandra, N. S.; Singh, S. P.; Datta, Rakesh
2016-01-01
Voice is one of the advanced features of natural evolution that differentiates human beings from other primates. The human voice is capable of conveying the thoughts into spoken words along with a subtle emotion to the tone. This extraordinary character of the voice in expressing multiple emotions is the gift of God to the human beings and helps in effective interpersonal communication. Voice generation involves close interaction between cerebral signals and the peripheral apparatus consisting of the larynx, vocal cords, and trachea. The human voice is susceptible to the hormonal changes throughout life right from the puberty until senescence. Thyroid, gonadal and growth hormones have tremendous impact on the structure and function of the vocal apparatus. The alteration of voice is observed even in physiological states such as puberty and menstruation. Astute clinical observers make out the changes in the voice and refer the patients for endocrine evaluation. In this review, we shall discuss the hormonal influence on the voice apparatus in normal and endocrine disorders. PMID:27730065
Silva, Joana Vieira; Cruz, Daniel; Gomes, Mariana; Correia, Bárbara Regadas; Freitas, Maria João; Sousa, Luís; Silva, Vladimiro; Fardilha, Margarida
2017-01-01
Many studies have reported a negative impact of lifestyle factors on testicular function, spermatozoa parameters and pituitary-gonadal axis. However, conclusions are difficult to draw, since studies in the general population are rare. In this study we intended to address the early and late short-term impact of acute lifestyle alterations on young men’s reproductive function. Thirty-six healthy male students, who attended the Portuguese academic festivities, provided semen samples and answered questionnaires at three time-points. The consumption of alcohol and cigarette increased more than 8 and 2 times, respectively, during the academic festivities and resulted in deleterious effects on semen quality: one week after the festivities, a decrease on semen volume, spermatozoa motility and normal morphology was observed, in parallel with an increase on immotile spermatozoa, head and midpiece defects and spermatozoa oxidative stress. Additionally, three months after the academic festivities, besides the detrimental effect on volume, motility and morphology, a negative impact on spermatozoa concentration was observed, along with a decrease on epididymal, seminal vesicles and prostate function. This study contributed to understanding the pathophysiology underlying semen quality degradation induced by acute lifestyle alterations, suggesting that high alcohol and cigarette consumption are associated with decreased semen quality in healthy young men. PMID:28367956
Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility
Ahmed, Kashan; LaPierre, Mary P.; Denzler, Rémy; Yang, Yinjie; Rülicke, Thomas; Latreille, Mathieu
2017-01-01
MicroRNAs (miRNAs) are negative modulators of gene expression that fine-tune numerous biological processes. miRNA loss-of-function rarely results in highly penetrant phenotypes, but rather, influences cellular responses to physiologic and pathophysiologic stresses. Here, we have reported that a single member of the evolutionarily conserved miR-7 family, miR-7a2, is essential for normal pituitary development and hypothalamic-pituitary-gonadal (HPG) function in adulthood. Genetic deletion of mir-7a2 causes infertility, with low levels of gonadotropic and sex steroid hormones, small testes or ovaries, impaired spermatogenesis, and lack of ovulation in male and female mice, respectively. We found that miR-7a2 is highly expressed in the pituitary, where it suppresses golgi glycoprotein 1 (GLG1) expression and downstream bone morphogenetic protein 4 (BMP4) signaling and also reduces expression of the prostaglandin F2a receptor negative regulator (PTGFRN), an inhibitor of prostaglandin signaling and follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion. Our results reveal that miR-7a2 critically regulates sexual maturation and reproductive function by interconnecting miR-7 genomic circuits that regulate FSH and LH synthesis and secretion through their effects on pituitary prostaglandin and BMP4 signaling. PMID:28218624
Effects of Head Trauma and Brain Injury on Neuroendocrinologic Function.
1985-09-06
our central hypothesis, i.e. the determination of sympathetic nervous system activation in traumatic injury, will provide important and useful...Studies of pituitary gonadal function. During the second year of this project, investigation of our observations that hypogonadism develops...following acute severe illness was brought to a close. Our initial studies investigating the specificity of the etiology of the hypogonadism and the site
Decision Processes During Development of Molecular Biomarkers for Gonadal Phenotypic Sex
Molecular biomarkers for determination of gonadal phenotypic sex in the Japanese medaka (Oryzias latipes), will serve as a case study. The medaka has unique features that aid in the development of appropriate molecular biomarkers of gonad phenotype, a) genetic sex can be determin...
Tao, Wenjing; Chen, Jinlin; Tan, Dejie; Yang, Jing; Sun, Lina; Wei, Jing; Conte, Matthew A; Kocher, Thomas D; Wang, Deshou
2018-05-15
The factors determining sex in teleosts are diverse. Great efforts have been made to characterize the underlying genetic network in various species. However, only seven master sex-determining genes have been identified in teleosts. While the function of a few genes involved in sex determination and differentiation has been studied, we are far from fully understanding how genes interact to coordinate in this process. To enable systematic insights into fish sexual differentiation, we generated a dynamic co-expression network from tilapia gonadal transcriptomes at 5, 20, 30, 40, 90, and 180 dah (days after hatching), plus 45 and 90 dat (days after treatment) and linked gene expression profiles to both development and sexual differentiation. Transcriptomic profiles of female and male gonads at 5 and 20 dah exhibited high similarities except for a small number of genes that were involved in sex determination, while drastic changes were observed from 90 to 180 dah, with a group of differently expressed genes which were involved in gonadal differentiation and gametogenesis. Weighted gene correlation network analysis identified changes in the expression of Borealin, Gtsf1, tesk1, Zar1, Cdn15, and Rpl that were correlated with the expression of genes previously known to be involved in sex differentiation, such as Foxl2, Cyp19a1a, Gsdf, Dmrt1, and Amh. Global gonadal gene expression kinetics during sex determination and differentiation have been extensively profiled in tilapia. These findings provide insights into the genetic framework underlying sex determination and sexual differentiation, and expand our current understanding of developmental pathways during teleost sex determination.
Painful ovulation in a 46,XX SRY −ve adult male with SOX9 duplication
Kean, Anne-Maree; Ewans, Lisa; Ohnesorg, Thomas; Ayers, Katie L; Watson, Geoff; Vasilaras, Arthur; Sinclair, Andrew H; Twigg, Stephen M; Handelsman, David J
2017-01-01
46,XX disorders of sexual development (DSDs) occur rarely and result from disruptions of the genetic pathways underlying gonadal development and differentiation. We present a case of a young phenotypic male with 46,XX SRY-negative ovotesticular DSD resulting from a duplication upstream of SOX9 presenting with a painful testicular mass resulting from ovulation into an ovotestis. We present a literature review of ovulation in phenotypic men and discuss the role of SRY and SOX9 in testicular development, including the role of SOX9 upstream enhancer region duplication in female-to-male sex reversal. Learning points: In mammals, the early gonad is bipotent and can differentiate into either a testis or an ovary. SRY is the master switch in testis determination, responsible for differentiation of the bipotent gonad into testis. SRY activates SOX9 gene, SOX9 as a transcription factor is the second major gene involved in male sex determination. SOX9 drives the proliferation of Sertoli cells and activates AMH/MIS repressing the ovary. SOX9 is sufficient to induce testis formation and can substitute for SRY function. Assessing karyotype and then determination of the presence or absence of Mullerian structures are necessary serial investigations in any case of DSD, except for mixed gonadal dysgenesis identified by karyotype alone. Treatment is ideal in a multidisciplinary setting with considerations to genetic (implications to family and reproductive recurrence risk), psychological aspects (sensitive individualized counseling including patient gender identity and preference), endocrinological (hormone replacement), surgical (cosmetic, prophylactic gonadectomy) fertility preservation and reproductive opportunities and metabolic health (cardiovascular and bones). PMID:28620497
Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E
2016-04-07
In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. Copyright © 2016 Huelgas-Morales et al.
Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S.; Greenstein, David; Navarro, Rosa E.
2016-01-01
In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701
Painful ovulation in a 46,XX SRY -ve adult male with SOX9 duplication.
Shankara Narayana, Nandini; Kean, Anne-Maree; Ewans, Lisa; Ohnesorg, Thomas; Ayers, Katie L; Watson, Geoff; Vasilaras, Arthur; Sinclair, Andrew H; Twigg, Stephen M; Handelsman, David J
2017-01-01
46,XX disorders of sexual development (DSDs) occur rarely and result from disruptions of the genetic pathways underlying gonadal development and differentiation. We present a case of a young phenotypic male with 46,XX SRY-negative ovotesticular DSD resulting from a duplication upstream of SOX9 presenting with a painful testicular mass resulting from ovulation into an ovotestis. We present a literature review of ovulation in phenotypic men and discuss the role of SRY and SOX9 in testicular development, including the role of SOX9 upstream enhancer region duplication in female-to-male sex reversal. In mammals, the early gonad is bipotent and can differentiate into either a testis or an ovary. SRY is the master switch in testis determination, responsible for differentiation of the bipotent gonad into testis.SRY activates SOX9 gene, SOX9 as a transcription factor is the second major gene involved in male sex determination. SOX9 drives the proliferation of Sertoli cells and activates AMH/MIS repressing the ovary. SOX9 is sufficient to induce testis formation and can substitute for SRY function.Assessing karyotype and then determination of the presence or absence of Mullerian structures are necessary serial investigations in any case of DSD, except for mixed gonadal dysgenesis identified by karyotype alone.Treatment is ideal in a multidisciplinary setting with considerations to genetic (implications to family and reproductive recurrence risk), psychological aspects (sensitive individualized counseling including patient gender identity and preference), endocrinological (hormone replacement), surgical (cosmetic, prophylactic gonadectomy) fertility preservation and reproductive opportunities and metabolic health (cardiovascular and bones).
Wingfield, John C; Perfito, Nicole; Calisi, Rebecca; Bentley, George; Ubuka, T; Mukai, M; O'Brien, Sara; Tsutsui, K
2016-02-01
Seasonal breeding is widespread in vertebrates and involves sequential development of the gonads, onset of breeding activities (e.g. cycling in females) and then termination resulting in regression of the reproductive system. Whereas males generally show complete spermatogenesis prior to and after onset of breeding, females of many vertebrate species show only partial ovarian development and may delay onset of cycling (e.g. estrous), yolk deposition or germinal vesicle breakdown until conditions conducive for ovulation and onset of breeding are favorable. Regulation of this "brake" on the onset of breeding remains relatively unknown, but could have profound implications for conservation efforts and for "mismatches" of breeding in relation to global climate change. Using avian models it is proposed that a brain peptide, gonadotropin-inhibitory hormone (GnIH), may be the brake to prevent onset of breeding in females. Evidence to date suggests that although GnIH may be involved in the regulation of gonadal development and regression, it plays more regulatory roles in the process of final ovarian development leading to ovulation, transitions from sexual to parental behavior and suppression of reproductive function by environmental stress. Accumulating experimental evidence strongly suggests that GnIH inhibits actions of gonadotropin-releasing hormones on behavior (central effects), gonadotropin secretion (central and hypophysiotropic effects), and has direct actions in the gonad to inhibit steroidogenesis. Thus, actual onset of breeding activities leading to ovulation may involve environmental cues releasing an inhibition (brake) on the hypothalamo-pituitary-gonad axis. Copyright © 2015 Elsevier Inc. All rights reserved.
Identical NR5A1 Missense Mutations in Two Unrelated 46,XX Individuals with Testicular Tissues.
Igarashi, Maki; Takasawa, Kei; Hakoda, Akiko; Kanno, Junko; Takada, Shuji; Miyado, Mami; Baba, Takashi; Morohashi, Ken-Ichirou; Tajima, Toshihiro; Hata, Kenichiro; Nakabayashi, Kazuhiko; Matsubara, Yoichi; Sekido, Ryohei; Ogata, Tsutomu; Kashimada, Kenichi; Fukami, Maki
2017-01-01
The role of monogenic mutations in the development of 46,XX testicular/ovotesticular disorders of sex development (DSD) remains speculative. Although mutations in NR5A1 are known to cause 46,XY gonadal dysgenesis and 46,XX ovarian insufficiency, such mutations have not been implicated in testicular development of 46,XX gonads. Here, we identified identical NR5A1 mutations in two unrelated Japanese patients with 46,XX testicular/ovotesticular DSD. The p.Arg92Trp mutation was absent from the clinically normal mothers and from 200 unaffected Japanese individuals. In silico analyses scored p.Arg92Trp as probably pathogenic. In vitro assays demonstrated that compared with wild-type NR5A1, the mutant protein was less sensitive to NR0B1-induced suppression on the SOX9 enhancer element. Other sequence variants found in the patients were unlikely to be associated with the phenotype. The results raise the possibility that specific mutations in NR5A1 underlie testicular development in genetic females. © 2016 WILEY PERIODICALS, INC.
Endocrine disrupting chemicals (EDCs) are exogenous substances that disrupt the physiological function of endogenous hormones. In fish, these xenobiotics are capable of interfering with the dynamic equilibrium of the hypothalamic-pituitary-gonadal (HPG) axis resulting in adverse ...
Propiconazole is an ergosterol inhibitor commonly used in agriculture and has been detected in aquatic environments. Ergosterol inhibitors decrease fungal growth through effects on 14á-demethylase, a cytochrome P450 (CYP), isoform important for ergosterol biosynthesis. In higher ...
Many structural and functional aspects of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis are known to be highly conserved, but the relative significance of this from a regulatory toxicology perspective has received comparatively little attention. High-quality data gene...
Overman, William H.; Pierce, Allison
2013-01-01
Performance on the Iowa Gambling Task (IGT) in clinical populations can be interpreted only in relation to established baseline performance in normal populations. As in all comparisons of assessment tools, the normal baseline must reflect performance under conditions in which subjects can function at their best levels. In this review, we show that a number of variables enhance IGT performance in non-clinical participants. First, optimal performance is produced by having participants turn over real cards while viewing virtual cards on a computer screen. The use of only virtual cards results in significantly lower performance than the combination of real + virtual cards. Secondly, administration of more than 100 trials also enhances performance. When using the real/virtual card procedure, performance is shown to significantly increase from early adolescence through young adulthood. Under these conditions young (mean age 19 years) and older (mean age 59 years) adults perform equally. Females, as a group, score lower than males because females tend to choose cards from high-frequency-of-gain Deck B. Groups of females with high or low gonadal hormones perform equally. Concurrent tasks, e.g., presentation of aromas, decrease performance in males. Age and gender effects are discussed in terms of a dynamic between testosterone and orbital prefrontal cortex. PMID:24376431
Responses to constant infusion of LH-RH in girls with primary hypogonadism.
Reiter, E O; Duckett, G E; Root, A W
1980-09-01
To further assess quantitative pituitary gonadotropin release in patients with primary hypogonadism, a 3-hour constant infusion of the synthetic gonadotropin-releasing hormone, LH-RH, was administered to 12 functionally agonadal girls (11 with Turner syndrome and 1 who had been overiectomized), aged 9.5 to 19.42 years. Gonadotropin and sex steroid responses were determined before and during the infusion and contrasted to those in normal pubertal females. in girls with skeletal age under 11 years, mean control LH increased (P < .001) from 2.2 +/- 0.3 (mean +/- SEM) mIU/ml to 21.3 +/- 7.3 during LH-RH infusion, while luteinizing hormone (LH) rose (P < .001) from 89.2 +/- 24.6 to 276.5 +/- 42.6 girls with skeletal age over 11 years. This age-related augmentation is an exaggeration of data in normal girls and occcurs despite minimal gonadal secretion of sex steroids. A similar age-related discrepancy was not seen in follicle-stimulating hormone (FSH) secretion evoked by LH-RH; all girls had FSH increments into the castrate range with a rise from mean control levels of 78.6 +/- 6.7 to 133.9 +/- 8.3. These data demonstrate an age-related increase in LH-RH-evoked LH secretion, but not of FSH, in children and adolescents with primary hypogonadism.
Quinteros, Fernanda A; Poliandri, Ariel H B; Machiavelli, Leticia I; Cabilla, Jimena P; Duvilanski, Beatriz H
2007-01-01
Hexavalent chromium (Cr VI) is a highly toxic metal and an environmental pollutant. Different studies indicate that Cr VI exposure adversely affects reproductive functions. This metal has been shown to affect several tissues and organs but Cr VI effects on pituitary gland have not been reported. Anterior pituitary hormones are central for the body homeostasis and have a fundamental role in reproductive physiology. The aim of this study was to evaluate the effect of Cr VI at the pituitary level both in vivo and in vitro. We showed that Cr VI accumulates in the pituitary and hypothalamus, and decreases serum prolactin levels in vivo but observed no effects on LH levels. In anterior pituitary cells in culture, the effect of Cr VI on hormone secretion followed the same differential pattern. Besides, lactotrophs were more sensitive to the toxicity of the metal. As a result of oxidative stress generation, Cr VI induced apoptosis evidenced by nuclear fragmentation and caspase 3 activation. Our results indicate that the anterior pituitary gland can be a target of Cr VI toxicity in vivo and in vitro, thus producing a negative impact on the hypothalamic-pituitary-gonadal axis and affecting the normal endocrine function.
Sex determining gene on the X chromosome short arm: dosage sensitive sex reversal.
Ogata, T; Matsuo, N
1996-08-01
The present review article summarizes current knowledge concerning the sex determining gene on Xp21, termed DSS (dosage sensitive sex reversal). The presence of DSS has been based on the finding that, in the presence of SRY, partial active Xp duplications encompassing the middle part of Xp result in sex reversal, whereas those of the distal or proximal part of Xp permit male sex development. Because Klinefelter patients develop as males, it is believed that DSS is normally subject to X-inactivation, and that two active copies of DSS override the function of SRY, resulting in gonadal dysgenesis because of meiotic pairing failure. It may be possible that DSS encodes a target sequence for repressing function of SRY or that DSS is involved in an X chromosome-counting mechanism. Molecular approaches have localized DSS to a 160 kb region and isolated candidate genes such as DAX-1 and MAGE-Xp, but there has been no formal evidence equating the candidate gene with DSS. In addition to its clinical importance, the exploration of DSS must provide a useful clue to phylogenetic studies of sex chromosomes and dosage compensation.
Terminology of Gonadal Anomalies in Fish and Amphibians Resulting from Chemical Exposures
This paper reviews the terms that have been used to describe various types of gonadal deformities and lesions in amphibians and fish, identifies the body of literature that has reported effects on gonad morphology/histology, and suggests a standardized set of terms and definition...
Roblin, C; Bruslé, J
1983-01-01
The histology of the different stages of gonadal development (appearance of PGC, edification of gonad primordium, organization of an undifferentiated gonad, testicular or ovarian development) has been studied in fingerlings and juveniles of sea-bass in fish-culture conditions. Sex differentiation with a caudo-cranial gradient was direct and more in accordance with length than with age. Ovarian and testicular differentiation occurred in fish 11 to 23 months old and from 90 to 187 mm SL. Testis ova were frequently observed.
Tancioni, Lorenzo; Caprioli, Riccardo; Al-Khafaji, Ayad Hantoosh Dawood; Mancini, Laura; Boglione, Clara; Ciccotti, Eleonora; Cataudella, Stefano
2015-02-05
The aim of this study was to evaluate the use of gonadal alterations in the thinlip grey mullet (Liza ramada) as a biological indicator in assessing aquatic ecosystems health, with particular emphasis to river ecosystems exposed to sewage discharges. For this purpose, the reproductive status and the presence of gonadal alterations were studied in 206 mullets collected from two sites on the low course of the Tiber River, downstream of a large urban sewage treatment plant and in the estuarine area, and from an uncontaminated pond considered as reference site. Intersex and irregularly shaped gonads were observed in 20.8% of the mullets from the most polluted site, and intersex gonads in 10.3% of those from the estuarine area. No alterations were detected in the fish from the reference site, which also showed distinct stages of gonadal development. Conversely, unclear stages of testicular and ovary development were observed in the fish from the two polluted river sites. The results of this study suggest that L. ramada may represent a sentinel species in environmental risk assessment and support the use of gonadal alterations of this species as a bioindicator for extensive monitoring of pollution in lower stretches of rivers and estuarine areas.
Tancioni, Lorenzo; Caprioli, Riccardo; Dawood Al-Khafaji, Ayad Hantoosh; Mancini, Laura; Boglione, Clara; Ciccotti, Eleonora; Cataudella, Stefano
2015-01-01
The aim of this study was to evaluate the use of gonadal alterations in the thinlip grey mullet (Liza ramada) as a biological indicator in assessing aquatic ecosystems health, with particular emphasis to river ecosystems exposed to sewage discharges. For this purpose, the reproductive status and the presence of gonadal alterations were studied in 206 mullets collected from two sites on the low course of the Tiber River, downstream of a large urban sewage treatment plant and in the estuarine area, and from an uncontaminated pond considered as reference site. Intersex and irregularly shaped gonads were observed in 20.8% of the mullets from the most polluted site, and intersex gonads in 10.3% of those from the estuarine area. No alterations were detected in the fish from the reference site, which also showed distinct stages of gonadal development. Conversely, unclear stages of testicular and ovary development were observed in the fish from the two polluted river sites. The results of this study suggest that L. ramada may represent a sentinel species in environmental risk assessment and support the use of gonadal alterations of this species as a bioindicator for extensive monitoring of pollution in lower stretches of rivers and estuarine areas. PMID:25664693
Evaluation of Reference Genes for Quantitative Real-Time PCR in Songbirds
Zinzow-Kramer, Wendy M.; Horton, Brent M.; Maney, Donna L.
2014-01-01
Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbird: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology. PMID:24780145
Nakamura, Masaru; Miura, Saori; Nozu, Ryo; Kobayashi, Yasuhisa
2015-01-01
The anemonefish, Amphiprion clarkii, is a protandrous hermaphrodite. Under appropriate social conditions, male fish can become female. Previous studies indicated that estrogens are important regulators of sex change in this fish. However, the mechanism of sexual plasticity in the gonad of this fish is still unknown. To elucidate the mechanisms underlying the sexual plasticity in the ovary of female anemonefish, an aromatase inhibitor (AI, 500 μg/g diet) was administered to the functional female fish for 80 days. The levels of estradiol-17β (E2) in the fish treated with AI were significantly lower than those in the control group. Three out of five fish had ambisexual gonads with active spermatogenic germ cells in the ovarian tissue. However, female fish in the AI-treated group prior to treatment and those in the control group displayed no testicular characteristics in their developed ovaries. This result strongly suggests that germ cells with bipotentiality or spermatogonial cells remain in the functional ovaries of anemonefish following sex change from functional males to functional females. There is a possibility that estrogen depletion due to AI treatment might have caused the opposite-directional sex change from functional female to male in the anemonefish. The anemonefish keeps their high sexual bipotential in the ovary after sex change.
Sickel, M J; McCarthy, M M
2000-05-01
Calbindin-D28k (calbindin) is a 28 kilodalton calcium binding protein which potentially plays a role in neuroprotection. We report here the normal development and gonadal steroid modulation of a sexually dimorphic group of calbindin immunoreactive cells within the sexually dimorphic nucleus of the preoptic area (SDN) which we call the calbindin-immunoreactive SDN or CALB-SDN. Beginning on PN2, a faintly immunoreactive CALB-SDN is present, however, the volume is not sexually dimorphic. On PN4, the staining of the CALB-SDN appears more robust but the volume is still not sexually dimorphic. By PN8 and extending through PN12 and PN26, the latest age analysed, the volume of the CALB-SDN is larger in males by two- to fourfold. Cresyl violet counterstain reveals a similar developmental profile of the SDN as well as clusters of darkly staining calbindin immunonegative cells which lie around the CALB-SDN. Castration of males on PN0 decreases the volume of the CALB-SDN by PN12 and administration on the day of birth and PN1 of either testosterone propionate or oestradiol benzoate, but not dihydrotestosterone propionate to females increases the volume of the CALB-SDN by PN12. By demonstrating the sexual dimorphism and gonadal steroid modulation of the CALB-SDN, we hereby establish that calbindin is a specific marker of a subdivision of the SDN and can be used as such in future studies.
Kousta, Eleni; Papathanasiou, Asteroula; Skordis, Nicos
2010-01-01
There have been considerable advances concerning understanding of the early and later stages of ovarian development; a number of genes have been implicated and their mutations have been associated with developmental abnormalities. The most important genes controlling the initial phase of gonadal development, identical in females and males, are Wilms' tumor suppressor 1 (WT1) and steroidogenic factor 1 (SF1). Four genes are likely to be involved in the subsequent stages of ovarian development (WNT4, DAX1, FOXL2 and RSPO1), but none is yet proven to be the ovarian determining factor. Changes in nomenclature and classification were recently proposed in order to incorporate genetic advances and substitute gender-based diagnostic labels in terminology. The term "disorders of sex development" (DSD) is proposed to substitute the previous term "intersex disorders". Three main categories have been used to describe DSD in the 46,XX individual: 1) disorders of gonadal (ovarian) development: ovotesticular DSD, previously named true hermaphroditism, testicular DSD, previously named XX males, and gonadal dysgenesis; 2) disorders related to androgen excess (congenital adrenal hyperplasia, aromatase deficiency and P450 oxidoreductase deficiency); and 3) other rare disorders. In this mini-review, recent advances concerning development of the genital system in 46,XX individuals and related abnormalities are discussed. Basic embryology of the ovary and molecular pathways determining ovarian development are reviewed, focusing on mutations disrupting normal ovarian development. Disorders of sex development according to the revised nomenclature and classification in 46,XX individuals are summarized, including genetic progress in the field.
Ovarian transposition in young women and fertility sparing.
Mossa, B; Schimberni, M; Di Benedetto, L; Mossa, S
2015-09-01
Ovarian transposition is a highly effective surgical procedure used to preserve ovarian function in premenopausal patients with cancers requiring postoperative or primary pelvic radiotherapy. Pelvic irradiation determines severe damage of ovarian DNA and iatrogenic ovarian failure with premature menopause, necessity of long-term hormone replacement therapy and infertility. We conducted an extensive research of the literature in Medline between January 2000 and April 2015 using the key-words "ovarian transposition radiotherapy", "radiotherapy gonadal function", radiotherapy fertility sparing". The population included young women with normal ovarian function affected by cancers that required pelvic radiotherapy. We have examined 32 articles reporting on 1189 women undergoing ovarian transposition. Median age was 32.5 years, follow up was median 48 months. The procedure has been performed in patients less than 40 years of age. Surgery has been achieved by laparotomy or laparoscoy. We have analyzed effects of radiotherapy on ovarian function. The proportion of women treated by ovarian transposition preserved ovarian function was 70%. About 86% of patients did not develop ovarian cysts and in 98-99% of cases did not occur any metastatic disease. Ovarian transposition is associated with significant preservation of ovarian function and a low frequency of complications as cysts and metastasis. In 31% of cases the procedure can fail. Further studies are needed to evaluate the efficacy of ovarian transposition and the follow up. Ovarian transposition should be discussed at the time of cancer diagnosis in every premenopausal woman requiring pelvic radiotherapy.
Pask, Andrew
2016-01-01
Correct sexual development is arguably the most important trait in an organism's life history since it is directly related to its genetic fitness. The developing gonad houses the germ cells, the only legacy we pass on to subsequent generations. Given the pivotal importance of correct reproductive function, it is confounding that disorders of sex development (DSDs) are among the most common congenital abnormalities in humans (Lee et al. J Pediatr Urol 8(6):611-615, 2012). Urogenital development is a highly complex process involving coordinated interactions between molecular and hormonal pathways in a tightly regulated order. The controls that regulate some of the key events in this process are beginning to be unraveled. This chapter provides an overview of our understanding of urogenital development from the gonads to the urogenital ducts and external genitalia.
Testosterone and growth hormone improve body composition and muscle performance in older men
USDA-ARS?s Scientific Manuscript database
CONTEXT: Impairments in the pituitary-gonadal axis with aging are associated with loss of muscle mass and function and accumulation of upper body fat. OBJECTIVES: We tested the hypothesis that physiological supplementation with testosterone and GH together improves body composition and muscle perfor...
Considerable effort has been expended on the development of bioassays to detect chemicals that affect endocrine function controlled by the vertebrate hypothalamic-pituitary-gonadal (HPG) axis via different mechanisms/modes of action (MOA). Antagonism of the androgen receptor (AR)...
Inhibition of enzymes involved in the synthesis of sex steroids can substantially impact developmental and reproductive processes controlled by the hypothalmic-pituitary-gonadal (HPG) axis. A key steroidogenic enzyme that has received little attention from a toxicological perspec...
Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The presen...
Inhibition of enzymes involved in the synthesis of sex steroids can substantially impact developmental and reproductive processes controlled by the hypothalmic-pituitary-gonadal (HPG) axis. A key steroidogenic enzyme that has received little attention from a toxicological perspe...
Radiological Evaluation of Ambiguous Genitalia with Various Imaging Modalities
NASA Astrophysics Data System (ADS)
Ravi, N.; Bindushree, Kadakola
2012-07-01
Disorders of sex development (DSDs) are congenital conditions in which the development of chromosomal, gonadal, or anatomic sex is atypical. These can be classified broadly into four categories on the basis of gonadal histologic features: female pseudohermaphroditism (46,XX with two ovaries); male pseudohermaphroditism (46,XY with two testes); true hermaphroditism (ovotesticular DSD) (both ovarian and testicular tissues); and gonadal dysgenesis, either mixed (a testis and a streak gonad) or pure (bilateral streak gonads). Imaging plays an important role in demonstrating the anatomy and associated anomalies. Ultrasonography is the primary modality for demonstrating internal organs and magnetic resonance imaging is used as an adjunct modality to assess for internal gonads and genitalia. Early and appropriate gender assignment is necessary for healthy physical and psychologic development of children with ambiguous genitalia. Gender assignment can be facilitated with a team approach that involves a pediatric endocrinologist, geneticist, urologist, psychiatrist, social worker, neonatologist, nurse, and radiologist, allowing timely diagnosis and proper management. We describe case series on ambiguous genitalia presented to our department who were evaluated with multiple imaging modalities.
[The role of gonadal peptides in clinical investigation].
Lahlou, N; Bouvattier, C; Linglart, A; Rodrigue, D; Teinturier, C
2009-01-01
Inhibins, activins, and anti-Mullerian hormone (AMH) are gonadal dimeric peptides produced in ovaries and testes by homologous cells, granulosa cells and Sertoli cells, respectively. The production of inhibins is driven by FSH, that of AMH may indirectly depends on FSH, while it is down regulated, at least in the male, by testosterone. In the past decade, measurements of serum inhibin and AMH have provided useful tools for clinical investigation in gonadal disorders: pseudohermaphroditism, androgen insensitivity, anorchidism, gonadal dysgenesis, disorders of pubertal developpement. Inhibins, activins, and AMH are also reliable markers of gonadal tumors. They are extensively used as indexes of fertility: in the male the production of inhibin B reflects the spermatogenetic activity, in women both inhibin B and AMH levels are correlated with the number of preantral and early antral follicles and reflect the ovarian reserve of follicles available for recruitment.
Masha, A; Manieri, C; Dinatale, S; Bruno, G A; Ghigo, E; Martina, V
2009-12-01
Nitric oxide (NO) plays a wide spectrum of biological actions including a positive role in oocyte maturation and ovulation. Free radicals levels have been shown elevated in polycystic ovary syndrome (PCOS) and therefore would be responsible for quenching NO that, in turn, would play a role in determining oligo- or amenorrhea connoting PCOS. Eight patients with PCOS displaying oligo-amenorrhea from at least 1 yr underwent a combined treatment with N-acetylcysteine (NAC) (1200 mg/die) plus L-arginine (ARG) (1600 mg/die) for 6 months. Menstrual function, glucose and insulin levels, and, in turn, homeostasis model assessment (HOMA) index were monitored. Menstrual function was at some extent restored as indicated by the number of uterine bleedings under treatment (3.00, 0.18-5.83 vs 0.00, 0.00-0.83; p<0.02). Also, a well-defined biphasic pattern in the basal body temperature suggested ovulatory cycles. The HOMA index decreased under treatment (2.12, 1.46-4.42 vs 3.48, 1.62-5.95; p<0.05). In conclusion, this preliminary, open study suggests that prolonged treatment with NAC+ARG might restore gonadal function in PCOS. This effect seems associated to an improvement in insulin sensitivity.
Menstrual cycle phase modulates reward-related neural function in women.
Dreher, Jean-Claude; Schmidt, Peter J; Kohn, Philip; Furman, Daniella; Rubinow, David; Berman, Karen Faith
2007-02-13
There is considerable evidence from animal studies that the mesolimbic and mesocortical dopamine systems are sensitive to circulating gonadal steroid hormones. Less is known about the influence of estrogen and progesterone on the human reward system. To investigate this directly, we used functional MRI and an event-related monetary reward paradigm to study women with a repeated-measures, counterbalanced design across the menstrual cycle. Here we show that during the midfollicular phase (days 4-8 after onset of menses) women anticipating uncertain rewards activated the orbitofrontal cortex and amygdala more than during the luteal phase (6-10 days after luteinizing hormone surge). At the time of reward delivery, women in the follicular phase activated the midbrain, striatum, and left fronto-polar cortex more than during the luteal phase. These data demonstrate augmented reactivity of the reward system in women during the midfollicular phase when estrogen is unopposed by progesterone. Moreover, investigation of between-sex differences revealed that men activated ventral putamen more than women during anticipation of uncertain rewards, whereas women more strongly activated the anterior medial prefrontal cortex at the time of reward delivery. Correlation between brain activity and gonadal steroid levels also revealed that the amygdalo-hippocampal complex was positively correlated with estradiol level, regardless of menstrual cycle phase. Together, our findings provide evidence of neurofunctional modulation of the reward system by gonadal steroid hormones in humans and establish a neurobiological foundation for understanding their impact on vulnerability to drug abuse, neuropsychiatric diseases with differential expression across males and females, and hormonally mediated mood disorders.
Nixon, R.; Cerqueira, V.; Kyriakou, A.; Lucas-Herald, A.; McNeilly, J.; McMillan, M.; Purvis, A.I.; Tobias, E.S.; McGowan, R.
2017-01-01
Abstract STUDY QUESTION What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)? SUMMARY ANSWER An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases. WHAT IS KNOWN ALREADY Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear. STUDY, DESIGN, SIZE, DURATION This study was a retrospective review of investigations performed on 122 boys. PARTICIPANTS/MATERIALS, SETTING, METHODS All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1–11). Details of phenotype, endocrine and genetic investigations were obtained from case records. MAIN RESULTS AND THE ROLE OF CHANCE An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1–10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5–11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5–11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1–9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations. LIMITATIONS, REASONS FOR CAUTION A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It is also possible that the yield of single gene variants may have been higher than reported if the investigators had used a more extended gene panel. WIDER IMPLICATIONS OF THE FINDINGS The lack of a clear association between the extent of under-masculinization and presence of endocrine and genetic abnormalities suggests a role for parallel endocrine and genetic investigations in cases of suspected XY DSD. STUDY FUNDING/COMPETING INTEREST(S) RN was supported by the James Paterson Bursary and the Glasgow Children's Hospital Charity Summer Scholarship. SFA, RM and EST are supported by a Scottish Executive Health Department grant 74250/1 for the Scottish Genomes Partnership. EST is also supported by MRC/EPSRC Molecular Pathology Node and Wellcome Trust ISSF funding. There are no conflicts of interest. TRIAL REGISTRATION NUMBER None. PMID:28938747
Developmental staging of male murine embryonic gonad by SAGE analysis
Lee, Tin-Lap; Li, Yunmin; Alba, Diana; Vong, Queenie P.; Wu, Shao-Ming; Baxendale, Vanessa; Rennert, Owen M.; Lau, Yun-Fai Chris; Chan, Wai-Yee
2012-01-01
Despite the identification of key genes such as Sry integral to embryonic gonadal development, the genomic classification and identification of chromosomal activation of this process is still poorly understood. To better understand the genetic regulation of gonadal development, we performed Serial Analysis of Gene Expression (SAGE) to profile the genes and novel transcripts, and an average of 152,000 tags from male embryonic gonads at E10.5 (embryonic day 10.5), E11.5, E12.5, E13.5, E15.5 and E17.5 were analyzed. A total of 275,583 non-singleton tags that do not map to any annotated sequence were identified in the six gonad libraries, and 47,255 tags were mapped to 24,975 annotated sequences, among which 987 sequences were uncharacterized. Utilizing an unsupervised pattern identification technique, we established molecular staging of male gonadal development. Rather than providing a static descriptive analysis, we developed algorithms to cluster the SAGE data and assign SAGE tags to a corresponding chromosomal position; these data are displayed in chromosome graphic format. A prominent increase in global genomic activity from E10.5 to E17.5 was observed. Important chromosomal regions related to the developmental processes were identified and validated based on established mouse models with developmental disorders. These regions may represent markers for early diagnosis for disorders of male gonad development as well as potential treatment targets. PMID:19376482
Baer, Tamar G; Freeman, Christopher E; Cujar, Claudia; Mansukhani, Mahesh; Singh, Bahadur; Chen, Xiaowei; Abellar, Rosanna; Oberfield, Sharon E; Levy, Brynn
2017-01-01
Although monosomy X is the most common karyotype in patients with Turner syndrome, the presence of Y chromosome material has been observed in about 10% of patients. Y chromosome material in patients with Turner syndrome poses an increased risk of gonadoblastoma and malignant transformation. We report a woman with a diagnosis of Turner syndrome at 12 years of age, without signs of virilization, and karyotype reported as 46,X,del(X)(q13). At 26 years, cytogenetic studies indicated the patient to be mosaic for monosomy X and a cell line that contained a du-plicated Yq chromosome. Bilateral gonadectomy was performed and revealed streak gonads, without evidence of gonadoblastoma. Histological analysis showed ovarian stromal cells with few primordial tubal structures. FISH performed on streak gonadal tissue showed a heterogeneous distribution of SRY, with exclusive localization to the primordial tubal structures. DNA extraction from the gonadal tissue showed a 6.5% prevalence of SRY by microarray analysis, contrasting the 86% prevalence in the peripheral blood sample. This indicates that the overall gonadal sex appears to be determined by the majority gonosome complement in gonadal tissue in cases of sex chromosome mosaicism. This case also raises questions regarding malignancy risk associated with Y prevalence and tubal structures in gonadal tissue. © 2017 S. Karger AG, Basel.
Broodstock management and hormonal manipulations of fish reproduction.
Mylonas, Constantinos C; Fostier, Alexis; Zanuy, Silvia
2010-02-01
Control of reproductive function in captivity is essential for the sustainability of commercial aquaculture production, and in many fishes it can be achieved by manipulating photoperiod, water temperature or spawning substrate. The fish reproductive cycle is separated in the growth (gametogenesis) and maturation phase (oocyte maturation and spermiation), both controlled by the reproductive hormones of the brain, pituitary and gonad. Although the growth phase of reproductive development is concluded in captivity in most fishes-the major exemption being the freshwater eel (Anguilla spp.), oocyte maturation (OM) and ovulation in females, and spermiation in males may require exogenous hormonal therapies. In some fishes, these hormonal manipulations are used only as a management tool to enhance the efficiency of egg production and facilitate hatchery operations, but in others exogenous hormones are the only way to produce fertilized eggs reliably. Hormonal manipulations of reproductive function in cultured fishes have focused on the use of either exogenous luteinizing hormone (LH) preparations that act directly at the level of the gonad, or synthetic agonists of gonadotropin-releasing hormone (GnRHa) that act at the level of the pituitary to induce release of the endogenous LH stores, which, in turn act at the level of the gonad to induce steroidogenesis and the process of OM and spermiation. After hormonal induction of maturation, broodstock should spawn spontaneously in their rearing enclosures, however, the natural breeding behavior followed by spontaneous spawning may be lost in aquaculture conditions. Therefore, for many species it is also necessary to employ artificial gamete collection and fertilization. Finally, a common question in regards to hormonal therapies is their effect on gamete quality, compared to naturally maturing or spawning broodfish. The main factors that may have significant consequences on gamete quality-mainly on eggs-and should be considered when choosing a spawning induction procedure include (a) the developmental stage of the gonads at the time the hormonal therapy is applied, (b) the type of hormonal therapy, (c) the possible stress induced by the manipulation necessary for the hormone administration and (d) in the case of artificial insemination, the latency period between hormonal stimulation and stripping for in vitro fertilization. Copyright 2009 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagne, F.; Burgeot, T.; Hellou, J.
2008-06-15
Economic and social developments have taken place at the expense of the health of the environment, both locally and on a global scale. In an attempt to better understand the large-scale effects of pollution and other stressors like climate change on the health status of Mytilus edulis, mussels were collected during the first two weeks of June 2005 at three sites (one pristine and two affected by pollution) located in each of the regions of the Canadian West Coast, the St. Lawrence estuary, the Atlantic East Coast and the northwestern coast of France, covering a total distance of some 11more » 000 km. The mussels were analyzed for morphologic integrity (condition factor), gametogenic activity (gonado-somatic and gonad maturation index, vitellogenin(Vtg)-like proteins), energy status (temperature-dependent mitochondrial electron transport activity and gonad lipid stores), defense mechanisms (glutathione S-transferase, metallothioneins, cytochrome P4503A activity and xanthine oxidoreductase-XOR), and tissue damage (lipid peroxidation-LPO and DNA strand breaks). The results showed that data from the reference sites in each region were usually not normally distributed, with discriminant factors reaching the number of regions (i.e. four), except for the biomarkers gonadal lipids, XOR and LPO in digestive gland. The integrated responses of the biomarkers revealed that biomarkers of stress were significantly more pronounced in mussels from the Seine estuary, suggesting that the impacts of pollution are more generalized in this area. Mussels from the Seine estuary and the Atlantic East Coast (Halifax Harbor) responded more strongly for Vtg-like proteins, but was not related to gonad maturation and gonado-somatic indexes, suggesting the presence of environmental estrogens. Moreover, these mussels displayed reduced DNA repair activity and increased LPO. Factorial analyses revealed that energy status, cytochrome P4503A activity and Vtg-like proteins were the most important biomarkers. Adaptation to warmer temperatures was reflected at the energy status levels, mussels from both the polluted and warmer sites displaying increased ratios of mitochondrial activity to lipid stores. Regional observations of biomarkers of energy status, gametogenesis and pollutant-related effects were influenced by nutrition, oxygen availability (eutrophication), and thermal history.« less
Dissecting the Role of Hedgehog Pathway in Murine Gonadal Development
ERIC Educational Resources Information Center
Barsoum, Ivraym Boshra
2009-01-01
Hedgehog (Hh) signaling pathway is one of the universal pathways involved in animal development. This dissertation focuses on Hh role in the mammalian gonad development, which is a central part of mammalian sexual development and identity. The central dogma of mammalian sex development is that genetic sex determines the gonadal sex, which in turn…
Gonadal Identity in the Absence of Pro-Testis Factor SOX9 and Pro-Ovary Factor Beta-Catenin in Mice1
Nicol, Barbara; Yao, Humphrey H.-C.
2015-01-01
Sex-reversal cases in humans and genetic models in mice have revealed that the fate of the bipotential gonad hinges upon the balance between pro-testis SOX9 and pro-ovary beta-catenin pathways. Our central query was: if SOX9 and beta-catenin define the gonad's identity, then what do the gonads become when both factors are absent? To answer this question, we developed mouse models that lack either Sox9, beta-catenin, or both in the somatic cells of the fetal gonads and examined the morphological outcomes and transcriptome profiles. In the absence of Sox9 and beta-catenin, both XX and XY gonads progressively lean toward the testis fate, indicating that expression of certain pro-testis genes requires the repression of the beta-catenin pathway, rather than a direct activation by SOX9. We also observed that XY double knockout gonads were more masculinized than their XX counterpart. To identify the genes responsible for the initial events of masculinization and to determine how the genetic context (XX vs. XY) affects this process, we compared the transcriptomes of Sox9/beta-catenin mutant gonads and found that early molecular changes underlying the XY-specific masculinization involve the expression of Sry and 21 SRY direct target genes, such as Sox8 and Cyp26b1. These results imply that when both Sox9 and beta-catenin are absent, Sry is capable of activating other pro-testis genes and drive testis differentiation. Our findings not only provide insight into the mechanism of sex determination, but also identify candidate genes that are potentially involved in disorders of sex development. PMID:26108792
Reyes-Tomassini, José J; Wong, Ten-Tsao; Zohar, Yonathan
2017-06-01
Arginine vasotocin is a hormone produced in the hypothalamus of teleost fish that has been shown to regulate gonad development and sexual behavior. To study the role of arginine vasotocin in the gonadal cycle of the hermaphrodite gilthead seabream, Sparus aurata, we cloned the seabream arginine vasotocin (avt) complementary DNA (cDNA). We investigated the expression of brain avt throughout the gonad cycle using real-time quantitative PCR and compared its expression levels to the expression levels of two key gonadal steroidogenic enzymes, cyp19a1a and cyp11b2. In July, when the process of sex reversal is thought to begin, avt expression was elevated over the previous 2 months. Avt in the brain remained at or above the level of July until November then peaked again in December. There was no difference between males and females in the expression levels of brain avt throughout the year. However, only in ambisexual fish was the expression of the cyp19a1a gonadal aromatase correlated to the expression of avt in the brain. Cyp11b2 did not show any correlation to brain avt expression. We also found that females had more intense body coloration than males and that this intensity peaked prior to spawning. Avt expression and female coloration were positively correlated. The fact that brain avt expression was lowest during gonad quiescence, together with the observation of a correlation between brain avt with gonadal cyp19a1a and body coloration during that time suggests that avt may play a role during the process of sex reversal and spawning of the gilthead seabream.
Laldinsangi, C; Senthilkumaran, B
2018-04-03
C-kit receptor is a member of a family of growth factor receptors that have tyrosine kinase activity, and are involved in the transduction of growth regulatory signals across plasma membrane by activation of its ligand, kitl/scf. The present study analysed mRNA and protein expression profiles of c-kit in the gonads of catfish, Clarias gariepinus, using real time PCR, in situ hybridization and immunohistochemistry. Tissue distribution analysis revealed higher expression mainly in the catfish gonads. Ontogeny studies showed minimal expression during early developmental stages and highest during 50-75 days post hatch, and the dimorphic expression in gonads decreased gradually till adulthood, which might suggest an important role for this gene around later stages of sex differentiation and gonadal development. Expression of C-kit was analysed at various phases of gonadal cycle in both male and female, which showed minimal expression during the resting phase, and higher expression in male compared to females during the pre-spawning phase. In vitro and in vivo induction using human chorionic gonadotropin elevated the expression of c-kit indicating the regulatory influence of hypothalamo-hypophyseal axis. In vivo transient gene silencing using c-kit-esiRNA in adult catfish during gonadal recrudescence showed a decrease in c-kit expression, which affected the expression level of germ cell meiotic marker sycp3, as well as several factors and steroidogenic enzyme genes involved in germ cell development. Decrease in the levels of serum 11-KT and T were also observed after esiRNA silencing. The findings of this study suggest that c-kit has an important role in the process of germ cell proliferation, development and maturation during gonadal development and recrudescence in catfish. Copyright © 2018. Published by Elsevier Inc.
Maeda, T; Clark, M E; Etches, R J
1998-06-01
The effects of injection and/or gamma-irradiation prior to injection on mortality, size of the gonads, and ultrastructure of primordial germ cell (PGC) were examined after 5 d of incubation. The mortality of embryos injected with donor cells was significantly higher than that of control and irradiated embryos. All irradiated embryos were alive, although their development was delayed compared to those not exposed to irradiation. The size of the gonads of embryos injected with donor cells were similar to those of control embryos, however, the size of the gonads in irradiated embryos was significantly smaller than those of control embryos. The number of PGC in the gonads was significantly decreased by irradiation. There was no notable effect of irradiation or injection on the nuclei and cytoplasmic organelles in PGC.
Role of leptin in female reproduction.
Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Maymó, Julieta; Dueñas, José L; Varone, Cecilia; Sánchez-Margalet, Víctor
2015-01-01
Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.
Abdel-Moneim, Ahmed; Deegan, Daragh; Gao, Jiejun; De Perre, Chloe; Doucette, Jarrod S; Jenkinson, Byron; Lee, Linda; Sepúlveda, Maria S
2017-11-01
Over the past decade, studies have shown that exposure to endocrine disrupting chemicals (EDCs) can cause gonadal intersex in fish. Smallmouth bass (Micropterus dolomieu) males appear to be highly susceptible to developing testicular oocytes (TO), the most prevalent form of gonadal intersex, as observed in various areas across the U.S. In this study, prevalence and severity of TO was quantified for smallmouth bass sampled from the St. Joseph River in northern Indiana, intersex biomarkers were developed, and association between TO prevalence and organic contaminants were explored. At some sites, TO prevalence reached maximum levels before decreasing significantly after the spawning season. We examined the relationship between TO presence and expression of gonadal and liver genes involved in sex differentiation and reproductive functions (esr1, esr2, foxl2, fshr, star, lhr and vtg). We found that vitellogenin (vtg) transcript levels were significantly higher in the liver of males with TO, but only when sampled during the spawning season. Further, we identified a positive correlation between plasma VTG levels and vtg transcript levels, suggesting its use as a non-destructive biomarker of TO in this species. Finally, we evaluated 43 contaminants in surface water at representative sites using passive sampling to look for contaminants with possible links to the observed TO prevalence. No quantifiable levels of estrogens or other commonly agreed upon EDCs such as the bisphenols were observed in our contaminant assessment; however, we did find high levels of herbicides as well as consistent quantifiable levels of PFOS, PFOA, and triclosan in the watershed where high TO prevalence was exhibited. Our findings suggest that the observed TO prevalence may be the result of exposures to mixtures of nonsteroidal EDCs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chaves, Eduardo M; Aguilera-Merlo, Claudia; Cruceño, Albana; Fogal, Teresa; Piezzi, Ramón; Scardapane, Luis; Dominguez, Susana
2012-05-01
The viscacha is a seasonal rodent that exhibit an annual reproductive cycle with periods of maximum reproductive activity and gonadal regression. We studied seasonal variations in the morphology and cellular population of the seminal vesicles (SVs) during both periods and in impuber animals. Seminal vesicles were studied by light and electronic microscopy. Measurements of epithelial height, nuclear diameter, luminal diameter, and muscular layer were performed. Also, we studied the distribution of androgen receptors (AR) in this gland during the reproductive cycle and in impuber animal. During gonadal regression, principal and clear cells showed signs of reduced functional activity. These were characterized by an epithelium of smaller height, irregular nuclei, and cytoplasm with few organelles, dilated cisterns, and glycogen granules. In impuber animals, the principal cells showed large nuclei with chromatin lax and cytoplasm with small mitochondria, poorly developed Golgi apparatus, and granules of glycogen. On the other hand, the cells exhibited seasonal variations in the distribution and percentage of immunolabeled cells to AR throughout the annual reproductive cycle. During the gonadal regression period, glandular mucosa exhibited numerous epithelial cells with intense nuclear staining. However, fibromuscular stromal cells were weakly positive for AR in contrast to what was observed during the activity period. Considering that testosterone values are lower in adult animals during the period of gonadal regression and in impuber animals, our immunohistochemical results show a significant correlation with the percentage of AR-immunopositive cells. In conclusion, these results demonstrate that the structure of the SVs changes in the activity period of viscacha, probably because of elevated levels of testosterone leading to an increase in the secretory activity of epithelial cells. Copyright © 2012 Wiley Periodicals, Inc.
Gonad development during the early life of Octopus maya (Mollusca: Cephalopoda).
Avila-Poveda, Omar Hernando; Colin-Flores, Rafael Francisco; Rosas, Carlos
2009-02-01
Gonad development during the early life of Octopus maya is described in terms of histological, morphometric, oocytes growth, and somatic-oocyte relationship data obtained from octopus cultured at the UMDI-UNAM, in Sisal, Yucatan, Mexico. This study is the first publication on gonad development during the early life of Octopus maya. A total of 83 O. maya specimens were used; their sizes ranged from 6.5 to 76 mm of total length (TL), 4 to 28 mm of dorsal mantle length (DML), 2.5 to 20 mm of ventral mantle length (VML), and 0.0180 to 7.2940 g of fixed body weight (fBW). Animals were weighed and measured only after preservation. A loss of 10% of living weight was estimated for juvenile octopuses after formalin preservation. The relation of length to weight (VML, DML, TL/fBW) pooled for both sexes had a strong positive correlation (r), as shown by a potential power function that was quite close to 1. Compound images were produced from numerous microscopic fields. The histological examination revealed that, 4 months after hatching, male octopus (24.5 mm DML and 7.2940 g fBW) were in gonad stages 2 (maturing) to 3 (mature), with spermatogonia and spermatocytes in the tubule wall and abundant spermatids and spermatozoa in the central lumen of the seminiferous tubules, suggesting the occurrence of different phases of gonad development at different maturity stages. In contrast, females (22.5 mm DML and 4.8210 g fBW) at the same time since hatching were immature (stage 1), with many oogonia, few oocytes, and germinal epithelium. This suggests that males reach maturity earlier than females, indicating a probable onset of maturity for males at around 4 months of culture or 8 g of wet body weight. Our results indicate the possibility that the size-at-weight can be recognized early with a degree of certainty that allows the sexes to be separated for culture purposes; but more detailed studies on reproduction in relation to endocrinology and nutrition are needed.
Smith, Craig A; Shoemaker, Christina M; Roeszler, Kelly N; Queen, Joanna; Crews, David; Sinclair, Andrew H
2008-07-24
R-Spondin1 (Rspo1) is a novel regulator of the Wnt/beta-catenin signalling pathway. Loss-of-function mutations in human RSPO1 cause testicular differentiation in 46, XX females, pointing to a role in ovarian development. Here we report the cloning and comparative expression analysis of R-SPONDIN1 orthologues in the mouse, chicken and red-eared slider turtle, three species with different sex-determining mechanisms. Evidence is presented that this gene is an ancient component of the vertebrate ovary-determining pathway. Gonadal RSPO1 gene expression is female up-regulated in the embryonic gonads in each species at the onset of sexual differentiation. In the mouse gonad, Rspo1 mRNA is expressed in the somatic cell lineage at the time of ovarian differentiation (E12.5-E15.5), with little expression in germ cells. However, the protein is localised in the cytoplasm and at the cell surface of both somatic (pre-follicular) and germ cells. In the chicken embryo, RSPO1 expression becomes elevated in females at the time of ovarian differentiation, coinciding with female-specific activation of the FOXL2 gene and estrogen synthesis. RSPO1 protein in chicken is localised in the outer cortical zone of the developing ovary, the site of primordial follicle formation and germ cell differentiation. Inhibition of estrogen synthesis with a specific aromatase inhibitor results in a decline in chicken RSPO1 expression, indicating that RSPO1 is influenced by estrogen. In the red-eared slider turtle, which exhibits temperature-dependent sex determination, up-regulation of RSPO1 occurs during the temperature-sensitive period, when gonadal development is responsive to temperature. Accordingly, RSPO1 expression is temperature-responsive, and is down-regulated in embryos shifted from female- to male-producing incubation temperatures. These results indicate that RSPO1 is up-regulated in the embryonic gonads of female vertebrates with different sex-determining mechanisms. In all instances, RSPO1 is expressed in the incipient ovary. These findings suggest that R-SPONDIN1 is an ancient, conserved part of the vertebrate ovary-determining pathway.
Smith, Craig A; Shoemaker, Christina M; Roeszler, Kelly N; Queen, Joanna; Crews, David; Sinclair, Andrew H
2008-01-01
Background R-Spondin1 (Rspo1) is a novel regulator of the Wnt/β-catenin signalling pathway. Loss-of-function mutations in human RSPO1 cause testicular differentiation in 46, XX females, pointing to a role in ovarian development. Here we report the cloning and comparative expression analysis of R-SPONDIN1 orthologues in the mouse, chicken and red-eared slider turtle, three species with different sex-determining mechanisms. Evidence is presented that this gene is an ancient component of the vertebrate ovary-determining pathway. Results Gonadal RSPO1 gene expression is female up-regulated in the embryonic gonads in each species at the onset of sexual differentiation. In the mouse gonad, Rspo1 mRNA is expressed in the somatic cell lineage at the time of ovarian differentiation (E12.5–E15.5), with little expression in germ cells. However, the protein is localised in the cytoplasm and at the cell surface of both somatic (pre-follicular) and germ cells. In the chicken embryo, RSPO1 expression becomes elevated in females at the time of ovarian differentiation, coinciding with female-specific activation of the FOXL2 gene and estrogen synthesis. RSPO1 protein in chicken is localised in the outer cortical zone of the developing ovary, the site of primordial follicle formation and germ cell differentiation. Inhibition of estrogen synthesis with a specific aromatase inhibitor results in a decline in chicken RSPO1 expression, indicating that RSPO1 is influenced by estrogen. In the red-eared slider turtle, which exhibits temperature-dependent sex determination, up-regulation of RSPO1 occurs during the temperature-sensitive period, when gonadal development is responsive to temperature. Accordingly, RSPO1 expression is temperature-responsive, and is down-regulated in embryos shifted from female- to male-producing incubation temperatures. Conclusion These results indicate that RSPO1 is up-regulated in the embryonic gonads of female vertebrates with different sex-determining mechanisms. In all instances, RSPO1 is expressed in the incipient ovary. These findings suggest that R-SPONDIN1 is an ancient, conserved part of the vertebrate ovary-determining pathway. PMID:18651984
Tao, Wenjing; Sun, Lina; Shi, Hongjuan; Cheng, Yunying; Jiang, Dongneng; Fu, Beide; Conte, Matthew A; Gammerdinger, William J; Kocher, Thomas D; Wang, Deshou
2016-05-04
MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.
Khara, M R; Pavlovych, S I; Mykhaĭliuk, V M
2013-01-01
In experiments on sexually mature rats we studied specific cholinergic regulations of the heart and the degree of its structural damage in hypothyroidism, depending on gender and hormone-productive activity of the gonads. Hypothyroidism in sexually mature males and females was modelled with mercazolil intragastric administration (75 mg/kg) daily during 15 days. We also studied the intensity of bradycardia, which occurred in response to electrical stimulation of vagus nerve and intravenous acetylcholine administration. The degree of structural heart damage was assessed by the percentage of damaged cardiomyocytes in the ventricles of myocardium. It was found that one of the mechanisms of bradycardia in merkazolil-induced hypothyroidism is an increase of the sensitivity of sinus node cholinergic receptors and release of more quanta of acetylcholine from stimulated nerves vagus endings, what was more intense in females. The intensity of bradycardia in hypothyroidism was more significant in gonadectomized animals than in individuals with preserved gonads. The mechanisms of its occurrence in males consist of release of greater amount of acetylcholine from the endings of the nerves vagus, and in females it was the result of significant increase of the sensitivity of sinus node cholinergic receptors. Regardless of the gonads activity, structural damage of the myocardium in merkazolil-induced hypothyroidism was more intensive in female rats.
Holmes, E. W.; Hojvat, S. A.; Kahn, S. E.; Bermes, E. W.
1989-01-01
Biochemical correlates of neuroendocrine/gonadal function and nocturnal levels of serotonin N-acetyltransferase (NAT) activity were determined in partially nephrectomized (PNx), male, Long Evans rats following a 5-week period of chronic renal insufficiency (CRI). PNx animals demonstrated two to four-fold elevations in urea nitrogen and three to four-fold reductions (P less than 0.02) in plasma total testosterone concentrations as compared to sham-operated controls. The pituitary LH contents of PNx rats were decreased to approximately 60% of the control value (P less than 0.05). There were no differences in plasma prolactin levels between the control and PNx groups either at mid-day or in the middle of the night. Nocturnal pineal NAT activity in PNx rats was markedly reduced to approximately 20% of the control value (P less than 0.001). Similar evidence of gonadal dysfunction (reduced plasma total testosterone and testes testosterone content) and a significant decrease in night-time levels of pineal NAT activity were also observed after 13 weeks of CRI in PNx rats of the Sprague-Dawley strain that were housed under a different photoperiod. These results suggest that pineal gland dysfunction is a feature of CRI in the PNx model. Such an abnormality might contribute to the pathogenesis of gonadal dysfunction in CRI. PMID:2765391
Minakata, H; Shigeno, S; Kano, N; Haraguchi, S; Osugi, T; Tsutsui, K
2009-03-01
The optic gland, which is analogous to the anterior pituitary in the context of gonadal maturation, is found on the upper posterior edge of the optic tract of the octopus Octopus vulgaris. In mature octopus, the optic glands enlarge and secrete a gonadotrophic hormone. A peptide with structural features similar to that of vertebrate gonadotrophin-releasing hormone (GnRH) was isolated from the brain of octopus and was named oct-GnRH. Oct-GnRH showed luteinising hormone-releasing activity in the anterior pituitary cells of the Japanese quail Coturnix coturnix. Oct-GnRH immunoreactive signals were observed in the glandular cells of the mature optic gland. Oct-GnRH stimulated the synthesis and release of sex steroids from the ovary and testis, and elicited contractions of the oviduct. Oct-GnRH receptor was expressed in the gonads and accessory organs, such as the oviduct and oviducal gland. These results suggest that oct-GnRH induces the gonadal maturation and oviposition by regulating sex steroidogenesis and a series of egg-laying behaviours via the oct-GnRH receptor. The distribution and expression of oct-GnRH in the central and peripheral nervous systems suggest that oct-GnRH acts as a multifunctional modulatory factor in feeding, memory processing, sensory, movement and autonomic functions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... shielding on patients during medical diagnostic x-ray procedures. 1000.50 Section 1000.50 Food and Drugs... shielding on patients during medical diagnostic x-ray procedures. Specific area gonad shielding covers an... that may cause genetic mutations during many medical x-ray procedures in which the gonads lie within or...
Code of Federal Regulations, 2011 CFR
2011-04-01
... shielding on patients during medical diagnostic x-ray procedures. 1000.50 Section 1000.50 Food and Drugs... shielding on patients during medical diagnostic x-ray procedures. Specific area gonad shielding covers an... that may cause genetic mutations during many medical x-ray procedures in which the gonads lie within or...
Code of Federal Regulations, 2013 CFR
2013-04-01
... shielding on patients during medical diagnostic x-ray procedures. 1000.50 Section 1000.50 Food and Drugs... shielding on patients during medical diagnostic x-ray procedures. Specific area gonad shielding covers an... that may cause genetic mutations during many medical x-ray procedures in which the gonads lie within or...
Code of Federal Regulations, 2012 CFR
2012-04-01
... shielding on patients during medical diagnostic x-ray procedures. 1000.50 Section 1000.50 Food and Drugs... shielding on patients during medical diagnostic x-ray procedures. Specific area gonad shielding covers an... that may cause genetic mutations during many medical x-ray procedures in which the gonads lie within or...
Code of Federal Regulations, 2010 CFR
2010-04-01
... shielding on patients during medical diagnostic x-ray procedures. 1000.50 Section 1000.50 Food and Drugs... shielding on patients during medical diagnostic x-ray procedures. Specific area gonad shielding covers an... that may cause genetic mutations during many medical x-ray procedures in which the gonads lie within or...
MAP3K1-related gonadal dysgenesis: Six new cases and review of the literature.
Granados, Andrea; Alaniz, Veronica I; Mohnach, Lauren; Barseghyan, Hayk; Vilain, Eric; Ostrer, Harry; Quint, Elisabeth H; Chen, Ming; Keegan, Catherine E
2017-06-01
Investigation of disorders of sex development (DSD) has resulted in the discovery of multiple sex-determining genes. MAP3K1 encodes a signal transduction regulator in the sex determination pathway and is emerging as one of the more common genes responsible for 46,XY DSD presenting as complete or partial gonadal dysgenesis. Clinical assessment, endocrine evaluation, and genetic analysis were performed in six individuals from four unrelated families with 46,XY DSD. All six individuals were found to have likely pathogenic MAP3K1 variants. Three of these individuals presented with complete gonadal dysgenesis, characterized by bilateral streak gonads with typical internal and external female genitalia, while the other three presented with partial gonadal dysgenesis, characterized by incomplete testicular development, resulting in clitoral hypertrophy with otherwise typical female external genitalia. Testing for MAP3K1 variants should be considered in patients with 46,XY complete or partial gonadal dysgenesis, particularly in families with multiple members affected with 46,XY DSD. Identification of a MAP3K1 variant should prompt an evaluation for DSD in female siblings of the proband. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Widianingsih, Widianingsih; Zaenuri, Muhammad; Anggoro, Sutrisno; Pancasakti Kusumaningrum, Hermin; Hartati, Retno
2018-02-01
The holothurian Paracaudina australis is belong to family Caudinidae, ordo Molpadida and class Holothuroidea. This species is among the most common holothurian widely distributed in the tropical water. The purpose of this reseach is to do preliminary study on maturity stages of sea cucumber Paracaudina australis from Kenjeran Water, Surabaya, Indonesia. This research was conducted on April 2016. Samples were collected randomly on the Kenjeran Water, Surabaya. The result showed that there are five stages of gonad maturity. At the stage of maturity 1, the gonad was not clearly distinguished, there were unbranched small tubule. At the stage of maturity 2, there were small branched of tubules. At this stage, gonad can be differentiated between male and female. At the stage of maturity 3, tubule can been branched not only for male but also female. At the stage of maturity 4, the gonad was good mature, there were clearly branched tubule. At the stage of matury 5, there were generally had empty tubule except for a few relict unreleased spermatozoa. At female gonad, there were shrunken tubule and relict oocytes were presented in the lumen of the tubule.
De Oliveira, D H A; Fighera, T M; Bianchet, L C; Kulak, C A M; Kulak, J
2012-12-01
Testosterone is the major gonadal sex steroid produced by the testes in men. Androgens induce male sexual differentiation before birth and sexual maturation during puberty; in adult men, they maintain the function of the male genital system, including spermatogenesis. Testosterone is also produced in smaller amounts by the ovaries in women. The adrenal glands produce the weaker androgens dehydroepiandrosterone, dehydroepiandrosterone sulfate, and androstenedione. Because testosterone can be metabolized to estradiol by the aromatase enzyme, there has been controversy as to which gonadal sex steroid has the greater skeletal effect. In this respect, there is increasing evidence that at least part of the effects of androgens in men can be explained by their aromatization into estrogens. The current evidence suggests that estradiol plays a greater role in maintenance of skeletal health than testosterone, but that androgens also have direct beneficial effects on bone.
Intrahippocampal Muscimol Shifts Learning Strategy in Gonadally Intact Young Adult Female Rats
ERIC Educational Resources Information Center
McElroy, Molly W.; Korol, Donna L.
2005-01-01
Learning strategy preferences depend upon circulating estrogen levels, with enhanced hippocampus-sensitive place learning coinciding with elevated estrogen levels. The effects of estrogen on strategy may be mediated by fluctuations in GABAergic function, given that inhibitory tone in the hippocampus is low when estrogen is high. We investigated…
The drinking water disinfection by-product, dibromoacetic acid (DBA) has been reported to affect gonadal functions in the male rat. However, there is little information regarding its influence on female reproductive activity. Consequently, the present study investigated the eff...
Prochloraz is a fungicide known to cause endocrine disruption through effects on the hypothalamic-pituitary-gonadal (HPG) axis. To determine the short-term impacts of prochloraz on gene expression and steroid production, adult female fathead minnows (Pimephales promelas) were exp...
Many structural and functional aspects of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis are known to be highly conserved, but the full significance of this from a toxicological perspective has received comparatively little attention. High-quality data generated throug...
Two hermaphroditic alewives from Lake Michigan
Edsall, Thomas A.; Saxon, Margaret I.
1968-01-01
Hermaphroditism has been reported frequently among many of the Clupeidae, but only one account of hermaphroditism has been published for the alewife, Alosa pseudoharengus. Rothschild discovered four hermaphroditic alewives among 444 fish he examined from Cayuga Lake, New York. We recently collected two hermaphroditic alewives from Lake Michigan. Both fish were normal in external appearance but were easily identified as hermaphrodites by gross examination of their gonads. The first hermaphrodite (177 mm T.L.) was discovered among several hundred normal adult alewives captured in early July 1965 in the Kalamazoo River about one mile upstream from Lake Michigan. The second hermaphroditic alewife (152 mm T.L.) was obtained from a sample of 160 adult alewives captured in Lake Michigan near the mouth of the Kalamazoo River in mid-April 1966.
NASA Astrophysics Data System (ADS)
Ijiri, K.
In the second International Microgravity Laboratory (IML-2) mission in 1994, four small Japanese killifish (Medaka, Oryzias latipes) made a space travel of 15 days aboard a space shuttle. These four adult Medaka fish successfully mated in space for the first time among vertebrate animals. Moreover, the eggs they laid developed normally, at least in their external appearance, hatching as fry (baby fish) in space. Fish mated and laid eggs every day during the first week. Near the end of the mission most of the eggs had a well-developed body with two pigmented eyes. In total, 43 eggs were laid (detected), out of which 8 fry hatched in space, as truly `space-originated' babies. A further 30 fry hatched within 3 days after landing. This is the normal hatching rate, compared with the ground-based data. Among the 8 space-originated fry, four were killed for histological sections, and germ cells at the gonadal region were counted for each fry. Their numbers were in the range of the germ cells of the normal control fry (ground-kept samples). Thus, as embryos developed normally in their external appearance, inside the embryos the formation of primordial germ cells took place normally in space, and their migration to the genital ridges was not hindered by microgravity. The two of the remaining space-originated fry have grown up and been creating their offspring in the laboratory. This proved that the primordial germ cells formed in space were also normal from a functional point of view. The four space-travelled adult fish re-started mating and laying eggs on the 7th day after landing and continued to do so every day afterward. Fertilization rate and hatchability of these eggs were as high as the eggs laid by the laboratory-kept fish. This fact implies that in gametogenesis of adult fish, there are no specific stages of germ cells extremely susceptible to microgravity.
Jak2 is Necessary for Neuroendocrine Control of Female Reproduction
Wu, Sheng; Divall, Sara; Hoffman, Gloria E.; Le, Wei Wei; Wagner, Kay-Uwe; Wolfe, Andrew
2011-01-01
GnRH neurons represent the final common output of signals from the brain that regulates reproductive function. A wide range of environmental factors impact GnRH neuron activity including disease, stress, nutrition, and seasonal cues, as well as gonadal steroid hormones. The CNS response is thought to be mediated, at least in part, through intermediate signaling molecules that affect GnRH neuronal activity. In vitro, GnRH neuronal cell lines respond to a variety of ligands which activate the Jak/STAT intracellular signaling pathway. In order to determine its biological function in reproduction, we used Cre/LoxP technology to generate GnRH neuron specific Jak2 conditional knockout (Jak2 G−/−) mice. GnRH mRNA levels were reduced in Jak2 G−/− mice when compared to controls, while the number of GnRH neurons was equivalent, indicating a reduction in GnRH gene expression. Secretion of GnRH is also reduced as basal serum LH levels were significantly lower in female Jak2 G−/− mice while the pituitary responded normally to exogenous GnRH. Preovulatory LH surge levels were blunted in Jak2 G−/− mice, which was correlated with reduced GnRH neuronal activation as assessed by c-Fos. However the activation of GnRH neurons following release from estrogen negative feedback is retained. Female Jak2 G−/− mice exhibited significantly delayed puberty and first estrus, abnormal estrous cyclicity and impaired fertility. These results demonstrate an essential role for Jak2 signaling in GnRH neurons for normal reproductive development and fertility in female mice. PMID:21209203
X and Y Chromosome Complement Influence Adiposity and Metabolism in Mice
Chen, Xuqi; McClusky, Rebecca; Itoh, Yuichiro; Reue, Karen
2013-01-01
Three different models of MF1 strain mice were studied to measure the effects of gonadal secretions and sex chromosome type and number on body weight and composition, and on related metabolic variables such as glucose homeostasis, feeding, and activity. The 3 genetic models varied sex chromosome complement in different ways, as follows: 1) “four core genotypes” mice, comprising XX and XY gonadal males, and XX and XY gonadal females; 2) the XY* model comprising groups similar to XO, XX, XY, and XXY; and 3) a novel model comprising 6 groups having XO, XX, and XY chromosomes with either testes or ovaries. In gonadally intact mice, gonadal males were heavier than gonadal females, but sex chromosome complement also influenced weight. The male/female difference was abolished by adult gonadectomy, after which mice with 2 sex chromosomes (XX or XY) had greater body weight and percentage of body fat than mice with 1 X chromosome. A second sex chromosome of either type, X or Y, had similar effects, indicating that the 2 sex chromosomes each possess factors that influence body weight and composition in the MF1 genetic background. Sex chromosome complement also influenced metabolic variables such as food intake and glucose tolerance. The results reveal a role for the Y chromosome in metabolism independent of testes and gonadal hormones and point to a small number of X–Y gene pairs with similar coding sequences as candidates for causing these effects. PMID:23397033
Baillon, Lucie; Oses, Jennifer; Pierron, Fabien; Bureau du Colombier, Sarah; Caron, Antoine; Normandeau, Eric; Lambert, Patrick; Couture, Patrice; Labadie, Pierre; Budzinski, Hélène; Dufour, Sylvie; Bernatchez, Louis; Baudrimont, Magalie
2015-11-01
Since the early 1980s, the population of European eels (Anguilla anguilla) has dramatically declined. Nowadays, the European eel is listed on the red list of threatened species (IUCN Red List) and is considered as critically endangered of extinction. Pollution is one of the putative causes for the collapse of this species. Among their possible effects, contaminants gradually accumulated in eels during their somatic growth phase (yellow eel stage) would be remobilized during their reproductive migration leading to potential toxic events in gonads. The aim of this study was to investigate the effects of organic and inorganic contaminants on the gonad development of wild female silver eels. Female silver eels from two sites with differing contamination levels were artificially matured. Transcriptomic analyses by means of a 1000 candidate gene cDNA microarray were performed on gonads after 11weeks of maturation to get insight into the mechanisms of toxicity of contaminants. The transcription levels of several genes, that were associated to the gonadosomatic index (GSI), were involved in mitotic cell division but also in gametogenesis. Genes associated to contaminants were mainly involved in the mechanisms of protection against oxidative stress, in DNA repair, in the purinergic signaling pathway and in steroidogenesis, suggesting an impairment of gonad development in eels from the polluted site. This was in agreement with the fact that eels from the reference site showed a higher gonad growth in comparison to contaminated fish. Copyright © 2015 Elsevier Ltd. All rights reserved.
The union of somatic gonad precursors and primordial germ cells during C. elegans embryogenesis
Rohrschneider, Monica R.; Nance, Jeremy
2013-01-01
Somatic gonadal niche cells control the survival, differentiation, and proliferation of germline stem cells. The establishment of this niche-stem cell relationship is critical, and yet the precursors to these two cell types are often born at a distance from one another. The simple C. elegans gonadal primordium, which contains two somatic gonad precursors (SGPs) and two primordial germ cells (PGCs), provides an accessible model for determining how stem cell and niche cell precursors first assemble during development. To visualize the morphogenetic events that lead to formation of the gonadal primordium, we generated transgenic strains to label the cell membranes of the SGPs and PGCs and captured time-lapse movies as the gonadal primordium formed. We identify three distinct phases of SGP behavior: posterior migration along the endoderm towards the PGCs, extension of a single long projection around the adjacent PGC, and a dramatic wrapping over the PGC surfaces. We show that the endoderm and PGCs are dispensable for SGP posterior migration and initiation of projections. However, both tissues are required for the final positioning of the SGPs and the morphology of their projections, and PGCs are absolutely required for SGP wrapping behaviors. Finally, we demonstrate that the basement membrane component laminin, which localizes adjacent to the developing gonadal primordium, is required to prevent the SGPs from over-extending past the PGCs. Our findings provide a foundation for understanding the cellular and molecular regulation of the establishment of a niche-stem cell relationship. PMID:23562590
Progesterone as a bone-trophic hormone.
Prior, J C
1990-05-01
Experimental, epidemiological, and clinical data indicate that progesterone is active in bone metabolism. Progesterone appears to act directly on bone by engaging an osteoblast receptor or indirectly through competition for a glucocorticoid osteoblast receptor. Progesterone seems to promote bone formation and/or increase bone turnover. It is possible, through estrogen-stimulated increased progesterone binding to the osteoblast receptor, that progesterone plays a role in the coupling of bone resorption with bone formation. A model of the interdependent actions of progesterone and estrogen on appropriately-"ready" cells in each bone multicellular unit can be tied into the integrated secretions of these hormones within the ovulatory cycle. Figure 5 is an illustration of this concept. It shows the phases of the bone remodeling cycle in parallel with temporal changes in gonadal steroids across a stylized ovulatory cycle. Increasing estrogen production before ovulation may reverse the resorption occurring in a "sensitive" bone multicellular unit while gonadal steroid levels are low at the time of menstrual flow. The bone remodeling unit would then be ready to begin a phase of formation as progesterone levels peaked in the midluteal phase. From this perspective, the normal ovulatory cycle looks like a natural bone-activating, coherence cycle. Critical analysis of the reviewed data indicate that progesterone meets the necessary criteria to play a causal role in mineral metabolism. This review provides the preliminary basis for further molecular, genetic, experimental, and clinical investigation of the role(s) of progesterone in bone remodeling. Much further data are needed about the interrelationships between gonadal steroids and the "life cycle" of bone. Feldman et al., however, may have been prophetic when he commented; "If this anti-glucocorticoid effect of progesterone also holds true in bone, then postmenopausal osteoporosis may be, in part, a progesterone deficiency disease."
Cox, K H; Rissman, E F
2011-06-01
Play behavior in juvenile primates, rats and other species is sexually dimorphic, with males showing more play than females. In mice, sex differences in juvenile play have only been examined in out-bred CD-1 mice. In this strain, contrary to other animals, male mice display less play soliciting than females. Using an established same-sex dyadic interaction test, we examined play in in-bred C57BL/6J (B6) 21-day-old mice. When paired with non-siblings, males tended to be more social than females, spending more time exploring the test cage. Females displayed significantly more anogenital sniffing and solicited play more frequently than did males. To determine if the origin of the sex difference was sex chromosome genes or gonadal sex, next we used the four core genotype mouse. We found significant interactions between gonadal sex and genotype for several behaviors. Finally, we asked if sibling pairs (as compared to non-siblings) would display qualitatively or quantitatively different behavior. In fact, XX females paired with a sibling were more social and less exploratory or investigative, whereas XY males exhibited less investigative and play soliciting behaviors in tests with siblings. Many neurobehavioral disorders, like autism spectrum disorder (ASD), are sexually dimorphic in incidence and patients interact less than normal with other children. Our results suggest that sex chromosome genes interact with gonadal hormones to shape the development of juvenile social behavior, and that social context can drastically alter sex differences. These data may have relevance for understanding the etiology of sexually dimorphic disorders such as ASD. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Blom, Dirk J; Djedjos, C Stephen; Monsalvo, Maria Laura; Bridges, Ian; Wasserman, Scott M; Scott, Rob; Roth, Eli
2015-09-25
Vitamin E transport and steroidogenesis are closely associated with low-density lipoproteins (LDLs) metabolism, and evolocumab can lower LDL cholesterol (LDL-C) to low levels. To determine the effects of evolocumab on vitamin E and steroid hormone levels. After titration of background lipid-lowering therapy per cardiovascular risk, 901 patients with an LDL-C ≥2.0 mmol/L were randomized to 52 weeks of monthly, subcutaneous evolocumab, or placebo. Vitamin E, cortisol, adrenocorticotropic hormone, and gonadal hormones were analyzed at baseline and week 52. In a substudy (n=100), vitamin E levels were also measured in serum, LDL, high-density lipoprotein, and red blood cell membranes at baseline and week 52. Absolute vitamin E decreased in evolocumab-treated patients from baseline to week 52 by 16% but increased by 19% when normalized for cholesterol. In the substudy, vitamin E level changes from baseline to week 52 mirrored the changes in the lipid fraction, and red blood cell membrane vitamin E levels did not change. Cortisol in evolocumab-treated patients increased slightly from baseline to week 52, but adrenocorticotropic hormone and the cortisol:adrenocorticotropic hormone ratio did not change. No patient had a cortisol:adrenocorticotropic hormone ratio <3.0 (nmol/pmol). Among evolocumab-treated patients, gonadal hormones did not change from baseline to week 52. Vitamin E and steroid changes were consistent across subgroups by minimum postbaseline LDL-C <0.4 and <0.6 mmol/L. As expected, vitamin E levels changed similarly to lipids among patients treated for 52 weeks with evolocumab. No adverse effects were observed in steroid or gonadal hormones, even at very low LDL-C levels. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01516879. © 2015 American Heart Association, Inc.
Young, Brian Jonathan; López, Gabriela Carina; Cristos, Diego Sebastián; Crespo, Diana Cristina; Somoza, Gustavo Manuel; Carriquiriborde, Pedro
2017-07-01
The aim of the present study was to assess the responses of the gonopodium morphology and the gonadal and liver histology of adult male Cnesterodon decemmaculatus to sublethal long-term exposure concentrations of 17α-ethinylestradiol (EE2). Two experiments were conducted exposing the fish to waterborne concentrations of EE2 ranging from 20 ng/L to 200 ng/L for 8 wk, 12 wk, and 16 wk. Intersex gonads were observed after 8 wk and 16 wk in fish exposed to 200 ng EE2/L and 100 ng EE2/L, respectively. Oocytes' development from testis germ cells and replacement of the efferent duct periodic acid-Schiff-positive secretion surrounding spermatozeugmata by parenchymal tissue and duct structure alterations were the major observed changes in the gonads. In contrast, no response was observed in the gonopodium morphology. Liver histology was also altered, showing increasing steatosis, single-cell necrosis to generalized necrosis, and disruption of acinar organization from 100 ng EE2/L to 200 ng EE2/L. In summary, the present results showed that although EE2 was not able to alter the morphology of a developed gonopodium, it was capable of inducing development of testicular oocytes in adult male C. decemmaculatus at environmentally relevant concentrations. Thus, externally normal but intersex C. decemmaculatus males would be expected in the wastewater-receiving streams that the species inhabits. According to the literature, the present study would be the first indicating estrogen-induced intersex in adult male poeciliid. Environ Toxicol Chem 2017;36:1738-1745. © 2016 SETAC. © 2016 SETAC.
Avila-Poveda, Omar Hernando; Abadia-Chanona, Quetzalli Yasú
2013-01-01
This study describes and recognises, using histological and microscopical examinations on a morphometrical basis, several gonad traits through the early life stages of Chiton articulatus and C. albolineatus. Gonadal ontogenesis, gonad development stages, sexual differentiation, onset of the first sexual maturity, and growth sequences or "early life stages" were determined. In addition, allometry between lengths and body weight pooled for both sexes per each chiton were calculated using equation Y = aX(b) . A total of 125 chitons (4≤TL≤40 mm, in total length "TL") were used. All allometric relations showed a strong positive correlation (r), close to 1, with b-values above three, indicating an isometric growth. Gonadal ontogenesis and gonad development stages were categorised into three periods ("Pw" without gonad, "Pe" gonad emergence, and "Pf" gonadal sac formed) and four stages ("S0" gametocytogenesis, "S1" gametogenesis, "S2" mature, and "S3" spawning), respectively. Compound digital images were attained for each process. Periods and stages are overlapped among them and between species, with the following overall confidence intervals in TL: Pw 6.13-14.32 mm, Pe 10.32-16.93 mm, Pf 12.99-25.01 mm, S0 16.08-24.34 mm (females) and 19.51-26.60 mm (males), S1 27.15-35.63 mm (females) and 23.45-32.27 mm (males), S2 24.48-40.24 mm (females) and 25.45-32.87 mm (males). Sexual differentiation (in S0) of both chitons occurs first as a female then as a male; although, males reach the onset of the first sexual maturity earlier than females, thus for C. articulatus males at 17 mm and females at 32 mm, and for C. albolineatus males at 23.5 mm and females at 28 mm, all in TL. Four early life stages (i.e., subjuvenile, juvenile, subadult, and adult) are described and proposed to distinguish growth sequences. Our results may be useful to diverse disciplines, from developmental biology to fisheries management.
Wang, Wei; Zhu, Hua; Dong, Ying; Tian, ZhaoHui; Dong, Tian; Hu, HongXia; Niu, CuiJuan
2017-12-01
Molecular mechanism of sex determination and differentiation of sturgeon, a primitive fish species, is extraordinarily important due to the valuable caviar; however, it is still poorly known. The present work aimed to identify the major genes involved in regulating gonadal development of sterlet, a small species of sturgeon, from 13 candidate genes which have been shown to relate to gonadal differentiation and development in other teleost fish. The sex and gonadal development of sterlets were determined by histological observation and levels of sex steroids testosterone (T), 11-ketotestosterone (11-KT), and 17β-estradiol (E2) in serum. Sexually dimorphic gene expressions were investigated. The results revealed that gonadal development were asynchronous in 2-year-old male and female sterlets with the testes in early or mid-spermatogenesis and the ovaries in chromatin nucleolus stage or perinucleolus stage, respectively. The levels of T and E2 were not significantly different between sexes or different gonadal development stages while 11-KT had the higher level in mid-spermatogenesis testis stage. In all the investigated gonadal development stages, gene dmrt1 and hsd11b2 were expressed higher in male whereas foxl2 and cyp19a1 were expressed higher in female. Thus, these genes provided the promising markers for sex identification of sterlet. It was unexpected that dkk1 and dax1 had significantly higher expression in ovarian perinucleolus stage than in ovarian chromatin nucleolus stage and in the testis, suggesting that these two genes had more correlation with ovarian development than with the testis, contrary to the previous reports in other vertebrates. Testicular development-related genes (gsdf and amh) and estrogen receptor genes (era and erb) differentially expressed at different testis or ovary development stages, but their expressions were not absolutely significantly different in male and female, depending on the gonadal development stage. Expression of androgen receptor gene ar or rspo, which was supposed to be related to ovarian development, presented no difference between gonadal development stages investigated in this study whenever in male or female.
Bandak, M; Jørgensen, N; Juul, A; Lauritsen, J; Kier, M G G; Mortensen, M S; Oturai, P S; Mortensen, J; Hojman, P; Helge, J W; Daugaard, G
2017-07-01
Testicular cancer survivors have impaired gonadal function and increased risk of metabolic syndrome when compared to healthy controls. However, because of the fetal etiology of testicular cancer, familial unrelated healthy men might not be an optimal control group. The objective of this study was to clarify if testicular cancer survivors have impaired gonadal function and increased risk of metabolic syndrome when compared to their biological brothers. A cross-sectional study of testicular cancer survivors (ClinicalTrials.gov number, NCT02240966) was conducted between 2014 and 2016. Of 158 testicular cancer survivors included, 24 had a biological brother who accepted to participate in the study. Serum levels of reproductive hormones and prevalence of metabolic syndrome according to International Diabetes Federation Criteria and National Cholesterol Education Program (Adult Treatment Panel III) criteria comprised the main outcome measures of the study. Median age was similar in testicular cancer survivors and their biological brothers [44 years (IQR 39-50) vs. 46 (40-53) years respectively (p = 0.1)]. In testicular cancer survivors, follow-up since treatment was 12 years (7-19). Serum levels of luteinizing hormone and follicle-stimulating hormone were elevated (p ≤ 0.001), while total testosterone, free testosterone, inhibin B and anti-Müllerian hormone were lower (p ≤ 0.001) in testicular cancer survivors than in their biological brothers. The prevalence of metabolic syndrome was similar and apart from HDL-cholesterol, which was lower in testicular cancer survivors (p = 0.01); there were no differences in the individual components of the metabolic syndrome between testicular cancer survivors and their brothers. In conclusion, gonadal function was impaired in testicular cancer survivors, while we did not detect any difference in the prevalence of metabolic syndrome between testicular cancer survivors and their biological brothers. © 2017 American Society of Andrology and European Academy of Andrology.
Mateos, Hintsa T; Lewandowski, Paul A; Su, Xiao Q
2011-08-01
This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P < 0.05). For DPAn-3 the higher level was also found in muscle and gonad of abalone fed diet supplemented with 2% FO (P < 0.05). Elongase 2 expression was markedly higher in the muscle of abalone fed diet supplemented with 1.5% FO (P < 0.05), followed by the diet containing 2% FO supplement. For ∆6 desaturase, significantly higher expression was observed in muscle of abalone fed with diet containing 0.5% FO supplement (P < 0.05). Supplementation with FO in the normal commercial diet can significantly improve long chain n-3 PUFA level in cultured abalone, with 1.5% being the most effective supplementation level.
2005-01-01
In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4–5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation. PMID:15601595
Pailhoux, Eric; Vigier, Bernard; Schibler, Laurent; Cribiu, Edmond P; Cotinot, Corinne; Vaiman, Daniel
2005-01-01
In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4-5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation.
Bramble, Matthew S; Lipson, Allen; Vashist, Neerja; Vilain, Eric
2017-01-02
Sex differences in brain development and postnatal behavior are determined largely by genetic sex and in utero gonadal hormone secretions. In humans however, determining the weight that each of these factors contributes remains a challenge because social influences should also be considered. Cases of disorders of sex development (DSD) provide unique insight into how mutations in genes responsible for gonadal formation can perturb the subsequent developmental hormonal milieu and elicit changes in normal human brain maturation. Specific forms of DSDs such as complete androgen insensitivity syndrome (CAIS), congenital adrenal hyperplasia (CAH), and 5α-reductase deficiency syndrome have variable effects between males and females, and the developmental outcomes of such conditions are largely dependent on sex chromosome composition. Medical and psychological works focused on CAH, CAIS, and 5α-reductase deficiency have helped form the foundation for understanding the roles of genetic and hormonal factors necessary for guiding human brain development. Here we highlight how the three aforementioned DSDs contribute to brain and behavioral phenotypes that can uniquely affect 46,XY and 46,XX individuals in dramatically different fashions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorski, R.A.
1986-12-01
The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatizationmore » of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period.« less
NASA Technical Reports Server (NTRS)
Flynn, Katherine M.; Miller, Shelly A.; Sower, Stacia A.; Schreibman, Martin P.
2002-01-01
The N-methyl-D-aspartate glutamate receptor (NMDAR) is found in hypothalamic nuclei involved in the regulation of reproduction in several species of mammals and fishes. NMDAR is believed to affect reproductive development and function by regulating gonadotropin releasing hormone (GnRH)-producing cells. These pathways are likely to be sexually dimorphic, as are several other neurotransmitter systems involved in reproductive function. In this report, male and female platyfish received intraperitoneal injections of 0, 5, 10, 20, 40 or 60 microg/g body wt. of the non-competitive NMDAR antagonist MK-801. Injections began at 6 weeks of age and continued thrice weekly until control animals reached puberty, as evidenced by anal fin maturation. The percent of pubescent animals was significantly affected by sex and treatment, with fewer MK-801-injected females in puberty than control females at each dose (P<0.001), and fewer pubescent females than males at 10, 20 and 40 microg/g (P<0.05). There were no MK-801-related effects in males. Histological analyses revealed typical immature gonads and pituitary glands in treated females, and typical mature morphology in control females and all males. Immunocytochemical distribution of the R1 subunit of the NMDAR within the brain-pituitary-gonad (BPG) axis was limited to GnRH-containing brain cells in all animals; however, NMDAR1 distribution was in an immature pattern in treated females and a mature pattern in all others. Neural concentrations of GnRH were unaffected by MK-801 treatment in both sexes. These data suggest that in the platyfish, NMDAR influence on reproductive development is sexually dimorphic and occurs at, or above, the level of GnRH-containing cells of the BPG axis.
Smolarz, Katarzyna; Zabrzańska, Sandra; Konieczna, Lucyna; Hallmann, Anna
2018-04-01
This paper describes changes in the content of free steroid hormones e.g. testosterone (T), estradiol-17β (E2), estrone (E1) and estriol (E3) of Mytilus trossulus from the southern Baltic Sea as a function of season, stage of gametogenesis, sex, tissue (gonadal and somatic) and depth. The highest levels of T, E2, E1 and E3 were found in mussels sampled in spring and summer while the lowest levels were found in winter. This pattern was stable and was seen in both sexes and tissues in mussels from both mussel beds. The spring and summer peaks in steroid levels (SL) coincided with advanced levels of gametogenesis (the highest gonadal index, GI) of our model species. But, the lowest GI (autumn) and the lowest steroids content (winter) did not overlap. Instead, water temperature increase was followed by increase of SL and vice versa. This suggests that steroids may not be actively involved in the early stages of gamete development and does not preclude them from potentially being involved as endogenous modulators in the final stages of reproduction (e.g. spawning). Hence, observed fluctuations in SL in our model species are unlikely to be caused by reproductive cycle but are rather of unknown nature, likely linked with environmental conditions. Sex-related differences in steroid content included estrogen domination in females and androgen domination in males. A trend towards higher level of steroids in gills than in gonads was found, supporting the hypothesis about an exogenous origin of steroids in bivalves. However, based on the present results, we cannot exclude the possibility that these steroids have both an endogenous and exogenous origin. Copyright © 2017 Elsevier Inc. All rights reserved.
Ovotesticular disorder of sexual development and a rare 46,XX/47,XXY karyotype.
Ozsu, Elif; Mutlu, Gul Yesiltepe; Cizmecioglu, Filiz M; Ekingen, Gülsen; Muezzinoglu, Bahar; Hatun, Sukru
2013-01-01
Ovotesticular disorder of sexual development (DSD) is characterized by the presence of both ovarian and testicular tissues in the same individual. The most common karyotype is 46,XX. Here, we report the case of a boy with a 46,XX/47,XXY karyotype diagnosed as ovotesticular DSD by gonadal biopsy. A 5-month-old boy presented with hypospadias, unilateral cryptorchidism, and a micropenis. Pelvic magnetic resonance imaging revealed a suspicious gonad tissue that is solid in structure in the right scrotum and a suspicious gonad that is cystic in structure in the left inguinal canal. He underwent a diagnostic laparoscopy. Cytogenetic analysis of peripheral blood revealed a 46,XX/47,XXY karyotype. Histopathologic examination of the left gonad showed ovarian tissue containing primordial follicles with ipsilateral undifferentiated tuba uterina. The right gonad showed immature testis tissue. He underwent left gonadectomy and hypospadias repair, and was raised as a male. Through this rare case, we highlight the importance of histological and cytogenetic investigation in DSD.
Wan, Zhiyi; Lu, Yanan; Rui, Lei; Yu, Xiaoxue; Yang, Fang; Tu, Chengfang; Li, Zandong
2017-06-20
Most female birds develop only a left ovary, whereas males develop bilateral testes. The mechanism underlying this process is still not completely understood. Here, we provide a comprehensive transcriptional analysis of female chicken gonads and identify novel candidate side-biased genes. RNA-Seq analysis was carried out on total RNA harvested from the left and right gonads on embryonic day 6 (E6), E12, and post-hatching day 1 (D1). By comparing the gene expression profiles between the left and right gonads, 347 differentially expressed genes (DEGs) were obtained on E6, 3730 were obtained on E12, and 2787 were obtained on D1. Side-specific genes were primarily derived from the autosome rather than the sex chromosome. Gene ontology and pathway analysis showed that the DEGs were most enriched in the Piwi-interactiing RNA (piRNA) metabolic process, germ plasm, chromatoid body, P granule, neuroactive ligand-receptor interaction, microbial metabolism in diverse environments, and methane metabolism. A total of 111 DEGs, five gene ontology (GO) terms, and three pathways were significantly different between the left and right gonads among all the development stages. We also present the gene number and the percentage within eight development-dependent expression patterns of DEGs in the left and right gonads of female chicken.
Characterization of the Epigenetic Changes During Human Gonadal Primordial Germ Cells Reprogramming.
Eguizabal, C; Herrera, L; De Oñate, L; Montserrat, N; Hajkova, P; Izpisua Belmonte, J C
2016-09-01
Epigenetic reprogramming is a central process during mammalian germline development. Genome-wide DNA demethylation in primordial germ cells (PGCs) is a prerequisite for the erasure of epigenetic memory, preventing the transmission of epimutations to the next generation. Apart from DNA demethylation, germline reprogramming has been shown to entail reprogramming of histone marks and chromatin remodelling. Contrary to other animal models, there is limited information about the epigenetic dynamics during early germ cell development in humans. Here, we provide further characterization of the epigenetic configuration of the early human gonadal PGCs. We show that early gonadal human PGCs are DNA hypomethylated and their chromatin is characterized by low H3K9me2 and high H3K27me3 marks. Similarly to previous observations in mice, human gonadal PGCs undergo dynamic chromatin changes concomitant with the erasure of genomic imprints. Interestingly, and contrary to mouse early germ cells, expression of BLIMP1/PRDM1 persists in through all gestational stages in human gonadal PGCs and is associated with nuclear lysine-specific demethylase-1. Our work provides important additional information regarding the chromatin changes associated with human PGCs development between 6 and 13 weeks of gestation in male and female gonads. Stem Cells 2016;34:2418-2428. © 2016 AlphaMed Press.
Environmental sex determination mechanisms in reptiles.
Merchant-Larios, H; Díaz-Hernández, V
2013-01-01
Temperature-dependent sex determination (TSD) was first discovered in reptiles. Since then, a great diversity of sex-determining responses to temperature has been reported. Higher temperatures can produce either males or females, and the temperature ranges and lengths of exposure that influence TSD are remarkably variable among species. In addition, transitory gene regulatory networks leading to gonadal TSD have evolved. Although most genes involved in gonadal development are conserved in vertebrates, including TSD species, temporal and spatial gene expression patterns vary among species. Despite variation in TSD pattern and gene expression heterochrony, the structural framework, the medullary cords, and cortex of the bipotential gonad have been strongly conserved. Aromatase (CYP19), which regulates gonadal estrogen levels, is proposed to be the main target of a putative thermosensitive factor for TSD. However, manipulation of estrogen levels rarely mimics the precise timing of temperature effects on expression of gonadal genes, as occurs with TSD. Estrogen levels may influence sex determination or gonad differentiation depending on the species. Furthermore, the process leading to sex determination under the influence of temperature poses problems that are not encountered by species with genetic sex determination. Yolk steroids of maternal origin and steroids produced by the embryonic nervous system should also be considered as sources of hormones that may play a role in TSD. Copyright © 2012 S. Karger AG, Basel.
Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L.; Deviche, Pierre
2015-01-01
ABSTRACT Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary–gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. PMID:26333925
Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre
2015-07-10
Energy deficiency can suppress reproductive functions in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none has investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's Towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone (T) responsiveness of the HPG axis. Wild-caught birds were either ad libitum-fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma T response to GnRH challenge. Energy deficiency did, however, decrease the plasma T responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting in decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. © 2015. Published by The Company of Biologists Ltd.
Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre
2015-09-01
Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. © 2015. Published by The Company of Biologists Ltd.
Determination of gonad doses during robotic stereotactic radiosurgery for various tumor sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zorlu, Faruk; Dugel, Gozde; Ozyigit, Gokhan
Purpose: The authors evaluated the absorbed dose received by the gonads during robotic stereotactic radiosurgery (SRS) for the treatment of different tumor localizations. Methods: The authors measured the gonad doses during the treatment of head and neck, thoracic, abdominal, or pelvic tumors in both RANDO phantom and actual patients. The computerized tomography images were transferred to the treatment planning system. The contours of tumor and critical organs were delineated on each slice, and treatment plans were generated. Measurements for gonad doses were taken from the geometric projection of the ovary onto the skin for female patients, and from the scrotalmore » skin for male patients by attaching films and Thermoluminescent dosimeters (TLDs). SRS was delivered with CyberKnife (Accuray Inc., Sunnyvale, CA). Results: The median gonadal doses with TLD and film dosimeter in actual patients were 0.19 Gy (range, 0.035-2.71 Gy) and 0.34 Gy (range, 0.066-3.18 Gy), respectively. In the RANDO phantom, the median ovarian doses with TLD and film dosimeter were 0.08 Gy (range, 0.03-0.159 Gy) and 0.05 Gy (range, 0.015-0.13 Gy), respectively. In the RANDO phantom, the median testicular doses with TLD and film dosimeter were 0.134 Gy (range 0.056-1.97 Gy) and 0.306 Gy (range, 0.065-2.25 Gy). Conclusions: Gonad doses are below sterility threshold in robotic SRS for different tumor localizations. However, particular attention should be given to gonads during robotic SRS for pelvic tumors.« less
Webb, M A H; Feist, G W; Fitzpatrick, M S; Foster, E P; Schreck, C B; Plumlee, M; Wong, C; Gundersen, D T
2006-04-01
This study determined the partitioning of total mercury in liver, gonad, and cheek muscle of white sturgeon (Acipenser transmonatus) in the lower Columbia River. The relationship between tissue mercury concentrations and various physiologic parameters was assessed. White sturgeon were captured in commercial fisheries in the estuary and Bonneville, The Dalles, and John Day Reservoirs. Condition factor (CF), relative weight (Wr), and gonadosomatic index (GSI) were determined for each fish (n = 57). Gonadal tissue was examined histologically to determine sex and stage of maturity. Liver (n = 49), gonad (n = 49), and cheek muscle (n = 57) were analyzed for total mercury using cold-vapor atomic fluorescence spectrophotometry. Tissue protein concentrations were measured by ultraviolet-visible spectroscopy. Plasma was analyzed for testosterone (T), 11-ketotestosterone (KT), and 17ss-estradiol (E2) using radioimmunoassay. Mean tissue mercury concentrations were higher in muscle compared with liver and gonad at all sampling locations, except Bonneville Reservoir where mean liver mercury content was the highest tissue concentration observed in the study. Significant negative correlations between plasma androgens (T and KT) and muscle mercury content and plasma E2 and liver mercury content were found. A significant positive linear relationship between white sturgeon age and liver mercury concentrations was evident. Significant negative correlations between CF and relative weight and gonad and liver mercury content were found. In addition, immature male sturgeon with increased gonad mercury content had decreased GSIs. These results suggest that mercury, in the form of methylmercury, may have an effect on the reproductive potential of white sturgeon.
Depiereux, Sophie; Liagre, Mélanie; Danis, Lorraine; De Meulder, Bertrand; Depiereux, Eric; Segner, Helmut; Kestemont, Patrick
2014-01-01
This study aimed to investigate the male-to-female morphological and physiological transdifferentiation process in rainbow trout (Oncorhynchus mykiss) exposed to exogenous estrogens. The first objective was to elucidate whether trout develop intersex gonads under exposure to low levels of estrogen. To this end, the gonads of an all-male population of fry exposed chronically (from 60 to 136 days post fertilization – dpf) to several doses (from environmentally relevant 0.01 µg/L to supra-environmental levels: 0.1, 1 and 10 µg/L) of the potent synthetic estrogen ethynylestradiol (EE2) were examined histologically. The morphological evaluations were underpinned by the analysis of gonad steroid (testosterone, estradiol and 11-ketotestosterone) levels and of brain and gonad gene expression, including estrogen-responsive genes and genes involved in sex differentiation in (gonads: cyp19a1a, ER isoforms, vtg, dmrt1, sox9a2; sdY; cyp11b; brain: cyp19a1b, ER isoforms). Intersex gonads were observed from the first concentration used (0.01 µg EE2/L) and sexual inversion could be detected from 0.1 µg EE2/L. This was accompanied by a linear decrease in 11-KT levels, whereas no effect on E2 and T levels was observed. Q-PCR results from the gonads showed downregulation of testicular markers (dmrt1, sox9a2; sdY; cyp11b) with increasing EE2 exposure concentrations, and upregulation of the female vtg gene. No evidence was found for a direct involvement of aromatase in the sex conversion process. The results from this study provide evidence that gonads of male trout respond to estrogen exposure by intersex formation and, with increasing concentration, by morphological and physiological conversion to phenotypic ovaries. However, supra-environmental estrogen concentrations are needed to induce these changes. PMID:25033040
Bryan, J.L.; Wildhaber, M.L.; Papoulias, D.M.; DeLonay, A.J.; Tillitt, D.E.; Annis, M.L.
2007-01-01
Most species of sturgeon are declining in the Mississippi River Basin of North America including pallid (Scaphirhynchus albus F. and R.) and shovelnose sturgeons (S. platorynchus R.). Understanding the reproductive cycle of sturgeon in the Mississippi River Basin is important in evaluating the status and viability of sturgeon populations. We used non-invasive, non-lethal methods for examining internal reproductive organs of shovelnose and pallid sturgeon. We used an ultrasound to measure egg diameter, fecundity, and gonad volume; endoscope was used to visually examine the gonad. We found the ultrasound to accurately measure the gonad volume, but it underestimated egg diameter by 52%. After correcting for the measurement error, the ultrasound accurately measured the gonad volume but it was higher than the true gonad volume for stages I and II. The ultrasound underestimated the fecundity of shovelnose sturgeon by 5%. The ultrasound fecundity was lower than the true fecundity for stage III and during August. Using the endoscope, we viewed seven different egg color categories. Using a model selection procedure, the presence of four egg categories correctly predicted the reproductive stage ± one reproductive stage of shovelnose sturgeon 95% of the time. For pallid sturgeon, the ultrasound overestimated the density of eggs by 49% and the endoscope was able to view eggs in 50% of the pallid sturgeon. Individually, the ultrasound and endoscope can be used to assess certain reproductive characteristics in sturgeon. The use of both methods at the same time can be complementary depending on the parameter measured. These methods can be used to track gonad characteristics, including measuring Gonadosomatic Index in individuals and/or populations through time, which can be very useful when associating gonad characteristics with environmental spawning triggers or with repeated examinations of individual fish throughout the reproductive cycle.
Göppert, Carolin; Harris, Rayna M; Theis, Anya; Boila, Anna; Hohl, Simon; Rüegg, Attila; Hofmann, Hans A; Salzburger, Walter; Böhne, Astrid
2016-01-01
Sex steroids are major drivers of sexual development and also responsible for the maintenance of the established gender. Especially fishes exhibit great plasticity and less conservation in sex determination and sexual development compared to other vertebrate groups. In addition, fishes have a constant sex steroid production throughout their entire lifespan, which makes them particularly susceptible to interferences with the endogenous sex steroid system. This susceptibility has recently been used to show that inhibition of the key enzyme of estrogen synthesis, aromatase Cyp19a1, can induce functional sex reversal even in adult fish. Here, we investigated the impact of the aromatase inhibitor (AI) fadrozole in adult females of the East African cichlid fish Astatotilapia burtoni. Using gene expression, phenotypic measurements, behavioral experiments, and hormone measurements, we assessed if females treated with fadrozole develop a male-like phenotype. We found that AI treatment has a different effect on gene expression in the gonad compared to the brain, the 2 tissues mostly implicated in sexual development. In contrast to observations in other gonochoristic species, A. burtoni ovaries cannot be transformed into functional testis by AI. However, rapid changes towards a male-like phenotype can be induced with AI in coloration, hormone levels, and behavior. © 2016 S. Karger AG, Basel.
Castellano, Immacolata; Migliaccio, Oriana; Ferraro, Giarita; Maffioli, Elisa; Marasco, Daniela; Merlino, Antonello; Zingone, Adriana; Tedeschi, Gabriella; Palumbo, Anna
2018-03-15
The major yolk protein toposome plays crucial roles during gametogenesis and development of sea urchins. We previously found that nitration of toposome increases in the gonads of a Paracentrotus lividus population living in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata, compared to control populations. This modification is associated with ovatoxin accumulation, high levels of nitric oxide in the gonads, and a remarkable impairment of progeny development. However, nothing is known about the environmental-mediated-regulation of the structure and biological function of toposome. Here, we characterize through wide-ranging biochemical and structural analyses the nitrated toposome of sea urchins exposed to the bloom, and subsequently detoxified. The increased number of nitrated tyrosines in toposome of sea urchins collected during algal bloom induced structural changes and improvement of the Ca 2+ -binding affinity of the protein. After 3 months' detoxification, ovatoxin was undetectable, and the number of nitric oxide-modified tyrosines was reduced. However, the nitration of specific residues was irreversible and occurred also in embryos treated with metals, used as a proxy of environmental pollutants. The structural and functional changes of toposome caused by nitration under adverse environmental conditions may be related to the defective development of sea urchins' progeny.
Kudo, Takashi; Kaneko, Mika; Iwasaki, Hiroko; Togayachi, Akira; Nishihara, Shoko; Abe, Kuniya; Narimatsu, Hisashi
2004-05-01
Stage-specific embryonic antigen 1 (SSEA-1), an antigenic epitope defined as a Lewis x carbohydrate structure, is expressed during the 8-cell to blastocyst stages in mouse embryos and in primordial germ cells, undifferentiated embryonic stem cells, and embryonic carcinoma cells. For many years, SSEA-1 has been implicated in the development of mouse embryos as a functional carbohydrate epitope in cell-to-cell interaction during morula compaction. In a previous study, alpha 1,3-fucosyltransferase IX (Fut9) exhibited very strong activity for the synthesis of Lewis x compared to other alpha 1,3-fucosyltransferases in an in vitro substrate specificity assay. Fut4 and Fut9 transcripts were expressed in mouse embryos. The Fut9 transcript was detected in embryonic-day-13.5 gonads containing primordial germ cells, but the Fut4 transcript was not. In order to identify the role of SSEA-1 and determine the key enzyme for SSEA-1 synthesis in vivo, we have generated Fut9-deficient (Fut9(-/-)) mice. Fut9(-/-) mice develop normally, with no gross phenotypic abnormalities, and are fertile. Immunohistochemical analysis revealed an absence of SSEA-1 expression in early embryos and primordial germ cells of Fut9(-/-) mice. Therefore, we conclude that expression of the SSEA-1 epitope in the developing mouse embryo is not essential for embryogenesis in vivo.
Rubio-Cabezas, Oscar; Gómez, José Luis; Gleisner, Andrea; Hattersley, Andrew T; Codner, Ethel
2016-10-01
Biallelic mutations in NEUROG3 are known to cause early-onset malabsorptive diarrhea due to congenital anendocrinosis and diabetes mellitus at a variable age. No other endocrine disorders have been described so far. We report four patients with homozygous NEUROG3 mutations who presented with short stature and failed to show any signs of pubertal development. Four patients (two males, two females) were diagnosed with homozygous mutations in NEUROG3 on the basis of congenital malabsorptive diarrhea and diabetes. All four had severe short stature and failed to develop secondary sexual characteristics at an appropriate age, despite some having normal body mass index. The absence of gonadal function persisted into the third decade in one patient. Upon testing, both basal and stimulated LH and FSH levels were low, with the remaining pituitary hormones within the normal range. Magnetic resonance imaging scans of the hypothalamic-pituitary axis did not reveal structural abnormalities. A diagnosis of hypogonadotropic hypogonadism was made, and replacement therapy with sex hormones was started. The high reproducibility of this novel phenotype suggests that central hypogonadism and short stature are common findings in patients with mutations in NEUROG3. Growth rate needs to be carefully monitored in these patients, who also should be routinely screened for hypogonadism when they reach the appropriate age. NEUROG3 mutations expand on the growing number of genetic causes of acquired hypogonadotropic hypogonadism.
Genetic and epigenetic effects in sex determination.
Gunes, Sezgin Ozgur; Metin Mahmutoglu, Asli; Agarwal, Ashok
2016-12-01
Sex determination is a complex and dynamic process with multiple genetic and environmental causes, in which germ and somatic cells receive various sex-specific features. During the fifth week of fetal life, the bipotential embryonic gonad starts to develop in humans. In the bipotential gonadal tissue, certain cell groups start to differentiate to form the ovaries or testes. Despite considerable efforts and advances in identifying the mechanisms playing a role in sex determination and differentiation, the underlying mechanisms of the exact functions of many genes, gene-gene interactions, and epigenetic modifications that are involved in different stages of this cascade are not completely understood. This review aims at discussing current data on the genetic effects via genes and epigenetic mechanisms that affect the regulation of sex determination. Birth Defects Research (Part C) 108:321-336, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
20 years of leptin: role of leptin in human reproductive disorders.
Chou, Sharon H; Mantzoros, Christos
2014-10-01
Leptin, as a key hormone in energy homeostasis, regulates neuroendocrine function, including reproduction. It has a permissive role in the initiation of puberty and maintenance of the hypothalamic-pituitary-gonadal axis. This is notable in patients with either congenital or acquired leptin deficiency from a state of chronic energy insufficiency. Hypothalamic amenorrhea is the best-studied, with clinical trials confirming a causative role of leptin in hypogonadotropic hypogonadism. Implications of leptin deficiency have also emerged in the pathophysiology of hypogonadism in type 1 diabetes. At the other end of the spectrum, hyperleptinemia may play a role in hypogonadism associated with obesity, polycystic ovarian syndrome, and type 2 diabetes. In these conditions of energy excess, mechanisms of reproductive dysfunction include central leptin resistance as well as direct effects at the gonadal level. Thus, reproductive dysfunction due to energy imbalance at both ends can be linked to leptin. © 2014 Society for Endocrinology.
Inguinal ovary as a rare diagnostic sign of Mayer-Rokitansky-Küster-Hauser syndrome.
Demirel, Fatma; Kara, Ozlem; Esen, Ihsan
2012-01-01
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare syndrome characterized by complete or partial agenesis of the uterus and vagina, due to a congenital defect of the Mullerian duct. Affected individuals have a 46,XX karyotype and a normal female phenotype. MRKH syndrome may be isolated (type I MRKH syndrome) or associated with renal, cardiac, and skeletal anomalies, short stature, and auditory defects. The latter is defined as type II MRKH syndrome or the Müllerian duct aplasia/hypoplasia, renal agenesis/ectopy, and cervicothoracic somite dysplasia (MURCS) association. The majority of patients with MRKH syndrome present with primary amenorrhea. We report a case of type II MRKH syndrome who has been referred by a pediatric surgeon for detection of gonadal function. During an inguinal hernia operation, the left ovary had been observed in the hernia sac. Clinical and radiological evaluation of the patient showed an absence of the uterus and left kidney, and cervical hemi vertebra. Based on these findings, the patient was diagnosed as having type II MRKH syndrome.
Identification of SOX3 as an XX male sex reversal gene in mice and humans.
Sutton, Edwina; Hughes, James; White, Stefan; Sekido, Ryohei; Tan, Jacqueline; Arboleda, Valerie; Rogers, Nicholas; Knower, Kevin; Rowley, Lynn; Eyre, Helen; Rizzoti, Karine; McAninch, Dale; Goncalves, Joao; Slee, Jennie; Turbitt, Erin; Bruno, Damien; Bengtsson, Henrik; Harley, Vincent; Vilain, Eric; Sinclair, Andrew; Lovell-Badge, Robin; Thomas, Paul
2011-01-01
Sex in mammals is genetically determined and is defined at the cellular level by sex chromosome complement (XY males and XX females). The Y chromosome-linked gene sex-determining region Y (SRY) is believed to be the master initiator of male sex determination in almost all eutherian and metatherian mammals, functioning to upregulate expression of its direct target gene Sry-related HMG box-containing gene 9 (SOX9). Data suggest that SRY evolved from SOX3, although there is no direct functional evidence to support this hypothesis. Indeed, loss-of-function mutations in SOX3 do not affect sex determination in mice or humans. To further investigate Sox3 function in vivo, we generated transgenic mice overexpressing Sox3. Here, we report that in one of these transgenic lines, Sox3 was ectopically expressed in the bipotential gonad and that this led to frequent complete XX male sex reversal. Further analysis indicated that Sox3 induced testis differentiation in this particular line of mice by upregulating expression of Sox9 via a similar mechanism to Sry. Importantly, we also identified genomic rearrangements within the SOX3 regulatory region in three patients with XX male sex reversal. Together, these data suggest that SOX3 and SRY are functionally interchangeable in sex determination and support the notion that SRY evolved from SOX3 via a regulatory mutation that led to its de novo expression in the early gonad.
Identification of SOX3 as an XX male sex reversal gene in mice and humans
Sutton, Edwina; Hughes, James; White, Stefan; Sekido, Ryohei; Tan, Jacqueline; Arboleda, Valerie; Rogers, Nicholas; Knower, Kevin; Rowley, Lynn; Eyre, Helen; Rizzoti, Karine; McAninch, Dale; Goncalves, Joao; Slee, Jennie; Turbitt, Erin; Bruno, Damien; Bengtsson, Henrik; Harley, Vincent; Vilain, Eric; Sinclair, Andrew; Lovell-Badge, Robin; Thomas, Paul
2010-01-01
Sex in mammals is genetically determined and is defined at the cellular level by sex chromosome complement (XY males and XX females). The Y chromosome–linked gene sex-determining region Y (SRY) is believed to be the master initiator of male sex determination in almost all eutherian and metatherian mammals, functioning to upregulate expression of its direct target gene Sry-related HMG box–containing gene 9 (SOX9). Data suggest that SRY evolved from SOX3, although there is no direct functional evidence to support this hypothesis. Indeed, loss-of-function mutations in SOX3 do not affect sex determination in mice or humans. To further investigate Sox3 function in vivo, we generated transgenic mice overexpressing Sox3. Here, we report that in one of these transgenic lines, Sox3 was ectopically expressed in the bipotential gonad and that this led to frequent complete XX male sex reversal. Further analysis indicated that Sox3 induced testis differentiation in this particular line of mice by upregulating expression of Sox9 via a similar mechanism to Sry. Importantly, we also identified genomic rearrangements within the SOX3 regulatory region in three patients with XX male sex reversal. Together, these data suggest that SOX3 and SRY are functionally interchangeable in sex determination and support the notion that SRY evolved from SOX3 via a regulatory mutation that led to its de novo expression in the early gonad. PMID:21183788
Cocaine effects on pulsatile secretion of anterior pituitary, gonadal, and adrenal hormones.
Mendelson, J H; Mello, N K; Teoh, S K; Ellingboe, J; Cochin, J
1989-12-01
Pulse frequency analysis of LH, PRL, testosterone, and cortisol was carried out with the Cluster Analysis Program in eight male cocaine abusers and eight aged-matched normal men. Four of the eight cocaine abusers had hyperprolactinemia (range, 22.08-44.65 micrograms/L). Cocaine users as a group had significantly higher mean peak height (P less than 0.02) than control subjects. Cocaine users with hyperprolactinemia had higher mean peak height than control subjects or cocaine users with normal PRL levels (P less than 0.01). Cocaine users with hyperprolactinemia also had higher mean amplitude increments than control subjects (P less than 0.02). Cocaine users with hyperprolactinemia had a higher mean valley than controls (P less than 0.01) and cocaine users with normal PRL levels (P less than 0.03). However, there were no significant differences in PRL peak frequency, peak duration, or interpulse intervals between cocaine users with or without hyperprolactinemia and control subjects. There were minimal differences between cocaine users and control subjects in pulse frequency analysis of LH parameters; the small differences in mean LH levels and average interpulse interval were not in the abnormal range and were probably not biologically significant. No differences between cocaine users and controls were detected for pulse frequency analysis of testosterone or cortisol. Cocaine-induced hyperprolactinemia may contribute to disorders of sexual and reproductive function in men who abuse the drug, and recent reports that PRL modulates immune function suggest that cocaine-induced derangements of PRL secretion may also contribute to cocaine-related comorbidity in infectious disease. Since cocaine users with hyperprolactinemia had a higher mean valley as well as a higher peak pulse PRL height than control subjects, but did not have greater PRL pulse frequencies, we conclude that hyperprolactinemia in these men may be due to a cocaine-induced derangement of dopaminergic inhibition of basal PRL secretion.
[Sexual differentiation of the human brain].
Kula, K; Słowikowska-Hilczer, J
2000-01-01
Normal human development requires the compatibility between genetic sex (sex chromosomes), sex of gonades (tests or ovaries), genitalia (external and internal sex organs), somatic features (body characteristics) and psychic sex. The psychic sex, called frequently gender, consist of gender identity (self-estimation), gender role (objective estimation) and sexual orientation (hetero- or homosexual). It was believed that the psychic gender depends only on socio-environmental influences such as rearing, learning and individual choice. Although, the process of sexual differentiation of human brain is not completely elucidated, it has became recently evident that endogenous hormones more then socio-environmental factors influence gender differences. Experimental studies on animals revealed that transient action of sex steroids during perinatal period of life is crucial for the dymorphism of sexual behavior (male or female) in adulthood. It seems, that also in the human male neonates testosterone produced by testes perinatally takes the main role in the irreversible masculinization of the brain i.e. creation of the differences vs. female brain. The evaluation of patients with disturbances of sexual differentiation of external genitalia (the lack of the testosterone transformation into 5-alpha dihydrotestosterone in peripheral tissues of men or the inborn excess of androgens in women with the congenital adrenal hyperplasia) has served as a useful clinical model for understanding factors, affecting the formation of gender. In these individuals the formal sex established according to genetic sex and somatic sex may be incompatible with gender identity and role. However, it has been found that the female gender identity is most frequently associated with the presence of ovaries or the lack of gonads (gonadal dysgenesis), while the male gender identity appear most frequently in the presence of testicular tissue irrespective of female or hermaphrodite (intersex) phenotype. In genetic men with the absence of male genitalia formation, caused by the aberrant function of androgen receptor, the gender identity depends on the severity of the disorder: female gender identity in the complete androgen insensitivity syndrome and female or male gender identity in the complete androgen insensitivity syndrome and female or male in the partial androgen insensitivity. These clinical observations confirm the experimental data indicating androgen role in the male gender identity creation. This knowledge is necessary for the decision of the direction of surgical correction of sex organs in children with ambiguous genitalia, which should not depend on the expected efficiency to perform sexual intercourse, but mostly on the expected or already present individual gender identity.
Avila-Poveda, Omar Hernando; Abadia-Chanona, Quetzalli Yasú
2013-01-01
This study describes and recognises, using histological and microscopical examinations on a morphometrical basis, several gonad traits through the early life stages of Chiton articulatus and C. albolineatus. Gonadal ontogenesis, gonad development stages, sexual differentiation, onset of the first sexual maturity, and growth sequences or “early life stages” were determined. In addition, allometry between lengths and body weight pooled for both sexes per each chiton were calculated using equation Y = aXb. A total of 125 chitons (4≤TL≤40 mm, in total length “TL”) were used. All allometric relations showed a strong positive correlation (r), close to 1, with b-values above three, indicating an isometric growth. Gonadal ontogenesis and gonad development stages were categorised into three periods (“Pw” without gonad, “Pe” gonad emergence, and “Pf” gonadal sac formed) and four stages (“S0” gametocytogenesis, “S1” gametogenesis, “S2” mature, and “S3” spawning), respectively. Compound digital images were attained for each process. Periods and stages are overlapped among them and between species, with the following overall confidence intervals in TL: Pw 6.13–14.32 mm, Pe 10.32–16.93 mm, Pf 12.99–25.01 mm, S0 16.08–24.34 mm (females) and 19.51–26.60 mm (males), S1 27.15–35.63 mm (females) and 23.45–32.27 mm (males), S2 24.48–40.24 mm (females) and 25.45–32.87 mm (males). Sexual differentiation (in S0) of both chitons occurs first as a female then as a male; although, males reach the onset of the first sexual maturity earlier than females, thus for C. articulatus males at 17 mm and females at 32 mm, and for C. albolineatus males at 23.5 mm and females at 28 mm, all in TL. Four early life stages (i.e., subjuvenile, juvenile, subadult, and adult) are described and proposed to distinguish growth sequences. Our results may be useful to diverse disciplines, from developmental biology to fisheries management. PMID:23936353
Holsen, Laura M.; Lee, Jong-Hwan; Spaeth, Sarah B.; Ogden, Lauren A.; Klibanski, Anne; Whitfield-Gabrieli, Susan; Sloan, Richard P.; Goldstein, Jill M.
2012-01-01
The comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) is among the 10th leading cause of morbidity and mortality worldwide. Thus, understanding the co-occurrence of these disorders will have major public health significance. MDD is associated with an abnormal stress response, manifested in brain circuitry deficits, gonadal dysfunction, and autonomic nervous system (ANS) dysregulation. Contribution of the relationships between these systems to the pathophysiology of MDD is not well understood. The objective of this preliminary study was to investigate, in parallel, relationships between HPG-axis functioning, stress response circuitry activation, and parasympathetic reactivity in healthy controls and women with MDD. Using fMRI with pulse oximetry [from which we calculated the high frequency (HF) component of R-R interval variability (HF-RRV), a measure of parasympathetic modulation] and hormone data, we studied eight women with recurrent MDD in remission and six controls during a stress response paradigm. We demonstrated that hypoactivations of hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and subgenual ACC were associated with lower parasympathetic cardiac modulation in MDD women. Estradiol and progesterone attenuated group differences in the effect of HF-RRV on hypoactivation in the amygdala, hippocampus, ACC, and OFC in MDD women. Findings have implications for understanding the relationship between mood, arousal, heart regulation, and gonadal hormones, and may provide insights into MDD and CVD risk comorbidity. PMID:22395084
Steroidogenic Factor-1 and Human Disease
El-Khairi, Ranna; Achermann, John C.
2016-01-01
Steroidogenic factor-1 (SF-1) (Ad4BP, NR5A1) is a nuclear receptor that plays a key role in adrenal and reproductive development and function. Deletion of the gene encoding Sf-1 (Nr5a1) in mice results in severe developmental defects of the adrenal gland and gonad. Consequently, initial work on the potential effects of SF-1 disruption in humans focused on individuals with primary adrenal failure, a 46,XY karyotype, complete gonadal dysgenesis, and Müllerian structures. This is a rare phenotype, but has been reported on two occasions, because of alterations that affect key DNA-binding domains of SF-1. Attention then turned to a potential wider role of SF-1 in human adrenal and reproductive disorders. Although changes in SF-1 only very rarely cause isolated adrenal failure, it is emerging that variations in SF-1 are a surprisingly frequent cause of reproductive dysfunction in humans. In 46,XY disorders of sex development, a spectrum of phenotypes has been reported including severe and partial forms of gonadal (testicular) dysgenesis, hypospadias, anorchia with microphallus, and even male factor infertility. In 46,XX females, alterations in SF-1 are associated with primary ovarian insufficiency. Thus, SF-1 seems be a more significant factor in human reproductive health than was first envisioned, with implications for adults as well as children. PMID:23044873
Gigante, Laura; Paganini, Irene; Frontali, Marina; Ciabattoni, Serena; Sangiuolo, Federica Carla; Papi, Laura
2016-01-01
Rhabdoid tumors are aggressive malignancies that show loss-of-function mutations of SMARCB1 gene, a member of the SWI/SNF chromatin-remodeling complex controlling gene transcription. One-third of patients affected by rhabdoid tumor harbor a germ-line mutation of SMARCB1 defining a rhabdoid tumor predisposition syndrome. The occurrence of a second somatic mutation determines the development of neoplasia in a two-hit model. Most germ-line mutations occur de novo, and few cases of recurrence in a sibship have been described. Here we report on a new Italian family with recurrence of SMARCB1 germ-line deletion in two siblings due to gonadal mosaicism. The deletion was identified in the 9-month-old proband with malignant rhabdoid tumor of the right kidney and disseminated metastases. Testing of both parents confirmed the de novo origin of the mutation, but recurrence was then detected prenatally in a new pregnancy. This is the sixth family with malignant rhabdoid tumor predisposition syndrome with the recurrence of the same germ-line SMARCB1 mutation in the sibship but not in healthy parents, suggesting that gonadal mosaicism is a less rare event than supposed. The clinical outcome in our patient confirms previous data of poorer outcome in patients with rhabdoid tumor predisposition syndrome.
Sharma, Prakash; Patino, Reynaldo
2013-01-01
We examined associations between thyroid condition, gonadal sex and pubertal development in zebrafish. Seventy-two-hour postfertilization larvae were reared in untreated medium or in the presence of goitrogens (sodium perchlorate, 0.82 mM; methimazole, 0.15 and 0.3 mM) or thyroxine (1 and 10 nM) for 30 days. Thyrocyte height, gonadal sex and gonadal development were histologically determined at 45 and 60 days postfertilization (dpf). Thyrocyte hypertrophy, an index of hypothyroidism, was observed at 45 and 60 dpf in perchlorate-treated but only at 45 dpf in methimazole-treated fish. Similarly, gonadal sex ratios were biased toward ovaries relative to control animals at 45 and 60 dpf in perchlorate-treated fish but only at 45 dpf in methimazole-treated fish. Gonadal sex ratios were biased toward testes at 45 and 60 dpf in thyroxine-treated fish. Spermatogenesis was delayed in testes from goitrogen-treated fish at 60 dpf relative to control values, but was unaffected in testes from thyroxine-treated individuals. Oogenesis seemed to be nonspecifically delayed in all treatments relative to control at 60 dpf. This study confirmed the previously reported association between hypothyroid condition and ovarian-skewed ratios, and hyperthyroid condition and testicular-skewed ratios, and also showed that male pubertal development is specifically delayed by experimental hypothyroidism. The simultaneous recovery from the hypothyroid and ovary-inducing effects of methimazole by 60 dpf (27 days post-treatment) suggests that the ovary-skewing effect of goitrogens is reversible when thyroid conditions return to basal levels before developmental commitment of gonadal sex. Conversely, the masculinizing effect of hyperthyroidism seems to be stable and perhaps permanent.
FGF9, activin and TGFβ promote testicular characteristics in an XX gonad organ culture model.
Gustin, Sonja E; Stringer, Jessica M; Hogg, Kirsten; Sinclair, Andrew H; Western, Patrick S
2016-11-01
Testis development is dependent on the key sex-determining factors SRY and SOX9, which activate the essential ligand FGF9. Although FGF9 plays a central role in testis development, it is unable to induce testis formation on its own. However, other growth factors, including activins and TGFβs, also present testis during testis formation. In this study, we investigated the potential of FGF9 combined with activin and TGFβ to induce testis development in cultured XX gonads. Our data demonstrated differing individual and combined abilities of FGF9, activin and TGFβ to promote supporting cell proliferation, Sertoli cell development and male germ line differentiation in cultured XX gonads. FGF9 promoted proliferation of supporting cells in XX foetal gonads at rates similar to those observed in vivo during testis cord formation in XY gonads but was insufficient to initiate testis development. However, when FGF9, activin and TGFβ were combined, aspects of testicular development were induced, including the expression of Sox9, morphological reorganisation of the gonad and deposition of laminin around germ cells. Enhancing β-catenin activity diminished the testis-promoting activities of the combined growth factors. The male promoting activity of FGF9 and the combined growth factors directly or indirectly extended to the germ line, in which a mixed phenotype was observed. FGF9 and the combined growth factors promoted male germ line development, including mitotic arrest, but expression of pluripotency genes was maintained, rather than being repressed. Together, our data provide evidence that combined signalling by FGF9, activin and TGFβ can induce testicular characteristics in XX gonads. © 2016 Society for Reproduction and Fertility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, J.R.; North, P.E.; Hassed, S.J.
1997-04-14
We describe the cytogenetic evolution of multiple cell lines in the gonadal tissue of a 10-year-old girl with mosaic Ullrich-Turner syndrome (UTS) involving clonal telomeric associations (tas) of the Y chromosome. G-band analysis of all tissues showed at least 2 cell lines; 45,X and 46,X,tas(Y;21)(q12;p13). However, analysis of left gonadal tissue of this patient showed the evolution of 2 additional cell lines, one designated 45,X,tas(Y;21)(q12;p13),-22 and the other 46,X,tas(Y;21)(q12;p13),+tas(Y;14)(q12;p13),-22. Fluorescence in situ hybridization (FISH) analysis of interphase nuclei from uncultured gonadal tissue confirmed the findings of aneuploidy in the left gonadal tissue and extended the findings of aneuploidy to themore » tissue of the right gonad. The chromosome findings in the gonadal tissue of this patient suggest a preneoplastic karyotype relating to several distinct tumor associations. The clonal evolution of telomeric fusions indicates chromosome instability and suggests the extra copy of the Y chromosome may have resulted from a fusion-related malsegregation. In addition, the extra Y suggests low-level amplification of a putative gonadoblastoma gene, while the loss of chromosome 22 suggests the loss of heterozygosity for genes on chromosome 22. This case demonstrates the utility of the study of gonadal tissue in 45X46,XY UTS patients, and provides evidence that clonal telomeric fusions may, in rare cases, be associated with chromosomal malsegregation and with the subsequent evolution of unstable karyotypes. 27 refs., 3 figs.« less
Mazonakis, Michalis; Zacharopoulou, Fotini; Kachris, Stefanos; Varveris, Charalambos; Damilakis, John; Gourtsoyiannis, Nicholas
2007-06-01
To measure the scattered dose to ovaries and testes from radiotherapy for common pediatric malignancies and to assess the relevant risks for radiation-induced gonadal damage and hereditary disorders in future generations. Radiotherapy for central nervous system tumors, acute leukemia, neuroblastoma, Hodgkin's disease, Wilms' tumor, and sarcoma was simulated on three humanoid phantoms representing patients of 5, 10, and 15 years of age. Ovarian and testicular dose measurements were performed using thermoluminescent dosimeters on a linear accelerator with multileaf collimator (MLC) producing 6-MV X-rays. The effect of lead block introduction into the primary beam on the gonadal dose was evaluated. Gonadal dose from radiotherapy for abdominal tumors was measured using an 18-MV photon beam. For a tumor dose range of 12-55 Gy, the scattered dose to ovaries was 0.5-62.4 cGy depending upon the patient's age (corresponding phantom) and treatment site. The corresponding dose to testes was 0.4-145.0 cGy. The use of blocks for field shaping can increase the gonadal dose up to a factor of 2.0 compared to that measured using MLC. Abdominal irradiation with 18-MV instead of 6-MV X-rays reduced the gonadal dose by more than 1.3 times. For female and male patients, the risk for induction of hereditary disorders was less than 81 x 10(-4) and 188 x 10(-4), respectively. The present dosimetric data suggest that pediatric radiotherapy is not associated with a risk for permanent damage to gonads excluded from the treatment volume. The risk for development of hereditary disorders in offspring conceived after exposure is low.
Peng, Juan; Yuan, Jian-Ping; Wang, Jiang-Hai
2012-01-01
The effect of the microalgae Haematococcus pluvialis and Chorella zofingiensis, and synthetic astaxanthin on the gonad of the sea urchin Anthocidaris crassispina was studied. The basal diet was supplemented with H. pluvialis, C. zofingiensis, or synthetic astaxanthin, at two levels of astaxanthin (approximately 400 mg/kg and 100 mg/kg), to obtain the experimental diets HP1, HP2, CZ1, CZ2, AST1, and AST2, respectively, for two months of feeding experiment. The results showed that the concentrations of astaxanthin in the gonads of the sea urchins fed these experimental diets ranged from 0.15 to 3.01 mg/kg dry gonad weight. The higher astaxanthin levels (>2.90 mg/kg) were found in the gonads of the sea urchins fed the diets HP1 (containing 380 mg/kg of astaxanthins, mostly mono- and diesters) and AST1 (containing 385 mg/kg of synthetic astaxanthin). The lowest astaxanthin level (0.15 mg/kg) was detected in the gonads of the sea urchins fed the diet CZ2 (containing 98 mg/kg of astaxanthins, mostly diesters). Furthermore, the highest canthaxanthin level (7.48 mg/kg) was found in the gonads of the sea urchins fed the diet CZ1 (containing 387 mg/kg of astaxanthins and 142 mg/kg of canthaxanthin), suggesting that astaxanthins, especially astaxanthin esters, might not be assimilated as easily as canthaxanthin by the sea urchins. Our results show that sea urchins fed diets containing astaxanthin pigments show higher incorporation of these known antioxidant constituents, with the resultant seafood products therefore being of potential higher nutritive value. PMID:23016124
Xu, Gefeng; Huang, Tianqing; Jin, Xian; Cui, Cunhe; Li, Depeng; Sun, Cong; Han, Ying; Mu, Zhenbo
2016-02-01
In non-mammalian vertebrates, estrogens and expressions of cyp19a1 and foxl2 play critical roles in maintaining ovary differentiation and development, while dmrt1 and sox9 are male-specific genes in testicular differentiation and are highly conserved. In order to deeply understand the morphological change, sex steroids level and molecular mechanism of triploid female gonadal reversal in rainbow trout, we studied the ovary morphology, tendency of estradiol-17β (E2) and testosterone (T) levels and the relative expressions of dmrt1, cyp19a1, sox9 and foxl2 in juvenile and adult fish. Our results demonstrated that the development of triploid female gonads in rainbow trout went through arrested development, oocytes dedifferentiation, ovary reconstruction and sex reversal finally. During early gonadal development (154-334 days post-fertilization), the expressions of foxl2 and cyp19a1 increased linearly, while expressions of dmrt1 and sox9 were extremely suppressed, and E2 level was higher, while T level was lower. During the mid-to-late period of triploid female gonadal development (574-964 days post-fertilization), the expressions of dmrt1 and sox9 remained high and were very close to the quantity of diploid male genes, and T levels were even reaching diploid male plasma concentrations, while expressions of cyp19a1 and foxl2 were decreased, leading to decrease in E2 level. We realized that the development model of rainbow trout triploid female gonads was extremely rare, and the regulatory mechanism was very special. Genes involved in gonadal development and endogenous estrogens are pivotal factors in fish natural sex reversal.
Hirst, Claire E; Major, Andrew T; Ayers, Katie L; Brown, Rosie J; Mariette, Mylene; Sackton, Timothy B; Smith, Craig A
2017-09-01
The exact genetic mechanism regulating avian gonadal sex differentiation has not been completely resolved. The most likely scenario involves a dosage mechanism, whereby the Z-linked DMRT1 gene triggers testis development. However, the possibility still exists that the female-specific W chromosome may harbor an ovarian determining factor. In this study, we provide evidence that the universal gene regulating gonadal sex differentiation in birds is Z-linked DMRT1 and not a W-linked (ovarian) factor. Three candidate W-linked ovarian determinants are HINTW, female-expressed transcript 1 (FET1), and female-associated factor (FAF). To test the association of these genes with ovarian differentiation in the chicken, we examined their expression following experimentally induced female-to-male sex reversal using the aromatase inhibitor fadrozole (FAD). Administration of FAD on day 3 of embryogenesis induced a significant loss of aromatase enzyme activity in female gonads and masculinization. However, expression levels of HINTW, FAF, and FET1 were unaltered after experimental masculinization. Furthermore, comparative analysis showed that FAF and FET1 expression could not be detected in zebra finch gonads. Additionally, an antibody raised against the predicted HINTW protein failed to detect it endogenously. These data do not support a universal role for these genes or for the W sex chromosome in ovarian development in birds. We found that DMRT1 (but not the recently identified Z-linked HEMGN gene) is male upregulated in embryonic zebra finch and emu gonads, as in the chicken. As chicken, zebra finch, and emu exemplify the major evolutionary clades of birds, we propose that Z-linked DMRT1, and not the W sex chromosome, regulates gonadal sex differentiation in birds. Copyright © 2017 Endocrine Society.
Phuge, S K; Gramapurohit, N P
2015-09-01
In amphibians, although genetic factors are involved in sex determination, gonadal sex differentiation can be modified by exogenous steroid hormones suggesting a possible role of sex steroids in regulating the process. We studied the effect of testosterone propionate (TP) and estradiol-17β (E2) on gonadal differentiation and sex ratio at metamorphosis in the Indian skipper frog, Euphlyctis cyanophlyctis with undifferentiated type of gonadal differentiation. A series of experiments were carried out to determine the optimum dose and sensitive stages for gonadal sex reversal. Our results clearly indicate the importance of sex hormones in controlling gonadal differentiation of E. cyanophlyctis. Treatment of tadpoles with 10, 20, 40, and 80μg/L TP throughout larval period resulted in the development of 100% males at metamorphosis at all concentrations. Similarly, treatment of tadpoles with 40μg/L TP during ovarian and testicular differentiation resulted in the development of 90% males, 10% intersexes and 100% males respectively. Treatment of tadpoles with 10, 20, 40, and 80μg/L E2 throughout larval period likewise produced 100% females at all concentrations. Furthermore, exposure to 40μg/L E2 during ovarian and testicular differentiation produced 95% females, 5% intersexes and 91% females, 9% intersexes respectively. Both TP and E2 were also effective in advancing the stages of gonadal development. Present study shows the effectiveness of both T and E2 in inducing complete sex reversal in E. cyanophlyctis. Generally, exposure to E2 increased the larval period resulting in significantly larger females than control group while the larval period of control and TP treated groups was comparable. Copyright © 2014 Elsevier Inc. All rights reserved.
Song, Qinqin; Zheng, Pengfei; Qiu, Liguo; Jiang, Xiu; Zhao, Hongwei; Zhou, Hailong; Han, Qian; Diao, Xiaoping
2016-01-05
Benzo(a)pyrene and dichlorodiphenyltrichloroethane are typical persistent organic pollutants, and also the widespread environmental estrogens with known toxicity towards green mussels Perna viridis. In this study, the toxicological effects of BaP and DDT and their mixture were assessed in green mussel gonads using proteomic and metabolomic approaches. Metabolomics by NMR spectroscopy revealed that BaP did not show obvious metabolite changes in the gonad of male green mussel. DDT mainly caused some disturbance of osmotic regulation and energy metabolism by changing BCAAs, alanine, threonine, arginine, etc., unknown metabolite (3.53 ppm), glycine, homarine and ATP at different levels. However, the mixture of BaP and DDT mainly caused some disturbance in osmotic regulation and energy metabolism by differentially altering branched chain amino acids, glutamate, alanine, arginine, unknown metabolite (3.53 ppm), glycine, 4-aminobutyrate, dimethylglycine, homarine and ATP. The results suggest that DDT alone may cause most of metabolites changes in the mixture exposed male mussel gonad, and the results also show that the male P. viridis gonad was more sensitive to DDT than BaP exposures. Proteomic study showed that BaP, DDT and their mixture may have different modes of action. Proteomic responses revealed that BaP induced signal transduction, oxidative stress, spermatogenesis, etc. in the male green mussel gonad; whereas DDT exposure altered proteins that were associated with signal transduction, oxidative stress, cytoskeleton and cell structure, cellular organization, energy metabolism, etc. However, the mixture of BaP and DDT affected proteins related to cytoskeleton and cell structure, oxidative stress, cellular organization, etc. This research demonstrated that metabolomic and proteomic approaches could better elucidate the underlying mechanism of environmental pollutants gonad toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Imus, Nastassja; Roe, Mandi; Charter, Suellen; Durrant, Barbara; Jensen, Thomas
2014-06-01
The management of captive avian breeding programs increasingly utilizes various artificial reproductive technologies, including in ovo sexing of embryos to adjust population sex ratios. Currently, however, no attention has been given to the loss of genetic diversity following sex-selective incubation, even with respect to individuals from critically endangered species. This project evaluated the possibility of using xenotransfer of embryonic gonadal germline stem cells (GGCs) for future reintroduction of their germplasm into the gene pool. We examined and compared the host gonad colonization of freshly isolated and 3 day (3d) cultured donor GGCs from chicken and 13 species of exotic embryos. Following 3d-culture of GGCs, there was a significant increase in the percentage of stem cell marker (SSEA-1, -3, -4) positive cells. However, the percentage of positive host gonads with chicken donor-derived cells decreased from 68% (fresh) to 22% (3d), while the percentage of exotic species donor-cells positive host gonads decreased from 61% (fresh) to 49% (3d-cultured). Donor GGCs from both chicken and exotic species were localized within the caudal endoderm, including the region encompassing the gonadal ridge by 16 hours post-injection. Furthermore, donor-derived cells isolated from stage 36 host embryos were antigenic for anti SSEA-1, VASA/DDX4 and EMA-1 antibodies, presumably indicating maintenance of stem cell identity. This study demonstrates that GGCs from multiple species can migrate to the gonadal region and maintain presumed stemness following xenotransfer into a chicken host embryo, suggesting that germline stem cell migration is highly conserved in birds.
Sharma, Prakash; Patiño, Reynaldo
2013-04-01
We examined associations between thyroid condition, gonadal sex and pubertal development in zebrafish. Seventy-two-hour postfertilization larvae were reared in untreated medium or in the presence of goitrogens (sodium perchlorate, 0.82 mM; methimazole, 0.15 and 0.3 mM) or thyroxine (1 and 10 nM) for 30 days. Thyrocyte height, gonadal sex and gonadal development were histologically determined at 45 and 60 days postfertilization (dpf). Thyrocyte hypertrophy, an index of hypothyroidism, was observed at 45 and 60 dpf in perchlorate-treated but only at 45 dpf in methimazole-treated fish. Similarly, gonadal sex ratios were biased toward ovaries relative to control animals at 45 and 60 dpf in perchlorate-treated fish but only at 45 dpf in methimazole-treated fish. Gonadal sex ratios were biased toward testes at 45 and 60 dpf in thyroxine-treated fish. Spermatogenesis was delayed in testes from goitrogen-treated fish at 60 dpf relative to control values, but was unaffected in testes from thyroxine-treated individuals. Oogenesis seemed to be nonspecifically delayed in all treatments relative to control at 60 dpf. This study confirmed the previously reported association between hypothyroid condition and ovarian-skewed ratios, and hyperthyroid condition and testicular-skewed ratios, and also showed that male pubertal development is specifically delayed by experimental hypothyroidism. The simultaneous recovery from the hypothyroid and ovary-inducing effects of methimazole by 60 dpf (27 days post-treatment) suggests that the ovary-skewing effect of goitrogens is reversible when thyroid conditions return to basal levels before developmental commitment of gonadal sex. Conversely, the masculinizing effect of hyperthyroidism seems to be stable and perhaps permanent. Published by Elsevier Inc.
[Gonad protective effect of radiation protective apron in chest radiography].
Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori
2004-12-01
Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28+/-2% and 39+/-4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few microGy even without a protector. Thus, the risk of a genetic effect would be as small as 10(-8). Given that acceptable risk is below 10(-6), we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography.
Flynn, Kevin; Swintek, Joe; Johnson, Rodney
2013-06-01
Various aquatic bioassays using one of several fish species have been developed or are in the process of being developed by organizations like the US Environmental Protection Agency and the Office of Economic Cooperation and Development for testing potential endocrine-disrupting chemicals (EDCs). Often, these involve assessment of the gonad phenotype of individuals as a key endpoint that is inputted into a risk or hazard assessment. Typically, gonad phenotype is determined histologically, which involves specialized and time-consuming techniques. The methods detailed here utilize an entirely different methodology, reverse-transcription quantitative polymerase chain reaction, to determine the relative expression levels of 4 genes after exposure to either 17β-estradiol or 17β-trenbolone and, by extension, the effects of EDCs on the phenotypic status of the gonad. The 4 genes quantified, Sox9b, protamine, Fig1α, and ZPC1, are all involved in gonad development and maintenance in Japanese medaka (Oryzias latipes); these data were then inputted into a permutational multivariate analysis of variance to determine whether significant differences exist between treatment groups. This information in conjunction with the sexual genotype, which can be determined in medaka, can be used to determine adverse effects of exposure to EDCs in a similar fashion to the histologically determined gonad phenotype. Copyright © 2013 SETAC.
Mroske, Cameron; Rasmussen, Kristen; Shinde, Deepali N; Huether, Robert; Powis, Zoe; Lu, Hsiao-Mei; Baxter, Ruth M; McPherson, Elizabeth; Tang, Sha
2015-11-05
In humans, Mammalian Target of Rapamycin (MTOR) encodes a 300 kDa serine/ threonine protein kinase that is ubiquitously expressed, particularly at high levels in brain. MTOR functions as an integrator of multiple cellular processes, and in so doing either directly or indirectly regulates the phosphorylation of at least 800 proteins. While somatic MTOR mutations have been recognized in tumors for many years, and more recently in hemimegalencephaly, germline MTOR mutations have rarely been described. We report the successful application of family-trio Diagnostic Exome Sequencing (DES) to identify the underlying molecular etiology in two brothers with multiple neurological and developmental lesions, and for whom previous testing was non-diagnostic. The affected brothers, who were 6 and 23 years of age at the time of DES, presented symptoms including but not limited to mild Autism Spectrum Disorder (ASD), megalencephaly, gross motor skill delay, cryptorchidism and bilateral iris coloboma. Importantly, we determined that each affected brother harbored the MTOR missense alteration p.E1799K (c.5395G>A). This exact variant has been previously identified in multiple independent human somatic cancer samples and has been shown to result in increased MTOR activation. Further, recent independent reports describe two unrelated families in whom p.E1799K co-segregated with megalencephaly and intellectual disability (ID); in both cases, p.E1799K was shown to have originated due to germline mosaicism. In the case of the family reported herein, the absence of p.E1799K in genomic DNA extracted from the blood of either parent suggests that this alteration most likely arose due to gonadal mosaicism. Further, the p.E1799K variant exerts its effect by a gain-of-function (GOF), autosomal dominant mechanism. Herein, we describe the use of DES to uncover an activating MTOR missense alteration of gonadal mosaic origin that is likely to be the causative mutation in two brothers who present multiple neurological and developmental abnormalities. Our report brings the total number of families who harbor MTOR p.E1799K in association with megalencephaly and ID to three. In each case, evidence suggests that p.E1799K arose in the affected individuals due to gonadal mosaicism. Thus, MTOR p.E1799K can now be classified as a pathogenic GOF mutation that causes megalencephaly and cognitive impairment in humans.
Identification of furan fatty acids in the lipids of common carp (Cyprinus carpio L.).
Chvalová, Daniela; Špička, Jiří
2016-06-01
Fatty acid (FA) composition was analyzed in muscle and gonad tissues of marketed common carp (Cyprinus carpio). The extracted lipids were separated into four fractions: polar lipids (PL), diacylglycerols, free fatty acids and triacylglycerols (TAG) using thin layer chromatography. FA content within the lipid fractions was determined by gas chromatography with flame ionization detector (GC/FID). The muscle lipids consisted primarily of TAG (96.9% of total FA), while PL were the major component of both male (67.6%) and female gonad (58.6%) lipids. Polyunsaturated fatty acids predominated in PL of all tissues (52.2-55.8% of total FA); monounsaturated fatty acids were the most abundant FA group in TAG of muscle (51.8%) and female gonads (47.8%) whereas high proportion of furan fatty acids (F-acids) (38.2%) was detected in TAG of male gonads. Eight F-acids were identified by gas chromatography-mass spectrometry (GC/MS) in male gonad samples, including less common 12,15-epoxy-13,14-dimethylnonadeca-12,14-dienoic acid with even-numbered alkyl moiety. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moravec, František; Bakenhaster, Micah; de Buron, Isaure
2013-04-01
A new nematode species, Philometra atlantica n. sp. (Philometridae), is described from male and female specimens found in the ovary of the Atlantic Spanish mackerel, Scomberomorus maculatus (Mitchill) (Scombridae, Perciformes), off the Atlantic coast of Florida and South Carolina. Based on light and scanning electron microscopy examination, the new species differs from most other gonad-infecting Philometra spp. in the length of spicules (111-126 μm), number and arrangement of genital papillae, and a U-shaped, dorsally interrupted caudal mound in the male. A unique feature among all gonad-infecting philometrids is the presence of 2 reflexed dorsal barbs on the distal end of the gubernaculum. From a few congeneric, gonad-infecting species with unknown males, it can be distinguished by some morphological and biometrical features found in gravid females (body length, length of first-stage larvae or esophagus, structure of caudal end) and by the host type (fish family) and geographical distribution. Philometra atlantica is the fourth valid gonad-infecting species of Philometra reported from fishes of the family Scombridae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo
Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects onmore » the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis. - Highlights: • TBT disrupted proper functioning of the HPG axis in female rats. • TBT leads to obesity and abnormal kisspeptin/leptin signaling in female rats. • TBT impairs GnRH neurons function, estrogen negative feedback role and fertility in female rats. • TBT leads to hyperleptinemia that may be associated at least in part with abnormal HPG function.« less
García-Pascual, I J; Sánchez-Yagüe, J; Rodríguez Hernández, M C; Paniagua Gómez-Alvárez, R
1994-04-01
The present study proved that desmopressin (DDAVP) (1 microgram DDAVP/12 h/5 días) does not affect ovary, testis and adrenal development in immature Wistar rats (17 days old), because the DDAVP does not modify the weight of the aforementioned organs as compared with the control group. Nevertheless, the male adults Wistar rats (80 days old) showed lower serum testosterone concentrations than the control group, after injection of 4 micrograms/day (2 micrograms/12 h) or 8 micrograms/day (4 micrograms/12 h) of DDAVP during a 5 days period time. Moreover, paradoxical significant lower concentrations of serum testosterone were found in 4 micrograms DDAVP/day-treated rats than in 8 micrograms DDAVP/day-treated ones. The former also showed a decreased number of spermatozoa as compared with the latter and with the control group. The percentage of mobile spermatozoa was lower in rats treated with both concentrations of DDAVP as compared with the control group. Therefore, desmopressin does not delay gonadal and adrenal growth in immature rats, but, at low doses, it affects the testicular function and the mobility of the spermatozoa in male adult rats.
Ruiz-Verdugo, C A.; Racotta, I S.; Ibarra, A M.
2001-05-15
Biochemical components of gonad and adductor muscle for diploid and triploid catarina scallop, Argopecten ventricosus, were evaluated and compared at four periods in 1 year (January, April, June, and October). Two comparisons were done. The first one compared an untreated control (diploid) vs. a triploidy-treated group for which the percentage of triploids was 57%. The second comparison was done on a group derived from within the triploidy-treated group, separating diploids (internal control) from triploids ('putative triploids'). Regardless of which comparison, in the gonad diploid scallops had larger concentrations of proteins, carbohydrates, lipids, and acylglycerols than triploid scallops. This reflects the maturation processes in diploid scallops vs. the sterility seen in most triploid scallops, and it is particularly supported by the consistently larger concentration of acylglycerols in gonads of diploids than in triploids. The gonad index of the internal control (diploid) group was significantly larger than that seen in the putative triploid group at all sampling periods but October, when none of the gonad biochemical components were different between ploidy groups.Triploid scallops had a significantly larger muscle index than diploids from April to October. This can be caused by a larger gain in muscle tissue in triploids than diploids from January to June. However, there were no consistent differences in any of the biochemical components evaluated in adductor muscle of diploids and triploids. The use of freshly ingested food rather than reserve mobilization from muscle in diploids is suggested by these results. Nutrients derived from ingested food are apparently used for muscle growth in triploids, whereas in diploids those nutrients serve primarily for gonad development. The importance of freshly ingested food for maintenance and growth is suggested because the decline in biochemical components seen in October in both muscle and gonad was paired with a decline in weight of those two organs, especially when the control groups are considered, but a decrease was also evident for the triploid groups. This may have been caused by the presence of El Niño, with its characteristic high water temperatures and low productivity.
Avgoustinaki, Pavlina D; Mitsopoulou, Effrosyni; Chlouverakis, Gregorios; Triantafillou, Theoni; Venihaki, Maria; Koukouli, Sofia; Margioris, Andrew N
2012-01-01
Sex steroids affect human behavior. The aim of the present study was to determine the associations, if any, between the circulating levels of gonadal and adrenal sex steroids in the mid luteal phase (21st day of a normal menstrual cycle, MC) of young professional women and psychometric parameters as assessed by the Minnesota Multiphasic Personality Inventory (MMPI). Our results are as follows: (a) The metabolic product of activated adrenal and gonadal androgens, 3alpha-diolG, was modestly but significantly associated with the social introversion scale (10-SI) (r=0.36, p<0.05), independently accounting for 13% of its variation across participants (R²=0.13, F(1,45)=6.58, p=0.014). (b) Total testosterone was significantly associated with the paranoia scale (6-Pa) (r=0.27, p<0.05). Multiple regression analyses indicated that 10% of the variability in paranoia scores could be independently explained by total testosterone levels (R²=0.10, F(1,57)=6.23, p=0.016). We were unable to find any association between the circulating androgens and scores on the masculinity-femininity scale (Mf). We were also unable to document any association between the weak adrenal androgens DHEA and DHEA-S and depression in contrast to several published reports. (c) Our data suggest a marginally significant association between progesterone and scores on the 7-Pt (obsessive/compulsive/psychasthenia) scale (r=0.27, p<0.05). However, only 7% of the 7-Pt variance was explained by progesterone (R²=0.071, F(1,50)=3.81, p=0.057). We have found that total testosterone was associated with the paranoia score, the metabolic product of activated androgens, 3alpha-diolG, to social introversion and, finally, progesterone to obsessive-compulsive behavior.
Xu, Jing; Huang, Wei; Zhong, Chengrong; Luo, Daji; Li, Shuangfei; Zhu, Zuoyan; Hu, Wei
2011-01-01
Background The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. Methodology/Principal Findings In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. Conclusions/Significance This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish. PMID:21695218
Emerging roles for neurosteroids in sexual behavior and function.
King, Steven R
2008-01-01
Although gonadal and adrenal steroids heavily impact sexual function at the level of the brain, the nervous system also produces its own steroids de novo that may regulate sexual behavior and reproduction. Current evidence points to important roles for neurosteroids in sexual and gender-typical behaviors, control of ovulation, and behaviors that strongly influence sexual interest and motivation like aggression, anxiety and depression. At the cellular level, neurosteroids act through stimulating rapid changes in excitability and direct activation of membrane receptors in neurons. Thus, unlike peripheral steroids, neurosteroids can have immediate and specific effects on select neuronal pathways to regulate sexual function.
Öcal, Gönül; Berberoğlu, Merih; Sıklar, Zeynep; Aycan, Zehra; Hacıhamdioglu, Bülent; Savas Erdeve, Şenay; Çamtosun, Emine; Kocaay, Pınar; Ruhi, Hatice I; Kılıç, Birim G; Tukun, Ajlan
2015-02-01
The aim of our study was to determine the etiologic distribution of 46,XX disorder of sexual development (DSD) according to the new DSD classification system and to evaluate the clinical features of this DSD subgroup in our patient cohort. The evaluation criteria and clinical findings of 95 46,XX patients were described by clinical presentation, gonadal morphology, genital anatomy, associated dysmorphic features, presence during prenatal period with/without postnatal virilization, hormonal characteristics, and presence or absence of steroidogenic defects among 319 patients with DSD. Types and ratios of each presentation of our 95 patients with 46,XX DSD were as follows: 82 had androgen excess (86.3%): (74 had classical congenital adrenal hyperplasia, 2 had CAH variant possibility of P450-oxidoreductase gene defect), 6 had disorders of ovarian development (6.3%): (1 patient had gonadal dysgenesis with virilization at birth with bilateral streak gonad, 4 patients had complete gonadal dysgenesis, and 1 patient had ovotesticular DSD) and 7 had other 46,XX DSD. Two sisters, who had 46,XX complete gonadal dysgenesis,were diagnosed with Perrault Syndrome with ovarian failure due to streak gonads and associated with sensorineural deafness. 46,XX DSD are usually derived from intrauterine virilization and CAH is the most common cause of 46,XX DSD due to fetal androgen exposure. Copyright © 2015 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
Gu, Yifeng; Zhang, Lei; Chen, Xiaowu
2014-08-01
MicroRNAs (miRNAs) play an important role in gonadal development and differentiation in fish. However, understanding of the mechanism of this process is hindered by our poor knowledge of miRNA expression patterns in fish gonads. In this study, miRNA libraries derived from adult gonads of Paralichthys olivaceus were generated by using next-generation sequencing (NGS) technology. Bioinformatics analysis was performed to distinguish mature miRNA sequences from two classes of small RNAs represented in the sequencing data. A total of 141 mature miRNAs were identified, in which 21 miRNAs were found in P. olivaceus for the first time. Variance and preference of miRNAs expression were concluded from the deep sequencing reads. Some miRNAs, such as pol-miR-143, pol-miR-26a and pol-let-7a were found with quite high expression levels in both gonads, while some exhibited a clear sex-biased expression in different gonad. Approximate 20.0% and 13.1% of the isolated miRNAs were preferentially expressed in the testis (FC<0.5) or ovary (FC>2), respectively. The identification and the preliminary analysis of the sex-biased expression of miRNAs in P. olivaceus gonads in our work by using NGS will provide us a basic catalog of miRNAs to facilitate future improvement and exploitation of sexual regulatory mechanisms in P. olivaceus. Copyright © 2014. Published by Elsevier Inc.
Effect of cyclophosphamide exposure on the migration of primordial germ cells in rat fetuses.
Ray, B; D'Souza, A S; Potu, B K; Saxena, A
2012-01-01
Effect of a single dose of cyclophosphamide on migration of the primordial germ cells (PGC), when they are about to reach gonadal ridge was investigated histochemically by staining for alkaline phosphatase. This may throw some light on the fate of gonadal ridge when exposed to the drug itself or its breakdown products such as acrolein, which is present as an environmental pollutant. Twelve pregnant Charles foster rats were divided in to control and treatment groups and kept in separate cages. In the experimental group, Cyclophosphamide 20 mg/kg/body weight was injected intraperitoneally on day 12 of gestation. Transverse sections of fetuses collected on day 16 of gestation were stained for alkaline phosphatase activity. Outcome of the study was analysed by scanning the photomicrographs and represented by photomicrographs. An unique finding in experimental group in the gonadal ridge consisted of homogeneously distributed pale staining cells. The gonadal ridge-mesonephros junction showed a single big cluster of the PGC. Under higher magnification, the PGC could be identified by oval or circular shape with well-defined cell membranes and very distinct dark brown staining. There were no signs of degeneration or disintegration of these cells. Cyclophosphamide exposure led to failure of PGC to spread inwards from the gonadal ridge-mesonephros junction giving rise to a situation so far not reported in literature. The presented phenomenon will result in improper development of the gonads leading to infertility in an affected individual in future generation (Fig. 4, Ref. 18).
Chung, Wilson C J; Linscott, Megan L; Rodriguez, Karla M; Stewart, Courtney E
2016-01-01
Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus-pituitary-gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.
Bayram, Yavuz; Gulsuner, Suleyman; Guran, Tulay; Abaci, Ayhan; Yesil, Gozde; Gulsuner, Hilal Unal; Atay, Zeynep; Pierce, Sarah B.; Gambin, Tomasz; Lee, Ming; Turan, Serap; Bober, Ece; Atik, Mehmed M.; Walsh, Tom; Karaca, Ender; Pehlivan, Davut; Jhangiani, Shalini N.; Muzny, Donna; Bereket, Abdullah; Buyukgebiz, Atilla; Boerwinkle, Eric; Gibbs, Richard A.
2015-01-01
Context: Hypergonadotropic hypogonadism presents in females with delayed or arrested puberty, primary or secondary amenorrhea due to gonadal dysfunction, and is further characterized by elevated gonadotropins and low sex steroids. Chromosomal aberrations and various specific gene defects can lead to hypergonadotropic hypogonadism. Responsible genes include those with roles in gonadal development or maintenance, sex steroid synthesis, or end-organ resistance to gonadotropins. Identification of novel causative genes in this disorder will contribute to our understanding of the regulation of human reproductive function. Objectives: The aim of this study was to identify and report the gene responsible for autosomal-recessive hypergonadotropic hypogonadism in two unrelated families. Design and Participants: Clinical evaluation and whole-exome sequencing were performed in two pairs of sisters with nonsyndromic hypergonadotropic hypogonadism from two unrelated families. Results: Exome sequencing analysis revealed two different truncating mutations in the same gene: SOHLH1 c.705delT (p.Pro235fs*4) and SOHLH1 c.27C>G (p.Tyr9stop). Both mutations were unique to the families and segregation was consistent with Mendelian expectations for an autosomal-recessive mode of inheritance. Conclusions: Sohlh1 was known from previous mouse studies to be a transcriptional regulator that functions in the maintenance and survival of primordial ovarian follicles, but loss-of-function mutations in human females have not been reported. Our results provide evidence that homozygous-truncating mutations in SOHLH1 cause female nonsyndromic hypergonadotropic hypogonadism. PMID:25774885
An update on cannabis research.
Husain, S; Khan, I
1985-01-01
A symposium of over 125 scientists, held in August 1984 at the campus of Oxford University, considered the latest developments concerning cannabis research. Evidence on the mode of tetrahydrocannabinol action on the central nervous system indicates that acetylcholine turnover in the hippocampus through a GABA-ergic mechanism is of major importance, though the role of the dopaminergic or serotoninergic mechanism and involvement of prostaglandins and c-AMP is not ruled out. The use of cannabis causes prominent and predictable effects on the heart, including increased work-load, increased plasma volume and postural hypotension, which could impose threats to the cannabis users with hypertension, cerebrovascular disease or coronary arteriosclerosis. Cannabis or tetrahydrocannabinol has damaging effects on the endocrine functions in both male and female of all animal species tested. Among possible mechanisms of action, it is suggested that tetrahydrocannabinol disrupts gonadal functions by depriving the testicular cells of their energy reserves by inhibition of cellular energetics, and that it stimulates androgen-binding protein secretion, which may account for oligospermia seen in chronic cannabis smokers. In addition to these direct effects on gonads, tetrahydrocannabinol interferes with hormonal secretions from the pituitary, including luteinizing hormones, follicle-stimulating hormones and prolactin. Research findings indicate that maternal and paternal exposure to cannabinoids can influence developmental and reproductive functions in the offspring, but it is difficult to separate possible teratogenic effects from subsequent gametotoxic and mutagenic potentials of cannabinoids.
Efficient and Heritable Gene Targeting in Tilapia by CRISPR/Cas9
Li, Minghui; Yang, Huihui; Zhao, Jiue; Fang, Lingling; Shi, Hongjuan; Li, Mengru; Sun, Yunlv; Zhang, Xianbo; Jiang, Dongneng; Zhou, Linyan; Wang, Deshou
2014-01-01
Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species. PMID:24709635
Some endocrinological aspects of barbiturate dependence.
Norton, P R
1971-02-01
1. Hypophysectomized rats become dependent on barbitone and show the same withdrawal syndrome as intact animals.2. Barbitone dependent rats have larger thyroid and adrenal glands, a larger liver, smaller gonads and larger secondary sex organs than untreated animals. The levator ani muscle of the males is smaller.3. In contrast, dependent female hypophysectomized rats only showed a decreased gonad weight and increased liver weight.4. Histologically, the thyroid gland of dependent rats appears more active, but the concentration of iodine bound to plasma protein, basal metabolic rate and body temperature are similar in dependent and untreated animals.5. Resting plasma corticosterone concentration appears to be unchanged in barbitone dependent animals, but stress induced increases in the concentration of corticosterone in plasma are less in dependent animals.6. Immature barbitone dependent rats grow at a faster rate than untreated animals, but hypophysectomized rats of similar age receiving barbitone do not.7. The additional body weight gained by barbitone dependent animals is of normal body composition.8. Administration of growth hormone has an identical growth inducing effect in dependent hypophysectomized animals and in untreated hypophysectomized animals.9. Barbitone dependent rats do not exhibit the ;frustration effect' in a double runway. In barbitone dependent rats approach to a potentially ;frustrating' situation is slower than in untreated animals.
Steroids, aromatase and sex differentiation of the newt Pleurodeles waltl.
Kuntz, S; Chardard, D; Chesnel, A; Grillier-Vuissoz, I; Flament, S
2003-01-01
In the newt Pleurodeles waltl, genetic sex determination obeys female heterogamety (female ZW, male ZZ). In this species as in most of non-mammalian vertebrates, steroid hormones play a key role in sexual differentiation of gonads. In that context, male to female sex reversal can be obtained by treatment of ZZ larvae with estradiol. Male to female sex reversal has also been observed following treatment of ZZ larvae with testosterone, a phenomenon that was called the "paradoxical effect". Female to male sex reversal occurs when ZW larvae are reared at 32 degrees C during a thermosensitive period (TSP) that takes place from stage 42 to stage 54 of development. Since steroids play an important part in sex differentiation, we focussed our studies on the estrogen-producing enzyme aromatase during normal sex differentiation as well as in experimentally induced sex reversal situations. Our results based on treatment with non-aromatizable androgens, aromatase activity measurements and aromatase expression studies demonstrate that aromatase (i) is differentially active in ZZ and ZW larvae, (ii) is involved in the paradoxical effect and (iii) might be a target of temperature. Thus, the gene encoding aromatase might be one of the master genes in the process leading to the differentiation of the gonad in Pleurodeles waltl. Copyright 2003 S. Karger AG, Basel
Sleep, rhythms, and the endocrine brain: influence of sex and gonadal hormones.
Mong, Jessica A; Baker, Fiona C; Mahoney, Megan M; Paul, Ketema N; Schwartz, Michael D; Semba, Kazue; Silver, Rae
2011-11-09
While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master "circadian clock" within the suprachiasmatic nucleus, modulate photic effects on activity in males point to novel mechanisms of circadian control. Work in aromatase-deficient mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a Mini-Symposium at the 2011 annual meeting of the Society for Neuroscience.
Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones
Mong, Jessica A.; Baker, Fiona C.; Mahoney, Megan M.; Paul, Ketema N.; Schwartz, Michael D.; Semba, Kazue; Silver, Rae
2011-01-01
While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master “circadian clock” within the suprachiasmatic nucleus (SCN), modulate photic effects on activity in males points to novel mechanisms of circadian control. Work in aromatase deficient (ArKO) mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a mini-symposium at the 2011 annual meeting of the Society for Neuroscience. PMID:22072663
Manwani, Bharti; Bentivegna, Kathryn; Benashski, Sharon E; Venna, Venugopal Reddy; Xu, Yan; Arnold, Arthur P; McCullough, Louise D
2015-02-01
Epidemiologic studies have shown sex differences in ischemic stroke. The four core genotype (FCG) mouse model, in which the testes determining gene, Sry, has been moved from Y chromosome to an autosome, was used to dissociate the effects of sex hormones from sex chromosome in ischemic stroke outcome. Middle cerebral artery occlusion (MCAO) in gonad intact FCG mice revealed that gonadal males (XXM and XYM) had significantly higher infarct volumes as compared with gonadal females (XXF and XYF). Serum testosterone levels were equivalent in adult XXM and XYM, as was serum estrogen in XXF and XYF mice. To remove the effects of gonadal hormones, gonadectomized FCG mice were subjected to MCAO. Gonadectomy significantly increased infarct volumes in females, while no change was seen in gonadectomized males, indicating that estrogen loss increases ischemic sensitivity. Estradiol supplementation in gonadectomized FCG mice rescued this phenotype. Interestingly, FCG male mice were less sensitive to effects of hormones. This may be due to enhanced expression of the transgene Sry in brains of FCG male mice. Sex differences in ischemic stroke sensitivity appear to be shaped by organizational and activational effects of sex hormones, rather than sex chromosomal complement.
Adjei-Boateng, D; Obirikorang, K A; Amisah, S; Madkour, H A; Otchere, F A
2011-12-01
The relationship between gonadal development and the concentrations of four heavy metals Mn, Zn, Fe and Hg in the tissues of the clam Galatea paradoxa was evaluated at the Volta estuary, Ghana, over an 18-month period. Metal concentrations in the clam tissues were highly variable over the sampling period and seemed to be influenced by the reproductive cycle of the clam. Mn concentrations varied over a wide range from 49 to 867 μg/g and exhibited a significant positive correlation with gonadal development (p = 0.0146, r(2) = 0.3190). Zn and Fe concentrations ranged from 13 to 59 μg/g and 79 to 484 μg/g, respectively and both revealed negative relationships between gonad development and metal accumulation (Zn (p = 0.0554, r(2) = 0.0554) and Fe (p = 0.1040, r(2) = 0.1567)). Hg concentrations ranged from 0.026 to 0.059 μg/g over the sampling period and exhibited a slight positive relationship between gonadal development and metal accumulation (p = 0.0861, r(2) = 0.1730).
The mammalian ovary from genesis to revelation.
Edson, Mark A; Nagaraja, Ankur K; Matzuk, Martin M
2009-10-01
Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago.
Tohyama, Saki; Ogino, Yukiko; Lange, Anke; Myosho, Taijun; Kobayashi, Tohru; Hirano, Yu; Yamada, Gen; Sato, Tomomi; Tatarazako, Norihisa; Tyler, Charles R; Iguchi, Taisen; Miyagawa, Shinichi
2017-08-01
Estrogens play fundamental roles in regulating reproductive activities and they act through estrogen receptor (ESR) in all vertebrates. Most vertebrates have two ESR subtypes (ESR1 and ESR2), whereas teleost fish have at least three (Esr1, Esr2a and Esr2b). Intricate functionalization has been suggested among the Esr subtypes, but to date, distinct roles of Esr have been characterized in only a limited number of species. Study of loss-of-function in animal models is a powerful tool for application to understanding vertebrate reproductive biology. In the current study, we established esr1 knockout (KO) medaka using a TALEN approach and examined the effects of Esr1 ablation. Unexpectedly, esr1 KO medaka did not show any significant defects in their gonadal development or in their sexual characteristics. Neither male or female esr1 KO medaka exhibited any significant changes in sexual differentiation or reproductive activity compared with wild type controls. Interestingly, however, estrogen-induced vitellogenin gene expression, an estrogen-responsive biomarker in fish, was limited in the liver of esr1 KO males. Our findings, in contrast to mammals, indicate that Esr1 is dispensable for normal development and reproduction in medaka. We thus provide an evidence for estrogen receptor functionalization between mammals and fish. Our findings will also benefit interpretation of studies into the toxicological effects of estrogenic chemicals in fish. © 2017 Japanese Society of Developmental Biologists.
The Mammalian Ovary from Genesis to Revelation
Edson, Mark A.; Nagaraja, Ankur K.; Matzuk, Martin M.
2009-01-01
Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago. PMID:19776209
Effects of Head Trauma and Brain Injury on Neuroendocrinologic Function
1986-10-31
severity of hypogonadism is dependent upon the degree of neurologic impairment, that there is a significant negative correlation between changes in...A. Gonadal studies. Our investigation of the transient hypogonadotropic hypogonadism occurring in the post-injury setting is complete. In our...sympathetic nervous system activation. We found that the severity of the hypogonadism is dependent on the magnitude of the neurologic impairment since
Bhartiya, Deepa; Shaikh, Ambreen; Anand, Sandhya; Patel, Hiren; Kapoor, Sona; Sriraman, Kalpana; Parte, Seema; Unni, Sreepoorna
2016-12-01
Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Agüera, Antonio; Collard, Marie; Jossart, Quentin; Moreau, Camille; Danis, Bruno
2015-01-01
Marine organisms in Antarctica are adapted to an extreme ecosystem including extremely stable temperatures and strong seasonality due to changes in day length. It is now largely accepted that Southern Ocean organisms are particularly vulnerable to global warming with some regions already being challenged by a rapid increase of temperature. Climate change affects both the physical and biotic components of marine ecosystems and will have an impact on the distribution and population dynamics of Antarctic marine organisms. To predict and assess the effect of climate change on marine ecosystems a more comprehensive knowledge of the life history and physiology of key species is urgently needed. In this study we estimate the Dynamic Energy Budget (DEB) model parameters for key benthic Antarctic species the sea star Odontaster validus using available information from literature and experiments. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model allows for the inclusion of the different life history stages, and thus, becomes a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. The DEB model presented here includes the estimation of reproduction handling rules for the development of simultaneous oocyte cohorts within the gonad. Additionally it links the DEB model reserves to the pyloric caeca an organ whose function has long been ascribed to energy storage. Model parameters described a slowed down metabolism of long living animals that mature slowly. O. validus has a large reserve that-matching low maintenance costs- allow withstanding long periods of starvation. Gonad development is continuous and individual cohorts developed within the gonads grow in biomass following a power function of the age of the cohort. The DEB model developed here for O. validus allowed us to increase our knowledge on the ecophysiology of this species, providing new insights on the role of food availability and temperature on its life cycle and reproduction strategy.
Hypogonadism: Its Prevalence and Diagnosis.
Ross, Anna; Bhasin, Shalender
2016-05-01
Hypogonadism is a clinical syndrome, which results from the failure of the testes to produce physiologic levels of testosterone and a normal number of spermatozoa due to defects at one or more levels of the hypothalamic-pituitary-gonadal axis. Primary hypogonadism results from malfunction at the level of the testes due to a genetic cause, injury, inflammation, or infection. Hypothalamic and/or pituitary failure leads to secondary hypogonadism, most often as a result of genetic defects, neoplasm, or infiltrative disorders. The signs and symptoms of hypogonadism depend on the age of onset, severity of androgen deficiency, and underlying cause of androgen deficiency. Copyright © 2016 Elsevier Inc. All rights reserved.
Luzio, Ana; Matos, Manuela; Santos, Dércia; Fontaínhas-Fernandes, António A; Monteiro, Sandra M; Coimbra, Ana M
2016-08-01
Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE2, 4ng/L) and fadrozole (Fad, 50μg/L) from 2h to 35days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and -6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the "juvenile ovary" development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved in zebrafish spermatogenesis. Both EDCs, EE2 and Fad, increased the apoptosis stimulus in zebrafish gonad. It was noticed that the few females that were resistant to Fad-induced sex reversal had increased anti-apoptotic factor levels, while males exposed to EE2 showed increased pro-apoptotic genes/proteins and were more advanced in gonad differentiation. Overall, our findings show that apoptosis pathways are involved in zebrafish gonad differentiation and that EDCs can disrupt this process. Copyright © 2016 Elsevier B.V. All rights reserved.