Sample records for normal heart function

  1. Biomechanics of Cardiac Function

    PubMed Central

    Voorhees, Andrew P.; Han, Hai-Chao

    2015-01-01

    The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments. PMID:26426462

  2. Assessment of the physiologic contribution of right atrial function to total right heart function in patients with and without pulmonary arterial hypertension.

    PubMed

    Sivak, Joseph A; Raina, Amresh; Forfia, Paul R

    2016-09-01

    Total right heart function requires normal function of both the right ventricle and the right atrium. However, the degree to which right atrial (RA) function and right ventricular (RV) function each contribute to total right heart function has not been quantified. In this study, we aimed to quantify the contribution of RA function to total right heart function in a group of pulmonary arterial hypertension (PAH) patients compared to a cohort of normal controls without cardiovascular disease. The normal cohort comprised 35 subjects with normal clinical echocardiograms, while the PAH cohort included 37 patients, of whom 31 had echocardiograms before and after initiation of PAH-specific therapy. Total right heart function was measured via tricuspid annular plane excursion (TAPSE). TAPSE was broken down into two components, the excursion occurring during RA contraction (TAPSERA) and that occurring before RA contraction (TAPSERV). RA fractional area change (RA-FAC) was also compared between the two groups. In the PAH cohort, more than half of the total TAPSE occurred during atrial systole, compared to less than one-third in the normal cohort (51.0% vs. 32.1%; P < 0.0001). There was a significant correlation between RA-FAC and TAPSE in the PAH cohort but not in the normal cohort. TAPSE improved significantly in the posttreatment cohort (1.7 vs. 2.1 cm), but TAPSERA continued to account for about half of the total TAPSE after treatment. RA function accounts for a significantly greater proportion of total right heart function in patients with PAH than in normal subjects.

  3. Assessment of the physiologic contribution of right atrial function to total right heart function in patients with and without pulmonary arterial hypertension

    PubMed Central

    Sivak, Joseph A.; Raina, Amresh

    2016-01-01

    Abstract Total right heart function requires normal function of both the right ventricle and the right atrium. However, the degree to which right atrial (RA) function and right ventricular (RV) function each contribute to total right heart function has not been quantified. In this study, we aimed to quantify the contribution of RA function to total right heart function in a group of pulmonary arterial hypertension (PAH) patients compared to a cohort of normal controls without cardiovascular disease. The normal cohort comprised 35 subjects with normal clinical echocardiograms, while the PAH cohort included 37 patients, of whom 31 had echocardiograms before and after initiation of PAH-specific therapy. Total right heart function was measured via tricuspid annular plane excursion (TAPSE). TAPSE was broken down into two components, the excursion occurring during RA contraction (TAPSERA) and that occurring before RA contraction (TAPSERV). RA fractional area change (RA-FAC) was also compared between the two groups. In the PAH cohort, more than half of the total TAPSE occurred during atrial systole, compared to less than one-third in the normal cohort (51.0% vs. 32.1%; P < 0.0001). There was a significant correlation between RA-FAC and TAPSE in the PAH cohort but not in the normal cohort. TAPSE improved significantly in the posttreatment cohort (1.7 vs. 2.1 cm), but TAPSERA continued to account for about half of the total TAPSE after treatment. RA function accounts for a significantly greater proportion of total right heart function in patients with PAH than in normal subjects. PMID:27683609

  4. Arrhythmias (For Parents)

    MedlinePlus

    ... or a heart function test. What's a Normal Heart Rate? Heart rate is measured by counting the number of beats per minute. Someone's normal heart rate depends on things like the person's age and ...

  5. Role of neuropeptide Y in renal sympathetic vasoconstriction: studies in normal and congestive heart failure rats.

    PubMed

    DiBona, G F; Sawin, L L

    2001-08-01

    Sympathetic nerve activity, including that in the kidney, is increased in heart failure with increased plasma concentrations of norepinephrine and the vasoconstrictor cotransmitter neuropeptide Y (NPY). We examined the contribution of NPY to sympathetically mediated alterations in kidney function in normal and heart failure rats. Heart failure rats were created by left coronary ligation and myocardial infarction. In anesthetized normal rats, the NPY Y(1) receptor antagonist, H 409/22, at two doses, had no effect on heart rate, arterial pressure, or renal hemodynamic and excretory function. In conscious severe heart failure rats, high-dose H 409/22 decreased mean arterial pressure by 8 +/- 2 mm Hg but had no effect in normal and mild heart failure rats. During graded frequency renal sympathetic nerve stimulation (0 to 10 Hz), high-dose H 409/22 attenuated the decreases in renal blood flow only at 10 Hz (-36% +/- 5%, P <.05) in normal rats but did so at both 4 (-29% +/- 4%, P <.05) and 10 Hz (-33% +/- 5%, P <.05) in heart failure rats. The glomerular filtration rate, urinary flow rate, and sodium excretion responses to renal sympathetic nerve stimulation were not affected by high-dose H 409/22 in either normal or heart failure rats. NPY does not participate in the regulation of kidney function and arterial pressure in normal conscious or anesthetized rats. When sympathetic nervous system activity is increased, as in heart failure and intense renal sympathetic nerve stimulation, respectively, a small contribution of NPY to maintenance of arterial pressure and to sympathetic renal vasoconstrictor responses may be identified.

  6. Comparison of frequencies of left ventricular systolic and diastolic heart failure in Chinese living in Hong Kong.

    PubMed

    Yip, G W; Ho, P P; Woo, K S; Sanderson, J E

    1999-09-01

    There is a wide variation (13% to 74%) in the reported prevalence of heart failure associated with normal left ventricular (LV) systolic function (diastolic heart failure). There is no published information on this condition in China. To ascertain the prevalence of diastolic heart failure in this community, 200 consecutive patients with the typical features of congestive heart failure were studied with standard 2-dimensional Doppler echocardiography. A LV ejection fraction (LVEF) >45% was considered normal. The results showed that 12.5% had significant valvular heart disease. Of the remaining 175 patients, 132 had a LVEF >45% (75%). Therefore, 66% of patients with a clinical diagnosis of heart failure had a normal LVEF. Heart failure with normal LV systolic function was more common than systolic heart failure in those >70 years old (65% vs 47%; p = 0.015). Most (57%) had an abnormal relaxation pattern in diastole and 14% had a restrictive filling pattern. In the systolic heart failure group, a restrictive filling pattern was more common (46%). There were no significant differences in the sex distribution, etiology, or prevalence of LV hypertrophy between these 2 heart failure groups. In conclusion, heart failure with a normal LVEF or diastolic heart failure is more common than systolic heart failure in Chinese patients with the symptoms of heart failure. This may be related to older age at presentation and the high prevalence of hypertension in this community.

  7. Gaussian fitting for carotid and radial artery pressure waveforms: comparison between normal subjects and heart failure patients.

    PubMed

    Liu, Chengyu; Zheng, Dingchang; Zhao, Lina; Liu, Changchun

    2014-01-01

    It has been reported that Gaussian functions could accurately and reliably model both carotid and radial artery pressure waveforms (CAPW and RAPW). However, the physiological relevance of the characteristic features from the modeled Gaussian functions has been little investigated. This study thus aimed to determine characteristic features from the Gaussian functions and to make comparisons of them between normal subjects and heart failure patients. Fifty-six normal subjects and 51 patients with heart failure were studied with the CAPW and RAPW signals recorded simultaneously. The two signals were normalized first and then modeled by three positive Gaussian functions, with their peak amplitude, peak time, and half-width determined. Comparisons of these features were finally made between the two groups. Results indicated that the peak amplitude of the first Gaussian curve was significantly decreased in heart failure patients compared with normal subjects (P<0.001). Significantly increased peak amplitude of the second Gaussian curves (P<0.001) and significantly shortened peak times of the second and third Gaussian curves (both P<0.001) were also presented in heart failure patients. These results were true for both CAPW and RAPW signals, indicating the clinical significance of the Gaussian modeling, which should provide essential tools for further understanding the underlying physiological mechanisms of the artery pressure waveform.

  8. Heart failure: when form fails to follow function.

    PubMed

    Katz, Arnold M; Rolett, Ellis L

    2016-02-01

    Cardiac performance is normally determined by architectural, cellular, and molecular structures that determine the heart's form, and by physiological and biochemical mechanisms that regulate the function of these structures. Impaired adaptation of form to function in failing hearts contributes to two syndromes initially called systolic heart failure (SHF) and diastolic heart failure (DHF). In SHF, characterized by high end-diastolic volume (EDV), the left ventricle (LV) cannot eject a normal stroke volume (SV); in DHF, with normal or low EDV, the LV cannot accept a normal venous return. These syndromes are now generally defined in terms of ejection fraction (EF): SHF became 'heart failure with reduced ejection fraction' (HFrEF) while DHF became 'heart failure with normal or preserved ejection fraction' (HFnEF or HFpEF). However, EF is a chimeric index because it is the ratio between SV--which measures function, and EDV--which measures form. In SHF the LV dilates when sarcomere addition in series increases cardiac myocyte length, whereas sarcomere addition in parallel can cause concentric hypertrophy in DHF by increasing myocyte thickness. Although dilatation in SHF allows the LV to accept a greater venous return, it increases the energy cost of ejection and initiates a vicious cycle that contributes to progressive dilatation. In contrast, concentric hypertrophy in DHF facilitates ejection but impairs filling and can cause heart muscle to deteriorate. Differences in the molecular signals that initiate dilatation and concentric hypertrophy can explain why many drugs that improve prognosis in SHF have little if any benefit in DHF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  9. The relationship between heart rate recovery and brain natruretic Peptide in patients with chest discomfort: a study for relationship between heart rate recovery and pre-exercise, post-exercise levels of brain natruretic Peptide in patients with normal systolic function and chest discomfort.

    PubMed

    Lee, Jae Eun; Kim, Bum Soo; Park, Wan; Huh, Jung Kwon; Kim, Byung Jin; Sung, Ki Chul; Kang, Jin Ho; Lee, Man Ho; Park, Jung Ro

    2010-04-01

    The correlation between brain natruretic peptide (BNP) level and cardiac autonomic function has been studied in type 2 diabetic patients. However, there is limited data from patients with normal systolic function. We evaluated the association between heart rate recovery (HRR) representing autonomic dysfunction and three plasma BNP levels: pre-exercise, post-exercise, and change during exercise in patients with normal systolic function. Subjects included 105 patients with chest pain and normal systolic function. HRR was defined as the difference between the peak heart rate and the rate measured two minutes after completion of a treadmill exercise test. We measured plasma BNP levels before exercise, 5 minutes after completion of exercise, and during exercise (absolute value of difference between pre- and post-exercise BNP levels). Patients with abnormal HRR values (

  10. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.

    PubMed

    Lee, Chi Fung; Chavez, Juan D; Garcia-Menendez, Lorena; Choi, Yongseon; Roe, Nathan D; Chiao, Ying Ann; Edgar, John S; Goo, Young Ah; Goodlett, David R; Bruce, James E; Tian, Rong

    2016-09-20

    Impairments of mitochondrial function in the heart are linked intricately to the development of heart failure, but there is no therapy for mitochondrial dysfunction. We assessed the reduced/oxidized ratio of nicotinamide adenine dinucleotide (NADH/NAD(+) ratio) and protein acetylation in the failing heart. Proteome and acetylome analyses were followed by docking calculation, mutagenesis, and mitochondrial calcium uptake assays to determine the functional role of specific acetylation sites. The therapeutic effects of normalizing mitochondrial protein acetylation by expanding the NAD(+) pool also were tested. Increased NADH/NAD(+) and protein hyperacetylation, previously observed in genetic models of defective mitochondrial function, also are present in human failing hearts as well as in mouse hearts with pathologic hypertrophy. Elevation of NAD(+) levels by stimulating the NAD(+) salvage pathway suppressed mitochondrial protein hyperacetylation and cardiac hypertrophy, and improved cardiac function in responses to stresses. Acetylome analysis identified a subpopulation of mitochondrial proteins that was sensitive to changes in the NADH/NAD(+) ratio. Hyperacetylation of mitochondrial malate-aspartate shuttle proteins impaired the transport and oxidation of cytosolic NADH in the mitochondria, resulting in altered cytosolic redox state and energy deficiency. Furthermore, acetylation of oligomycin-sensitive conferring protein at lysine-70 in adenosine triphosphate synthase complex promoted its interaction with cyclophilin D, and sensitized the opening of mitochondrial permeability transition pore. Both could be alleviated by normalizing the NAD(+) redox balance either genetically or pharmacologically. We show that mitochondrial protein hyperacetylation due to NAD(+) redox imbalance contributes to the pathologic remodeling of the heart via 2 distinct mechanisms. Our preclinical data demonstrate a clear benefit of normalizing NADH/NAD(+) imbalance in the failing hearts. These findings have a high translational potential as the pharmacologic strategy of increasing NAD(+) precursors are feasible in humans. © 2016 American Heart Association, Inc.

  11. Liver failure in total artificial heart therapy.

    PubMed

    Dimitriou, Alexandros Merkourios; Dapunt, Otto; Knez, Igor; Wasler, Andrae; Oberwalder, Peter; Koerfer, Reiner; Tenderich, Gero; Spiliopoulos, Sotirios

    2016-07-01

    Congestive hepatopathy (CH) and acute liver failure (ALF) are common among biventricular heart failure patients. We sought to evaluate the impact of total artificial heart (TAH) therapy on hepatic function and associated clinical outcomes. A total of 31 patients received a Syncardia Total Artificial Heart. Preoperatively 17 patients exhibited normal liver function or mild hepatic derangements that were clinically insignificant and did not qualify as acute or chronic liver failure, 5 patients exhibited ALF and 9 various hepatic derangements owing to CH. Liver associated mortality and postoperative course of liver values were prospectively documented and retrospectively analyzed. Liver associated mortality in normal liver function, ALF and CH cases was 0%, 20% (P=0.03) and 44.4% (P=0.0008) respectively. 1/17 (5.8%) patients with a normal liver function developed an ALF, 4/5 (80%) patients with an ALF experienced a markedly improvement of hepatic function and 6/9 (66.6%) patients with CH a significant deterioration. TAH therapy results in recovery of hepatic function in ALF cases. Patients with CH prior to surgery form a high risk group with increased liver associated mortality.

  12. Myoarchitecture and connective tissue in hearts with tricuspid atresia

    PubMed Central

    Sanchez-Quintana, D; Climent, V; Ho, S; Anderson, R

    1999-01-01

    Objective—To compare the atrial and ventricular myoarchitecture in the normal heart and the heart with tricuspid atresia, and to investigate changes in the three dimensional arrangement of collagen fibrils.
Methods—Blunt dissection and cell maceration with scanning electron microscopy were used to study the architecture of the atrial and ventricular musculature and the arrangement of collagen fibrils in three specimens with tricuspid atresia and six normal human hearts.
Results—There were significant modifications in the myoarchitecture of the right atrium and the left ventricle, both being noticeably hypertrophied. The middle layer of the ventricle in the abnormal hearts was thicker than in the normal hearts. The orientation of the superficial layer in the left ventricle in hearts with tricuspid atresia was irregular compared with the normal hearts. Scanning electron microscopy showed coarser endomysial sheaths and denser perimysial septa in hearts with tricuspid atresia than in normal hearts.
Conclusions—The overall architecture of the muscle fibres and its connective tissue matrix in hearts with tricuspid atresia differed from normal, probably reflecting modelling of the myocardium that is inherent to the malformation. This is in concordance with clinical observations showing deterioration in pump function of the dominant left ventricle from very early in life.

 Keywords: tricuspid atresia; congenital heart defects; connective tissue; fibrosis PMID:9922357

  13. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.

    PubMed

    Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika

    2018-02-01

    Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Improvement in functional capacity after levothyroxine treatment in patients with chronic heart failure and subclinical hypothyroidism].

    PubMed

    Curotto Grasiosi, Jorge; Peressotti, Bruno; Machado, Rogelio A; Filipini, Eduardo C; Angel, Adriana; Delgado, Jorge; Cortez Quiroga, Gustavo A; Rus Mansilla, Carmen; Martínez Quesada, María del Mar; Degregorio, Alejandro; Cordero, Diego J; Dak, Marcelo; Izurieta, Carlos; Esper, Ricardo J

    2013-10-01

    To assess whether levothyroxine treatment improves functional capacity in patients with chronic heart failure (New York Heart Association class i-iii) and subclinical hypothyroidism. One hundred and sixty-three outpatients with stable chronic heart failure followed up for at least 6 months were enrolled. A physical examination was performed, and laboratory tests including thyroid hormone levels, Doppler echocardiogram, radionuclide ventriculography, and Holter monitoring were requested. Functional capacity was assessed by of the 6-min walk test. Patients with subclinical hypothyroidism were detected and, after undergoing the s6-min walk test, were given replacement therapy. When they reached normal thyrotropin (TSH) levels, the 6-min walk test was performed again. The distance walked in both tests was recorded, and the difference in meters covered by each patient was analyzed. Prevalence of subclinical hypothyroidism in patients with heart failure was 13%. These patients walked 292±63m while they were hypothyroid and 350±76m when TSH levels returned to normal, a difference of 58±11m (P<.011). Patients with normal baseline TSH levels showed no significant difference between the 2 6-min walk tests. Patients with chronic heart failure and subclinical hypothyroidism significantly improved their physical performance when normal TSH levels were reached. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  15. Soy Protein Alleviates Hypertension and Fish Oil Improves Diastolic Heart Function in the Han:SPRD-Cy Rat Model of Cystic Kidney Disease.

    PubMed

    Ibrahim, Naser H M; Thandapilly, Sijo J; Jia, Yong; Netticadan, Thomas; Aukema, Harold

    2016-05-01

    Abnormalities in cardiac structure and function are very common among people with chronic kidney disease, in whom cardiovascular disease is the major cause of death. Dietary soy protein and fish oil reduce kidney disease progression in the Han:SPRD-Cy model of cystic renal disease. However, the effects of these dietary interventions in preventing alterations in cardiac structure and function due to kidney disease (reno-cardiac syndrome) in a cystic kidney disease model are not known. Therefore, weanling Han:SPRD-Cy diseased (Cy/+) and normal (+/+) rats were given diets containing either casein or soy protein, and either soy or fish oil in a three-way design for 8 weeks. Diseased rats had larger hearts, augmented left ventricular mass, and higher systolic and mean arterial blood pressure compared to the normal rats. Assessment of cardiac function using two-dimensional guided M-mode and pulse-wave Doppler echocardiography revealed that isovolumic relaxation time was prolonged in the diseased compared to normal rats, reflecting a diastolic heart dysfunction, and fish oil prevented this elevation. Soy protein resulted in a small improvement in systolic and mean arterial pressure but did not improve diastolic heart function, while fish oil prevented diastolic heart dysfunction in this model of cystic kidney disease.

  16. Complete inhibition of creatine kinase in isolated perfused rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts aremore » able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.« less

  17. hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function.

    PubMed

    Ye, Junqiang; Beetz, Nadine; O'Keeffe, Sean; Tapia, Juan Carlos; Macpherson, Lindsey; Chen, Weisheng V; Bassel-Duby, Rhonda; Olson, Eric N; Maniatis, Tom

    2015-06-09

    We report that mice lacking the heterogeneous nuclear ribonucleoprotein U (hnRNP U) in the heart develop lethal dilated cardiomyopathy and display numerous defects in cardiac pre-mRNA splicing. Mutant hearts have disorganized cardiomyocytes, impaired contractility, and abnormal excitation-contraction coupling activities. RNA-seq analyses of Hnrnpu mutant hearts revealed extensive defects in alternative splicing of pre-mRNAs encoding proteins known to be critical for normal heart development and function, including Titin and calcium/calmodulin-dependent protein kinase II delta (Camk2d). Loss of hnRNP U expression in cardiomyocytes also leads to aberrant splicing of the pre-mRNA encoding the excitation-contraction coupling component Junctin. We found that the protein product of an alternatively spliced Junctin isoform is N-glycosylated at a specific asparagine site that is required for interactions with specific protein partners. Our findings provide conclusive evidence for the essential role of hnRNP U in heart development and function and in the regulation of alternative splicing.

  18. Using impedance cardiography to assess left ventricular systolic function via postural change in patients with heart failure.

    PubMed

    DeMarzo, Arthur P; Calvin, James E; Kelly, Russell F; Stamos, Thomas D

    2005-01-01

    For the diagnosis and management of heart failure, it would be useful to have a simple point-of-care test for assessing ventricular function that could be performed by a nurse. An impedance cardiography (ICG) parameter called systolic amplitude (SA) can serve as an indicator of left ventricular systolic function (LVSF). This study tested the hypothesis that patients with normal LVSF should have a significant increase in SA in response to an increase in end-diastolic volume caused by postural change from sitting upright to supine, while patients with depressed LVSF associated with heart failure should have a minimal increase or a decrease in SA from upright to supine. ICG data were obtained in 12 patients without heart disease and with normal LVSF and 18 patients with clinically diagnosed heart failure. Consistent with the hypothesis, patients with normal LVSF had a significant increase in SA from upright to supine, whereas heart failure patients had a minimal increase or a decrease in SA from upright to supine. This ICG procedure may be useful for monitoring the trend of patient response to titration of beta blockers and other medications. ICG potentially could be used to detect worsening LVSF and provide a means of measurement for adjusting treatment.

  19. Assessment of Diastolic Function in Congenital Heart Disease

    PubMed Central

    Panesar, Dilveer Kaur; Burch, Michael

    2017-01-01

    Diastolic function is an important component of left ventricular (LV) function which is often overlooked. It can cause symptoms of heart failure in patients even in the presence of normal systolic function. The parameters used to assess diastolic function often measure flow and are affected by the loading conditions of the heart. The interpretation of diastolic function in the context of congenital heart disease requires some understanding of the effects of the lesions themselves on these parameters. Individual congenital lesions will be discussed in this paper. Recently, load-independent techniques have led to more accurate measurements of ventricular compliance and remodeling in heart disease. The combination of inflow velocities and tissue Doppler measurements can be used to estimate diastolic function and LV filling pressures. This review focuses on diastolic function and assessment in congenital heart disease. PMID:28261582

  20. Accelerating cine-MR Imaging in Mouse Hearts Using Compressed Sensing

    PubMed Central

    Wech, Tobias; Lemke, Angela; Medway, Debra; Stork, Lee-Anne; Lygate, Craig A; Neubauer, Stefan; Köstler, Herbert; Schneider, Jürgen E

    2011-01-01

    Purpose To combine global cardiac function imaging with compressed sensing (CS) in order to reduce scan time and to validate this technique in normal mouse hearts and in a murine model of chronic myocardial infarction. Materials and Methods To determine the maximally achievable acceleration factor, fully acquired cine data, obtained in sham and chronically infarcted (MI) mouse hearts were 2–4-fold undersampled retrospectively, followed by CS reconstruction and blinded image segmentation. Subsequently, dedicated CS sampling schemes were implemented at a preclinical 9.4 T magnetic resonance imaging (MRI) system, and 2- and 3-fold undersampled cine data were acquired in normal mouse hearts with high temporal and spatial resolution. Results The retrospective analysis demonstrated that an undersampling factor of three is feasible without impairing accuracy of cardiac functional parameters. Dedicated CS sampling schemes applied prospectively to normal mouse hearts yielded comparable left-ventricular functional parameters, and intra- and interobserver variability between fully and 3-fold undersampled data. Conclusion This study introduces and validates an alternative means to speed up experimental cine-MRI without the need for expensive hardware. J. Magn. Reson. Imaging 2011. © 2011 Wiley Periodicals, Inc. PMID:21932360

  1. Heart rate variability and turbulence in hyperthyroidism before, during, and after treatment.

    PubMed

    Osman, Faizel; Franklyn, Jayne A; Daykin, Jacqueline; Chowdhary, Saqib; Holder, Roger L; Sheppard, Michael C; Gammage, Michael D

    2004-08-15

    Patients with subclinical and treated overt hyperthyroidism have an excess vascular mortality rate. Several symptoms and signs in overt hyperthyroidism suggest abnormality of cardiac autonomic function that may account in part for this excess mortality rate, but few studies have examined cardiac autonomic function in untreated and treated hyperthyroidism. We assessed heart rate turbulence (HRT) and time-domain parameters of heart rate variability in a large, unselected cohort of patients with overt hyperthyroidism referred to our thyroid clinic (n = 259) and compared findings with a group of normal subjects with euthyroidism (n = 440). These measures were also evaluated during antithyroid therapy (when serum-free thyroxine and triiodothyronine concentrations returned to normal but thyrotropin remained suppressed (i.e., subclinical hyperthyroidism, n = 110) and when subjects were rendered clinically and biochemically euthyroid (normal serum thyrotropin, free thyroxine and triiodothyronine concentrations, n = 219). We found that overall measures of heart rate variability and those specific for cardiac vagal modulation were attenuated in patients with overt hyperthyroidism compared with normal subjects; measurements of overall heart rate variability remained low in those with low levels of serum thyrotropin but returned to normal in patients with biochemical euthyroidism. Measurements of HRT (onset and slope) were also decreased in patients with overt hyperthyroidism, but HRT slope returned to normal values with antithyroid treatment. This study is the first to evaluate HRT in overt and treated hyperthyroidism.

  2. Commonly Asked Questions about Children and Heart Disease

    MedlinePlus

    ... heart is a pump with a built-in electrical system. Normally, electricity starts in the upper chamber and spreads to ... function. Heart block occurs when the spread of electricity from the upper chambers (atria) to the lower ...

  3. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival.

    PubMed

    Alonso-Gonzalez, Rafael; Borgia, Francesco; Diller, Gerhard-Paul; Inuzuka, Ryo; Kempny, Aleksander; Martinez-Naharro, Ana; Tutarel, Oktay; Marino, Philip; Wustmann, Kerstin; Charalambides, Menelaos; Silva, Margarida; Swan, Lorna; Dimopoulos, Konstantinos; Gatzoulis, Michael A

    2013-02-26

    Restrictive lung defects are associated with higher mortality in patients with acquired chronic heart failure. We investigated the prevalence of abnormal lung function, its relation to severity of underlying cardiac defect, its surgical history, and its impact on outcome across the spectrum of adult congenital heart disease. A total of 1188 patients with adult congenital heart disease (age, 33.1±13.1 years) undergoing lung function testing between 2000 and 2009 were included. Patients were classified according to the severity of lung dysfunction based on predicted values of forced vital capacity. Lung function was normal in 53% of patients with adult congenital heart disease, mildly impaired in 17%, and moderately to severely impaired in the remainder (30%). Moderate to severe impairment of lung function related to complexity of underlying cardiac defect, enlarged cardiothoracic ratio, previous thoracotomy/ies, body mass index, scoliosis, and diaphragm palsy. Over a median follow-up period of 6.7 years, 106 patients died. Moderate to severe impairment of lung function was an independent predictor of survival in this cohort. Patients with reduced force vital capacity of at least moderate severity had a 1.6-fold increased risk of death compared with patients with normal lung function (P=0.04). A reduced forced vital capacity is prevalent in patients with adult congenital heart disease; its severity relates to the complexity of the underlying heart defect, surgical history, and scoliosis. Moderate to severe impairment of lung function is an independent predictor of mortality in contemporary patients with adult congenital heart disease.

  4. Low Left Atrial Compliance Contributes to the Clinical Recurrence of Atrial Fibrillation after Catheter Ablation in Patients with Structurally and Functionally Normal Heart.

    PubMed

    Park, Junbeom; Yang, Pil-sung; Kim, Tae-Hoon; Uhm, Jae-Sun; Kim, Joung-Youn; Joung, Boyoung; Lee, Moon-Hyoung; Hwang, Chun; Pak, Hui-Nam

    2015-01-01

    Stiff left atrial (LA) syndrome was initially reported in post-cardiac surgery patients and known to be associated with low LA compliance. We investigated the physiological and clinical implications of LA compliance by estimating LA pulse pressure (LApp) among patients with atrial fibrillation (AF) and structurally and functionally normal heart. Among 1038 consecutive patients with LA pressure measurements before AF ablation, we included 334 patients with structurally and functionally normal heart (81.7% male, 54.1±10.6 years, 77.0% paroxysmal AF) after excluding those with hypertension, diabetes, and previous ablation or cardiac surgery. We measured LApp (peak-nadir LA pressure) at the beginning of the ablation procedure and compared the values with clinical parameters and the AF recurrence rate. AF patients with normal heart were younger and more frequently male and had paroxysmal AF, a lower body mass index, and a lower LApp compared to others (all p<0.05). Based on the median value, the low LA compliance group (LApp≥13 mmHg) had a smaller LA volume index and lower LA voltage (all p<0.05) compared to the high LA compliance group. During a mean follow-up of 16.7±11.8 months, low LA compliance was independently associated with two fold-higher risk of clinical AF recurrence (HR:2.202; 95%CI:1.077-4.503; p = 0.031). Low LA compliance, as determined by an elevated LApp, was associated with a smaller LA volume index and lower LA voltage and independently associated with higher clinical recurrence after catheter ablation in AF patients with structurally and functionally normal heart.

  5. A New MRI-Based Model of Heart Function with Coupled Hemodynamics and Application to Normal and Diseased Canine Left Ventricles

    PubMed Central

    Choi, Young Joon; Constantino, Jason; Vedula, Vijay; Trayanova, Natalia; Mittal, Rajat

    2015-01-01

    A methodology for the simulation of heart function that combines an MRI-based model of cardiac electromechanics (CE) with a Navier–Stokes-based hemodynamics model is presented. The CE model consists of two coupled components that simulate the electrical and the mechanical functions of the heart. Accurate representations of ventricular geometry and fiber orientations are constructed from the structural magnetic resonance and the diffusion tensor MR images, respectively. The deformation of the ventricle obtained from the electromechanical model serves as input to the hemodynamics model in this one-way coupled approach via imposed kinematic wall velocity boundary conditions and at the same time, governs the blood flow into and out of the ventricular volume. The time-dependent endocardial surfaces are registered using a diffeomorphic mapping algorithm, while the intraventricular blood flow patterns are simulated using a sharp-interface immersed boundary method-based flow solver. The utility of the combined heart-function model is demonstrated by comparing the hemodynamic characteristics of a normal canine heart beating in sinus rhythm against that of the dyssynchronously beating failing heart. We also discuss the potential of coupled CE and hemodynamics models for various clinical applications. PMID:26442254

  6. A new approach for low-cost noninvasive detection of asymptomatic heart disease at rest.

    PubMed

    DeMarzo, Arthur P; Calvin, James E

    2007-01-01

    It would be useful to have an inexpensive, noninvasive point-of-care test for early detection of asymptomatic heart disease. This study used impedance cardiography (ICG) in a new way to assess heart function that did not use stroke volume or cardiac output. There is a model of the ICG dZ/dt waveform that may be used as a template to represent normal heart function. The hypothesis was that a dZ/dt waveform which deviates from that template should indicate heart dysfunction and therefore heart disease. The objective was to assess the accuracy of this new ICG approach, using echocardiography as the standard. Thirty-four outpatients undergoing echocardiographic testing were tested by ICG while sitting upright and supine. All patients had no symptoms or history of a structural or functional heart disorder. Echocardiographic testing showed 17 patients with abnormalities and 17 as normal. ICG testing yielded 16 true positives for heart dysfunction with 1 false negative (sensitivity = 94%) and 17 true negatives with no false positives (specificity = 100%). Considering that the cost, technical skill, and time required for this ICG test are comparable to those of an electrocardiograph, this new approach has potential as a point-of-care screening test for asymptomatic heart disease.

  7. Pharmacological heart rate lowering in patients with a preserved ejection fraction-review of a failing concept.

    PubMed

    Meyer, Markus; Rambod, Mehdi; LeWinter, Martin

    2018-07-01

    Epidemiological studies have demonstrated that high resting heart rates are associated with increased mortality. Clinical studies in patients with heart failure and reduced ejection fraction have shown that heart rate lowering with beta-blockers and ivabradine improves survival. It is therefore often assumed that heart rate lowering is beneficial in other patients as well. Here, we critically appraise the effects of pharmacological heart rate lowering in patients with both normal and reduced ejection fraction with an emphasis on the effects of pharmacological heart rate lowering in hypertension and heart failure. Emerging evidence from recent clinical trials and meta-analyses suggest that pharmacological heart rate lowering is not beneficial in patients with a normal or preserved ejection fraction. This has just begun to be reflected in some but not all guideline recommendations. The detrimental effects of pharmacological heart rate lowering are due to an increase in central blood pressures, higher left ventricular systolic and diastolic pressures, and increased ventricular wall stress. Therefore, we propose that heart rate lowering per se reproduces the hemodynamic effects of diastolic dysfunction and imposes an increased arterial load on the left ventricle, which combine to increase the risk of heart failure and atrial fibrillation. Pharmacologic heart rate lowering is clearly beneficial in patients with a dilated cardiomyopathy but not in patients with normal chamber dimensions and normal systolic function. These conflicting effects can be explained based on a model that considers the hemodynamic and ventricular structural effects of heart rate changes.

  8. The heart of the matter: from guided microtools to 3-D printing and precision genome editing, promising research could lead to new advances in pediatric cardiology.

    PubMed

    Chandler, David L

    2015-01-01

    The smooth, powerful muscles of a newborn baby?s heart are pulsing normally, squeezing in and letting go rhythmically as a 3-mm-wide catheter-like tube snakes its way through, entering via an artery and being guided slowly by a surgeon. When it reaches its target?a protruding knot of malformed muscle tissue within a ventricle that has been partly blocking the valve?the tip of the precisely controlled tube whirs into action, with tiny scissor-like rotating blades gently grinding up the excess tissue as those pieces are sucked back into the device, leaving no floating particles that could lead to a blockage elsewhere. The defect is fully removed, and the heart?s function is restored to normal, leaving the child with the prospect of a normal life. The whole minimally invasive process takes place inside a beating heart and would otherwise have required open-heart surgery, with the heart stopped for a cardiopulmonary bypass.

  9. Nonlinear and Stochastic Dynamics in the Heart

    PubMed Central

    Qu, Zhilin; Hu, Gang; Garfinkel, Alan; Weiss, James N.

    2014-01-01

    In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems. PMID:25267872

  10. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    PubMed

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  11. Alterations in plasma L-arginine and methylarginines in heart failure and after heart transplantation.

    PubMed

    Lundgren, Jakob; Sandqvist, Anna; Hedeland, Mikael; Bondesson, Ulf; Wikström, Gerhard; Rådegran, Göran

    2018-04-12

    Endothelial function, including the nitric oxide (NO)-pathway, has previously been extensively investigated in heart failure (HF). In contrast, studies are lacking on the NO pathway after heart transplantation (HT). We therefore investigated substances in the NO pathway prior to and after HT in relation to hemodynamic parameters. 12 patients (median age 50.0 yrs, 2 females), heart transplanted between June 2012 and February 2014, evaluated at our hemodynamic lab, at rest, prior to HT, as well as four weeks and six months after HT were included. All patients had normal left ventricular function post-operatively and none had post-operative pulmonary hypertension or acute cellular rejection requiring therapy at the evaluations. Plasma concentrations of ADMA, SDMA, L-Arginine, L-Ornithine and L-Citrulline were analyzed at each evaluation. In comparison to controls, the plasma L-Arginine concentration was low and ADMA high in HF patients, resulting in low L-Arginine/ADMA-ratio pre-HT. Already four weeks after HT L-Arginine was normalized whereas ADMA remained high. Consequently the L-Arginine/ADMA-ratio improved, but did not normalize. The biomarkers remained unchanged at the six-month evaluation and the L-Arginine/ADMA-ratio correlated inversely to pulmonary vascular resistance (PVR) six months post-HT. Plasma L-Arginine concentrations normalize after HT. However, as ADMA is unchanged, the L-Arginine/ADMA-ratio remained low and correlated inversely to PVR. Together these findings suggest that (i) the L-Arginine/ADMA-ratio may be an indicator of pulmonary vascular tone after HT, and that (ii) NO-dependent endothelial function is partly restored after HT. Considering the good postoperative outcome, the biomarker levels may be considered "normal" after HT.

  12. Shortness of breath in clinical practice: A case for left atrial function and exercise stress testing for a comprehensive diastolic heart failure workup

    PubMed Central

    Iyngkaran, Pupalan; Anavekar, Nagesh S; Neil, Christopher; Thomas, Liza; Hare, David L

    2017-01-01

    The symptom cluster of shortness of breath (SOB) contributes significantly to the outpatient workload of cardiology services. The workup of these patients includes blood chemistry and biomarkers, imaging and functional testing of the heart and lungs. A diagnosis of diastolic heart failure is inferred through the exclusion of systolic abnormalities, a normal pulmonary function test and normal hemoglobin, coupled with diastolic abnormalities on echocardiography. Differentiating confounders such as obesity or deconditioning in a patient with diastolic abnormalities is difficult. While the most recent guidelines provide more avenues for diagnosis, such as incorporating the left atrial size, little emphasis is given to understanding left atrial function, which contributes to at least 25% of diastolic left ventricular filling; additionally, exercise stress testing to elicit symptoms and test the dynamics of diastolic parameters, especially when access to the “gold standard” invasive tests is lacking, presents clinical translational gaps. It is thus important in diastolic heart failure work up to understand left atrial mechanics and the role of exercise testing to build a comprehensive argument for the diagnosis of diastolic heart failure in a patient presenting with SOB. PMID:29354484

  13. Novel cardiac protective effects of urea: from shark to rat

    PubMed Central

    Wang, Xintao; Wu, Lingyun; Aouffen, M'hamed; Mateescu, Mircea-Alexandru; Nadeau, Réginald; Wang, Rui

    1999-01-01

    This study was carried out to investigate novel cardioprotective effects of urea and the underlying mechanisms. The cardiac functions under oxidative stress were evaluated using Langendorff perfused isolated heart.Isolated dogfish shark hearts tolerated the oxidative stress generated by electrolysis (10 mA, 1 min) of the perfusion solution (n=4), and also showed normal cardiac functions during post-ischaemia reperfusion (n=4). The high concentration of urea (350 mM) in the heart perfusate was indispensable for maintaining the normal cardiac functions of the shark heart.Urea at 3–300 mM (n=4 for each group) protected the isolated rat heart against both electrolysis-induced heart damage and post-ischaemia reperfusion-induced cardiac injury.A concentration-dependent scavenging effect of urea (3–300 mM, n=4 for each group) against electrolysis-induced reactive oxygen species was also demonstrated in vitro.Urea derivatives as hydroxyurea, dimethylurea, and thiourea had antioxidant cardioprotective effect against the electrolysis-induced cardiac dysfunction of rat heart, but were not as effective as urea in suppressing the post-ischaemia reperfusion injury.Our results suggest that urea and its derivatives are potential antioxidant cardioprotective agents against oxidative stress-induced myocardium damage including the post-ischaemia reperfusion-induced injury. PMID:10602326

  14. Rac1-PAK2 pathway is essential for zebrafish heart regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xiangwen; He, Quanze; Li, Guobao

    P-21 activated kinases, or PAKs, are serine–threonine kinases that play important roles in diverse heart functions include heart development, cardiovascular development and function in a range of models; however, the mechanisms by which PAKs mediate heart regeneration are unknown. Here, we demonstrate that PAK2 and PAK4 expression is induced in cardiomyocytes and vessels, respectively, following zebrafish heart injury. Inhibition of PAK2 and PAK4 using a specific small molecule inhibitor impedes cardiomyocyte proliferation/dedifferentiation and cardiovascular regeneration, respectively. Cdc42 is specifically expressed in the ventricle and may function upstream of PAK2 but not PAK4 under normal conditions and that cardiomyocyte proliferentation duringmore » heart regeneration relies on Rac1-mediated activation of Pak2. Our results indicate that PAKs play a key role in heart regeneration.« less

  15. Blood pressure dynamics during exercise rehabilitation in heart failure patients.

    PubMed

    Hecht, Idan; Arad, Michael; Freimark, Dov; Klempfner, Robert

    2017-05-01

    Background Patients suffering from heart failure (HF) may demonstrate an abnormal blood pressure response to exercise (ABPRE), which may revert to a normal one following medical treatment. It is assumed that this change correlates positively with prognosis and functional aspects. The aim of this study was to characterize patients with ABPRE and assess ABPRE normalization and the correlation with clinical and functional outcomes. Methods In the study, 651 patients with HF who underwent cardiac rehabilitation (CR) were examined. Patients who presented an ABPRE during stress testing were identified and divided into those who corrected their initial ABPRE following CR and those who did not. Results Pre-rehabilitation ABPRE was present in 27% of patients, 68% of whom normalized their ABPRE following CR. Two parameters were independently predictive of failure to normalize the blood pressure response: female gender (odds ratio (OR) 3.5; 95% confidence interval (CI) 1.4-9.0) and decreased systolic function (OR 3.2; 95% CI 1.0-9.4). Patients with hypertrophic cardiomyopathy demonstrated higher rates of ABPRE normalization than patients with other causes of HF (93% vs. 62%, respectively, P = 0.03). The research population exhibited an average improvement in exercise capacity (4.7 to 6.4 metabolic equivalents (METS), P < .001), ejection fraction (35.4% to 37.7%, P < .001) and percentage of patients with New York Heart Association (NYHA) class 3-4 (50% to 43.4%, P = .123). The group who normalized their ABPRE exhibited greater improvement. Conclusions Amongst a population of patients suffering from HF, an ABPRE was normalized following CR in two thirds of patients. Female gender and a reduced systolic function independently predicted the failure to correct the ABPRE, while patients with hypertrophic cardiomyopathy demonstrated exceptionally high rates of normalization.

  16. Heart rate variability in normal-weight patients with polycystic ovary syndrome.

    PubMed

    Kilit, Celal; Paşalı Kilit, Türkan

    2017-05-01

    Polycystic ovary syndrome (PCOS) is an endocrine disease closely related to several risk factors of cardiovascular disease. Obese women with PCOS show altered autonomic modulation. The results of studies investigating cardiac autonomic functions of normal-weight women with PCOS are conflicting. The aim of the study was to assess the reactivity of cardiac sympathovagal balance in normal-weight women with PCOS by heart rate variability analysis. We examined the heart rate variability in 60 normal-weight women with PCOS and compared them with that in 60 age-matched healthy women having a similar metabolic profile. Time and frequency domain parameters of heart rate variability were analyzed based on 5-min-long continuous electrocardiography recordings for the following 3 periods: (1) during rest in supine position, (2) during controlled breathing, and (3) during isometric handgrip exercise. Time and frequency domain parameters of heart rate variability for the 3 periods assessed were similar in the two groups. Although modified Ferriman-Gallwey score and serum testosterone and luteinizing hormone levels were significantly higher in women with PCOS, homeostatic model assessment-insulin resistance (HOMA-IR) was not different the between the PCOS and control groups. There were no significant correlations between serum testosterone levels and heart rate variability parameters among the study population. The findings of this study suggest that the reactivity of cardiac sympathovagal balance is not altered in normal-weight women with PCOS having a normal HOMA-IR.

  17. Sacubitril/Valsartan in an Elderly Patient with Heart Failure: A Case Report.

    PubMed

    Cameli, Matteo; Pastore, Maria Concetta; Pagliaro, Antonio; Di Tommaso, Cristina; Reccia, Rosanna; Curci, Valeria; Mandoli, Giulia Elena; Mondillo, Sergio

    2017-01-01

    Sacubitril/valsartan has recently been approved for the treatment of heart failure with reduced ejection fraction. Given its recent introduction in the armamentarium for the treatment of heart failure (HF), "field-practice" evidence is required to deepen the clinical management of sacubitril/valsartan therapy. We report a relevant case of an elderly patient who achieved major clinical benefits after only 3 months of sacubitril/valsartan therapy. Importantly, in our assessment, we employed speckle tracking echocardiography (STE), a recent echocardiography technique that is non-Doppler and not angle dependent, which analyzes deformations of heart chambers from standard images and allows a fast, reliable, and reproducible assessment of heart function. After 3 months of therapy, NHYA class decreased from III to I-II and hypertension was controlled. Echocardiography examination also showed a marked improvement, with a reduction of left ventricular diameter, improved diastolic function (E = 0.39 m/s; A 0.69 m/s; E/A 0.55), normalized diastolic function index (E/E' TDI = 6.93), normalized atrial volume (63 mL), and improved atrial strain (15.44%). This case report documents the fast clinical and symptom improvement with sacubitril/valsartan in an elderly patient with HF; comprehensive echocardiographic assessment, including STE, also revealed a marked functional improvement with this compound. © 2017 S. Karger AG, Basel.

  18. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  19. Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart.

    PubMed

    Mourouzis, I; Dimopoulos, A; Saranteas, T; Tsinarakis, N; Livadarou, E; Spanou, D; Kokkinos, A D; Xinaris, C; Pantos, C; Cokkinos, D V

    2009-01-01

    There is accumulating evidence showing that ischemic preconditioning (PC) may lose its cardioprotective effect in the diseased states. The present study investigated whether PC can be effective in hypothyroidism, a clinical condition which is common and often accompanies cardiac diseases such as heart failure and myocardial infarction. Hypothyroidism was induced in rats by 3-week administration of 6n-propyl-2-thiouracil in water (0.05 %). Normal and hypothyroid hearts (HYPO) were perfused in Langendorff mode and subjected to 20 min of zero-flow global ischemia and 45 min of reperfusion. A preconditioning protocol (PC) was also applied prior to ischemia. HYPO hearts had significantly improved post-ischemic recovery of left ventricular developed pressure, end-diastolic pressure and reduced lactate dehydrogenase release. Furthermore, phospho-JNK and p38 MAPK levels after ischemia and reperfusion were 4.0 and 3.0 fold lower in HYPO as compared to normal hearts (P<0.05). A different response to PC was observed in normal than in HYPO hearts. PC improved the post-ischemic recovery of function and reduced the extent of injury in normal hearts but had no additional effect on the hypothyroid hearts. This response, in the preconditioned normal hearts, resulted in 2.5 and 1.8 fold smaller expression of the phospho-JNK and phospho-p38 MAPK levels at the end of reperfusion, as compared to non-PC hearts (P<0.05), while in HYPO hearts, no additional reduction in the phosphorylation of these kinases was observed after PC. Hypothyroid hearts appear to be tolerant to ischemia-reperfusion injury. This response may be, at least in part, due to the down-regulation of ischemia-reperfusion induced activation of JNKs and p38 MAPK kinases. PC is not associated with further reduction in the activation of these kinases in the hypothyroid hearts and fails to confer added protection in those hearts.

  20. Mitochondrial function as a therapeutic target in heart failure

    PubMed Central

    Brown, David A.; Perry, Justin B.; Allen, Mitchell E.; Sabbah, Hani N.; Stauffer, Brian L.; Shaikh, Saame Raza; Cleland, John G. F.; Colucci, Wilson S.; Butler, Javed; Voors, Adriaan A.; Anker, Stefan D.; Pitt, Bertram; Pieske, Burkert; Filippatos, Gerasimos; Greene, Stephen J.; Gheorghiade, Mihai

    2017-01-01

    Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria. PMID:28004807

  1. Increased pulmonary transit times in asymptomatic dogs with mitral regurgitation.

    PubMed

    Lord, Peter; Eriksson, Anders; Häggström, Jens; Järvinen, Anna-Kaisa; Kvart, Clarence; Hansson, Kerstin; Maripuu, Enn; Mäkelä, Olli

    2003-01-01

    Pulmonary transit time (PTT) normalized to heart rate (nPTT) is a measure of the pulmonary blood volume (PBV) to stroke volume ratio (PBV/SV). It is an index of cardiac performance. To determine the effect of compensated mitral regurgitation (CMR) and decompensated mitral regurgitation (DMR) caused by valvular endocardiosis on the index nPTT, we measured nPTT by first-pass radionuclide angiocardiography and ECG in 13 normal dogs, 18 dogs with CMR, and 13 dogs with DMR. PTT was measured as time between onset of appearance of activity at the pulmonary trunk and the left atrium. In the normal dogs, the relationship between PTT and mean R-R interval (mRR) was PTT = 4.08 x mRR + 0.15 (R2 = 0.71). Normal nPTT was 4.4 +/- 0.6 (SD) (range. 3.6-5.3). in CMR, 6.3 +/- 1.6 (SD) (range, 4.0-9.7). and in DMR, 11.9 +/- 3.4 (SD) (range, 8.0-18.8). The differences among all groups were significant. Heart rates were 110 +/- 22 bpm in normal dogs, 111 +/- 20 in dogs with CMR, and 144 +/- 18 in dogs with DMR (P < .001 for difference between DMR group and normal and CMR groups). Increased nPTT in CMR indicates preclinical heart pump dysfunction. Heart rate-normalized pulmonary transit times may be a useful index of heart function in mitral regurgitation.

  2. Effect of suprachiasmatic lesions on diurnal heart rate rhythm in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Winget, C. M.

    1977-01-01

    Heart rate and locomotor activity of rats kept under 12L/12D illumination regimen were recorded every six minutes for ten days using implantable radio transmitters. Some of the rats then received bilateral RF lesions into the suprachiasmatic nucleus (SCN). Control sham operations were performed on the rest of the animals. After recovery from surgery, recording of heart rate and locomotor activity was continued for ten days. SCN-lesioned rats showed no significant diurnal fluctuation in heart rate, while normal and sham-operated rats showed the normal diurnal rhythm in that function. The arrhythmic diurnal heart-rate pattern of SCN rats appeared to be correlated with their sporadic activity pattern. The integrity of the suprachiasmatic nucleus is therefore necessary for the generation and/or expression of diurnal rhythmicity in heart rate in the rat.

  3. Early identification of amyloid heart disease by technetium-99m-pyrophosphate scintigraphy: a study with familial amyloid polyneuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongo, M.; Hirayama, J.; Fujii, T.

    1987-03-01

    To determine whether technetium-99m-pyrophosphate (Tc-99m-PYP) scanning or two-dimensional echocardiography can detect amyloid heart disease in an earlier stage of familial amyloid polyneuropathy, 15 patients were examined. Although 10 of the 15 patients had no clinical evidence of congestive heart failure, as well as normal ventricular wall thickness and normal values for left ventricular systolic function, five (50%) of them showed mild or moderate myocardial uptake. On the other hand, none had characteristic highly refractile myocardial echoes on the two-dimensional echocardiographic images (p less than 0.01), and values for diastolic function were reduced in four of the five and normal inmore » the remaining one. In 85 control subjects, diffuse positive pyrophosphate scans of the heart were found in four (5%) of them (three with dilated cardiomyopathy and one with sarcoidosis), and highly refractile granular sparkling echoes were observed in nine (11%) (five with hypertrophic cardiomyopathy, three with aortic stenosis, and one with hypereosinophilic syndrome). We conclude that Tc-99m-PYP scanning is a more sensitive and specific method and may have the potential ability to detect amyloid heart disease in the earlier stage of familial amyloid polyneuropathy than two-dimensional echocardiography.« less

  4. Case Report: First Reported Combined Heart-Liver Transplant in a Patient With a Congenital Solitary Kidney.

    PubMed

    Hanna, R M; Kamgar, M; Hasnain, H; Khorsan, R; Nsair, A; Kaldas, F; Baas, A; Bunnapradist, S; Wilson, J M

    2018-04-01

    We report a case of successful combined heart liver transplant in a patient with a congenital solitary kidney. The patient had normal renal function before combined heart-liver transplantation and developed acute kidney injury requiring slow continuous dialysis and subsequent intermittent dialysis for almost 8 weeks post transplantation. Her renal function recovered and she remains off dialysis now 7 months post transplantation. She only currently has mild chronic renal insufficiency. We believe this is the first reported case of successful heart liver transplant in a patient with a congenital solitary kidney. Published by Elsevier Inc.

  5. Impact of age and sex on normal left heart structure and function.

    PubMed

    Hagström, Linn; Henein, Michael Y; Karp, Kjell; Waldenström, Anders; Lindqvist, Per

    2017-11-01

    Accurate age- and sex-related normal reference values of ventricular structure and function are important to determine the level of dysfunction in patients. The aim of this study therefore was to document normal age range sex-related measurements of LV structural and functional measurements to serve such purpose. We evaluated left ventricular structure and function in 293 healthy subjects between 20 and 90 years with equally distributed gender. Doppler echocardiography was used including measure of both systolic and diastolic functions. Due to systolic LV function, only long axis function correlated with age (r = 0·55, P<0·01) and the correlation was stronger in females. Concerning diastolic function, there was a strong age correlation in all parameters used (r = 0·40-0·74, P<0·001). Due to LV structural changes over age, females showed a larger reduction in end-diastolic volumes, but no or trivial difference in wall thickness after the age of 60 years. Age is associated with significant normal changes in left ventricular structure and function, which should be considered when deciding on normality. These changes are related to systemic arterial changes as well as body stature, thus reflecting overall body ageing process. Furthermore, normal cardiac ageing in females might partly explain the higher prevalence of heart failure with preserved ejection in females. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  6. Left ventricular function in Friedreich's ataxia. An echocardiographic study.

    PubMed Central

    Sutton, M G; Olukotun, A Y; Tajik, A J; Lovett, J L; Giuliani, E R

    1980-01-01

    Left ventricular function was assessed in seven patients with Friedreich's ataxia using computer-assisted analysis of the left ventricular echocardiograms and compared with those of 45 normal children matched for age and sex. The left ventricle in Friedreich's ataxia was symmetrically hypertrophied, cavity dimension was normal or small, and septal motion and peak velocity of circumferential shortening were normal in all patients. In diastole the duration of rapid filling was normal, peak rate of increase in left ventricular dimension was reduced in two patients, mitral valve opening was delayed with respect to minimum cavity dimension in seven, and there were significantly greater than normal increases in left ventricular dimension during the isovolumic period to mitral valve opening in seven, indicating abnormal and incoordinate relaxation. Peak rates of posterior wall systolic thickening and diastolic thinning were reduced in four and six patients, respectively, whereas peak rates of septal systolic thickening and diastolic thinning were reduced in one and four, respectively, suggesting a disproportionately greater impairment of the posterior wall than of septal function. The absence of asymmetric septal hypertrophy and mid-systolic closure of the aortic valve, the presence of normal septal motion, and the greater reduction in posterior wall than in septal dynamics are inconsistent with previous ideas that the heart disease of Friedreich's ataxia is identical to hypertrophic cardiomyopathy. Computer-assisted analysis of echocardiograms permits recognition of heart disease in Friedreich's ataxia before the onset of cardiac symptoms or development of clinical signs of heart disease. Images PMID:7426188

  7. Combined heart-kidney transplantation after total artificial heart insertion.

    PubMed

    Ruzza, A; Czer, L S C; Ihnken, K A; Sasevich, M; Trento, A; Ramzy, D; Esmailian, F; Moriguchi, J; Kobashigawa, J; Arabia, F

    2015-01-01

    We present the first single-center report of 2 consecutive cases of combined heart and kidney transplantation after insertion of a total artificial heart (TAH). Both patients had advanced heart failure and developed dialysis-dependent renal failure after implantation of the TAH. The 2 patients underwent successful heart and kidney transplantation, with restoration of normal heart and kidney function. On the basis of this limited experience, we consider TAH a safe and feasible option for bridging carefully selected patients with heart and kidney failure to combined heart and kidney transplantation. Recent FDA approval of the Freedom driver may allow outpatient management at substantial cost savings. The TAH, by virtue of its capability of providing pulsatile flow at 6 to 10 L/min, may be the mechanical circulatory support device most likely to recover patients with marginal renal function and advanced heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Brain natriuretic peptide and right heart dysfunction after heart transplantation.

    PubMed

    Talha, Samy; Charloux, Anne; Piquard, François; Geny, Bernard

    2017-06-01

    Heart transplantation (HT) should normalize cardiac endocrine function, but brain natriuretic peptide (BNP) levels remain elevated after HT, even in the absence of left ventricular hemodynamic disturbance or allograft rejection. Right ventricle (RV) abnormalities are common in HT recipients (HTx), as a result of engraftment process, tricuspid insufficiency, and/or repeated inflammation due to iterative endomyocardial biopsies. RV function follow-up is vital for patient management as RV dysfunction is a recognized cause of in-hospital death and is responsible for a worse prognosis. Interestingly, few and controversial data are available concerning the relationship between plasma BNP levels and RV functional impairment in HTx. This suggests that infra-clinical modifications, such as subtle immune system disorders or hypoxic conditions, might influence BNP expression. Nevertheless, due to other altered circulating molecular forms of BNP, a lack of specificity of BNP assays is described in heart failure patients. This phenomenon could exist in HT population and could explain elevated BNP plasmatic levels despite a normal RV function. In clinical practice, intra-individual change in BNP over time, rather than absolute BNP values, might be more helpful in detecting right cardiac dysfunction in HTx. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Heart transplantation on the first day of life from an anencephalic donor.

    PubMed

    Parisi, F; Squitieri, C; Carotti, A; Di Carlo, D; Gagliardi, M G

    1999-05-01

    Heart transplantation on the first day of life, and graft harvesting from anencephalic donors, have been very rare events in the history of transplantation. At Bambino Gesù Hospital (Rome), heart transplantation was performed on a newborn 9 h after birth, using a graft harvested from an anencephalic donor. This graft achieved a good cardiocirculatory function, but the recipient died of necrotizing enterocolitis (NEC) on post-operative day (POD) 10. Despite failure, this case and other reports support the concept that hearts from anencephalic donors can work normally, and indicate that heart transplantation on the first day of life may have a favorable outcome if postoperative maintenance of multi-organ balance and function is successful.

  10. Probing the Electrophysiology of the Developing Heart

    PubMed Central

    Watanabe, Michiko; Rollins, Andrew M.; Polo-Parada, Luis; Ma, Pei; Gu, Shi; Jenkins, Michael W.

    2016-01-01

    Many diseases that result in dysfunction and dysmorphology of the heart originate in the embryo. However, the embryonic heart presents a challenging subject for study: especially challenging is its electrophysiology. Electrophysiological maturation of the embryonic heart without disturbing its physiological function requires the creation and deployment of novel technologies along with the use of classical techniques on a range of animal models. Each tool has its strengths and limitations and has contributed to making key discoveries to expand our understanding of cardiac development. Further progress in understanding the mechanisms that regulate the normal and abnormal development of the electrophysiology of the heart requires integration of this functional information with the more extensively elucidated structural and molecular changes. PMID:29367561

  11. Glucagon-like peptide-1 reduces contractile function and fails to boost glucose utilization in normal hearts in the presence of fatty acids.

    PubMed

    Nguyen, T Dung; Shingu, Yasushige; Amorim, Paulo A; Schwarzer, Michael; Doenst, Torsten

    2013-10-09

    GLP-1 and exendin-4, which are used as insulin sensitizers or weight reducing drugs, were shown to improve glucose uptake in the heart. However, the direct effects of GLP-1 or exendin-4 on normal hearts in the presence of fatty acids, the main cardiac substrates, have never been investigated. We therefore assessed the effects of GLP-1 or exendin-4 on myocardial glucose uptake (GU), glucose oxidation (GO) and cardiac performance (CP) under conditions of fatty acid utilization. Rat hearts were perfused with only glucose (5 mM) or glucose (5 mM) plus oleate (0.4 mM) as substrates for 60 min. After 30 min, GLP-1 or exendin-4 (0.5 nM or 5 nM) was added. In the absence of oleate, GLP-1 increased both GU and GO. Exendin-4 increased GO but showed no effect on GU. Neither GLP-1 nor exendin-4 affected CP. However, when oleate was present, GLP-1 failed to stimulate glucose utilization and exendin-4 even decreased GU. Furthermore, now GLP-1 reduced CP. In contrast to prior reports, this negative inotropic effect could not be blocked by the protein kinase A inhibitor H-89. We then measured myocardial GO and CP in rats receiving a 4-week GLP-1 infusion. Interestingly, this chronic treatment resulted in a significant reduction in both GO and CP. Under the influence of oleate, GLP-1 reduces contractile function and fails to stimulate glucose utilization in normal hearts. Exendin-4 may acutely reduce cardiac glucose uptake but not contractility. We suggest advanced investigation of heart function and metabolism in patients treating with these peptides. © 2013.

  12. Cardiac support device (ASD) delivers bone marrow stem cells repetitively to epicardium has promising curative effects in advanced heart failure.

    PubMed

    Yue, Shizhong; Naveed, Muhammad; Gang, Wang; Chen, Dingding; Wang, Zhijie; Yu, Feng; Zhou, Xiaohui

    2018-05-12

    Ventricular restraint therapy is a non-transplant surgical option for the management of advanced heart failure (HF). To augment the therapeutic applications, it is hypothesized that ASD shows remarkable capabilities not only in delivering stem cells but also in dilated ventricles. Male SD rats were divided into four groups (n = 6): normal, HF, HF + ASD, and HF + ASD-BMSCs respectively. HF was developed by left anterior descending (LAD) coronary artery ligation in all groups except normal group. Post-infarcted electrocardiography (ECG) and brain natriuretic peptide (BNP) showed abnormal heart function in all model groups and HF + ASD-BMSCs group showed significant improvement as compared to other HF, HF + ASD groups on day 30. Masson's trichrome staining was used to study the histology, and a large blue fibrotic area has been observed in HF and HF + ASD groups and quantification of fibrosis was assessed. ASD-treated rats showed normal heart rhythm, demonstrated by smooth -ST and asymmetrical T-wave. The mechanical function of the heart such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP) and heart rate was brought to normal when treated with ASD-BMSCs. This effect was more prominent than that of ASD therapy alone. In comparison to HF group, the SD rats in HF + ASD-BMBCs group showed a significant decline in BNP levels. So ASD can deliver BMSCs to the cardiomyocytes successfully and broaden the therapeutic efficacy, in comparison to the restraint device alone. An effective methodology to manage the end-stage HF has been proved.

  13. Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure.

    PubMed

    Ichige, Marcelo H A; Santos, Carla R; Jordão, Camila P; Ceroni, Alexandre; Negrão, Carlos E; Michelini, Lisete C

    2016-11-01

    Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine β-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine β-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative dP/dt, decreased intrinsic heart rate (IHR), lower parasympathetic and higher sympathetic tonus, reduced preganglionic vagal neurones and ChATir in the DMV/NA, and increased RVLM DBHir. Training increased treadmill performance, normalized autonomic tonus and IHR, restored the number of DMV and NA neurones and corrected ChATir without affecting ventricular function. There were strong positive correlations between parasympathetic tonus and ChATir in NA and DMV. RVLM DBHir was also normalized by training, but there was no change in neurone number and no correlation with sympathetic tonus. Training-induced preservation of preganglionic vagal neurones is crucial to normalize parasympathetic activity and restore autonomic balance to the heart even in the persistence of cardiac dysfunction. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  14. Effect of hypokinesia on cardiac contractile function and nervous regulation of the heart

    NASA Technical Reports Server (NTRS)

    Meyerson, F. Z.; Kapelko, V. I.; Gorina, M. S.; Shchegolkov, A. N.; Larinov, N. P.

    1980-01-01

    Longterm hypokinesia caused cardiac deadaptation in rabbits, which resulted in the diminishing of the left ventricular rate of contraction and relaxation, joined later by decreased vascular resistance. As a results, the ejection rate as well as stroke volume and cardiac output were normal. The decrease of the relaxation speed was more obvious at a high heart rate and results in shortening of the diastolic pause and diminishing of cardiac output. Hearts of the hypokinetic animals were characterized by normal maximal pressure developed by a unit of muccardial mass aorta clamping, decreased adrenoreactivity, and increased cholinoreactivity. This complex of changes is contrary to changes observed in adaptation to exercise, but is similar to changes observed in compensatory hypertrophy of the heart.

  15. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice.

    PubMed

    Mabe, Abigail M; Hoover, Donald B

    2009-04-01

    Previous work provided indirect evidence that the neurotrophic factor neurturin (NRTN) is required for normal cholinergic innervation of the heart. This study used nrtn knockout (KO) and wild-type (WT) mice to determine the effect of nrtn deletion on cardiac cholinergic innervation and function in the adult heart. Immunohistochemistry, confocal microscopy, and quantitative image analysis were used to directly evaluate intrinsic cardiac neuronal development. Atrial acetylcholine (ACh) levels were determined as an indirect index of cholinergic innervation. Cholinergic function was evaluated by measuring negative chronotropic responses to right vagal nerve stimulation in anaesthetized mice and responses of isolated atria to muscarinic agonists. KO hearts contained only 35% the normal number of cholinergic neurons, and the residual cholinergic neurons were 15% smaller than in WT. Cholinergic nerve density at the sinoatrial node was reduced by 87% in KOs, but noradrenergic nerve density was unaffected. Atrial ACh levels were substantially lower in KO mice (0.013 +/- 0.004 vs. 0.050 +/- 0.011 pmol/microg protein; P < 0.02) as expected from cholinergic neuron and nerve fibre deficits. Maximum bradycardia evoked by vagal stimulation was reduced in KO mice (38 +/- 6% vs. 69 +/- 3% decrease at 20 Hz; P < 0.001), and chronotropic responses took longer to develop and fade. In contrast to these deficits, isolated atria from KO mice had normal post-junctional sensitivity to carbachol and bethanechol. These findings demonstrate that NRTN is essential for normal cardiac cholinergic innervation and cholinergic control of heart rate. The presence of residual cardiac cholinergic neurons and vagal bradycardia in KO mice suggests that additional neurotrophic factors may influence this system.

  16. Metaiodobenzylguanidine (/sup 131/I) scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.

    1987-12-01

    In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine (/sup 131/I) to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine (/sup 131/I) and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4more » hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine (/sup 131/I) scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine (/sup 123/I) scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients.« less

  17. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  18. Serial optical coherence scanning reveals an association between cardiac function and the heart architecture in the aging rodent heart

    PubMed Central

    Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Avti, Pramod; Moeini, Mohammad; Lesage, Frédéric

    2017-01-01

    Normal aging is accompanied by structural changes in the heart architecture. To explore this remodeling, we used a serial optical coherence tomography scanner to image entire mouse hearts at micron scale resolution. Ex vivo hearts of 7 young (4 months) and 5 old (24 months) C57BL/6 mice were acquired with the imaging platform. OCT of the myocardium revealed myofiber orientation changing linearly from the endocardium to the epicardium. In old mice, this rate of change was lower when compared to young mice while the average volume of old mice hearts was significantly larger (p<0.05). Myocardial wall thickening was also accompanied by extracellular spacing in the endocardium, resulting in a lower OCT attenuation coefficient in old mice endocardium (p<0.05). Prior to serial sectioning, cardiac function of the same hearts was imaged in vivo using MRI and revealed a reduced ejection fraction with aging. The use of a serial optical coherence tomography scanner allows new insight into fine age-related changes of the heart associated with changes in heart function. PMID:29188099

  19. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  20. A new twist on an old idea part 2: cyclosporine preserves normal mitochondrial but not cardiomyocyte function in mini‐swine with compensated heart failure

    PubMed Central

    Hiemstra, Jessica A.; Gutiérrez‐Aguilar, Manuel; Marshall, Kurt D.; McCommis, Kyle S.; Zgoda, Pamela J.; Cruz‐Rivera, Noelany; Jenkins, Nathan T.; Krenz, Maike; Domeier, Timothy L.; Baines, Christopher P.; Emter, Craig A.

    2014-01-01

    Abstract We recently developed a clinically relevant mini‐swine model of heart failure with preserved ejection fraction (HFpEF), in which diastolic dysfunction was associated with increased mitochondrial permeability transition (MPT). Early diastolic function is ATP and Ca2+‐dependent, thus, we hypothesized chronic low doses of cyclosporine (CsA) would preserve mitochondrial function via inhibition of MPT and subsequently maintain normal cardiomyocyte Ca2+ handling and contractile characteristics. Left ventricular cardiomyocytes were isolated from aortic‐banded Yucatan mini‐swine divided into three groups; control nonbanded (CON), HFpEF nontreated (HF), and HFpEF treated with CsA (HF‐CsA). CsA mitigated the deterioration of mitochondrial function observed in HF animals, including functional uncoupling of Complex I‐dependent mitochondrial respiration and increased susceptibility to MPT. Attenuation of mitochondrial dysfunction in the HF‐CsA group was not associated with commensurate improvement in cardiomyocyte Ca2+ handling or contractility. Ca2+ transient amplitude was reduced and transient time to peak and recovery (tau) prolonged in HF and HF‐CsA groups compared to CON. Alterations in Ca2+ transient parameters observed in the HF and HF‐CsA groups were associated with decreased cardiomyocyte shortening and shortening rate. Cellular function was consistent with impaired in vivo systolic and diastolic whole heart function. A significant systemic hypertensive response to CsA was observed in HF‐CsA animals, and may have played a role in the accelerated the development of heart failure at both the whole heart and cellular levels. Given the significant detriment to cardiac function observed in response to CsA, our findings suggest chronic CsA treatment is not a viable therapeutic option for HFpEF. PMID:24963034

  1. Differential electrocardiogram efffects in normal and hypertensive rats after inhalation exposure to transition metal rich particulate matter

    EPA Science Inventory

    Inhalation of particulate matter (PM) associated with air pollution causes adverse effects on cardiac function including heightened associations with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. Some of these effects have been attributable to transitio...

  2. Functional Analysis of Internal Moving Organs Using Super-Resolution Echography

    NASA Astrophysics Data System (ADS)

    Masuda, Kohji; Ishihara, Ken; Nagakura, Toshiaki; Tsuda, Takao; Furukawa, Toshiyuki; Maeda, Hajime; Kumagai, Sadatoshi; Kodama, Shinzo

    1994-05-01

    We have developed super-resolution echography to visualize instantaneous velocity and acceleration of internal organs from time-series echograms recorded by a high-frame-rate echograph. The algorithm for this method involves subtraction of two echograms, dividing the difference by the brightness gradient of the first echogram, and normalization of that result by the time interval between the two echograms. Velocity or acceleration is classified into some suitable colors and superimposed on the original B-mode image. Functional diagnosis of moving organs can be made by visualizing instantaneous velocity. In the case of the heart, hypokinesis can be distinguished from a normal heart by the value and the variation of colored parts representing instantaneous velocity. This can also be applied to the liver to observe pulsatile motion. By visualizing instantaneous acceleration, increase or decrease of velocity can be detected. Throb timing and the location of arrhythmia in a heart can be observed. This method has the possibility of contributing to noninvasive functional and characteristic evaluation.

  3. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish

    PubMed Central

    Romano, Shannon N.; Edwards, Hailey E.; Ryan, Kevin J.

    2017-01-01

    Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels. PMID:29065151

  4. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish.

    PubMed

    Romano, Shannon N; Edwards, Hailey E; Souder, Jaclyn Paige; Ryan, Kevin J; Cui, Xiangqin; Gorelick, Daniel A

    2017-10-01

    Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos. Acute exposure to estrogens increased heart rate in wildtype and in ERα and ERβ mutant embryos but not in GPER mutants. GPER mutant embryos exhibited reduced basal heart rate, while heart rate was normal in ERα and ERβ mutants. We detected gper transcript in discrete regions of the brain and pituitary but not in the heart, suggesting that GPER acts centrally to regulate heart rate. In the pituitary, we observed gper expression in cells that regulate levels of thyroid hormone triiodothyronine (T3), a hormone known to increase heart rate. Compared to wild type, GPER mutants had reduced levels of T3 and estrogens, suggesting pituitary abnormalities. Exposure to exogenous T3, but not estradiol, rescued the reduced heart rate phenotype in gper mutant embryos, demonstrating that T3 acts downstream of GPER to regulate heart rate. Using genetic and mass spectrometry approaches, we find that GPER regulates maternal estrogen levels, which are required for normal embryonic heart rate. Our results demonstrate that estradiol plays a previously unappreciated role in the acute modulation of heart rate during zebrafish embryonic development and suggest that GPER regulates embryonic heart rate by altering maternal estrogen levels and embryonic T3 levels.

  5. Simulations of exercise and brain effects of acute exposure to carbon monoxide in normal and vascular-diseased persons.

    EPA Science Inventory

    At some level, carboxyhemoglobin (RbCO) due to inhalation of carbon monoxide (CO) reduces maximum exercise duration in normal and ischemic heart patients. At high RbCO levels in normal subjects, brain function is also affected and behavioral performance is impaired. These are fin...

  6. Effect of fluorocarbons on acetylcholinesterase activity and some counter measures

    NASA Technical Reports Server (NTRS)

    Young, W.; Parker, J. A.

    1975-01-01

    An isolated vagal sympathetic heart system has been successfully used for the study of the effect of fluorocarbons (FCs) on cardiac performance and in situ enzyme activity. Dichlorodifluoromethane sensitizes this preparation to sympathetic stimulation and to exogenous epinephrine challenge. Partial and complete A-V block and even cardiac arrest have been induced by epinephrine challenge in the FC sensitized heart. Potassium chloride alone restores the rhythmicity but not the normal contractility of the heart in such a situation. Addition of glucose will, however, completely restore the normal function of the heart which is sensitized by dichlorodifluoromethane. The ED 50 values of acetylcholinesterase activity which are used as a measure of relative effectiveness of fluorocarbons are compared with the maximum permissible concentration. Kinetic studies indicate that all the fluorocarbons tested so far are noncompetitive.

  7. [Effect of formula of removing both phlegm and blood stasis in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome].

    PubMed

    Li, Lei; Lin, Cheng-Ren; Ren, Jian-Xun; Miao, Lan; Yao, Ming-Jiang; Li, Dan; Shi, Yue; Ma, Yan-Lei; Fu, Jian-Hua; Liu, Jian-Xun

    2014-02-01

    To evaluate that the effect of formula of removing both phlegm and blood stasis in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. Totally 36 Chinese mini-swine were randomly divided to six groups: the normal control group, the model group, the Danlou tablet group, and Tanyu Tonzhi Fang(TYTZ) groups with doses of 2. 0, 1. 0 and 0. 5 g kg-1, with six in each group. Except for the normal control group, all of other groups were fed with high-fat diet for 2 weeks. Interventional balloons are adopted to injure their left anterior descending artery endothelium. After the operation, they were fed with high-fat diet for 8 weeks to prepare the coronary heart disease model of phlegm-stasis cementation syndrome. After the operation, they were administered with drugs for 8 weeks. The changes in the myocardial ischemia were observed. The changes in the cardiac function and structure were detected by cardiac ultrasound and noninvasive hemodynamic method. Compared with the normal control group, the model group showed significant increase in myocardial ischemia and SVR and obvious decrease in CO, SV and LCW in noninvasive hemodynamic parameters (P <0.05 or P <0.01). The ultrasonic cardiogram indicated notable decrease in IVSd, LVPWs, EF and FS, and remarkable increase in LVIDs (P<0. 05 orP<0.01). Compared with the model group, TYTZ could reduce the myocardial ischemia, strengthen cardiac function, and improve the abnormal cardiac structure and function induced by ischemia (P <0. 05 or P <0. 01). TYTZ shows a significant effect in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. The clinical cardiac function detection method could be adopted to correctly evaluate the changes in the post-myocardial ischemia cardiac function, and narrow the gap between clinical application and basic experimental studies.

  8. [Aortic valve insufficiency due to rupture of the cusp in a patient with multiple trauma].

    PubMed

    Vidmar, J; Brilej, D; Voga, G; Kovacic, N; Smrkolj, V

    2003-06-01

    Lesions of the heart valve caused by blunt chest trauma is rare, but when it does occur it can significantly injure the patient. On the basis of autopsy studies, research shows that heart valves are injured in less than 5% of patients who have died due to impact thoracic trauma. Among the heart valves, the aortic valve is the most often lacerated, which has been proved by relevant autopsy and clinical studies. Aortic valve lesions can be the only injury, but it is possible that additional heart or large vessel injuries are also present (myocardial contusion, rupture of the atrial septum, aortic rupture, rupture of the left common carotid artery). The force that causes such an injury is often great and often causes injuries to other organs and organ systems. In a multiple trauma patient, it is very important to specifically look for heart-related injuries because it is possible that they may be overlooked or missed by the surgeon, because of other obvious injuries. We describe the case of a 41-year-old man with multiple trauma who was diagnosed with aortic valve insufficiency due to rupture of the left coronary cusp 6 weeks after a road accident. Valvuloplasty was performed. Seven years later the patient is free of symptoms and is in good physical condition. Echocardiography showed normal dimensions of the heart chambers, a normal thickness of the heart walls, and normal systolic and diastolic function of the left ventricle. Heart valves are morphologically normal, and only an unimportant aortic insufficiency was noticed by echocardiography.

  9. Factors related to outcome in heart failure with a preserved (or normal) left ventricular ejection fraction.

    PubMed

    Sanderson, John E

    2016-07-01

    Heart failure with a preserved ejection faction (HFpEF) is a growing and expensive cause of heart failure (HF) affecting particularly the elderly. It differs in substantial ways in addition to the normal left ventricular ejection fraction, from the more easily recognized form of heart failure with a reduced ejection fraction (HFrEF or 'systolic heart failure') and unlike HFrEF there have been little advances in treatment. In part, this relates to the complexity of the pathophysiology and identifying the correct targets. In HFpEF, there appears to be widespread stiffening of the vasculature and the myocardium affecting ventricular function (both systolic and diastolic), impeding ventricular suction, and thus early diastolic filling leading to breathlessness on exertion and later atrial failure and fibrillation. Left ventricular ejection fraction tends to gradually decline and some evolve into HFrEF. Most patients also have a mixture of several co-morbidities including hypertension, diabetes, obesity, poor renal function, lack of fitness, and often poor social conditions. Therefore, many factors may influence outcome in an individual patient. In this review, the epidemiology, possible causation, pathophysiology, the influence of co-morbidities and some of the many potential predictors of outcome will be considered.

  10. No overt structural or functional changes associated with PEG-coated gold nanoparticles accumulation with acute exposure in the mouse heart.

    PubMed

    Yang, Chengzhi; Yang, Hui; Wu, Jimin; Meng, Zenghui; Xing, Rui; Tian, Aiju; Tian, Xin; Guo, Lijun; Zhang, Youyi; Nie, Guangjun; Li, Zijian

    2013-10-24

    In this study, we investigated the cardiac biodistribution of polyethylene glycol (PEG)-coated AuNPs and their effects on cardiac function, structure and inflammation in both normal and cardiac remodeling mice. The model of cardiac remodeling was induced by subcutaneously injection of isoproterenol (ISO), a non-selective beta-adrenergic agonist, for 7 days. After AuNPs were injected intravenously in mice for 7 consecutive days, Au content in different organs was determined quantitatively by inductively coupled plasma mass spectrometry (ICP-MS), cardiac function and structure were measured by echocardiography, cardiac fibrosis was examined with picrosirius red staining, the morphology of cardiomyocytes was observed with hematoxylin and eosin (H & E) staining. The accumulation of AuNPs in hearts did not affect cardiac function or induce cardiac hypertrophy, cardiac fibrosis and cardiac inflammation under normal physiological condition. Cardiac AuNPs content was 6-fold higher in the cardiac remodeling mouse than normal mice. However, the increased accumulation of AuNPs in the heart did not aggravate ISO-induced cardiac hypertrophy, cardiac fibrosis or cardiac inflammation. These observations suggest that PEG-coated AuNPs possess excellent biocompatibility under both physiological and pathological conditions. Thus, AuNPs may be safe for cardiac patients and hold great promise for further development for various biomedical applications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. The role of exercise testing in heart failure.

    PubMed

    Swedberg, K; Gundersen, T

    1993-01-01

    The objectives of exercise testing in congestive heart failure (CHF) may be summarized as follows: (a) detect impaired cardiac performance, (b) grade severity of cardiac failure and classify functional capability, and (c) assess effects of interventions. Several different methods are available to make these assessments, and we have to ask ourselves how well exercise testing achieves these objectives. It has to be kept in mind that the power generated by the exercising muscles is dependent on the oxygen delivery to the skeletal muscles. Oxygen uptake is the result of an integrated performance of the lungs, heart, and peripheral circulation. In patients, as well as in normal subjects, oxygen uptake is related to hemodynamic indices such as cardiac output, stroke volume, or exercise duration when a stepwise regulated maximal exercise protocol is used. However, there are major differences in the concept of a true maximum in normal subjects versus heart failure patients. Fit-normal subjects will achieve a real maximal oxygen uptake, whereas patients may stop testing before a maximum is reached because of symptoms such as dyspnea or leg fatigue. Therefore, it is better if the actual oxygen uptake can be measured. "Peak" rather than true maximal oxygen uptake has been suggested for the classification of the severity of heart failure. Peripheral factors modify the cardiac output through such factors as vascular resistance, organ function, and hormonal release. Maximal exercise will stress the cardiovascular system to a point where the weakest chain will impose a limiting effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement.

    PubMed

    Weisleder, Noah; Soumaka, Elisavet; Abbasi, Shahrzad; Taegtmeyer, Heinrich; Capetanaki, Yassemi

    2004-01-01

    Mice deficient in desmin, the muscle-specific member of the intermediate filament gene family, display defects in all muscle types and particularly in the myocardium. Desmin null hearts develop cardiomyocyte hypertrophy and dilated cardiomyopathy (DCM) characterized by extensive myocyte cell death, calcific fibrosis and multiple ultrastructural defects. Several lines of evidence suggest impaired vascular function in desmin null animals. To determine whether altered capillary function or an intrinsic cardiomyocyte defect is responsible for desmin null DCM, transgenic mice were generated to rescue desmin expression specifically to cardiomyocytes. Desmin rescue mice display a wild-type cardiac phenotype with no fibrosis or calcification in the myocardium and normalization of coronary flow. Cardiomyocyte ultrastructure is also restored to normal. Markers of hypertrophy upregulated in desmin null hearts return to wild-type levels in desmin rescue mice. Working hearts were perfused to assess coronary flow and cardiac power. Restoration of a wild-type cardiac phenotype in a desmin null background by expression of desmin specifically within cardiomyocyte indicates that defects in the desmin null heart are due to an intrinsic cardiomyocytes defect rather than compromised coronary circulation.

  13. First successful combined heart and kidney transplant in Iran: a case report.

    PubMed

    Ahmadi, Zargham-Hossein; Mirhosseini, Seyed Mohsen; Fakhri, Mohammad; Mozaffary, Amirhossein; Lotfaliany, Mojtaba; Nejatollahi, Seyed Mohammad Reza; Marashi, Seyed-Ali; Behzadnia, Neda; Sharif-Kashani, Babak

    2013-08-01

    Combined heart and kidney transplant has become an accepted therapy for patients with coexisting heart and kidney failure. This method, compared with single-organ transplant, has a better outcome. Here, we report the first successful combined heart and kidney transplant in Iran. The patient was a 36-year-old man with end-stage renal disease owing to IgA nephropathy, admitted to Masih Daneshvari Hospital in Tehran, Iran for progressive dyspnea and chest pain. In-patient evaluations revealed cardiomyopathy leading to end-stage heart failure. Owing to concurrent heart and kidney end-stage diseases, combined cardiorenal transplant was done. Eight months after his transplant, routine follow-ups have not shown any signs of acute rejection. He is now New York Heart Association functional class I. Both cardiac and renal functions are within normal ranges. Good outcome during follow-up for this case justifies simultaneous heart plus kidney transplants as an alternate treatment for patients with advanced disease of both organs.

  14. Reduced size liver transplantation from a donor supported by a Berlin Heart.

    PubMed

    Misra, M V; Smithers, C J; Krawczuk, L E; Jenkins, R L; Linden, B C; Weldon, C B; Kim, H B

    2009-11-01

    Patients on cardiac assist devices are often considered to be high-risk solid organ donors. We report the first case of a reduced size liver transplant performed using the left lateral segment of a pediatric donor whose cardiac function was supported by a Berlin Heart. The recipient was a 22-day-old boy with neonatal hemochromatosis who developed fulminant liver failure shortly after birth. The transplant was complicated by mild delayed graft function, which required delayed biliary reconstruction and abdominal wall closure, as well as a bile leak. However, the graft function improved quickly over the first week and the patient was discharged home with normal liver function 8 weeks after transplant. The presence of a cardiac assist device should not be considered an absolute contraindication for abdominal organ donation. Normal organ procurement procedures may require alteration due to the unusual technical obstacles that are encountered when the donor has a cardiac assist device.

  15. An Evaluation of the Elbit Canary and DynaSense PocketNIRS In-Flight Physiological Monitoring Systems

    DTIC Science & Technology

    2017-01-04

    you have normal pulmonary function? YES NO 6. Have you ever been diagnosed with heart /circulatory disease ? YES NO 7. Do you...total dropout, the Canary system occasionally exhibited long stretches of data with sporadic heart rate signal dropout accompanied by high variance...values as low as 86%. This occurs over a timespan with sporadic heart rate signal dropout and greater mismatch between Canary and Ohmeda HR

  16. Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

    PubMed Central

    Bombardini, Tonino; Gemignani, Vincenzo; Bianchini, Elisabetta; Pasanisi, Emilio; Pratali, Lorenza; Pianelli, Mascia; Faita, Francesco; Giannoni, Massimo; Arpesella, Giorgio; Sicari, Rosa; Picano, Eugenio

    2009-01-01

    Background New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates. Aim To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system. Methods We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording. Results Interpretable sensor recordings were obtained in all patients (feasibility = 100%). Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value) was more frequent in patients than controls (27% vs 8%, p < 0.05). At 100 bpm stress heart rate, systolic/diastolic time ratio (normal, < 1) was > 1 in 20 patients and in none of the controls (p < 0.01); at recovery systolic/diastolic ratio was > 1 in only 3 patients (p < 0.01 vs stress). Post-exercise reduced arterial pressure was sensed. Conclusion Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor. PMID:19442285

  17. Bacopa monnieri extract increases rat coronary flow and protects against myocardial ischemia/reperfusion injury.

    PubMed

    Srimachai, Sirintorn; Devaux, Sylvie; Demougeot, Celine; Kumphune, Sarawut; Ullrich, Nina D; Niggli, Ernst; Ingkaninan, Kornkanok; Kamkaew, Natakorn; Scholfield, C Norman; Tapechum, Sompol; Chootip, Krongkarn

    2017-02-20

    This study explored Bacopa monnieri, a medicinal Ayurvedic herb, as a cardioprotectant against ischemia/reperfusion injury using cardiac function and coronary flow as end-points. In normal isolated rat hearts, coronary flow, left ventricular developed pressure, heart rate, and functional recovery were measured using the Langendorff preparation. Hearts were perfused with either (i) Krebs-Henseleit (normal) solution, (control), or with 30, 100 μg/ml B. monnieri ethanolic extract (30 min), or (ii) with normal solution or extract for 10 min preceding no-perfusion ischemia (30 min) followed by reperfusion (30 min) with normal solution. Infarct volumes were measured by triphenyltetrazolium staining. L-type Ca 2+ -currents (I Ca, L ) were measured by whole-cell patching in HL-1 cells, a mouse atrial cardiomyocyte cell line. Cytotoxicity of B. monnieri was assessed in rat isolated ventricular myocytes by trypan blue exclusion. In normally perfused hearts, B. monnieri increased coronary flow by 63 ± 13% (30 μg/ml) and 216 ± 21% (100 μg/ml), compared to control (5 ± 3%) (n = 8-10, p < 0.001). B. monnieri treatment preceding ischemia/reperfusion improved left ventricular developed pressure by 84 ± 10% (30 μg/ml), 82 ± 10% (100 μg/ml) and 52 ± 6% (control) compared to pre- ischemia/reperfusion. Similarly, functional recovery showed a sustained increase. Moreover, B. monnieri (100 μg/ml) reduced the percentage of infarct size from 51 ± 2% (control) to 25 ± 2% (n = 6-8, p < 0.0001). B. monnieri (100 μg/ml) reduced I Ca, L by 63 ± 4% in HL-1 cells. Ventricular myocyte survival decreased at higher concentrations (50-1000 μg/ml) B. monnieri. B. monnieri improves myocardial function following ischemia/reperfusion injury through recovery of coronary blood flow, contractile force and decrease in infarct size. Thus this may lead to a novel cardioprotectant strategy.

  18. Inhibitors of soluble epoxide hydrolase minimize ischemia-reperfusion-induced cardiac damage in normal, hypertensive, and diabetic rats.

    PubMed

    Islam, Oliul; Patil, Prashanth; Goswami, Sumanta K; Razdan, Rema; Inamdar, Mohammed N; Rizwan, Mohammed; Mathew, Jubin; Inceoglu, Bora; Stephen Lee, Kin S; Hwang, Sung H; Hammock, Bruce D

    2017-06-01

    We designed a study to evaluate the cardioprotective effect of two soluble epoxide hydrolase (sEH) inhibitors, 1-(1-propanoylpiperidin-4-yl)-3-(4-trifluoromethoxy)phenyl)urea (TPPU) and trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB), in ischemia-reperfusion (IR) model. Cardioprotective effects of the sEH inhibitors were evaluated against IR-induced myocardial damage in hearts from normal, hypertensive, and diabetic rats using Langendorff's apparatus. In addition, the effect of sEH inhibitors on endothelial function was evaluated in vitro and ex vivo using isolated rat thoracic aorta. Ischemia-reperfusion (IR) increased the myocardial damage in hearts from normal rats. IR-induced myocardial damage was augmented in hearts isolated from hypertensive and diabetic rats. Myocardial damage as evident from increase in the activities of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in heart perfusate was associated with significant decrease in the heart rate and developed tension, and increase in the resting tension in isolated heart. Both sEH inhibitors protected the heart in normal, hypertensive, and diabetic rats subjected to IR injury. The sEH inhibitor t-TUCB relaxed phenylephrine precontracted aorta from normal rats. Relaxant effect of acetylcholine (ACh) was reduced in aortas from diabetic and hypertensive rats compared to normal rats. Pretreatment of sEH inhibitors to diabetic and hypertensive rats increased relaxant effect of ACh on aortas isolated from these rats. Prophylactic treatment with sEH inhibitors decreased myocardial damage due to IR, hypertension and diabetes, and decreased endothelial dysfunction created by diabetes and hypertension. Therefore, inhibitors of sEH are useful probes to study cardiovascular pathology, and inhibition of the sEH is a potential approach in the management of IR-induced cardiac damage and endothelial dysfunction-related cardiovascular disorders. © 2017 John Wiley & Sons Ltd.

  19. Hyaluronidase 2 Deficiency Causes Increased Mesenchymal Cells, Congenital Heart Defects, and Heart Failure.

    PubMed

    Chowdhury, Biswajit; Xiang, Bo; Liu, Michelle; Hemming, Richard; Dolinsky, Vernon W; Triggs-Raine, Barbara

    2017-01-01

    Hyaluronan (HA) is required for endothelial-to-mesenchymal transition and normal heart development in the mouse. Heart abnormalities in hyaluronidase 2 (HYAL2)-deficient ( Hyal2 - /- ) mice and humans suggested removal of HA is also important for normal heart development. We have performed longitudinal studies of heart structure and function in Hyal2 -/- mice to determine when, and how, HYAL2 deficiency leads to these abnormalities. Echocardiography revealed atrial enlargement, atrial tissue masses, and valvular thickening at 4 weeks of age, as well as diastolic dysfunction that progressed with age, in Hyal2 -/- mice. These abnormalities were associated with increased HA, vimentin-positive cells, and fibrosis in Hyal2 -/- compared with control mice. Based on the severity of heart dysfunction, acute and chronic groups of Hyal2 -/- mice that died at an average of 12 and 25 weeks respectively, were defined. Increased HA levels and mesenchymal cells, but not vascular endothelial growth factor in Hyal2 -/- embryonic hearts, suggest that HYAL2 is important to inhibit endothelial-to-mesenchymal transition. Consistent with this, in wild-type embryos, HYAL2 and HA were readily detected, and HA levels decreased with age. These data demonstrate that disruption of normal HA catabolism in Hyal2 -/- mice causes increased HA, which may promote endothelial-to-mesenchymal transition and proliferation of mesenchymal cells. Excess endothelial-to-mesenchymal transition, resulting in increased mesenchymal cells, is the likely cause of morphological heart abnormalities in both humans and mice. In mice, these abnormalities result in progressive and severe diastolic dysfunction, culminating in heart failure. © 2016 The Authors.

  20. Reversal of pulmonary hypertension after percutaneous closure of congenital renal arteriovenous fistula in a 74-year old woman.

    PubMed

    Brar, Vijaywant; Bernardo, Nelson; Suddath, William; Weissman, Gaby; Asch, Federico; Campia, Umberto

    2015-01-01

    We report the case of a large right renal arteriovenous fistula (AVF) in a 74-year old woman who presented with heart failure. Transthoracic echocardiography revealed normal left ventricular size and systolic function (ejection fraction 60-65%), moderately dilated right ventricle with severely depressed systolic function, and severe pulmonary hypertension. Right heart catheterization confirmed the elevated pulmonary pressures and showed a high cardiac output. Physical examination was remarkable for a right flank bruit. An abdominal ultrasound revealed an AVF originating from the distal right renal artery and dilated suprarenal inferior vena cava and hepatic veins. These findings were confirmed with an abdominal MRI. Percutaneous endovascular closure of the right renal AVF was successfully performed, with immediate reduction of pulmonary pressures and normalization of cardiac output. The patient's symptoms improved, and a post intervention echocardiogram revealed normalization of right ventricular size. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Lamina-associated polypeptide 2alpha loss impairs heart function and stress response in mice.

    PubMed

    Gotic, Ivana; Leschnik, Michael; Kolm, Ursula; Markovic, Mato; Haubner, Bernhard J; Biadasiewicz, Katarzyna; Metzler, Bernhard; Stewart, Colin L; Foisner, Roland

    2010-02-05

    Lamina-associated polypeptide (LAP)2alpha is a mammalian chromatin-binding protein that interacts with a fraction of A-type lamins in the nuclear interior. Because mutations in lamins and LAP2alpha lead to cardiac disorders in humans, we hypothesized that these factors may play important roles in heart development and adult tissue homeostasis. We asked whether the presence of LAP2alpha was required for normal cardiac function. To study the molecular mechanisms of the disease, we analyzed heart structure and function in complete and conditional Lap2alpha(-/-) mice as well as Lap2alpha(-/-)/Mdx mutants. Unlike conditional deletion of LAP2alpha in late embryonic striated muscle, its complete knockout caused systolic dysfunction in young mice, accompanied by sporadic fibrosis in old animals, as well as deregulation of major cardiac transcription factors GATA4 and myocyte enhancer factor 2c. Activation of compensatory pathways, including downregulation of beta-adrenergic receptor signaling, resulted in reduced responsiveness of the myocardium to chronic beta-adrenergic stimulation and stalled the progression of LAP2alpha-deficient hearts from hypertrophy toward cardiac failure. Dystrophin deficiency in an Mdx background resulted in a transient rescue of the Lap2alpha(-/-) phenotype. Our data suggest a novel role of LAP2alpha in the maintenance of cardiac function under normal and stress conditions.

  2. Cardiovascular and respiratory dynamics during normal and pathological sleep

    NASA Astrophysics Data System (ADS)

    Penzel, Thomas; Wessel, Niels; Riedl, Maik; Kantelhardt, Jan W.; Rostig, Sven; Glos, Martin; Suhrbier, Alexander; Malberg, Hagen; Fietze, Ingo

    2007-03-01

    Sleep is an active and regulated process with restorative functions for physical and mental conditions. Based on recordings of brain waves and the analysis of characteristic patterns and waveforms it is possible to distinguish wakefulness and five sleep stages. Sleep and the sleep stages modulate autonomous nervous system functions such as body temperature, respiration, blood pressure, and heart rate. These functions consist of a sympathetic tone usually related to activation and to parasympathetic (or vagal) tone usually related to inhibition. Methods of statistical physics are used to analyze heart rate and respiration to detect changes of the autonomous nervous system during sleep. Detrended fluctuation analysis and synchronization analysis and their applications to heart rate and respiration during sleep in healthy subjects and patients with sleep disorders are presented. The observed changes can be used to distinguish sleep stages in healthy subjects as well as to differentiate normal and disturbed sleep on the basis of heart rate and respiration recordings without direct recording of brain waves. Of special interest are the cardiovascular consequences of disturbed sleep because they present a risk factor for cardiovascular disorders such as arterial hypertension, cardiac ischemia, sudden cardiac death, and stroke. New derived variables can help to find indicators for these health risks.

  3. Microfluidic cardiac cell culture model (μCCCM).

    PubMed

    Giridharan, Guruprasad A; Nguyen, Mai-Dung; Estrada, Rosendo; Parichehreh, Vahidreza; Hamid, Tariq; Ismahil, Mohamed Ameen; Prabhu, Sumanth D; Sethu, Palaniappan

    2010-09-15

    Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (μCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.

  4. Tachycardia, reduced vagal capacity, and age-dependent ventricular dysfunction arising from diminished expression of the presynaptic choline transporter.

    PubMed

    English, Brett A; Appalsamy, Martin; Diedrich, Andre; Ruggiero, Alicia M; Lund, David; Wright, Jane; Keller, Nancy R; Louderback, Katherine M; Robertson, David; Blakely, Randy D

    2010-09-01

    Healthy cardiovascular function relies on a balanced and responsive integration of noradrenergic and cholinergic innervation of the heart. High-affinity choline uptake by cholinergic terminals is pivotal for efficient ACh production and release. To date, the cardiovascular impact of diminished choline transporter (CHT) expression has not been directly examined, largely due to the transporter's inaccessibility in vivo. Here, we describe findings from cardiovascular experiments using transgenic mice that bear a CHT genetic deficiency. Whereas CHT knockout (CHT(-/-)) mice exhibit early postnatal lethality, CHT heterozygous (CHT(+/-)) mice survive, grow, and reproduce normally and exhibit normal spontaneous behaviors. However, the CHT(+/-) mouse heart displays significantly reduced levels of high-affinity choline uptake accompanied by significantly reduced levels of ACh. Telemeterized recordings of cardiovascular function in these mice revealed tachycardia and hypertension at rest. After treadmill exercise, CHT(+/-) mice exhibited slower heart rate recovery, consistent with a diminished cholinergic reserve, a contention validated through direct vagal nerve stimulation. Echocardiographic and histological experiments revealed an age-dependent decrease in fractional shortening, increased left ventricular dimensions, and increased ventricular fibrosis, consistent with ventricular dysfunction. These cardiovascular phenotypes of CHT(+/-) mice encourage an evaluation of humans bearing reduced CHT expression for their resiliency in maintaining proper heart function as well as risk for cardiovascular disease.

  5. Cardiac mechanics: Physiological, clinical, and mathematical considerations

    NASA Technical Reports Server (NTRS)

    Mirsky, I. (Editor); Ghista, D. N.; Sandler, H.

    1974-01-01

    Recent studies concerning the basic physiological and biochemical principles underlying cardiac muscle contraction, methods for the assessment of cardiac function in the clinical situation, and mathematical approaches to cardiac mechanics are presented. Some of the topics covered include: cardiac ultrastructure and function in the normal and failing heart, myocardial energetics, clinical applications of angiocardiography, use of echocardiography for evaluating cardiac performance, systolic time intervals in the noninvasive assessment of left ventricular performance in man, evaluation of passive elastic stiffness for the left ventricle and isolated heart muscle, a conceptual model of myocardial infarction and cardiogenic shock, application of Huxley's sliding-filament theory to the mechanics of normal and hypertrophied cardiac muscle, and a rheological modeling of the intact left ventricle. Individual items are announced in this issue.

  6. Altered transient outward current in human atrial myocytes of patients with reduced left ventricular function.

    PubMed

    Schreieck, J; Wang, Y; Overbeck, M; Schömig, A; Schmitt, C

    2000-02-01

    Electrophysiologic remodeling is involved in the self-perpetuation of atrial fibrillation. To define whether differences in atrial electrophysiology already are present in patients with increased susceptibility for atrial fibrillation, we compared patients in sinus rhythm with and without heart failure. Atrial specimens were obtained from patients with reduced left ventricular ejection fraction (LVEF; n = 10) and normal LVEF (n = 16) who were undergoing aortocoronary bypass surgery and from donor hearts (n = 4). Enzymatically isolated atrial myocytes were investigated by whole cell, patch clamp techniques. Total outward current was significantly larger in myocytes of hearts with low LVEF than normal LVEF (19.4 +/- 1.3 vs 15.1 +/- 1.2 pA/pF at pulses to +60 mV, respectively). Analysis of inactivation time courses of different outward current components revealed that the observed current difference is due to the transient calcium-independent outward current I(to1) which is twice as large in the low LVEF group than in the normal LVEF group (9.4 +/- 0.9 vs 4.7 +/- 0.4 pA/pF at pulses to +60 mV, respectively). I(to1) recovery from inactivation was significantly more rapid in myocytes of hearts with low LVEF, and action potential plateau in these cells was significantly shorter. The results of I(to1) and action potential measurements in atrial myocytes of donor hearts were very similar to the results of patients with preserved heart function. I(to1) in human atrial myocytes of patients with reduced LVEF has an increased density and altered kinetics in sinus rhythm. These differences in outward current may explain the reduced plateau phase of action potentials.

  7. Thallium-201 per rectum for the diagnosis of cirrhosis in patients with asymptomatic chronic hepatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Arienzo, A.; Celentano, L.; Scuotto, A.

    1988-07-01

    In normal subjects, thallium-201, administered per rectum, is taken up mainly by the liver (heart/liver ratio in normal subjects: 0.04 to 0.12). It has been claimed that an increased heart/liver ratio is suggestive of portal-caval shunting and portal hypertension. To evaluate the possibility of using thallium-201 as a test to diagnose cirrhosis, we administered this substance per rectum to 33 patients with biochemical evidence, but no clinical symptoms, of liver disease. Laparoscopy and liver biopsy revealed chronic active hepatitis without cirrhosis in 18 patients, and chronic active hepatitis with cirrhosis in the others. The results of conventional liver function testsmore » were similar in both groups. A significant difference, however, was found between the means of fasting serum bile acid concentrations (9.8 +/- 3.2 and 18.3 +/- 4.2 microM per liter) in chronic active hepatitis without cirrhosis and cirrhotic patients, and between the means of the heart/liver ratios 20 min after thallium-201 administration (heart/liver: 0.09 +/- 0.03 and 0.54 +/- 0.13, respectively). Unlike the serum bile acid concentration which gave some overlapping values, the thallium-201 test clearly distinguished the chronic active hepatitis without cirrhosis group from the cirrhotics. In the cirrhotic group, there was a significant correlation between the heart/liver ratio and signs of portal hypertension such as esophageal varices, increased diameter of the vena porta and hypersplenism. The thallium-201 test is therefore useful in discriminating between chronic active hepatitis with and without cirrhosis in clinically asymptomatic subjects with biochemical evidence of moderate liver function impairment. A heart/liver uptake ratio much higher than normal (above 0.30) strongly suggests the development of hepatic cirrhosis.« less

  8. Cardio-pulmonary fitness test by ultra-short heart rate variability.

    PubMed

    Aslani, Arsalan; Aslani, Amir; Kheirkhah, Jalal; Sobhani, Vahid

    2011-10-01

    It is known that exercise induces cardio-respiratory autonomic modulation. The aim of this study was to assess the cardio-pulmonary fitness by ultra-short heart rate variability. Study population was divided into 3 groups: Group-1 (n = 40) consisted of military sports man. Group-2 (n = 40) were healthy age-matched sedentary male subjects with normal body mass index [BMI = 19 - 25 kg/m(2)). Group-3 (n = 40) were healthy age-matched obese male subjects [BMI > 29 kg/m(2)). Standard deviation of normal-to-normal QRS intervals (SDNN) was recorded over 15 minutes. Bruce protocol treadmill test was used; and, maximum oxygen consumption (VO(2)max) was calculated. WHEN THE STUDY POPULATION WAS DIVIDED INTO QUARTILES OF SDNN (FIRST QUARTILE: < 60 msec; second quartile: > 60 and < 100 msec; third quartile: > 100 and <140 msec; and fourth quartile: >140 msec), progressive increase was found in VO(2)max; and, SDNN was significantly linked with estimated VO(2)max. In conclusion, the results of this study demonstrate that exercise training improves cardio-respiratory autonomic function (and increases heart rate variability). Improvement in cardio-respiratory autonomic function seems to translate into a lower rate of long term mortality. Ultra-short heart rate variability is a simple cardio-pulmonary fitness test which just requires 15 minutes, and involves no exercise such as in the treadmill or cycle test.

  9. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations.

    PubMed

    Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J

    2017-08-01

    Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  10. Mössbauer Spectra of Mouse Hearts Reveal Age-dependent Changes in Mitochondrial and Ferritin Iron Levels.

    PubMed

    Wofford, Joshua D; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2017-03-31

    Cardiac function requires continuous high levels of energy, and so iron, a critical player in mitochondrial respiration, is an important component of the heart. Hearts from 57 Fe-enriched mice were evaluated by Mössbauer spectroscopy. Spectra consisted of a sextet and two quadrupole doublets. One doublet was due to residual blood, whereas the other was due to [Fe 4 S 4 ] 2+ clusters and low-spin Fe II hemes, most of which were associated with mitochondrial respiration. The sextet was due to ferritin; there was no evidence of hemosiderin, a ferritin decomposition product. Iron from ferritin was nearly absent in young hearts, but increased steadily with age. EPR spectra exhibited signals similar to those of brain, liver, and human cells. No age-dependent EPR trends were apparent. Hearts from HFE -/- mice with hemochromatosis contained slightly more iron overall than controls, including more ferritin and less mitochondrial iron; these differences typify slightly older hearts, perhaps reflecting the burden due to this disease. HFE -/- livers were overloaded with ferritin but had low mitochondrial iron levels. IRP2 -/- hearts contained less ferritin than controls but normal levels of mitochondrial iron. Hearts of young mice born to an iron-deficient mother contained normal levels of mitochondrial iron and no ferritin; the heart from the mother contained low ferritin and normal levels of mitochondrial iron. High-spin Fe II ions were nearly undetectable in heart samples; these were evident in brains, livers, and human cells. Previous Mössbauer spectra of unenriched diseased human hearts lacked mitochondrial and blood doublets and included hemosiderin features. This suggests degradation of iron-containing species during sample preparation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Internal associations and dynamic expression of c-kit and nanog genes in ventricular remodelling induced by adriamycin.

    PubMed

    Liu, Zhen; Li, Shuo; Liu, Lingling; Guo, Zhikun; Wang, Pengfei

    2016-09-01

    The present study aimed to investigate the dynamic expression of the c-kit and nanog genes in rats with left ventricular remodelling induced by adriamycin (ADR), and explore its internal association and mechanism of action. Sprague-Dawley male rats were randomly divided into a normal control group and a heart failure model group. Heart failure was induced by a single intraperitoneal injection of ADR (4 mg/kg) weekly for six weeks. The normal control group was given the same amount of saline. At the eighth week, rat cardiac function was examined to demonstrate the formation of heart failure. The rat hearts were harvested frozen and sectioned, and the expression levels of the nanog and c-kit genes in the myocardial tissue samples were detected using immunohistochemistry, immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). Hematoxylin and eosin staining demonstrated various pathological changes in the myocardial cells in the heart failure model group, whereas myocardial infarction was not observed in the normal control group. Immunohistochemistry and immunofluorescence demonstrated that nanog-positive cells were predominantly expressed in the vascular endothelium, with a few myocardial cells and stem cells in normal myocardium. The expression levels of c-kit and nanog in the myocardium of the rats with heart failure decreased significantly. c-kit-positive cells clustered together in the epicardium and its vicinity, and c-kit expression significantly decreased in the myocardium of rats with heart failure, as compared with normal rats. In both groups, some cells co-expressed both the c-kit and nanog genes. The RT-PCR results demonstrated that the expression levels of the two genes in the heart failure model group were significantly lower compared with those in the normal control group (P<0.05). In conclusion, the c-kit- and nanog-positive stem cells decreased in the myocardium of the rats with left ventricular remodelling induced by ADR. Their abnormal expression was significantly correlated with left ventricular remodelling, thereby indicating an internal association (influences of two indexes in the experimental group and control group) between them.

  12. Longitudinal Evaluation of Fatty Acid Metabolism in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic MicroSPECT Imaging

    DOE PAGES

    Reutter, Bryan W.; Huesman, Ronald H.; Brennan, Kathleen M.; ...

    2011-01-01

    The goal of this project is to develop radionuclide molecular imaging technologies using a clinical pinhole SPECT/CT scanner to quantify changes in cardiac metabolism using the spontaneously hypertensive rat (SHR) as a model of hypertensive-related pathophysiology. This paper quantitatively compares fatty acid metabolism in hearts of SHR and Wistar-Kyoto normal rats as a function of age and thereby tracks physiological changes associated with the onset and progression of heart failure in the SHR model. The fatty acid analog, 123 I-labeled BMIPP, was used in longitudinal metabolic pinhole SPECT imaging studies performed every seven months for 21 months. The uniqueness ofmore » this project is the development of techniques for estimating the blood input function from projection data acquired by a slowly rotating camera that is imaging fast circulation and the quantification of the kinetics of 123 I-BMIPP by fitting compartmental models to the blood and tissue time-activity curves.« less

  13. Fibrosis-Related Gene Expression in Single Ventricle Heart Disease.

    PubMed

    Nakano, Stephanie J; Siomos, Austine K; Garcia, Anastacia M; Nguyen, Hieu; SooHoo, Megan; Galambos, Csaba; Nunley, Karin; Stauffer, Brian L; Sucharov, Carmen C; Miyamoto, Shelley D

    2017-12-01

    To evaluate fibrosis and fibrosis-related gene expression in the myocardium of pediatric subjects with single ventricle with right ventricular failure. Real-time quantitative polymerase chain reaction was performed on explanted right ventricular myocardium of pediatric subjects with single ventricle disease and controls with nonfailing heart disease. Subjects were divided into 3 groups: single ventricle failing (right ventricular failure before or after stage I palliation), single ventricle nonfailing (infants listed for primary transplantation with normal right ventricular function), and stage III (Fontan or right ventricular failure after stage III). To evaluate subjects of similar age and right ventricular volume loading, single ventricle disease with failure was compared with single ventricle without failure and stage III was compared with nonfailing right ventricular disease. Histologic fibrosis was assessed in all hearts. Mann-Whitney tests were performed to identify differences in gene expression. Collagen (Col1α, Col3) expression is decreased in single ventricle congenital heart disease with failure compared with nonfailing single ventricle congenital heart disease (P = .019 and P = .035, respectively), and is equivalent in stage III compared with nonfailing right ventricular heart disease. Tissue inhibitors of metalloproteinase (TIMP-1, TIMP-3, and TIMP-4) are downregulated in stage III compared with nonfailing right ventricular heart disease (P = .0047, P = .013 and P = .013, respectively). Matrix metalloproteinases (MMP-2, MMP-9) are similar between nonfailing single ventricular heart disease and failing single ventricular heart disease, and between stage III heart disease and nonfailing right ventricular heart disease. There is no difference in the prevalence of right ventricular fibrosis by histology in subjects with single ventricular failure heart disease with right ventricular failure (18%) compared with those with normal right ventricular function (38%). Fibrosis is not a primary contributor to right ventricular failure in infants and young children with single ventricular heart disease. Additional studies are required to understand whether antifibrotic therapies are beneficial in this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection.

    PubMed

    Qiao, Hui; Zhang, Hualei; Zheng, Yuanjie; Ponde, Datta E; Shen, Dinggang; Gao, Fabao; Bakken, Ashley B; Schmitz, Alexander; Kung, Hank F; Ferrari, Victor A; Zhou, Rong

    2009-03-01

    To use magnetic resonance (MR) imaging and positron emission tomography (PET) dual detection of cardiac-grafted embryonic stem cells (ESCs) to examine (a) survival and proliferation of ESCs in normal and infarcted myocardium, (b) host macrophage versus grafted ESC contribution to serial MR imaging signal over time, and (c) cardiac function associated with the formation of grafts and whether improvement in cardiac function is related to cardiac differentiation of ESCs. All animal procedures were approved by the institutional animal care and use committee. Murine ESCs were stably transfected with a mutant version of herpes simplex virus type 1 thymidine kinase, HSV1-sr39tk, and also were labeled with superparamagnetic iron oxide (SPIO) particles. Cells were injected directly in the border zone of the infarcted heart or in corresponding regions of normal hearts in athymic rats. PET and MR imaging were performed longitudinally for 4 weeks in the same animals. ESCs survived and underwent proliferation in the infarcted and normal hearts, as demonstrated by serial increases in 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl) guanine PET signals. In parallel, the hypointense areas on MR images at the injection sites decreased over time. Double staining for host macrophages and SPIO particles revealed that the majority of SPIO-containing cells were macrophages at week 4 after injection. Left ventricular ejection fraction increased in the ESC-treated rats but decreased in culture media-treated rats, and border-zone function was preserved in ESC-treated animals; however, cardiac differentiation of ESCs was less than 0.5%. Dual-modality imaging permits complementary information in regard to cell survival and proliferation, graft formation, and effects on cardiac function. http://radiology.rsnajnls.org/cgi/content/full/250/3/821/DC1. RSNA, 2009

  15. Epinephrine and left atrial and left ventricular diastolic function decrease in normal subjects.

    PubMed

    Fuenmayor, Abdel J; Solórzano, Moisés I; Gómez, Luisangelly

    2016-10-01

    We assessed the effect of epinephrine over left atrial and left ventricular diastolic function in subjects without structural heart disease. Twenty-seven, 34.6±17.2year-old patients without structural heart disease were included. Intravenous epinephrine (50 to 100ng/kg/min) was infused. Left atrial and ventricular functions were evaluated by means of echocardiography before and during the epinephrine infusion. No complications were observed. Significant increases in heart rate and systolic blood pressure were recorded. Both left atrial (minimal and maximal) volumes increased but increase in the minimal volume was more pronounced, and the ejection fraction diminished. Left atrial expansion index decreased and the fraction of left ventricular inflow volume resulting from atrial contraction increased. Two patients displayed abnormal left ventricular diastolic function. During epinephrine infusion, E/A and e' decreased, and isovolumetric relaxation time increased. In this group of young adults without structural heart disease, epinephrine infusion was safe, did not produce any complications, and induced a small but significant decrease in left atrial function and left ventricular diastolic function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. A Retrospective Evaluation of Echocardiograms to Establish Normative Inferior Vena Cava and Aortic Measurements for Children Younger Than 6 Years.

    PubMed

    Stenson, Erin K; Punn, Rajesh; Ramsi, Musaab; Kache, Saraswati

    2018-02-26

    The ability to plot the inferior vena cava (IVC) size on a normal curve for pediatric patients may prove beneficial. First, in patients with normal cardiac anatomy who present in shock, assessing IVC size may be valuable for evaluating the degree of dehydration. Second, in children with heart disease, understanding how a child's IVC size compares to normal could be particularly beneficial for patients with right heart disease. We sought to create normal curves for the IVC and aorta in children younger than 6 years. Data were gathered from 347 echocardiograms of healthy children younger than 6 years in a retrospective study at a quaternary care children's hospital. From the subcostal long- and short-axis images, maximum diameters in the transverse and longitudinal views were obtained for both the IVC and the aorta. Both IVC and aortic dimensions increased in a linear fashion and had excellent correlations with the body surface area, body mass, and height (IVC, r = 0.78-0.81; P < .0001; aorta, r = 0.82-0.86; P < .0001). In children younger than 6 years, the IVC and aorta increase linearly as the children grow. Such normal curves will be beneficial for assessing a pediatric patient's hydration status or right heart function in patients with congenital heart disease. © 2018 by the American Institute of Ultrasound in Medicine.

  17. Long-Term Coarse Particulate Matter Exposure and Heart Rate Variability in the Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Adhikari, Richa; D’Souza, Jennifer; Solimon, Elsayed Z.; Burke, Gregory L.; Daviglus, Martha; Jacobs, David R.; Park, Sung Kyun; Sheppard, Lianne; Thorne, Peter S.; Kaufman, Joel D.; Larson, Timothy V.; Adar, Sara D.

    2017-01-01

    Background Reduced heart rate variability, a marker of impaired cardiac autonomic function, has been linked to short-term exposure to airborne particles. This research adds to the literature by examining associations with long-term exposures to coarse particles (PM10-2.5). Methods Using electrocardiogram recordings from 2,780 participants (45-84 years) from three Multi-Ethnic Study of Atherosclerosis sites, we assessed the standard deviation of normal-to-normal intervals (SDNN) and root-mean square differences of successive normal-to-normal intervals (rMSSD) at a baseline (2000-2002) and follow-up (2010-2012) examination (mean visits/person=1.5). Annual average concentrations of PM10-2.5 mass, copper, zinc, phosphorus, silicon, and endotoxin were estimated using site-specific spatial prediction models. We assessed associations for baseline heart rate variability and rate of change in heart rate variability over time using multivariable mixed models adjusted for time, sociodemographic, lifestyle, health, and neighborhood confounders, including co-pollutants. Results In our primary models adjusted for demographic and lifestyle factors and site, PM10-2.5 mass was associated with 1.0% (95% CI: -4.1, 2.1%) lower SDNN levels per interquartile range of 2 μg/m3. Stronger associations, however, were observed prior to site adjustment and with increasing residential stablity. Similar patterns were found for rMSSD. We found little evidence for associations with other chemical species and with with the rate of change in heart rate variability, though endotoxin was associated with increasing heart rate variability over time. Conclusion We found only weak evidence that long-term PM10-2.5 exposures are associated with lowered heart rate variability. Stronger associations among residentially stable individuals suggest that confirmatory studies are needed. PMID:27035690

  18. Effect of renal function status on the prognostic value of heart rate in acute ischemic stroke patients.

    PubMed

    Zhu, Zhengbao; Zhong, Chongke; Xu, Tian; Wang, Aili; Peng, Yanbo; Xu, Tan; Peng, Hao; Chen, Chung-Shiuan; Wang, Jinchao; Ju, Zhong; Li, Qunwei; Geng, Deqin; Sun, Yingxian; Du, Qingjuan; Li, Yongqiu; Chen, Jing; Zhang, Yonghong; He, Jiang

    2017-08-01

    The association between heart rate and prognosis of ischemic stroke remains debatable, and whether renal function status influences the relationship between them is still not elucidated. A total of 3923 ischemic stroke patients were included in this prospective multicenter study from the China Antihypertensive Trial in Acute Ischemic Stroke (CATIS). The primary outcome was a combination of death and major disability (modified Rankin Scale score ≥3) at 3 months after stroke. Secondary outcomes were, separately, death and major disability. The association between heart rate tertiles and primary outcome was appreciably modified by renal function status (p interaction  = 0.037). After multivariate adjustment, high heart rate was associated with increased risk of primary outcome in patients with abnormal renal function (odds ratio, 1.61; 95% confidence interval, 1.02-2.54; p trend  = 0.039) but not in patients with normal renal function (odds ratio, 0.96; 95% confidence interval, 0.75-1.23; p trend  = 0.741), when two extreme tertiles were compared. Each 10 bpm increase of heart rate was associated with 21% (95% CI: 1%-44%) increased risk of primary outcome, and a linear association between heart rate and risk of primary outcome was observed among patients with abnormal renal function (p for linearity = 0.002). High heart rate may be merely a strong predictor of poor prognosis in acute ischemic stroke patients with abnormal renal function, suggesting that heart rate reduction should be applied to ischemic stroke patients with abnormal renal function to improve their prognosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Heart rhythm complexity impairment in patients undergoing peritoneal dialysis

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Hung; Lin, Chen; Ho, Yi-Heng; Wu, Vin-Cent; Lo, Men-Tzung; Hung, Kuan-Yu; Liu, Li-Yu Daisy; Lin, Lian-Yu; Huang, Jenq-Wen; Peng, Chung-Kang

    2016-06-01

    Cardiovascular disease is one of the leading causes of death in patients with advanced renal disease. The objective of this study was to investigate impairments in heart rhythm complexity in patients with end-stage renal disease. We prospectively analyzed 65 patients undergoing peritoneal dialysis (PD) without prior cardiovascular disease and 72 individuals with normal renal function as the control group. Heart rhythm analysis including complexity analysis by including detrended fractal analysis (DFA) and multiscale entropy (MSE) were performed. In linear analysis, the PD patients had a significantly lower standard deviation of normal RR intervals (SDRR) and percentage of absolute differences in normal RR intervals greater than 20 ms (pNN20). Of the nonlinear analysis indicators, scale 5, area under the MSE curve for scale 1 to 5 (area 1-5) and 6 to 20 (area 6-20) were significantly lower than those in the control group. In DFA anaylsis, both DFA α1 and DFA α2 were comparable in both groups. In receiver operating characteristic curve analysis, scale 5 had the greatest discriminatory power for two groups. In both net reclassification improvement model and integrated discrimination improvement models, MSE parameters significantly improved the discriminatory power of SDRR, pNN20, and pNN50. In conclusion, PD patients had worse cardiac complexity parameters. MSE parameters are useful to discriminate PD patients from patients with normal renal function.

  20. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao; Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiacmore » TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in normal mouse heart. IPC preserves the integrity of TJ structure and function that are vulnerable to IR injury.« less

  1. High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts.

    PubMed

    Fu, Qin; Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan; Xiang, Yang K

    2017-03-15

    Patients with diabetes show a blunted cardiac inotropic response to β-adrenergic stimulation despite normal cardiac contractile reserve. Acute insulin stimulation impairs β-adrenergically induced contractile function in isolated cardiomyocytes and Langendorff-perfused hearts. In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high-fat diet (HFD) feeding on the cardiac β 2 -adrenergic receptor signalling and the impacts on cardiac contractile function. We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β-adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β 2 -adrenergic receptor phosphorylation at protein kinase A and G-protein receptor kinase sites in the myocardium. The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high-fat diet (HFD) on the insulin-adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD-fed mice displayed a significant elevation of phosphorylation of the β 2 -adrenergic receptor (β 2 AR) at both the protein kinase A site serine 261/262 and the G-protein-coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD-fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β 2 AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD-fed mice. Together, these data indicate that HFD promotes phosphorylation of the β 2 AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin-adrenergic signalling network might be effective in prevention of cardiac complications in diabetes. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  2. High‐fat diet induces protein kinase A and G‐protein receptor kinase phosphorylation of β2‐adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts

    PubMed Central

    Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan

    2017-01-01

    Key points Patients with diabetes show a blunted cardiac inotropic response to β‐adrenergic stimulation despite normal cardiac contractile reserve.Acute insulin stimulation impairs β‐adrenergically induced contractile function in isolated cardiomyocytes and Langendorff‐perfused hearts.In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high‐fat diet (HFD) feeding on the cardiac β2‐adrenergic receptor signalling and the impacts on cardiac contractile function.We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β‐adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2‐adrenergic receptor phosphorylation at protein kinase A and G‐protein receptor kinase sites in the myocardium.The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Abstract Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high‐fat diet (HFD) on the insulin–adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD‐fed mice displayed a significant elevation of phosphorylation of the β2‐adrenergic receptor (β2AR) at both the protein kinase A site serine 261/262 and the G‐protein‐coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD‐fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β2AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD‐fed mice. Together, these data indicate that HFD promotes phosphorylation of the β2AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin–adrenergic signalling network might be effective in prevention of cardiac complications in diabetes. PMID:27983752

  3. Recurrent protein-losing enteropathy and tricuspid valve insufficiency in a transplanted heart: a causal relationship?

    PubMed

    Aggarwal, Sanjeev; Delius, Ralph E; Walters, Henry L; L'Ecuyer, Thomas J

    2012-01-01

    This case report describes a toddler who developed a protein-losing enteropathy (PLE) 4 years after orthotopic heart transplantation (OHT). He was born with a hypoplastic left heart syndrome for which he underwent a successful Norwood procedure, a Hemi-Fontan palliation, and a Fontan palliation at 18 months of age. Fifteen months following the Fontan operation, he developed a PLE and Fontan failure requiring OHT. Four years after OHT, he developed a severe tricuspid regurgitation and a PLE. His PLE improved after tricuspid valve replacement. It is now 2 years since his tricuspid valve replacement and he remains clinically free of ascites and peripheral edema with a normal serum albumin level. His prosthetic tricuspid valve is functioning normally. © 2011 Wiley Periodicals, Inc.

  4. Radionuclide evaluation of left-ventricular function in chronic Chagas' cardiomyopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arreaza, N.; Puigbo, J.J.; Acquatella, H. Casal, H.

    1983-07-01

    Left-ventricular ejection fraction (LVEF) and abnormalities of regional wall motion (WMA) were studied by means of radionuclide ventriculography in 41 patients prospectively diagnosed as having chronic Chagas' disease. Thirteen patients were asymptomatic (ASY), 16 were arrhythmic (ARR), and 12 had congestive heart failure (CHF). Mean LVEF was normal in ASY but markedly depressed in CHF. Regional WMAs were minimal in ASY and their severity increased in ARR. Most CHFs (75%) had diffuse hypokinesia of the left ventricle. Seven patients had a distinct apical aneurysm. Correlation between radionuclide and contrast ventriculography data was good in 17 patients. Selective coronary arteriography showedmore » normal arteries in all patients. Therefore, chronic Chagas' heart disease joins ischemic heart disease as a cause of regional WMA.« less

  5. Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors.

    PubMed

    Mitchell, Jere H

    2017-06-01

    During both dynamic (e.g., endurance) and static (e.g., strength) exercise there are exaggerated cardiovascular responses in hypertension. This includes greater increases in blood pressure, heart rate, and efferent sympathetic nerve activity than in normal controls. Two of the known neural factors that contribute to this abnormal cardiovascular response are the exercise pressor reflex (EPR) and functional sympatholysis. The EPR originates in contracting skeletal muscle and reflexly increases sympathetic efferent nerve activity to the heart and blood vessels as well as decreases parasympathetic efferent nerve activity to the heart. These changes in autonomic nerve activity cause an increase in blood pressure, heart rate, left ventricular contractility, and vasoconstriction in the arterial tree. However, arterial vessels in the contracting skeletal muscle have a markedly diminished vasoconstrictor response. The markedly diminished vasoconstriction in contracting skeletal muscle has been termed functional sympatholysis. It has been shown in hypertension that there is an enhanced EPR, including both its mechanoreflex and metaboreflex components, and an impaired functional sympatholysis. These conditions set up a positive feedback or vicious cycle situation that causes a progressively greater decrease in the blood flow to the exercising muscle. Thus these two neural mechanisms contribute significantly to the abnormal cardiovascular response to exercise in hypertension. In addition, exercise training in hypertension decreases the enhanced EPR, including both mechanoreflex and metaboreflex function, and improves the impaired functional sympatholysis. These two changes, caused by exercise training, improve the muscle blood flow to exercising muscle and cause a more normal cardiovascular response to exercise in hypertension. Copyright © 2017 the American Physiological Society.

  6. Cardiac damage in athlete's heart: When the "supernormal" heart fails!

    PubMed

    Carbone, Andreina; D'Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele

    2017-06-26

    Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete's blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete's heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded.

  7. Cardiac damage in athlete’s heart: When the “supernormal” heart fails!

    PubMed Central

    Carbone, Andreina; D’Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele

    2017-01-01

    Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete’s blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete’s heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded. PMID:28706583

  8. Hyperoxic preconditioning fails to confer additional protection against ischemia-reperfusion injury in acute diabetic rat heart.

    PubMed

    Pourkhalili, Khalil; Hajizadeh, Sohrab; Akbari, Zahra; Dehaj, Mansour Esmaili; Akbarzadeh, Samad; Alizadeh, Alimohammad

    2012-01-01

    Experimental studies show that detrimental effects of ischemia-reperfusion (I/R) injury can be attenuated by hyperoxic preconditioning in normal hearts, however, there are few studies about hyperoxia effects in diseased myocardium. The present study was designed to assess the cardioprotective effects of hyperoxia pretreatment (≥ 95 % O2) in acute diabetic rat hearts. Normal and one week acute diabetic rats were either exposed to 60 (H60) and 180 (H180) min of hyperoxia or exposed to normal atmospheric air (21 % O2). Then hearts were isolated immediately and subjected to 30 min of regional ischemia followed by 120 min of reperfusion. Infarct size, cardiomyocyte apoptosis, enzymes release and ischemia induced arrhythmias were determined. Heart of diabetic control rats had less infarct size and decreased LDH and CK-MB release compared to normal hearts. 60 and 180 min of hyperoxia reduced myocardial infarct size and enzymes release in normal hearts. 180 min of hyperoxia also decreased cardiomyocytes apoptosis in normal state. On the other hand, protective values of hyperoxia were not significantly different in diabetic hearts. Moreover, hyperoxia reduced severity of ventricular arrhythmias in normal rat hearts whereas; it did not confer any additional antiarrhythmic protection in diabetic hearts. These findings suggest that diabetic hearts are less susceptible to ischemia-induced arrhythmias and infarction. Hyperoxia greatly protects rat hearts against I/R injury in normal hearts, however, it could not provide added cardioprotective effects in acute phase of diabetes.

  9. Acute heat tolerance of cardiac excitation in the brown trout (Salmo trutta fario).

    PubMed

    Vornanen, Matti; Haverinen, Jaakko; Egginton, Stuart

    2014-01-15

    The upper thermal tolerance and mechanisms of heat-induced cardiac failure in the brown trout (Salmo trutta fario) was examined. The point above which ion channel function and sinoatrial contractility in vitro, and electrocardiogram (ECG) in vivo, started to fail (break point temperature, BPT) was determined by acute temperature increases. In general, electrical excitation of the heart was most sensitive to heat in the intact animal (electrocardiogram, ECG) and least sensitive in isolated cardiac myocytes (ion currents). BPTs of Ca(2+) and K(+) currents of cardiac myocytes were much higher (>28°C) than BPT of in vivo heart rate (23.5 ± 0.6°C) (P<0.05). A striking exception among sarcolemmal ion conductances was the Na(+) current (INa), which was the most heat-sensitive molecular function, with a BPT of 20.9 ± 0.5°C. The low heat tolerance of INa was reflected as a low BPT for the rate of action potential upstroke in vitro (21.7 ± 1.2°C) and the velocity of impulse transmission in vivo (21.9 ± 2.2°C). These findings from different levels of biological organization strongly suggest that heat-dependent deterioration of Na(+) channel function disturbs normal spread of electrical excitation over the heart, leading to progressive variability of cardiac rhythmicity (missed beats, bursts of fast beating), reduction of heart rate and finally cessation of the normal heartbeat. Among the cardiac ion currents INa is 'the weakest link' and possibly a limiting factor for upper thermal tolerance of electrical excitation in the brown trout heart. Heat sensitivity of INa may result from functional requirements for very high flux rates and fast gating kinetics of the Na(+) channels, i.e. a trade-off between high catalytic activity and thermal stability.

  10. Tachycardia, reduced vagal capacity, and age-dependent ventricular dysfunction arising from diminished expression of the presynaptic choline transporter

    PubMed Central

    English, Brett A.; Appalsamy, Martin; Diedrich, Andre; Ruggiero, Alicia M.; Lund, David; Wright, Jane; Keller, Nancy R.; Louderback, Katherine M.; Robertson, David

    2010-01-01

    Healthy cardiovascular function relies on a balanced and responsive integration of noradrenergic and cholinergic innervation of the heart. High-affinity choline uptake by cholinergic terminals is pivotal for efficient ACh production and release. To date, the cardiovascular impact of diminished choline transporter (CHT) expression has not been directly examined, largely due to the transporter's inaccessibility in vivo. Here, we describe findings from cardiovascular experiments using transgenic mice that bear a CHT genetic deficiency. Whereas CHT knockout (CHT−/−) mice exhibit early postnatal lethality, CHT heterozygous (CHT+/−) mice survive, grow, and reproduce normally and exhibit normal spontaneous behaviors. However, the CHT+/− mouse heart displays significantly reduced levels of high-affinity choline uptake accompanied by significantly reduced levels of ACh. Telemeterized recordings of cardiovascular function in these mice revealed tachycardia and hypertension at rest. After treadmill exercise, CHT+/− mice exhibited slower heart rate recovery, consistent with a diminished cholinergic reserve, a contention validated through direct vagal nerve stimulation. Echocardiographic and histological experiments revealed an age-dependent decrease in fractional shortening, increased left ventricular dimensions, and increased ventricular fibrosis, consistent with ventricular dysfunction. These cardiovascular phenotypes of CHT+/− mice encourage an evaluation of humans bearing reduced CHT expression for their resiliency in maintaining proper heart function as well as risk for cardiovascular disease. PMID:20601463

  11. One year of high-intensity interval training improves exercise capacity, but not left ventricular function in stable heart transplant recipients: a randomised controlled trial.

    PubMed

    Rustad, Lene A; Nytrøen, Kari; Amundsen, Brage H; Gullestad, Lars; Aakhus, Svend

    2014-02-01

    Heart transplant recipients have lower exercise capacity and impaired cardiac function compared with the normal population. High-intensity interval training (HIIT) improves exercise capacity and cardiac function in patients with heart failure and hypertension, but the effect on cardiac function in stable heart transplant recipients is not known. Thus, we investigated whether HIIT improved cardiac function and exercise capacity in stable heart transplant recipients by use of comprehensive rest- and exercise-echocardiography and cardiopulmonary exercise testing. Fifty-two clinically stable heart transplant recipients were randomised either to HIIT (4 × 4 minutes at 85-95% of peak heart rate three times per week for eight weeks) or to control. Three such eight-week periods were distributed throughout one year. Echocardiography (rest and submaximal exercise) and cardiopulmonary exercise testing were performed at baseline and follow-up. One year of HIIT increased VO 2peak from 27.7 ± 5.5 at baseline to 30.9 ± 5.0 ml/kg/min at follow-up, while the control group remained unchanged (28.5 ± 7.0 vs. 28.0 ± 6.7 ml/kg per min, p < 0.001 for difference between the groups). Systolic and diastolic left ventricular functions at rest and during exercise were generally unchanged by HIIT. Whereas HIIT is feasible in heart transplant recipients and effectively improves exercise capacity, it does not alter cardiac systolic and diastolic function significantly. Thus, the observed augmentation in exercise capacity is best explained by extra-cardiac adaptive mechanisms.

  12. Chest pain in the emergency room-an interesting case presentation.

    PubMed

    Turner, Michael C

    2016-12-01

    A 61-year-old woman presented to the emergency room with atypical chest pain, non-diagnostic electrocardiogram, and an initial troponin level that was normal. A coronary computed tomography angio (CCTA) was performed, and on initial review, it appeared to be normal. Subsequent review including evaluation of functional data from the retrospective scan identified a distal left anterior descending occlusion and an apical wall-motion abnormality with no other evidence of heart disease. This case illustrates the complementary contribution of anatomic and functional data and serves to remind us that on rare occasions, what looks "normal" is not always normal. © 2016, Wiley Periodicals, Inc.

  13. The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium.

    PubMed

    Kocica, Mladen J; Corno, Antonio F; Carreras-Costa, Francesc; Ballester-Rodes, Manel; Moghbel, Mark C; Cueva, Clotario N C; Lackovic, Vesna; Kanjuh, Vladimir I; Torrent-Guasp, Francisco

    2006-04-01

    We are currently witnessing the advent of new diagnostic tools and therapies for heart diseases, but, without serious scientific consensus on fundamental questions about normal and diseased heart structure and function. During the last decade, three successive, international, multidisciplinary symposia were organized in order to setup fundamental research principles, which would allow us to make a significant step forward in understanding heart structure and function. Helical ventricular myocardial band of Torrent-Guasp is the revolutionary new concept in understanding global, three-dimensional, functional architecture of the ventricular myocardium. This concept defines the principal, cumulative vectors, integrating the tissue architecture (i.e. form) and net forces developed (i.e. function) within the ventricular mass. Here we expose the compendium of Torrent-Guasp's half-century long functional anatomical investigations in the light of ongoing efforts to define the integrative approach, which would lead to new understanding of the ventricular form and function by linking across multiple scales of biological organization, as defined in ongoing Physiome project. Helical ventricular myocardial band of Torrent-Guasp may also, hopefully, allow overcoming some difficulties encountered in contemporary efforts to create a comprehensive mathematical model of the heart.

  14. Autonomic control of the heart is altered in Sprague-Dawley rats with spontaneous hydronephrosis

    PubMed Central

    Arnold, Amy C.; Shaltout, Hossam A.; Gilliam-Davis, Shea; Kock, Nancy D.

    2011-01-01

    The renal medulla plays an important role in cardiovascular regulation, through interactions with the autonomic nervous system. Hydronephrosis is characterized by substantial loss of renal medullary tissue. However, whether alterations in autonomic control of the heart are observed in this condition is unknown. Thus we assessed resting hemodynamics and baroreflex sensitivity (BRS) for control of heart rate in urethane/chloralose-anesthetized Sprague-Dawley rats with normal or hydronephrotic kidneys. While resting arterial pressure was similar, heart rate was higher in rats with hydronephrosis (290 ± 12 normal vs. 344 ± 11 mild/moderate vs. 355 ± 13 beats/min severe; P < 0.05). The evoked BRS to increases, but not decreases, in pressure was lower in hydronephrotic rats (1.06 ± 0.06 normal vs. 0.72 ± 0.10 mild/moderate vs. 0.63 ± 0.07 ms/mmHg severe; P < 0.05). Spectral analysis methods confirmed reduced parasympathetic function in hydronephrosis, with no differences in measures of indirect sympathetic activity among conditions. As a secondary aim, we investigated whether autonomic dysfunction in hydronephrosis is associated with activation of the renin-angiotensin system (RAS). There were no differences in circulating angiotensin peptides among conditions, suggesting that the impaired autonomic function in hydronephrosis is independent of peripheral RAS activation. A possible site for angiotensin II-mediated BRS impairment is the solitary tract nucleus (NTS). In normal and mild/moderate hydronephrotic rats, NTS administration of the angiotensin II type 1 receptor antagonist candesartan significantly improved the BRS, suggesting that angiotensin II provides tonic suppression to the baroreflex. In contrast, angiotensin II blockade produced no significant effect in severe hydronephrosis, indicating that at least within the NTS baroreflex suppression in these animals is independent of angiotensin II. PMID:21460193

  15. Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization.

    PubMed

    Sah, Rajan; Mesirca, Pietro; Mason, Xenos; Gibson, William; Bates-Withers, Christopher; Van den Boogert, Marjolein; Chaudhuri, Dipayan; Pu, William T; Mangoni, Matteo E; Clapham, David E

    2013-07-09

    Transient receptor potential (TRP) channels are a superfamily of broadly expressed ion channels with diverse physiological roles. TRPC1, TRPC3, and TRPC6 are believed to contribute to cardiac hypertrophy in mouse models. Human mutations in TRPM4 have been linked to progressive familial heart block. TRPM7 is a divalent-permeant channel and kinase of unknown function, recently implicated in the pathogenesis of atrial fibrillation; however, its function in ventricular myocardium remains unexplored. We generated multiple cardiac-targeted knockout mice to test the hypothesis that TRPM7 is required for normal ventricular function. Early cardiac Trpm7 deletion (before embryonic day 9; TnT/Isl1-Cre) results in congestive heart failure and death by embryonic day 11.5 as a result of hypoproliferation of the compact myocardium. Remarkably, Trpm7 deletion late in cardiogenesis (about embryonic day 13; αMHC-Cre) produces viable mice with normal adult ventricular size, function, and myocardial transcriptional profile. Trpm7 deletion at an intermediate time point results in 50% of mice developing cardiomyopathy associated with heart block, impaired repolarization, and ventricular arrhythmias. Microarray analysis reveals elevations in transcripts of hypertrophy/remodeling genes and reductions in genes important for suppressing hypertrophy (Hdac9) and for ventricular repolarization (Kcnd2) and conduction (Hcn4). These transcriptional changes are accompanied by action potential prolongation and reductions in transient outward current (Ito; Kcnd2). Similarly, the pacemaker current (If; Hcn4) is suppressed in atrioventricular nodal cells, accounting for the observed heart block. Trpm7 is dispensable in adult ventricular myocardium under basal conditions but is critical for myocardial proliferation during early cardiogenesis. Loss of Trpm7 at an intermediate developmental time point alters the myocardial transcriptional profile in adulthood, impairing ventricular function, conduction, and repolarization.

  16. The role of flow in the morphodynamics of embryonic heart

    NASA Astrophysics Data System (ADS)

    Gharib, Morteza

    2017-11-01

    Nature has shown us that some hearts do not require valves to achieve unidirectional flow. In its earliest stages, the vertebrate heart consists of a primitive tube that drives blood through a simple vascular network nourishing tissues and other developing organ systems. We have shown that in the case of the embryonic zebrafish heart, an elastic wave resonance mechanism based on impedance mismatches at the boundaries of the heart tube is the likely mechanism responsible for the valveless pumping behavior. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop there is considerable regurgitation, resulting in oscillatory flow between the atrium and ventricle. We show that reversing flows are particularly strong stimuli to endothelial cells and that heart valves form as a developmental response to oscillatory blood flow through the maturing heart.

  17. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds.

    PubMed

    Radisic, Milica; Park, Hyoungshin; Shing, Helen; Consi, Thomas; Schoen, Frederick J; Langer, Robert; Freed, Lisa E; Vunjak-Novakovic, Gordana

    2004-12-28

    The major challenge of tissue engineering is directing the cells to establish the physiological structure and function of the tissue being replaced across different hierarchical scales. To engineer myocardium, biophysical regulation of the cells needs to recapitulate multiple signals present in the native heart. We hypothesized that excitation-contraction coupling, critical for the development and function of a normal heart, determines the development and function of engineered myocardium. To induce synchronous contractions of cultured cardiac constructs, we applied electrical signals designed to mimic those in the native heart. Over only 8 days in vitro, electrical field stimulation induced cell alignment and coupling, increased the amplitude of synchronous construct contractions by a factor of 7, and resulted in a remarkable level of ultrastructural organization. Development of conductive and contractile properties of cardiac constructs was concurrent, with strong dependence on the initiation and duration of electrical stimulation.

  18. Association between left ventricular dysfunction, anemia, and chronic renal failure. Analysis of the Heart Failure Prevalence and Predictors in Turkey (HAPPY) cohort.

    PubMed

    Kepez, A; Mutlu, B; Degertekin, M; Erol, C

    2015-06-01

    Anemia and chronic renal failure (CRF) are frequent comorbidities in patients with heart failure (HF), and they have been reported to be associated with increased mortality and hospitalization rates. HF, anemia, and CRF have been reported to interact with each other forming a vicious cycle termed cardio-renal-anemia syndrome. The aim of the present study was to evaluate the association of HF, anemia, and CRF using data from the large-scale"Heart Failure Prevalence and Predictors in Turkey (HAPPY)" study. Among the HAPPY cohort, 3,369 subjects who had either left ventricular dysfunction (LVD) or normal left ventricular function on echocardiography or normal serum NT-proBNP levels were included in this analysis. The prevalence of anemia and CRF was significantly higher in patients with LVD compared with subjects with normal ventricular function (20.7 % vs. 4.0 % and 19.0 % vs. 3.7 %, respectively; p < 0.001 for each). Binary logistic regression analyses for the presence of LVD, anemia, and CRF demonstrated that each one was an independent predictor for the presence of the others. These findings point to the presence of cardio-renal-anemia syndrome and the necessity of treating these comorbidities in patients with HF.

  19. Effect of shilajit on the heart of Daphnia: A preliminary study.

    PubMed

    Gaikwad, N S; Panat, A V; Deshpande, M S; Ramya, K; Khalid, P U; Augustine, P

    2012-01-01

    Shilajit is a mineral-rich complex organic compound used in the traditional system of Ayurvedic medicine for treating hypertension and improving the cardiac function with many herbomineral preparations. However, very little experimental evidence is available about its effect on the cardiac function. We used Daphnia as a model organism for observing the effect of shilajit on its heart due to its myogenic properties and its response to number of cardioactive drugs that are known to affect human heart function. Genome of Daphnia shows the strongest homology with the human genome. These characteristics of Daphnia make it an ideal organism for biomedical research. Our results suggest that this complex organic compound lowers the heart beats as its concentration increases from 1.0 to 100 ppm. The beats come to near normal condition at 1000 ppm. Above 1000 ppm, the beats are very fast and impossible to count. These results indicate a negative chronotropic effect on the Daphnia heart at low concentrations and a positive chronotropic effect to arrhythmia and finally failure at increasing higher concentrations of shilajit.

  20. Effect of shilajit on the heart of Daphnia: A preliminary study

    PubMed Central

    Gaikwad, N. S.; Panat, A. V.; Deshpande, M. S.; Ramya, K.; Khalid, P. U.; Augustine, P.

    2012-01-01

    Shilajit is a mineral-rich complex organic compound used in the traditional system of Ayurvedic medicine for treating hypertension and improving the cardiac function with many herbomineral preparations. However, very little experimental evidence is available about its effect on the cardiac function. We used Daphnia as a model organism for observing the effect of shilajit on its heart due to its myogenic properties and its response to number of cardioactive drugs that are known to affect human heart function. Genome of Daphnia shows the strongest homology with the human genome. These characteristics of Daphnia make it an ideal organism for biomedical research. Our results suggest that this complex organic compound lowers the heart beats as its concentration increases from 1.0 to 100 ppm. The beats come to near normal condition at 1000 ppm. Above 1000 ppm, the beats are very fast and impossible to count. These results indicate a negative chronotropic effect on the Daphnia heart at low concentrations and a positive chronotropic effect to arrhythmia and finally failure at increasing higher concentrations of shilajit. PMID:22529672

  1. The mitochondrial uniporter controls fight or flight heart rate increases.

    PubMed

    Wu, Yuejin; Rasmussen, Tyler P; Koval, Olha M; Joiner, Mei-Ling A; Hall, Duane D; Chen, Biyi; Luczak, Elizabeth D; Wang, Qiongling; Rokita, Adam G; Wehrens, Xander H T; Song, Long-Sheng; Anderson, Mark E

    2015-01-20

    Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.

  2. Incretin-related drug therapy in heart failure.

    PubMed

    Vest, Amanda R

    2015-02-01

    The new pharmacological classes of GLP-1 agonists and DPP-4 inhibitors are now widely used in diabetes and have been postulated as beneficial in heart failure. These proposed benefits arise from the inter-related pathophysiologies of diabetes and heart failure (diabetes increases the risk of heart failure, and heart failure can induce insulin resistance) and also in light of the dysfunctional myocardial energetics seen in heart failure. The normal heart utilizes predominantly fatty acids for energy production, but there is some evidence to suggest that increased myocardial glucose uptake may be beneficial for the failing heart. Thus, GLP-1 agonists, which stimulate glucose-dependent insulin release and enhance myocardial glucose uptake, have become a focus of investigation in both animal models and humans with heart failure. Limited pilot data for GLP-1 agonists shows potential improvements in systolic function, hemodynamics, and quality of life, forming the basis for current phase II trials.

  3. Clinical-Physiological Considerations in Patients Undergoing Staged Palliation for a Functionally Single Ventricle.

    PubMed

    Penny, Daniel J; Krishnamurthy, Rajesh

    2016-08-01

    The objectives of this review are to discuss the pathophysiology of the circulation with a functionally univentricular heart, with a focus on the unique physiologic characteristics, which provide the underpinnings for the management of these complex patients. MEDLINE and PubMed. The circulation of the patient with a functionally univentricular heart displays unique physiologic characteristics, which are quite different from those of the normal biventricular circulation. There are profound differences within the heart itself in terms of ventricular function, interventricular interactions, and myocardial architecture, which are likely to have significant implications for the efficiency of ventricular ejection and metabolism. The coupling between the systemic ventricle and the aorta also displays unique features. The 3D orientation of the Fontan anastomosis itself can profoundly impact cardiac output, although the "portal" pulmonary arterial bed is a crucial determinant of overall cardiovascular function. As a result, disease-specific approaches to improve cardiovascular function are required at all stages during the care of these complex patients.

  4. LDL-oxidation, serum uric acid, kidney function and pulse-wave velocity: Data from the Brisighella Heart Study cohort.

    PubMed

    Cicero, Arrigo F G; Kuwabara, Masanari; Johnson, Richard; Bove, Marilisa; Fogacci, Federica; Rosticci, Martina; Giovannini, Marina; D'Addato, Sergio; Borghi, Claudio

    2018-06-15

    Serum uric acid (SUA) and oxidized LDL (oxLDL) may be associated with arterial aging. The aim of our study was to evaluate the relationship between SUA, oxLDL and arterial stiffness in subjects with normal renal function and in patients with mild or moderate renal impairment. From the database of the 2012 Brisighella Heart Study, we compared age-matched adult, non-smoker subjects without cardiovascular disease and with normal renal function (n = 205), subjects with stage II chronic kidney disease (CKD) (n = 118) and subjects with stage III CKD (n = 94). All subjects underwent a determination of the LDL oxidative susceptibility, oxLDL levels, SUA and Pulse Wave Velocity (PWV). By univariate analysis, PWV correlated with a large number of clinical, haemodynamic and metabolic parameters, including estimated glomerular filtration rate (eGFR) in subjects with normal renal function and in those with stage II or III CKD. Stepwise multiple regression analyses showed that in the presence of normal renal function or stage II CKD, the main predictors of PWV were age, systolic blood pressure (SBP), ox-LDL, apolipoprotein B and SUA (p < 0.05), while in the presence of stage III CKD only age, SBP and apolipoprotein B remained significant (p < 0.05). Both ox-LDL and SUA independently predicts PWV only in subjects with normal or mildly reduced renal function, but not in the subjects with more compromised eGFR. This study confirms the complex relationship of SUA with cardiovascular and metabolic disease in the patient with established renal disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Protective effects of hydroalcoholic extract from rhizomes of Cynodon dactylon (L.) Pers. on compensated right heart failure in rats.

    PubMed

    Garjani, Alireza; Afrooziyan, Arash; Nazemiyeh, Hossein; Najafi, Moslem; Kharazmkia, Ali; Maleki-Dizaji, Nasrin

    2009-08-05

    The rhizomes of Cynodon dactylon are used for the treatment of heart failure in folk medicine. In the present study, we investigated the effects of hydroalcoholic extract of C. dactylon rhizomes on cardiac contractility in normal hearts and on cardiac functions in right-heart failure in rats. Right-heart failure was induced by intraperitoneal injection of monocrotaline (50 mg/kg). Two weeks later, the animals were treated orally with different doses of the extract for fifteen days. At the end of the experiments cardiac functions and markers of myocardial hypertrophy were measured. The treated rats showed very less signs of fatigue, peripheral cyanosis and dyspnea. The survival rate was high in the extract treated groups (90%). Administration of C. dactylon in monocrotaline-injected rats led to profound improvement in cardiac functions as demonstrated by decreased right ventricular end diastolic pressure (RVEDP) and elevated mean arterial pressure. RVdP/dtmax, and RVdP/dt/P as indices of myocardial contractility were also markedly (p < 0.001; using one way ANOVA) increased by the extract. The extract reduced heart and lung congestion by decreasing tissue wet/dry and wet/body weight ratios (p < 0.01). In the isolated rat hearts, the extract produced a remarkable (P < 0.001) positive inotropic effect concomitant with a parallel decrease in LVEDP. The results of this study indicated that C. dactylon exerted a strong protective effect on right heart failure, in part by positive inotropic action and improving cardiac functions.

  6. Molecular and immunohistochemical analyses of cardiac troponin T during cardiac development in the Mexican axolotl, Ambystoma mexicanum.

    PubMed

    Zhang, C; Pietras, K M; Sferrazza, G F; Jia, P; Athauda, G; Rueda-de-Leon, E; Rveda-de-Leon, E; Maier, J A; Dube, D K; Lemanski, S L; Lemanski, L F

    2007-01-01

    The Mexican axolotl, Ambystoma mexicanum, is an excellent animal model for studying heart development because it carries a naturally occurring recessive genetic mutation, designated gene c, for cardiac nonfunction. The double recessive mutants (c/c) fail to form organized myofibrils in the cardiac myoblasts resulting in hearts that fail to beat. Tropomyosin expression patterns have been studied in detail and show dramatically decreased expression in the hearts of homozygous mutant embryos. Because of the direct interaction between tropomyosin and troponin T (TnT), and the crucial functions of TnT in the regulation of striated muscle contraction, we have expanded our studies on this animal model to characterize the expression of the TnT gene in cardiac muscle throughout normal axolotl development as well as in mutant axolotls. In addition, we have succeeded in cloning the full-length cardiac troponin T (cTnT) cDNA from axolotl hearts. Confocal microscopy has shown a substantial, but reduced, expression of TnT protein in the mutant hearts when compared to normal during embryonic development. 2006 Wiley-Liss, Inc.

  7. Prostacyclins have no direct inotropic effect on isolated atrial strips from the normal and pressure-overloaded human right heart.

    PubMed

    Holmboe, Sarah; Andersen, Asger; Jensen, Rebekka V; Kimose, Hans Henrik; Ilkjær, Lars B; Shen, Lei; Clapp, Lucie H; Nielsen-Kudsk, Jens Erik

    2017-01-01

    Prostacyclins are vasodilatory agents used in the treatment of pulmonary arterial hypertension. The direct effects of prostacyclins on right heart function are still not clarified. The aim of this study was to investigate the possible direct inotropic properties of clinical available prostacyclin mimetics in the normal and the pressure-overloaded human right atrium. Trabeculae from the right atrium were collected during surgery from chronic thromboembolic pulmonary hypertension (CTEPH) patients with pressure-overloaded right hearts, undergoing pulmonary thromboendarterectomy (n = 10) and from patients with normal right hearts operated by valve replacement or coronary bypass surgery (n = 9). The trabeculae were placed in an organ bath, continuously paced at 1 Hz. They were subjected to increasing concentrations of iloprost, treprostinil, epoprostenol, or MRE-269, followed by isoprenaline to elicit a reference inotropic response. The force of contraction was measured continuously. The expression of prostanoid receptors was explored through quantitative polymerase chain reaction (qPCR). Iloprost, treprostinil, epoprostenol, or MRE-269 did not alter force of contraction in any of the trabeculae. Isoprenaline showed a direct inotropic response in both trabeculae from the pressure-overloaded right atrium and from the normal right atrium. Control experiments on ventricular trabeculae from the pig failed to show an inotropic response to the prostacyclin mimetics. qPCR demonstrated varying expression of the different prostanoid receptors in the human atrium. In conclusion, prostacyclin mimetics did not increase the force of contraction of human atrial trabeculae from the normal or the pressure-overloaded right heart. These data suggest that prostacyclin mimetics have no direct inotropic effects in the human right atrium.

  8. Divergent Requirements for EZH1 in Heart Development Versus Regeneration.

    PubMed

    Ai, Shanshan; Yu, Xianhong; Li, Yumei; Peng, Yong; Li, Chen; Yue, Yanzhu; Tao, Ge; Li, Chuanyun; Pu, William T; He, Aibin

    2017-07-07

    Polycomb repressive complex 2 is a major epigenetic repressor that deposits methylation on histone H3 on lysine 27 (H3K27me) and controls differentiation and function of many cells, including cardiac myocytes. EZH1 and EZH2 are 2 alternative catalytic subunits with partial functional redundancy. The relative roles of EZH1 and EZH2 in heart development and regeneration are unknown. We compared the roles of EZH1 versus EZH2 in heart development and neonatal heart regeneration. Heart development was normal in Ezh1 -/- ( Ezh 1 knockout) and Ezh2 f/f ::cTNT -Cre ( Ezh 2 knockout) embryos. Ablation of both genes in Ezh1 -/- ::Ezh2 f/f ::cTNT -Cre embryos caused lethal heart malformations, including hypertrabeculation, compact myocardial hypoplasia, and ventricular septal defect. Epigenome and transcriptome profiling showed that derepressed genes were upregulated in a manner consistent with total EZH dose. In neonatal heart regeneration, Ezh1 was required, but Ezh2 was dispensable. This finding was further supported by rescue experiments: cardiac myocyte-restricted re-expression of EZH1 but not EZH2 restored neonatal heart regeneration in Ezh 1 knockout. In myocardial infarction performed outside of the neonatal regenerative window, EZH1 but not EZH2 likewise improved heart function and stimulated cardiac myocyte proliferation. Mechanistically, EZH1 occupied and activated genes related to cardiac growth. Our work unravels divergent mechanisms of EZH1 in heart development and regeneration, which will empower efforts to overcome epigenetic barriers to heart regeneration. © 2017 American Heart Association, Inc.

  9. Physiological state characterization by clustering heart rate, heart rate variability and movement activity information.

    PubMed

    Bidargaddi, Niranjan; Sarela, Antti; Korhonen, Ilkka

    2008-01-01

    The objective is to identify whether it is possible to discriminate between normal and abnormal physiological state based on heart rate (HR), heart rate variability (HRV) and movement activity information in subjects with cardiovascular complications. HR, HRV and movement information were obtained from cardiac patients over a period of 6 weeks using an ambulatory activity and single lead ECG monitor. By applying k-means clustering on HR, HRV and movement information obtained from cardiac patients, we obtained 3 clusters in inactive state and one cluster in active state. Two clusters in inactive state characterized by - a) high HR and low HRV b) low HRV and low HR, could be inferred as pathological with abnormal autonomic function. Further, activity information was significant in differentiating between the normal cluster found in active and an abnormal cluster found in inactive states, both with low HRV. This indicates that the activity information must be taken into account while interpreting HR and HRV information.

  10. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart

    PubMed Central

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-01-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3–4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation. PMID:23255322

  11. The dynamic cardiac biosimulator: A method for training physicians in beating-heart mitral valve repair procedures.

    PubMed

    Leopaldi, Alberto M; Wrobel, Krzysztof; Speziali, Giovanni; van Tuijl, Sjoerd; Drasutiene, Agne; Chitwood, W Randolph

    2018-01-01

    Previously, cardiac surgeons and cardiologists learned to operate new clinical devices for the first time in the operating room or catheterization laboratory. We describe a biosimulator that recapitulates normal heart valve physiology with associated real-time hemodynamic performance. To highlight the advantages of this simulation platform, transventricular extruded polytetrafluoroethylene artificial chordae were attached to repair flail or prolapsing mitral valve leaflets. Guidance for key repair steps was by 2-dimensional/3-dimensional echocardiography and simultaneous intracardiac videoscopy. Multiple surgeons have assessed the use of this biosimulator during artificial chordae implantations. This simulation platform recapitulates normal and pathologic mitral valve function with associated hemodynamic changes. Clinical situations were replicated in the simulator and echocardiography was used for navigation, followed by videoscopic confirmation. This beating heart biosimulator reproduces prolapsing mitral leaflet pathology. It may be the ideal platform for surgeon and cardiologist training on many transcatheter and beating heart procedures. Copyright © 2017 The American Association for Thoracic Surgery. All rights reserved.

  12. suPAR level is associated with myocardial impairment assessed with advanced echocardiography in patients with type 1 diabetes with normal ejection fraction and without known heart disease or end-stage renal disease.

    PubMed

    Theilade, Simone; Rossing, Peter; Eugen-Olsen, Jesper; Jensen, Jan S; Jensen, Magnus T

    2016-06-01

    Heart disease is a common fatal diabetes-related complication. Early detection of patients at particular risk of heart disease is of prime importance. Soluble urokinase plasminogen activator receptor (suPAR) is a novel biomarker for development of cardiovascular disease. We investigate if suPAR is associated with early myocardial impairment assessed with advanced echocardiographic methods. In an observational study on 318 patients with type 1 diabetes without known heart disease and with normal left ventricular ejection fraction (LVEF) (biplane LVEF >45%), we performed conventional, tissue Doppler and speckle tracking echocardiography, and measured plasma suPAR levels. Associations between myocardial function and suPAR levels were studied in adjusted models including significant covariates. Patients were 55±12 years (mean±s.d.) and 160 (50%) males. Median (interquartile range) suPAR was 3.4 (1.7) ng/mL and LVEF was 58±5%. suPAR levels were not associated with LVEF (P=0.11). In adjusted models, higher suPAR levels were independently associated with both impaired systolic function assessed with global longitudinal strain (GLS) and tissue velocity s', and with impaired diastolic measures a' and e'/a' (all P=0.034). In multivariable analysis including cardiovascular risk factors and both systolic and diastolic measures (GLS and e'/a'), both remained independently associated with suPAR levels (P=0.012). In patients with type 1 diabetes with normal LVEF and without known heart disease, suPAR is associated with early systolic and diastolic myocardial impairment. Our study implies that both suPAR and advanced echocardiography are useful diagnostic tools for identifying patients with diabetes at risk of future clinical heart disease, suited for intensified medical therapy. © 2016 European Society of Endocrinology.

  13. [The effectiveness of comprehensive rehabilitation of the patients presenting with coronary heart disease with the application of underwater shower massage and electrical stimulation].

    PubMed

    Rykov, S V; Lebedeva, O D; L'vova, N V; Tupitsina, Iu Iu

    2014-01-01

    The underwater shower massage and electrical stimulation were applied to treat 120 patients presenting with coronary heart disease. The estimation of the effectiveness of this treatment with the use of functional diagnostic methods revealed its psychocorrective effect manifested in the form of reduced frequency and duration of painful and painless angina seizures, restricted sympathetic influences on the heart as well as normalized sympathovagal balance, lipid status, antioxidative system, central and peripheral hemodynamics, improved systolic and diastolic function of the myocardium, enhanced tolerability of mental, emotional, and physical workload. The study allowed the predictors of the effectiveness of therapeutic and health-promoting measures to be identified.

  14. Effects of cardiac energy efficiency in diastolic heart failure: assessment with positron emission tomography with 11C-acetate.

    PubMed

    Hasegawa, Shinji; Yamamoto, Kazuhiro; Sakata, Yasushi; Takeda, Yasuharu; Kajimoto, Katsufumi; Kanai, Yasukazu; Hori, Masatsugu; Hatazawa, Jun

    2008-06-01

    Diastolic heart failure (DHF) has become a high social burden, and its major underlying cardiovascular disease is hypertensive heart disease. However, the pathogenesis of DHF remains to be clarified. This study aimed to assess the effects of cardiac energy efficiency in DHF patients. (11)C-Acetate positron emission tomography and echocardiography were conducted in 11 DHF Japanese patients and 10 normal volunteers. The myocardial clearance rate of radiolabeled (11)C-acetate was measured to calculate the work metabolic index (WMI), an index of cardiac efficiency. The ratio of peak mitral E wave velocity to peak early diastolic septal myocardial velocity (E/e') was calculated to assess left ventricular (LV) filling pressure. The LV mass index was greater and the mean age was higher in the DHF patients than in the normal volunteers. There was no difference in WMI between the two groups. However, WMI varied widely among the DHF patients and was inversely correlated with E/e' (r=-0.699, p=0.017). In contrast, there was no correlation in the normal volunteers. In conclusion, the inefficiency of energy utilization is not a primary cause of diastolic dysfunction or DHF, and cardiac efficiency may not affect diastolic function in normal hearts. However, the energy-wasting state may induce the elevation of LV filling pressure in DHF patients, which was considered to principally result from the progressive diastolic dysfunction.

  15. Global Intracoronary Infusion of Allogeneic Cardiosphere-Derived Cells Improves Ventricular Function and Stimulates Endogenous Myocyte Regeneration throughout the Heart in Swine with Hibernating Myocardium

    PubMed Central

    Suzuki, Gen; Weil, Brian R.; Leiker, Merced M.; Ribbeck, Amanda E.; Young, Rebeccah F.; Cimato, Thomas R.; Canty, John M.

    2014-01-01

    Background Cardiosphere-derived cells (CDCs) improve ventricular function and reduce fibrotic volume when administered via an infarct-related artery using the “stop-flow” technique. Unfortunately, myocyte loss and dysfunction occur globally in many patients with ischemic and non-ischemic cardiomyopathy, necessitating an approach to distribute CDCs throughout the entire heart. We therefore determined whether global intracoronary infusion of CDCs under continuous flow improves contractile function and stimulates new myocyte formation. Methods and Results Swine with hibernating myocardium from a chronic LAD occlusion were studied 3-months after instrumentation (n = 25). CDCs isolated from myocardial biopsies were infused into each major coronary artery (∼33×106 icCDCs). Global icCDC infusion was safe and while ∼3% of injected CDCs were retained, they did not affect ventricular function or myocyte proliferation in normal animals. In contrast, four-weeks after icCDCs were administered to animals with hibernating myocardium, %LADWT increased from 23±6 to 51±5% (p<0.01). In diseased hearts, myocyte proliferation (phospho-histone-H3) increased in hibernating and remote regions with a concomitant increase in myocyte nuclear density. These effects were accompanied by reductions in myocyte diameter consistent with new myocyte formation. Only rare myocytes arose from sex-mismatched donor CDCs. Conclusions Global icCDC infusion under continuous flow is feasible and improves contractile function, regresses myocyte cellular hypertrophy and increases myocyte proliferation in diseased but not normal hearts. New myocytes arising via differentiation of injected cells are rare, implicating stimulation of endogenous myocyte regeneration as the primary mechanism of repair. PMID:25402428

  16. Autophagy-Inflammasome Interplay in Heart Failure: A Systematic Review on Basics, Pathways, and Therapeutic Perspectives.

    PubMed

    Chiu, Bonnie; Jantuan, Eugeniu; Shen, Fan; Chiu, Brian; Sergi, Consolato

    2017-05-01

    Aging of the population contributes to the increasing prevalence of heart failure. Autophagy is an evolutionarily conserved process aiming to degrade both long-lived proteins and damaged or excessive cyto-organelles via the lysosomal-mediated pathway. Although autophagy is involved in the normal homeostasis of cardiovascular cells, upregulation of autophagy and its abnormal modulation by inflammation may lead to cardiovascular functional decline and heart failure. Despite major improvements in the prevention, diagnosis, and treatment of cardiovascular diseases, heart failure remains one of the major diagnostic and therapeutic challenges. Here, we review the cardiovascular autophagy and its interplay with inflammation which may lead to heart failure exploring some potential treatment options. © 2017 by the Association of Clinical Scientists, Inc.

  17. A novel ventricular restraint device (ASD) repetitively deliver Salvia miltiorrhiza to epicardium have good curative effects in heart failure management.

    PubMed

    Naveed, Muhammad; Wenhua, Li; Gang, Wang; Mohammad, Imran Shair; Abbas, Muhammad; Liao, Xiaoqian; Yang, Mengqi; Zhang, Li; Liu, Xiaolin; Qi, Xiaoming; Chen, Yineng; Jiadi, Lv; Ye, Linlan; Zhijie, Wang; Ding, Chen Ding; Feng, Yu; Xiaohui, Zhou

    2017-11-01

    A novel ventricular restraint is the non-transplant surgical option for the management of an end-stage dilated heart failure (HF). To expand the therapeutic techniques we design a novel ventricular restraint device (ASD) which has the ability to deliver a therapeutic drug directly to the heart. We deliver a Traditional Chinese Medicine (TCM) Salvia miltiorrhiza (Danshen Zhusheye) through active hydraulic ventricular support drug delivery system (ASD) and we hypothesize that it will show better results in HF management than the restraint device and drug alone. SD rats were selected and divided into five groups (n=6), Normal, HF, HF+SM (IV), HF+ASD, HF+ASD+SM groups respectively. Post myocardial infarction (MI), electrocardiography (ECG) showed abnormal heart function in all groups and HF+ASD+SM group showed a significant therapeutic improvement with respect to other treatment HF, HF+ASD, and HF+SM (IV) groups on day 30. The mechanical functions of the heart such as heart rate, LVEDP, and LVSP were brought to normal when treated with ASD+SM and show significant (P value<0.01) compared to other groups. BNP significantly declines in HF+ASD+SM group animals compared with other treatment groups. Masson's Trichrome staining was used to study histopathology of cardiac myocytes and quantification of fibrosis was assessed. The large blue fibrotic area was observed in HF, HF+ASD, and HF+SM (IV) groups while HF+ASD+SM showed negligible fibrotic myocyte at the end of study period (30days). This study proves that novel ASD device augments the therapeutic effect of the drug and delivers Salvia miltiorrhiza to the cardiomyocytes significantly as well as provides additional support to the dilated ventricle by the heart failure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. An endogenously produced fragment of cardiac myosin-binding protein C is pathogenic and can lead to heart failure.

    PubMed

    Razzaque, Md Abdur; Gupta, Manish; Osinska, Hanna; Gulick, James; Blaxall, Burns C; Robbins, Jeffrey

    2013-08-16

    A stable 40-kDa fragment is produced from cardiac myosin-binding protein C when the heart is stressed using a stimulus, such as ischemia-reperfusion injury. Elevated levels of the fragment can be detected in the diseased mouse and human heart, but its ability to interfere with normal cardiac function in the intact animal is unexplored. To understand the potential pathogenicity of the 40-kDa fragment in vivo and to investigate the molecular pathways that could be targeted for potential therapeutic intervention. We generated cardiac myocyte-specific transgenic mice using a Tet-Off inducible system to permit controlled expression of the 40-kDa fragment in cardiomyocytes. When expression of the 40-kDa protein is induced by crossing the responder animals with tetracycline transactivator mice under conditions in which substantial quantities approximating those observed in diseased hearts are reached, the double-transgenic mice subsequently experience development of sarcomere dysgenesis and altered cardiac geometry, and the heart fails between 12 and 17 weeks of age. The induced double-transgenic mice had development of cardiac hypertrophy with myofibrillar disarray and fibrosis, in addition to activation of pathogenic MEK-ERK pathways. Inhibition of MEK-ERK signaling was achieved by injection of the mitogen-activated protein kinase (MAPK)/ERK inhibitor U0126. The drug effectively improved cardiac function, normalized heart size, and increased probability of survival. These results suggest that the 40-kDa cardiac myosin-binding protein C fragment, which is produced at elevated levels during human cardiac disease, is a pathogenic fragment that is sufficient to cause hypertrophic cardiomyopathy and heart failure.

  19. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice

    NASA Astrophysics Data System (ADS)

    Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François

    2001-02-01

    Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.

  20. Relations of Metabolically Healthy and Unhealthy Obesity to Digital Vascular Function in Three Community-Based Cohorts: A Meta-Analysis.

    PubMed

    Brant, Luisa C C; Wang, Na; Ojeda, Francisco M; LaValley, Michael; Barreto, Sandhi M; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S; Palmisano, Joseph N; Münzel, Thomas; Blankenberg, Stefan; Wild, Philipp S; Zeller, Tanja; Ribeiro, Antonio L P; Schnabel, Renate B; Hamburg, Naomi M

    2017-03-08

    Microvascular dysfunction is a marker of early vascular disease that predicts cardiovascular events. Whether metabolically healthy obese individuals have impaired microvascular function remains unclear. The aim of this study was to evaluate the relation of obesity phenotypes stratified by metabolic status to microvascular function. We meta-analyzed aggregate data from 3 large cohorts (Brazilian Longitudinal Study of Adult Health, the Framingham Heart Study, and the Gutenberg Heart Study; n=16 830 participants, age range 19-90, 51.3% men). Regression slopes between cardiovascular risk factors and microvascular function, measured by peripheral arterial tonometry (PAT), were calculated. Individuals were classified as normal-weight, overweight, or obese by body mass index (BMI) and stratified by healthy or unhealthy metabolic status based on metabolic syndrome using the ATP-III criteria. Male sex, BMI, and metabolic risk factors were associated with higher baseline pulse amplitude and lower PAT ratio. There was stepwise impairment of vascular measures from normal weight to obesity in both metabolic status strata. Metabolically healthy obese individuals had more impaired vascular function than metabolically healthy normal-weight individuals (baseline pulse amplitude 6.12±0.02 versus 5.61±0.01; PAT ratio 0.58±0.01 versus 0.76±0.01, all P <0.0001). Metabolically unhealthy obese individuals had more impaired vascular function than metabolically healthy obese individuals (baseline pulse amplitude 6.28±0.01 versus 6.12±0.02; PAT ratio 0.49±0.01 versus 0.58±0.01, all P <0.0001). Metabolically healthy obese individuals have impaired microvascular function, though the degree of impairment is less marked than in metabolically unhealthy obese individuals. Our findings suggest that obesity is detrimental to vascular health irrespective of metabolic status. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. The human heart: application of the golden ratio and angle.

    PubMed

    Henein, Michael Y; Zhao, Ying; Nicoll, Rachel; Sun, Lin; Khir, Ashraf W; Franklin, Karl; Lindqvist, Per

    2011-08-04

    The golden ratio, or golden mean, of 1.618 is a proportion known since antiquity to be the most aesthetically pleasing and has been used repeatedly in art and architecture. Both the golden ratio and the allied golden angle of 137.5° have been found within the proportions and angles of the human body and plants. In the human heart we found many applications of the golden ratio and angle, in addition to those previously described. In healthy hearts, vertical and transverse dimensions accord with the golden ratio, irrespective of different absolute dimensions due to ethnicity. In mild heart failure, the ratio of 1.618 was maintained but in end-stage heart failure the ratio significantly reduced. Similarly, in healthy ventricles mitral annulus dimensions accorded with the golden ratio, while in dilated cardiomyopathy and mitral regurgitation patients the ratio had significantly reduced. In healthy patients, both the angles between the mid-luminal axes of the pulmonary trunk and the ascending aorta continuation and between the outflow tract axis and continuation of the inflow tract axis of the right ventricle approximate to the golden angle, although in severe pulmonary hypertension, the angle is significantly increased. Hence the overall cardiac and ventricular dimensions in a normal heart are consistent with the golden ratio and angle, representing optimum pump structure and function efficiency, whereas there is significant deviation in the disease state. These findings could have anatomical, functional and prognostic value as markers of early deviation from normality. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing.

    PubMed

    Kuo, Anderson H; Li, Cun; Li, Jinqi; Huber, Hillary F; Nathanielsz, Peter W; Clarke, Geoffrey D

    2017-02-15

    Rodent models of intrauterine growth restriction (IUGR) successfully identify mechanisms that can lead to short-term and long-term detrimental cardiomyopathies but differences between rodent and human cardiac physiology and placental-fetal development indicate a need for models in precocial species for translation to human development. We developed a baboon model for IUGR studies using a moderate 30% global calorie restriction of pregnant mothers and used cardiac magnetic resonance imaging to evaluate offspring heart function in early adulthood. Impaired diastolic and systolic cardiac function was observed in IUGR offspring with differences between male and female subjects, compared to their respective controls. Aspects of cardiac impairment found in the IUGR offspring were similar to those found in normal controls in a geriatric cohort. Understanding early cardiac biomarkers of IUGR using non-invasive imaging in this susceptible population, especially taking into account sexual dimorphisms, will aid recognition of the clinical presentation, development of biomarkers suitable for use in humans and management of treatment strategies. Extensive rodent studies have shown that reduced perinatal nutrition programmes chronic cardiovascular disease. To enable translation to humans, we developed baboon offspring cohorts from mothers fed ad libitum (control) or 70% of the control ad libitum diet in pregnancy and lactation, which were growth restricted at birth. We hypothesized that intrauterine growth restriction (IUGR) offspring hearts would show impaired function and a premature ageing phenotype. We studied IUGR baboons (8 male, 8 female, 5.7 years), control offspring (8 male, 8 female, 5.6 years - human equivalent approximately 25 years), and normal elderly (OLD) baboons (6 male, 6 female, mean 15.9 years). Left ventricular (LV) morphology and systolic and diastolic function were evaluated with cardiac MRI and normalized to body surface area. Two-way ANOVA by group and sex (with P < 0.05) indicated ejection fraction, 3D sphericity indices, cardiac index, normalized systolic volume, normalized LV wall thickness, and average filling rate differed by group. Group and sex differences were found for normalized LV wall thickening and normalized myocardial mass, without interactions. Normalized peak LV filling rate and diastolic sphericity index were not correlated in control but strongly correlated in OLD and IUGR baboons. IUGR programming in baboons produces myocardial remodelling, reduces systolic and diastolic function, and results in the emergence of a premature ageing phenotype in the heart. To our knowledge, this is the first demonstration of the specific characteristics of cardiac programming and early life functional decline with ageing in an IUGR non-human primate model. Further studies across the life span will determine progression of cardiac dysfunction. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  3. Promoting PGC-1α-driven mitochondrial biogenesis is detrimental in pressure-overloaded mouse hearts

    PubMed Central

    Karamanlidis, Georgios; Garcia-Menendez, Lorena; Kolwicz, Stephen C.; Lee, Chi Fung

    2014-01-01

    Mitochondrial dysfunction in animal models of heart failure is associated with downregulation of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α pathway. To test whether PGC-1α is an appropriate therapeutic target for increasing mitochondrial biogenesis and improving function in heart failure, we used a transgenic (TG) mouse model of moderate overexpression of PGC-1α (∼3-fold) in the heart. TG mice had small increases in citrate synthase activity and mitochondria size in the heart without alterations in myocardial energetics or cardiac function at baseline. In vivo dobutamine stress increased fractional shortening in wild-type mice, but this increase was attenuated in TG mice, whereas ex vivo isolated perfused TG hearts demonstrated normal functional and energetic response to high workload challenge. When subjected to pressure overload by transverse aortic constriction (TAC), TG mice displayed a significantly greater acute mortality for both male and female mice; however, long-term survival up to 8 wk was similar between the two groups. TG mice also showed a greater decrease in fractional shortening and a greater increase in left ventricular chamber dimension in response to TAC. Mitochondrial gene expression and citrate synthase activity were mildly increased in TG mice compared with wild-type mice, and this difference was also maintained after TAC. Our data suggest that a moderate level of PGC-1α overexpression in the heart compromises acute survival and does not improve cardiac function during chronic pressure overload in mice. PMID:25172896

  4. Baroreflex-Mediated Heart Rate and Vascular Resistance Responses 24 h after Maximal Exercise

    DTIC Science & Technology

    2003-01-01

    of normal physiological function in bedridden patients and astronauts. The implication for failure of CVP and plasma volume to return to baseline... FUNCTION , BLOOD PRES- SURE, CENTRAL VENOUS PRESSURE, PHENYLEPHRINE, NECK PRESSURE, LOWER BODY NEGATIVE PRESSURE, COUNTERMEASURES Increased incidence of...orthostatic hypotension and intol-erance in humans is associated with vascular hypovole-mia and attenuated cardiovascular reflex functions

  5. Tachycardia

    MedlinePlus

    ... normal while at rest. It's normal for your heart rate to rise during exercise or as a physiological ... the heart or both while at rest. Your heart rate is controlled by electrical signals sent across heart ...

  6. Protective effects of hydroalcoholic extract from rhizomes of Cynodon dactylon (L.) Pers. on compensated right heart failure in rats

    PubMed Central

    Garjani, Alireza; Afrooziyan, Arash; Nazemiyeh, Hossein; Najafi, Moslem; Kharazmkia, Ali; Maleki-Dizaji, Nasrin

    2009-01-01

    Background The rhizomes of Cynodon dactylon are used for the treatment of heart failure in folk medicine. In the present study, we investigated the effects of hydroalcoholic extract of C. dactylon rhizomes on cardiac contractility in normal hearts and on cardiac functions in right-heart failure in rats. Methods Right-heart failure was induced by intraperitoneal injection of monocrotaline (50 mg/kg). Two weeks later, the animals were treated orally with different doses of the extract for fifteen days. At the end of the experiments cardiac functions and markers of myocardial hypertrophy were measured. Results The treated rats showed very less signs of fatigue, peripheral cyanosis and dyspnea. The survival rate was high in the extract treated groups (90%). Administration of C. dactylon in monocrotaline-injected rats led to profound improvement in cardiac functions as demonstrated by decreased right ventricular end diastolic pressure (RVEDP) and elevated mean arterial pressure. RVdP/dtmax, and RVdP/dt/P as indices of myocardial contractility were also markedly (p < 0.001; using one way ANOVA) increased by the extract. The extract reduced heart and lung congestion by decreasing tissue wet/dry and wet/body weight ratios (p < 0.01). In the isolated rat hearts, the extract produced a remarkable (P < 0.001) positive inotropic effect concomitant with a parallel decrease in LVEDP. Conclusion The results of this study indicated that C. dactylon exerted a strong protective effect on right heart failure, in part by positive inotropic action and improving cardiac functions. PMID:19653918

  7. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation.

    PubMed

    Stennard, Fiona A; Costa, Mauro W; Lai, Donna; Biben, Christine; Furtado, Milena B; Solloway, Mark J; McCulley, David J; Leimena, Christiana; Preis, Jost I; Dunwoodie, Sally L; Elliott, David E; Prall, Owen W J; Black, Brian L; Fatkin, Diane; Harvey, Richard P

    2005-05-01

    The genetic hierarchies guiding lineage specification and morphogenesis of the mammalian embryonic heart are poorly understood. We now show by gene targeting that murine T-box transcription factor Tbx20 plays a central role in these pathways, and has important activities in both cardiac development and adult function. Loss of Tbx20 results in death of embryos at mid-gestation with grossly abnormal heart morphogenesis. Underlying these disturbances was a severely compromised cardiac transcriptional program, defects in the molecular pre-pattern, reduced expansion of cardiac progenitors and a block to chamber differentiation. Notably, Tbx20-null embryos showed ectopic activation of Tbx2 across the whole heart myogenic field. Tbx2 encodes a transcriptional repressor normally expressed in non-chamber myocardium, and in the atrioventricular canal it has been proposed to inhibit chamber-specific gene expression through competition with positive factor Tbx5. Our data demonstrate a repressive activity for Tbx20 and place it upstream of Tbx2 in the cardiac genetic program. Thus, hierarchical, repressive interactions between Tbx20 and other T-box genes and factors underlie the primary lineage split into chamber and non-chamber myocardium in the forming heart, an early event upon which all subsequent morphogenesis depends. Additional roles for Tbx20 in adult heart integrity and contractile function were revealed by in-vivo cardiac functional analysis of Tbx20 heterozygous mutant mice. These data suggest that mutations in human cardiac transcription factor genes, possibly including TBX20, underlie both congenital heart disease and adult cardiomyopathies.

  8. Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine

    PubMed Central

    Faller, Kiterie M E; Atzler, Dorothee; McAndrew, Debra J; Zervou, Sevasti; Whittington, Hannah J; Simon, Jillian N; Aksentijevic, Dunja; ten Hove, Michiel; Choe, Chi-un; Isbrandt, Dirk; Casadei, Barbara; Schneider, Jurgen E; Neubauer, Stefan; Lygate, Craig A

    2018-01-01

    Abstract Aims Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases. PMID:29236952

  9. p38α Mitogen-Activated Protein Kinase Plays a Critical Role in Cardiomyocyte Survival but Not in Cardiac Hypertrophic Growth in Response to Pressure Overload

    PubMed Central

    Nishida, Kazuhiko; Yamaguchi, Osamu; Hirotani, Shinichi; Hikoso, Shungo; Higuchi, Yoshiharu; Watanabe, Tetsuya; Takeda, Toshihiro; Osuka, Soh; Morita, Takashi; Kondoh, Gen; Uno, Yoshihiro; Kashiwase, Kazunori; Taniike, Masayuki; Nakai, Atsuko; Matsumura, Yasushi; Miyazaki, Jun-ichi; Sudo, Tatsuhiko; Hongo, Kenichi; Kusakari, Yoichiro; Kurihara, Satoshi; Chien, Kenneth R.; Takeda, Junji; Hori, Masatsugu; Otsu, Kinya

    2004-01-01

    The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38α is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38α in hearts. First, we generated mice with floxed p38α alleles and crossbred them with mice expressing the Cre recombinase under the control of the α-myosin heavy-chain promoter to obtain cardiac-specific p38α knockout mice. These cardiac-specific p38α knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38α plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation. PMID:15572667

  10. A protocol to study ex vivo mouse working heart at human-like heart rate.

    PubMed

    Feng, Han-Zhong; Jin, Jian-Ping

    2018-01-01

    Genetically modified mice are widely used as experimental models to study human heart function and diseases. However, the fast rate of normal mouse heart at 400-600bpm limits its capacity of assessing kinetic parameters that are important for the physiology and pathophysiology of human heart that beats at a much slower rate (75-180bpm). To extend the value of mouse models, we established a protocol to study ex vivo mouse working hearts at a human-like heart rate. In the presence of 300μM lidocaine to lower pacemaker and conductive activities and prevent arrhythmia, a stable rate of 120-130bpm at 37°C is achieved for ex vivo mouse working hearts. The negative effects of decreased heart rate on force-frequency dependence and lidocaine as a myocardial depressant on intracellular calcium can be compensated by using a higher but still physiological level of calcium (2.75mM) in the perfusion media. Multiple parameters were studied to compare the function at the human-like heart rate with that of ex vivo mouse working hearts at the standard rate of 480bpm. The results showed that the conditions for slower heart rate in the presence of 300μM lidocaine did not have depressing effect on left ventricular pressure development, systolic and diastolic velocities and stroke volume with maintained positive inotropic and lusitropic responses to β-adrenergic stimulation. Compared with that at 480bpm, the human-like heart rate increased ventricular filling and end diastolic volume with enhanced Frank-Starling responses. Coronary perfusion was increased from longer relaxation time and interval between beats whereas cardiac efficiency was significantly improved. Although the intrinsic differences between mouse and human heart remain, this methodology for ex vivo mouse hearts to work at human-like heart rate extends the value of using genetically modified mouse models to study cardiac function and human heart diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Inducible Conditional Vascular-Specific Overexpression of Peroxisome Proliferator-Activated Receptor Beta/Delta Leads to Rapid Cardiac Hypertrophy

    PubMed Central

    Wagner, Kay-Dietrich; Vukolic, Ana; Baudouy, Delphine; Michiels, Jean-François

    2016-01-01

    Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease. PMID:27057154

  12. A Physical Heart Failure Simulation System Utilizing the Total Artificial Heart and Modified Donovan Mock Circulation.

    PubMed

    Crosby, Jessica R; DeCook, Katrina J; Tran, Phat L; Betterton, Edward; Smith, Richard G; Larson, Douglas F; Khalpey, Zain I; Burkhoff, Daniel; Slepian, Marvin J

    2017-07-01

    With the growth and diversity of mechanical circulatory support (MCS) systems entering clinical use, a need exists for a robust mock circulation system capable of reliably emulating and reproducing physiologic as well as pathophysiologic states for use in MCS training and inter-device comparison. We report on the development of such a platform utilizing the SynCardia Total Artificial Heart and a modified Donovan Mock Circulation System, capable of being driven at normal and reduced output. With this platform, clinically relevant heart failure hemodynamics could be reliably reproduced as evidenced by elevated left atrial pressure (+112%), reduced aortic flow (-12.6%), blunted Starling-like behavior, and increased afterload sensitivity when compared with normal function. Similarly, pressure-volume relationships demonstrated enhanced sensitivity to afterload and decreased Starling-like behavior in the heart failure model. Lastly, the platform was configured to allow the easy addition of a left ventricular assist device (HeartMate II at 9600 RPM), which upon insertion resulted in improvement of hemodynamics. The present configuration has the potential to serve as a viable system for training and research, aimed at fostering safe and effective MCS device use. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Prenatal diagnosis of left isomerism with normal heart: a case report

    PubMed Central

    De Paola, Nico; Ermito, Santina; Nahom, Antonella; Dinatale, Angela; Pappalardo, Elisa Maria; Carrara, Sabina; Cavaliere, Alessandro; Brizzi, Cristiana

    2009-01-01

    Objective: Left isomerism, also called polysplenia, is a laterality disturbance associated with with paired leftsidedness viscera and multiple small spleens. Left isomerism, heart congenital abnormalities and gastrointestinal malformation are strongly associated. Methods: We present a case of prenatal diagnosis of left isomerism in a fetus with a structurally normal heart. Conclusion: Left isomerism syndrone may coesist with a structurally normal heart. If prenatal left isomerism is suspected, even in presence of a normal heart, is mandatory to esclude sign of gastrointestinal abnormalities, as late poly hy dramnios, and cardiac rhytm disturbance during the pregnancy and neonatal age. PMID:22439041

  14. Folic acid prevents cardiac dysfunction and reduces myocardial fibrosis in a mouse model of high-fat diet-induced obesity.

    PubMed

    Li, Wei; Tang, Renqiao; Ouyang, Shengrong; Ma, Feifei; Liu, Zhuo; Wu, Jianxin

    2017-01-01

    Folic acid (FA) is an antioxidant that can reduce reactive oxygen species generation and can blunt cardiac dysfunction during ischemia. We hypothesized that FA supplementation prevents cardiac fibrosis and cardiac dysfunction induced by obesity. Six-week-old C57BL6/J mice were fed a high-fat diet (HFD), normal diet (ND), or an HFD supplemented with folic acid (FAD) for 14 weeks. Cardiac function was measured using a transthoracic echocardiographic exam. Phenotypic analysis included measurements of body and heart weight, blood glucose and tissue homocysteine (Hcy) content, and heart oxidative stress status. HFD consumption elevated fasting blood glucose levels and caused obesity and heart enlargement. FA supplementation in HFD-fed mice resulted in reduced fasting blood glucose, heart weight, and heart tissue Hcy content. We also observed a significant cardiac systolic dysfunction when mice were subjected to HFD feeding as indicated by a reduction in the left ventricular ejection fraction and fractional shortening. However, FAD treatment improved cardiac function. FA supplementation protected against cardiac fibrosis induced by HFD. In addition, HFD increased malondialdehyde concentration of the heart tissue and reduced the levels of antioxidant enzyme, glutathione, and catalase. HFD consumption induced myocardial oxidant stress with amelioration by FA treatment. FA supplementation significantly lowers blood glucose levels and heart tissue Hcy content and reverses cardiac dysfunction induced by HFD in mice. These functional improvements of the heart may be mediated by the alleviation of oxidative stress and myocardial fibrosis.

  15. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengpeng; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leadsmore » to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.« less

  16. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans.

    PubMed

    Lai, Chang Quan; Lim, Guat Ling; Jamil, Muhammad; Mattar, Citra Nurfarah Zaini; Biswas, Arijit; Yap, Choon Hwai

    2016-10-01

    The mechanics of intracardiac blood flow and the epigenetic influence it exerts over the heart function have been the subjects of intense research lately. Fetal intracardiac flows are especially useful for gaining insights into the development of congenital heart diseases, but have not received due attention thus far, most likely because of technical difficulties in collecting sufficient intracardiac flow data in a safe manner. Here, we circumvent such obstacles by employing 4D STIC ultrasound scans to quantify the fetal heart motion in three normal 20-week fetuses, subsequently performing 3D computational fluid dynamics simulations on the left ventricles based on these patient-specific heart movements. Analysis of the simulation results shows that there are significant differences between fetal and adult ventricular blood flows which arise because of dissimilar heart morphology, E/A ratio, diastolic-systolic duration ratio, and heart rate. The formations of ventricular vortex rings were observed for both E- and A-wave in the flow simulations. These vortices had sufficient momentum to last until the end of diastole and were responsible for generating significant wall shear stresses on the myocardial endothelium, as well as helicity in systolic outflow. Based on findings from previous studies, we hypothesized that these vortex-induced flow properties play an important role in sustaining the efficiency of diastolic filling, systolic pumping, and cardiovascular flow in normal fetal hearts.

  17. Cardiac structure and function across the glycemic spectrum in elderly men and women free of prevalent heart disease: the Atherosclerosis Risk In the Community study.

    PubMed

    Skali, Hicham; Shah, Amil; Gupta, Deepak K; Cheng, Susan; Claggett, Brian; Liu, Jiankang; Bello, Natalie; Aguilar, David; Vardeny, Orly; Matsushita, Kunihiro; Selvin, Elizabeth; Solomon, Scott

    2015-05-01

    Individuals with diabetes mellitus and pre-diabetes mellitus are at particularly high risk of incident heart failure or death, even after accounting for known confounders. Nevertheless, the extent of impairments in cardiac structure and function in elderly individuals with diabetes mellitus and pre-diabetes mellitus is not well known. We aimed to assess the relationship between echocardiographic measures of cardiac structure and function and dysglycemia. We assessed measures of cardiac structure and function in 4419 participants without prevalent coronary heart disease or heart failure who attended the Atherosclerosis Risk In the Community (ARIC) visit 5 examination (2011-2013) and underwent transthoracic echocardiography (age, 75±6 years; 61% women, 23% black). Subjects were grouped across the dysglycemia spectrum as normal (39%), pre-diabetes mellitus (31%), or diabetes mellitus (30%) based on medical history, antidiabetic medication use, and glycated hemoglobin levels. Glycemic status was related to measures of cardiac structure and function. Worsening dysglycemia was associated with increased left ventricular mass, worse diastolic function, and subtle reduction in left ventricular systolic function (P≤0.01 for all). For every 1% higher glycated hemoglobin, left ventricular mass was higher by 3.0 g (95% confidence interval, 1.5-4.6 g), E/E' by 0.5 (95% confidence interval, 0.4-0.7), and global longitudinal strain by 0.3% (95% confidence interval, 0.2-0.4) in multivariable analyses. In a large contemporary biracial cohort of elderly subjects without prevalent cardiovascular disease or heart failure, dysglycemia was associated with subtle and subclinical alterations of cardiac structure, and left ventricular systolic and diastolic function. It remains unclear whether these are sufficient to explain the heightened risk of heart failure in individuals with diabetes mellitus. © 2015 American Heart Association, Inc.

  18. The non-specificity of the left/right ventricular amplitude ratio (LV/RV) for mitral insufficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, D.F.; Reinsel, M.S.; Martin, N.L.

    1984-01-01

    The purpose of this study was to determine the specificity of the LV/RV for mitral insufficiency. One hundred and sixty patients underwent MUGA studies as part of their diagnostic evaluation. Phase analysis was performed. In the amplitude image, the LV/RV was measured. Patients were divided into 11 clinical groups based on chart review after adequate follow-up. The groups were compared by Duncan's Multiple Comparsion Test. Patients with mitral insufficiency (N = 12, mean LV/RV = 2.36), those with idiopathic myocardiopathy (8, 2.29) and those with normal hearts having lung disease on chest x-ray (22, 1.78) formed a group which atmore » the p < .05 level were not different from one another. Patients with idiopathic myocardiography, normal hearts with lung disease on chest x-ray, normal hearts with lung disease (23, 1.71) formed a second group which partially overlapped with both the first and third groups. The third group consisted of normal hearts with lung disease, normal hearts not taking adriamycin (18, 1.53), normal hearts taking adriamycin (22, 1.50), congestive heart failure (19, 1.50), arteriosclerotic heart disease, normal hearts (15, 1.29), chronic obstructive pulmonary disease and acute myocardial infarction. The LV/RV is not specific for mitral insufficiency. Idiopathic myocardiography, and normal hearts with lung disease on chest x-ray (metastases, cancer of the lung, infiltrates, fibrosis, and/or COPD) cannot be differentiated on a statistical basis. The mitral insufficiency group had the greatest values of LV/RV. It appears that decreased RV amplitude seen with diseases causing strain on the right ventricle will result in elevated LV/RV ratios.« less

  19. Modelling the heart with the atrioventricular plane as a piston unit.

    PubMed

    Maksuti, Elira; Bjällmark, Anna; Broomé, Michael

    2015-01-01

    Medical imaging and clinical studies have proven that the heart pumps by means of minor outer volume changes and back-and-forth longitudinal movements in the atrioventricular (AV) region. The magnitude of AV-plane displacement has also shown to be a reliable index for diagnosis of heart failure. Despite this, AV-plane displacement is usually omitted from cardiovascular modelling. We present a lumped-parameter cardiac model in which the heart is described as a displacement pump with the AV plane functioning as a piston unit (AV piston). This unit is constructed of different upper and lower areas analogous with the difference in the atrial and ventricular cross-sections. The model output reproduces normal physiology, with a left ventricular pressure in the range of 8-130 mmHg, an atrial pressure of approximatly 9 mmHg, and an arterial pressure change between 75 mmHg and 130 mmHg. In addition, the model reproduces the direction of the main systolic and diastolic movements of the AV piston with realistic velocity magnitude (∼10 cm/s). Moreover, changes in the simulated systolic ventricular-contraction force influence diastolic filling, emphasizing the coupling between cardiac systolic and diastolic functions. The agreement between the simulation and normal physiology highlights the importance of myocardial longitudinal movements and of atrioventricular interactions in cardiac pumping. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo

    PubMed Central

    Misra, Chaitali; Sachan, Nita; McNally, Caryn Rothrock; Koenig, Sara N.; Nichols, Haley A.; Guggilam, Anuradha; Lucchesi, Pamela A.; Pu, William T.; Srivastava, Deepak; Garg, Vidu

    2012-01-01

    Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans. PMID:22589735

  1. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth

    PubMed Central

    Kimball, Todd; Rasmussen, Tara L.; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R.; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O.; Vondriska, Thomas M.

    2016-01-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. PMID:27663768

  2. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth.

    PubMed

    Franklin, Sarah; Kimball, Todd; Rasmussen, Tara L; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O; Vondriska, Thomas M

    2016-11-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. Copyright © 2016 the American Physiological Society.

  3. [Sinus rhythm: mechanisms and function].

    PubMed

    Lerebours, Guy

    2007-01-01

    The normal cardiac rhythm originates in a specialized region of the heart, the sinus node that is part of the nodal tissue. The rhythmic, impulse initiation of sinus node pacemaker cells results from a spontaneous diastolic depolarization that is initiated immediately after repolarization of the preceding actions potential. This slow diastolic depolarisation is typical of automatic cells and essential to their function. Several currents are involved in this diastolic depolarisation: a hyperpolarization activated inward current, termed "pacemaker" I(f) current, two Ca2+ currents (a L type and a T type), a delayed K+ current and a Na/Ca exchange current. The frequency of the automatic discharge is the main determinant of heart rate. However the sinus node activity is regulated by adrenergic and cholinergic neurotransmitters. Acetylcholine provokes the hyperpolarization of pacemaker cells and decreases the speed of the spontaneous diastolic depolarisation, thus slowing the sinus rate. Catecholamines lead to sinus tachycardia by increasing the diastolic depolarisation speed. In normal conditions, the observed resting heart rate is lower than the intrinsic frequency of the sinus node due to a "predominance" of the vagal tone. Neural regulation of the heart rate aims at meeting the metabolic needs of the tissues through a varying blood flow. Differences between diurnal and nocturnal mean heart rates are accounted for by neural influences. During the night, the increased vagal tone results in decreased heart rate. The exercise-induced tachycardia results from the sympathetic stimulation. It allows more blood to reach skeletal muscles, and as a consequence an increased supply of oxygen and nutrients. Compared to the variety of clinical arrhythmias, sinus rhythm is the basis for optimal exercise capacity and quality of life.

  4. Loss of β-adrenergic-stimulated phosphorylation of CaV1.2 channels on Ser1700 leads to heart failure.

    PubMed

    Yang, Linghai; Dai, Dao-Fu; Yuan, Can; Westenbroek, Ruth E; Yu, Haijie; West, Nastassya; de la Iglesia, Horacio O; Catterall, William A

    2016-12-06

    L-type Ca 2+ currents conducted by voltage-gated calcium channel 1.2 (Ca V 1.2) initiate excitation-contraction coupling in the heart, and altered expression of Ca V 1.2 causes heart failure in mice. Here we show unexpectedly that reducing β-adrenergic regulation of Ca V 1.2 channels by mutation of a single PKA site, Ser1700, in the proximal C-terminal domain causes reduced contractile function, cardiac hypertrophy, and heart failure without changes in expression, localization, or function of the Ca V 1.2 protein in the mutant mice (SA mice). These deficits were aggravated with aging. Dual mutation of Ser1700 and a nearby casein-kinase II site (Thr1704) caused accelerated hypertrophy, heart failure, and death in mice with these mutations (STAA mice). Cardiac hypertrophy was increased by voluntary exercise and by persistent β-adrenergic stimulation. PKA expression was increased, and PKA sites Ser2808 in ryanodine receptor type-2, Ser16 in phospholamban, and Ser23/24 in troponin-I were hyperphosphorylated in SA mice, whereas phosphorylation of substrates for calcium/calmodulin-dependent protein kinase II was unchanged. The Ca 2+ pool in the sarcoplasmic reticulum was increased, the activity of calcineurin was elevated, and calcineurin inhibitors improved contractility and ameliorated cardiac hypertrophy. Cardio-specific expression of the SA mutation also caused reduced contractility and hypertrophy. These results suggest engagement of compensatory mechanisms, which initially may enhance the contractility of individual myocytes but eventually contribute to an increased sensitivity to cardiovascular stress and to heart failure in vivo. Our results demonstrate that normal regulation of Ca V 1.2 channels by phosphorylation of Ser1700 in cardiomyocytes is required for cardiovascular homeostasis and normal physiological regulation in vivo.

  5. Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts.

    PubMed

    Pritchard, Tracy J; Kawase, Yoshiaki; Haghighi, Kobra; Anjak, Ahmad; Cai, Wenfeng; Jiang, Min; Nicolaou, Persoulla; Pylar, George; Karakikes, Ioannis; Rapti, Kleopatra; Rubinstein, Jack; Hajjar, Roger J; Kranias, Evangelia G

    2013-01-01

    Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.

  6. Adverse perinatal outcomes in borderline amniotic fluid index.

    PubMed

    Jamal, Ashraf; Kazemi, Maryam; Marsoosi, Vajiheh; Eslamian, Laleh

    2016-11-01

    Normal amniotic fluid predicts normal placental function, fetal growth and fetal well-being. To determine adverse pregnancy outcomes in borderline amniotic fluid index (AFI). Pregnant women (37-40 wks) with diagnosis of borderline AFI between December 2012 and August 2014 were identified. Antepartum, intrapartum and neonatal data were collected and compared with those of pregnant women with normal AFI. An AFI less than 8 and more than 5 cm was defined for borderline AFI. Pregnancy outcomes included Cesarean section for non-reassuring fetal heart rate, meconium stained amniotic fluid, 5-min Apgar score <7, low birth weight, umbilical cord blood pH at term and NICU admission. Gestational age at delivery in pregnancies with borderline AFI was significantly lower than normal AFI. Cesarean section rate for non-reassuring fetal heart rate in women of borderline AFI was significantly higher and there was an increased incidence of birth weight less than 10 th percentile for gestation age in borderline AFI group. Incidence of low Apgar score and low umbilical artery pH in pregnancies with borderline AFI was significantly higher than women with normal AFI. There were no significant difference in the rate of NICU admission and meconium staining in both groups. There are significant differences for adverse pregnancy outcomes , such as Cesarean section due to non-reassuring fetal heart rate, birth weight less than 10 th percentile for gestation age, low 5 min Apgar score and low umbilical artery pH between pregnancies with borderline and normal AFI.

  7. Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal maturation of the heart

    PubMed Central

    Lai, Ling; Leone, Teresa C.; Zechner, Christoph; Schaeffer, Paul J.; Kelly, Sean M.; Flanagan, Daniel P.; Medeiros, Denis M.; Kovacs, Attila; Kelly, Daniel P.

    2008-01-01

    Oxidative tissues such as heart undergo a dramatic perinatal mitochondrial biogenesis to meet the high-energy demands after birth. PPARγ coactivator-1 (PGC-1) α and β have been implicated in the transcriptional control of cellular energy metabolism. Mice with combined deficiency of PGC-1α and PGC-1β (PGC-1αβ−/− mice) were generated to investigate the convergence of their functions in vivo. The phenotype of PGC-1β−/− mice was minimal under nonstressed conditions, including normal heart function, similar to that of PGC-1α−/− mice generated previously. In striking contrast to the singly deficient PGC-1 lines, PGC-1αβ−/− mice died shortly after birth with small hearts, bradycardia, intermittent heart block, and a markedly reduced cardiac output. Cardiac-specific ablation of the PGC-1β gene on a PGC-1α-deficient background phenocopied the generalized PGC-1αβ−/− mice. The hearts of the PGC-1αβ−/− mice exhibited signatures of a maturational defect including reduced growth, a late fetal arrest in mitochondrial biogenesis, and persistence of a fetal pattern of gene expression. Brown adipose tissue (BAT) of PGC-1αβ−/− mice also exhibited a severe abnormality in function and mitochondrial density. We conclude that PGC-1α and PGC-1β share roles that collectively are necessary for the postnatal metabolic and functional maturation of heart and BAT. PMID:18628400

  8. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease.

    PubMed

    Cheung, Carlos Chun Ho; Soon, Choong Yee; Chuang, Chia-Lin; Phillips, Anthony R J; Zhang, Shaoping; Cooper, Garth J S

    2015-09-01

    Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P < 0.0001) at concentrations that only moderately impaired function of control hearts. To our knowledge, this is the first report describing the acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    PubMed

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  10. Dysfunction of an On-X Heart Valve by Pannus.

    PubMed

    Abad, Cipriano; Urso, Stefano; Gomez, Elsa; De la Vega, Maria

    2016-09-01

    A 68-year-old woman with a history of previous double-valve replacement with On-X mechanical heart valves presented with clinical, echocardiographic and cardiac catheterization signs of obstruction of the On-X tricuspid heart valve prosthesis. The patient was successfully reoperated, but at surgery the valve was seen to be invaded by an abnormal overgrowth of pannus that blocked one of the leaflets. A small amount of non-obstructive fresh thrombus was also observed. The valve was successfully replaced with a biological heart valve prosthesis. The patient was discharged home, and is doing well four months after the operation, when echocardiography demonstrated normal function in the tricuspid valve. The present case represents the first ever report of pannus formation and subsequent dysfunction in an On-X heart valve, and also the first case of tricuspid valve malfunction and obstruction using this type of heart valve substitute.

  11. Broken heart syndrome triggered by an obstructive goiter not associated with thyrotoxicosis.

    PubMed

    Hatzakorzian, Roupen; Bui, Helen; Schricker, Thomas; Backman, Steven B

    2013-08-01

    Takotsubo cardiomyopathy (TC) is described as transient ventricular dysfunction following emotional or physical trauma. A few reports have described patients with TC in association with various circumstances of thyrotoxicosis. We report an unusual case of TC in a patient with a large retrosternal goiter and normal thyroid function. We speculate that TC was triggered by compromise of tracheal flow induced by the goiter. A 68-yr-old woman without primary heart disease presented with cardiorespiratory collapse requiring ventilatory and cardiovascular support, including placement of an intra-aortic balloon pump. She was diagnosed with a severe form of TC based on characteristic echocardiography findings and clinical course. Within less than a week, her myocardial function completely normalized. The patient was later found to have a large retrosternal goiter compressing her trachea, though her thyroid function was normal. A total thyroidectomy was eventually performed, and she made a full recovery. Subsequently, the patient was found to have a positive JAK2 mutation for a myeloproliferative disorder. Takotsubo cardiomyopathy may be regarded as the final common pathway of cardiac dysfunction triggered by various stress conditions, in this case, a large retrosternal goiter not associated with thyrotoxicosis and likely exacerbated by severe leukocytosis related to a myeloproliferative disorder.

  12. Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.

    PubMed

    Weerateerangkul, Punate; Palee, Siripong; Chinda, Kroekkiat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2012-09-01

    Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca transient. These effects were similar to those found in the sildenafil citrate-treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca transient in ventricular myocytes.

  13. Vortex ring behavior provides the epigenetic blueprint for the human heart

    PubMed Central

    Arvidsson, Per M.; Kovács, Sándor J.; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-01-01

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R2 = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health. PMID:26915473

  14. Vortex ring behavior provides the epigenetic blueprint for the human heart.

    PubMed

    Arvidsson, Per M; Kovács, Sándor J; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-02-26

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R(2) = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health.

  15. Parkinson's disease proteins: Novel mitochondrial targets for cardioprotection

    PubMed Central

    Mukherjee, Uma A.; Ong, Sang-Bing; Ong, Sang-Ging; Hausenloy, Derek J.

    2015-01-01

    Ischemic heart disease (IHD) is the leading cause of death and disability worldwide. Therefore, novel therapeutic targets for protecting the heart against acute ischemia/reperfusion injury (IRI) are required to attenuate cardiomyocyte death, preserve myocardial function, and prevent the onset of heart failure. In this regard, a specific group of mitochondrial proteins, which have been linked to familial forms of Parkinson's disease (PD), may provide novel therapeutic targets for cardioprotection. In dopaminergic neurons of the substantia nigra, these PD proteins, which include Parkin, PINK1, DJ-1, LRRK2, and α-synuclein, play essential roles in preventing cell death—through maintaining normal mitochondrial function, protecting against oxidative stress, mediating mitophagy, and preventing apoptosis. These rare familial forms of PD may therefore provide important insights into the pathophysiology underlying mitochondrial dysfunction and the development of PD. Interestingly, these PD proteins are also present in the heart, but their role in myocardial health and disease is not clear. In this article, we review the role of these PD proteins in the heart and explore their potential as novel mitochondrial targets for cardioprotection. PMID:26481155

  16. Dependence of Cardiac Systolic Function on Elevated Fatty Acid Availability in Obese, Insulin-Resistant Rats.

    PubMed

    Smith, Wayne; Norton, Gavin R; Woodiwiss, Angela J; Lochner, Amanda; du Toit, Eugene F

    2016-07-01

    Clinical data advocating an adverse effect of obesity on left ventricular (LV) systolic function independent of comorbidities is controversial. We hypothesized that in obesity with prediabetic insulin resistance, circulating fatty acids (FAs) become a valuable fuel source in the maintenance of normal systolic function. Male Wistar rats were fed a high caloric diet for 32 weeks to induce obesity. Myocardial LV systolic function was assessed using echocardiography and isolated heart preparations. Aortic output was reduced in obese rat hearts over a range of filling pressures (for example: 15 cmH2O, obese: 32.6 ± 1.2 ml/min vs control: 46.2 ± 0.9 ml/min, P < .05) when perfused with glucose alone. Similarly, the slope of the LV end-systolic pressure-volume relationship decreased, and there was a right shift in the LV end-systolic stress-strain relationship as determined in Langendorff perfused, isovolumic rat heart preparations in the presence of isoproterenol (10(-8)M) (LV systolic stress-strain relationship and a reduced load-independent intrinsic systolic myocardial function, obese: 791 ± 62 g/cm(2) vs control: 1186 ± 74 g/cm(2), P < .01). The addition of insulin to the perfusion buffer improved aortic output, whereas the addition of FAs completely normalized aortic output. LV function was maintained in obese animals in vivo during an inotropic challenge. Elevated circulating FA levels may be important to maintain myocardial systolic function in the initial stages of obesity and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Metabolic Syndrome Biomarkers Predict Lung Function Impairment

    PubMed Central

    Naveed, Bushra; Weiden, Michael D.; Kwon, Sophia; Gracely, Edward J.; Comfort, Ashley L.; Ferrier, Natalia; Kasturiarachchi, Kusali J.; Cohen, Hillel W.; Aldrich, Thomas K.; Rom, William N.; Kelly, Kerry; Prezant, David J.

    2012-01-01

    Rationale: Cross-sectional studies demonstrate an association between metabolic syndrome and impaired lung function. Objectives: To define if metabolic syndrome biomarkers are risk factors for loss of lung function after irritant exposure. Methods: A nested case-control study of Fire Department of New York personnel with normal pre–September 11th FEV1 and who presented for subspecialty pulmonary evaluation before March 10, 2008. We correlated metabolic syndrome biomarkers obtained within 6 months of World Trade Center dust exposure with subsequent FEV1. FEV1 at subspecialty pulmonary evaluation within 6.5 years defined disease status; cases had FEV1 less than lower limit of normal, whereas control subjects had FEV1 greater than or equal to lower limit of normal. Measurements and Main Results: Clinical data and serum sampled at the first monitoring examination within 6 months of September 11, 2001, assessed body mass index, heart rate, serum glucose, triglycerides and high-density lipoprotein (HDL), leptin, pancreatic polypeptide, and amylin. Cases and control subjects had significant differences in HDL less than 40 mg/dl with triglycerides greater than or equal to 150 mg/dl, heart rate greater than or equal to 66 bpm, and leptin greater than or equal to 10,300 pg/ml. Each increased the odds of abnormal FEV1 at pulmonary evaluation by more than twofold, whereas amylin greater than or equal to 116 pg/ml decreased the odds by 84%, in a multibiomarker model adjusting for age, race, body mass index, and World Trade Center arrival time. This model had a sensitivity of 41%, a specificity of 86%, and a receiver operating characteristic area under the curve of 0.77. Conclusions: Abnormal triglycerides and HDL and elevated heart rate and leptin are independent risk factors of greater susceptibility to lung function impairment after September 11, 2001, whereas elevated amylin is protective. Metabolic biomarkers are predictors of lung disease, and may be useful for assessing risk of impaired lung function in response to particulate inhalation. PMID:22095549

  18. Echocardiographic findings in stable outpatients with properly functioning HeartMate II left ventricular assist devices.

    PubMed

    Topilsky, Yan; Oh, Jae K; Atchison, Fawn W; Shah, Dipesh K; Bichara, Valentina M; Schirger, John A; Kushwaha, Sudhir S; Pereira, Naveen L; Park, Soon J

    2011-02-01

    Continuous-flow left ventricular assist devices (LVADs) have become part of the standard of care for the treatment of advanced heart failure. However, knowledge of normal values for transthoracic echocardiographic examination and measurements in these patients are lacking. All transthoracic echocardiographic examinations in 63 consecutive patients, performed 90 and 180 days after surgery with the implantation of a HeartMate II continuous-flow LVAD between February 2007 and January 2010, were retrospectively analyzed. All patients had to be outpatients at 3 and 6 months after surgery and considered stable on LVAD therapy (New York Heart Association class I or II and no need for inotropes, intravenous furosemide, or hospitalization). End-diastolic and end-systolic diameters and left ventricular mass decreased considerably compared with baseline measurements before LVAD implantation. Mitral inflow deceleration time increased (188 ± 70 vs 132.5 ± 27 msec, P = .009) and left atrial volume (84.1 ± 33 vs 141.7 ± 62 mL, P = .003) and E/e' ratio decreased (20.3 ± 9 vs 26 ± 11, P = .01), all consistent with decreased left ventricular filling pressure. Estimated right ventricular (RV) and right atrial pressure decreased significantly (34.1 ± 10 vs 51.7 ± 14 mm Hg and 9.5 ± 5 vs 14.4 ± 5 mm Hg, respectively, P < .0001 for both). Quantitatively estimated RV function (P = .02), RV fractional area change (27.9 ± 10% vs 37.4 ± 10.9%, P < .0001), and the RV index of myocardial performance (0.32 ± 0.1 vs 0.65 ± 0.2 vs 0.32 ± .01, P < .0001) improved, suggesting improved RV efficiency. LVAD therapy resulted in significant decreases in the severity of mitral regurgitation. Tricuspid regurgitation improved in patients who had concurrent tricuspid surgical correction and was unchanged otherwise. Aortic regurgitation severity increased 3 months after LVAD implantation. There were no significant differences in any of the echocardiographic parameters in the 6-month evaluation compared with the 3-month evaluation. This is the first report of selected typical echocardiographic values in a group of stable patients with normally functioning HeartMate II continuous-flow LVADs. A stable functioning continuous LVAD is associated with evidence of efficient unloading of the left ventricle, improved RV function, significant improvement in mitral regurgitation, improvement in tricuspid regurgitation only in patients undergoing repair, and increased aortic regurgitation. These normal data provide a basis for future echocardiographic studies after LVAD implantation. Copyright © 2011 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  19. Dual developmental role of transcriptional regulator Ets1 in Xenopus cardiac neural crest vs. heart mesoderm

    PubMed Central

    Nie, Shuyi; Bronner, Marianne E.

    2015-01-01

    Aims Ets1 is an important transcription factor that is expressed in both the cardiac neural crest (NC) and heart mesoderm of vertebrate embryos. Moreover, Ets1 deletion in humans results in congenital heart abnormalities. To clarify the functional contributions of Ets1 in cardiac NC vs. heart mesoderm, we performed tissue-targeted loss-of-function analysis to compare the relative roles of Ets1 in these two tissues during heart formation using Xenopus embryos as a model system. Methods and results We confirmed by in situ hybridization analysis that Ets1 is expressed in NC and heart mesoderm during embryogenesis. Using a translation-blocking antisense morpholino to knockdown Ets1 protein selectively in the NC, we observed defects in NC delamination from the neural tube, collective cell migration, as well as segregation of NC streams in the cranial and cardiac regions. Many cardiac NC cells failed to reach their destination in the heart, resulting in defective aortic arch artery formation. A different set of defects was noted when Ets1 knockdown was targeted to heart mesoderm. The formation of the primitive heart tube was dramatically delayed and the endocardial tissue appeared depleted. As a result, the conformation of the heart was severely disrupted. In addition, the outflow tract septum was missing, and trabeculae formation in the ventricle was abolished. Conclusion Our study shows that Ets1 is required in both the cardiac NC and heart mesoderm, albeit for different aspects of heart formation. Our results reinforce the suggestion that proper interaction between these tissues is critical for normal heart development. PMID:25691536

  20. Electrocardiogram

    MedlinePlus

    ... history of heart disease in the family Normal Results Normal test results include: Heart rate: 60 to ... minute Heart rhythm: Consistent and even What Abnormal Results Mean Abnormal ECG results may be a sign ...

  1. Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Komamura, K.; Shannon, R. P.; Pasipoularides, A.; Ihara, T.; Lader, A. S.; Patrick, T. A.; Bishop, S. P.; Vatner, S. F.

    1992-01-01

    We investigated in conscious dogs (a) the effects of heart failure induced by chronic rapid ventricular pacing on the sequence of development of left ventricular (LV) diastolic versus systolic dysfunction and (b) whether the changes were load dependent or secondary to alterations in structure. LV systolic and diastolic dysfunction were evident within 24 h after initiation of pacing and occurred in parallel over 3 wk. LV systolic function was reduced at 3 wk, i.e., peak LV dP/dt fell by -1,327 +/- 105 mmHg/s and ejection fraction by -22 +/- 2%. LV diastolic dysfunction also progressed over 3 wk of pacing, i.e., tau increased by +14.0 +/- 2.8 ms and the myocardial stiffness constant by +6.5 +/- 1.4, whereas LV chamber stiffness did not change. These alterations were associated with increases in LV end-systolic (+28.6 +/- 5.7 g/cm2) and LV end-diastolic stresses (+40.4 +/- 5.3 g/cm2). When stresses and heart rate were matched at the same levels in the control and failure states, the increases in tau and myocardial stiffness were no longer observed, whereas LV systolic function remained depressed. There were no increases in connective tissue content in heart failure. Thus, pacing-induced heart failure in conscious dogs is characterized by major alterations in diastolic function which are reversible with normalization of increased loading condition.

  2. Iodide Protects Heart Tissue from Reperfusion Injury

    PubMed Central

    Iwata, Akiko; Morrison, Michael L.; Roth, Mark B.

    2014-01-01

    Iodine is an elemental nutrient that is essential for mammals. Here we provide evidence for an acute therapeutic role for iodine in ischemia reperfusion injury. Infusion of the reduced form, iodide, but not the oxidized form iodate, reduces heart damage by as much as 75% when delivered intravenously following temporary loss of blood flow but prior to reperfusion of the heart in a mouse model of acute myocardial infarction. Normal thyroid function may be required because loss of thyroid activity abrogates the iodide benefit. Given the high degree of protection and the high degree of safety, iodide should be explored further as a therapy for reperfusion injury. PMID:25379708

  3. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction

    PubMed Central

    Floras, John S.; Ponikowski, Piotr

    2015-01-01

    Cardiovascular autonomic imbalance, a cardinal phenotype of human heart failure, has adverse implications for symptoms during wakefulness and sleep; for cardiac, renal, and immune function; for exercise capacity; and for lifespan and mode of death. The objectives of this Clinical Review are to summarize current knowledge concerning mechanisms for disturbed parasympathetic and sympathetic circulatory control in heart failure with reduced ejection fraction and its clinical and prognostic implications; to demonstrate the patient-specific nature of abnormalities underlying this common phenotype; and to illustrate how such variation provides opportunities to improve or restore normal sympathetic/parasympathetic balance through personalized drug or device therapy. PMID:25975657

  4. Fractal mechanisms in the electrophysiology of the heart

    NASA Technical Reports Server (NTRS)

    Goldberger, A. L.

    1992-01-01

    The mathematical concept of fractals provides insights into complex anatomic branching structures that lack a characteristic (single) length scale, and certain complex physiologic processes, such as heart rate regulation, that lack a single time scale. Heart rate control is perturbed by alterations in neuro-autonomic function in a number of important clinical syndromes, including sudden cardiac death, congestive failure, cocaine intoxication, fetal distress, space sickness and physiologic aging. These conditions are associated with a loss of the normal fractal complexity of interbeat interval dynamics. Such changes, which may not be detectable using conventional statistics, can be quantified using new methods derived from "chaos theory.".

  5. Keeping Hearts Pumping

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A collaboration between NASA, Dr. Michael DeBakey, Dr. George Noon, and MicroMed Technology, Inc., resulted in a life-saving heart pump for patients awaiting heart transplants. The MicroMed DeBakey VAD functions as a "bridge to heart transplant" by pumping blood throughout the body to keep critically ill patients alive until a donor heart is available. Weighing less than 4 ounces and measuring 1 inch by 3 inches, the pump is approximately one-tenth the size of other currently marketed pulsatile VADs. This makes it less invasive and ideal for smaller adults and children. Because of the pump's small size, less than 5 percent of the patients implanted developed device-related infections. It can operate up to 8 hours on batteries, giving patients the mobility to do normal, everyday activities.The MicroMed DeBakey VAD is a registered trademark of MicroMed Technology, Inc.

  6. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2004-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  7. Role of gender in heart failure with normal left ventricular ejection fraction.

    PubMed

    Regitz-Zagrosek, Vera; Brokat, Sebastian; Tschope, Carsten

    2007-01-01

    Heart failure with normal ejection fraction (HF-NEF) is frequently believed to be more common in women than in men. However, the interaction of gender and age has rarely been analyzed in detail, and knowledge of the distinction between pre- and postmenopausal women is lacking. Some of the studies that have described a higher prevalence of HF-NEF in women relied on clinical diagnoses of HF together with normal systolic function and did not measure diastolic function. This applies to the analysis of patients hospitalized for HF and some epidemiological investigations that agree on the greater prevalence of HF-NEF in women. Population-based studies with echocardiographic determination of diastolic function have suggested equal or greater prevalence of diastolic dysfunction in men. Major risk factors for HF-NEF include hypertension, aging, obesity, diabetes, and ischemia. Hypertension is more frequent in women and can contribute to left ventricular and arterial stiffening in a gender-specific way. Aging, obesity, and diabetes affect myocardial and vascular stiffness differently and lead to different forms of myocardial hypertrophy in women and men. In contrast, ischemia may play a greater role in men. Gender differences in ventricular diastolic distensibility, in vascular stiffness and ventricular/vascular coupling, in skeletal muscle adaptation to HF, and in the perception of symptoms may contribute to a greater rate of HF-NEF in women. The underlying molecular mechanisms include gender differences in calcium handling, in the NO system, and in natriuretic peptides. Estrogen affects collagen synthesis and degradation and inhibits the renin-angiotensin system. Effects of estrogen may provide benefit to premenopausal women, and the loss of its protective mechanisms may render the heart of postmenopausal women more vulnerable. Thus, a number of molecular mechanisms can contribute to the gender differences in HF-NEF.

  8. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism.

    PubMed

    Sun, Dan; Yang, Fei

    2017-04-29

    To investigate whether metformin can improve the cardiac function through improving the mitochondrial function in model of heart failure after myocardial infarction. Male C57/BL6 mice aged about 8 weeks were selected and the anterior descending branch was ligatured to establish the heart failure model after myocardial infarction. The cardiac function was evaluated via ultrasound after 3 days to determine the modeling was successful, and the mice were randomly divided into two groups. Saline group (Saline) received the intragastric administration of normal saline for 4 weeks, and metformin group (Met) received the intragastric administration of metformin for 4 weeks. At the same time, Shame group (Sham) was set up. Changes in cardiac function in mice were detected at 4 weeks after operation. Hearts were taken from mice after 4 weeks, and cell apoptosis in myocardial tissue was detected using TUNEL method; fresh mitochondria were taken and changes in oxygen consumption rate (OCR) and respiratory control rate (RCR) of mitochondria in each group were detected using bio-energy metabolism tester, and change in mitochondrial membrane potential (MMP) of myocardial tissue was detected via JC-1 staining; the expressions and changes in Bcl-2, Bax, Sirt3, PGC-1α and acetylated PGC-1α in myocardial tissue were detected by Western blot. RT-PCR was used to detect mRNA levels in Sirt3 in myocardial tissues. Metformin improved the systolic function of heart failure model rats after myocardial infarction and reduced the apoptosis of myocardial cells after myocardial infarction. Myocardial mitochondrial respiratory function and membrane potential were decreased after myocardial infarction, and metformin treatment significantly improved the mitochondrial respiratory function and mitochondrial membrane potential; Metformin up-regulated the expression of Sirt3 and the activity of PGC-1α in myocardial tissue of heart failure after myocardial infarction. Metformin decreases the acetylation level of PGC-1α through up-regulating Sirt3, mitigates the damage to mitochondrial membrane potential of model of heart failure after myocardial infarction and improves the respiratory function of mitochondria, thus improving the cardiac function of mice. Copyright © 2017. Published by Elsevier Inc.

  9. Normothermic versus hypothermic cardiopulmonary bypass in children undergoing open heart surgery (thermic-2): study protocol for a randomized controlled trial.

    PubMed

    Baos, Sarah; Sheehan, Karen; Culliford, Lucy; Pike, Katie; Ellis, Lucy; Parry, Andrew J; Stoica, Serban; Ghorbel, Mohamed T; Caputo, Massimo; Rogers, Chris A

    2015-05-25

    During open heart surgery, patients are connected to a heart-lung bypass machine that pumps blood around the body ("perfusion") while the heart is stopped. Typically the blood is cooled during this procedure ("hypothermia") and warmed to normal body temperature once the operation has been completed. The main rationale for "whole body cooling" is to protect organs such as the brain, kidneys, lungs, and heart from injury during bypass by reducing the body's metabolic rate and decreasing oxygen consumption. However, hypothermic perfusion also has disadvantages that can contribute toward an extended postoperative hospital stay. Research in adults and small randomized controlled trials in children suggest some benefits to keeping the blood at normal body temperature throughout surgery ("normothermia"). However, the two techniques have not been extensively compared in children. The Thermic-2 study will test the hypothesis that the whole body inflammatory response to the nonphysiological bypass and its detrimental effects on different organ functions may be attenuated by maintaining the body at 35°C-37°C (normothermic) rather than 28°C (hypothermic) during pediatric complex open heart surgery. This is a single-center, randomized controlled trial comparing the effectiveness and acceptability of normothermic versus hypothermic bypass in 141 children with congenital heart disease undergoing open heart surgery. Children having scheduled surgery to repair a heart defect not requiring deep hypothermic circulatory arrest represent the target study population. The co-primary clinical outcomes are duration of inotropic support, intubation time, and postoperative hospital stay. Secondary outcomes are in-hospital mortality and morbidity, blood loss and transfusion requirements, pre- and post-operative echocardiographic findings, routine blood gas and blood test results, renal function, cerebral function, regional oxygen saturation of blood in the cerebral cortex, assessment of genomic expression changes in cardiac tissue biopsies, and neuropsychological development. A total of 141 patients have been successfully randomized over 2 years and 10 months and are now being followed-up for 1 year. Results will be published in 2015. We believe this to be the first large pragmatic study comparing clinical outcomes during normothermic versus hypothermic bypass in complex open heart surgery in children. It is expected that this work will provide important information to improve strategies of cardiopulmonary bypass perfusion and therefore decrease the inevitable organ damage that occurs during nonphysiological body perfusion. ISRCTN Registry: ISRCTN93129502, http://www.isrctn.com/ISRCTN93129502 (Archived by WebCitation at http://www.webcitation.org/6Yf5VSyyG).

  10. Heart Rate Recovery, Physical Activity Level, and Functional Status in Subjects With COPD.

    PubMed

    Morita, Andrea A; Silva, Laís K O; Bisca, Gianna W; Oliveira, Joice M; Hernandes, Nidia A; Pitta, Fabio; Furlanetto, Karina C

    2018-05-15

    A normal heart rate reflects the balance between the sympathetic and parasympathetic autonomic nervous system. When the difference between heart rate at the end of an exercise test and after 1 min of recovery, known as the 1-min heart rate recovery, is ≤ 12 beats/min, this may indicate an abnormal delay. We sought to compare physical activity patterns and subjects' functional status with COPD with or without delayed 1-min heart rate recovery after the 6-min walk test (6MWT). 145 subjects with COPD (78 men, median [interquartile range (IQR)] age 65 [60-73] y, body mass index 25 [21-30] kg/m 2 , FEV 1 45 ± 15% predicted) were underwent the following assessments: spirometry, 6MWT, functional status, and physical activity in daily life (PADL). A delayed heart rate recovery of 1 min was defined as ≤ 12 beats/min. Subjects with delayed 1-min heart rate recovery walked a shorter distance in the 6MWT compared to subjects without delayed heart rate recovery (median [IQR] 435 [390-507] m vs 477 [425-515] m, P = .01; 81 [71-87] vs 87 [79-98]% predicted, P = .002). Regarding PADL, subjects with delayed heart rate recovery spent less time in the standing position (mean ± SD 185 ± 89 min vs 250 ± 107 min, P = .002) and more time in sedentary positions (472 ± 110 min vs 394 ± 129 min, P = .002). Scores based on the self-care domain of the London Chest Activity of Daily Living questionnaire and the activity domain of the Pulmonary Functional Status and Dyspnea questionnaire were also worse in the group with delayed heart rate recovery (6 ± 2 points vs 5 ± 2 points; P = .039 and 29 ± 24 points vs 19 ± 17 points; P = .037, respectively). Individuals with COPD who exhibit delayed 1-min heart rate recovery after the 6MWT exhibited worse exercise capacity as well as a more pronounced sedentary lifestyle and worse functional status than those without delayed heart rate recovery. Despite its assessment simplicity, heart rate recovery after the 6MWT can be further explored as a promising outcome in COPD. Copyright © 2018 by Daedalus Enterprises.

  11. Speckle Tracking Imaging in Normal Stress Echocardiography.

    PubMed

    Leitman, Marina; Tyomkin, Vladimir; Peleg, Eli; Zyssman, Izhak; Rosenblatt, Simcha; Sucher, Edgar; Gercenshtein, Vered; Vered, Zvi

    2017-04-01

    Exercise stress echocardiography is a widely used modality for the diagnosis and follow-up of patients with coronary artery disease. During the last decade, speckle tracking imaging has been used increasingly for accurate evaluation of cardiac function. This work aimed to assess speckle-tracking imaging parameters during nonischemic exercise stress echocardiography. During 2011 to 2014 we studied 46 patients without history of coronary artery disease, who completed exercise stress echocardiography protocol, had normal left ventricular function, a nonischemic response, and satisfactory image quality. These exams were analyzed with speckle-tracking imaging software at rest and at peak exercise. Peak strain and time-to-peak strain were measured at rest and after exercise. Clinical follow-up included a telephone contact 1 to 3 years after stress echo exam, confirming freedom from coronary events during this time. Global and regional peak strain increased following exercise. Time-to-peak global and regional strain and time-to-peak strain adjusted to the heart rate were significantly shorter in all segments after exercise. Rest-to-stress ratio of time-to-peak strain adjusted to the heart rate was 2.0 to 2.8. Global and regional peak strain rise during normal exercise echocardiography. Peak global and regional strain occur before or shortly after aortic valve closure at rest and after exercise, and the delay is more apparent at the basal segments. Time-to-peak strain normally shortens significantly during exercise; after adjustment to heart rate it shortens by a ratio of 2.0 to 2.8. These data may be useful for interpretation of future exercise stress speckle-tracking echocardiography studies. © 2016 by the American Institute of Ultrasound in Medicine.

  12. Fetal body weight and the development of the control of the cardiovascular system in fetal sheep.

    PubMed

    Frasch, M G; Müller, T; Wicher, C; Weiss, C; Löhle, M; Schwab, K; Schubert, H; Nathanielsz, P W; Witte, O W; Schwab, M

    2007-03-15

    Reduced birth weight predisposes to cardiovascular diseases in later life. We examined in fetal sheep at 0.76 (n = 18) and 0.87 (n = 17) gestation whether spontaneously occurring variations in fetal weight affect maturation of autonomic control of cardiovascular function. Fetal weights at both gestational ages were grouped statistically in low (LW) and normal weights (NW) (P < 0.01). LW fetuses were within the normal weight span showing minor growth dysproportionality at 0.76 gestation favouring heart and brain, with a primary growth of carcass between 0.76 and 0.87 gestation (P < 0.05). While twins largely contributed to LW fetuses, weight differences between singletons and twins were absent at 0.76 and modest at 0.87 gestation, underscoring the fact that twins belong to normality in fetal sheep not constituting a major malnutritive condition. Mean fetal blood pressure (FBP) of all fetuses was negatively correlated to fetal weight at 0.76 but not 0.87 gestation (P < 0.05). At this age, FBP and baroreceptor reflex sensitivity were increased in LW fetuses (P < 0.05), suggesting increased sympathetic activity and immaturity of circulatory control. Development of vagal modulation of fetal heart rate depended on fetal weight (P < 0.01). These functional associations were largely independent of twin pregnancies. We conclude, low fetal weight within the normal weight span is accompanied by a different trajectory of development of sympathetic blood pressure and vagal heart rate control. This may contribute to the development of elevated blood pressure in later life. Examination of the underlying mechanisms and consequences may contribute to the understanding of programming of cardiovascular diseases.

  13. The N-Methyl-D-Aspartate Receptor in Heart Development: A Gene Knockdown Model Using siRNA

    PubMed Central

    Lie, Octavian V.; Bennett, Gregory D.; Rosenquist, Thomas H

    2009-01-01

    Antagonists of the N-methyl-D-aspartate receptor (NMDAR) may disrupt the development of the cardiac neural crest (CNC) and contribute to conotruncal heart defects. To test this interaction, a loss-of-function model was generated using small interfering RNAs (siRNA) directed against the critical NR1-subunit of this receptor in avian embryos. The coding sequence of the chicken NR1-gene and predicted protein sequences were characterized and found to be homologous with other vertebrate species. Analysis of its spatiotemporal expression demonstrated its expression within the neural tube at pre-migratory CNC sites. siRNA targeted to the NR1-mRNA in pre-migratory CNC lead to a significant decrease in NR1 protein expression. However, embryo survival and heart development were not adversely affected. These results indicate that the CNC may function normally in the absence of functional NMDAR, and that NMDAR antagonists may have a complex impact upon the CNC that transcends impairment of a single receptor type. PMID:19737608

  14. High-Resolution Tissue Doppler Imaging of the Zebrafish Heart During Its Regeneration

    PubMed Central

    Su, Ta-Han; Shih, Cho-Chiang

    2015-01-01

    Abstract The human heart cannot regenerate after injury, whereas the adult zebrafish can fully regenerate its heart even after 20% of the ventricle is amputated. Many studies have begun to reveal the cellular and molecular mechanisms underlying this regenerative process, which have exciting implications for human cardiac diseases. However, the dynamic functions of the zebrafish heart during regeneration are not yet understood. This study established a high-resolution echocardiography for tissue Doppler imaging (TDI) of the zebrafish heart to explore the cardiac functions during different regeneration phases. Experiments were performed on AB-line adult zebrafish (n=40) in which 15% of the ventricle was surgically removed. An 80-MHz ultrasound TDI based on color M-mode imaging technology was employed. The cardiac flow velocities and patterns from both the ventricular chamber and myocardium were measured at different regeneration phases relative to the day of amputation. The peak velocities of early diastolic inflow, early diastolic myocardial motion, late diastolic myocardial motion, early diastolic deceleration slope, and heart rate were increased at 3 days after the myocardium amputation, but these parameters gradually returned to close to their baseline values for the normal heart at 7 days after amputation. The peak velocities of late diastolic inflow, ventricular systolic outflow, and systolic myocardial motion did not significantly differ during the heart regeneration. PMID:25517185

  15. Pulmonary function and adverse cardiovascular outcomes: Can cardiac function explain the link?

    PubMed

    Burroughs Peña, Melissa S; Dunning, Allison; Schulte, Phillip J; Durheim, Michael T; Kussin, Peter; Checkley, William; Velazquez, Eric J

    2016-12-01

    The complex interaction between pulmonary function, cardiac function and adverse cardiovascular events has only been partially described. We sought to describe the association between pulmonary function with left heart structure and function, all-cause mortality and incident cardiovascular hospitalization. This study is a retrospective analysis of patients evaluated in a single tertiary care medical center. We used multivariable linear regression analyses to examine the relationship between FVC and FEV1 with left ventricular ejection fraction (LVEF), left ventricular internal dimension in systole and diastole (LVIDS, LVIDD) and left atrial diameter, adjusting for baseline characteristics, right ventricular function and lung hyperinflation. We also used Cox proportional hazards models to examine the relationship between FVC and FEV1 with all-cause mortality and cardiac hospitalization. A total of 1807 patients were included in this analysis with a median age of 61 years and 50% were female. Decreased FVC and FEV1 were both associated with decreased LVEF. In individuals with FVC less than 2.75 L, decreased FVC was associated with increased all-cause mortality after adjusting for left and right heart echocardiographic variables (hazard ratio [HR] 0.49, 95% CI 0.29, 0.82, respectively). Decreased FVC was associated with increased cardiac hospitalization after adjusting for left heart size (HR 0.80, 95% CI 0.67, 0.96), even in patients with normal LVEF (HR 0.75, 95% CI 0.57, 0.97). In a tertiary care center reduced pulmonary function was associated with adverse cardiovascular events, a relationship that is not fully explained by left heart remodeling or right heart dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Cardiorespiratory functional assessment after pediatric heart transplantation.

    PubMed

    Pastore, E; Turchetta, A; Attias, L; Calzolari, A; Giordano, U; Squitieri, C; Parisi, F

    2001-12-01

    Limited data are available on the exercise capacity of young heart transplant recipients. The aim of this study was therefore to assess cardiorespiratory responses to exercise in this group of patients. Fourteen consecutive heart transplant recipients (six girls and eight boys, age-range 5-15 yr) and 14 healthy matched controls underwent a Bruce treadmill test to determine: duration of test; resting and maximum heart rates; maximum systolic blood pressure; peak oxygen consumption (VO2 peak); and cardiac output. Duration of test and heart rate increase were then compared with: time since transplantation, rejections per year, and immunosuppressive drugs received. The recipients also underwent the following lung function tests: forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). When compared with healthy controls, transplant recipients had tachycardia at rest (126 +/- 3.7 beats/min; p < 0.001); significantly reduced tolerance (9.3 +/- 0.4 min; p < 0.001), a maximum heart rate of 169 +/- 5.4 beats/min (p < 0.05); a cardiac output of 5.65 +/- 0.6 L/min (p < 0.05); and a lower heart-rate increase from rest to peak exercise (p < 0.001) but a similar VO2 peak. The heart-rate increase correlated significantly with time post-transplant (r = 0.55; p < 0.05), number of rejection episodes per year (r = - 0.63; p < 0.05), and number of immunosuppressive drugs (r = - 0.60; p < 0.05). The recipients had normal FVC and FEV1 values. After surgery, few heart transplant recipients undertake physical activity, possibly owing to over-protective parents and teachers and to a lack of suitable supervised facilities. The authors stress the importance of a cardiorespiratory functional evaluation for assessment of health status and to encourage recipients, if possible, to undertake regular physical activity.

  17. Effect of experimental coronary sinus ligation on myocardial structure and function in the presence or absence of structural heart disease: an insight for the interventional electrophysiologist.

    PubMed

    Diab, Osama Ali; Amer, Mohammed Said; Salah El-Din, Rania Ahmed

    2016-12-01

    To study the effect of coronary sinus (CS) occlusion on normal hearts and hearts with structural disease. We included 32 dogs, divided into 4 groups: (1) CS ligation (CSL): subjected to CSL; (2) control group: no intervention; (3) MI-CSL group: subjected to myocardial infarction (MI) induction followed by CSL after 1 week; and (4) MI-control group: subjected to MI induction, then open thoracotomy after 1 week without CSL. Electrocardiography, echocardiography, histopathology, and immunohistochemistry were done before and after CSL. In CSL group, there were no significant electrocardiographic or echocardiographic changes after CSL, although there was interstitial oedema that decreased after 1 week with the appearance of Thebesian vessels and positive staining for vascular endothelial growth factor. In MI-CSL group, there was significant increase in left ventricular (LV) end-systolic diameter (P = 02), decrease in LV fractional shortening (P = 0.0001), and LV ejection fraction (P = 0.002) in comparison with MI-control group, associated with severe myocardial degeneration. Acute CS occlusion could be compensated in normal hearts, but may be detrimental in the presence of structural heart disease. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  18. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss.

    PubMed

    Zeng, Heng; Vaka, Venkata Ramana; He, Xiaochen; Booz, George W; Chen, Jian-Xiong

    2015-08-01

    Mitochondrial dysfunction plays an important role in obesity-induced cardiac impairment. SIRT3 is a mitochondrial protein associated with increased human life span and metabolism. This study investigated the functional role of SIRT3 in obesity-induced cardiac dysfunction. Wild-type (WT) and SIRT3 knockout (KO) mice were fed a normal diet (ND) or high-fat diet (HFD) for 16 weeks. Body weight, fasting glucose levels, reactive oxygen species (ROS) levels, myocardial capillary density, cardiac function and expression of hypoxia-inducible factor (HIF)-1α/-2α were assessed. HFD resulted in a significant reduction in SIRT3 expression in the heart. Both HFD and SIRT3 KO mice showed increased ROS formation, impaired HIF signalling and reduced capillary density in the heart. HFD induced cardiac hypertrophy and impaired cardiac function. SIRT3 KO mice fed HFD showed greater ROS production and a further reduction in cardiac function compared to SIRT3 KO mice on ND. Thus, the adverse effects of HFD on cardiac function were not attributable to SIRT3 loss alone. However, HFD did not further reduce capillary density in SIRT3 KO hearts, implicating SIRT3 loss in HFD-induced capillary rarefaction. Our study demonstrates the importance of SIRT3 in preserving heart function and capillary density in the setting of obesity. Thus, SIRT3 may be a potential therapeutic target for obesity-induced heart failure. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. From overload to failure: what happens inside the myocyte.

    PubMed

    Harding, S E; Davia, K; Davies, C H; del Monte, F; Money-Kyrle, A R; Poole-Wilson, P A

    1998-08-01

    To determine whether there is a defect in the surviving muscle cells of the failing human heart, studies have been performed on individual myocytes isolated from normal and failing human myocardium. Myocytes from the failing ventricle contract and relax more slowly, and have a reduced contraction amplitude at physiological (but not low) stimulation frequencies. Slow relaxation is seen irrespective of the aetiology of the heart disease studied, and is more pronounced in myocytes from hypertrophied ventricles. Myocytes from hypertrophied ventricles are larger than normal, but the relaxation deficit is independent of cell size. Beta-adrenoceptor desensitization is evident in myocytes and it varies according to the severity of disease and with the age of the patient. Action potentials are longer in myocytes from failing human heart, probably because of an alteration in K+ current density. Many of the functional changes identified in failing human myocardium are seen at the level of the single cardiac myocyte, which implies that pharmacological or genetic manipulation of surviving cells is a logical therapeutic strategy.

  20. Beneficial effects of leptin treatment in a setting of cardiac dysfunction induced by transverse aortic constriction in mouse.

    PubMed

    Gómez-Hurtado, Nieves; Domínguez-Rodríguez, Alejandro; Mateo, Philippe; Fernández-Velasco, María; Val-Blasco, Almudena; Aizpún, Rafael; Sabourin, Jessica; Gómez, Ana María; Benitah, Jean-Pierre; Delgado, Carmen

    2017-07-01

    Leptin, is a 16 kDa pleiotropic peptide not only primarily secreted by adipocytes, but also produced by other tissues, including the heart. Controversy exists regarding the adverse and beneficial effects of leptin on the heart We analysed the effect of a non-hypertensive dose of leptin on cardiac function, [Ca 2+ ] i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction. We find that leptin activates mechanisms that contribute to cardiac dysfunction under physiological conditions. However, after the establishment of pressure overload, an increase in leptin levels has protective cardiac effects with respect to rescuing the cellular heart failure phenotype. These beneficial effects of leptin involve restoration of action potential duration via normalization of transient outward potassium current and sarcoplasmic reticulum Ca 2+ content via rescue of control sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase levels and ryanodine receptor function modulation, leading to normalization of Ca 2+ handling parameters. Leptin, is a 16 kDa pleiotropic peptide not only primary secreted by adipocytes, but also produced by other tissues, including the heart. Evidence indicates that leptin may have either adverse or beneficial effects on the heart. To obtain further insights, in the present study, we analysed the effect of leptin treatment on cardiac function, [Ca 2+ ] i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction (TAC). Three weeks after surgery, animals received either leptin (0.36 mg kg -1  day -1 ) or vehicle via osmotic minipumps for 3 weeks. Echocardiographic measurements showed that, although leptin treatment was deleterious on cardiac function in sham, leptin had a cardioprotective effect following TAC. [Ca 2+ ] i transient in cardiomyocytes followed similar pattern. Patch clamp experiments showed prolongation of action potential duration (APD) in TAC and leptin-treated sham animals, whereas, following TAC, leptin reduced the APD towards control values. APD variations were associated with decreased transient outward potassium current and Kv4.2 and KChIP2 protein expression. TAC myocytes showed a higher incidence of triggered activities and spontaneous Ca 2+ waves. These proarrhythmic manifestations, related to Ca 2+ /calmodulin-dependent protein kinase II and ryanodine receptor phosphorylation, were reduced by leptin. The results of the present study demonstrate that, although leptin treatment was deleterious on cardiac function in control animals, leptin had a cardioprotective effect following TAC, normalizing cardiac function and reducing arrhythmogeneity at the cellular level. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  1. [Evaluation of a chronic fatigue in patients with moderate-to-severe chronic heart failure].

    PubMed

    Jasiukeviciene, Lina; Vasiliauskas, Donatas; Kavoliūniene, Ausra; Marcinkeviciene, Jolanta; Grybauskiene, Regina; Grizas, Vytautas; Tumyniene, Vida

    2008-01-01

    To evaluate the chronic fatigue and its relation to the function of hypothalamus-pituitary-adrenal axis in patients with New York Heart Association (NYHA) functional class III-IV chronic heart failure. A total of 170 patients with NYHA functional class III-IV chronic heart failure completed MFI-20L, DUFS, and DEFS questionnaires assessing chronic fatigue and underwent echocardiography. Blood cortisol concentration was assessed at 8:00 am and 3:00 pm, and plasma N-terminal brain natriuretic pro-peptide (NT-proBNP) concentration was measured at 8:00 am. Neurohumoral investigations were repeated before cardiopulmonary exercise test and after it. The results of all questionnaires showed that 100% of patients with NYHA functional class III-IV heart failure complained of chronic fatigue. The level of overall fatigue was 54.5+/-31.5 points; physical fatigue - 56.8+/-24.6 points. Blood cortisol concentration at 8:00 am was normal (410.1+/-175.1 mmol/L) in majority of patients. Decreased concentration was only in four patients (122.4+/-15.5 mmol/L); one of these patients underwent heart transplantation. In the afternoon, blood cortisol concentration was insufficiently decreased (355.6+/-160.3 mmol/L); reaction to a physical stress was attenuated (Delta 92.9 mmol/L). Plasma NT-proBNP concentration was 2188.9+/-1852.2 pg/L; reaction to a physical stress was diminished (Delta 490.3 pg/L). All patients with NYHA class III-IV heart failure complained of daily chronic fatigue. Insufficiently decreased blood cortisol concentration in the afternoon showed that in the presence of chronic fatigue in long-term cardiovascular organic disease, disorder of a hypothalamus-pituitary-adrenal axis is involved.

  2. Early-life perturbations in glucocorticoid activity impacts on the structure, function and molecular composition of the adult zebrafish (Danio rerio) heart.

    PubMed

    Wilson, K S; Baily, J; Tucker, C S; Matrone, G; Vass, S; Moran, C; Chapman, K E; Mullins, J J; Kenyon, C; Hadoke, P W F; Denvir, M A

    2015-10-15

    Transient early-life perturbations in glucocorticoids (GC) are linked with cardiovascular disease risk in later life. Here the impact of early life manipulations of GC on adult heart structure, function and gene expression were assessed. Zebrafish embryos were incubated in dexamethasone (Dex) or injected with targeted glucocorticoid receptor (GR) morpholino knockdown (GR Mo) over the first 120 h post fertilisation (hpf); surviving embryos (>90%) were maintained until adulthood under normal conditions. Cardiac function, heart histology and cardiac genes were assessed in embryonic (120 hpf) and adult (120 days post fertilisation (dpf)) hearts. GR Mo embryos (120 hpf) had smaller hearts with fewer cardiomyocytes, less mature striation pattern, reduced cardiac function and reduced levels of vmhc and igf mRNA compared with controls. GR Mo adult hearts were smaller with diminished trabecular network pattern, reduced expression of vmhc and altered echocardiographic Doppler flow compared to controls. Dex embryos had larger hearts at 120 hpf (Dex 107.2 ± 3.1 vs. controls 90.2 ± 1.1 μm, p < 0.001) with a more mature trabecular network and larger cardiomyocytes (1.62 ± 0.13 cells/μm vs control 2.18 ± 0.13 cells/μm, p < 0.05) and enhanced cardiac performance compared to controls. Adult hearts were larger (1.02 ± 0.07 μg/mg vs controls 0.63 ± 0.06 μg/mg, p = 0.0007), had increased vmhc and gr mRNA levels. Perturbations in GR activity during embryonic development results in short and long-term alterations in the heart. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Early-life perturbations in glucocorticoid activity impacts on the structure, function and molecular composition of the adult zebrafish (Danio rerio) heart

    PubMed Central

    Wilson, K.S.; Baily, J.; Tucker, C.S.; Matrone, G.; Vass, S.; Moran, C.; Chapman, K.E.; Mullins, J.J.; Kenyon, C.; Hadoke, P.W.F.; Denvir, M.A.

    2015-01-01

    Background Transient early-life perturbations in glucocorticoids (GC) are linked with cardiovascular disease risk in later life. Here the impact of early life manipulations of GC on adult heart structure, function and gene expression were assessed. Methods and results Zebrafish embryos were incubated in dexamethasone (Dex) or injected with targeted glucocorticoid receptor (GR) morpholino knockdown (GR Mo) over the first 120 h post fertilisation (hpf); surviving embryos (>90%) were maintained until adulthood under normal conditions. Cardiac function, heart histology and cardiac genes were assessed in embryonic (120 hpf) and adult (120 days post fertilisation (dpf)) hearts. GR Mo embryos (120 hpf) had smaller hearts with fewer cardiomyocytes, less mature striation pattern, reduced cardiac function and reduced levels of vmhc and igf mRNA compared with controls. GR Mo adult hearts were smaller with diminished trabecular network pattern, reduced expression of vmhc and altered echocardiographic Doppler flow compared to controls. Dex embryos had larger hearts at 120 hpf (Dex 107.2 ± 3.1 vs. controls 90.2 ± 1.1 μm, p < 0.001) with a more mature trabecular network and larger cardiomyocytes (1.62 ± 0.13 cells/μm vs control 2.18 ± 0.13 cells/μm, p < 0.05) and enhanced cardiac performance compared to controls. Adult hearts were larger (1.02 ± 0.07 μg/mg vs controls 0.63 ± 0.06 μg/mg, p = 0.0007), had increased vmhc and gr mRNA levels. Conclusion Perturbations in GR activity during embryonic development results in short and long-term alterations in the heart. PMID:26219824

  4. Bradycardia

    MedlinePlus

    ... Easily tiring during physical activity When a slow heart rate is normal A resting heart rate slower than 60 beats a minute is normal ... often starts in the sinus node. A slow heart rate might occur because the sinus node: Discharges electrical ...

  5. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease

    PubMed Central

    Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter

    2016-01-01

    Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799

  6. In Vivo Functional Selection Identifies Cardiotrophin-1 as a Cardiac Engraftment Factor for Mesenchymal Stromal Cells.

    PubMed

    Bortolotti, Francesca; Ruozi, Giulia; Falcione, Antonella; Doimo, Sara; Dal Ferro, Matteo; Lesizza, Pierluigi; Zentilin, Lorena; Banks, Lawrence; Zacchigna, Serena; Giacca, Mauro

    2017-10-17

    Transplantation of cells into the infarcted heart has significant potential to improve myocardial recovery; however, low efficacy of cell engraftment still limits therapeutic benefit. Here, we describe a method for the unbiased, in vivo selection of cytokines that improve mesenchymal stromal cell engraftment into the heart both in normal conditions and after myocardial infarction. An arrayed library of 80 secreted factors, including most of the currently known interleukins and chemokines, were individually cloned into adeno-associated viral vectors. Pools from this library were then used for the batch transduction of bone marrow-derived mesenchymal stromal cells ex vivo, followed by intramyocardial cell administration in normal and infarcted mice. Three weeks after injection, vector genomes were recovered from the few persisting cells and identified by sequencing DNA barcodes uniquely labeling each of the tested cytokines. The most effective molecule identified by this competitive engraftment screening was cardiotrophin-1, a member of the interleukin-6 family. Intracardiac injection of mesenchymal stromal cells transiently preconditioned with cardiotrophin-1 preserved cardiac function and reduced infarct size, parallel to the persistence of the transplanted cells in the healing hearts for at least 2 months after injection. Engraftment of cardiotrophin-1-treated mesenchymal stromal cells was consequent to signal transducer and activator of transcription 3-mediated activation of the focal adhesion kinase and its associated focal adhesion complex and the consequent acquisition of adhesive properties by the cells. These results support the feasibility of selecting molecules in vivo for their functional properties with adeno-associated viral vector libraries and identify cardiotrophin-1 as a powerful cytokine promoting cell engraftment and thus improving cell therapy of the infarcted myocardium. © 2017 American Heart Association, Inc.

  7. Improved biochemical preservation of heart slices during cold storage.

    PubMed

    Bull, D A; Reid, B B; Connors, R C; Albanil, A; Stringham, J C; Karwande, S V

    2000-01-01

    Development of myocardial preservation solutions requires the use of whole organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that myocardial slices could be used to assess preservation of biochemical function during cold storage. Whole rat hearts were precision cut into slices with a thickness of 200 microm and preserved at 4 degrees C in one of the following solutions: Columbia University (CU), University of Wisconsin (UW), D5 0.2% normal saline with 20 meq/l KCL (QNS), normal saline (NS), or a novel cardiac preservation solution (NPS) developed using this model. Myocardial biochemical function was assessed by ATP content (etamoles ATP/mg wet weight) and capacity for protein synthesis (counts per minute (cpm)/mg protein) immediately following slicing (0 hours), and at 6, 12, 18, and 24 hours of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as the mean +/- standard deviation. ATP content was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, 18 and 24 hours of cold storage (p < 0.05). Capacity for protein synthesis was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, and 18 hours of cold storage (p < 0.05). CONCLUSIONS This myocardial slice model allows the rapid and efficient screening of cardiac preservation solutions and their components using quantifiable biochemical endpoints. Using this model, we have developed a novel preservation solution which improves the biochemical function of myocardial slices during cold storage.

  8. Myotonic Dystrophy Initially Presenting as Tachycardiomyopathy Successful Catheter Ablation of Atrial Flutter

    PubMed Central

    Asbach, S.; Gutleben, K. J.; Dahlem, P.; Brachmann, J.; Nölker, G.

    2010-01-01

    Myotonic dystrophy is a genetic muscular disease that is frequently associated with cardiac arrhythmias. Bradyarrhythmias, such as sinus bradycardia and atrioventricular block, are more common than tachyarrhythmias. Rarely, previously undiagnosed patients with myotonic dystrophy initially present with a tachyarrhythmia. We describe the case of a 14-year-old boy, who was admitted to the hospital with clinical signs and symptoms of decompensated heart failure and severely reduced left ventricular function. Electrocardiography showed common-type atrial flutter with 2 : 1 conduction resulting in a heart rate of 160 bpm. Initiation of medical therapy for heart failure as well as electrical cardioversion led to a marked clinical improvement. Catheter ablation of atrial flutter was performed to prevent future cardiac decompensations and to prevent development of tachymyopathy. Left ventricular function normalized during followup. Genetic analysis confirmed the clinical suspicion of myotonic dystrophy as known in other family members in this case. PMID:20871860

  9. Exercise-induced pulmonary artery hypertension in a patient with compensated cardiac disease: hemodynamic and functional response to sildenafil therapy.

    PubMed

    Nikolaidis, Lazaros; Memon, Nabeel; O'Murchu, Brian

    2015-02-01

    We describe the case of a 54-year-old man who presented with exertional dyspnea and fatigue that had worsened over the preceding 2 years, despite a normally functioning bioprosthetic aortic valve and stable, mild left ventricular dysfunction (left ventricular ejection fraction, 0.45). His symptoms could not be explained by physical examination, an extensive biochemical profile, or multiple cardiac and pulmonary investigations. However, abnormal cardiopulmonary exercise test results and a right heart catheterization-combined with the use of a symptom-limited, bedside bicycle ergometer-revealed that the patient's exercise-induced pulmonary artery hypertension was out of proportion to his compensated left heart disease. A trial of sildenafil therapy resulted in objective improvements in hemodynamic values and functional class.

  10. Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression.

    PubMed

    Byrne, Nikole J; Levasseur, Jody; Sung, Miranda M; Masson, Grant; Boisvenue, Jamie; Young, Martin E; Dyck, Jason R B

    2016-05-15

    Impaired cardiac substrate metabolism plays an important role in heart failure (HF) pathogenesis. Since many of these metabolic changes occur at the transcriptional level of metabolic enzymes, it is possible that this loss of metabolic flexibility is permanent and thus contributes to worsening cardiac function and/or prevents the full regression of HF upon treatment. However, despite the importance of cardiac energetics in HF, it remains unclear whether these metabolic changes can be normalized. In the current study, we investigated whether a reversal of an elevated aortic afterload in mice with severe HF would result in the recovery of cardiac function, substrate metabolism, and transcriptional reprogramming as well as determined the temporal relationship of these changes. Male C57Bl/6 mice were subjected to either Sham or transverse aortic constriction (TAC) surgery to induce HF. After HF development, mice with severe HF (% ejection fraction < 30) underwent a second surgery to remove the aortic constriction (debanding, DB). Three weeks following DB, there was a near complete recovery of systolic and diastolic function, and gene expression of several markers for hypertrophy/HF were returned to values observed in healthy controls. Interestingly, pressure-overload-induced left ventricular hypertrophy (LVH) and cardiac substrate metabolism were restored at 1-week post-DB, which preceded functional recovery. The regression of severe HF is associated with early and dramatic improvements in cardiac energy metabolism and LVH normalization that precede restored cardiac function, suggesting that metabolic and structural improvements may be critical determinants for functional recovery. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  11. Tricuspid annular plane systolic excursion is preserved in young patients with pulmonary hypertension except when associated with repaired congenital heart disease.

    PubMed

    Hauck, Amanda; Guo, Ruixin; Ivy, D Dunbar; Younoszai, Adel

    2017-04-01

    Tricuspid annular plane systolic excursion (TAPSE) is a measure of right ventricular (RV) longitudinal function that correlates with functional status and mortality in adults with pulmonary hypertension (PH). The diagnostic and predictive value of TAPSE in children with PH has not been fully examined. We aimed to define TAPSE across aetiologies of paediatric PH and assess the correlation between TAPSE and measures of disease severity. TAPSE measurements were obtained in 84 children and young adults undergoing treatment for PH and 315 healthy children to establish z-scores at moderate altitude for comparison. The relationships between TAPSE and echocardiographic, biomarker, and functional measures of disease severity between aetiologies were assessed. TAPSE z-scores in PH patients with congenital heart disease (CHD) repaired with open cardiac surgery (n = 20, mean -2.73) were significantly decreased compared with normal children and patients with other aetiologies of PH (P < 0.001) but did not reflect poorer clinical status. TAPSE z-scores in children with idiopathic PH (n = 29, -0.41), unrepaired CHD (n = 11, -0.1), and PH related to systemic disease (n = 14, -0.39) were not different from normal. TAPSE correlated modestly with brain natriuretic peptide, echocardiographic function parameters, and functional class except in patients with repaired CHD. Children with PH maintain normal TAPSE values early except when associated with repaired CHD. Superior RV adaptation to high afterload in children compared with adults may account for this finding. Reduced TAPSE after repair of CHD does not correlate with functional status and may reflect post-operative changes rather than poor function primarily due to PH. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  12. GDF15 is a heart-derived hormone that regulates body growth.

    PubMed

    Wang, Ting; Liu, Jian; McDonald, Caitlin; Lupino, Katherine; Zhai, Xiandun; Wilkins, Benjamin J; Hakonarson, Hakon; Pei, Liming

    2017-08-01

    The endocrine system is crucial for maintaining whole-body homeostasis. Little is known regarding endocrine hormones secreted by the heart other than atrial/brain natriuretic peptides discovered over 30 years ago. Here, we identify growth differentiation factor 15 (GDF15) as a heart-derived hormone that regulates body growth. We show that pediatric heart disease induces GDF15 synthesis and secretion by cardiomyocytes. Circulating GDF15 in turn acts on the liver to inhibit growth hormone (GH) signaling and body growth. We demonstrate that blocking cardiomyocyte production of GDF15 normalizes circulating GDF15 level and restores liver GH signaling, establishing GDF15 as a bona fide heart-derived hormone that regulates pediatric body growth. Importantly, plasma GDF15 is further increased in children with concomitant heart disease and failure to thrive (FTT). Together these studies reveal a new endocrine mechanism by which the heart coordinates cardiac function and body growth. Our results also provide a potential mechanism for the well-established clinical observation that children with heart diseases often develop FTT. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  13. FPGA Implementation of Heart Rate Monitoring System.

    PubMed

    Panigrahy, D; Rakshit, M; Sahu, P K

    2016-03-01

    This paper describes a field programmable gate array (FPGA) implementation of a system that calculates the heart rate from Electrocardiogram (ECG) signal. After heart rate calculation, tachycardia, bradycardia or normal heart rate can easily be detected. ECG is a diagnosis tool routinely used to access the electrical activities and muscular function of the heart. Heart rate is calculated by detecting the R peaks from the ECG signal. To provide a portable and the continuous heart rate monitoring system for patients using ECG, needs a dedicated hardware. FPGA provides easy testability, allows faster implementation and verification option for implementing a new design. We have proposed a five-stage based methodology by using basic VHDL blocks like addition, multiplication and data conversion (real to the fixed point and vice-versa). Our proposed heart rate calculation (R-peak detection) method has been validated, using 48 first channel ECG records of the MIT-BIH arrhythmia database. It shows an accuracy of 99.84%, the sensitivity of 99.94% and the positive predictive value of 99.89%. Our proposed method outperforms other well-known methods in case of pathological ECG signals and successfully implemented in FPGA.

  14. Monitoring ventricular function at rest and during exercise with a nonimaging nuclear detector.

    PubMed

    Wagner, H N; Rigo, P; Baxter, R H; Alderson, P O; Douglass, K H; Housholder, D F

    1979-05-01

    A portable nonimaging device, the nuclear stethoscope, for measuring beat to beat ventricular time-activity curves in normal people and patients with heart disease, both at rest and during exercise, is being developed and evaluated. The latest device has several operating modes that facilitate left ventricular and background localization, measurement of transit times and automatic calculation and display of left ventricular ejection fraction. The correlation coefficient of left ventricular ejection fraction obtained with the device and with a camera-computer system was 0.92 in 35 subjects. During bicycle exercise the ejection fraction in 15 normal persons increased from 44 to 64 percent (P less than 0.001), whereas among 12 patients with heart disease it was unchanged in 5 and decreased in 7.

  15. Umbilical cord vitamin D, ionized calcium and myocardial oxygen demand.

    PubMed

    Reeves, Inez; Liang, Willie; Asadi, M Sadegh; Millis, Richard M

    2014-07-01

    Systemic blood vitamin D and total calcium are correlates of birthweight and cardiovascular disease but whether umbilical cord blood vitamin D and ionized calcium are correlates of birthweight and cardiovascular function is not known. This cross-sectional study correlates umbilical cord vitamin D, ionized calcium and birthweight with the heart rate-systolic pressure product (RPP), an indicator of myocardial oxygen demand. Cord blood vitamin D and ionized calcium concentrations were compared for vitamin D normal (≥50 nM, 20 ng/mL) and vitamin D deficiency (<50 nM, 20 ng/mL) in normal weight (≥2500 g) and low birthweight (LBW, <2500 g) newborns. Heart rate and blood pressure were measured during postnatal transition and RPP was computed. RPP was positively correlated with birthweight (r = +0.52, p < 0.001) and with cord ionized calcium level (r = +0.42, p < 0.01) in the normal and LBW newborns. RPP was positively correlated with cord vitamin D level in the LBW newborns (raw r = +0.50, p < 0.05, normalized for birthweight r = +0.73, p < 0.01). Small RPP, an indicator of low myocardial oxygen demand, in LBW newborns appears to correlate with low umbilical cord vitamin D and ionized calcium levels, suggestive of pathological heart development.

  16. Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure.

    PubMed

    Hanft, Laurin M; Emter, Craig A; McDonald, Kerry S

    2017-07-01

    Heart failure arises, in part, from a constellation of changes in cardiac myocytes including remodeling, energetics, Ca 2+ handling, and myofibrillar function. However, little is known about the changes in myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. The aim of the present study was to provide a comprehensive assessment of myofibrillar functional properties from health to heart disease. A rodent model of uncontrolled hypertension was used to test the hypothesis that myocytes in compensated hearts exhibit increased force, higher rates of force development, faster loaded shortening, and greater power output; however, with progression to overt heart failure, we predicted marked depression in these contractile properties. We assessed contractile properties in skinned cardiac myocyte preparations from left ventricles of Wistar-Kyoto control rats and spontaneous hypertensive heart failure (SHHF) rats at ~3, ~12, and >20 mo of age to evaluate the time course of myofilament properties associated with normal aging processes compared with myofilaments from rats with a predisposition to heart failure. In control rats, the myofilament contractile properties were virtually unchanged throughout the aging process. Conversely, in SHHF rats, the rate of force development, loaded shortening velocity, and power all increased at ~12 mo and then significantly fell at the >20-mo time point, which coincided with a decrease in left ventricular fractional shortening. Furthermore, these changes occurred independent of changes in β-myosin heavy chain but were associated with depressed phosphorylation of myofibrillar proteins, and the fall in loaded shortening and peak power output corresponded with the onset of clinical signs of heart failure. NEW & NOTEWORTHY This novel study systematically examined the power-generating capacity of cardiac myofilaments during the progression from hypertension to heart disease. Previously undiscovered changes in myofibrillar power output were found and were associated with alterations in myofilament proteins, providing potential new targets to exploit for improved ventricular pump function in heart failure. Copyright © 2017 the American Physiological Society.

  17. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  18. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  19. Permanent atrial fibrillation in heart failure patients as another condition with increased reverse triiodothyronine concentration.

    PubMed

    Jakowczuk, Maciej; Zalas, Dominika; Owecki, Maciej

    2016-09-01

    To fully investigate the thyroid hormonal function in patients with the most common arrhythmia - atrial fibrillation. 120 patients (aged 55-85 yrs) with symptoms of congestive heart failure exacerbation and no other concomitant disorders (inclusion criteria: normal cardiac troponin T at admission and 12 hours after, normal renal, hepatic and respiratory function; exclusion criteria: inflammatory state, history of myocardial infarction). Depending on the presence of permanent atrial fibrillation (PAF), patients were divided into two groups: PAF (34 females, 26 males) and regular sinus heart rhythm (43 females, 17 males), the groups did not differ in terms of heart rate, blood pressure, presence of overt/subclinical thyroid dysfunction, and medical therapy used. In all subjects thyroid stimulating hormone, free thyroxine, free triiodothyronine, reverse triiodothyronine were measured; echocardiography was performed. PAF group showed higher FT4 and rT3 (1.41 vs. 1.27 ng/dl, p=0.0007; 0.61 vs. 0.32 ng/ml, p<0.0001, respectively). With ROC curve analysis the biochemical thyroid related factor of the highest prognostic value for PAF occurrence (with the highest sensitivity and specificity: 77% and 72%, respectively) was rT3 with the cut-off of above 0.3 ng/ml. Also, a positive correlation between rT3 levels and left ventricular posterior wall diameter was observed (Spearman's correlation coefficient 0.33, p=0.0093). PAF is another condition where an increase in rT3 is observed. rT3 concentration above 0.3 ng/ml may be a novel biochemical sign associated with the presence of PAF in patients with chronic heart failure.

  20. Heart Rate Dynamics During A Treadmill Cardiopulmonary Exercise Test in Optimized Beta-Blocked Heart Failure Patients

    PubMed Central

    Carvalho, Vitor Oliveira; Guimarães, Guilherme Veiga; Ciolac, Emmanuel Gomes; Bocchi, Edimar Alcides

    2008-01-01

    BACKGROUND Calculating the maximum heart rate for age is one method to characterize the maximum effort of an individual. Although this method is commonly used, little is known about heart rate dynamics in optimized beta-blocked heart failure patients. AIM The aim of this study was to evaluate heart rate dynamics (basal, peak and % heart rate increase) in optimized beta-blocked heart failure patients compared to sedentary, normal individuals (controls) during a treadmill cardiopulmonary exercise test. METHODS Twenty-five heart failure patients (49±11 years, 76% male), with an average LVEF of 30±7%, and fourteen controls were included in the study. Patients with atrial fibrillation, a pacemaker or noncardiovascular functional limitations or whose drug therapy was not optimized were excluded. Optimization was considered to be 50 mg/day or more of carvedilol, with a basal heart rate between 50 to 60 bpm that was maintained for 3 months. RESULTS Basal heart rate was lower in heart failure patients (57±3 bpm) compared to controls (89±14 bpm; p<0.0001). Similarly, the peak heart rate (% maximum predicted for age) was lower in HF patients (65.4±11.1%) compared to controls (98.6±2.2; p<0.0001). Maximum respiratory exchange ratio did not differ between the groups (1.2±0.5 for controls and 1.15±1 for heart failure patients; p=0.42). All controls reached the maximum heart rate for their age, while no patients in the heart failure group reached the maximum. Moreover, the % increase of heart rate from rest to peak exercise between heart failure (48±9%) and control (53±8%) was not different (p=0.157). CONCLUSION No patient in the heart failure group reached the maximum heart rate for their age during a treadmill cardiopulmonary exercise test, despite the fact that the percentage increase of heart rate was similar to sedentary normal subjects. A heart rate increase in optimized beta-blocked heart failure patients during cardiopulmonary exercise test over 65% of the maximum age-adjusted value should be considered an effort near the maximum. This information may be useful in rehabilitation programs and ischemic tests, although further studies are required. PMID:18719758

  1. [ATP-synthetase activity, respiration and cytochromes of rat heart mitochondria in aging and hyperthyroidism].

    PubMed

    Lemeshko, V V; Kaliman, P A; Belostotskaia, L I; Uchitel', A A

    1982-04-01

    The ATP-synthetase activity, the rate of oxygen uptake under different metabolic conditions, the tightness of coupling of respiration to oxidative phosphorylation and the cytochrome contents in heart mitochondria of rats from different age groups were studied under normal conditions and in hyperthyroidism. It was found that heart mitochondria of aged animals did not practically differ in terms of their functional activity from those of the young animals. Administration of thyroxin to the animals from all age groups produced no significant effects on the state of mitochondria, increasing the rate of ATP synthesis on alpha-glycerophosphate, which was especially well-pronounced in aged animals, and the cytochrome content in 1-month-old rats.

  2. Evaluation by N-terminal prohormone of brain natriuretic peptide concentrations and ross scoring of the efficacy of digoxin in the treatment of heart failure secondary to congenital heart disease with left-to-right shunts.

    PubMed

    Elkiran, Ozlem; Sandikkaya, Ayse; Kocak, Gulendam; Karakurt, Cemsit; Taskapan, Cagatay; Yologlu, Saim

    2013-10-01

    This study aimed to evaluate the effectiveness of digoxin in children with heart failure secondary to left-to-right shunt lesions and normal left ventricular systolic function. The study registered 37 such patients (ages 10 days to 24 months, groups 1 and 2) and used 20 healthy children as a control group (group 3). Left ventricular systolic function, as assessed by conventional echocardiography, was normal in all the subjects. Congestive heart failure was diagnosed by clinical evaluation and modified Ross scoring. Plasma N-terminal prohormone of brain natriuretic peptide (NT-proBNP) concentrations and complete blood counts were assessed in all the children. Group 1 was treated with digoxin, enalapril, and furosemide and group 2 with enalapril and furosemide. Approximately 1 month after starting treatment, the patients were reevaluated by physical and echocardiographic examinations, modified Ross scoring, plasma NT-proBNP concentrations, and complete blood counts. The pre- and posttreatment Ross scores of group 1 (p = 0.377) and group 2 (p = 0.616) did not differ significantly. The NT-proBNP values in both groups decreased after treatment (p = 0.0001). The pre- and posttreatment NT-proBNP values did not differ significantly in group 1 (p = 0.094)) and group 2 (p = 0.372). The pretreatment NT-proBNP values in groups 1 and 2 (p = 0.0001) were significantly higher than in the control group (p = 0.003). A smaller difference was observed between posttreatment NT-proBNP values in group 1 and the control group (p = 0.045). We found no significant difference between the posttreatment NT-proBNP values of group 2 and those of the control group (p = 0.271). The study showed that both treatments currently used to treat heart failure secondary to congenital heart disease with left-to-right shunts and preserved left ventricular systolic function are effective and do not differ significantly. Thus, digoxin does not provide any extra benefit in the treatment of such patients.

  3. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling.

    PubMed

    Schramm, Christine; Fine, Deborah M; Edwards, Michelle A; Reeb, Ashley N; Krenz, Maike

    2012-01-01

    The identification of mutations in PTPN11 (encoding the protein tyrosine phosphatase Shp2) in families with congenital heart disease has facilitated mechanistic studies of various cardiovascular defects. However, the roles of normal and mutant Shp2 in the developing heart are still poorly understood. Furthermore, it remains unclear how Shp2 loss-of-function (LOF) mutations cause LEOPARD Syndrome (also termed Noonan Syndrome with multiple lentigines), which is characterized by congenital heart defects such as pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM). In normal hearts, Shp2 controls cardiomyocyte size by regulating signaling through protein kinase B (Akt) and mammalian target of rapamycin (mTOR). We hypothesized that Shp2 LOF mutations dysregulate this pathway, resulting in HCM. For our studies, we chose the Shp2 mutation Q510E, a dominant-negative LOF mutation associated with severe early onset HCM. Newborn mice with cardiomyocyte-specific overexpression of Q510E-Shp2 starting before birth displayed increased cardiomyocyte sizes, heart-to-body weight ratios, interventricular septum thickness, and cardiomyocyte disarray. In 3-mo-old hearts, interstitial fibrosis was detected. Echocardiographically, ventricular walls were thickened and contractile function was depressed. In ventricular tissue samples, signaling through Akt/mTOR was hyperactivated, indicating that the presence of Q510E-Shp2 led to upregulation of this pathway. Importantly, rapamycin treatment started shortly after birth rescued the Q510E-Shp2-induced phenotype in vivo. If rapamycin was started at 6 wk of age, HCM was also ameliorated. We also generated a second mouse model in which cardiomyocyte-specific Q510E-Shp2 overexpression started after birth. In contrast to the first model, these mice did not develop HCM. In summary, our studies establish a role for mTOR signaling in HCM caused by Q510E-Shp2. Q510E-Shp2 overexpression in the cardiomyocyte population alone was sufficient to induce the phenotype. Furthermore, the pathomechanism was triggered pre- but not postnatally. However, postnatal rapamycin treatment could still reverse already established HCM, which may have important therapeutic implications.

  4. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice

    PubMed Central

    Belmonte, Stephen L.; Ram, Rashmi; Mickelsen, Deanne M.; Gertler, Frank B.

    2013-01-01

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By “turning off” Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology. PMID:23832697

  5. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

    PubMed

    Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C

    2013-09-15

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

  6. Impact of metoprolol treatment on cardiac function and exercise tolerance in heart failure patients with neuropsychiatric disorders.

    PubMed

    Huang, Jingjing; Zhang, Ran; Liu, Xuelu; Meng, Yong

    2018-01-01

    To investigate the impact of neuropsychiatric disorders on the effect of metoprolol on cardiac and motor function in chronic heart failure (CHF) patients. From February 2013 to April 2016, CHF patients with clinical mental disorders received metoprolol (23.75 or 47.5 mg, once daily, orally) at the Second Affiliated Hospital of Kunming Medical University. Mental status was confirmed by means of the Hospital Anxiety and Depression Scale (HADS) and the Copenhagen Burnout Inventory (CBI) scale. Cardiac function parameters such as systolic blood pressure (SBP), ejection fraction (EF) and cardiac index (CI) as well as motor function including the 6 meter walk test (6MWT) and the Veteran's Specific Activity Questionnaire (VSAQ) were assessed as primary outcomes of the study. A total of 154 patients (median age, 66.39 years; men, n = 101) were allocated into eight groups based on their mental status. There were no significant differences in heart rate (HR) or SBP control achieved by metoprolol in any groups compared with the control (patients with normal mental status). Furthermore, biphasic ejection fraction (EF) changes were observed in all the groups with a decrease in the first month and increase from the sixth month. However, this increase was significantly lower (p < .001) than the EF achieved with metoprolol treatment in the control group except for the anxiety group. A similar pattern was seen for CI, 6MWT and VSAQ changes in all the groups. Patients in the anxiety group responded similarly to the patients with normal mental status. Depressive and high burnout symptoms, but not anxiety, lower the improvement of cardiac and motor function by metoprolol treatment in CHF.

  7. Relevance of water gymnastics in rehabilitation programs in patients with chronic heart failure or coronary artery disease with normal left ventricular function.

    PubMed

    Teffaha, Daline; Mourot, Laurent; Vernochet, Philippe; Ounissi, Fawzi; Regnard, Jacques; Monpère, Catherine; Dugué, Benoit

    2011-08-01

    Exercise training is included in cardiac rehabilitation programs to enhance physical capacity and cardiovascular function. Among the existing rehabilitation programs, exercises in water are increasingly prescribed. However, it has been questioned whether exercises in water are safe and relevant in patients with stable chronic heart failure (CHF), coronary artery disease (CAD) with normal systolic left ventricular function. The goal was to assess whether a rehabilitation program, including water-based gymnastic exercises, is safe and induces at least similar benefits as a traditional land-based training. Twenty-four male CAD patients and 24 male CHF patients with stable clinical status participated in a 3-week rehabilitation. They were randomized to either a group performing the training program totally on land (CADl, CHFl; endurance + callisthenic exercises) or partly in water (CADw, CHFw; land endurance + water callisthenic exercises). Before and after rehabilitation, left ventricular systolic and cardiorespiratory functions, hemodynamic variables and autonomic nervous activities were measured. No particular complications were associated with both of our programs. At rest, significant improvements were seen in CHF patients after both types of rehabilitation (increases in stroke volume and left ventricular ejection fraction [LVEF]) as well as a decrease in heart rate (HR) and in diastolic arterial pressure. Significant increases in peaks VO(2), HR, and power output were observed in all patients after rehabilitation in exercise test. The increase in LVEF at rest, in HR and power output at the exercise peak were slightly higher in CHFw than in CHFl. Altogether, both land and water-based programs were well tolerated and triggered improvements in cardiorespiratory function. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Normal and Pathological NCAT Image and PhantomData Based onPhysiologically Realistic Left Ventricle Finite-Element Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.

    2006-08-02

    The 4D NURBS-based Cardiac-Torso (NCAT) phantom, whichprovides a realistic model of the normal human anatomy and cardiac andrespiratory motions, is used in medical imaging research to evaluate andimprove imaging devices and techniques, especially dynamic cardiacapplications. One limitation of the phantom is that it lacks the abilityto accurately simulate altered functions of the heart that result fromcardiac pathologies such as coronary artery disease (CAD). The goal ofthis work was to enhance the 4D NCAT phantom by incorporating aphysiologically based, finite-element (FE) mechanical model of the leftventricle (LV) to simulate both normal and abnormal cardiac motions. Thegeometry of the FE mechanical modelmore » was based on gated high-resolutionx-ray multi-slice computed tomography (MSCT) data of a healthy malesubject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees atthe epicardial surface, through 0 degreesat the mid-wall, to 90 degreesat the endocardial surface. A time varying elastance model was used tosimulate fiber contraction, and physiological intraventricular systolicpressure-time curves were applied to simulate the cardiac motion over theentire cardiac cycle. To demonstrate the ability of the FE mechanicalmodel to accurately simulate the normal cardiac motion as well abnormalmotions indicative of CAD, a normal case and two pathologic cases weresimulated and analyzed. In the first pathologic model, a subendocardialanterior ischemic region was defined. A second model was created with atransmural ischemic region defined in the same location. The FE baseddeformations were incorporated into the 4D NCAT cardiac model through thecontrol points that define the cardiac structures in the phantom whichwere set to move according to the predictions of the mechanical model. Asimulation study was performed using the FE-NCAT combination toinvestigate how the differences in contractile function between thesubendocardial and transmural infarcts manifest themselves in myocardialSPECT images. The normal FE model produced strain distributions that wereconsistent with those reported in the literature and a motion consistentwith that defined in the normal 4D NCAT beating heart model based ontagged MRI data. The addition of a subendocardial ischemic region changedthe average transmural circumferential strain from a contractile value of0.19 to a tensile value of 0.03. The addition of a transmural ischemicregion changed average circumferential strain to a value of 0.16, whichis consistent with data reported in the literature. Model resultsdemonstrated differences in contractile function between subendocardialand transmural infarcts and how these differences in function aredocumented in simulated myocardial SPECT images produced using the 4DNCAT phantom. In comparison to the original NCAT beating heart model, theFE mechanical model produced a more accurate simulation for the cardiacmotion abnormalities. Such a model, when incorporated into the 4D NCATphantom, has great potential for use in cardiac imaging research. Withits enhanced physiologically-based cardiac model, the 4D NCAT phantom canbe used to simulate realistic, predictive imaging data of a patientpopulation with varying whole-body anatomy and with varying healthy anddiseased states of the heart that will provide a known truth from whichto evaluate and improve existing and emerging 4D imaging techniques usedin the diagnosis of cardiac disease.« less

  9. Heart Transplant in Patients with Predominantly Rheumatic Valvular Heart Disease.

    PubMed

    Rosa, Vitor E E; Lopes, Antonio S S A; Accorsi, Tarso A D; Fernandes, Joao Ricardo C; Spina, Guilherme S; Sampaio, Roney O; Bacal, Fernando; Tarasoutchi, Flavio

    2015-09-01

    International records indicate that only 2.6% of patients with heart transplants have valvular heart disease. The study aim was to evaluate the epidemiological and clinical profile of patients with valvular heart disease undergoing heart transplantation. Between 1985 and 2013, a total of 569 heart transplants was performed at the authors' institution. Twenty patients (13 men, seven women; mean age 39.5 +/- 15.2 years) underwent heart transplant due to structural (primary) valvular disease. Analyses were made of the patients' clinical profile, laboratory data, echocardiographic and histopathological data, and mortality and rejection. Of the patients, 18 (90%) had a rheumatic etiology, with 85% having undergone previous valve surgery (45% had one or more operations), and 95% with a normal functioning valve prosthesis at the time of transplantation. Atrial fibrillation was present in seven patients (35%), while nine (45%) were in NYHA functional class IV and eight (40%) in class III. The indication for cardiac transplantation was refractory heart failure in seven patients (35%) and persistent NYHA class III/IV in ten (50%). The mean left ventricular ejection fraction (LVEF) was 26.6 +/- 7.9%. The one-year mortality was 20%. Histological examination of the recipients' hearts showed five (27.7%) to have reactivated rheumatic myocarditis without prior diagnosis at the time of transplantation. Univariate analysis showed that age, gender, LVEF, rheumatic activity and rejection were not associated with mortality at one year. Among the present patient cohort, rheumatic heart disease was the leading cause of heart transplantation, and a significant proportion of these patients had reactivated myocarditis diagnosed in the histological analyses. Thus, it appears valid to investigate the existence of rheumatic activity, especially in valvular cardiomyopathy with severe systolic dysfunction before transplantation.

  10. Knockout of the Na,K-ATPase α2-isoform in cardiac myocytes delays pressure overload-induced cardiac dysfunction

    PubMed Central

    Rindler, Tara N.; Lasko, Valerie M.; Nieman, Michelle L.; Okada, Motoi; Lorenz, John N.

    2013-01-01

    The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function. PMID:23436327

  11. Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice

    PubMed Central

    Essop, M. Faadiel; Camp, Heidi S.; Choi, Cheol Soo; Sharma, Saumya; Fryer, Ryan M.; Reinhart, Glenn A.; Guthrie, Patrick H.; Bentebibel, Assia; Gu, Zeiwei; Shulman, Gerald I.; Taegtmeyer, Heinrich; Wakil, Salih J.; Abu-Elheiga, Lutfi

    2008-01-01

    The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC2) is a key regulator of mitochondrial fatty acid (FA) uptake via carnitine palmitoyltransferase 1 (CPT1). To test the hypothesis that oxidative metabolism is upregulated in hearts from animals lacking ACC2 (employing a transgenic Acc2-mutant mouse), we assessed cardiac function in vivo and determined rates of myocardial substrate oxidation ex vivo. When examined by echocardiography, there was no difference in systolic function, but left ventricular mass of the Acc2-mutant (MUT) mouse was significantly reduced (∼25%) compared with wild-types (WT). Reduced activation of the mammalian target of rapamycin (mTOR) and its downstream target p70S6K was found in MUT hearts. Exogenous oxidation rates of oleate were increased ∼22%, and, unexpectedly, exogenous glucose oxidation rates were also increased in MUT hearts. Using a hyperinsulinemic-euglycemic clamp, we found that glucose uptake in MUT hearts was increased by ∼83%. Myocardial triglyceride levels were significantly reduced in MUT vs. WT while glycogen content was the same. In parallel, transcript levels of PPARα and its target genes, pyruvate dehydrogenase kinase-4 (PDK-4), malonyl-CoA decarboxylase (MCD), and mCPT1, were downregulated in MUT mice. In summary, we report that 1) Acc2-mutant hearts exhibit a marked preference for the oxidation of both glucose and FAs coupled with greater utilization of endogenous fuel substrates (triglycerides), 2) attenuated mTOR signaling may result in reduced heart sizes observed in Acc2-mutant mice, and 3) Acc2-mutant hearts displayed normal functional parameters despite a significant decrease in size. PMID:18487439

  12. Embryonic Stem Cell Therapy of Heart Failure in Genetic Cardiomyopathy

    PubMed Central

    Yamada, Satsuki; Nelson, Timothy J.; Crespo-Diaz, Ruben J.; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre

    2009-01-01

    Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K+ (KATP) channel sub-units. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional KATP channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. PMID:18669912

  13. Embryonic stem cell therapy of heart failure in genetic cardiomyopathy.

    PubMed

    Yamada, Satsuki; Nelson, Timothy J; Crespo-Diaz, Ruben J; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre

    2008-10-01

    Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K(+) (K(ATP)) channel subunits. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional K(ATP) channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. Disclosure of potential conflicts of interest is found at the end of this article.

  14. Role of Myofibril-Inducing RNA in cardiac TnT expression in developing Mexican axolotl

    PubMed Central

    Sferrazza, Gian-Franco; Zhang, Chi; Jia, Pingping; Lemanski, Sharon L.; Athauda, Gagani; Stassi, Alyssa; Halager, Kristine; Maier, Jennifer A.; Rueda-de-Leon, Elena; Gupta, Amit; Dube, Syamalima; Huang, Xupei; Prentice, Howard M.; Dube, Dipak K.; Lemanski, Larry F.

    2007-01-01

    The Mexican axolotl, Ambystoma mexicanum, has been a useful animal model to study heart development and cardiac myofibrillogenesis. A naturally-occurring recessive mutant, gene “c”, for cardiac non-function in the Mexican axolotl causes a failure of myofibrillogenesis due to a lack of tropomyosin expression in homozygous mutant (c/c) embryonic hearts.. Myofibril-Inducing RNA (MIR) rescues mutant hearts in vitro by promoting tropomyosin expression and myofibril formation thereafter. We have studied the effect of MIR on the expression of various isoforms of cardiac Troponin-T (cTnT), a component of the thin filament that binds with tropomyosin. Four alternatively spliced cTnT isoforms have been characterized from developing axolotl heart. The expression of various cTnT isoforms in normal, mutant, and mutant hearts corrected with MIR, is evaluated by real-time RT-PCR using isoform specific primer pairs; MIR affects the total transcription as well as the splicing of the cTnT in axolotl heart PMID:17408593

  15. Best anesthetics for assessing left ventricular systolic function by echocardiography in mice

    PubMed Central

    Pachon, Ronald E.; Scharf, Bruce A.; Vatner, Dorothy E.

    2015-01-01

    Our review of the literature of the major cardiovascular journals for the past three years showed that for all studies using anesthesia for mouse echocardiography, the predominant anesthetic was isoflurane, which was used in 76% of the studies. The goal of this investigation was to determine if isoflurane is indeed the best anesthetic. Accordingly, we compared isoflurane with 2,2,2-tribromoethanol (Avertin), ketamine-xylazine, and ketamine on different days in the same 14 mice, also studied in the conscious state without anesthesia. A randomized crossover study design was employed to compare the effects on left ventricular (LV) systolic function and heart rate of the four different anesthetic agents assessed by transthoracic echocardiography. As expected, each anesthetic depressed LV ejection fraction and heart rate when compared with values in conscious mice. Surprisingly, isoflurane was not the best, but actually second to last in maintaining normal LV function and heart rate. The anesthetic with the least effect on LV function and heart rate was ketamine alone at a dose of 150 mg/kg, followed by Avertin at 290 mg/kg, isoflurane at 3% induction and 1 to 2% maintenance, and lastly ketamine-xylazine at 100 and 10 mg/kg, respectively. In summary, these results indicate that ketamine alone exerts the least depressant effects on LV function and heart rate, with Avertin second, suggesting that these anesthetics should be used when it is not feasible to study the animals in the conscious state as opposed to the most commonly used anesthetic, isoflurane. PMID:25862835

  16. Best anesthetics for assessing left ventricular systolic function by echocardiography in mice.

    PubMed

    Pachon, Ronald E; Scharf, Bruce A; Vatner, Dorothy E; Vatner, Stephen F

    2015-06-15

    Our review of the literature of the major cardiovascular journals for the past three years showed that for all studies using anesthesia for mouse echocardiography, the predominant anesthetic was isoflurane, which was used in 76% of the studies. The goal of this investigation was to determine if isoflurane is indeed the best anesthetic. Accordingly, we compared isoflurane with 2,2,2-tribromoethanol (Avertin), ketamine-xylazine, and ketamine on different days in the same 14 mice, also studied in the conscious state without anesthesia. A randomized crossover study design was employed to compare the effects on left ventricular (LV) systolic function and heart rate of the four different anesthetic agents assessed by transthoracic echocardiography. As expected, each anesthetic depressed LV ejection fraction and heart rate when compared with values in conscious mice. Surprisingly, isoflurane was not the best, but actually second to last in maintaining normal LV function and heart rate. The anesthetic with the least effect on LV function and heart rate was ketamine alone at a dose of 150 mg/kg, followed by Avertin at 290 mg/kg, isoflurane at 3% induction and 1 to 2% maintenance, and lastly ketamine-xylazine at 100 and 10 mg/kg, respectively. In summary, these results indicate that ketamine alone exerts the least depressant effects on LV function and heart rate, with Avertin second, suggesting that these anesthetics should be used when it is not feasible to study the animals in the conscious state as opposed to the most commonly used anesthetic, isoflurane. Copyright © 2015 the American Physiological Society.

  17. Association of auricular pressing and heart rate variability in pre-exam anxiety students.

    PubMed

    Wu, Wocao; Chen, Junqi; Zhen, Erchuan; Huang, Huanlin; Zhang, Pei; Wang, Jiao; Ou, Yingyi; Huang, Yong

    2013-03-25

    A total of 30 students scoring between 12 and 20 on the Test Anxiety Scale who had been exhibiting an anxious state > 24 hours, and 30 normal control students were recruited. Indices of heart rate variability were recorded using an Actiheart electrocardiogram recorder at 10 minutes before auricular pressing, in the first half of stimulation and in the second half of stimulation. The results revealed that the standard deviation of all normal to normal intervals and the root mean square of standard deviation of normal to normal intervals were significantly increased after stimulation. The heart rate variability triangular index, very-low-frequency power, low-frequency power, and the ratio of low-frequency to high-frequency power were increased to different degrees after stimulation. Compared with normal controls, the root mean square of standard deviation of normal to normal intervals was significantly increased in anxious students following auricular pressing. These results indicated that auricular pressing can elevate heart rate variability, especially the root mean square of standard deviation of normal to normal intervals in students with pre-exam anxiety.

  18. Association of auricular pressing and heart rate variability in pre-exam anxiety students

    PubMed Central

    Wu, Wocao; Chen, Junqi; Zhen, Erchuan; Huang, Huanlin; Zhang, Pei; Wang, Jiao; Ou, Yingyi; Huang, Yong

    2013-01-01

    A total of 30 students scoring between 12 and 20 on the Test Anxiety Scale who had been exhibiting an anxious state > 24 hours, and 30 normal control students were recruited. Indices of heart rate variability were recorded using an Actiheart electrocardiogram recorder at 10 minutes before auricular pressing, in the first half of stimulation and in the second half of stimulation. The results revealed that the standard deviation of all normal to normal intervals and the root mean square of standard deviation of normal to normal intervals were significantly increased after stimulation. The heart rate variability triangular index, very-low-frequency power, low-frequency power, and the ratio of low-frequency to high-frequency power were increased to different degrees after stimulation. Compared with normal controls, the root mean square of standard deviation of normal to normal intervals was significantly increased in anxious students following auricular pressing. These results indicated that auricular pressing can elevate heart rate variability, especially the root mean square of standard deviation of normal to normal intervals in students with pre-exam anxiety. PMID:25206734

  19. Is applying the same exercise-based inpatient program to normal and reduced left ventricular function patients the best strategy after coronary surgery? A focus on autonomic cardiac response.

    PubMed

    Mendes, Renata Gonçalves; Simões, Rodrigo Polaquini; Costa, Fernando de Souza Melo; Pantoni, Camila Bianca Falasco; Di Thommazo-Luporini, Luciana; Luzzi, Sérgio; Amaral-Neto, Othon; Arena, Ross; Catai, Aparecida Maria; Borghi-Silva, Audrey

    2014-01-01

    To assess whether the same exercise-based inpatient program applied to patients with normal and reduced left ventricular function (LVF) evokes a similar cardiac autonomic response after coronary artery bypass graft (CABG). Forty-four patients post-CABG, subgrouped according to normal LVF [LVFN: n = 23; left ventricular ejection fraction (LVEF) ≥ 55%] and reduced LVF (LVFR: n = 21; LVEF 35-54%), were included. All initiated the exercise protocol on post-operative day 1 (PO1), following a whole progressive program until discharge. Cardiac autonomic response was assessed by the indices of heart rate variability (HRV) at rest and during exercise (extremity range of motion and ambulation). During ambulation, lower values of HRV indices were found in the LVFR group compared with the LVFN group [standard deviation of all RR (STDRR; 6.1 ± 2.7 versus 8.9 ± 4.7 ms), baseline width of the RR histogram (TINN; 30.6 ± 14.8 versus 45.8 ± 24.9 ms), SD2 (14.8 ± 8.0 versus 21.3 ± 9.0 ms), Shannon entropy (3.6 ± 0.5 versus 3.9 ± 0.4) and correlation dimension (0.08 ± 0.2 versus 0.2 ± 0.2)]. Also, when comparing the ambulation to rest change, lower values were observed in the LVFR group for linear (STDRR, TINN, RR TRI, rMSSD) and non-linear (SD2 and correlation dimension) HRV indices (p < 0.05). On PO1, we observed only intra-group differences between rest and exercise (extremity range of motion), for mean intervals between heart beats and heart rate. For patients with LVFN, the same inpatient exercise protocol triggered a more attenuated autonomic response compared with patients with LVFR. These findings have implications as to how exercise should be prescribed according to LVF in the early stages following recovery from CABG. Implications for Rehabilitation Exercise-based inpatient program, performed by post-CABG patients who have normal left ventricular function, triggered a more attenuated cardiac autonomic response compared with patients with reduced left ventricular function. Volume of the inpatient exercises should be prescribed according to the left ventricular function in the early stages following recovery from CABG.

  20. Inheritance of balanced translocation t(17; 22) from a Down syndrome mother to a phenotypically normal daughter.

    PubMed

    Liu, X Y; Jiang, Y T; Wang, R X; Luo, L L; Liu, Y H; Liu, R Z

    2015-08-28

    We report that a 30-year-old woman with mental retardation was referred for prenatal diagnoses during pregnancy. An ultrasound scan showed that the heart structure and function of the fetus were normal. Cytogenetic analysis showed that the female karyotype was 47,XX, t(17; 22) (q21; q11), +21. The woman's husband had a normal male karyotype and was phenotypically normal. During this first pregnancy, an amniocentesis, which was done at 19 weeks, revealed that the fetal karyotype was 46,XX, t(17; 22) (q21; q11). Fluorescence in situ hybridization testing of amniotic fluid gave a normal result for chromosome 21. The child was a phenotypically normal female baby.

  1. Acute effects of febuxostat, a nonpurine selective inhibitor of xanthine oxidase, in pacing induced heart failure.

    PubMed

    Hou, Mingxiao; Hu, Qingsong; Chen, Yingjie; Zhao, Lin; Zhang, Jianyi; Bache, Robert J

    2006-11-01

    We investigated whether xanthine oxidase inhibition with febuxostat enhances left ventricular (LV) function and improves myocardial high energy phosphates (HEP) in dogs with pacing-induced heart failure (CHF). Febuxostat (2.2 mg/kg over 10 minutes followed by 0.06 mg/kg/min) caused no change of LV function or myocardial oxygen consumption (MVO2) at rest or during treadmill exercise in normal dogs. In dogs with CHF, febuxostat increased LV dP/dtmax at rest and during heavy exercise (P < 0.05), indicating improved LV function with no change of MVO2. Myocardial adenosine triphosphate (ATP) and phosphocreatine (PCr) were examined using 31P nuclear magnetic resonance spectroscopy in the open chest state. In normal dogs, febuxostat increased PCr/ATP during basal conditions and during high workload produced by dobutamine + dopamine (P < 0.05). PCr/ATP was decreased in animals with CHF; in these animals, febuxostat (given after completing basal and high workload measurements with vehicle) tended to increase PCr/ATP during basal conditions with no effect during catecholamine stimulation. Thus, febuxostat improved LV performance in awake dogs with CHF, but caused only a trend toward increased PCr/ATP in the open chest state. It is possible that the antecedent high workload condition prior to drug administration blunted the effect of febuxostat on HEP in the CHF animals. Alternatively, beneficial effects of febuxostat on LV performance in the failing heart may not involve HEP.

  2. [Effects of trimetazidine on serum oxygen free radicals in congestive heart failure].

    PubMed

    Ma, Qi-lin; Xie, Yong; Zhang, Sai-dan

    2002-12-28

    To investigate the level of serum superoxide dismutase (SOD) and maiondialdehyde (MDA) and left ventricular systolic function in congestive heart failure (CHF) and to evaluate the influence of trimetazidine on them. Serum SOD and MDA were measured in 50 patients with heart function from grade two to four and 15 normal subjects. All the persons underwent echocardiography to determine the left ventricular end-systolic volume index (LVESVI) and the left ventricular ejection fraction (EF). The patients with CHF were randomly treated with trimetazidine plus routine therapy (n = 25) or routine therapy only (n = 25) for 8 weeks with evaluations made before and after the treatment. The SOD level and EF in the patients with CHF significantly decreased and the MDA level and LVESVI in those patients significantly increased compared with the normal subjects (P < 0.05); the severer the CHF, the greater the changes. After the treatment, the SOD level and EF increased significantly and MDA and LVESVI decreased significantly (P < 0.01) in both the trimetazidine and the conventional groups. And these changes were more obvious in the trimetazidine group than in the conventional group(P < 0.01). Oxygen free radicals play an important role in the pathophysiologic changes of CHF. The level of serum SOD and MDA can indicate the degree of CHF. Trimetazidine not only increases the level of SOD and decreases the level of MDA, but also improves the left ventricular systolic function.

  3. Hemodynamic-GUIDEd Management of Heart Failure

    ClinicalTrials.gov

    2018-03-29

    Heart Failure; Heart Failure, Systolic; Heart Failure, Diastolic; Heart Failure NYHA Class II; Heart Failure NYHA Class III; Heart Failure NYHA Class IV; Heart Failure,Congestive; Heart Failure With Reduced Ejection Fraction; Heart Failure With Normal Ejection Fraction; Heart Failure; With Decompensation

  4. Ischemic Ventricular Tachycardia Presenting as a Narrow Complex Tachycardia

    PubMed Central

    Page, Stephen P; Watts, Troy; Yeo, Wee Tiong; Mehul, Dhinoja

    2014-01-01

    This report describes a patient presenting with a narrow complex tachycardia in the context of prior myocardial infarction and impaired ventricular function. Electrophysiological studies confirmed ventricular tachycardia and activation and entrainment mapping demonstrated a critical isthmus within an area of scar involving the His-Purkinje system accounting for the narrow QRS morphology. This very rare case shares some similarities with upper septal ventricular tachycardia seen in patients with structurally normal hearts, but to our knowledge has not been seen previously in patients with ischemic heart disease. PMID:25057222

  5. Recommendations for the management of individuals with acquired valvular heart diseases who are involved in leisure-time physical activities or competitive sports.

    PubMed

    Mellwig, Klaus Peter; van Buuren, Frank; Gohlke-Baerwolf, Christa; Bjørnstad, Hans Halvor

    2008-02-01

    Physical check-ups among athletes with valvular heart disease are of significant relevance. In athletes with mitral valve stenosis the extent of allowed physical activity is dependant on the size of the left atrium and the severity of the valve defect. Patients with mild-to-moderate mitral valve regurgitation can participate in all types of sport associated with low and moderate isometric stress and moderate dynamic stress. Patients under anticoagulation should not participate in any type of contact sport. Asymptomatic athletes with mild aortic valve stenosis can take part in all types of sport, as long as left ventricular function and size are normal, a normal response to exercise at the level performed during athletic activities is present and there are no arrhythmias. Asymptomatic athletes with moderate aortic valve stenosis should only take part in sports with low dynamic and static stress. Aortic valve regurgitation is often present due to connective tissue disease of a bicuspid valve. Athletes with mild aortic valve regurgitation, with normal end diastolic left ventricular size and systolic function can participate in all types of sport. A mitral valve prolapse is often associated with structural diseases of the myocardium and endocardium. In patients with mitral valve prolapse Holter-ECG monitoring should also be performed to detect significant arrhythmias. All athletes with known valvular heart disease, a previous history of infective endocarditis and valve surgery should receive endocarditis prophylaxis before dental, oral, respiratory, intestinal and genitourinary procedures associated with bacteraemia. Sport activities have to be avoided during active infection with fever.

  6. Systolic versus diastolic heart failure in community practice: clinical features, outcomes, and the use of angiotensin-converting enzyme inhibitors.

    PubMed

    Philbin, E F; Rocco, T A; Lindenmuth, N W; Ulrich, K; Jenkins, P L

    2000-12-01

    Among patients with heart failure, there is controversy about whether there are clinical features and laboratory tests that can differentiate patients who have low ejection fractions from those with normal ejection fractions. The usefulness of angiotensin-converting enzyme (ACE) inhibitors among heart failure patients who have normal left ventricular ejection fractions is also not known. From a registry of 2,906 unselected consecutive patients with heart failure who were admitted to 10 acute-care community hospitals during 1995 and 1997, we identified 1291 who had a quantitative measurement of their left ventricular ejection fraction. Patients were separated into three groups based on ejection fraction: < or =0.39 (n = 741, 57%), 0.40 to 0.49 (n = 238, 18%), and > or =0.50 (n = 312, 24%). In-hospital mortality, prescription of ACE inhibitors at discharge, subsequent rehospitalization, quality of life, and survival were measured; survivors were observed for at least 6 months after hospitalization. The mean (+/- SD) age of the sample was 75+/-11 years; the majority (55%) of patients were women. In multivariate models, age >75 years, female sex, weight >72.7 kg, and a valvular etiology for heart failure were associated with an increased probability of having an ejection fraction > or =0.50; a prior history of heart failure, an ischemic or idiopathic cause of heart failure, and radiographic cardiomegaly were associated with a lower probability of having an ejection fraction > or =0.50. Total mortality was lower in patients with an ejection fraction > or =0.50 than in those with an ejection fraction < or =0.39 (odds ratio [OR] = 0.69, 95% confidence interval [CI 0.49 to 0.98, P = 0.04). Among hospital survivors with an ejection fraction of 0.40 to 0.49, the 65% who were prescribed ACE inhibitors at discharge had better mean adjusted quality-of-life scores (7.0 versus 6.2, P = 0.02), and lower adjusted mortality (OR = 0.34, 95% CI: 0.17 to 0.70, P = 0.01) during follow-up than those who were not prescribed ACE inhibitors. Among hospital survivors with an ejection fraction > or =0.50, the 45% who were prescribed ACE inhibitors at discharge had better (lower) adjusted New York Heart Association (NYHA) functional class (2.1 versus 2.4, P = 0.04) although there was no significant improvement in survival. Among patients treated for heart failure in community hospitals, 42% of those whose ejection fraction was measured had a relatively normal systolic function (ejection fraction > or 0.40). The clinical characteristics and mortality of these patients differed from those in patients with low ejection fractions. Among the patients with ejection fractions > or =0.40, the prescription of ACE inhibitors at discharge was associated favorable effects.

  7. Trimetazidine therapy for diabetic mouse hearts subjected to ex vivo acute heart failure.

    PubMed

    Breedt, Emilene; Lacerda, Lydia; Essop, M Faadiel

    2017-01-01

    Acute heart failure (AHF) is the most common primary diagnosis for hospitalized heart diseases in Africa. As increased fatty acid β-oxidation (FAO) during heart failure triggers detrimental effects on the myocardium, we hypothesized that trimetazidine (TMZ) (partial FAO inhibitor) offers cardioprotection under normal and obese-related diabetic conditions. Hearts were isolated from 12-14-week-old obese male and female diabetic (db/db) mice versus lean non-diabetic littermates (db/+) controls. The Langendorff retrograde isolated heart perfusion system was employed to establish an ex vivo AHF model: a) Stabilization phase-Krebs Henseleit buffer (10 mM glucose) at 100 mmHg (25 min); b) Critical Acute Heart Failure (CAHF) phase-(1.2 mM palmitic acid, 2.5 mM glucose) at 20 mmHg (25 min); and c) Recovery Acute Heart Failure phase (RAHF)-(1.2 mM palmitic acid, 10 mM glucose) at 100 mmHg (25 min). Treated groups received 5 μM TMZ in the perfusate during either the CAHF or RAHF stage for the full duration of each respective phase. Both lean and obese males benefited from TMZ treatment administered during the RAHF phase. Sex differences were observed only in lean groups where the phases of the estrous cycle influenced therapy; only the lean follicular female group responded to TMZ treatment during the CAHF phase. Lean luteal females rather displayed an inherent cardioprotection (without treatments) that was lost with obesity. However, TMZ treatment initiated during RAHF was beneficial for obese luteal females. TMZ treatment triggered significant recovery for male and obese female hearts when administered during RAHF. There were no differences between lean and obese male hearts, while lean females displayed a functional recovery advantage over lean males. Thus TMZ emerges as a worthy therapeutic target to consider for AHF treatment in normal and obese-diabetic individuals (for both sexes), but only when administered during the recovery phase and not during the very acute stages.

  8. Changes of deceleration and acceleration capacity of heart rate in patients with acute hemispheric ischemic stroke.

    PubMed

    Xu, Yan-Hong; Wang, Xing-De; Yang, Jia-Jun; Zhou, Li; Pan, Yong-Chao

    2016-01-01

    Autonomic dysfunction is common after stroke, which is correlated with unfavorable outcome. Phase-rectified signal averaging is a newly developed technique for assessing cardiac autonomic function, by detecting sympathetic and vagal nerve activity separately through calculating acceleration capacity (AC) and deceleration capacity (DC) of heart rate. In this study, we used this technique for the first time to investigate the cardiac autonomic function of patients with acute hemispheric ischemic stroke. A 24-hour Holter monitoring was performed in 63 patients with first-ever acute ischemic stroke in hemisphere and sinus rhythm, as well as in 50 controls with high risk of stroke. DC, AC, heart rate variability parameters, standard deviation of all normal-to-normal intervals (SDNN), and square root of the mean of the sum of the squares of differences between adjacent normal-to-normal intervals (RMSSD) were calculated. The National Institutes of Health Stroke Scale (NIHSS) was used to assess the severity of stroke. We analyzed the changes of DC, AC, SDNN, and RMSSD and also studied the correlations between these parameters and NIHSS scores. The R-R (R wave to R wave on electrocardiogram) intervals, DC, AC, and SDNN in the cerebral infarction group were lower than those in controls (P=0.003, P=0.002, P=0.006, and P=0.043), but the difference of RMSSD and the D-value and ratio between absolute value of AC (|AC|) and DC were not statistically significant compared with those in controls. The DC of the infarction group was significantly correlated with |AC|, SDNN, and RMSSD (r=0.857, r=0.619, and r=0.358; P=0.000, P=0.000, and P=0.004). Correlation analysis also showed that DC, |AC|, and SDNN were negatively correlated with NIHSS scores (r=-0.279, r=-0.266, and r=-0.319; P=0.027, P=0.035, and P=0.011). Both DC and AC of heart rate decreased in patients with hemispheric infarction, reflecting a decrease in both vagal and sympathetic modulation. Both DC and AC were correlated with the severity of stroke.

  9. [EFFICIENCY OF COMBINATION OF ROFLUMILAST AND QUERCETIN FOR CORRECTION OXYGEN- INDEPENDENT MECHANISMS AND PHAGOCYTIC ACTIVITY OF MACROPHAGE CELLS OF PATIENTS WITH ACUTE EXACERBATION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE WHEN COMBINED WITH CORONARY HEART DISEASE].

    PubMed

    Gerych, P; Yatsyshyn, R

    2015-01-01

    Studied oxygen independent reaction and phagocytic activity of macrophage cells of patients with chronic obstructive pulmonary disease (COPD) II-III stage when combined with coronary heart disease (CHD). The increasing oxygen independent reactions monocytes and neutrophils and a decrease of the parameters that characterize the functional state of phagocytic cells, indicating a decrease in the functional capacity of macrophage phagocytic system (MPS) in patients with acute exacerbation of COPD, which runs as its own or in combination with stable coronary heart disease angina I-II. FC. Severity immunodeficiency state in terms of cellular component of nonspecific immunity in patients with acute exacerbation of COPD II-III stage in conjunction with the accompanying CHD increases with the progression of heart failure. Inclusion of basic therapy of COPD exacerbation and standard treatment of coronary artery disease and drug combinations Roflumilastand quercetin causes normalization of phagocytic indices MFS, indicating improved immune status and improves myocardial perfusion in terms of daily ECG monitoring.

  10. The Safety and Effectiveness of Flecainide in Children in the Current Era.

    PubMed

    Cunningham, Taylor; Uzun, Orhan; Morris, Rachel; Franciosi, Sonia; Wong, Amos; Jeremiasen, Ida; Sherwin, Elizabeth; Sanatani, Shubhayan

    2017-12-01

    This retrospective study sought to determine the safety and effectiveness of flecainide in children with normal hearts and those with congenital heart disease (CHD) or cardiomyopathy (CMO). Baseline and follow-up data at two pediatric cardiology sites were queried (2000-2015); a total of 175 patients (20 with CHD and two with CMO) receiving flecainide were assessed. When comparing patients with CHD to those with normal hearts, patients with CHD were younger at diagnosis (median age 19 days; IQR 3-157.5 days vs normal heart patients median age 21 days; IQR 7-172 days, p = 0.4) and severe cardiac dysfunction was more prevalent (30% in CHD patients vs 8% in normal heart patients, p = 0.009). Treatment duration did not differ between the two groups (CHD patients median duration 52 weeks; IQR 27-91.5 weeks vs normal heart patients median duration 55 weeks; IQR 32-156 weeks, p = 0.5). Cardiac dysfunction resulting in flecainide discontinuation occurred in two patients (1%), one with CHD and one without. Three patients experienced proarrhythmia (2%) and there were no cardiac arrests during follow-up. There was one death in this cohort in a patient with severe CHD and an RSV infection (<1%). Arrhythmia control did not differ between the groups (90% in CHD patients vs 77% in normal heart patients, p = 0.2). Flecainide was well tolerated in this cohort, with fewer than 3% discontinuing medication due to flecainide-associated adverse events. Contrary to adult studies, there was no difference in the incidence of adverse events between patients with normal hearts and patients with CHD. Flecainide is a safe and effective antiarrhythmic medication, even for children with underlying CHD.

  11. Losartan corrects abnormal frequency response of renal vasculature in congestive heart failure.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2003-11-01

    In congestive heart failure, renal blood flow is decreased and renal vascular resistance is increased in a setting of increased activity of both the sympathetic nervous and renin-angiotensin systems. The renal vasoconstrictor response to renal nerve stimulation is enhanced. This is associated with an abnormality in the low-pass filter function of the renal vasculature wherein higher frequencies (> or =0.01 Hz) within renal sympathetic nerve activity are not normally attenuated and are passed into the renal blood flow signal. This study tested the hypothesis that excess angiotensin II action mediates the abnormal frequency response characteristics of the renal vasculature in congestive heart failure. In anesthetized rats, the renal vasoconstrictor response to graded frequency renal nerve stimulation was significantly greater in congestive heart failure than in control rats. Losartan attenuated the renal vasoconstrictor response to a significantly greater degree in congestive heart failure than in control rats. In control rats, the frequency response of the renal vasculature was that of a first order (-20 dB/frequency decade) low-pass filter with a corner frequency (-3 dB, 30% attenuation) of 0.002 Hz and 97% attenuation (-30 dB) at > or =0.1 Hz. In congestive heart failure rats, attenuation did not exceed 45% (-5 dB) over the frequency range of 0.001-0.6 Hz. The frequency response of the renal vasculature was not affected by losartan treatment in control rats but was completely restored to normal by losartan treatment in congestive heart failure rats. The enhanced renal vasoconstrictor response to renal nerve stimulation and the associated abnormality in the frequency response characteristics of the renal vasculature seen in congestive heart failure are mediated by the action of angiotensin II on renal angiotensin II AT1 receptors.

  12. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.C.; Hui, Michelle N.Y.; Cheng, S.H. E-mail: bhcheng@cityu.edu.hk

    2007-07-15

    Carbaryl, an acetylcholinesterase inhibitor, is known to be moderately toxic to adult zebrafish and has been reported to cause heart malformations and irregular heartbeat in medaka. We performed experiments to study the toxicity of carbaryl, specifically its effects on the heart, in early developing zebrafish embryos. LC50 and EC50 values for carbaryl at 28 h post-fertilization were 44.66 {mu}g/ml and 7.52 {mu}g/ml, respectively, and 10 {mu}g/ml carbaryl was used in subsequent experiments. After confirming acetylcholinesterase inhibition by carbaryl using an enzymatic method, we observed red blood cell accumulation, delayed hatching and pericardial edema, but not heart malformation as described inmore » some previous reports. Our chronic exposure data also demonstrated carbaryl-induced bradycardia, which is a common effect of acetylcholinesterase inhibitors due to the accumulation of acetylcholine, in embryos from 1 day post-fertilization (dpf) to 5 dpf. The distance between the sinus venosus, the point where blood enters the atrium, and the bulbus arteriosus, the point where blood leaves the ventricle, indicated normal looping of the heart tube. Immunostaining of myosin heavy chains with the ventricle-specific antibody MF20 and the atrium-specific antibody S46 showed normal development of heart chambers. At the same time, acute exposure resulted in carbaryl-induced bradycardia. Heart rate dropped significantly after a 10-min exposure to 100 {mu}g/ml carbaryl but recovered when carbaryl was removed. The novel observation of carbaryl-induced bradycardia in 1- and 2-dpf embryos suggested that carbaryl affected cardiac function possibly through an alternative mechanism other than acetylcholinesterase inhibition such as inhibition of calcium ion channels, since acetylcholine receptors in zebrafish are not functional until 3 dpf. However, the exact nature of this mechanism is currently unknown, and thus further studies are required.« less

  13. Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP.

    PubMed

    Irnaten, M; Neff, R A; Wang, J; Loewy, A D; Mettenleiter, T C; Mendelowitz, D

    2001-01-01

    A fluorescent transneuronal marker capable of labeling individual neurons in a central network while maintaining their normal physiology would permit functional studies of neurons within entire networks responsible for complex behaviors such as cardiorespiratory reflexes. The Bartha strain of pseudorabies virus (PRV), an attenuated swine alpha herpesvirus, can be used as a transsynaptic marker of neural circuits. Bartha PRV invades neuronal networks in the CNS through peripherally projecting axons, replicates in these parent neurons, and then travels transsynaptically to continue labeling the second- and higher-order neurons in a time-dependent manner. A Bartha PRV mutant that expresses green fluorescent protein (GFP) was used to visualize and record from neurons that determine the vagal motor outflow to the heart. Here we show that Bartha PRV-GFP-labeled neurons retain their normal electrophysiological properties and that the labeled baroreflex pathways that control heart rate are unaltered by the virus. This novel transynaptic virus permits in vitro studies of identified neurons within functionally defined neuronal systems including networks that mediate cardiovascular and respiratory function and interactions. We also demonstrate superior laryngeal motorneurons fire spontaneously and synapse on cardiac vagal neurons in the nucleus ambiguus. This cardiorespiratory pathway provides a neural basis of respiratory sinus arrhythmias.

  14. Effects of thyroid state on respiration of perfused rat and guinea pig hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, L.C.; Wallace, P.G.; Berry, M.N.

    1987-09-01

    The effects of thyroid state on the respiration of the isolated heart were investigated using retrograde perfused rat and guinea pig hearts. In both species, hypothyroidism caused a marked depression in circulating thyroid hormone concentrations and in the respiration of the isolated, retrograde perfused heart. Hypothyroidism was caused by injecting animals with Na{sup 131}I. The effects on myocardial respiration could be attributed to changes in the contraction frequency and in the oxygen consumption per beat, with little contribution from basal respiration. Treatment of animals with thyroxine elevated plasma thyroid hormones to a similar extent in rats and guinea pigs. Inmore » the latter, thyroxine treatment was associated with substantial increases in the contraction frequency and the oxygen consumption per beat of the isolated heart. In contrast, only small changes were apparent in the retrograde perfused rat heart, observations that were confirmed in rat hearts perfused at near physiological work loads. It was concluded that rat hearts isolated from normal animals function at near maximal thyroid state, in contrast to the guinea pig heart, which requires higher circulating concentrations of thyroid hormones to attain maximal responses.« less

  15. [Hypothyroidism in patients with heart disease].

    PubMed

    Jiskra, Jan

    Hypothyroidism is frequently found in patients with heart disease. It is a risk factor for atherosclerosis and ischemic heart disease and has a direct negative effect on both the left and right ventricular functions (hypothyroidism-induced cardiomyopathy). The confirmed manifest hypothyroidism is always a reason for replacement therapy with levothyroxine; regarding patients with heart disease, we always begin treatment with a small dose and increase it gradually. The treatment of subclinical hypothyroidism in patients with heart disease is disputable and its benefits probably depend on age. At a higher age, the therapy-related risks often outweigh its benefits, so we make do with the target levels of the thyroid stimulating hormone being within the upper band of the normal range, or even slightly above it, rather than overdosing the patient. To summarize in a simplified way, the treatment of subclinical hypothyroidism in patients with heart disease is the most effective in younger individuals, mainly those aged below 65, while at a higher age > 80 years the risk usually outweighs the benefit.Key words: cardiovascular risk - hypothyroidism - ischemic heart disease - left ventricular dysfunction - right ventricular dysfunction - subclinical hypothyroidism - thyroid peroxidase antibodies.

  16. Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation

    PubMed Central

    Hinits, Yaniv; Pan, Luyuan; Walker, Charline; Dowd, John; Moens, Cecilia B.; Hughes, Simon M.

    2013-01-01

    Summary Mef2 transcription factors have been strongly linked with early heart development. D-mef2 is required for heart formation in Drosophila, but whether Mef2 is essential for vertebrate cardiomyocyte (CM) differentiation is unclear. In mice, although Mef2c is expressed in all CMs, targeted deletion of Mef2c causes lethal loss of second heart field (SHF) derivatives and failure of cardiac looping, but first heart field CMs can differentiate. Here we examine Mef2 function in early heart development in zebrafish. Two Mef2c genes exist in zebrafish, mef2ca and mef2cb. Both are expressed similarly in the bilateral heart fields but mef2cb is strongly expressed in the heart poles at the primitive heart tube stage. By using fish mutants for mef2ca and mef2cb and antisense morpholinos to knock down either or both Mef2cs, we show that Mef2ca and Mef2cb have essential but redundant roles in myocardial differentiation. Loss of both Mef2ca and Mef2cb function does not interfere with early cardiogenic markers such as nkx2.5, gata4 and hand2 but results in a dramatic loss of expression of sarcomeric genes and myocardial markers such as bmp4, nppa, smyd1b and late nkx2.5 mRNA. Rare residual CMs observed in mef2ca;mef2cb double mutants are ablated by a morpholino capable of knocking down other Mef2s. Mef2cb over-expression activates bmp4 within the cardiogenic region, but no ectopic CMs are formed. Surprisingly, anterior mesoderm and other tissues become skeletal muscle. Mef2ca single mutants have delayed heart development, but form an apparently normal heart. Mef2cb single mutants have a functional heart and are viable adults. Our results show that the key role of Mef2c in myocardial differentiation is conserved throughout the vertebrate heart. PMID:22750409

  17. Idiopathic dilated cardiomyopathy: computerized anatomic study of relashionship between septal and free left ventricle wall.

    PubMed

    Juliani, Paulo Sérgio; Costa, Eder França da; Correia, Aristides Tadeu; Monteiro, Rosangela; Jatene, Fabio Biscegli

    2014-01-01

    A feature of dilated cardiomyopathy is the deformation of ventricular cavity, which contributes to systolic dysfunction. Few studies have evaluated this deformation bearing in mind ventricular regions and segments of the ventricle, which could reveal important details of the remodeling process, supporting a better understanding of its role in functional impairment and the development of new therapeutic strategies. To evaluate if, in basal, equatorial and apical regions, increased internal transverse perimeter of left ventricle in idiopathic dilated cardiomyopathy occurs proportionally between the septal and non-septal segment. We performed an anatomical study with 28 adult hearts from human cadavers. One group consisted of 18 hearts with idiopathic dilated cardiomyopathy and another group with 10 normal hearts. After lamination and left ventricle digital image capture, in three different regions (base, equator and apex), the transversal internal perimeter of left ventricle was divided into two segments: septal and not septal. These segments were measured by proper software. It was established an index of proportionality between these segments, called septal and non-septal segment index. Then we determined whether this index was the same in both groups. Among patients with normal hearts and idiopathic dilated cardiomyopathy, the index of proportionality between the two segments (septal and non-septal) showed no significant difference in the three regions analyzed. The comparison results of the indices NSS/SS among normal and enlarged hearts were respectively: in base 1.99 versus 1.86 (P=0.46), in equator 2.22 versus 2.18 (P=0.79) and in apex 2.96 versus 3.56 (P=0.11). In the idiopathic dilated cardiomyopathy, the transversal dilatation of left ventricular internal perimeter occurs proportionally between the segments corresponding to the septum and free wall at the basal, equatorial and apical regions of this chamber.

  18. Stratification of pediatric heart failure on the basis of neurohormonal and cardiac autonomic nervous activities in patients with congenital heart disease.

    PubMed

    Ohuchi, Hideo; Takasugi, Hisashi; Ohashi, Hiroyuki; Okada, Yoko; Yamada, Osamu; Ono, Yasuo; Yagihara, Toshikatsu; Echigo, Shigeyuki

    2003-11-11

    Stratification of pediatric patients with congenital heart disease (CHD) has been based on their hemodynamics and/or functional capacity. Our purpose was to compare cardiac autonomic nervous activity (CANA) and neurohormonal activities (NHA) with postoperative status in stable CHD patients with biventricular physiology. We divided 379 subjects (297 CHD patients, 28 dilated cardiomyopathy patient, and 54 control subjects) into 4 subgroups according to New York Heart Association (NYHA) class (1.3+/-0.7) and measured various CANA and NHA indices. Stepwise decreases in baroreflex sensitivity (BRS), heart rate variability (HRV), adrenergic imaging, and vital capacity (VC) were observed in proportion to functional capacity in normal to NYHA II patients (P<0.001). However, there were no differences in these indices between NYHA II and III+IV groups, whereas a stepwise proportional increase in NHA indices was observed in these groups (P<0.001). Natriuretic peptides differentiated all NYHA classes. BRS, HRV, and VC were greater in the adult patients than in the child patients (P<0.05 to 0.01), although the functional class in adult patients was lower. Cardiac surgeries resulted in low BRS and VC, and the VC reduction independently determined a small HRV. Even if functional class and ejection fraction were comparable, CANA and brain natriuretic peptide were lower in CHD patients than in dilated cardiomyopathy patients (P<0.05 to 0.001). CANA and NHA indices are useful to stratify mild and severe heart failure in stable postoperative CHD patients, respectively. However, careful attention should be paid to age- and surgery-related influences on these indices.

  19. Vascular calcification abrogates the nicorandil mediated cardio-protection in ischemia reperfusion injury of rat heart.

    PubMed

    Ravindran, Sriram; Murali, Jeyashri; Amirthalingam, Sunil Kumar; Gopalakrishnan, Senthilkumar; Kurian, Gino A

    2017-02-01

    The present study was aimed to determine the efficacy of nicorandil in treating cardiac reperfusion injury with an underlying co-morbidity of vascular calcification (VC). Adenine diet was used to induce VC in Wistar rat and the heart was isolated to induce global ischemia reperfusion (IR) by Langendorff method, with and without the nicorandil (7.5mg/kg) pre-treatment and compared with those fed on normal diet. The adenine-treated rats displayed abnormal ECG changes and altered mitochondrial integrity compared to a normal rat heart. These hearts, when subjected to IR increased the infarct size, cardiac injury (measured by lactate dehydrogenase and creatine kinase activity in the coronary perfusate) and significantly altered the hemodynamics compared to the normal perfused heart. Nicorandil pretreatment in rat fed on normal diet enhanced the hemodynamics significantly (P<0.05) along with a substantial reduction in the mitochondrial dysfunction (measured by high ADP to oxygen consumption ratio, respiratory control ratio, enzyme activities and less swelling behavior) when subjected to IR. However, this cardio-protective effect of nicorandil was absent in rat heart with underlying calcification. Our results suggest that, the protective effect of nicorandil, a known mitochondrial ATP linked K + channel opener, against myocardial reperfusion injury was confined to normal rat heart. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Normothermic Versus Hypothermic Cardiopulmonary Bypass in Children Undergoing Open Heart Surgery (Thermic-2): Study Protocol for a Randomized Controlled Trial

    PubMed Central

    Baos, Sarah; Sheehan, Karen; Culliford, Lucy; Pike, Katie; Ellis, Lucy; Parry, Andrew J; Stoica, Serban; Ghorbel, Mohamed T; Caputo, Massimo

    2015-01-01

    Background During open heart surgery, patients are connected to a heart-lung bypass machine that pumps blood around the body (“perfusion”) while the heart is stopped. Typically the blood is cooled during this procedure (“hypothermia”) and warmed to normal body temperature once the operation has been completed. The main rationale for “whole body cooling” is to protect organs such as the brain, kidneys, lungs, and heart from injury during bypass by reducing the body’s metabolic rate and decreasing oxygen consumption. However, hypothermic perfusion also has disadvantages that can contribute toward an extended postoperative hospital stay. Research in adults and small randomized controlled trials in children suggest some benefits to keeping the blood at normal body temperature throughout surgery (“normothermia”). However, the two techniques have not been extensively compared in children. Objective The Thermic-2 study will test the hypothesis that the whole body inflammatory response to the nonphysiological bypass and its detrimental effects on different organ functions may be attenuated by maintaining the body at 35°C-37°C (normothermic) rather than 28°C (hypothermic) during pediatric complex open heart surgery. Methods This is a single-center, randomized controlled trial comparing the effectiveness and acceptability of normothermic versus hypothermic bypass in 141 children with congenital heart disease undergoing open heart surgery. Children having scheduled surgery to repair a heart defect not requiring deep hypothermic circulatory arrest represent the target study population. The co-primary clinical outcomes are duration of inotropic support, intubation time, and postoperative hospital stay. Secondary outcomes are in-hospital mortality and morbidity, blood loss and transfusion requirements, pre- and post-operative echocardiographic findings, routine blood gas and blood test results, renal function, cerebral function, regional oxygen saturation of blood in the cerebral cortex, assessment of genomic expression changes in cardiac tissue biopsies, and neuropsychological development. Results A total of 141 patients have been successfully randomized over 2 years and 10 months and are now being followed-up for 1 year. Results will be published in 2015. Conclusions We believe this to be the first large pragmatic study comparing clinical outcomes during normothermic versus hypothermic bypass in complex open heart surgery in children. It is expected that this work will provide important information to improve strategies of cardiopulmonary bypass perfusion and therefore decrease the inevitable organ damage that occurs during nonphysiological body perfusion. Trial Registration ISRCTN Registry: ISRCTN93129502, http://www.isrctn.com/ISRCTN93129502 (Archived by WebCitation at http://www.webcitation.org/6Yf5VSyyG). PMID:26007621

  1. Inherited congenital bilateral atresia of the external auditory canal, congenital bilateral vertical talus and increased interocular distance.

    PubMed

    Rasmussen, N; Johnsen, N J; Thomsen, J

    1979-01-01

    Six out of twenty descendants of a reportedly affected grandfather have congenital bilateral symmetrical and isolated subtotal atresia of the external auditory canal. Four of the six affected descendants have bilateral foot anomalies--two affected cousins having congenital vertical talus. All of the three affected boys in the third generation have increased interocular distance. Short fifth fingers, bilateral single transverse palmar creases, pyloric stenosis and congenital exotropia were found infrequently and are considered coincidental features. Apart from the atresia, oto-rhinolaryngologic examination, mental function, dermatoglyphics, IgA, kidney function and heart function of the affected descendants were all normal. The karyotype of four affected descendants examined was normal. An autosomal dominant inheritance with variable expressivity is suggested.

  2. Secondary Pulmonary Hypertension and Right-Sided Heart Failure at Presentation in Grave's Disease.

    PubMed

    Ganeshpure, Swapnil Panjabrao; Vaidya, Gaurang Nandkishor; Gattani, Vipul

    2012-01-01

    A young female presented with evidence of right-sided heart failure and was subsequently found to have significant pulmonary artery hypertension (PAH). Because of her normal left ventricular function and pulmonary capillary wedge pressure, the most probable site of etiology seemed to be the pulmonary vasculature. All the common possible secondary causes of PAH were ruled out, but during the investigations, she was found to have elevated thyroid function tests compatible with the diagnosis of Grave's disease. The treatment of Grave's disease, initially by medications and subsequently by radioiodine therapy, was associated with a significant reduction in the pulmonary artery systolic pressure. The purpose of this case report is to highlight one of the unusual and underdiagnosed presentations of Grave's disease.

  3. Mitochondrial Fission and Autophagy in the Normal and Diseased Heart

    PubMed Central

    Iglewski, Myriam; Hill, Joseph A.; Lavandero, Sergio; Rothermel, Beverly A.

    2011-01-01

    Sustained hypertension promotes structural, functional and metabolic remodeling of cardiomyocyte mitochondria. As long-lived, postmitotic cells, cardiomyocytes turn over mitochondria continuously to compensate for changes in energy demands and to remove damaged organelles. This process involves fusion and fission of existing mitochondria to generate new organelles and separate old ones for degradation via autophagy. Autophagy is a lysosome-dependent proteolytic pathway capable of processing cellular components, including organelles and protein aggregates. Autophagy can be either nonselective or selective and contributes to remodeling of the myocardium under stress. Fission of mitochondria, loss of membrane potential, and ubiquitination are emerging as critical steps that direct selective autophagic degradation of mitochondria. This review discusses the molecular mechanisms controlling mitochondrial dynamics, including fission, fusion, transport, and degradation. Furthermore, it examines recent studies revealing the importance of these processes in normal and diseased heart. PMID:20865352

  4. Fermitins, the Orthologs of Mammalian Kindlins, Regulate the Development of a Functional Cardiac Syncytium in Drosophila melanogaster

    PubMed Central

    Catterson, James H.; Heck, Margarete M. S.; Hartley, Paul S.

    2013-01-01

    The vertebrate Kindlins are an evolutionarily conserved family of proteins critical for integrin signalling and cell adhesion. Kindlin-2 (KIND2) is associated with intercalated discs in mice, suggesting a role in cardiac syncytium development; however, deficiency of Kind2 leads to embryonic lethality. Morpholino knock-down of Kind2 in zebrafish has a pleiotropic effect on development that includes the heart. It therefore remains unclear whether cardiomyocyte Kind2 expression is required for cardiomyocyte junction formation and the development of normal cardiac function. To address this question, the expression of Fermitin 1 and Fermitin 2 (Fit1, Fit2), the two Drosophila orthologs of Kind2, was silenced in Drosophila cardiomyocytes. Heart development was assessed in adult flies by immunological methods and videomicroscopy. Silencing both Fit1 and Fit2 led to a severe cardiomyopathy characterised by the failure of cardiomyocytes to develop as a functional syncytium and loss of synchrony between cardiomyocytes. A null allele of Fit1 was generated but this had no impact on the heart. Similarly, the silencing of Fit2 failed to affect heart function. In contrast, the silencing of Fit2 in the cardiomyocytes of Fit1 null flies disrupted syncytium development, leading to severe cardiomyopathy. The data definitively demonstrate a role for Fermitins in the development of a functional cardiac syncytium in Drosophila. The findings also show that the Fermitins can functionally compensate for each other in order to control syncytium development. These findings support the concept that abnormalities in cardiomyocyte KIND2 expression or function may contribute to cardiomyopathies in humans. PMID:23690969

  5. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    PubMed

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to influence cardiodynamics becomes obtunded.

  6. [A clinical study on the relationship of autonomic nervous function and arteriosclerosis in patients with essential hypertension].

    PubMed

    Zhao, G; Li, S H; Tan, X

    2016-03-01

    To investigate the relationship between autonomic nervous function and arteriosclerosis in patients with essential hypertension. From January 2011 to December 2013, a total of 269 patients with essential hypertension hospitalized in Chang'an Branch of First People's Hospital of Liangshan were divided into normal PWV group (PWV<9 m/s, n=178) and high PWV group (PWV≥9 m/s, n=91) via the results of carotid-femoral pulse wave velocity (PWV). Synchronic 24 hours ambulatory blood pressure monitoring and dynamic electrocardiogram were performed for all participants to simultaneously monitor the heart rate variability (HRV) and blood pressure variability (BPV) in these patients. Pearson single factor analysis and multivariate logistic regression analysis were performed to define the relationship between PWV and HRV, BPV respectively. The level of nHR/dHR (index of heart rate variability), 24 hour'sSSD, dSSD, nSSD (indexes of blood pressure variability) increased significantly (all P<0.05), while the level of SDANN (index of heart rate variability) decreased significantly (P<0.05) in high PWV group compared with normal PWV group. Multiple linear regression analysis showed that PWV was positively correlated with 24 hour'sSSD, 24 hour'sPP, LF, LF/HF and night/day heart rate ratio (all P<0.05). HRV (LF, LF/HF, nHR/dHR) and BPV (24 hours'SSD, dSSD, nSSD) are positively correlated to arteriosclerosis in patients with essential hypertension. Our results show that sympathetic activation and vascular injury are closely related in patients with essential hypertension.

  7. Small airway dysfunction in smokers with stable ischemic heart disease.

    PubMed

    Llontop, Claudia; Garcia-Quero, Cristina; Castro, Almudena; Dalmau, Regina; Casitas, Raquel; Galera, Raúl; Iglesias, Alberto; Martinez-Ceron, Elisabet; Soriano, Joan B; García-Río, Francisco

    2017-01-01

    A higher prevalence of airflow limitation (AL) has been described in patients with ischemic heart disease (IHD). Although small airway dysfunction (SAD) is an early feature of AL, there is little information about its occurrence in IHD patients. Our objective was to describe the prevalence of SAD in IHD patients, while comparing patient-related outcomes and future health risk among IHD patients with AL, SAD and normal lung function. In 118 consecutive smoking patients with stable IHD, comorbidities, utilization of healthcare resources, current treatment, blood biochemistry and health status were recorded. SAD was evaluated by impulse oscillometry, and pre- and post-bronchodilator spirometry was performed. The prevalence of AL and SAD were 20.3 (95% CI, 13.1-27.6%) and 26.3% (95% CI, 18.3-34.2%), respectively. Compared to the normal lung function group, patients with SAD and without AL had lower spirometric values, poorer quality of life and higher levels of C-reactive protein (CRP), as well as increased cardiovascular risk and more vascular age. In patients with normal spirometry, the presence of SAD was independently associated with pack-years, HDL-cholesterol and CRP levels. In patients with IHD, the presence of SAD is common and that it is associated with reduced health status and increased future cardiac risk.

  8. Small airway dysfunction in smokers with stable ischemic heart disease

    PubMed Central

    Llontop, Claudia; Garcia-Quero, Cristina; Castro, Almudena; Dalmau, Regina; Casitas, Raquel; Galera, Raúl; Iglesias, Alberto; Martinez-Ceron, Elisabet; Soriano, Joan B.; García-Río, Francisco

    2017-01-01

    Background A higher prevalence of airflow limitation (AL) has been described in patients with ischemic heart disease (IHD). Although small airway dysfunction (SAD) is an early feature of AL, there is little information about its occurrence in IHD patients. Our objective was to describe the prevalence of SAD in IHD patients, while comparing patient-related outcomes and future health risk among IHD patients with AL, SAD and normal lung function. Methods In 118 consecutive smoking patients with stable IHD, comorbidities, utilization of healthcare resources, current treatment, blood biochemistry and health status were recorded. SAD was evaluated by impulse oscillometry, and pre- and post-bronchodilator spirometry was performed. Results The prevalence of AL and SAD were 20.3 (95% CI, 13.1–27.6%) and 26.3% (95% CI, 18.3–34.2%), respectively. Compared to the normal lung function group, patients with SAD and without AL had lower spirometric values, poorer quality of life and higher levels of C-reactive protein (CRP), as well as increased cardiovascular risk and more vascular age. In patients with normal spirometry, the presence of SAD was independently associated with pack-years, HDL-cholesterol and CRP levels. Conclusion In patients with IHD, the presence of SAD is common and that it is associated with reduced health status and increased future cardiac risk. PMID:28846677

  9. In vitro model to study the effects of matrix stiffening on Ca2+ handling and myofilament function in isolated adult rat cardiomyocytes

    PubMed Central

    Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão‐Pires, Inês; van der Velden, Jolanda

    2017-01-01

    Key points This paper describes a novel model that allows exploration of matrix‐induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function.Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca2+ handling and myofilament function.Cell shortening and Ca2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix.Matrix stiffness‐impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness.Matrix stiffness‐induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Abstract Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte–matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix‐induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca2+ handling but does not alter myofilament‐generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness‐induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness‐induced changes in cardiomyocyte function could not be explained by adaptation in the microtubules. Additionally, cardiomyocytes isolated from stiff hearts of the obese ZSF1 rat model of heart failure with preserved ejection fraction show more pronounced reduction in unloaded shortening in response to matrix stiffening. Taken together, we introduce a method that allows evaluation of the influence of ECM properties on cardiomyocyte function separate from the passive inhibitory component of a stiff matrix. As such, it adds an important and physiologically relevant tool to investigate the functional consequences of cardiomyocyte–matrix interactions. PMID:28485491

  10. Murine fetal echocardiography.

    PubMed

    Kim, Gene H

    2013-02-15

    Transgenic mice displaying abnormalities in cardiac development and function represent a powerful tool for the understanding the molecular mechanisms underlying both normal cardiovascular function and the pathophysiological basis of human cardiovascular disease. Fetal and perinatal death is a common feature when studying genetic alterations affecting cardiac development. In order to study the role of genetic or pharmacologic alterations in the early development of cardiac function, ultrasound imaging of the live fetus has become an important tool for early recognition of abnormalities and longitudinal follow-up. Noninvasive ultrasound imaging is an ideal method for detecting and studying congenital malformations and the impact on cardiac function prior to death. It allows early recognition of abnormalities in the living fetus and the progression of disease can be followed in utero with longitudinal studies. Until recently, imaging of fetal mouse hearts frequently involved invasive methods. The fetus had to be sacrificed to perform magnetic resonance microscopy and electron microscopy or surgically delivered for transillumination microscopy. An application of high-frequency probes with conventional 2-D and pulsed-wave Doppler imaging has been shown to provide measurements of cardiac contraction and heart rates during embryonic development with databases of normal developmental changes now available. M-mode imaging further provides important functional data, although, the proper imaging planes are often difficult to obtain. High-frequency ultrasound imaging of the fetus has improved 2-D resolution and can provide excellent information on the early development of cardiac structures.

  11. SOD1 Overexpression Preserves Baroreflex Control of Heart Rate with an Increase of Aortic Depressor Nerve Function

    PubMed Central

    Hatcher, Jeffrey; Gu, He; Cheng, Zixi (Jack)

    2016-01-01

    Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2 ∙−), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions of O2 ∙− may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function. PMID:26823951

  12. Live dynamic analysis of mouse embryonic cardiogenesis with functional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larina, Irina V.

    2018-02-01

    Hemodynamic load, contractile forces, and tissue elasticity are regulators of cardiac development and contribute to the mechanical homeostasis of the developing vertebrate heart. Congenital heart disease (CHD) is a prevalent condition in the United States that affects 8 in 1000 live births[1], and has been linked to disrupted cardiac biomechanics[2-4]. Therefore, it is important to understand how these forces integrate and regulate vertebrate cardiac development to inform clinical strategies to treat CHD early on by reintroducing proper mechanical load or modulating downstream factors that rely on mechanical signalling. Toward investigation of biomechanical regulation of mammalian cardiovascular dynamics and development, our methodology combines live mouse embryo culture protocols, state-of-the-art structural and functional Optical Coherence Tomography (OCT), second harmonic generation (SHG) microscopy, and computational analysis. Using these approaches, we assess functional aspects of the developing heart and characterize how they coincide with a determinant of tissue stiffness and main constituent of the extracellular matrix (ECM)—type I collagen. This work is bringing us closer to understanding how cardiac biomechanics change temporally and spatially during normal development, and how it regulates ECM to maintain mechanical homeostasis for proper function.

  13. Prenatal Mechanistic Target of Rapamycin Complex 1 (m TORC1) Inhibition by Rapamycin Treatment of Pregnant Mice Causes Intrauterine Growth Restriction and Alters Postnatal Cardiac Growth, Morphology, and Function.

    PubMed

    Hennig, Maria; Fiedler, Saskia; Jux, Christian; Thierfelder, Ludwig; Drenckhahn, Jörg-Detlef

    2017-08-04

    Fetal growth impacts cardiovascular health throughout postnatal life in humans. Various animal models of intrauterine growth restriction exhibit reduced heart size at birth, which negatively influences cardiac function in adulthood. The mechanistic target of rapamycin complex 1 (mTORC1) integrates nutrient and growth factor availability with cell growth, thereby regulating organ size. This study aimed at elucidating a possible involvement of mTORC1 in intrauterine growth restriction and prenatal heart growth. We inhibited mTORC1 in fetal mice by rapamycin treatment of pregnant dams in late gestation. Prenatal rapamycin treatment reduces mTORC1 activity in various organs at birth, which is fully restored by postnatal day 3. Rapamycin-treated neonates exhibit a 16% reduction in body weight compared with vehicle-treated controls. Heart weight decreases by 35%, resulting in a significantly reduced heart weight/body weight ratio, smaller left ventricular dimensions, and reduced cardiac output in rapamycin- versus vehicle-treated mice at birth. Although proliferation rates in neonatal rapamycin-treated hearts are unaffected, cardiomyocyte size is reduced, and apoptosis increased compared with vehicle-treated neonates. Rapamycin-treated mice exhibit postnatal catch-up growth, but body weight and left ventricular mass remain reduced in adulthood. Prenatal mTORC1 inhibition causes a reduction in cardiomyocyte number in adult hearts compared with controls, which is partially compensated for by an increased cardiomyocyte volume, resulting in normal cardiac function without maladaptive left ventricular remodeling. Prenatal rapamycin treatment of pregnant dams represents a new mouse model of intrauterine growth restriction and identifies an important role of mTORC1 in perinatal cardiac growth. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Unilateral lung transplantation for pulmonary fibrosis.

    PubMed

    1986-05-01

    Improvements in immunosuppression and surgical techniques have made unilateral lung transplantation feasible in selected patients with end-stage interstitial lung disease. We report two cases of successful unilateral lung transplantation for end-stage respiratory failure due to pulmonary fibrosis. The patients, both oxygen-dependent, had progressive disease refractory to all treatment, with an anticipated life expectancy of less than one year on the basis of the rate of progression of the disease. Both patients were discharged six weeks after transplantation and returned to normal life. They are alive and well at 26 months and 14 months after the procedure. Pulmonary-function studies have shown substantial improvement in their lung volumes and diffusing capacities. For both patients, arterial oxygen tension is now normal and there is no arterial oxygen desaturation with exercise. This experience shows that unilateral lung transplantation, for selected patients with end-stage interstitial lung disease, provides a good functional result. Moreover, it avoids the necessity for cardiac transplantation, as required by the combined heart-lung procedure, and permits the use of the donor heart for another recipient.

  15. The effect of excess expression of GFP in a novel heart-specific green fluorescence zebrafish regulated by nppa enhancer at early embryonic development.

    PubMed

    Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan

    2011-02-01

    In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.

  16. Ultrasound functional imaging in an ex vivo beating porcine heart platform

    NASA Astrophysics Data System (ADS)

    Petterson, Niels J.; Fixsen, Louis S.; Rutten, Marcel C. M.; Pijls, Nico H. J.; van de Vosse, Frans N.; Lopata, Richard G. P.

    2017-12-01

    In recent years, novel ultrasound functional imaging (UFI) techniques have been introduced to assess cardiac function by measuring, e.g. cardiac output (CO) and/or myocardial strain. Verification and reproducibility assessment in a realistic setting remain major issues. Simulations and phantoms are often unrealistic, whereas in vivo measurements often lack crucial hemodynamic parameters or ground truth data, or suffer from the large physiological and clinical variation between patients when attempting clinical validation. Controlled validation in certain pathologies is cumbersome and often requires the use of lab animals. In this study, an isolated beating pig heart setup was adapted and used for performance assessment of UFI techniques such as volume assessment and ultrasound strain imaging. The potential of performing verification and reproducibility studies was demonstrated. For proof-of-principle, validation of UFI in pathological hearts was examined. Ex vivo porcine hearts (n  =  6, slaughterhouse waste) were resuscitated and attached to a mock circulatory system. Radio frequency ultrasound data of the left ventricle were acquired in five short axis views and one long axis view. Based on these slices, the CO was measured, where verification was performed using flow sensor measurements in the aorta. Strain imaging was performed providing radial, circumferential and longitudinal strain to assess reproducibility and inter-subject variability under steady conditions. Finally, strains in healthy hearts were compared to a heart with an implanted left ventricular assist device, simulating a failing, supported heart. Good agreement between ultrasound and flow sensor based CO measurements was found. Strains were highly reproducible (intraclass correlation coefficients  >0.8). Differences were found due to biological variation and condition of the hearts. Strain magnitude and patterns in the assisted heart were available for different pump action, revealing large changes compared to the normal condition. The setup provides a valuable benchmarking platform for UFI techniques. Future studies will include work on different pathologies and other means of measurement verification.

  17. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.

    PubMed

    Liu, Xifu; Gu, Xinhua; Li, Zhaoming; Li, Xinyan; Li, Hui; Chang, Jianjie; Chen, Ping; Jin, Jing; Xi, Bing; Chen, Denghong; Lai, Donna; Graham, Robert M; Zhou, Mingdong

    2006-10-03

    We evaluated the therapeutic potential of a recombinant 61-residue neuregulin-1 (beta2a isoform) receptor-active peptide (rhNRG-1) in multiple animal models of heart disease. Activation of the erbB family of receptor tyrosine kinases by rhNRG-1 could provide a treatment option for heart failure, because neuregulin-stimulated erbB2/erbB4 heterodimerization is not only critical for myocardium formation in early heart development but prevents severe dysfunction of the adult heart and premature death. Disabled erbB-signaling is also implicated in the transition from compensatory hypertrophy to failure, whereas erbB receptor-activation promotes myocardial cell growth and survival and protects against anthracycline-induced cardiomyopathy. rhNRG-1 was administered IV to animal models of ischemic, dilated, and viral cardiomyopathy, and cardiac function and survival were evaluated. Short-term intravenous administration of rhNRG-1 to normal dogs and rats did not alter hemodynamics or cardiac contractility. In contrast, rhNRG-1 improved cardiac performance, attenuated pathological changes, and prolonged survival in rodent models of ischemic, dilated, and viral cardiomyopathy, with the survival benefits in the ischemic model being additive to those of angiotensin-converting enzyme inhibitor therapy. In addition, despite continued pacing, rhNRG-1 produced global improvements in cardiac function in a canine model of pacing-induced heart failure. These beneficial effects make rhNRG-1 promising as a broad-spectrum therapeutic for the treatment of heart failure due to a variety of common cardiac diseases.

  18. Pressure overload differentially affects respiratory capacity in interfibrillar and subsarcolemmal mitochondria.

    PubMed

    Schwarzer, Michael; Schrepper, Andrea; Amorim, Paulo A; Osterholt, Moritz; Doenst, Torsten

    2013-02-15

    Years ago a debate arose as to whether two functionally different mitochondrial subpopulations, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), exist in heart muscle. Nowadays potential differences are often ignored. Presumably, SSM are providing ATP for basic cell function, whereas IFM provide energy for the contractile apparatus. We speculated that two distinguishable subpopulations exist that are differentially affected by pressure overload. Male Sprague-Dawley rats were subjected to transverse aortic constriction for 20 wk or sham operation. Contractile function was assessed by echocardiography. Heart tissue was analyzed by electron microscopy. Mitochondria were isolated by differential centrifugation, and respiratory capacity was analyzed using a Clark electrode. Pressure overload induced left ventricular hypertrophy with increased posterior wall diameter and impaired contractile function. Mitochondrial state 3 respiration in control was 50% higher in IFM than in SSM. Pressure overload significantly impaired respiratory rates in both IFM and SSM, but in SSM to a lower extent. As a result, there were no differences between SSM and IFM after 20 wk of pressure overload. Pressure overload reduced total citrate synthase activity, suggesting reduced total mitochondrial content. Electron microscopy revealed normal morphology of mitochondria but reduced total mitochondrial volume density. In conclusion, IFM show greater respiratory capacity in the healthy rat heart and a greater depression of respiratory capacity by pressure overload than SSM. The differences in respiratory capacity of cardiac IFM and SSM in healthy hearts are eliminated with pressure overload-induced heart failure. The strong effect of pressure overload on IFM together with the simultaneous appearance of mitochondrial and contractile dysfunction may support the notion of IFM primarily producing ATP for contractile function.

  19. Effect of heart rate on the hemodynamics of bileaflet mechanical heart valves' prostheses (St. Jude Medical) in the aortic position and in the opening phase: A computational study.

    PubMed

    Jahandardoost, Mehdi; Fradet, Guy; Mohammadi, Hadi

    2016-03-01

    To date, to the best of the authors' knowledge, in almost all of the studies performed around the hemodynamics of bileaflet mechanical heart valves, a heart rate of 70-72 beats/min has been considered. In fact, the heart rate of ~72 beats/min does not represent the entire normal physiological conditions under which the aortic or prosthetic valves function. The heart rates of 120 or 50 beats/min may lead to hemodynamic complications, such as plaque formation and/or thromboembolism in patients. In this study, the hemodynamic performance of the bileaflet mechanical heart valves in a wide range of normal and physiological heart rates, that is, 60-150 beats/min, was studied in the opening phase. The model considered in this study was a St. Jude Medical bileaflet mechanical heart valve with the inner diameter of 27 mm in the aortic position. The hemodynamics of the native valve and the St. Jude Medical valve were studied in a variety of heart rates in the opening phase and the results were carefully compared. The results indicate that peak values of the velocity profile downstream of the valve increase as heart rate increases, as well as the location of the maximum velocity changes with heart rate in the St. Jude Medical valve model. Also, the maximum values of shear stress and wall shear stresses downstream of the valve are proportional to heart rate in both models. Interestingly, the maximum shear stress and wall shear stress values in both models are in the same range when heart rate is <90 beats/min; however, these values significantly increase in the St. Jude Medical valve model when heart rate is >90 beats/min (up to ~40% growth compared to that of the native valve). The findings of this study may be of importance in the hemodynamic performance of bileaflet mechanical heart valves. They may also play an important role in design improvement of conventional prosthetic heart valves and the design of the next generation of prosthetic valves, such as percutaneous valves. © IMechE 2016.

  20. Cardiovascular Endurance, Body Mass Index, Physical Activity, Screen Time, and Carotenoid Intake of Children: NHANES National Youth Fitness Survey

    PubMed Central

    2016-01-01

    Background. Approximately 17% of children aged 6–11 years were classified as obese in the United States. Obesity adversely affects physical functioning and leads to reduced quality of life. Heart function for overweight and obese children has not been reported. Methods. Data for this study were from NHANES National Youth Fitness Survey (NNYFS) conducted in conjunction with the National Health and Nutrition Examination Survey (NHANES) in 2012. This study used data from children aged 6–12 (N = 732) that had the cardiorespiratory endurance measure, body mass index for age and sex, and dietary data (N = 682). Cardiovascular endurance was estimated by heart rate reserve. Results. Compared to the highest percentile of heart rate reserve, those in the first percentile had 3.52 (2.36, 5.24) odds and those in the second percentile had 3.61 (1.84, 7.06) odds of being in the overweight/obese as compared to the under/normal weight category. Considering the highest percentile, boys had a heart rate reserve of 35%, whereas girls had a heart rate reserve of 13% (less than half that of boys). Conclusion. Having an overweight or obese classification for children in this study demonstrated a compromise in cardiovascular endurance. Parental awareness should be raised as to the detrimental consequence of overweight and heart health. PMID:27774315

  1. Cardiovascular Endurance, Body Mass Index, Physical Activity, Screen Time, and Carotenoid Intake of Children: NHANES National Youth Fitness Survey.

    PubMed

    Vaccaro, Joan A; Huffman, Fatma G

    2016-01-01

    Background . Approximately 17% of children aged 6-11 years were classified as obese in the United States. Obesity adversely affects physical functioning and leads to reduced quality of life. Heart function for overweight and obese children has not been reported. Methods . Data for this study were from NHANES National Youth Fitness Survey (NNYFS) conducted in conjunction with the National Health and Nutrition Examination Survey (NHANES) in 2012. This study used data from children aged 6-12 ( N = 732) that had the cardiorespiratory endurance measure, body mass index for age and sex, and dietary data ( N = 682). Cardiovascular endurance was estimated by heart rate reserve. Results . Compared to the highest percentile of heart rate reserve, those in the first percentile had 3.52 (2.36, 5.24) odds and those in the second percentile had 3.61 (1.84, 7.06) odds of being in the overweight/obese as compared to the under/normal weight category. Considering the highest percentile, boys had a heart rate reserve of 35%, whereas girls had a heart rate reserve of 13% (less than half that of boys). Conclusion . Having an overweight or obese classification for children in this study demonstrated a compromise in cardiovascular endurance. Parental awareness should be raised as to the detrimental consequence of overweight and heart health.

  2. Remote Monitoring in Heart Failure: the Current State.

    PubMed

    Mohan, Rajeev C; Heywood, J Thomas; Small, Roy S

    2017-03-01

    The treatment of congestive heart failure is an expensive undertaking with much of this cost occurring as a result of hospitalization. It is not surprising that many remote monitoring strategies have been developed to help patients maintain clinical stability by avoiding congestion. Most of these have failed. It seems very unlikely that these failures were the result of any one underlying false assumption but rather from the fact that heart failure is a progressive, deadly disease and that human behavior is hard to modify. One lesson that does stand out from the myriad of methods to detect congestion is that surrogates of congestion, such as weight and impedance, are not reliable or actionable enough to influence outcomes. Too many factors influence these surrogates to successfully and confidently use them to affect HF hospitalization. Surrogates are often attractive because they can be inexpensively measured and followed. They are, however, indirect estimations of congestion, and due to the lack specificity, the time and expense expended affecting the surrogate do not provide enough benefit to warrant its use. We know that high filling pressures cause transudation of fluid into tissues and that pulmonary edema and peripheral edema drive patients to seek medical assistance. Direct measurement of these filling pressures appears to be the sole remote monitoring modality that shows a benefit in altering the course of the disease in these patients. Congestive heart failure is such a serious problem and the consequences of hospitalization so onerous in terms of patient well-being and costs to society that actual hemodynamic monitoring, despite its costs, is beneficial in carefully selected high-risk patients. Those patients who benefit are ones with a prior hospitalization and ongoing New York Heart Association (NYHA) class III symptoms. Patients with NYHA class I and II symptoms do not require hemodynamic monitoring because they largely have normal hemodynamics. Those with NYHA class IV symptoms do not benefit because their hemodynamics are so deranged that they cannot be substantially altered except by mechanical circulatory support or heart transplantation. Finally, hemodynamic monitoring offers substantial hope to those patients with normal ejection fraction (EF) heart failure, a large group for whom medical therapy has largely been a failure. These patients have not benefited from the neurohormonal revolution that improved the lives of their brothers and sisters with reduced ejection fractions. Hemodynamic stabilization improves the condition of both but more so of the normal EF cohort. This is an important observation that will help us design future trials for the 50% of heart failure patients with normal systolic function.

  3. IGF-I replacement therapy in children with congenital IGF-I deficiency (Laron syndrome) maintains heart dimension and function.

    PubMed

    Scheinowitz, Mickey; Feinberg, Micha S; Laron, Zvi

    2009-06-01

    Untreated patients with congenital growth hormone deficiency (GHD) and IGF-I deficiency are characterized not only by dwarfism but also by acromicria and organomicria, such as the heart. We assessed cardiac dimensions and function in very young patients with Laron syndrome (LS) undergoing IGF-I replacement therapy. Two to seven echocardiographic measurements were performed during IGF-I replacement therapy on male (n=4) and female (n=4) LS -patients, mean+/-SD age of 7.1+/-3.6 years (range 1.6-11.6 years), weight 16.1+/-9.7 kg, and height 89.9+/-18.5 cm. As aged- and gender-matched controls served 44 healthy children, age: 8.7+/-5.5 years, weight: 36.1+/-22.4 kg, and height: 129.7+/-33.1cm. Data of LS patients were normalized to body surface area and compared to the control group as well as nomograms of normal echocardiographic parameters for this age group. Left ventricular diastolic and systolic dimensions (LVDD/ LVSD, mm) and LV mass (gr) were significantly smaller in boys and girls with IGF-I treated LS compared with controls while the shortening fraction (%) and intraventricular septum thickness (mm) were similar. When compared with standard values for this age group, all treated LS patients were within 1 standard deviation of the mean. IGF-I therapy of young patients with Laron syndrome maintain LV dimensions and function within the normal range of aged-matched controls.

  4. Contemporary management of tricuspid regurgitation: an updated clinical review.

    PubMed

    Taylor, Joshua T; Chidsey, Geoffrey; Disalvo, Thomas G; Byrne, John G; Maltais, Simon

    2013-01-01

    Tricuspid regurgitation (TR) is a complex and insidious valvular pathology that represents a complex decision and management algorithm for patients. TR is present in a significant proportion of the population and is especially prevalent in patients with advanced heart failure. Patients with TR have been demonstrated to have a decreased survival even with normal left heart function. TR can be a result of pathology that directly affects the valvular structure (i.e., Ebstein anomaly) or as a result of increased forward pressures (ie, pulmonary hypertension, left heart failure). Conservative management of patients with TR is primarily symptomatic relief. Definitive therapy involves surgical repair of the tricuspid valve. Furthermore, as more patients develop advanced heart failure, the management of TR in patients with left ventricular assist devices has become necessary because of the evidence of increased in-hospital morbidity and a trend toward decreased survival.

  5. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet.

    PubMed

    Jackson, Ellen E; Rendina-Ruedy, Elisabeth; Smith, Brenda J; Lacombe, Veronique A

    2015-01-01

    Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway.

  6. Strain, strain rate, and the force frequency relationship in patients with and without heart failure.

    PubMed

    Mak, Susanna; Van Spall, Harriette G C; Wainstein, Rodrigo V; Sasson, Zion

    2012-03-01

    The aim of this study was to examine the effect of heart rate (HR) on indices of deformation in adults with and without heart failure (HF) who underwent simultaneous high-fidelity catheterization of the left ventricle to describe the force-frequency relationship. Right atrial pacing to control HR and high-fidelity recordings of left ventricular (LV) pressure were used to inscribe the force-frequency relationship. Simultaneous two-dimensional echocardiographic imaging was acquired for speckle-tracking analysis. Thirteen patients with normal LV function and 12 with systolic HF (LV ejection fraction, 31 ± 13%) were studied. Patients with HF had depressed isovolumic contractility and impaired longitudinal strain and strain rate. HR-dependent increases in LV+dP/dt(max), the force-frequency relationship, was demonstrated in both groups (normal LV function, baseline to 100 beats/min: 1,335 ± 296 to 1,564 ± 320 mm Hg/sec, P < .0001; HF, baseline to 100 beats/min: 970 ± 207 to 1,083 ± 233 mm Hg/sec, P < .01). Longitudinal strain decreased significantly (normal LV function, baseline to 100 beats/min: 18.0 ± 3.5% to 10.8 ± 6.0%, P < .001; HF: 9.4 ± 4.1% to 7.5 ± 3.4%, P < .01). The decrease in longitudinal strain was related to a decrease in LV end-diastolic dimensions. Strain rate did not change with right atrial pacing. Despite the inotropic effect of increasing HR, longitudinal strain decreases in parallel with stroke volume as load-dependent indices of ejection. Strain rate did not reflect the modest HR-related changes in contractility; on the other hand, the use of strain rate for quantitative stress imaging is also less likely to be confounded by chronotropic responses. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  7. Essential Role of the m2R-RGS6-IKACh Pathway in Controlling Intrinsic Heart Rate Variability

    PubMed Central

    Posokhova, Ekaterina; Ng, David; Opel, Aaisha; Masuho, Ikuo; Tinker, Andrew; Biesecker, Leslie G.; Wickman, Kevin; Martemyanov, Kirill A.

    2013-01-01

    Normal heart function requires generation of a regular rhythm by sinoatrial pacemaker cells and the alteration of this spontaneous heart rate by the autonomic input to match physiological demand. However, the molecular mechanisms that ensure consistent periodicity of cardiac contractions and fine tuning of this process by autonomic system are not completely understood. Here we examined the contribution of the m2R-IKACh intracellular signaling pathway, which mediates the negative chronotropic effect of parasympathetic stimulation, to the regulation of the cardiac pacemaking rhythm. Using isolated heart preparations and single-cell recordings we show that the m2R-IKACh signaling pathway controls the excitability and firing pattern of the sinoatrial cardiomyocytes and determines variability of cardiac rhythm in a manner independent from the autonomic input. Ablation of the major regulator of this pathway, Rgs6, in mice results in irregular cardiac rhythmicity and increases susceptibility to atrial fibrillation. We further identify several human subjects with variants in the RGS6 gene and show that the loss of function in RGS6 correlates with increased heart rate variability. These findings identify the essential role of the m2R-IKACh signaling pathway in the regulation of cardiac sinus rhythm and implicate RGS6 in arrhythmia pathogenesis. PMID:24204714

  8. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart

    PubMed Central

    Wang, Jingying; Ma, Heng; Tong, Chao; Zhang, Hanying; Lawlis, Gavin B.; Li, Yuanda; Zang, Mengwei; Ren, Jun; Nijland, Mark J.; Ford, Stephen P.; Nathanielsz, Peter W.; Li, Ji

    2010-01-01

    Maternal obesity in pregnancy predisposes offspring to insulin resistance and associated cardiovascular disease. Here, we used a well-established sheep model to investigate the effects of maternal obesity on cardiac functions. Multiparous ewes were assigned to a control (CON) diet [100% of National Research Council (NRC) recommendations] or an obesogenic (OB) diet (150% of NRC recommendations) from 60 d before conception to necropsy on d 135 of pregnancy. Fetal blood glucose and insulin were increased (P<0.01, n=8) in OB (35.09±2.03 mg/dl and 3.40±1.43 μU/ml, respectively) vs. CON ewes (23.80±1.38 mg/dl and 0.769±0.256 μU/ml). Phosphorylation of AMP-activated protein kinase (AMPK), a cardioprotective signaling pathway, was reduced (P<0.05), while the stress signaling pathway, p38 MAPK, was up-regulated (P<0.05) in OB maternal and fetal hearts. Phosphorylation of c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 (IRS-1) at Ser-307 were increased (P<0.05) in OB fetal heart associated with lower downstream PI3K-Akt activity (P<0.05), indicating impaired cardiac insulin signaling. Although OB fetal hearts exhibited a normal contractile function vs. CON fetal hearts during basal perfusion, they developed an impaired heart-rate-left-ventricular-developed pressure product in response to high workload stress. Taken together, fetuses of OB mothers demonstrate alterations in cardiac PI3K-Akt, AMPK, and JNK-IRS-1 signaling pathways that would predispose them to insulin resistance and cardiac dysfunction.—Wang, J., Ma, H., Tong, C., Zhang, H., Lawlis, G. B., Li, Y., Zang, M., Ren, J., Nijland, M. J., Ford, S. P., Nathanielsz, P. W., Li, J. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. PMID:20110268

  9. Human cardiomyocyte calcium handling and transverse tubules in mid-stage of post-myocardial-infarction heart failure.

    PubMed

    Høydal, Morten Andre; Kirkeby-Garstad, Idar; Karevold, Asbjørn; Wiseth, Rune; Haaverstad, Rune; Wahba, Alexander; Stølen, Tomas L; Contu, Riccardo; Condorelli, Gianluigi; Ellingsen, Øyvind; Smith, Godfrey L; Kemi, Ole J; Wisløff, Ulrik

    2018-06-01

    Cellular processes in the heart rely mainly on studies from experimental animal models or explanted hearts from patients with terminal end-stage heart failure (HF). To address this limitation, we provide data on excitation contraction coupling, cardiomyocyte contraction and relaxation, and Ca 2+ handling in post-myocardial-infarction (MI) patients at mid-stage of HF. Nine MI patients and eight control patients without MI (non-MI) were included. Biopsies were taken from the left ventricular myocardium and processed for further measurements with epifluorescence and confocal microscopy. Cardiomyocyte function was progressively impaired in MI cardiomyocytes compared with non-MI cardiomyocytes when increasing electrical stimulation towards frequencies that simulate heart rates during physical activity (2 Hz); at 3 Hz, we observed almost total breakdown of function in MI. Concurrently, we observed impaired Ca 2+ handling with more spontaneous Ca 2+ release events, increased diastolic Ca 2+ , lower Ca 2+ amplitude, and prolonged time to diastolic Ca 2+ removal in MI (P < 0.01). Significantly reduced transverse-tubule density (-35%, P < 0.01) and sarcoplasmic reticulum Ca 2+ adenosine triphosphatase 2a (SERCA2a) function (-26%, P < 0.01) in MI cardiomyocytes may explain the findings. Reduced protein phosphorylation of phospholamban (PLB) serine-16 and threonine-17 in MI provides further mechanisms to the reduced function. Depressed cardiomyocyte contraction and relaxation were associated with impaired intracellular Ca 2+ handling due to impaired SERCA2a activity caused by a combination of alteration in the PLB/SERCA2a ratio and chronic dephosphorylation of PLB as well as loss of transverse tubules, which disrupts normal intracellular Ca 2+ homeostasis and handling. This is the first study that presents these mechanisms from viable and intact cardiomyocytes isolated from the left ventricle of human hearts at mid-stage of post-MI HF. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  10. Echocardiographic assessment of cardiac disease

    NASA Technical Reports Server (NTRS)

    Popp, R. L.

    1976-01-01

    The physical principles and current applications of echocardiography in assessment of heart diseases are reviewed. Technical considerations and unresolved points relative to the use of echocardiography in various disease states are stressed. The discussion covers normal mitral valve motion, mitral stenosis, aortic regurgitation, atrial masses, mitral valve prolapse, and idiopathic hypertrophic subaortic stenosis. Other topics concern tricuspic valve abnormalities, aortic valve disease, pulmonic valve, pericardial effusion, intraventricular septal motion, and left ventricular function. The application of echocardiography to congenital heart disease diagnosis is discussed along with promising ultrasonic imaging systems. The utility of echocardiography in quantitative evaluation of cardiac disease is demonstrated.

  11. Impact of Prosthesis-Patient Mismatch on Long-term Functional Capacity After Mechanical Aortic Valve Replacement.

    PubMed

    Petit-Eisenmann, Hélène; Epailly, Eric; Velten, Michel; Radojevic, Jelena; Eisenmann, Bernard; Kremer, Hélène; Kindo, Michel

    2016-12-01

    The impact of prosthesis-patient mismatch (PPM) after aortic valve replacement (AVR) for aortic stenosis on exercise capacity remains controversial. The aim of this study was to analyze the long-term impact of PPM after mechanical AVR on maximal oxygen uptake (VO 2max ). The study included 75 patients who had undergone isolated mechanical AVR for aortic stenosis with normal left ventricular (LV) function between 1994 and 2012. Their functional capacity was evaluated on average 4.6 years after AVR by exercise testing, including measurement of their VO 2max , and by determining their New York Heart Association functional class and Short Form-36 score. Two groups were defined by measuring the patients' indexed effective orifice area (iEOA) by transthoracic echocardiography: a PPM group (iEOA < 0.85 cm 2 /m 2 ) and a no-PPM group (iEOA ≥ 0.85 cm 2 /m 2 ). PPM was present in 37.0% of the patients. The percentage of the predicted VO 2max achieved was significantly lower in the PPM group (86.7 ± 19.5% vs 97.5 ± 23.0% in the no-PPM group; P = 0.04). Compared with the no-PPM group, the PPM group contained fewer patients in New York Heart Association functional class I and their mean Short Form-36 physical component summary score was significantly lower. The mean transvalvular gradient was significantly higher in the PPM group than in the no-PPM group (P < 0.001). Systolic and diastolic function and LV mass had normalized in both groups. PPM is associated in the long term with moderate but significant impairment of functional capacity, despite optimal LV reverse remodelling and normalization of LV systolic and diastolic function. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  12. Effects that different types of sports have on the hearts of children and adolescents and the value of two-dimensional strain-strain-rate echocardiography.

    PubMed

    Binnetoğlu, Fatih Köksal; Babaoğlu, Kadir; Altun, Gürkan; Kayabey, Özlem

    2014-01-01

    Whether the hypertrophy found in the hearts of athletes is physiologic or a risk factor for the progression of pathologic hypertrophy remains controversial. The diastolic and systolic functions of athletes with left ventricular (LV) hypertrophy usually are normal when measured by conventional methods. More precise assessment of global and regional myocardial function may be possible using a newly developed two-dimensional (2D) strain echocardiographic method. This study evaluated the effects that different types of sports have on the hearts of children and adolescents and compared the results of 2D strain and strain-rate echocardiographic techniques with conventional methods. Athletes from clubs for five different sports (basketball, swimming, football, wrestling, and tennis) who had practiced regularly at least 3 h per week during at least the previous 2 years were included in the study. The control group consisted of sedentary children and adolescents with no known cardiac or systemic diseases (n = 25). The athletes were grouped according to the type of exercise: dynamic (football, tennis), static (wrestling), or static and dynamic (basketball, swimming). Shortening fraction and ejection fraction values were within normal limits for the athletes in all the sports disciplines. Across all 140 athletes, LV geometry was normal in 58 athletes (41.4 %), whereas 22 athletes (15.7 %) had concentric remodeling, 20 (14.3 %) had concentric hypertrophy, and 40 (28.6 %) had eccentric hypertrophy. Global LV longitudinal strain values obtained from the average of apical four-, two-, and three-chamber global strain values were significantly lower for the basketball players than for all the other groups (p < 0.001).

  13. Spallanzani's mouse: a model of restoration and regeneration.

    PubMed

    Heber-Katz, E; Leferovich, J M; Bedelbaeva, K; Gourevitch, D

    2004-01-01

    The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show-through extensive breeding and backcrossing--that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.

  14. Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter?

    PubMed

    Andrade, David C; Arce-Alvarez, Alexis; Toledo, Camilo; Díaz, Hugo S; Lucero, Claudia; Quintanilla, Rodrigo A; Schultz, Harold D; Marcus, Noah J; Amann, Markus; Del Rio, Rodrigo

    2018-03-01

    Heart failure (HF) is a global public health problem that, independent of its etiology [reduced (HFrEF) or preserved ejection fraction (HFpEF)], is characterized by functional impairments of cardiac function, chemoreflex hypersensitivity, baroreflex sensitivity (BRS) impairment, and abnormal autonomic regulation, all of which contribute to increased morbidity and mortality. Exercise training (ExT) has been identified as a nonpharmacological therapy capable of restoring normal autonomic function and improving survival in patients with HFrEF. Improvements in autonomic function after ExT are correlated with restoration of normal peripheral chemoreflex sensitivity and BRS in HFrEF. To date, few studies have addressed the effects of ExT on chemoreflex control, BRS, and cardiac autonomic control in HFpEF; however, there are some studies that have suggested that ExT has a beneficial effect on cardiac autonomic control. The beneficial effects of ExT on cardiac function and autonomic control in HF may have important implications for functional capacity in addition to their obvious importance to survival. Recent studies have suggested that the peripheral chemoreflex may also play an important role in attenuating exercise intolerance in HFrEF patients. The role of the central/peripheral chemoreflex, if any, in mediating exercise intolerance in HFpEF has not been investigated. The present review focuses on recent studies that address primary pathophysiological mechanisms of HF (HFrEF and HFpEF) and the potential avenues by which ExT exerts its beneficial effects.

  15. Functional Tricuspid Regurgitation Caused by Chronic Atrial Fibrillation: A Real-Time 3-Dimensional Transesophageal Echocardiography Study.

    PubMed

    Utsunomiya, Hiroto; Itabashi, Yuji; Mihara, Hirotsugu; Berdejo, Javier; Kobayashi, Sayuki; Siegel, Robert J; Shiota, Takahiro

    2017-01-01

    Functional tricuspid regurgitation (TR) with a structurally normal tricuspid valve (TV) may occur secondary to chronic atrial fibrillation (AF). However, the clinical and echocardiographic differences according to functional TR subtypes are unclear. Therefore, characterization of functional TR because of chronic AF (AF-TR) remains undetermined. To investigate the prevalence of AF-TR, 437 patients with moderate to severe TR underwent 3-dimensional (3D) transesophageal echocardiography. TR severity was determined by the averaged vena contracta width on apical and parasternal inflow views. The prevalence of AF-TR was 9.2%, whereas that of functional TR because of left-sided heart disease was 45.3%. Clinical features of AF-TR included advanced age, female sex, greater right atrial than left atrial enlargement and lower systolic pulmonary artery pressure compared with left-sided heart disease-TR with sinus rhythm (all P<0.05). In 3D TV assessment, patients with AF-TR had a larger TV annular area with weaker annular contraction (both P<0.001) but a smaller tethering angle (P<0.001) despite a similar leaflet coaptation status compared with patients with left-sided heart disease-TR with sinus rhythm. On multivariable analysis, only the TV annular area in midsystole (coefficient, 0.059; 95% confidence interval, 0.041-0.078 per 100 mm 2 ; P<0.001) was associated with TR severity in AF-TR. The annular area was more closely correlated with the right atrial volume than right ventricular end-systolic volume in AF-TR (P<0.001). AF-TR is not rare and is associated with advanced age and right atrial enlargement. TV deformations and their association with right heart remodeling differ between AF-TR and left-sided heart disease-TR. Our results suggest that in patients with TR secondary to AF, TV annuloplasty should be effective because this entity has annular dilatation without leaflet deformation. © 2017 American Heart Association, Inc.

  16. Myocardial Adeno-Associated Virus Serotype 6–βARKct Gene Therapy Improves Cardiac Function and Normalizes the Neurohormonal Axis in Chronic Heart Failure

    PubMed Central

    Rengo, Giuseppe; Lymperopoulos, Anastasios; Zincarelli, Carmela; Donniacuo, Maria; Soltys, Stephen; Rabinowitz, Joseph E.; Koch, Walter J.

    2009-01-01

    Background The upregulation of G protein–coupled receptor kinase 2 in failing myocardium appears to contribute to dysfunctional β-adrenergic receptor (βAR) signaling and cardiac function. The peptide βARKct, which can inhibit the activation of G protein–coupled receptor kinase 2 and improve βAR signaling, has been shown in transgenic models and short-term gene transfer experiments to rescue heart failure (HF). This study was designed to evaluate long-term βARKct expression in HF with the use of stable myocardial gene delivery with adeno-associated virus serotype 6 (AAV6). Methods and Results In HF rats, we delivered βARKct or green fluorescent protein as a control via AAV6-mediated direct intramyocardial injection. We also treated groups with concurrent administration of the β-blocker metoprolol. We found robust and long-term transgene expression in the left ventricle at least 12 weeks after delivery. βARKct significantly improved cardiac contractility and reversed left ventricular remodeling, which was accompanied by a normalization of the neurohormonal (catecholamines and aldosterone) status of the chronic HF animals, including normalization of cardiac βAR signaling. Addition of metoprolol neither enhanced nor decreased βARKct-mediated beneficial effects, although metoprolol alone, despite not improving contractility, prevented further deterioration of the left ventricle. Conclusions Long-term cardiac AAV6-βARKct gene therapy in HF results in sustained improvement of global cardiac function and reversal of remodeling at least in part as a result of a normalization of the neurohormonal signaling axis. In addition, βARKct alone improves outcomes more than a β-blocker alone, whereas both treatments are compatible. These findings show that βARKct gene therapy can be of long-term therapeutic value in HF. PMID:19103992

  17. Is the normal heart rate ``chaotic'' due to respiration?

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Riedl, Maik; Kurths, Jürgen

    2009-06-01

    The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: "Is the normal heart rate `chaotic' due to respiration?"

  18. Pulse wave velocity in patients with severe head injury a pilot study.

    PubMed

    Shahsavari, S; McKelvey, T; Rydenhag, B; Ritzén, C Eriksson

    2010-01-01

    The study aimed to determine the potential of pulse wave velocity measurements to reflect changes in compliant cerebral arteries/arterioles in head injured patients. The approach utilizes the electrocardiogram and intracranial pressure signals to measure the wave transit time between heart and cranial cavity. Thirty five clinical records of nineteen head injured patients, with different levels of cerebrovascular pressure-reactivity response, were investigated through the study. Results were compared with magnitude of normalized transfer function at the fundamental cardiac frequency. In patients with intact cerebrovascular pressure-reactivity, magnitude of normalized transfer function at the fundamental cardiac component was found to be highly correlated with pulse wave transit time.

  19. Left ventricular function during lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Ahmad, M.; Blomqvist, C. G.; Mullins, C. B.; Willerson, J. T.

    1977-01-01

    The response of the human left ventricle to lower body negative pressure (LBNP) and the relation between left ventricular function and hemodynamic response were investigated. Ventricular function curves relating stroke volume to end-diastolic volume were obtained in 12 normal men. Volume data were derived from echocardiographic measurements of left ventricular end-systolic and end-diastolic diameters at rest and during lower body negative pressure (LBNP) at minus 40 mm Hg. End-diastolic volume decreased by 19% and stroke volume by 22%. There were no significant changes in heart rate, arterial blood pressure, or end-systolic volume. Thus, moderate levels of LBNP significantly reduce preload and stroke volume without affecting contractile state. The absence of significant changes in heart rate and arterial blood pressure in the presence of a significant reduction in stroke volume is consistent with an increase in systemic peripheral resistance mediated by low-pressure baroreceptors.

  20. Evaluation and management of bradycardia in neonates and children.

    PubMed

    Baruteau, Alban-Elouen; Perry, James C; Sanatani, Shubhayan; Horie, Minoru; Dubin, Anne M

    2016-02-01

    Heart rate is commonly used in pediatric early warning scores. Age-related changes in the anatomy and physiology of infants and children produce normal ranges for electrocardiogram features that differ from adults and vary with age. Bradycardia is defined as a heart rate below the lowest normal value for age. Pediatric bradycardia most commonly manifests as sinus bradycardia, junctional bradycardia, or atrioventricular block. As a result of several different etiologies, it may occur in an entirely structurally normal heart or in association with concomitant congenital heart disease. Genetic variants in multiple genes have been described to date in the pathogenesis of inherited sinus node dysfunction or progressive cardiac conduction disorders. Management and eventual prognosis of bradycardia in the young are entirely dependent upon the underlying cause. Reasons to intervene for bradycardia are the association of related symptoms and/or the downstream risk of heart failure or pause-dependent tachyarrhythmia. The simplest aspect of severe bradycardia management is reflected in the Pediatric and Advanced Life Support (PALS) guidelines. Early diagnosis and appropriate management are critical in many cases in order to prevent sudden death, and this review critically assesses our current practice for evaluation and management of bradycardia in neonates and children. Bradycardia is defined as a heart rate below the lowest normal value for age. Age related changes in the anatomy and physiology of infants and children produce normal ranges for electrocardiogram features that differ from adults and vary with age. Pediatric bradycardia most commonly manifests as sinus bradycardia, junctional bradycardia, or atrioventricular block. Management and eventual prognosis of bradycardia in the young are entirely dependent upon the underlying cause. Bradycardia may occur in a structurally normal heart or in association with congenital heart disease. Genetic variants in multiple genes have been described. Reasons to intervene for bradycardia are the association of related symptoms and/or the downstream risk of heart failure or pause-dependent tachyarrhythmia. Early diagnosis and appropriate management are critical in order to prevent sudden death.

  1. Comparison at Necropsy of Heart Weight in Women Aged 20 to 29 Years With Fatal Trauma or Chemical Intoxication Versus Fatal Natural Cause (A Search for the Normal Adult Heart Weight).

    PubMed

    Blackbourne, Brian D; Vasudevan, Anupama; Roberts, William C

    2017-03-01

    The present obesity epidemic makes determining the normal heart weight in adults difficult. This study examines the heart weight at autopsy in 104 women aged 20 to 29 years who died in 1978 to 1980 before the overweight epidemic ensued. Of the 104 cases, the hearts weighed ≤300 g in 86 (83%) and >300 g in 18 (17%). Of the 67 cases dying from an unnatural cause (trauma or chemical intoxication), only 3 (4%) had hearts weighing >300 g; of the 37 patients dying from a variety of natural causes, 15 (41%) had hearts weighing >300 g (p <0.001). The body mass index (BMI) was ≤25 kg/m 2 in 82 cases (79%) and the hearts in them ranged from 120 to 400 g (mean 262 ± 51; median 257 g); of the 22 cases (21%) in whom the BMI was >25 kg/m 2 , the hearts ranged from 230 to 850 g (mean 351 ± 142; median 300 g). In conclusion, the cases dying from an unnatural cause had smaller mean heart weights than those women dying from a natural cause and those with a normal BMI (≤25 kg/m 2 ) had smaller mean heart weights than those with a BMI >25 kg/m 2 . The normal heart weight in young women dying from an unnatural cause with few exceptions is <300 g. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Lifeng; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029; Zhou, Yong

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes andmore » nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.« less

  3. Renin stimulation by passive tilting: the influence of an anti-gravity suit on postural changes in plasma renin activity, plasma noradrenaline concentration and kidney function in normal man.

    PubMed

    Hesse, B; Ring-Larsen, H; Nielsen, I; Christensen, N J

    1978-04-01

    Plasma renin activity (PRA), plasma noradrenaline concentration, heart rate, blood pressure, and clearances of para-aminohippurate and inulin were measured in twelve normal subjects (clearances in only three subjects) before and after 40 min of 60 degrees upright tilting. The tilting experiments were repeated after inflation of an anti-gravity suit to 60 mmHg on the lower extremities. Inflation of the anti-gravity suit caused an abolition of the postural PRA increase, a marked reduction of the postural increases in plasma noradrenaline and heart rate, and elimination of the decreases in pulse pressure, inulin and para-aminohippurate clearances and sodium excretion. The results suggest a decisive role of the sympathetic nervous system for postural renin increase, probably mainly activated by stretch receptors in the low-pressure cardiopulmoanry area.

  4. A case of reversible dilated cardiomyopathy after alpha-interferon therapy in a patient with renal cell carcinoma.

    PubMed

    Kuwata, Akiko; Ohashi, Masuo; Sugiyama, Masaya; Ueda, Ryuzo; Dohi, Yasuaki

    2002-12-01

    A 47-year-old man with renal cell carcinoma underwent nephrectomy, and postoperative chemotherapy was performed with recombinant alpha-interferon. Five years later, he experienced dyspnea during physical exertion. An echocardiogram revealed dilatation and systolic dysfunction of the left ventricle, and thallium-201 myocardial scintigraphy showed diffuse heterogeneous perfusion. We diagnosed congestive heart failure because of cardiomyopathy induced by alpha-interferon therapy. Withdrawal of interferon therapy and the combination of an angiotensin-converting enzyme inhibitor, diuretics, and digitalis improved left ventricular systolic function. Furthermore, myocardial scintigraphy using [123I] beta-methyl-p-iodophenylpentadecanoic acid (123I-BMIPP) or [123 I]metaiodobenzylguanidine (123I-MIBG) revealed normal perfusion after the improvement of congestive heart failure. This is a rare case of interferon-induced cardiomyopathy that resulted in normal myocardial images in 123I-BMIPP and 123I-MIBG scintigrams after withdrawal of interferon therapy.

  5. [Analysis of the heart sound with arrhythmia based on nonlinear chaos theory].

    PubMed

    Ding, Xiaorong; Guo, Xingming; Zhong, Lisha; Xiao, Shouzhong

    2012-10-01

    In this paper, a new method based on the nonlinear chaos theory was proposed to study the arrhythmia with the combination of the correlation dimension and largest Lyapunov exponent, through computing and analyzing these two parameters of 30 cases normal heart sound and 30 cases with arrhythmia. The results showed that the two parameters of the heart sounds with arrhythmia were higher than those with the normal, and there was significant difference between these two kinds of heart sounds. That is probably due to the irregularity of the arrhythmia which causes the decrease of predictability, and it's more complex than the normal heart sound. Therefore, the correlation dimension and the largest Lyapunov exponent can be used to analyze the arrhythmia and for its feature extraction.

  6. Secondary Pulmonary Hypertension and Right-Sided Heart Failure at Presentation in Grave's Disease

    PubMed Central

    Ganeshpure, Swapnil Panjabrao; Vaidya, Gaurang Nandkishor; Gattani, Vipul

    2012-01-01

    A young female presented with evidence of right-sided heart failure and was subsequently found to have significant pulmonary artery hypertension (PAH). Because of her normal left ventricular function and pulmonary capillary wedge pressure, the most probable site of etiology seemed to be the pulmonary vasculature. All the common possible secondary causes of PAH were ruled out, but during the investigations, she was found to have elevated thyroid function tests compatible with the diagnosis of Grave's disease. The treatment of Grave's disease, initially by medications and subsequently by radioiodine therapy, was associated with a significant reduction in the pulmonary artery systolic pressure. The purpose of this case report is to highlight one of the unusual and underdiagnosed presentations of Grave's disease. PMID:23198182

  7. Idiopathic annular dilation: a rare cause of isolated severe tricuspid regurgitation.

    PubMed

    Girard, S E; Nishimura, R A; Warnes, C A; Dearani, J A; Puga, F J

    2000-03-01

    The management of patients with severe tricuspid regurgitation (TR) requires the clinician to clarify the mechanism of regurgitation. Primary disorders of the tricuspid valve, either congenital or acquired, may be readily identified by echocardiography. Severe TR most often results from left-sided heart disease and secondary pulmonary hypertension. Cardiomyopathic processes may also cause right ventricular failure and functional TR. We report three patients with severe TR due to idiopathic annular dilation. The tricuspid valves were otherwise normal on surgical inspection, and the pulmonary pressures were not significantly elevated. Each patient was aged over 65 years and had chronic atrial fibrillation with preserved left ventricular systolic function. Surgical treatment was associated with marked clinical improvement. Clinicians should recognize this unusual but treatable cause of right-sided congestive heart failure.

  8. Translational neurocardiology: preclinical models and cardioneural integrative aspects

    PubMed Central

    Andresen, M. C.; Armour, J. A.; Billman, G. E.; Chen, P.‐S.; Foreman, R. D.; Herring, N.; O'Leary, D. S.; Sabbah, H. N.; Schultz, H. D.; Sunagawa, K.; Zucker, I. H.

    2016-01-01

    Abstract Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various ‘levels’ become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics. PMID:27098459

  9. RBC indices

    MedlinePlus

    ... sudden blood loss, long-term diseases, kidney failure , aplastic anemia , or man-made heart valves). MCV above normal. ... sudden blood loss, long-term diseases, kidney failure, aplastic anemia, or man-made heart valves). MCH above normal. ...

  10. Clinical Profile of Cardiac Arrhythmias in Children Attending the Out Patient Department of a Tertiary Paediatric Care Centre in Chennai

    PubMed Central

    Sundararajan, Premkumar; Sangaralingam, Thangavelu

    2016-01-01

    Introduction The presentation of symptoms of paediatric arrhythmias vary depending on the age and underlying heart disease. Physical examination of children with important arrhythmias may be entirely normal. Aim Aim is to study the characteristics of cardiac arrhythmias in paediatric patients in a tertiary paediatric care centre in Chennai, India. Materials and Methods The participants (n=60) were from birth to 12 years of age. Patients with sinus arrhythmias, sinus tachycardia and sinus bradycardia were excluded. Proportions of various parameters of interest like clinical features, age and sex distribution and underlying heart disease of children presenting with cardiac arrhythmias were arrived. Statistical analysis was performed using SPSS version 16.0. Results Ventricular ectopics were the most common type of arrhythmias observed in the present study followed by Sinus Node Dysfunction (SND). The most common type of SND was sino atrial arrest. Supra ventricular tachycardia was the most frequently sustained tachyarrhythmia in the present study. An increased association of WPW (Wolf Parkinson White Syndrome) with specific congenital cardiac defects was noted. Conclusion Cardiac arrhythmias in children can present at anytime from fetal life to adolescence and their recognition requires high index of suspicion. While majority of children with arrhythmias have structurally normal heart, they are frequently encountered in children with underlying heart disease. Treatment of paediatric arrhythmias should be guided by the severity of the patient, the structure and function of the heart. PMID:28208963

  11. Heart rate variability in idiopathic dilated cardiomyopathy: relation to disease severity and prognosis.

    PubMed Central

    Yi, G.; Goldman, J. H.; Keeling, P. J.; Reardon, M.; McKenna, W. J.; Malik, M.

    1997-01-01

    OBJECTIVE: To assess the clinical importance of heart rate variability (HRV) in patients with idiopathic dilated cardiomyopathy (DCM). PATIENTS AND METHODS: Time domain analysis of 24 hour HRV was performed in 64 patients with DCM, 19 of their relatives with left ventricular enlargement (possible early DCM), and 33 healthy control subjects. RESULTS: Measures of HRV were reduced in patients with DCM compared with controls (P < 0.05). HRV parameters were similar in relatives and controls. Measures of HRV were lower in DCM patients in whom progressive heart failure developed (n = 28) than in those who remained clinically stable (n = 36) during a follow up of 24 (20) months (P = 0.0001). Reduced HRV was associated with NYHA functional class, left ventricular end diastolic dimension, reduced left ventricular ejection fraction, and peak exercise oxygen consumption (P < 0.05) in all patients. DCM patients with standard deviation of normal to normal RR intervals calculated over the 24 hour period (SDNN) < 50 ms had a significantly lower survival rate free of progressive heart failure than those with SDNN > 50 ms (P = 0.0002, at 12 months; P = 0.0001, during overall follow up). Stepwise multiple regression analysis showed that SDNN < 50 ms identified, independently of other clinical variables, patients who were at increased risk of developing progressive heart failure (P = 0.0004). CONCLUSIONS: HRV is reduced in patients with DCM and related to disease severity. HRV is clinically useful as an early non-invasive marker of DCM deterioration. PMID:9068391

  12. Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure.

    PubMed

    Sammut, Eva; Zarinabad, Niloufar; Wesolowski, Roman; Morton, Geraint; Chen, Zhong; Sohal, Manav; Carr-White, Gerry; Razavi, Reza; Chiribiri, Amedeo

    2015-02-12

    Cardiac magnetic resonance (CMR) is playing an expanding role in the assessment of patients with heart failure (HF). The assessment of myocardial perfusion status in HF can be challenging due to left ventricular (LV) remodelling and wall thinning, coexistent scar and respiratory artefacts. The aim of this study was to assess the feasibility of quantitative CMR myocardial perfusion analysis in patients with HF. A group of 58 patients with heart failure (HF; left ventricular ejection fraction, LVEF ≤ 50%) and 33 patients with normal LVEF (LVEF >50%), referred for suspected coronary artery disease, were studied. All subjects underwent quantitative first-pass stress perfusion imaging using adenosine according to standard acquisition protocols. The feasibility of quantitative perfusion analysis was then assessed using high-resolution, 3 T kt perfusion and voxel-wise Fermi deconvolution. 30/58 (52%) subjects in the HF group had underlying ischaemic aetiology. Perfusion abnormalities were seen amongst patients with ischaemic HF and patients with normal LV function. No regional perfusion defect was observed in the non-ischaemic HF group. Good agreement was found between visual and quantitative analysis across all groups. Absolute stress perfusion rate, myocardial perfusion reserve (MPR) and endocardial-epicardial MPR ratio identified areas with abnormal perfusion in the ischaemic HF group (p = 0.02; p = 0.04; p = 0.02, respectively). In the Normal LV group, MPR and endocardial-epicardial MPR ratio were able to distinguish between normal and abnormal segments (p = 0.04; p = 0.02 respectively). No significant differences of absolute stress perfusion rate or MPR were observed comparing visually normal segments amongst groups. Our results demonstrate the feasibility of high-resolution voxel-wise perfusion assessment in patients with HF.

  13. Cellular redox dysfunction in the development of cardiovascular diseases.

    PubMed

    Kanaan, Georges N; Harper, Mary-Ellen

    2017-11-01

    To meet its exceptionally high energy demands, the heart relies largely on fatty acid oxidation, which then drives the oxidative phosphorylation system in mitochondria. Each day, this system produces about 6kg of ATP to sustain heart function. Fatty acid oxidation is sometimes associated with high rates of mitochondrial reactive oxygen species (ROS) production. By definition, ROS are singlet electron intermediates formed during the partial reduction of oxygen to water and they include radical and non-radical intermediates like superoxide, hydrogen peroxide and hydroxyl radical. Superoxide can also interact with nitric oxide to produce peroxynitrite that in turn can give rise to other radical or non-radical reactive nitrogen species (RNS) like nitrogen dioxide, dinitrogen trioxide and others. While mitochondrial and cellular functions can be impaired by ROS if they accumulate, under normal physiological conditions ROS are important signaling molecules in the cardiovascular system. A fine balance between ROS production and antioxidant systems, including glutathione redox, is essential in the heart; otherwise the ensuing damage can contribute to pathogenic processes, which can culminate in endothelial dysfunction, atherosclerosis, hypertension, cardiac hypertrophy, arrhythmias, myocardial ischemia/reperfusion damage, and heart failure. Here we provide a succinct review of recent findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hyperthyroidism causes mechanical insufficiency of myocardium with possibly increased SR Ca2+-ATPase activity.

    PubMed

    Takeuchi, Koh; Minakawa, M; Otaki, M; Odagiri, S; Itoh, K; Murakami, A; Yaku, H; Kitamura, N

    2003-12-01

    Hyperthyroidism is known to affect multiple organ functions, and thyroid hormone has been known to improve myocardial function in a failing heart. The purpose of this study is to elucidate the functional and metabolic effects of thyroid hormone on myocardium in a rat model exposed to long-term excess thyroid hormone, particularly focusing on the SR Ca(2+)-ATPase (SERCA2) function. 3,5,3'-Triiodo-L-thyronine (T3), or the vehicle, was subcutaneously given for 4 weeks (T3 and control [C] group). Bolus I.V. Thapsigargin (TG) was used to test the SERCA2 function (C-TG and T3-TG) in Langendorff perfused heart. Myocardial functions such as LV-developed pressure (LVDP; mmHg), +/- dP/dt (mmHg/s), tau (ms), and oxygen consumption (MVO(2); ml/min/g wt) were measured. SERCA2 and GLUT4 protein level were also evaluated by Western immunoblotting. Left ventricle to body weight (LV/BW) ratio was significantly higher in the T3 group. Both negative dP/dt and tau were significantly decreased by TG. It is interesting that the decrement of negative dP/dt and tau attained by TG was significantly larger in the hyperthyroid group (T3-TG) than in a normal heart (C-TG). SERCA2 and GLUT4 protein levels were not significantly different between control and the T3 group. We conclude that prolonged exposure to thyroid hormone causes hypertrophy of the myocardium and an augmentation of the SR Ca(2+) ATPase activity. Care must be taken in hyperthyroid heart during the ischemia-reperfusion process where the SRECA2 function is inhibited.

  15. [Congenital valvular heart disease with high familial penetrance].

    PubMed

    Dattilo, Giuseppe; Lamari, Annalisa; Tulino, Viviana; Scarano, Michele; De Luca, Eleonora; Mutone, Daniela; Busacca, Paolo

    2012-12-01

    Bicuspid valve aortic (BVA) is one of the most common congenital malformations. Only 20% of patients preserves a normal valve function throughout life. There are sporadic and familial forms, the latter to autosomal dominant. We present a case of familiarity of BVA high penetrance. Patient with aortic stenosis by BVA, is the father of two children with BVA.

  16. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations

    PubMed Central

    Mogensen, Jens; Kubo, Toru; Duque, Mauricio; Uribe, William; Shaw, Anthony; Murphy, Ross; Gimeno, Juan R.; Elliott, Perry; McKenna, William J.

    2003-01-01

    Restrictive cardiomyopathy (RCM) is an uncommon heart muscle disorder characterized by impaired filling of the ventricles with reduced volume in the presence of normal or near normal wall thickness and systolic function. The disease may be associated with systemic disease but is most often idiopathic. We recognized a large family in which individuals were affected by either idiopathic RCM or hypertrophic cardiomyopathy (HCM). Linkage analysis to selected sarcomeric contractile protein genes identified cardiac troponin I (TNNI3) as the likely disease gene. Subsequent mutation analysis revealed a novel missense mutation, which cosegregated with the disease in the family (lod score: 4.8). To determine if idiopathic RCM is part of the clinical expression of TNNI3 mutations, genetic investigations of the gene were performed in an additional nine unrelated RCM patients with restrictive filling patterns, bi-atrial dilatation, normal systolic function, and normal wall thickness. TNNI3 mutations were identified in six of these nine RCM patients. Two of the mutations identified in young individuals were de novo mutations. All mutations appeared in conserved and functionally important domains of the gene. PMID:12531876

  17. Cardiac function, myocardial mechano-energetic efficiency, and ventricular-arterial coupling in normal pregnancy.

    PubMed

    Iacobaeus, Charlotte; Andolf, Ellika; Thorsell, Malin; Bremme, Katarina; Östlund, Eva; Kahan, Thomas

    2018-04-01

    To assess cardiac function, myocardial mechanoenergetic efficiency (MEE), and ventricular-arterial coupling (VAC) longitudinally during normal pregnancy, and to study if there was an association between cardiac structure and function, and fetal growth. Cardiac structure and function, MEE, and ventricular-arterial coupling was assessed longitudinally in 52 healthy nulliparous women at 14, 24, and 34 weeks' gestation and 9-month postpartum. Left atrial diameter increased during pregnancy (30.41 ± 3.59 mm in the nonpregnant state and 31.02 ± 3.91, 34.06 ± 3.58, and 33.9 ± 2.97 mm in the first, second, and third trimesters, P < 0.001). Left ventricular mass increased 117.12 ± 45.0 g in the nonpregnant state and 116.5 ± 33.0, 126.9 ± 34.5, 128.4 ± 36 g in the first, second, and third trimesters (P < 0.001). Cardiac output increased from 3.4 ± 1.2 l/min to 4.3 ± 0.7 l/min in the second and third trimesters (P < 0.001). Diastolic function decreased as both E/A and e'/a' decreased during pregnancy (P < 0.05 and P < 0.001, respectively). MEE and VAC were retained during pregnancy. Heart rate was associated with birth weight centile in the first (r = 0.41, P = 0.002) and second (r = 0.46, P = 0.002) trimester. The increase in cardiac output during normal pregnancy is obtained by an increase in heart rate, followed by structural cardiac changes. The impaired systolic function is accomplished by a deteriorated diastolic function. Despite these rapid changes, the myocardium manages to work efficient with a preserved MEE. Cardiac and arterial adaption to pregnancy seems to appear parallel as evidenced by a preserved VAC.

  18. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P < 0.001) from a linear combination of 5 independent variables: QRS elevation in the frontal plane (p<0.001), a new repolarization parameter QTcorr (p<0.001), mean high frequency QRS amplitude (p=0.009), the variability parameter % VLF of RRV (p=0.021) and the P-wave width (p=0.10). Here, QTcorr represents the correlation between the calculated QT and the measured QT signal. Conclusions: In apparently healthy subjects with normal conventional ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  19. Microgravity

    NASA Image and Video Library

    2001-05-15

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  20. Microgravity

    NASA Image and Video Library

    2001-05-15

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  1. Basic Study and Clinical Implications of Left Ventricular False Tendon. Is it Associated With Innocent Murmur in Children or Heart Disease?

    PubMed

    Sánchez Ferrer, Francisco; Sánchez Ferrer, María Luisa; Grima Murcia, María Dolores; Sánchez Ferrer, Marina; Sánchez del Campo, Francisco

    2015-08-01

    Left ventricular false tendon is a structure of unknown function in cardiac physiology that was first described anatomically by Turner. This condition may be related to various electrical or functional abnormalities, but no consensus has ever been reached. The purpose of this study was to determine the time of appearance, prevalence and histologic composition of false tendon, as well as its association with innocent murmur in children and with heart disease. The basic research was performed by anatomic dissection of hearts from adult human cadavers to describe false tendon and its histology. The clinical research consisted of echocardiographic study in a pediatric population to identify any relationship with heart disease, innocent murmur in children, or other abnormalities. Fetal echocardiography was performed prenatally at different gestational ages. False tendon was a normal finding in cardiac dissection and was composed of muscle and connective tissue fibers. In the pediatric population, false tendon was present in 83% on echocardiography and showed a statistically significant association only with innocent murmur in children and slower aortic acceleration. The presence of false tendon was first observed on fetal echocardiography from week 20 of pregnancy. Left ventricular false tendon is a normal finding visualized by fetal echocardiography from week 20 and is present until adulthood with no pathologic effects except for innocent murmur during childhood. It remains to be determined if false tendon is the cause of the murmurs or if its absence or structural anomalies are related to disease. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death

    PubMed Central

    Hauck, Ludger; Stanley-Hasnain, Shanna; Fung, Amelia; Grothe, Daniela; Rao, Vivek; Mak, Tak W.

    2017-01-01

    The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1. PMID:29267372

  3. Exposure to air pollution near a steel plant is associated with reduced heart rate variability: a randomised crossover study.

    PubMed

    Shutt, Robin H; Kauri, Lisa Marie; Weichenthal, Scott; Kumarathasan, Premkumari; Vincent, Renaud; Thomson, Errol M; Liu, Ling; Mahmud, Mamun; Cakmak, Sabit; Dales, Robert

    2017-01-28

    Epidemiological studies have shown that as ambient air pollution (AP) increases the risk of cardiovascular mortality also increases. The mechanisms of this effect may be linked to alterations in autonomic nervous system function. We wished to examine the effects of industrial AP on heart rate variability (HRV), a measure of subtle changes in heart rate and rhythm representing autonomic input to the heart. Sixty healthy adults were randomized to spend five consecutive 8-h days outdoors in one of two locations: (1) adjacent to a steel plant in the Bayview neighbourhood in Sault Ste Marie Ontario or (2) at a College campus, several kilometers from the plant. Following a 9-16 day washout period, participants spent five consecutive days at the other site. Ambient AP levels and ambulatory electrocardiogram recordings were collected daily. HRV analysis was undertaken on a segment of the ambulatory ECG recording during a 15 min rest period, near the end of the 8-h on-site day. Standard HRV parameters from both time and frequency domains were measured. Ambient AP was measured with fixed site monitors at both sites. Statistical analysis was completed using mixed-effects models. Compared to the College site, HRV was statistically significantly reduced at the Bayview site by 13% (95%CI 3.6,19.2) for the standard deviation of normal to normal, 8% (95%CI 0.1, 4.9) for the percent normal to normal intervals differing by more than 50 ms, and 15% (95%CI 74.9, 571.2) for low frequency power. Levels of carbon monoxide, sulphur dioxide, nitrogen dioxide, and fine and ultrafine particulates were slightly, but statistically significantly, elevated at Bayview when compared to College. Interquartile range changes in individual air pollutants were significantly associated with reductions in HRV measured on the same day. The patterns of effect showed a high degree of consistency, with nearly all pollutants significantly inversely associated with at least one measure of HRV. The significant associations between AP and changes in HRV suggest that ambient AP near a steel plant may impact autonomic nervous system control of the heart.

  4. Circadian rhythms in myocardial metabolism and contractile function: influence of workload and oleate.

    PubMed

    Durgan, David J; Moore, Michael W S; Ha, Ngan P; Egbejimi, Oluwaseun; Fields, Anna; Mbawuike, Uchenna; Egbejimi, Anu; Shaw, Chad A; Bray, Molly S; Nannegari, Vijayalakshmi; Hickson-Bick, Diane L; Heird, William C; Dyck, Jason R B; Chandler, Margaret P; Young, Martin E

    2007-10-01

    Multiple extracardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its responsiveness to changes in workload and/or fatty acid (oleate) availability. Thus, hearts were isolated from male Wistar rats (housed during a 12:12-h light-dark cycle: lights on at 9 AM) at 9 AM, 3 PM, 9 PM, and 3 AM and perfused in the working mode ex vivo with 5 mM glucose plus either 0.4 or 0.8 mM oleate. Following 20-min perfusion at normal workload (i.e., 100 cm H(2)O afterload), hearts were challenged with increased workload (140 cm H(2)O afterload plus 1 microM epinephrine). In the presence of 0.4 mM oleate, myocardial metabolism exhibited a marked circadian rhythm, with decreased rates of glucose oxidation, increased rates of lactate release, decreased glycogenolysis capacity, and increased channeling of oleate into nonoxidative pathways during the light phase. Rat hearts also exhibited a modest circadian rhythm in responsiveness to the workload challenge when perfused in the presence of 0.4 mM oleate, with increased myocardial oxygen consumption at the dark-to-light phase transition. However, rat hearts perfused in the presence of 0.8 mM oleate exhibited a markedly blunted contractile function response to the workload challenge during the light phase. In conclusion, these studies expose marked circadian rhythmicities in myocardial oxidative and nonoxidative metabolism as well as responsiveness of the rat heart to changes in workload and fatty acid availability.

  5. Clinically-relevant consecutive treatment with isoproterenol and adenosine protects the failing heart against ischaemia and reperfusion

    PubMed Central

    2014-01-01

    Background Consecutive treatment of normal heart with a high dose of isoproterenol and adenosine (Iso/Ade treatment), confers strong protection against ischaemia/reperfusion injury. In preparation for translation of this cardioprotective strategy into clinical practice during heart surgery, we further optimised conditions for this intervention using a clinically-relevant dose of Iso and determined its cardioprotective efficacy in hearts isolated from a model of surgically-induced heart failure. Methods Isolated Langendorff-perfused rat hearts were treated sequentially with 5 nM Iso and 30 μM Ade followed by different durations of washout prior to 30 min global ischaemia and 2 hrs reperfusion. Reperfusion injury was assessed by measuring haemodynamic function, lactate dehydrogenase (LDH) release and infarct size. Protein kinase C (PKC) activity and glycogen content were measured in hearts after the treatment. In a separate group of hearts, Cyclosporine A (CsA), a mitochondria permeability transition pore (MPTP) inhibitor, was added with Iso/Ade. Failing hearts extracted after 16 weeks of ligation of left coronary artery in 2 months old rats were also subjected to Iso/Ade treatment followed by ischaemia/reperfusion. Results Recovery of the rate pressure product (RPP) in Iso/Ade-treated hearts was significantly higher than in controls. Thus in Iso/Ade treated hearts with 5 nM Iso and no washout period, RPP recovery was 76.3 ± 6.9% of initial value vs. 28.5 ± 5.2% in controls. This was associated with a 3 fold reduction in LDH release irrespective to the duration of the washout period. Hearts with no washout of the drugs (Ade) had least infarct size, highest PKC activity and also showed reduced glycogen content. Cardioprotection with CsA was not additive to the effect of Iso/Ade treatment. Iso/Ade treatment conferred significant protection to failing hearts. Thus, RPP recovery in failing hearts subjected to the treatment was 69.0 ± 16.3% while in Control hearts 19.7 ± 4.0%. LDH release in these hearts was also 3 fold lower compared to Control. Conclusions Consecutive Iso/Ade treatment of normal heart can be effective at clinically-relevant doses and this effect appears to be mediated by glycogen depletion and inhibition of MPTP. This intervention protects clinically relevant failing heart model making it a promising candidate for clinical use. PMID:24885907

  6. Persistent recovery of normal left ventricular function and dimension in idiopathic dilated cardiomyopathy during long‐term follow‐up: does real healing exist?

    PubMed

    Merlo, Marco; Stolfo, Davide; Anzini, Marco; Negri, Francesco; Pinamonti, Bruno; Barbati, Giulia; Ramani, Federica; Lenarda, Andrea Di; Sinagra, Gianfranco

    2015-01-13

    An important number of patients with idiopathic dilated cardiomyopathy have dramatically improved left ventricular function with optimal treatment; however, little is known about the evolution and long-term outcome of this subgroup, which shows apparent healing. This study assesses whether real healing actually exists in dilated cardiomyopathy. Persistent apparent healing was evaluated among 408 patients with dilated cardiomyopathy receiving tailored medical treatment and followed over the very long-term. Persistent apparent healing was defined as left ventricular ejection fraction ≥50% and indexed left ventricular end-diastolic diameter ≤33 mm/m(2) at both mid-term (19±4 months) and long-term (103±9 months) follow-up. At mid-term, 63 of 408 patients (15%) were apparently healed; 38 (60%; 9%of the whole population) showed persistent apparent healing at long-term evaluation. No predictors of persistent apparent healing were found. Patients with persistent apparent healing showed better heart transplant–free survival at very long-term follow-up (95% versus 71%; P=0.014) compared with nonpersistently normalized patients. Nevertheless, in the very longterm, 37% of this subgroup experienced deterioration of left ventricular systolic function, and 5% died or had heart transplantation. Persistent long-term apparent healing was evident in a remarkable proportion of dilated cardiomyopathy patients receiving optimal medical treatment and was associated with stable normalization of main clinical and laboratory features. This condition can be characterized by a decline of left ventricular function over the very long term, highlighting the relevance of serial nd individualized follow-up in all patients with dilated cardiomyopathy, especially considering the absence of predictors for longterm apparent healing.

  7. Creation of dialysis vascular access with normal flow increases brain natriuretic peptide levels.

    PubMed

    Malík, Jan; Tuka, Vladimir; Krupickova, Zdislava; Chytilova, Eva; Holaj, Robert; Slavikova, Marcela

    2009-12-01

    Chronic heart failure is very common in hemodialyzed patients due to several factors such as intermittent volume overload, anemia, and hypertension. Dialysis access flow is usually considered to have a minor effect. We hypothesized that creation of dialysis access with "normal" flow would lead to elevation of B-type natriuretic peptide (BNP), which is a sensitive marker of heart failure. We included subjects with a newly created, well-functioning vascular access and normal left ventricular ejection fraction. They were examined before access creation (baseline), then again 6 weeks and 6 months after the surgery. Only subjects with access flow (Qa) < 1500 ml/min were included. Changes of BNP levels and their relation to access flow were studied. We examined 35 subjects aged 60.6 +/- 13.5 years. Qa was 789 +/- 361 and 823 +/- 313 ml/min at 6 weeks and 6 months after the surgery, respectively. Within 6 weeks after access creation, BNP rose from 217 (294) to 267 (550) ng/l (median (quartile range)) with P = 0.003. Qa was significantly related to BNP levels 6 weeks after access creation (r = 0.37, P = 0.036). Six months after access creation, there was only a trend of BNP decrease (235 (308) ng/l, P = 0.44). Creatinine, blood urea nitrogen and hemoglobin levels as well as patients' weight did not change significantly. Creation of dialysis access with "normal" flow volume leads to significant increase of BNP, which is related to the value of access flow. The increase of BNP probably mirrors worsening of clinically silent heart failure.

  8. Playing with Cardiac “Redox Switches”: The “HNO Way” to Modulate Cardiac Function

    PubMed Central

    Tocchetti, Carlo G.; Stanley, Brian A.; Murray, Christopher I.; Sivakumaran, Vidhya; Donzelli, Sonia; Mancardi, Daniele; Pagliaro, Pasquale; Gao, Wei Dong; van Eyk, Jennifer; Kass, David A.; Wink, David A.

    2011-01-01

    Abstract The nitric oxide (NO•) sibling, nitroxyl or nitrosyl hydride (HNO), is emerging as a molecule whose pharmacological properties include providing functional support to failing hearts. HNO also preconditions myocardial tissue, protecting it against ischemia-reperfusion injury while exerting vascular antiproliferative actions. In this review, HNO's peculiar cardiovascular assets are discussed in light of its unique chemistry that distinguish HNO from NO• as well as from reactive oxygen and nitrogen species such as the hydroxyl radical and peroxynitrite. Included here is a discussion of the possible routes of HNO formation in the myocardium and its chemical targets in the heart. HNO has been shown to have positive inotropic/lusitropic effects under normal and congestive heart failure conditions in animal models. The mechanistic intricacies of the beneficial cardiac effects of HNO are examined in cellular models. In contrast to β-receptor/cyclic adenosine monophosphate/protein kinase A-dependent enhancers of myocardial performance, HNO uses its “thiophylic” nature as a vehicle to interact with redox switches such as cysteines, which are located in key components of the cardiac electromechanical machinery ruling myocardial function. Here, we will briefly review new features of HNO's cardiovascular effects that when combined with its positive inotropic/lusitropic action may render HNO donors an attractive addition to the current therapeutic armamentarium for treating patients with acutely decompensated congestive heart failure. Antioxid. Redox Signal. 14, 1687–1698. PMID:21235349

  9. Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy.

    PubMed

    Woitek, Felix; Zentilin, Lorena; Hoffman, Nicholas E; Powers, Jeffery C; Ottiger, Isabel; Parikh, Suraj; Kulczycki, Anna M; Hurst, Marykathryn; Ring, Nadja; Wang, Tao; Shaikh, Farah; Gross, Polina; Singh, Harinder; Kolpakov, Mikhail A; Linke, Axel; Houser, Steven R; Rizzo, Victor; Sabri, Abdelkarim; Madesh, Muniswamy; Giacca, Mauro; Recchia, Fabio A

    2015-07-14

    Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Long-term low dose dietary resveratrol supplement reduces cardiovascular structural and functional deterioration in chronic heart failure in rats.

    PubMed

    Ahmet, Ismayil; Tae, Hyun-Jin; Lakatta, Edward G; Talan, Mark

    2017-03-01

    A short-term exposure to resveratrol at high dosages exerts a remarkable cardioprotective effect. Whether a long-term exposure to resveratrol at low dosages that can be obtained through consumption of a resveratrol-rich diet is beneficial to heart diseases is unknown. We tested the effects of a resveratrol-enriched diet on cardiovascular remodeling of chronic heart failure (CHF) in rats resulting from permanent ligation of left coronary artery. Two weeks after surgery, rats were started on either a resveratrol-enriched (R; 5 mg/kg per day; n = 23) or normal (Control; n = 23) diet for next 10 months. Serial echocardiography in Control showed a significant decline in LV ejection fraction, increases in LV end-systolic and end-diastolic volumes, and expansion in myocardial infarct from pre-treatment values. In R, compared with Control, there were substantial improvements in those parameters. End-point LV pressure-volume loop analysis showed a significantly improved LV systolic function and AV-coupling, an index of energy transfer efficacy between the heart and aortic tree, in R compared with Control (p < 0.05). Aortic pulse wave velocity, a measure of arterial stiffness, was significantly lower in R (389 ± 15 cm/s; p < 0.05) compared with Control (489 ± 38 cm/s). These results demonstrated that long-term dietary resveratrol supplement reduces cardiovascular structural and functional deterioration in CHF.

  11. Size, shape, and stamina: the impact of left ventricular geometry on exercise capacity.

    PubMed

    Lam, Carolyn S P; Grewal, Jasmine; Borlaug, Barry A; Ommen, Steve R; Kane, Garvan C; McCully, Robert B; Pellikka, Patricia A

    2010-05-01

    Although several studies have examined the cardiac functional determinants of exercise capacity, few have investigated the effects of structural remodeling. The current study evaluated the association between cardiac geometry and exercise capacity. Subjects with ejection fraction > or = 50% and no valvular disease, myocardial ischemia, or arrhythmias were identified from a large prospective exercise echocardiography database. Left ventricular mass index and relative wall thickness were used to classify geometry into normal, concentric remodeling, eccentric hypertrophy, and concentric hypertrophy. All of the subjects underwent symptom-limited treadmill exercise according to standard Bruce protocol. Maximal exercise tolerance was measured in metabolic equivalents. Of 366 (60+/-14 years; 57% male) subjects, 166 (45%) had normal geometry, 106 (29%) had concentric remodeling, 40 (11%) had eccentric hypertrophy, and 54 (15%) had concentric hypertrophy. Geometry was related to exercise capacity: in descending order, the maximum achieved metabolic equivalents were 9.9+/-2.8 in normal, 8.9+/-2.6 in concentric remodeling, 8.6+/-3.1 in eccentric hypertrophy, and 8.0+/-2.7 in concentric hypertrophy (all P<0.02 versus normal). Left ventricular mass index and relative wall thickness were negatively correlated with exercise tolerance in metabolic equivalents (r=-0.14; P=0.009 and r=-0.21; P<0.001, respectively). Augmentation of heart rate and ejection fraction with exercise were blunted in concentric hypertrophy compared with normal, even after adjusting for medications. In conclusion, the pattern of ventricular remodeling is related to exercise capacity among low-risk adults. Subjects with concentric hypertrophy display the greatest limitation, and this is related to reduced systolic and chronotropic reserve. Reverse remodeling strategies may prevent or treat functional decline in patients with structural heart disease.

  12. Size, Shape and Stamina: The Impact of Left Ventricular Geometry on Exercise Capacity

    PubMed Central

    Lam, Carolyn S.P.; Grewal, Jasmine; Borlaug, Barry A.; Ommen, Steve R.; Kane, Garvan C.; McCully, Robert B.; Pellikka, Patricia A.

    2010-01-01

    While several studies have examined the cardiac functional determinants of exercise capacity, few have investigated the effects of structural remodeling. The current study evaluated the association between cardiac geometry and exercise capacity. Subjects with ejection fraction ≥ 50% and no valvular disease, myocardial ischemia or arrhythmias were identified from a large prospective exercise echocardiography database. Left ventricular mass index and relative wall thickness were used to classify geometry into normal, concentric remodeling, eccentric hypertrophy and concentric hypertrophy. All subjects underwent symptom-limited treadmill exercise according to standard Bruce protocol. Maximal exercise tolerance was measured in metabolic equivalents. Of 366 (60±14 years; 57% male) subjects, 166(45%) had normal geometry, 106(29%) had concentric remodeling, 40(11%) had eccentric hypertrophy and 54(15%) had concentric hypertrophy. Geometry was related to exercise capacity: in descending order, the maximum achieved metabolic equivalents was 9.9±2.8 in normal, 8.9±2.6 in concentric remodeling, 8.6±3.1 in eccentric hypertrophy and 8.0±2.7 in concentric hypertrophy (all p<0.02 vs normal). Left ventricular mass index and relative wall thickness were negatively correlated with exercise tolerance in metabolic equivalents (r= -0.14; p=0.009 and r= -0.21; p<0.001, respectively). Augmentation of heart rate and ejection fraction with exercise were blunted in concentric hypertrophy compared to normal, even after adjusting for medications. In conclusion, the pattern of ventricular remodeling is related to exercise capacity among low-risk adults. Subjects with concentric hypertrophy display the greatest limitation and this is related to reduced systolic and chronotropic reserve. Reverse remodeling strategies may prevent or treat functional decline in patients with structural heart disease. PMID:20215563

  13. Computational approaches to understand cardiac electrophysiology and arrhythmias

    PubMed Central

    Roberts, Byron N.; Yang, Pei-Chi; Behrens, Steven B.; Moreno, Jonathan D.

    2012-01-01

    Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy. PMID:22886409

  14. Role of Copper and Homocysteine in Pressure Overload Heart Failure

    PubMed Central

    Hughes, William M.; Rodriguez, Walter E.; Rosenberger, Dorothea; Chen, Jing; Sen, Utpal; Tyagi, Neetu; Moshal, Karni S.; Vacek, Thomas; Kang, Y. James

    2009-01-01

    Elevated levels of homocysteine (Hcy) (known as hyperhomocysteinemia HHcy) are involved in dilated cardiomyopathy. Hcy chelates copper and impairs copper-dependent enzymes. Copper deficiency has been linked to cardiovascular disease. We tested the hypothesis that copper supplement regresses left ventricular hypertrophy (LVH), fibrosis and endothelial dysfunction in pressure overload DCM mice hearts. The mice were grouped as sham, sham + Cu, aortic constriction (AC), and AC + Cu. Aortic constriction was performed by transverse aortic constriction. The mice were treated with or without 20 mg/kg copper supplement in the diet for 12 weeks. The cardiac function was assessed by echocardiography and electrocardiography. The matrix remodeling was assessed by measuring matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinases (TIMPs), and lysyl oxidase (LOX) by Western blot analyses. The results suggest that in AC mice, cardiac function was improved with copper supplement. TIMP-1 levels decreased in AC and were normalized in AC + Cu. Although MMP-9, TIMP-3, and LOX activity increased in AC and returned to baseline value in AC + Cu, copper supplement showed no significant effect on TIMP-4 activity after pressure overload. In conclusion, our data suggest that copper supplement helps improve cardiac function in a pressure overload dilated cardiomyopathic heart. PMID:18679830

  15. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    PubMed

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  16. INVESTIGATION OF BONE MINERALIZATION IN PATIENTS WITH CORONARY HEART DISEASE COMPLICATED BY CHRONIC HEART FAILURE, STAGE II-A.

    PubMed

    Krynytska, I; Marushchak, M; Zaets, T; Savchenko, I; Habor, H

    2017-06-01

    The majority of the studies have shown that individuals with cardiovascular diseases have a higher risk of experiencing bone loss and thus greater predisposition to risk of fracture. On the other hand there is growing evidence that individuals with low bone mass have higher mortality for cardiovascular events compared to patients with cardiovascular disease with normal bone mass. This research aims to investigate bone mineralization in patients with coronary heart disease complicated by stage II-A chronic heart failure. The study involved 33 men with coronary heart disease complicated by Stage II-A chronic heart failure. Bone mineral density was measured using dual energy x-ray densitometry of lumbar region of spine. Structural and functional changes of bone tissue of the lumbar spine have been found in 49,2% patients with coronary heart disease complicated by Stage II-A chronic heart failure, in particular, I stage of osteopenia - in 44,6%, II stage of osteopenia - in 27,7%, III stage of osteopenia - in 10,8% and osteoporosis - in 16,9%. It was established the same type of downward trend for BMD decreasing in L1 of patients with different stages of osteopenia, but in case of osteoporosis mineralization decreased equally in all vertebrae.

  17. Effects of gonadectomy and hormonal replacement on rat hearts.

    PubMed

    Scheuer, J; Malhotra, A; Schaible, T F; Capasso, J

    1987-07-01

    To evaluate the effects of sex hormones on heart function and biochemistry, gonadectomy (GX) was performed in postpubertal male (M) and female (F) rats and compared with sham-operated controls (SH). The groups were MSH; MGX; MGX replaced with testosterone 3 mg/day s.c. (MGX + T), FSH, and FGX replaced with estrogen 2 mg/day (FGX + E), progesterone 0.4 mg/day (FGX + P), estrogen and progesterone (FGX + EP), or testosterone 2 mg/day (FGX + T). Body weight was decreased in MGX and was decreased further in MGX + T. Heart weight was decreased in both MGX and MGX + T. Body weights were increased in FGX and FTX + P and were increased further in FGX + T but were normal in FGX + E and FGX + EP. Heart weights were unchanged in F groups except in FGX + T, where it was increased. Cardiac performance in perfused hearts, as measured by stroke work, ejection fraction, fractional shortening and mean velocity of circumferential fiber shortening, was decreased in MGX but was slightly increased in MGX + T. Papillary muscle studies showed increases in time to peak tension and one-half relaxation in MGX, but these were decreased in MGX + T. Isotonic shortening studies showed decreased velocity of shortening in MGX and increased velocity in MGX + T. Heart function was significantly decreased in FGX and FGX + P compared with FSH but was similar to FSH in FGX + E and FGX + EP. FGX + T had greater stroke work and ejection fraction than FSH and FGX.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function

    PubMed Central

    Stoyek, Matthew R.; Quinn, T. Alexander; Croll, Roger P.

    2016-01-01

    The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic β2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons. PMID:27342878

  19. Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation.

    PubMed

    Mekkaoui, Choukri; Huang, Shuning; Chen, Howard H; Dai, Guangping; Reese, Timothy G; Kostis, William J; Thiagalingam, Aravinda; Maurovich-Horvat, Pal; Ruskin, Jeremy N; Hoffmann, Udo; Jackowski, Marcel P; Sosnovik, David E

    2012-10-12

    The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA) along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 ± 0.16 in normal hearts to 0.22 ± 0.08 in the remote zone of the remodeled hearts (p < 0.05). This was confirmed histologically by the reduction of HA in the subepicardium from -52.03° ± 2.94° in normal hearts to -37.48° ± 4.05° in the remote zone of the remodeled hearts (p < 0.05). A significant reorganization of the 3D fiber continuum is observed in the remote zone of remodeled hearts. The positive (rightward) shift in HA in the remote zone is greatest in the subepicardium, but involves all layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing regional changes in the left ventricle following infarction.

  20. Evaluation of left ventricular Tei index (index of myocardial performance) in healthy dogs and dogs with mitral regurgitation.

    PubMed

    Teshima, Kenji; Asano, Kazushi; Iwanaga, Koji; Koie, Hiroshi; Uechi, Masami; Kato, Yuka; Kutara, Kenji; Kanno, Nobuyuki; Seki, Mamiko; Edamura, Kazuya; Hasegawa, Atsuhiko; Tanaka, Shigeo

    2007-02-01

    The left ventricular (LV) Tei index (index of myocardial performance) has been demonstrated to be clinically useful in estimating comprehensive LV function, including the systolic and diastolic performances, in various human cardiac diseases. The purposes of this study were to validate the correlation between the LV Tei index and LV function obtained by cardiac catheterization in healthy dogs, and to evaluate the LV Tei index in dogs with naturally occurring mitral regurgitation (MR). In healthy dogs, the LV Tei index was significantly correlated with the LV peak +dP/dt (r = -0.89) and LV peak -dP/dt (r=0.87). The LV Tei index significantly increased in dogs with MR compared with normal dogs and significantly increased with progressively more severe clinical signs due to heart failure. The elevation of the LV Tei index in dogs with symptomatic MR appears to be associated with shortening of ejection time. The LV Tei index significantly increased with age and was not correlated with heart rate and body weight in normal dogs. In conclusion, our study demonstrated that the LV Tei index was measurable in dogs and not influenced by heart rate and body weight. The LV Tei index significantly increased with the progression of clinical signs in MR dogs. In particular, the elevation of the LV Tei index in dogs with symptomatic MR due to shortening of ejection time may suggest LV systolic dysfunction and the decrement of forward stroke volume.

  1. Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats.

    PubMed

    Zhang, Youhua; Dedkov, Eduard I; Teplitsky, Diana; Weltman, Nathan Y; Pol, Christine J; Rajagopalan, Viswanathan; Lee, Bianca; Gerdes, A Martin

    2013-10-01

    Evidence indicates that cardiac hypothyroidism may contribute to heart failure progression. It is also known that heart failure is associated with an increased risk of atrial fibrillation (AF). Although it is established that hyperthyroidism increases AF incidence, the effect of hypothyroidism on AF is unclear. This study investigated the effects of different thyroid hormone levels, ranging from hypothyroidism to hyperthyroidism on AF inducibility in thyroidectomized rats. Thyroidectomized rats with serum-confirmed hypothyroidism 1 month after surgery were randomized into hypothyroid (N=9), euthyroid (N=9), and hyperthyroid (N=9) groups. Rats received placebo, 3.3-mg l-thyroxine (T4), or 20-mg T4 pellets (60-day release form) for 2 months, respectively. At the end of treatment, hypothyroid, euthyroid, and hyperthyroid status was confirmed. Hypothyroid animals showed cardiac atrophy and reduced cardiac systolic and diastolic functions, whereas hyperthyroid rats exhibited cardiac hypertrophy and increased cardiac function. Hypothyroidism and hyperthyroidism produced opposite electrophysiological changes in heart rates and atrial effective refractory period, but both significantly increased AF susceptibility. AF incidence was 78% in hypothyroid, 67% in hyperthyroid, and the duration of induced AF was also longer, compared with 11% in the euthyroid group (all P<0.05). Hypothyroidism increased atrial interstitial fibrosis, but connexin 43 was not affected. Both hypothyroidism and hyperthyroidism lead to increased AF vulnerability in a rat thyroidectomy model. Our results stress that normal thyroid hormone levels are required to maintain normal cardiac electrophysiology and to prevent cardiac arrhythmias and AF.

  2. Resveratrol and polydatin as modulators of Ca2+ mobilization in the cardiovascular system.

    PubMed

    Liu, Wenjuan; Chen, Peiya; Deng, Jianxin; Lv, Jingzhang; Liu, Jie

    2017-09-01

    In the cardiovascular system, Ca 2+ controls cardiac excitation-contraction coupling and vascular contraction and dilation. Disturbances in intracellular Ca 2+ homeostasis induce malfunctions of the cardiovascular system, including cardiac pump dysfunction, arrhythmia, remodeling, and apoptosis, as well as hypertension and impairment of vascular reactivity. Therefore, developing drugs and strategies manipulating Ca 2+ handling are highly valued in the treatment of cardiovascular disease. Resveratrol (Res) and polydatin (PD), a Res glucoside, have been well established to have beneficial effects on improving cardiovascular function. Studies from our laboratory and others have demonstrated that they exhibit inotropic effects on normal heart and therapeutic effects on hypertension, cardiac ischemia/reperfusion injury, hypertrophy, and heart failure by manipulating Ca 2+ mobilization. The actions of Res and PD on Ca 2+ signals delicately manipulated by multiple Ca 2+ -handling proteins are pleiotropic and somewhat controversial, depending on cellular species and intracellular oxidative status. Here, we focus on the effects of Res and PD on controlling Ca 2+ homeostasis in the heart and vasculature under normal and diseased conditions and highlight the key direct and indirect molecules mediating these effects. © 2017 New York Academy of Sciences.

  3. Dilated Cardiomyopathy Revealing Cushing Disease

    PubMed Central

    Marchand, Lucien; Segrestin, Bérénice; Lapoirie, Marion; Favrel, Véronique; Dementhon, Julie; Jouanneau, Emmanuel; Raverot, Gérald

    2015-01-01

    Abstract Cardiovascular impairments are frequent in Cushing's syndrome and the hypercortisolism can result in cardiac structural and functional changes that lead in rare cases to dilated cardiomyopathy (DCM). Such cardiac impairment may be reversible in response to a eucortisolaemic state. A 43-year-old man with a medical past of hypertension and history of smoking presented to the emergency department with global heart failure. Coronary angiography showed a significant stenosis of a marginal branch and cardiac MRI revealed a nonischemic DCM. The left ventricular ejection fraction (LVEF) was estimated as 28% to 30%. Clinicobiological features and pituitary imaging pointed toward Cushing's disease and administration of adrenolytic drugs (metyrapone and ketoconazole) was initiated. Despite the normalization of cortisol which had been achieved 2 months later, the patient presented an acute heart failure. A massive mitral regurgitation secondary to posterior papillary muscle rupture was diagnosed as a complication of the occlusion of the marginal branch. After 6 months of optimal pharmacological treatment for systolic heart failure, as well as treatment with inhibitors of steroidogenesis, there was no improvement of LVEF. The percutaneous mitral valve was therefore repaired and a defibrillator implanted. The severity of heart failure contraindicated pituitary surgery and the patient was instead treated by stereotaxic radiotherapy. This is the first case reporting a Cushing's syndrome DCM without improvement of LVEF despite normalization of serum cortisol levels. PMID:26579807

  4. In vitro model to study the effects of matrix stiffening on Ca2+ handling and myofilament function in isolated adult rat cardiomyocytes.

    PubMed

    van Deel, Elza D; Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão-Pires, Inês; van der Velden, Jolanda

    2017-07-15

    This paper describes a novel model that allows exploration of matrix-induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function. Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca 2+ handling and myofilament function. Cell shortening and Ca 2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix. Matrix stiffness-impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness. Matrix stiffness-induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte-matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix-induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca 2+ handling but does not alter myofilament-generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness-induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness-induced changes in cardiomyocyte function could not be explained by adaptation in the microtubules. Additionally, cardiomyocytes isolated from stiff hearts of the obese ZSF1 rat model of heart failure with preserved ejection fraction show more pronounced reduction in unloaded shortening in response to matrix stiffening. Taken together, we introduce a method that allows evaluation of the influence of ECM properties on cardiomyocyte function separate from the passive inhibitory component of a stiff matrix. As such, it adds an important and physiologically relevant tool to investigate the functional consequences of cardiomyocyte-matrix interactions. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  5. Cardiac troponin T is necessary for normal development in the embryonic chick heart.

    PubMed

    England, Jennifer; Pang, Kar Lai; Parnall, Matthew; Haig, Maria Isabel; Loughna, Siobhan

    2016-09-01

    The heart is the first functioning organ to develop during embryogenesis. The formation of the heart is a tightly regulated and complex process, and alterations to its development can result in congenital heart defects. Mutations in sarcomeric proteins, such as alpha myosin heavy chain and cardiac alpha actin, have now been associated with congenital heart defects in humans, often with atrial septal defects. However, cardiac troponin T (cTNT encoded by gene TNNT2) has not. Using gene-specific antisense oligonucleotides, we have investigated the role of cTNT in chick cardiogenesis. TNNT2 is expressed throughout heart development and in the postnatal heart. TNNT2-morpholino treatment resulted in abnormal atrial septal growth and a reduction in the number of trabeculae in the developing primitive ventricular chamber. External analysis revealed the development of diverticula from the ventricular myocardial wall which showed no evidence of fibrosis and still retained a myocardial phenotype. Sarcomeric assembly appeared normal in these treated hearts. In humans, congenital ventricular diverticulum is a rare condition, which has not yet been genetically associated. However, abnormal haemodynamics is known to cause structural defects in the heart. Further, structural defects, including atrial septal defects and congenital diverticula, have previously been associated with conduction anomalies. Therefore, to provide mechanistic insights into the effect that cTNT knockdown has on the developing heart, quantitative PCR was performed to determine the expression of the shear stress responsive gene NOS3 and the conduction gene TBX3. Both genes were differentially expressed compared to controls. Therefore, a reduction in cTNT in the developing heart results in abnormal atrial septal formation and aberrant ventricular morphogenesis. We hypothesize that alterations to the haemodynamics, indicated by differential NOS3 expression, causes these abnormalities in growth in cTNT knockdown hearts. In addition, the muscular diverticula reported here suggest a novel role for mutations of structural sarcomeric proteins in the pathogenesis of congenital cardiac diverticula. From these studies, we suggest TNNT2 is a gene worthy of screening for those with a congenital heart defect, particularly atrial septal defects and ventricular diverticula. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  6. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease

    PubMed Central

    Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.

    2016-01-01

    Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  7. Arterial wave reflection and subclinical left ventricular systolic dysfunction.

    PubMed

    Russo, Cesare; Jin, Zhezhen; Takei, Yasuyoshi; Hasegawa, Takuya; Koshaka, Shun; Palmieri, Vittorio; Elkind, Mitchell Sv; Homma, Shunichi; Sacco, Ralph L; Di Tullio, Marco R

    2011-03-01

    Increased arterial wave reflection is a predictor of cardiovascular events and has been hypothesized to be a cofactor in the pathophysiology of heart failure. Whether increased wave reflection is inversely associated with left-ventricular (LV) systolic function in individuals without heart failure is not clear. Arterial wave reflection and LV systolic function were assessed in 301 participants from the Cardiovascular Abnormalities and Brain Lesions (CABL) study using two-dimensional echocardiography and applanation tonometry of the radial artery to derive central arterial waveform by a validated transfer function. Aortic augmentation index (AIx) and wasted energy index (WEi) were used as indices of wave reflection. LV systolic function was measured by LV ejection fraction (LVEF) and tissue Doppler imaging (TDI). Mitral annulus peak systolic velocity (Sm), peak longitudinal strain and strain rate were measured. Participants with history of coronary artery disease, atrial fibrillation, LVEF less than 50% or wall motion abnormalities were excluded. Mean age of the study population was 68.3 ± 10.2 years (64.1% women, 65% hypertensive). LV systolic function by TDI was lower with increasing wave reflection, whereas LVEF was not. In multivariate analysis, TDI parameters of LV longitudinal systolic function were significantly and inversely correlated to AIx and WEi (P values from 0.05 to 0.002). In a community cohort without heart failure and with normal LVEF, an increased arterial wave reflection was associated with subclinical reduction in LV systolic function assessed by novel TDI techniques. Further studies are needed to investigate the prognostic implications of this relationship.

  8. Assessment of left ventricular myocardial deformation by cardiac MRI strain imaging reveals myocardial dysfunction in patients with primary cardiac tumors.

    PubMed

    Chen, Jing; Yang, Zhi-Gang; Xu, Hua-Yan; Shi, Ke; Guo, Ying-Kun

    2018-02-15

    To assess left ventricular myocardial deformation in patients with primary cardiac tumors. MRI was retrospectively performed in 61 patients, including 31 patients with primary cardiac tumors and 30 matched normal controls. Left ventricular strain and function parameters were then assessed by MRI-tissue tracking. Differences between the tumor group and controls, left and right heart tumor groups, left ventricular wall tumor and non-left ventricular wall tumor groups, and tumors with and without LV enlargement groups were assessed. Finally, the correlations among tumor diameter, myocardial strain, and LV function were analyzed. Left ventricular myocardial strain was milder for tumor group than for normal group. Peak circumferential strain (PCS) and its diastolic strain rate, longitudinal strains (PLS) and its diastolic strain rates, and peak radial systolic and diastolic velocities of the right heart tumor group were lower than those of the left heart tumor group (all p<0.050), but the peak radial systolic strain rate of the former was higher than that of the latter (p=0.017). The corresponding strains were lower in the left ventricular wall tumor groups than in the non-left ventricular wall tumor group (p<0.050). Peak radial systolic velocities were generally higher for tumors with LV enlargement than for tumors without LV enlargement (p<0.050). Peak radial strain, PCS, and PLS showed important correlations with the left ventricular ejection fraction (all p<0.050). MRI-tissue tracking is capable of quantitatively assessing left ventricular myocardial strain to reveal sub-clinical abnormalities of myocardial contractile function. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Obesity Alters Molecular and Functional Cardiac Responses to Ischemia-Reperfusion and Glucagon-Like Peptide-1 Receptor Agonism

    PubMed Central

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B. Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-01-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miR) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-min coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca2+ binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  10. N-Terminal Pro-B Type Natriuretic Peptide is Associated with Mild Cognitive Impairment in the General Population.

    PubMed

    Kara, Kaffer; Mahabadi, Amir Abbas; Weimar, Christian; Winkler, Angela; Neumann, Till; Kälsch, Hagen; Dragano, Nico; Moebus, Susanne; Erbel, Raimund; Jöckel, Karl-Heinz; Jokisch, Martha

    2017-01-01

    N-terminal pro-B type natriuretic peptide (NT-proBNP) is a marker of cardiac stress and is linked with silent cardiac diseases. While associations of cognitive impairment with manifest cardiovascular diseases are established, data on whether subclinical elevation of NT-proBNP levels below clinically established threshold of heart failure is related with cognitive functioning, especially mild cognitive impairment (MCI), is rare. Aim of the present study was to investigate the cross-sectional association of NT-proBNP levels and MCI in a population-based study sample without heart failure. We used data from the second examination of the population based Heinz-Nixdorf-Recall-Study. Subjects with overt coronary heart disease and subjects with NT-proBNP levels indicating potential heart failure (NT-proBNP≥300 pg/ml) were excluded from this analysis. Participants performed a validated brief cognitive assessment and were classified either as MCI [subtypes: amnestic-MCI (aMCI), non-amnestic-MCI (naMCI)], or cognitively-normal. We included 419 participants with MCI (63.1±7.4 y; 47% men; aMCI n = 209; naMCI n = 210) and 1,206 cognitively normal participants (62.42±7.1 y; 48% men). NT-proBNP-levels≥125 pg/ml compared to <125 pg/ml were associated with MCI in fully adjusted models (OR 1.65 (1.23;2.23) in the total sample, 1.73 (1.09;2.74) in men and 1.63(1.10;2.41) in women). For aMCI, the fully adjusted OR was 1.53 (1.04;2.25) and for naMCI, the fully adjusted OR was 1.34 (1.09; 166) in the total sample. Within normal ranges and without manifest heart failure, higher NT-proBNPlevels are associated with MCI and both MCI subtypes independent of traditional cardiovascular risk factors and sociodemographic parameters.

  11. Idiopathic dilated cardiomyopathy: computerized anatomic study of relashionship between septal and free left ventricle wall

    PubMed Central

    Juliani, Paulo Sérgio; da Costa, Éder França; Correia, Aristides Tadeu; Monteiro, Rosangela; Jatene, Fabio Biscegli

    2014-01-01

    Introduction A feature of dilated cardiomyopathy is the deformation of ventricular cavity, which contributes to systolic dysfunction. Few studies have evaluated this deformation bearing in mind ventricular regions and segments of the ventricle, which could reveal important details of the remodeling process, supporting a better understanding of its role in functional impairment and the development of new therapeutic strategies. Objective To evaluate if, in basal, equatorial and apical regions, increased internal transverse perimeter of left ventricle in idiopathic dilated cardiomyopathy occurs proportionally between the septal and non-septal segment. Methods We performed an anatomical study with 28 adult hearts from human cadavers. One group consisted of 18 hearts with idiopathic dilated cardiomyopathy and another group with 10 normal hearts. After lamination and left ventricle digital image capture, in three different regions (base, equator and apex), the transversal internal perimeter of left ventricle was divided into two segments: septal and not septal. These segments were measured by proper software. It was established an index of proportionality between these segments, called septal and non-septal segment index. Then we determined whether this index was the same in both groups. Results Among patients with normal hearts and idiopathic dilated cardiomyopathy, the index of proportionality between the two segments (septal and non-septal) showed no significant difference in the three regions analyzed. The comparison results of the indices NSS/SS among normal and enlarged hearts were respectively: in base 1.99 versus 1.86 (P=0.46), in equator 2.22 versus 2.18 (P=0.79) and in apex 2.96 versus 3.56 (P=0.11). Conclusion In the idiopathic dilated cardiomyopathy, the transversal dilatation of left ventricular internal perimeter occurs proportionally between the segments corresponding to the septum and free wall at the basal, equatorial and apical regions of this chamber. PMID:25372906

  12. Incidence of cardiac arrhythmias in asymptomatic hereditary hemochromatosis subjects with C282Y homozygosity.

    PubMed

    Shizukuda, Yukitaka; Tripodi, Dorothy J; Zalos, Gloria; Bolan, Charles D; Yau, Yu-Ying; Leitman, Susan F; Waclawiw, Myron A; Rosing, Douglas R

    2012-03-15

    It is not well known whether systemic iron overload per se in hereditary hemochromatosis (HH) is associated with cardiac arrhythmias before other signs and symptoms of cardiovascular disease occur. In the present study, we examined the incidence of cardiac arrhythmia in cardiac asymptomatic subjects with HH (New York Heart Association functional class I) and compared it to that in age- and gender-matched normal volunteers. The 42 subjects with HH and the 19 normal control subjects were recruited through the National Heart, Lung, and Blood Institute-sponsored "Heart Study of Hemochromatosis." They completed 48-hour Holter electrocardiography ambulatory monitoring at the baseline evaluation. The subjects with HH were classified as newly diagnosed (group A) and chronically treated (group B) subjects. All subjects with HH had C282Y homozygosity, and the normal volunteers lacked any HFE gene mutations known to cause HH. Although statistically insignificant, the incidence of ventricular and supraventricular ectopy tended to be greater in the combined HH groups than in the controls. Supraventricular ectopy was more frequently noted in group B compared to in the controls (ectopy rate per hour 11.1 ± 29.9 vs 1.5 ± 3.5, p < 0.05, using the Kruskal-Wallis test). No examples of heart block, other than first-degree atrioventricular node block, were seen in any of the subjects. The incidence of cardiac arrhythmias was not significantly reduced after 6 months of intensive iron removal therapy in the group A subjects. No life-threatening arrhythmias were observed in our subjects with HH. In conclusion, our data suggest that the incidence of cardiac arrhythmias is, at most, marginally increased in asymptomatic subjects with HH. A larger clinical study is warranted to further clarify our observation. Published by Elsevier Inc.

  13. Hyperthyroidism is characterized by both increased sympathetic and decreased vagal modulation of heart rate: evidence from spectral analysis of heart rate variability.

    PubMed

    Chen, Jin-Long; Chiu, Hung-Wen; Tseng, Yin-Jiun; Chu, Woei-Chyn

    2006-06-01

    The clinical manifestations of hyperthyroidism resemble those of the hyperadrenergic state. This study was designed to evaluate the impact of hyperthyroidism on the autonomic nervous system (ANS) and to investigate the relationship between serum thyroid hormone concentrations and parameters of spectral heart rate variability (HRV) analysis in hyperthyroidism. Thirty-two hyperthyroid Graves' disease patients (mean age 31 years) and 32 sex-, age-, and body mass index (BMI)-matched normal control subjects were recruited to receive one-channel electrocardiogram (ECG) recording. The cardiac autonomic nervous function was evaluated by the spectral analysis of HRV, which indicates the autonomic modulation of the sinus node. The correlation coefficients between serum thyroid hormone concentrations and parameters of the spectral HRV analysis were also computed. The hyperthyroid patients revealed significant differences (P < 0.001) compared with the controls in the following HRV parameters: a decrease in total power (TP), very low frequency power (VLF), low frequency power (LF), high frequency power (HF), and HF in normalized units (HF%); and an increase in LF in normalized units (LF%) and in the ratio of LF to HF (LF/HF). After correction of hyperthyroidism in 28 patients, all of the above parameters were restored to levels comparable to those of the controls. In addition, serum thyroid hormone concentrations showed significant correlations with spectral HRV parameters. Hyperthyroidism is in a sympathovagal imbalanced state, characterized by both increased sympathetic and decreased vagal modulation of the heart rate. These autonomic dysfunctions can be detected simultaneously by spectral analysis of HRV, and the spectral HRV parameters could reflect the disease severity in hyperthyroid patients.

  14. Thyroid and the Heart

    PubMed Central

    Grais, Ira Martin; Sowers, James R.

    2015-01-01

    Thyroid hormones modulate every component of the cardiovascular system necessary for normal cardiovascular development and function. When cardiovascular disease is present, thyroid function tests are characteristically indicated to determine if overt thyroid disorders or even subclinical dysfunction exists. As hypothyroidism, hypertension and cardiovascular disease all increase with advancing age monitoring of TSH, the most sensitive test for hypothyroidism, is important in this expanding segment of our population. A better understanding of the impact of thyroid hormonal status on cardiovascular physiology will enable health care providers to make decisions regarding thyroid hormone evaluation and therapy in concert with evaluating and treating hypertension and cardiovascular disease. The goal of this review is to access contemporary understanding of the effects of thyroid hormones on normal cardiovascular function and the potential role of overt and subclinical hypothyroidism and hyperthyroidism in a variety of cardiovascular diseases. PMID:24662620

  15. Ventilatory and circulatory responses at the onset of exercise in man following heart or heart-lung transplantation.

    PubMed Central

    Banner, N; Guz, A; Heaton, R; Innes, J A; Murphy, K; Yacoub, M

    1988-01-01

    1. Ventilatory and cardiovascular responses to the onset of voluntary and electrically induced leg exercise were studied in six patients following heart transplantation and five following heart-lung transplantation; the results were compared between the patient groups and also with responses from a group of normal subjects. 2. Oxygen consumption, carbon dioxide production and ventilation and its components were measured over two 30 s periods prior to, and two 30 s periods following, the onset of exercise. Relative changes in stroke volume and cardiac output were derived from ensemble-averaged Doppler measurements of ascending aortic blood velocity over the same 30 s periods. 3. None of the groups of subjects showed any significant differences in responses to voluntary exercise compared to electrically induced exercise of similar work pattern and intensity. 4. Compared to normal controls, the transplanted subjects showed higher resting heart rates which did not increase at the onset of exercise; stroke volume increased, but less than in the normal subjects. The resulting cardiac output increases in the transplanted subjects were minimal compared to the normal subjects. 5. Ventilation and oxygen uptake increased immediately and with similar magnitude in all three groups. 6. These results show that in the same individual it is possible to have an appropriate ventilatory response to the onset of exercise in the presumed absence of a normal corticospinal input to the exercising muscles (electrically induced exercise) and afferent neural information from the lungs and heart, and in the absence of a normal circulatory response to exercise. The mechanisms underlying this ventilatory response remain undetermined. PMID:3136247

  16. Understanding changes in cardiovascular pathophysiology.

    PubMed

    Chummun, Harry

    Cardiovascular pathophysiological changes, such as hypertension and enlarged ventricles, reflect the altered functions of the heart and its circulation during ill-health. This article examines the normal and altered anatomy of the cardiac valves, the contractile elements and enzymes of the myocardium, the significance of the different factors associated with cardiac output, and the role of the autonomic nervous system in the heart beat. It also explores how certain diseases alter these functions and result in cardiac symptoms. Nurses can benefit from knowledge of these specific changes, for example, by being able to ask relevant questions in order to ascertain the nature of a patients condition, by being able to take an effective patient history and by being able to read diagnostic results, such as electrocardiograms and cardiac enzyme results. All this will help nurses to promote sound cardiac care based on a physiological rationale.

  17. Translational neurocardiology: preclinical models and cardioneural integrative aspects.

    PubMed

    Ardell, J L; Andresen, M C; Armour, J A; Billman, G E; Chen, P-S; Foreman, R D; Herring, N; O'Leary, D S; Sabbah, H N; Schultz, H D; Sunagawa, K; Zucker, I H

    2016-07-15

    Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, T. Maurice; Robinson, Neil J.; Tsvelik, Alexei M.

    Here, the high-temperature normal state of the unconventional cuprate superconductors has resistivity linear in temperature T, which persists to values well beyond the Mott-Ioffe-Regel upper bound. At low temperatures, within the pseudogap phase, the resistivity is instead quadratic in T, as would be expected from Fermi liquid theory. Developing an understanding of these normal phases of the cuprates is crucial to explain the unconventional superconductivity. We present a simple explanation for this behavior, in terms of the umklapp scattering of electrons. This fits within the general picture emerging from functional renormalization group calculations that spurred the Yang-Rice-Zhang ansatz: Umklapp scatteringmore » is at the heart of the behavior in the normal phase.« less

  19. Prolonged Tp-e Interval in Down Syndrome Patients with Congenitally Normal Hearts.

    PubMed

    Kucuk, Mehmet; Karadeniz, Cem; Ozdemir, Rahmi; Meşe, Timur

    2018-03-25

    Heterogeneity of ventricular repolarization has been assessed by using the QT dispersion in Down syndrome (DS) patients with congenitally normal hearts. However, novel repolarization indexes, the Tp-e interval and Tp-e/QT ratio, have not previously been evaluated in these patients. The aim of this study was to evaluate the Tp-e interval and Tp-e/QT ratio in DS patients without congenital heart defects. Twelve-lead surface electrocardiograms of 160 DS patients and 110 age- and sex-matched healthy controls were used to evaluate and compare the Tp-e interval, Tp-e dispersion, and Tp-e/QT ratio. Heart rate, Tp-e interval, Tp-e dispersion, Tp-e/QT and Tp-e/QTc ratios were significantly higher in DS group than in the controls. Myocardial repolarization indexes in DS patients with congenitally normal hearts were found to be prolonged compared to those in normal controls. Further evaluation is warranted to reveal a relationship between prolonged repolarization indexes and arrhythmic events in these patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Computerized system for assessing heart rate variability.

    PubMed

    Frigy, A; Incze, A; Brânzaniuc, E; Cotoi, S

    1996-01-01

    The principal theoretical, methodological and clinical aspects of heart rate variability (HRV) analysis are reviewed. This method has been developed over the last 10 years as a useful noninvasive method of measuring the activity of the autonomic nervous system. The main components and the functioning of the computerized rhythm-analyzer system developed by our team are presented. The system is able to perform short-term (maximum 20 minutes) time domain HRV analysis and statistical analysis of the ventricular rate in any rhythm, particularly in atrial fibrillation. The performances of our system are demonstrated by using the graphics (RR histograms, delta RR histograms, RR scattergrams) and the statistical parameters resulted from the processing of three ECG recordings. These recordings are obtained from a normal subject, from a patient with advanced heart failure, and from a patient with atrial fibrillation.

  1. Fermi-Pasta-Ulam auto recurrence in the description of the electrical activity of the heart.

    PubMed

    Novopashin, M A; Shmid, A V; Berezin, A A

    2017-04-01

    The authors proposed and mathematically described model of a new type of the Fermi-Pasta-Ulam recurrence (the FPU auto recurrence) and hypothesized an adequate description of the heart's electrical dynamics within the observed phenomenon. The dynamics of the FPU auto recurrence making appropriate electrical dynamics of the normal functioning of the heart in the form of an electrocardiogram (ECG) was obtained by a computer model study. The model solutions in the form of the FPU auto recurrence - ECG Fourier spectrum were evaluated for resistance to external disturbances in the form of random effects, as well as periodic perturbation at a frequency close to the heart beating rate of about 1Hz. In addition, in order to simulate the dynamics of myocardial infarction model, studied the effect of the surface area of the myocardium on the stability and shape of the auto recurrence - ECG spectrum. It has been found that the intense external disturbing periodic impacts at a frequency of about 1Hz lead to a sharp disturbance spectrum shape FPU auto recurrence - ECG structure. In addition, the decrease in the surface of the myocardium by 50% in the model led to the destruction of structures of the auto recurrence - ECG, which corresponds to the state of atrial myocardium. Research models have revealed a hypothetical basis of coronary heart disease in the form of increasing the energy of high-frequency harmonics spectrum of the auto recurrence by reducing the energy of low-frequency harmonic spectrum of the auto recurrence, which ultimately leads to a sharp decrease in myocardial contractility. In order to test the hypothesis has been studied more than 20,000 ECGs both healthy people and patients with cardiovascular disease. As a result of these studies, it was found that the dynamics of the electrical activity of normal functioning of the heart can be interpreted by the display of the detected by authors the FPU auto recurrence, and coronary heart disease is a violation of the energy ratio between the low and high frequency harmonics of the FPU auto recurrence Fourier spectrum equal to the ECG spectrum. Thus, the hypothesis has been confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Paroxysmal supraventricular tachycardia (PSVT)

    MedlinePlus

    PSVT; Supraventricular tachycardia; Abnormal heart rhythm - PSVT; Arrhythmia - PSVT; Rapid heart rate - PSVT; Fast heart rate - PSVT ... Normally, the chambers of the heart (atria and ventricles) contract in ... are caused by an electrical signal that begins in an area ...

  3. Influence of impairment in renal function on the accuracy of high-sensitivity cardiac troponin T for the diagnosis of perioperative myocardial infarction after heart valve surgery.

    PubMed

    Cubero-Gallego, Hector; Heredia-Rodriguez, Maria; Tamayo, Eduardo

    2018-03-12

    We aimed to assess the influence of impairment in renal function over the high-sensitivity cardiac troponin T (hs-cTnT) accuracy to diagnose perioperative myocardial infarction (MI) after heart valve surgery. Heart valve surgery was performed in 805 patients from June 2012 to January 2016. Patients with enzymatic curves of hs-cTnT suggestive of myocardial necrosis and electrocardiogram and/or transthoracic echocardiogram criteria were identified as patients with perioperative MI. Impairment in renal function was defined as a postoperative creatinine clearance <50 ml/min at 16 h after surgery and for at least 48 h. Patients included were divided into 2 groups at 16 h: (i) patients with normal renal function (creatinine clearance >50 ml/min) and (ii) patients with impairment in renal function (creatinine clearance <50 ml/min). From a total of 805 patients undergoing heart valve surgery, 88 patients developed perioperative MI. When comparing receiver operating characteristic curves in patients with perioperative MI according to renal function, the optimal threshold of hs-cTnT at 16 h differed in patients with impairment in renal function (1303 vs 1095 pg/ml, P < 0.001). The diagnostic accuracy of hs-cTnT at 16 h was 93.4% [95% confidence interval (CI) 89.98-96.86], with an area under receiver operating characteristic curve (0.993, 95% CI 0.988-0.999 vs 0.972, 95% CI 0.952-0.992; P < 0.001). Renal function might influence in hs-cTnT levels. However, a hs-cTnT threshold of 1303 pg/ml at 16 h may be applied according to renal function to diagnose perioperative MI after cardiac surgery.

  4. Exploring Heart and Lung Function in Space: ARMS Experiments

    NASA Technical Reports Server (NTRS)

    Kuipers, Andre; Cork, Michael; LeGouic, Marine

    2002-01-01

    The Advanced Respiratory Monitoring System (ARMS) is a suite of monitoring instruments and supplies used to study the heart, lungs, and metabolism. Many experiments sponsored by the European Space Agency (ESA) will be conducted using ARMS during STS-107. The near-weightless environment of space causes the body to undergo many physiological adaptations, and the regulation of blood pressure is no exception. Astronauts also experience a decrease in blood volume as an adaptation to microgravity. Reduced blood volume may not provide enough blood pressure to the head during entry or landing. As a result, astronauts often experience light-headedness, and sometimes even fainting, when they stand shortly after returning to Earth. To help regulate blood pressure and heart rate, baroreceptors, sensors located in artery walls in the neck and near the heart, control blood pressure by sending information to the brain and ensuring blood flow to organs. These mechanisms work properly in Earth's gravity but must adapt in the microgravity environment of space. However, upon return to Earth during entry and landing, the cardiovascular system must readjust itself to gravity, which can cause fluctuation in the control of blood pressure and heart rate. Although the system recovers in hours or days, these occurrences are not easily predicted or understood - a puzzle investigators will study with the ARMS equipment. In space, researchers can focus on aspects of the cardiovascular system normally masked by gravity. The STS-107 experiments using ARMS will provide data on how the heart and lungs function in space, as well as how the nervous system controls them. Exercise will also be combined with breath holding and straining (the Valsalva maneuver) to test how heart rate and blood pressure react to different stresses. This understanding will improve astronauts' cardiopulmonary function after return to Earth, and may well help Earthbound patients who experience similar effects after long-term bed rest.

  5. Top-Down Quantitative Proteomics Identified Phosphorylation of Cardiac Troponin I as a Candidate Biomarker for Chronic Heart Failure

    PubMed Central

    Zhang, Jiang; Guy, Moltu J.; Norman, Holly S.; Chen, Yi-Chen; Xu, Qingge; Dong, Xintong; Guner, Huseyin; Wang, Sijian; Kohmoto, Takushi; Young, Ken H.; Moss, Richard L.; Ge, Ying

    2011-01-01

    The rapid increase in the prevalence of chronic heart failure (CHF) worldwide underscores an urgent need to identify biomarkers for the early detection of CHF. Post-translational modifications (PTMs) are associated with many critical signaling events during disease progression and thus offer a plethora of candidate biomarkers. We have employed top-down quantitative proteomics methodology for comprehensive assessment of PTMs in whole proteins extracted from normal and diseased tissues. We have systematically analyzed thirty-six clinical human heart tissue samples and identified phosphorylation of cardiac troponin I (cTnI) as a candidate biomarker for CHF. The relative percentages of the total phosphorylated cTnI forms over the entire cTnI populations (%Ptotal) were 56.4±3.5%, 36.9±1.6%, 6.1±2.4%, and 1.0±0.6% for postmortem hearts with normal cardiac function (n=7), early-stage of mild hypertrophy (n=5), severe hypertrophy/dilation (n=4), and end-stage CHF (n=6), respectively. In fresh transplant samples, the %Ptotal of cTnI from non-failing donor (n=4), and end-stage failing hearts (n=10) were 49.5±5.9% and 18.8±2.9%, respectively. Top-down MS with electron capture dissociation unequivocally localized the altered phosphorylation sites to Ser22/23 and determined the order of phosphorylation/dephosphorylation. This study represents the first clinical application of top-down MS-based quantitative proteomics for biomarker discovery from tissues, highlighting the potential of PTM as disease biomarkers. PMID:21751783

  6. Electromechanical heterogeneity in the heart : A key to long QT syndrome?

    PubMed

    Dressler, F F; Brado, J; Odening, K E

    2018-03-01

    In the healthy heart, physiological heterogeneities in structure and in electrical and mechanical activity are crucial for normal, efficient excitation and pumping. Alterations of heterogeneity have been linked to arrhythmogenesis in various cardiac disorders such as long QT syndrome (LQTS). This inherited arrhythmia disorder is caused by mutations in different ion channel genes and is characterized by (heterogeneously) prolonged cardiac repolarization and increased risk for ventricular tachycardia, syncope and sudden cardiac death. Cardiac electrical and mechanical function are not independent of each other but interact in a bidirectional manner by electromechanical and mechano-electrical coupling. Therefore, changes in either process will affect the other. Recent experimental and clinical evidence suggests that LQTS, which is primarily considered an "electrical" disorder, also exhibits features of disturbed mechanical function and heterogeneity, which in turn appears to correlate with the risk of arrhythmia in the individual patient. In this review, we give a short overview of the current knowledge about physiological and pathological, long QT-related electrical and mechanical heterogeneity in the heart. Also, their respective roles for future risk prediction approaches in LQTS are discussed.

  7. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1.

    PubMed

    Dadson, Keith; Hauck, Ludger; Hao, Zhenyue; Grothe, Daniela; Rao, Vivek; Mak, Tak W; Billia, Filio

    2017-02-02

    Cardiac homeostasis requires proper control of protein turnover. Protein degradation is principally controlled by the Ubiquitin-Proteasome System. Mule is an E3 ubiquitin ligase that regulates cellular growth, DNA repair and apoptosis to maintain normal tissue architecture. However, Mule's function in the heart has yet to be described. In a screen, we found reduced Mule expression in left ventricular samples from end-stage heart failure patients. Consequently, we generated conditional cardiac-specific Mule knockout (Mule  fl/fl(y) ;mcm) mice. Mule ablation in adult Mule  fl/fl(y) ;mcm mice prevented myocardial c-Myc polyubiquitination, leading to c-Myc accumulation and subsequent reduced expression of Pgc-1α, Pink1, and mitochondrial complex proteins. Furthermore, these mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction, and early mortality. Co-deletion of Mule and c-Myc rescued this phenotype. Our data supports an indispensable role for Mule in cardiac homeostasis through the regulation of mitochondrial function via maintenance of Pgc-1α and Pink1 expression and persistent negative regulation of c-Myc.

  8. Facultative cardiac responses to regional hypoxia in lizard embryos.

    PubMed

    Du, Wei-Guo; Thompson, Michael B; Shine, Richard

    2010-08-01

    In natural nests, the eggs of squamate reptiles (lizards and snakes) sometimes experience unpredictable shifts in oxygen availability as a function of nest flooding, or the details of egg location within a nest. We experimentally investigated whether embryos can facultatively adjust cardiac function to cope with such challenges by imposing regional hypoxia on developing eggs of the scincid lizard Bassiana duperreyi. To do so, we sealed half of the eggshell surface with tissue adhesive. The embryos rapidly responded by increasing heart rates, which they maintained for long periods. The elevated heart rates enabled the embryos not only to survive, but to maintain "normal" metabolic rates, and to hatch at the usual time with unmodified phenotypic traits (e.g., hatchling size, relative heart mass, locomotor speed, post-hatchling survival and growth rates). Turtles and birds with rigid (highly calcified) eggshells show more dramatic ill-effects from hypoxic incubation, suggesting that the thin (and thus, highly gas-permeable) parchment-shelled eggs of most squamates allow more effective embryonic adjustment of oxygen exchange rates in response to externally-imposed hypoxia. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Multiscale entropy-based methods for heart rate variability complexity analysis

    NASA Astrophysics Data System (ADS)

    Silva, Luiz Eduardo Virgilio; Cabella, Brenno Caetano Troca; Neves, Ubiraci Pereira da Costa; Murta Junior, Luiz Otavio

    2015-03-01

    Physiologic complexity is an important concept to characterize time series from biological systems, which associated to multiscale analysis can contribute to comprehension of many complex phenomena. Although multiscale entropy has been applied to physiological time series, it measures irregularity as function of scale. In this study we purpose and evaluate a set of three complexity metrics as function of time scales. Complexity metrics are derived from nonadditive entropy supported by generation of surrogate data, i.e. SDiffqmax, qmax and qzero. In order to access accuracy of proposed complexity metrics, receiver operating characteristic (ROC) curves were built and area under the curves was computed for three physiological situations. Heart rate variability (HRV) time series in normal sinus rhythm, atrial fibrillation, and congestive heart failure data set were analyzed. Results show that proposed metric for complexity is accurate and robust when compared to classic entropic irregularity metrics. Furthermore, SDiffqmax is the most accurate for lower scales, whereas qmax and qzero are the most accurate when higher time scales are considered. Multiscale complexity analysis described here showed potential to assess complex physiological time series and deserves further investigation in wide context.

  10. Umklapp scattering as the origin of T -linear resistivity in the normal state of high- T c cuprate superconductors

    DOE PAGES

    Rice, T. Maurice; Robinson, Neil J.; Tsvelik, Alexei M.

    2017-12-11

    Here, the high-temperature normal state of the unconventional cuprate superconductors has resistivity linear in temperature T, which persists to values well beyond the Mott-Ioffe-Regel upper bound. At low temperatures, within the pseudogap phase, the resistivity is instead quadratic in T, as would be expected from Fermi liquid theory. Developing an understanding of these normal phases of the cuprates is crucial to explain the unconventional superconductivity. We present a simple explanation for this behavior, in terms of the umklapp scattering of electrons. This fits within the general picture emerging from functional renormalization group calculations that spurred the Yang-Rice-Zhang ansatz: Umklapp scatteringmore » is at the heart of the behavior in the normal phase.« less

  11. Selection of reference genes for gene expression studies in heart failure for left and right ventricles.

    PubMed

    Li, Mengmeng; Rao, Man; Chen, Kai; Zhou, Jianye; Song, Jiangping

    2017-07-15

    Real-time quantitative reverse transcriptase-PCR (qRT-PCR) is a feasible tool for determining gene expression profiles, but the accuracy and reliability of the results depends on the stable expression of selected housekeeping genes in different samples. By far, researches on stable housekeeping genes in human heart failure samples are rare. Moreover the effect of heart failure on the expression of housekeeping genes in right and left ventricles is yet to be studied. Therefore we aim to provide stable housekeeping genes for both ventricles in heart failure and normal heart samples. In this study, we selected seven commonly used housekeeping genes as candidates. By using the qRT-PCR, the expression levels of ACTB, RAB7A, GAPDH, REEP5, RPL5, PSMB4 and VCP in eight heart failure and four normal heart samples were assessed. The stability of candidate housekeeping genes was evaluated by geNorm and Normfinder softwares. GAPDH showed the least variation in all heart samples. Results also indicated the difference of gene expression existed in heart failure left and right ventricles. GAPDH had the highest expression stability in both heart failure and normal heart samples. We also propose using different sets of housekeeping genes for left and right ventricles respectively. The combination of RPL5, GAPDH and PSMB4 is suitable for the right ventricle and the combination of GAPDH, REEP5 and RAB7A is suitable for the left ventricle. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Immunological Development and Cardiovascular Function Are Normal in Annexin VI Null Mutant Mice

    PubMed Central

    Hawkins, Tim E.; Roes, Jürgen; Rees, Daryl; Monkhouse, Jayne; Moss, Stephen E.

    1999-01-01

    Annexins are calcium-binding proteins of unknown function but which are implicated in important cellular processes, including anticoagulation, ion flux regulation, calcium homeostasis, and endocytosis. To gain insight into the function of annexin VI, we performed targeted disruption of its gene in mice. Matings between heterozygous mice produced offspring with a normal Mendelian pattern of inheritance, indicating that the loss of annexin VI did not interfere with viability in utero. Mice lacking annexin VI reached sexual maturity at the same age as their normal littermates, and both males and females were fertile. Because of interest in the role of annexin VI in cardiovascular function, we examined heart rate and blood pressure in knockout and wild-type mice and found these to be identical in the two groups. Similarly, the cardiovascular responses of both sets of mice to septic shock were indistinguishable. We also examined components of the immune system and found no differences in thymic, splenic, or bone marrow lymphocyte levels between knockout and wild-type mice. This is the first study of annexin knockout mice, and the lack of a clear phenotype has broad implications for current views of annexin function. PMID:10567528

  13. Negative Social Evaluation Impairs Executive Functions in Adolescents With Excess Weight: Associations With Autonomic Responses.

    PubMed

    Padilla, María Moreno; Fernández-Serrano, María J; Verdejo García, Antonio; Reyes Del Paso, Gustavo A

    2018-06-22

    Adolescents with excess weight suffer social stress more frequently than their peers with normal weight. To examine the impact of social stress, specifically negative social evaluation, on executive functions in adolescents with excess weight. We also examined associations between subjective stress, autonomic reactivity, and executive functioning. Sixty adolescents (aged 13-18 years) classified into excess weight or normal weight groups participated. We assessed executive functioning (working memory, inhibition, and shifting) and subjective stress levels before and after the Trier Social Stress Task (TSST). The TSST was divided into two phases according to the feedback of the audience: positive and negative social evaluation. Heart rate and skin conductance were recorded. Adolescents with excess weight showed poorer executive functioning after exposure to TSST compared with adolescents with normal weight. Subjective stress and autonomic reactivity were also greater in adolescents with excess weight than adolescents with normal weight. Negative social evaluation was associated with worse executive functioning and increased autonomic reactivity in adolescents with excess weight. The findings suggest that adolescents with excess weight are more sensitive to social stress triggered by negative evaluations. Social stress elicited deterioration of executive functioning in adolescents with excess weight. Evoked increases in subjective stress and autonomic responses predicted decreased executive function. Deficits in executive skills could reduce cognitive control abilities and lead to overeating in adolescents with excess weight. Strategies to cope with social stress to prevent executive deficits could be useful to prevent future obesity in this population.

  14. Over-expression of mitochondrial creatine kinase in the murine heart improves functional recovery and protects against injury following ischaemia-reperfusion.

    PubMed

    Whittington, Hannah J; Ostrowski, Philip J; McAndrew, Debra J; Cao, Fang; Shaw, Andrew; Eykyn, Thomas R; Lake, Hannah; Tyler, Jack; Schneider, Jurgen E; Neubauer, Stefan; Zervou, Sevasti; Lygate, Craig A

    2018-03-02

    Mitochondrial creatine kinase (MtCK) couples ATP production via oxidative phosphorylation to phosphocreatine in the cytosol, which acts as a mobile energy store available for regeneration of ATP at times of high demand. We hypothesised that elevating MtCK would be beneficial in ischaemia-reperfusion (I/R) injury. Mice were created overexpressing the sarcomeric MtCK gene with αMHC promoter at the Rosa26 locus (MtCK-OE) and compared with wild-type (WT) littermates. MtCK activity was 27% higher than WT, with no change in other CK isoenzymes or creatine levels. Electron microscopy confirmed normal mitochondrial cell density and mitochondrial localisation of transgenic protein. Respiration in isolated mitochondria was unaltered and metabolomic analysis by 1H-NMR suggests that cellular metabolism was not grossly affected by transgene expression. There were no significant differences in cardiac structure or function under baseline conditions by cine-MRI or LV haemodynamics. In Langendorff-perfused hearts subjected to 20min ischaemia and 30 min reperfusion, MtCK-OE exhibited less ischaemic contracture and improved functional recovery (Rate pressure product 58% above WT; P < 0.001). These hearts had reduced myocardial infarct size, which was confirmed in vivo: 55±4% in WT vs 29±4% in MtCK-OE; P < 0.0001). Isolated cardiomyocytes from MtCK-OE hearts exhibited delayed opening of the mitochondrial permeability transition pore (mPTP) compared to WT, which was confirmed by reduced mitochondrial swelling in response to calcium. There was no detectable change in the structural integrity of the mitochondrial membrane. Modest elevation of MtCK activity in the heart does not adversely affect cellular metabolism, mitochondrial or in vivo cardiac function, but modifies mPTP opening to protect against I/R injury and improve functional recovery. Our findings support MtCK as a prime therapeutic target in myocardial ischaemia.

  15. Right ventricle performances with echocardiography and 99mTc myocardial perfusion imaging in pulmonary arterial hypertension patients.

    PubMed

    Liu, Jie; Fei, Lei; Huang, Guang-Qing; Shang, Xiao-Ke; Liu, Mei; Pei, Zhi-Jun; Zhang, Yong-Xue

    2018-05-01

    Right heart catheterization is commonly used to measure right ventricle hemodynamic parameters and is the gold standard for pulmonary arterial hypertension diagnosis; however, it is not suitable for patients' long-term follow-up. Non-invasive echocardiography and nuclear medicine have been applied to measure right ventricle anatomy and function, but the guidelines for the usefulness of clinical parameters remain to be established. The goal of this study is to identify reliable clinical parameters of right ventricle function in pulmonary arterial hypertension patients and analyze the relationship of these clinical parameters with the disease severity of pulmonary arterial hypertension. In this study, 23 normal subjects and 23 pulmonary arterial hypertension patients were recruited from January 2015 to March 2016. Pulmonary arterial hypertension patients were classified into moderate and severe pulmonary arterial hypertension groups according to their mean pulmonary arterial pressure levels. All the subjects were subjected to physical examination, chest X-ray, 12-lead electrocardiogram, right heart catheterization, two-dimensional echocardiography, and technetium 99m ( 99m Tc) myocardial perfusion imaging. Compared to normal subjects, the right heart catheterization indexes including right ventricle systolic pressure, right ventricle end diastolic pressure, pulmonary artery systolic pressure, pulmonary artery diastolic pressure, pulmonary vascular resistance, and right ventricle end systolic pressure increased in pulmonary arterial hypertension patients and were correlated with mean pulmonary arterial pressure levels. Echocardiography parameters, including tricuspid regurgitation peak velocity, tricuspid regurgitation pressure gradient, tricuspid annular plane systolic excursion and fractional area, right ventricle-myocardial performance index, were significantly associated with the mean pulmonary arterial pressure levels in pulmonary arterial hypertension patients. Furthermore, myocardial perfusion imaging was not observed in the normal subjects but in pulmonary arterial hypertension patients, especially severe pulmonary arterial hypertension subgroup, and showed potential diagnostic properties for pulmonary arterial hypertension. In conclusion, mean pulmonary arterial pressure levels are correlated with several right heart catheterization and echocardiography markers in pulmonary arterial hypertension patients; echocardiography and 99m Tc myocardial perfusion can be used to evaluate right ventricle performance in pulmonary arterial hypertension patients. Impact statement In this study, we analyzed the clinical parameters for evaluating RV function, including right ventricle catheterization (RHC), echocardiography, and technetium 99m ( 99m Tc) myocardial perfusion imaging (MPI) in normal Asian subjects and PAH patients ( n = 23 for each group). Our results demonstrated that six RHC indexes, four echocardiography indexes and MPI index were significantly altered in PAH patients and correlated with the levels of mean pulmonary arterial pressure. Importantly, we evaluated the diagnostic performance of MPI and found that MPI has a strong diagnostic accuracy in PAH patients. The findings from this study will be of interest to clinical investigators who make diagnosis and therapeutic strategies for PAH patients.

  16. Propafenone

    MedlinePlus

    ... arrhythmia (irregular heartbeat) and to maintain a normal heart rate. Propafenone is in a class of medications called antiarrhythmics. It works by acting on the heart muscle to improve the heart's rhythm.

  17. Left ventricular performance in various heart diseases with or without heart failure:--an appraisal by quantitative one-plane cineangiocardiography.

    PubMed

    Lien, W P; Lee, Y S; Chang, F Z; Chen, J J; Shieh, W B

    1978-01-01

    Quantitative one-plane cineangiocardiography in right anterior oblique position for evaluation of LV performance was carried out in 62 patients with various heart diseases and in 13 subjects with normal LV. Parameters for evaluating both pump and muscle performances were derived from volume and pressure measurements. Of 31 patients with either systolic hypertension or LV myocardial diseases (coronary artery disease or idiopathic cardiomyopathy), 14 had clinical evidence of LV failure before the study. It was found that mean VCF and EF were most sensitive indicators of impaired LV performance among the various parameters. There was a close correlation between mean VCF and EF, yet discordant changes of both parameters were noted in some patients. Furthermore, wall motion abnormalities were not infrequently observed in patients with coronary artery disease or primary cardiomyopathy. Therefore, assessment of at least three ejection properties (EF, mean VCF and wall motion abnormalities) are considered to be essential for full understanding of derangement of LV function in heart disease. This is especially true of patients with coronary artery disease. LV behavior in relation to different pathological stresses or lesions, such as chronic pressure or volume load, myocardial disease and mitral stenosis, was also studied and possible cause of impaired LV myocardial function in mitral stenosis was discussed.

  18. Mutations in FOXC2 in humans (lymphoedema distichiasis syndrome) cause lymphatic dysfunction on dependency.

    PubMed

    Mellor, Russell H; Tate, Naomi; Stanton, Anthony W B; Hubert, Charlotte; Mäkinen, Taija; Smith, Alberto; Burnand, Kevin G; Jeffery, Steve; Levick, J Rodney; Mortimer, Peter S

    2011-01-01

    Human lymphoedema distichiasis syndrome (LDS) results from germline mutations in transcription factor FOXC2. In a mouse model, lack of lymphatic and venous valves is observed plus abnormal smooth muscle cell recruitment to initial lymphatics. We investigated the mechanism of lymphoedema in humans with FOXC2 mutations, specifically the effect of gravitational forces on dermal lymphatic function. We performed (1) quantitative fluorescence microlymphangiography (FML) on the skin of the forearm (non-swollen region) at heart level, and the foot (swollen region) below heart level (dependent) and then at heart level, and (2) immunohistochemical staining of microlymphatics in forearm and foot skin biopsies, using antibodies to podoplanin, LYVE-1 and smooth muscle actin. FML revealed a marked reduction in fluid uptake by initial lymphatics in the LDS foot during dependency, yet normal uptake (similar to controls) in the same foot at heart level and in LDS forearms. In control subjects, dependency did not impair initial lymphatic filling. Immunohistochemical microlymphatic density in forearm and foot did not differ between LDS and controls. FOXC2 mutations cause a functional failure of dermal initial lymphatics during gravitational stress (dependency), but not hypoplasia. The results reveal a pathophysiological mechanism contributing to swelling in LDS. Copyright © 2011 S. Karger AG, Basel.

  19. Metabolic remodeling of substrate utilization during heart failure progression.

    PubMed

    Chen, Liang; Song, Jiangping; Hu, Shengshou

    2018-05-23

    Heart failure (HF) is a clinical syndrome caused by a decline in cardiac systolic or diastolic function, which leaves the heart unable to pump enough blood to meet the normal physiological requirements of the human body. It is a serious disease burden worldwide affecting nearly 23 million patients. The concept that heart failure is "an engine out of fuel" has been generally accepted and metabolic remodeling has been recognized as an important aspect of this condition; it is characterized by defects in energy production and changes in metabolic pathways involved in the regulation of essential cellular functions such as the process of substrate utilization, the tricarboxylic acid cycle, oxidative phosphorylation, and high-energy phosphate metabolism. Advances in second-generation sequencing, proteomics, and metabolomics have made it possible to perform comprehensive tests on genes and metabolites that are crucial in the process of HF, thereby providing a clearer and comprehensive understanding of metabolic remodeling during HF. In recent years, new metabolic changes such as ketone bodies and branched-chain amino acids were demonstrated as alternative substrates in end-stage HF. This systematic review focuses on changes in metabolic substrate utilization during the progression of HF and the underlying regulatory mechanisms. Accordingly, the conventional concepts of metabolic remodeling characteristics are reviewed, and the latest developments, particularly multi-omics studies, are compiled.

  20. Studying dyadic structure-function relationships: a review of current modeling approaches and new insights into Ca2+ (mis)handling.

    PubMed

    Maleckar, Mary M; Edwards, Andrew G; Louch, William E; Lines, Glenn T

    2017-01-01

    Excitation-contraction coupling in cardiac myocytes requires calcium influx through L-type calcium channels in the sarcolemma, which gates calcium release through sarcoplasmic reticulum ryanodine receptors in a process known as calcium-induced calcium release, producing a myoplasmic calcium transient and enabling cardiomyocyte contraction. The spatio-temporal dynamics of calcium release, buffering, and reuptake into the sarcoplasmic reticulum play a central role in excitation-contraction coupling in both normal and diseased cardiac myocytes. However, further quantitative understanding of these cells' calcium machinery and the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease requires accurate knowledge of cardiac ultrastructure, protein distribution and subcellular function. As current imaging techniques are limited in spatial resolution, limiting insight into changes in calcium handling, computational models of excitation-contraction coupling have been increasingly employed to probe these structure-function relationships. This review will focus on the development of structural models of cardiac calcium dynamics at the subcellular level, orienting the reader broadly towards the development of models of subcellular calcium handling in cardiomyocytes. Specific focus will be given to progress in recent years in terms of multi-scale modeling employing resolved spatial models of subcellular calcium machinery. A review of the state-of-the-art will be followed by a review of emergent insights into calcium-dependent etiologies in heart disease and, finally, we will offer a perspective on future directions for related computational modeling and simulation efforts.

  1. Left ventricular stiffness estimated by diastolic wall strain is associated with paroxysmal atrial fibrillation in structurally normal hearts.

    PubMed

    Uetake, Shunsuke; Maruyama, Mitsunori; Yamamoto, Teppei; Kato, Katsuhito; Miyauchi, Yasushi; Seino, Yoshihiko; Shimizu, Wataru

    2016-12-01

    Left ventricular (LV) diastolic dysfunction depends on an impaired relaxation and stiffness. Abnormal LV relaxation contributes to the development of atrial fibrillation (AF), but the role of LV stiffness in AF remains unclear. Diastolic wall strain (DWS), a load-independent, noninvasive direct measure of LV stiffness, correlates with prevalent AF. This study included 328 consecutive subjects with structurally normal hearts: 164 paroxysmal AF patients and 164 age- and sex-matched (1:1) controls. We calculated the DWS from the M-mode echocardiographic measurements of the LV posterior wall thickness at end-systole and end-diastole during sinus rhythm. The DWS was lower in the AF patients (0.35 ± 0.07) than in the controls (0.41 ± 0.06; P < 0.001). After adjusting for the risk factors of AF using a conditional logistic regression analysis, a history of hypertension, plasma brain-type natriuretic peptide level, and DWS were independently associated with AF prevalence, whereas body mass index, LV mass index, left atrial volume, and any conventional indices of the diastolic function were not. A low DWS (<0.380) was the strongest indicator of AF (odds ratio: 6.22, 95% confidence interval: 3.08-14.2, P < 0.001). Increased LV stiffness estimated by DWS was a strong determinant of the prevalence of AF. LV stiffness may play a role in the pathogenesis of paroxysmal AF in structurally normal hearts. © 2016 Wiley Periodicals, Inc.

  2. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues.

    PubMed

    Patel, Krupa J; Trédan, Olivier; Tannock, Ian F

    2013-07-01

    Pharmacokinetic analyses estimate the mean concentration of drug within a given tissue as a function of time, but do not give information about the spatial distribution of drugs within that tissue. Here, we compare the time-dependent spatial distribution of three anticancer drugs within tumors, heart, kidney, liver and brain. Mice bearing various xenografts were treated with doxorubicin, mitoxantrone or topotecan. At various times after injection, tumors and samples of heart, kidney, liver and brain were excised. Within solid tumors, the distribution of doxorubicin, mitoxantrone and topotecan was limited to perivascular regions at 10 min after administration and the distance from blood vessels at which drug intensity fell to half was ~25-75 μm. Although drug distribution improved after 3 and 24 h, there remained a significant decrease in drug fluorescence with increasing distance from tumor blood vessels. Drug distribution was relatively uniform in the heart, kidney and liver with substantially greater perivascular drug uptake than in tumors. There was significantly higher total drug fluorescence in the liver than in tumors after 10 min, 3 and 24 h. Little to no drug fluorescence was observed in the brain. There are marked differences in the spatial distributions of three anticancer drugs within tumor tissue and normal tissues over time, with greater exposure to most normal tissues and limited drug distribution to many cells in tumors. Studies of the spatial distribution of drugs are required to complement pharmacokinetic data in order to better understand and predict drug effects and toxicities.

  3. Connective tissue growth factor and bone morphogenetic protein 2 are induced following myocardial ischemia in mice and humans.

    PubMed

    Rutkovskiy, Arkady; Sagave, Julia; Czibik, Gabor; Baysa, Anton; Zihlavnikova Enayati, Katarina; Hillestad, Vigdis; Dahl, Christen Peder; Fiane, Arnt; Gullestad, Lars; Gravning, Jørgen; Ahmed, Shakil; Attramadal, Håvard; Valen, Guro; Vaage, Jarle

    2017-09-01

    We aimed to study the cardiac expression of bone morphogenetic protein 2, its receptor 1 b, and connective tissue growth factor, factors implicated in cardiac embryogenesis, following ischemia/hypoxia, heart failure, and in remodeling hearts from humans and mice. Biopsies from the left ventricle of patients with end-stage heart failure due to dilated cardiomyopathy or coronary artery disease were compared with donor hearts and biopsies from patients with normal heart function undergoing coronary artery bypass grafting. Mouse model of post-infarction remodeling was made by permanent ligation of the left coronary artery. Hearts were analyzed by real-time polymerase chain reaction and Western blotting after 24 hours and after 2 and 4 weeks. Patients with dilated cardiomyopathy and mice post-infarction had increased cardiac expression of connective tissue growth factor. Bone morphogenetic protein 2 was increased in human hearts failing due to coronary artery disease and in mice post-infarction. Gene expression of bone morphogenetic protein receptor 1 beta was reduced in hearts of patients with failure, but increased two weeks following permanent ligation of the left coronary artery in mice. In conclusion, connective tissue growth factor is upregulated in hearts of humans with dilated cardiomyopathy, bone morphogenetic protein 2 is upregulated in remodeling due to myocardial infarction while its receptor 1 b in human failing hearts is downregulated. A potential explanation might be an attempt to engage regenerative processes, which should be addressed by further, mechanistic studies.

  4. Right heart function in impaired left ventricular diastolic function: 2D speckle tracking echocardiography-based and Doppler tissue imaging-based analysis of right atrial and ventricular function.

    PubMed

    Brand, Anna; Bathe, Marny; Oertelt-Prigione, Sabine; Seeland, Ute; Rücke, Mirjam; Regitz-Zagrosek, Vera; Stangl, Karl; Knebel, Fabian; Stangl, Verena; Dreger, Henryk

    2018-01-01

    The aim of our study was to describe right atrial (RA) and right ventricular (RV) function, assessed by Doppler tissue imaging and 2D speckle tracking echocardiography (2DSTE), in women with signs of early impaired left ventricular diastolic function (DD). In a cross-sectional trial, standard parameters of diastolic and right heart function were investigated in 438 women of the Berlin Female Risk Evaluation (BEFRI) study. In a subset of women, average peak systolic RA strain (RAS), as well as the average peak systolic RV strain of the free wall (RVS free wall) and of all RV segments (average RV strain; RVS Avg), was analyzed using 2DSTE. Compared to women with normal diastolic function (DD0), RAS, RVS free wall and RVS Avg were significantly reduced in DD (43.1% ± 11.9%, -26.7% ± 5.6%, and -23.3% ± 3.5% in DD0; vs 35.1% ± 10.4%, -23.9% ± 5.5%, and -20.6% ± 3.8% in DD; P < .01). Peak RV myocardial velocity (RV-IVV) and acceleration during isovolumetric contraction (RV-IVA) were markedly higher in DD (15.0 ± 3.9 cm/s and 3.1 ± 1.0 m/s² in DD vs 11.9 ± 3.2 cm/s and 2.8 ± 0.8 m/s² in DD0; P < .05). RAS and RV-IVV were significantly associated with DD after adjustment to age, BMI, and left atrial strain in multivariate regression analysis. Systolic right heart function is significantly altered in DD. DTI as well as 2DSTE constitute sensitive echocardiographic tools that enable the diagnosis of impaired right heart mechanics in early-staged DD. © 2017 Wiley Periodicals, Inc.

  5. Lung function and airway obstruction: associations with circulating markers of cardiac function and incident heart failure in older men—the British Regional Heart Study

    PubMed Central

    Wannamethee, S Goya; Shaper, A Gerald; Papacosta, Olia; Lennon, Lucy; Welsh, Paul; Whincup, Peter H

    2016-01-01

    Aims The association between lung function and cardiac markers and heart failure (HF) has been little studied in the general older population. We have examined the association between lung function and airway obstruction with cardiac markers N-terminal pro-brain natriuretic peptide (NT-proBNP) and cardiac troponin T (cTnT) and risk of incident HF in older men. Methods and results Prospective study of 3242 men aged 60–79 years without prevalent HF or myocardial infarction followed up for an average period of 13 years, in whom 211 incident HF cases occurred. Incident HF was examined in relation to % predicted FEV1 and FVC. The Global Initiative on Obstructive Lung Diseases spirometry criteria were used to define airway obstruction. Reduced FEV1, but not FVC in the normal range, was significantly associated with increased risk of HF after adjustment for established HF risk factors including inflammation. The adjusted HRs comparing men in the 6–24th percentile with the highest quartile were 1.91 (1.24 to 2.94) and 1.30 (0.86 to 1.96) for FEV1 and FVC, respectively. FEV1 and FVC were inversely associated with NT-proBNP and cTnT, although the association between FEV1 and incident HF remained after adjustment for NT-proBNP and cTnT. Compared with normal subjects (FEV1/FVC ≥0.70 and FVC≥80%), moderate or severe (FEV1/FVC <0.70 and FEV1 <80%) airflow obstruction was independently associated with HF ((adjusted relative risk 1.59 (1.08 to 2.33)). Airflow restriction (FEV1/FVC ≥0.70 and FVC <80%) was not independently associated with HF. Conclusions Reduced FEV1 reflecting airflow obstruction is associated with cardiac dysfunction and increased risk of incident HF in older men. PMID:26811343

  6. Relationship between linear and nonlinear dynamics of heart rate and impairment of lung function in COPD patients.

    PubMed

    Mazzuco, Adriana; Medeiros, Wladimir Musetti; Sperling, Milena Pelosi Rizk; de Souza, Aline Soares; Alencar, Maria Clara Noman; Arbex, Flávio Ferlin; Neder, José Alberto; Arena, Ross; Borghi-Silva, Audrey

    2015-01-01

    In chronic obstructive pulmonary disease (COPD), functional and structural impairment of lung function can negatively impact heart rate variability (HRV); however, it is unknown if static lung volumes and lung diffusion capacity negatively impacts HRV responses. We investigated whether impairment of static lung volumes and lung diffusion capacity could be related to HRV indices in patients with moderate to severe COPD. Sixteen sedentary males with COPD were enrolled in this study. Resting blood gases, static lung volumes, and lung diffusion capacity for carbon monoxide (DLCO) were measured. The RR interval (RRi) was registered in the supine, standing, and seated positions (10 minutes each) and during 4 minutes of a respiratory sinus arrhythmia maneuver (M-RSA). Delta changes (Δsupine-standing and Δsupine-M-RSA) of the standard deviation of normal RRi, low frequency (LF, normalized units [nu]) and high frequency (HF [nu]), SD1, SD2, alpha1, alpha2, and approximate entropy (ApEn) indices were calculated. HF, LF, SD1, SD2, and alpha1 deltas significantly correlated with forced expiratory volume in 1 second, DLCO, airway resistance, residual volume, inspiratory capacity/total lung capacity ratio, and residual volume/total lung capacity ratio. Significant and moderate associations were also observed between LF/HF ratio versus total gas volume (%), r=0.53; LF/HF ratio versus residual volume, %, r=0.52; and HF versus total gas volume (%), r=-0.53 (P<0.05). Linear regression analysis revealed that ΔRRi supine-M-RSA was independently related to DLCO (r=-0.77, r (2)=0.43, P<0.05). Responses of HRV indices were more prominent during M-RSA in moderate to severe COPD. Moreover, greater lung function impairment was related to poorer heart rate dynamics. Finally, impaired lung diffusion capacity was related to an altered parasympathetic response in these patients.

  7. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle

    PubMed Central

    2012-01-01

    Background The heart derives energy from a wide variety of substrates including fatty acids, carbohydrates, ketones, and amino acids. The healthy heart generates up to 30% of its ATP from glucose. Under conditions of cardiac injury or stress, the heart relies even more heavily on glucose as a source of fuel. Glucose is transported into the heart by members of the family of facilitative glucose transporters (GLUTs). While research examining the transport of glucose into the heart has primarily focused on the roles of the classical glucose transporters GLUT1 and GLUT4, little is known about the functions of more newly identified GLUT isoforms in the myocardium. Methods In this study the presence and relative RNA message abundance of each of the known GLUT isoforms was determined in left ventricular tissue from two commonly used inbred laboratory mouse strains (C57BL/6J and FVB/NJ) by quantitative real time PCR. Relative message abundance was also determined in GLUT4 null mice and in murine models of dilated and hypertrophic cardiomyopathy. Results GLUT4, GLUT1, and GLUT8 were found to be the most abundant GLUT transcripts in the normal heart, while GLUT3, GLUT10, and GLUT12 are present at relatively lower levels. Assessment of relative GLUT expression in left ventricular myocardium from mice with dilated cardiomyopathy revealed increased expression of GLUT1 with reduced levels of GLUT4, GLUT8, and GLUT12. Compensatory increase in the expression of GLUT12 was observed in genetically altered mice lacking GLUT4. Conclusions Glucose transporter expression varies significantly among murine models of cardiac dysfunction and involves several of the class III GLUT isoforms. Understanding how these more newly identified GLUT isoforms contribute to regulating myocardial glucose transport will enhance our comprehension of the normal physiology and pathophysiology of the heart. PMID:22681646

  8. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle.

    PubMed

    Aerni-Flessner, Lauren; Abi-Jaoude, Melissa; Koenig, Amanda; Payne, Maria; Hruz, Paul W

    2012-06-08

    The heart derives energy from a wide variety of substrates including fatty acids, carbohydrates, ketones, and amino acids. The healthy heart generates up to 30% of its ATP from glucose. Under conditions of cardiac injury or stress, the heart relies even more heavily on glucose as a source of fuel. Glucose is transported into the heart by members of the family of facilitative glucose transporters (GLUTs). While research examining the transport of glucose into the heart has primarily focused on the roles of the classical glucose transporters GLUT1 and GLUT4, little is known about the functions of more newly identified GLUT isoforms in the myocardium. In this study the presence and relative RNA message abundance of each of the known GLUT isoforms was determined in left ventricular tissue from two commonly used inbred laboratory mouse strains (C57BL/6J and FVB/NJ) by quantitative real time PCR. Relative message abundance was also determined in GLUT4 null mice and in murine models of dilated and hypertrophic cardiomyopathy. GLUT4, GLUT1, and GLUT8 were found to be the most abundant GLUT transcripts in the normal heart, while GLUT3, GLUT10, and GLUT12 are present at relatively lower levels. Assessment of relative GLUT expression in left ventricular myocardium from mice with dilated cardiomyopathy revealed increased expression of GLUT1 with reduced levels of GLUT4, GLUT8, and GLUT12. Compensatory increase in the expression of GLUT12 was observed in genetically altered mice lacking GLUT4. Glucose transporter expression varies significantly among murine models of cardiac dysfunction and involves several of the class III GLUT isoforms. Understanding how these more newly identified GLUT isoforms contribute to regulating myocardial glucose transport will enhance our comprehension of the normal physiology and pathophysiology of the heart.

  9. An Electromechanical Left Ventricular Wedge Model to Study the Effects of Deformation on Repolarization during Heart Failure

    PubMed Central

    Rocha, B. M.; Toledo, E. M.; Barra, L. P. S.; dos Santos, R. Weber

    2015-01-01

    Heart failure is a major and costly problem in public health, which, in certain cases, may lead to death. The failing heart undergo a series of electrical and structural changes that provide the underlying basis for disturbances like arrhythmias. Computer models of coupled electrical and mechanical activities of the heart can be used to advance our understanding of the complex feedback mechanisms involved. In this context, there is a lack of studies that consider heart failure remodeling using strongly coupled electromechanics. We present a strongly coupled electromechanical model to study the effects of deformation on a human left ventricle wedge considering normal and hypertrophic heart failure conditions. We demonstrate through a series of simulations that when a strongly coupled electromechanical model is used, deformation results in the thickening of the ventricular wall that in turn increases transmural dispersion of repolarization. These effects were analyzed in both normal and failing heart conditions. We also present transmural electrograms obtained from these simulations. Our results suggest that the waveform of electrograms, particularly the T-wave, is influenced by cardiac contraction on both normal and pathological conditions. PMID:26550570

  10. Impact of ethyl pyruvate on Adriamycin-induced cardiomyopathy in rats

    PubMed Central

    Liu, Menglin; Wang, Menglong; Liu, Jianfang; Luo, Zhen; Shi, Lei; Feng, Ying; Li, Li; Xu, Lin; Wan, Jun

    2016-01-01

    Ethyl pyruvate (EP), a derivative of pyruvic acid, is known to have protective effects against ischemic cardiomyopathy and other disorders. However, little is known about its role in Adriamycin (ADR)-induced cardiomyopathy. The present study was designed to investigate the impact of EP on ADR-induced cardiomyopathy in an animal model. Sixty male Sprague-Dawley (SD) rats were divided into four groups: Normal control, EP, ADR and ADR + EP groups (n=15/group). Rats in the ADR and ADR + EP groups were treated with ADR (2.5 mg/kg/week intraperitoneally) for 6 weeks. From the eighth week, rats in the EP and ADR + EP groups received EP via gastric lavage at a dose of 50 mg/kg/day for 30 days. After completing the EP treatment, cardiac function was assessed by echocardiography and then rats were sacrificed. Hearts were harvested for subsequent analysis. Compared with rats in the normal control and EP groups (without ADR treatment), rats in the ADR and ADR + EP groups showed significant impairments in terms of cardiac function, apoptosis, severe oxidative stress and fibrosis in the heart. However, these impairments were alleviated by EP treatment in the ADR + EP group. Upon EP treatment, cardiac function was significantly improved. The levels of oxidative stress, fibrosis and apoptosis in the myocardial tissues were also significantly reduced. These findings indicated that EP treatment attenuated, at least partially, ADR-induced cardiomyopathy in rats. PMID:27882138

  11. Heart Valve Diseases

    MedlinePlus

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  12. Post-Discharge Worsening Renal Function in Patients with Type 2 Diabetes and Recent Acute Coronary Syndrome.

    PubMed

    Morici, Nuccia; Savonitto, Stefano; Ponticelli, Claudio; Schrieks, Ilse C; Nozza, Anna; Cosentino, Francesco; Stähli, Barbara E; Perrone Filardi, Pasquale; Schwartz, Gregory G; Mellbin, Linda; Lincoff, A Michael; Tardif, Jean-Claude; Grobbee, Diederick E

    2017-09-01

    Worsening renal function during hospitalization for an acute coronary syndrome is strongly predictive of in-hospital and long-term outcome. However, the role of post-discharge worsening renal function has never been investigated in this setting. We considered the placebo cohort of the AleCardio trial comparing aleglitazar with standard medical therapy among patients with type 2 diabetes mellitus and a recent acute coronary syndrome. Patients who had died or had been admitted to hospital for heart failure before the 6-month follow-up, as well as patients without complete renal function data, were excluded, leaving 2776 patients for the analysis. Worsening renal function was defined as a >20% reduction in estimated glomerular filtration rate from discharge to 6 months, or progression to macroalbuminuria. The Cox regression analysis was used to determine the prognostic impact of 6-month renal deterioration on the composite of all-cause death and hospitalization for heart failure. Worsening renal function occurred in 204 patients (7.34%). At a median follow-up of 2 years the estimated rates of death and hospitalization for heart failure per 100 person-years were 3.45 (95% confidence interval [CI], 2.46-6.36) for those with worsening renal function, versus 1.43 (95% CI, 1.14-1.79) for patients with stable renal function. At the adjusted analysis worsening renal function was associated with the composite endpoint (hazard ratio 2.65; 95% CI, 1.57-4.49; P <.001). Post-discharge worsening renal function is not infrequent among patients with type 2 diabetes and acute coronary syndromes with normal or mildly depressed renal function, and is a strong predictor of adverse cardiovascular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. NADPH oxidase contributes to coronary endothelial dysfunction in the failing heart.

    PubMed

    Zhang, Ping; Hou, Mingxiao; Li, Yunfang; Xu, Xin; Barsoum, Michel; Chen, Yingjie; Bache, Robert J

    2009-03-01

    Increased reactive oxygen species (ROS) produced by the failing heart can react with nitric oxide (NO), thereby decreasing NO bioavailability. This study tested the hypothesis that increased ROS generation contributes to coronary endothelial dysfunction in the failing heart. Congestive heart failure (CHF) was produced in six dogs by ventricular pacing at 240 beats/min for 4 wk. Studies were performed at rest and during treadmill exercise under control conditions and after treatment with the NADPH oxidase inhibitor and antioxidant apocynin (4 mg/kg iv). Apocynin caused no significant changes in heart rate, aortic pressure, left ventricular (LV) systolic pressure, LV end-diastolic pressure, or maximum rate of LV pressure increase at rest or during exercise in normal or CHF dogs. Apocynin caused no change in coronary blood flow (CBF) in normal dogs but increased CBF at rest and during exercise in animals with CHF (P < 0.05). Intracoronary ACh caused dose-dependent increases of CBF that were blunted in CHF. Apocynin had no effect on the response to ACh in normal dogs but augmented the response to ACh in CHF dogs (P < 0.05). The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were significantly greater in failing than in normal myocardium. Furthermore, coelenterazine chemiluminescence for O(2)(-) was more than twice normal in failing myocardium, and this difference was abolished by apocynin. Western blot analysis of myocardial lysates demonstrated that the p47(phox) and p22(phox) subunits of NADPH were significantly increased in the failing hearts, while real-time PCR demonstrated that Nox2 mRNA was significantly increased. The data indicate that increased ROS generation in the failing heart is associated with coronary endothelial dysfunction and suggest that NADPH oxidase may contribute to this abnormality.

  14. [Corrected transposition of the great arteries].

    PubMed

    Alva-Espinosa, Carlos

    2016-01-01

    Corrected transposition of the great arteries is one of the most fascinating entities in congenital heart disease. The apparent corrected condition is only temporal. Over time, most patients develop systemic heart failure, even in the absence of associated lesions. With current imaging studies, precise visualization is achieved in each case though the treatment strategy remains unresolved. In asymptomatic patients or cases without associated lesions, focalized follow-up to assess systemic ventricular function and the degree of tricuspid valve regurgitation is important. In cases with normal ventricular function and mild tricuspid failure, it seems unreasonable to intervene surgically. In patients with significant associated lesions, surgery is indicated. In the long term, the traditional approach may not help tricuspid regurgitation and systemic ventricular failure. Anatomical correction is the proposed alternative to ease the right ventricle overload and to restore the systemic left ventricular function. However, this is a prolonged operation and not without risks and long-term complications. In this review the clinical, diagnostic, and therapeutic aspects are overviewed in the light of the most significant and recent literature.

  15. Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Martin, David S.; D'Aunno, Dominick S.; Waters, Wendy W.

    2003-01-01

    Intravenous injections of the indirect sympathetic amine, tyramine, are used as a test of peripheral adrenergic function. The authors measured the time course of increases in ejection fraction, heart rate, systolic and diastolic pressure, popliteal artery flow, and greater saphenous vein diameter before and after an injection of 4.0 mg/m(2) body surface area of tyramine in normal human subjects. The tyramine caused moderate, significant increases in systolic pressure and significant decreases in total peripheral resistance. The earliest changes were a 30% increase in ejection fraction and a 16% increase in systolic pressure, followed by a 60% increase in popliteal artery flow and a later 11% increase in greater saphenous vein diameter. There were no changes in diastolic pressure or heart rate. These results suggest that pressor responses during tyramine injections are primarily due to an inotropic response that increases cardiac output and pressure and causes a reflex decrease in vascular resistance. Thus, tyramine pressor tests are a measure of cardiac, but not vascular, sympathetic function.

  16. Standardization of some electrocardiographic parameters of captive leopard cats (Leopardus tigrinus).

    PubMed

    Oda, Sam Goldy Shoyama; Yamato, Ronaldo Jun; Fedullo, José Daniel Luzes; Leomil Neto, Moacir; Larsson, Maria Helena Matiko Akao

    2009-09-01

    Thirty-three captive leopard cats, Leopardus tigrinus, were anesthetized with xylazine (1-2 mg/kg) and ketamine (10 mg/kg), and electrocardiograph (ECG) tests were recorded in all leads with 1 cm = 1 mV sensibility and 25 mm/sec speed repeating DII lead at 50 mm/sec speed with the same sensibility. Results expressed by mean and standard deviation were: heart rate (HR) = 107 +/- 17 (bpm); P-wave = 0.048 +/- 0.072 (s) x 0.128 +/- 0.048 (mV); PR interval = 0.101 +/- 0.081 (s); QRS compound = 0.053 +/- 0.012 (s) x 1.446 +/- 0.602 (mV); QT interval = 0.231 +/- 0.028 (s); R-wave (CV6LL) = 1.574 +/- 0.527 (mV); R-wave (CV6LU) = 1.583 +/- 0.818 (mV); heart rhythm: normal sinus rhythm (15.2%), sinus rhythm with wandering pacemaker (WPM) (60.6%), sinus arrhythmia with WPM (24.2%); electric axis: between +30 degrees and +60 degrees (6.1%), +60 (6.1%), between +60 degrees and +90 degrees (57.6%), +90 degrees (9%), between +90 degrees and +120 degrees (21.2%); ST segment: normal (75.7%), elevation (18.2%), depression (6.1%); T-wave polarity (DII): positive (100%); T-wave (V10): absent (6.1%), negative (63.6%), positive (18.2%), and with interference (12.1%). Through ECG data comparison with other species, unique features of Leopardus tigrinus' (leopard cat) ECG parameters were detected. Some of the study animals presented with an R-wave amplitude that was indicative of left ventricle overload according to patterns for normal domestic cats (Felis cati). Echocardiographic exams revealed normal heart cavities' function and morphology. The aim of this study was to establish some electrocardiographic parameters of captive L. tigrinus.

  17. Systolic ventricular filling.

    PubMed

    Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio; Komeda, Masashi; Cox, James; Flotats, A; Ballester-Rodes, Manel; Carreras-Costa, Francesc

    2004-03-01

    The evidence of the ventricular myocardial band (VMB) has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium, making it possible to understand the principles governing electrical, mechanical and energetical events within the human heart. From the earliest Erasistratus' observations, principal mechanisms responsible for the ventricular filling have still remained obscured. Contemporary experimental and clinical investigations unequivocally support the attitude that only powerful suction force, developed by the normal ventricles, would be able to produce an efficient filling of the ventricular cavities. The true origin and the precise time frame for generating such force are still controversial. Elastic recoil and muscular contraction were the most commonly mentioned, but yet, still not clearly explained mechanisms involved in the ventricular suction. Classical concepts about timing of successive mechanical events during the cardiac cycle, also do not offer understandable insight into the mechanism of the ventricular filling. The net result is the current state of insufficient knowledge of systolic and particularly diastolic function of normal and diseased heart. Here we summarize experimental evidence and theoretical backgrounds, which could be useful in understanding the phenomenon of the ventricular filling. Anatomy of the VMB, and recent proofs for its segmental electrical and mechanical activation, undoubtedly indicates that ventricular filling is the consequence of an active muscular contraction. Contraction of the ascendent segment of the VMB, with simultaneous shortening and rectifying of its fibers, produces the paradoxical increase of the ventricular volume and lengthening of its long axis. Specific spatial arrangement of the ascendent segment fibers, their interaction with adjacent descendent segment fibers, elastic elements and intra-cavitary blood volume (hemoskeleton), explain the physical principles involved in this action. This contraction occurs during the last part of classical systole and the first part of diastole. Therefore, the most important part of ventricular diastole (i.e. the rapid filling phase), in which it receives >70% of the stroke volume, belongs to the active muscular contraction of the ascendent segment. We hope that these facts will give rise to new understanding of the principal mechanisms involved in normal and abnormal diastolic heart function.

  18. Flecainide

    MedlinePlus

    ... of medications called antiarrhythmics. It works by slowing electrical signals in the heart to stabilize the heart ... if you have heart block (condition in which electrical signals are not passed normally from the upper ...

  19. Sleep in heart failure.

    PubMed

    Naughton, Matthew T; Lorenzi-Filho, Geraldo

    2009-01-01

    Sleep plays a large role in patients with heart failure. In normal subjects, sleep is usually in a supine position with reduced sympathetic drive, elevated vagal tone and as such a relatively lower cardiac output and minute ventilation, allowing for recuperation. Patients with heart failure may not experience the same degree of autonomic activity change and the supine position may place a large strain on the pulmonary system. More than half of all heart failure patients have one of two types of sleep apnea: either obstructive or central sleep apnea. Some patients have both types. Obstructive sleep apnea is likely to be a cause of heart failure due to large negative intrathoracic pressures, apnea related hypoxemia and hypercapnia, terminated by an arousal and surge in systemic blood pressure associated with endothelial damage and resultant premature atherosclerosis. Reversal of obstructive sleep apnea improves blood pressure, systolic contraction and autonomic dysfunction however mortality studies are lacking. Central sleep apnea with Cheyne Stokes pattern of respiration (CSA-CSR) occurs as a result of increased central controller (brainstem driving ventilation) and plant (ventilation driving CO2) gain in the setting of a delayed feed back (i.e., low cardiac output). It is thought this type of apnea is a result of moderately to severely impaired cardiac function and is possibly indicative of high mortality. Treatment of CSA-CSR is best undertaken by treating the underlying cardiac condition which may include with medications, pacemakers, transplantation or continuous positive airway pressure (CPAP). In such patients CPAP exerts unique effects to assist cardiac function and reduce pulmonary edema. Whether CPAP improves survival in this heart failure population remains to be determined.

  20. Abnormalities of capillary microarchitecture in a rat model of coronary ischemic congestive heart failure

    PubMed Central

    Chen, Jiqiu; Yaniz-Galende, Elisa; Kagan, Heather J.; Liang, Lifan; Hekmaty, Saboor; Giannarelli, Chiara

    2015-01-01

    The aim of the present study is to explore the role of capillary disorder in coronary ischemic congestive heart failure (CHF). CHF was induced in rats by aortic banding plus ischemia-reperfusion followed by aortic debanding. Coronary arteries were perfused with plastic polymer containing fluorescent dye. Multiple fluorescent images of casted heart sections and scanning electric microscope of coronary vessels were obtained to characterize changes in the heart. Cardiac function was assessed by echocardiography and in vivo hemodynamics. Stenosis was found in all levels of the coronary arteries in CHF. Coronary vasculature volume and capillary density in remote myocardium were significantly increased in CHF compared with control. This occurred largely in microvessels with a diameter of ≤3 μm. Capillaries in CHF had a tortuous structure, while normal capillaries were linear. Capillaries in CHF had inconsistent diameters, with assortments of narrowed and bulged segments. Their surfaces appeared rough, potentially indicating endothelial dysfunction in CHF. Segments of main capillaries between bifurcations were significantly shorter in length in CHF than in control. Transiently increasing preload by injecting 50 μl of 30% NaCl demonstrated that the CHF heart had lower functional reserve; this may be associated with congestion in coronary microcirculation. Ischemic coronary vascular disorder is not limited to the main coronary arteries, as it occurs in arterioles and capillaries. Capillary disorder in CHF included stenosis, deformed structure, proliferation, and roughened surfaces. This disorder in the coronary artery architecture may contribute to the reduction in myocyte contractility in the setting of heart failure. PMID:25659485

  1. [Sudden cardiac death in individuals with normal hearts: an update].

    PubMed

    González-Melchor, Laila; Villarreal-Molina, Teresa; Iturralde-Torres, Pedro; Medeiros-Domingo, Argelia

    2014-01-01

    Sudden death (SD) is a tragic event and a world-wide health problem. Every year, near 4-5 million people experience SD. SD is defined as the death occurred in 1h after the onset of symptoms in a person without previous signs of fatality. It can be named "recovered SD" when the case received medical attention, cardiac reanimation effective defibrillation or both, surviving the fatal arrhythmia. Cardiac channelopathies are a group of diseases characterized by abnormal ion channel function due to genetic mutations in ion channel genes, providing increased susceptibility to develop cardiac arrhythmias and SD. Usually the death occurs before 40 years of age and in the autopsy the heart is normal. In this review we discuss the main cardiac channelopathies involved in sudden cardiac death along with current management of cases and family members that have experienced such tragic event. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  2. Reducing blood viscosity with magnetic fields

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ˜1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells’ normal function. This technology has much potential for physical therapy.

  3. Wavelet packet-based insufficiency murmurs analysis method

    NASA Astrophysics Data System (ADS)

    Choi, Samjin; Jiang, Zhongwei

    2007-12-01

    In this paper, the aortic and mitral insufficiency murmurs analysis method using the wavelet packet technique is proposed for classifying the valvular heart defects. Considering the different frequency distributions between the normal sound and insufficiency murmurs in frequency domain, we used two properties such as the relative wavelet energy and the Shannon wavelet entropy which described the energy information and the entropy information at the selected frequency band, respectively. Then, the signal to murmur ratio (SMR) measures which could mean the ratio between the frequency bands for normal heart sounds and for aortic and mitral insufficiency murmurs allocated to 15.62-187.50 Hz and 187.50-703.12 Hz respectively, were employed as a classification manner to identify insufficiency murmurs. The proposed measures were validated by some case studies. The 194 heart sound signals with 48 normal and 146 abnormal sound cases acquired from 6 healthy volunteers and 30 patients were tested. The normal sound signals recorded by applying a self-produced wireless electric stethoscope system to subjects with no history of other heart complications were used. Insufficiency murmurs were grouped into two valvular heart defects such as aortic insufficiency and mitral insufficiency. These murmur subjects included no other coexistent valvular defects. As a result, the proposed insufficiency murmurs detection method showed relatively very high classification efficiency. Therefore, the proposed heart sound classification method based on the wavelet packet was validated for the classification of valvular heart defects, especially insufficiency murmurs.

  4. The Battle of "The Normal Heart."

    ERIC Educational Resources Information Center

    Rottman, Larry

    1990-01-01

    The history of the controversy over Southwest Missouri State University's production of "The Normal Heart," a play about acquired immune deficiency syndrome, is chronicled and concern is expressed about the resurgence of bitterness and hatred in the debate over academic freedom, even within the academic community. (MSE)

  5. CHARACTERIZING THE ROLE OF THE NELL1 GENE IN CARDIOVASCULAR DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L. Y.; Culiat, C.

    Nell1{sup 6R} is a chemically-induced point mutation in a novel cell-signaling gene, Nell1, which results in truncation of the protein and degradation of the Nell16R transcript. Earlier studies revealed that loss of Nell1 function reduces expression of numerous extracellular matrix (ECM) proteins required for differentiation of bone and cartilage precursor cells, thereby causing severe skull and spinal defects. Since skeletal and cardiovascular development are closely linked biological processes, this research focused on: a) examining Nell16R mutant mice for cardiovascular defects, b) determining Nell1 expression in fetal and adult hearts, and c) establishing how ECM genes affected by Nell1 infl uencemore » heart development. Structural heart defects in Nell16R mutant fetuses were analyzed by heart length and width measurements and standard histological methods (haematoxylin and eosin staining). Nell1 expression was assayed in fetal and adult hearts using reverse transcription polymerase chain reaction (RT-PCR). A comprehensive bioinformatics analysis using public databases (Stanford SOURCE Search, Integrated Cartilage Gene Database, Mouse Genome Informatics, and NCBI UniGene) was undertaken to investigate the relationship between cardiovascular development and each of twentyeight genes affected by Nell1. Nell1-defi cient mice have signifi cantly enlarged hearts (particularly the heart width), dramatically reduced blood fl ow out of the heart and unexpanded lungs. Isolation of total RNAs from hearts of adult (control and heterozygote) and fetal (control and homozygous mutant) mice have been completed and RT-PCR assays are in progress. The bioinformatics analysis showed that the majority of genes with reduced expression in Nell1-defi cient mice are normally expressed in the heart (79%; 22/28), blood vessels (71%; 20/28) and bone marrow (61%; 17/28). Moreover, mouse mutations in seven of these genes (Col15a1, Osf-2, Bmpr1a, Pkd1, Mfge8, Ptger4, Col5a1) manifest abnormalities in cardiovascular development. These data demonstrate for the fi rst time that Nell1 has a role in early mammalian cardiovascular development, mediated by its regulation of ECM proteins necessary for normal cell growth and differentiation. In addition, understanding the mechanisms by which Nell1 and its associated ECM genes affect the cardiovascular system can provide future strategies for the treatment of heart and blood vessel defects.« less

  6. Response of the oxygen uptake efficiency slope to orthotopic heart transplantation: lack of correlation with changes in central hemodynamic parameters and resting lung function.

    PubMed

    Van Laethem, Christophe; Goethals, Marc; Verstreken, Sofie; Walravens, Maarten; Wellens, Francis; De Proft, Margot; Bartunek, Jozef; Vanderheyden, Marc

    2007-09-01

    Recently, a new linear measure of ventilatory response to exercise, the oxygen uptake efficiency slope (OUES), was proposed in the evaluation of heart failure patients. No data are available on the response of the OUES after orthotopic heart transplantation (HTx). Thirty patients who underwent HTx between 1999 and 2003 were included in the study. Data from maximal cardiopulmonary exercise test, resting pulmonary function and hemodynamic assessment were collected before the transplant at time of screening and 1 year after HTx. During the first year after HTx, OUES and normalized OUES for body weight (OUES/kg) increased significantly from 15.6 +/- 4.9 to 19.7 +/- 4.8 (p < 0.05). Changes in OUES/kg were significantly correlated with changes in peak VO2, VAT and peak VE, and inversely to changes in peak VD/VT, but not to changes in VE/VCO2 slope (all p < 0.05). Changes in OUES or OUES/kg did not correlate with any changes in measures of resting lung volumes or capacities and measures of central hemodynamic function after HTx. OUES improved significantly after HTx, but, similar to other exercise parameters, remained considerably impaired. The changes in OUES were highly correlated with the improvements in other exercise variables, but did not correlate with marked improvements in central hemodynamics or resting lung function.

  7. STAR (Simple Targeted Arterial Rendering) Technique: a Novel and Simple Method to Visualize the Fetal Cardiac Outflow Tracts

    PubMed Central

    Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Kim, Sun Kwon; Gonzalez, Juan M.; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.

    2010-01-01

    Objective To describe a novel and simple technique (STAR: Simple Targeted Arterial Rendering) to visualize the fetal cardiac outflow tracts from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed a technique to image the outflow tracts by drawing three dissecting lines through the four-chamber view of the heart contained in a STIC volume dataset. Each line generated the following plane: 1) Line 1: ventricular septum “en face” with both great vessels (pulmonary artery anterior to the aorta); 2) Line 2: pulmonary artery with continuation into the longitudinal view of the ductal arch; and 3) Line 3: long axis view of the aorta arising from the left ventricle. The pattern formed by all 3 lines intersecting approximately through the crux of the heart resembles a “star”. The technique was then tested in 50 normal hearts (15.3 – 40.4 weeks of gestation). To determine if the technique could identify planes that departed from the normal images, we tested the technique in 4 cases with proven congenital heart defects (ventricular septal defect, transposition of great vessels, tetralogy of Fallot, and pulmonary atresia with intact ventricular septum). Results The STAR technique was able to generate the intended planes in all 50 normal cases. In the abnormal cases, the STAR technique allowed identification of the ventricular septal defect, demonstrated great vessel anomalies, and displayed views that deviated from what was expected from the examination of normal hearts. Conclusions This novel and simple technique can be used to visualize the outflow tracts and ventricular septum “en face” in normal fetal hearts. The inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease involving the great vessels and/or the ventricular septum. The STAR technique may simplify examination of the fetal heart and could reduce operator dependency. PMID:20878672

  8. Prognostic Significance of Baseline Serum Sodium in Heart Failure With Preserved Ejection Fraction.

    PubMed

    Patel, Yash R; Kurgansky, Katherine E; Imran, Tasnim F; Orkaby, Ariela R; McLean, Robert R; Ho, Yuk-Lam; Cho, Kelly; Gaziano, J Michael; Djousse, Luc; Gagnon, David R; Joseph, Jacob

    2018-06-13

    The purpose of this study was to evaluate the relationship between serum sodium at the time of diagnosis and long term clinical outcomes in a large national cohort of patients with heart failure with preserved ejection fraction. We studied 25 440 patients with heart failure with preserved ejection fraction treated at Veterans Affairs medical centers across the United States between 2002 and 2012. Serum sodium at the time of heart failure diagnosis was analyzed as a continuous variable and in categories as follows: low (115.00-134.99 mmol/L), low-normal (135.00-137.99 mmol/L), referent group (138.00-140.99 mmol/L), high normal (141.00-143.99 mmol/L), and high (144.00-160.00 mmol/L). Multivariable Cox regression and negative binomial regression were performed to estimate hazard ratios (95% confidence interval [CI]) and incidence density ratios (95% CI) for the associations of serum sodium with mortality and hospitalizations (heart failure and all-cause), respectively. The average age of patients was 70.8 years, 96.2% were male, and 14% were black. Compared with the referent group, low, low-normal, and high sodium values were associated with 36% (95% CI, 28%-44%), 6% (95% CI, 1%-12%), and 9% (95% CI, 1%-17%) higher risk of all-cause mortality, respectively. Low and low-normal serum sodium were associated with 48% (95% CI, 10%-100%) and 38% (95% CI, 8%-77%) higher risk of number of days of heart failure hospitalizations per year, and with 44% (95% CI, 32%-56%) and 18% (95% CI, 10%-27%) higher risk of number of days of all-cause hospitalizations per year, respectively. Both elevated and reduced serum sodium, including values currently considered within normal range, are associated with adverse outcomes in patients with heart failure with preserved ejection fraction. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Magnesium and the Athlete.

    PubMed

    Volpe, Stella Lucia

    2015-01-01

    Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation in the body. It is a required mineral that is involved in more than 300 metabolic reactions in the body. Magnesium helps maintain normal nerve and muscle function, heart rhythm (cardiac excitability), vasomotor tone, blood pressure, immune system, bone integrity, and blood glucose levels and promotes calcium absorption. Because of magnesium's role in energy production and storage, normal muscle function, and maintenance of blood glucose levels, it has been studied as an ergogenic aid for athletes. This article will cover the general roles of magnesium, magnesium requirements, and assessment of magnesium status as well as the dietary intake of magnesium and its effects on exercise performance. The research articles cited were limited from those published in 2003 through 2014.

  10. Pacsin 2 is required for the maintenance of a normal cardiac function in the developing mouse heart.

    PubMed

    Semmler, Judith; Kormann, Jan; Srinivasan, Sureshkumar Perumal; Köster, Annette; Sälzer, Daniel; Reppel, Michael; Hescheler, Jürgen; Plomann, Markus; Nguemo, Filomain

    2018-02-01

    The Pacsin proteins (Pacsin 1, 2 and 3) play an important role in intracellular trafficking and thereby signal transduction in many cells types. This study was designed to examine the role of Pacsin 2 in cardiac development and function. We investigated the development and electrophysiological properties of Pacsin 2 knockout (P2KO) hearts and single cardiomyocytes isolated from 11.5 and 15.5days old fetal mice. Immunofluorescence experiments confirmed the lack of Pacsin 2 protein expression in P2KO cardiac myocytes in comparison to wildtype (WT). Western blotting demonstrates low expression levels of connexin 43 and T-box 3 proteins in P2KO compared to wildtype (WT). Electrophysiology measurements including online Multi-Electrode Array (MEA) based field potential (FP) recordings on isolated whole heart of P2KO mice showed a prolonged AV-conduction time. Patch clamp measurements of P2KO cardiomyocytes revealed differences in action potential (AP) parameters and decreased pacemaker funny channel (I f ), as well as L-type Ca 2+ channel (I CaL ), and sodium channel (I Na ). These findings demonstrate that Pacsin 2 is necessary for cardiac development and function in mouse embryos, which will enhance our knowledge to better understand the genesis of cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Examination of Physiological Function and Biochemical Disorders in a Rat Model of Prolonged Asphyxia-Induced Cardiac Arrest followed by Cardio Pulmonary Bypass Resuscitation

    PubMed Central

    Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A.; Pappan, Kirk L.; Lampe, Joshua W.; Becker, Lance B.

    2014-01-01

    Background Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. Method A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. Results After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. Conclusion The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage. PMID:25383962

  12. Examination of physiological function and biochemical disorders in a rat model of prolonged asphyxia-induced cardiac arrest followed by cardio pulmonary bypass resuscitation.

    PubMed

    Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A; Pappan, Kirk L; Lampe, Joshua W; Becker, Lance B

    2014-01-01

    Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.

  13. mTOR Hyperactivation by Ablation of Tuberous Sclerosis Complex 2 in the Mouse Heart Induces Cardiac Dysfunction with the Increased Number of Small Mitochondria Mediated through the Down-Regulation of Autophagy

    PubMed Central

    Taneike, Manabu; Nishida, Kazuhiko; Omiya, Shigemiki; Zarrinpashneh, Elham; Misaka, Tomofumi; Kitazume-Taneike, Rika; Austin, Ruth; Takaoka, Minoru; Yamaguchi, Osamu; Gambello, Michael J.; Shah, Ajay M.; Otsu, Kinya

    2016-01-01

    Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth, proliferation and metabolism. mTORC1 regulates protein synthesis positively and autophagy negatively. Autophagy is a major system to manage bulk degradation and recycling of cytoplasmic components and organelles. Tuberous sclerosis complex (TSC) 1 and 2 form a heterodimeric complex and inactivate Ras homolog enriched in brain, resulting in inhibition of mTORC1. Here, we investigated the effects of hyperactivation of mTORC1 on cardiac function and structure using cardiac-specific TSC2-deficient (TSC2-/-) mice. TSC2-/- mice were born normally at the expected Mendelian ratio. However, the median life span of TSC2-/- mice was approximately 10 months and significantly shorter than that of control mice. TSC2-/- mice showed cardiac dysfunction and cardiomyocyte hypertrophy without considerable fibrosis, cell infiltration or apoptotic cardiomyocyte death. Ultrastructural analysis of TSC2-/- hearts revealed misalignment, aggregation and a decrease in the size and an increase in the number of mitochondria, but the mitochondrial function was maintained. Autophagic flux was inhibited, while the phosphorylation level of S6 or eukaryotic initiation factor 4E -binding protein 1, downstream of mTORC1, was increased. The upregulation of autophagic flux by trehalose treatment attenuated the cardiac phenotypes such as cardiac dysfunction and structural abnormalities of mitochondria in TSC2-/- hearts. The results suggest that autophagy via the TSC2-mTORC1 signaling pathway plays an important role in maintenance of cardiac function and mitochondrial quantity and size in the heart and could be a therapeutic target to maintain mitochondrial homeostasis in failing hearts. PMID:27023784

  14. Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness

    NASA Astrophysics Data System (ADS)

    Furusawa, Takashi; Rochman, Mark; Taher, Leila; Dimitriadis, Emilios K.; Nagashima, Kunio; Anderson, Stasia; Bustin, Michael

    2015-01-01

    In most metazoan nuclei, heterochromatin is located at the nuclear periphery in contact with the nuclear lamina, which provides mechanical stability to the nucleus. We show that in cultured cells, chromatin decompaction by the nucleosome binding protein HMGN5 decreases the sturdiness, elasticity and rigidity of the nucleus. Mice overexpressing HMGN5, either globally or only in the heart, are normal at birth but develop hypertrophic heart with large cardiomyoctyes, deformed nuclei and disrupted lamina and die of cardiac malfunction. Chromatin decompaction is seen in cardiomyocytes of newborn mice but misshaped nuclei with disrupted lamina are seen only in adult cardiomyocytes, suggesting that loss of heterochromatin diminishes the ability of the nucleus to withstand the mechanical forces of the contracting heart. Thus, heterochromatin enhances the ability of the nuclear lamina to maintain the sturdiness and shape of the eukaryotic nucleus; a structural role for chromatin that is distinct from its genetic functions.

  15. Anabolic steroid-induced cardiomyopathy underlying acute liver failure in a young bodybuilder.

    PubMed

    Bispo, Miguel; Valente, Ana; Maldonado, Rosário; Palma, Rui; Glória, Helena; Nóbrega, João; Alexandrino, Paula

    2009-06-21

    Heart failure may lead to subclinical circulatory disturbances and remain an unrecognized cause of ischemic liver injury. We present the case of a previously healthy 40-year-old bodybuilder, referred to our Intensive-Care Unit of Hepatology for treatment of severe acute liver failure, with the suspicion of toxic hepatitis associated with anabolic steroid abuse. Despite the absence of symptoms and signs of congestive heart failure at admission, an anabolic steroid-induced dilated cardiomyopathy with a large thrombus in both ventricles was found to be the underlying cause of the liver injury. Treatment for the initially unrecognized heart failure rapidly restored liver function to normal. To our knowledge, this is the first reported case of severe acute liver failure due to an unrecognized anabolic steroid-induced cardiomyopathy. Awareness of this unique presentation will allow for prompt treatment of this potentially fatal cause of liver failure.

  16. Cardiomyopathy and response to enzyme replacement therapy in a male mouse model for Fabry disease.

    PubMed

    Nguyen Dinh Cat, Aurelie; Escoubet, Brigitte; Agrapart, Vincent; Griol-Charhbili, Violaine; Schoeb, Trenton; Feng, Wenguang; Jaimes, Edgar; Warnock, David G; Jaisser, Frederic

    2012-01-01

    Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, (predominately globotriaosylceramide; GL-3) in lysosomes, as well as other cellular compartments and the extracellular space. Our aim was to characterize the cardiac phenotype of male knock-out mice that are deficient in alpha-galactosidase A activity, as a model for Fabry disease and test the efficacy of Enzyme Replacement Therapy with agalsidase-beta. Male mice (3-4 months of age) were characterized with awake blood pressure and heart rate measurements, cardiac echocardiography and electrocardiography measurements under light anesthesia, histological studies and molecular studies with real-time polymerase chain reaction. The Fabry knock-out mouse has bradycardia and lower blood pressure than control wild type (CB7BL/6J) mice. In Fabry knock-out mice, the cardiomyopathy associated mild hypertrophy at echography with normal systolic LV function and mild diastolic dysfunction. Premature atrial contractions were more frequent in without conduction defect. Heart weight normalized to tibial length was increased in Fabry knock-out mice. Ascending aorta dilatation was observed. Molecular studies were consistent with early stages of cardiac remodeling. A single dose of agalsidase-beta (3 mg/kg) did not affect the LV hypertrophy, function or heart rate, but did improve the mRNA signals of early cardiac remodeling. In conclusion, the alpha-galactosidase A deficient mice at 3 to 4 months of age have cardiac and vascular alterations similar to that described in early clinical stage of Fabry disease in children and adolescents. Enzyme replacement therapy affects cardiac molecular remodeling after a single dose.

  17. Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus.

    PubMed

    Chorepsima, Stamatina; Eleftheriadou, Ioanna; Tentolouris, Anastasios; Moyssakis, Ioannis; Protogerou, Athanasios; Kokkinos, Alexandros; Sfikakis, Petros P; Tentolouris, Nikolaos

    2017-05-19

    Increased carotid-femoral pulse wave velocity (PWV) has been associated with incident cardiovascular disease, independently of traditional risk factors. Cardiac autonomic dysfunction is a common complication of diabetes and has been associated with reduced aortic distensibility. However, the association of cardiac autonomic dysfunction with PWV is not known. In this study we examined the association between cardiac autonomic function and PWV in subjects with type 2 diabetes mellitus. A total of 290 patients with type 2 diabetes were examined. PWV was measured at the carotid-femoral segment with applanation tonometry. Central mean arterial blood pressure (MBP) was determined by the same apparatus. Participants were classified as having normal (n = 193) or abnormal (n = 97) PWV values using age-corrected values. Cardiac autonomic nervous system activity was determined by measurement of parameters of heart rate variability (HRV). Subjects with abnormal PWV were older, had higher arterial blood pressure and higher heart rate than those with normal PWV. Most of the values of HRV were significantly lower in subjects with abnormal than in those with normal PWV. Multivariate analysis, after controlling for various confounding factors, demonstrated that abnormal PWV was associated independently only with peripheral MBP [odds ratio (OR) 1.049, 95% confidence intervals (CI) 1.015-1.085, P = 0.005], central MBP (OR 1.052, 95% CI 1.016-1.088, P = 0.004), log total power (OR 0.490, 95% CI 0.258-0.932, P = 0.030) and log high frequency power (OR 0.546, 95% CI 0.301-0.991, P = 0.047). In subjects with type 2 diabetes, arterial blood pressure and impaired cardiac autonomic function is associated independently with abnormal PWV.

  18. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glowniak, J.V.; Turner, F.E.; Gray, L.L.

    1989-07-01

    Iodine-123 metaiodobenzylguanidine ((/sup 123/I)MIBG) is a norepinephrine analog which can be used to image the sympathetic innervation of the heart. In this study, cardiac imaging with (/sup 123/I)MIBG was performed in patients with idiopathic congestive cardiomyopathy and compared to normal controls. Initial uptake, half-time of tracer within the heart, and heart to lung ratios were all significantly reduced in patients compared to normals. Uptake in lungs, liver, salivary glands, and spleen was similar in controls and patients with cardiomyopathy indicating that decreased MIBG uptake was not a generalized abnormality in these patients. Iodine-123 MIBG imaging was also performed in cardiacmore » transplant patients to determine cardiac nonneuronal uptake. Uptake in transplants was less than 10% of normals in the first 2 hr and nearly undetectable after 16 hr. The decreased uptake of MIBG suggests cardiac sympathetic nerve dysfunction while the rapid washout of MIBG from the heart suggests increased cardiac sympathetic nerve activity in idiopathic congestive cardiomyopathy.« less

  19. Illness, normality and identity: the experience of heart transplant as a young adult.

    PubMed

    Waldron, Rebecca; Malpus, Zoey; Shearing, Vanessa; Sanchez, Melissa; Murray, Craig D

    2017-09-01

    End stage heart failure and transplant present great opportunities and challenges for patients of all ages. However, young adulthood may present additional specific challenges associated with the development of identity, career and romantic relationships. Despite recognition of greater mortality rates in young adults, consideration of the experience of transplant during this life stage has been largely overlooked in the literature. The aim of this study was to explore the experience of heart transplant in young adults. Interviews were conducted with nine participants across three transplant services in the United Kingdom and the data subject to interpretative phenomenological analysis. Analysis identified three themes. "Separating from illness" and "working toward normality" involved limiting the influence of illness on identity, as well as reengaging with typical functioning in young adulthood. "Integrating transplant into identity" involved acknowledging the influence of living with a shortened life expectancy. The need for support that recognizes specific challenges of transplant as a young adult is discussed (e.g. the development of age specific end of life pathways, improved communication between transplant recipients, their families and teams), including consideration of the impact of societal discourses (e.g. gift of life) which provided additional challenges for patients. IMPLICATIONS FOR REHABILITATION Heart transplant presents specific challenges according to the recipient's life stage. The needs of young adult recipients should be considered. Transplant professionals should consider providing opportunities for peer support and addressing the identities and values of young adult transplant recipients during rehabilitation.

  20. Detection of a Heart Defect in the Fetus

    MedlinePlus

    ... problems : There is a wide range of acceptable fetal heart rates (normal is between 120 and 160 but many ... usually go away shortly after birth. More important fetal heart problems include tachycardia (hear rate too fast) and bradycardia (heart rate too slow). ...

  1. Atrial contribution to ventricular filling in mitral stenosis.

    PubMed

    Meisner, J S; Keren, G; Pajaro, O E; Mani, A; Strom, J A; Frater, R W; Laniado, S; Yellin, E L

    1991-10-01

    The importance of the contribution of atrial systole to ventricular filling in mitral stenosis is controversial. The cause of reduced cardiac output following the onset of atrial fibrillation may be due to an increased heart rate, a loss of booster pump function, or both. We studied the atrial contribution to filling under a variety of conditions by combining noninvasive studies of patients with computer modeling. Thirty patients in sinus rhythm with mild-to-severe stenosis were studied with two-dimensional and Doppler echocardiography for measurement of mitral flow velocity and mitral valve area (MVA). The mean +/- SD atrial contribution to left ventricular filling volume was 18 +/- 10% and varied inversely with mitral resistance. Patients with mild mitral stenosis (MVA, 1.8 +/- 0.7 cm2) and severe mitral stenosis (MVA, 0.9 +/- 0.2 cm2) had atrial contributions of 29 +/- 4% and 9 +/- 5%, respectively. The pathophysiological mechanisms responsible for these trends were further investigated by the computer model. In modeled severe mitral stenosis, increasing heart rate from 75 to 150 beats/min caused an increase of 5.2 mm Hg in mean left atrial pressure, whereas loss of atrial contraction at a heart rate of 150 beats/min caused only a 1.3 mm Hg increase. The atrial booster pump contributes less to ventricular filling in mitral stenosis than in the normal heart, and the loss of atrial pump function is less important than the effect of increasing heart rate as the cause of decompensation during atrial fibrillation.

  2. Aging changes in the heart and blood vessels

    MedlinePlus

    Heart disease - aging; Atherosclerosis - aging ... Some changes in the heart and blood vessels normally occur with age. However, many other changes that are common with aging are due to modifiable ...

  3. The effect of heart failure and left ventricular assist device treatment on right ventricular mechanics: a computational study.

    PubMed

    Park, Jun I K; Heikhmakhtiar, Aulia Khamas; Kim, Chang Hyun; Kim, Yoo Seok; Choi, Seong Wook; Song, Kwang Soup; Lim, Ki Moo

    2018-05-22

    Although it is important to analyze the hemodynamic factors related to the right ventricle (RV) after left ventricular assist device (LVAD) implantation, previous studies have focused only on the alteration of the ventricular shape and lack quantitative analysis of the various hemodynamic parameters. Therefore, we quantitatively analyzed various hemodynamic parameters related to the RV under normal, heart failure (HF), and HF incorporated with continuous flow LVAD therapy by using a computational model. In this study, we combined a three-dimensional finite element electromechanical model of ventricles, which is based on human ventricular morphology captured by magnetic resonance imaging (MRI) with a lumped model of the circulatory system and continuous flow LVAD function in order to construct an integrated model of an LVAD implanted-cardiovascular system. To induce systolic dysfunction, the magnitude of the calcium transient function under HF condition was reduced to 70% of the normal value, and the time constant was reduced by 30% of the normal value. Under the HF condition, the left ventricular end systolic pressure decreased, the left ventricular end diastolic pressure increased, and the pressure in the right atrium (RA), RV, and pulmonary artery (PA) increased compared with the normal condition. The LVAD therapy decreased the end-systolic pressure of the LV by 41%, RA by 29%, RV by 53%, and PA by 71%, but increased the right ventricular ejection fraction by 52% and cardiac output by 40%, while the stroke work was reduced by 67% compared with the HF condition without LVAD. The end-systolic ventricular tension and strain decreased with the LVAD treatment. LVAD enhances CO and mechanical unloading of the LV as well as those of the RV and prevents pulmonary hypertension which can be induced by HF.

  4. Oral administration of eicosapentaenoic acid or docosahexaenoic acid modifies cardiac function and ameliorates congestive heart failure in male rats.

    PubMed

    Yamanushi, Tomoko T; Kabuto, Hideaki; Hirakawa, Eiichiro; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2014-04-01

    This study assessed the effects of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) on normal cardiac function (part 1) and congestive heart failure (CHF) (part 2) through electrocardiogram analysis and determination of EPA, DHA, and arachidonic acid (AA) concentrations in rat hearts. In part 2, pathologic assessments were also performed. For part 1 of this study, 4-wk-old male rats were divided into a control group and 2 experimental groups. The rats daily were orally administered (1 g/kg body weight) saline, EPA-ethyl ester (EPA-Et; E group), or DHA-ethyl ester (DHA-Et; D group), respectively, for 28 d. ECGs revealed that QT intervals were significantly shorter for groups E and D compared with the control group (P ≤ 0.05). Relative to the control group, the concentration of EPA was higher in the E group and concentrations of EPA and DHA were higher in the D group, although AA concentrations were lower (P ≤ 0.05). In part 2, CHF was produced by subcutaneous injection of monocrotaline into 5-wk-old rats. At 3 d before monocrotaline injection, rats were administered either saline, EPA-Et, or DHA-Et as mentioned above and then killed at 21 d. The study groups were as follows: normal + saline (control), CHF + saline (H group), CHF + EPA-Et (HE group), and CHF + DHA-Et (HD group). QT intervals were significantly shorter (P ≤ 0.05) in the control and HD groups compared with the H and HE groups. Relative to the H group, concentrations of EPA were higher in the HE group and those of DHA were higher in the control and HD groups (P ≤ 0.05). There was less mononuclear cell infiltration in the myocytes of the HD group than in the H group (P = 0.06). The right ventricles in the H, HE, and HD groups showed significantly increased weights (P ≤ 0.05) compared with controls. The administration of EPA-Et or DHA-Et may affect cardiac function by modification of heart fatty acid composition, and the administration of DHA-Et may ameliorate CHF.

  5. Channelopathies from Mutations in the Cardiac Sodium Channel Protein Complex

    PubMed Central

    Adsit, Graham S.; Vaidyanathan, Ravi; Galler, Carla M.; Kyle, John W.; Makielski, Jonathan C.

    2013-01-01

    The cardiac sodium current underlies excitability in heart, and inherited abnormalities of the proteins regulating and conducting this current cause inherited arrhythmia syndromes. This review focuses on inherited mutations in non-pore forming proteins of sodium channel complexes that cause cardiac arrhythmia, and the deduced mechanisms by which they affect function and dysfunction of the cardiac sodium current. Defining the structure and function of these complexes and how they are regulated will contribute to understanding the possible roles for this complex in normal and abnormal physiology and homeostasis. PMID:23557754

  6. Cardiac mTOR rescues the detrimental effects of diet-induced obesity in the heart after ischemia-reperfusion.

    PubMed

    Aoyagi, Toshinori; Higa, Jason K; Aoyagi, Hiroko; Yorichika, Naaiko; Shimada, Briana K; Matsui, Takashi

    2015-06-15

    Diet-induced obesity deteriorates the recovery of cardiac function after ischemia-reperfusion (I/R) injury. While mechanistic target of rapamycin (mTOR) is a key mediator of energy metabolism, the effects of cardiac mTOR in ischemic injury under metabolic syndrome remains undefined. Using cardiac-specific transgenic mice overexpressing mTOR (mTOR-Tg mice), we studied the effect of mTOR on cardiac function in both ex vivo and in vivo models of I/R injury in high-fat diet (HFD)-induced obese mice. mTOR-Tg and wild-type (WT) mice were fed a HFD (60% fat by calories) for 12 wk. Glucose intolerance and insulin resistance induced by the HFD were comparable between WT HFD-fed and mTOR-Tg HFD-fed mice. Functional recovery after I/R in the ex vivo Langendorff perfusion model was significantly lower in HFD-fed mice than normal chow diet-fed mice. mTOR-Tg mice demonstrated better cardiac function recovery and had less of the necrotic markers creatine kinase and lactate dehydrogenase in both feeding conditions. Additionally, mTOR overexpression suppressed expression of proinflammatory cytokines, including IL-6 and TNF-α, in both feeding conditions after I/R injury. In vivo I/R models showed that at 1 wk after I/R, HFD-fed mice exhibited worse cardiac function and larger myocardial scarring along myofibers compared with normal chow diet-fed mice. In both feeding conditions, mTOR overexpression preserved cardiac function and prevented myocardial scarring. These findings suggest that cardiac mTOR overexpression is sufficient to prevent the detrimental effects of diet-induced obesity on the heart after I/R, by reducing cardiac dysfunction and myocardial scarring. Copyright © 2015 the American Physiological Society.

  7. An Evaluation of the Ability of Navy Hospital Corpsmen to Collect Chest Pain Data from Patients

    DTIC Science & Technology

    1984-01-11

    PREVIOUS CARDIO-RESPIRATOFJY ILLNESS: (significant illenss either cardiovascular or respiratory ) YES (64) NO (65) PREVIOUS MAJOR SURGERY...clavicle to chin - elevated) otherwise circle normal) NORMAL (97) RAISED (98) RESPIRATORY MOVEMENT: (abnormal = the difference between...ABNORMAL (100) HEART SOUNDS: (with a stethoscope listen to the 1st and 2nd heart sounds; normal - lub-dub, lub-dub; abnormal " everything else

  8. Sympathetic Nervous System Modulation of Inflammation and Remodeling in the Hypertensive Heart

    PubMed Central

    Levick, Scott P.; Murray, David B.; Janicki, Joseph S.; Brower, Gregory L.

    2010-01-01

    Chronic activation of the sympathetic nervous system (SNS) is a key component of cardiac hypertrophy and fibrosis. However, previous studies have provided evidence to also implicate inflammatory cells, including mast cells, in the development of cardiac fibrosis. The current study investigated the potential interaction of cardiac mast cells with the SNS. Eight week old male SHR were sympathectomized to establish the effect of the SNS on cardiac mast cell density, myocardial remodeling and cytokine production in the hypertensive heart. Age-matched WKY served as controls. Cardiac fibrosis and hypertension were significantly attenuated and left ventricular mass normalized while cardiac mast cell density was markedly increased in sympathectomized SHR. Sympathectomy normalized myocardial levels of IFN-γ, IL-6 and IL-10, but had no effect on IL-4. The effect of norepinephrine and substance P on isolated cardiac mast cell activation was investigated as potential mechanisms of interaction between the two. Only substance P elicited mast cell degranulation. Substance P was also shown to induce the production of angiotensin II by a mixed population of isolated cardiac inflammatory cells, including mast cells, lymphocytes and macrophages. These results demonstrate the ability of neuropeptides to regulate inflammatory cell function, providing a potential mechanism by which the SNS and afferent nerves may interact with inflammatory cells in the hypertensive heart. PMID:20048196

  9. Heart rate recovery and variability following combined aerobic and resistance exercise training in adults with and without Down syndrome.

    PubMed

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2013-01-01

    Persons with Down syndrome (DS) are at high risk for cardiovascular morbidity and mortality, and there is compelling evidence of autonomic dysfunction in these individuals. The main purpose of this study was to determine whether a combined aerobic and resistance exercise intervention produces similar results in cardiac autonomic function between adults with and without DS. Twenty-five participants (13 DS; 12 non-DS), aged 27-50 years, were included. Aerobic training was performed 3 days/week for 30 min at 65-85% of peak oxygen uptake (VO(2peak)). Resistance training was prescribed for 2 days/week and consisted of two rotations in a circuit of 9 exercises at 12-repetition-maximum. There was a significant improvement in the VO(2peak) and muscle strength of participants with and without DS after training. Heart rate recovery improved at 1 min post-exercise, but only in participants with DS. Both groups of participants exhibited a similar increase in normalized high frequency power and of decrease in normalized low frequency power after training. Therefore, 12 weeks of exercise training enhanced the heart rate recovery in adults with DS, but not in those without DS. Contrasting, the intervention elicited similar gains between groups for cardiovagal modulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effect of sildenafil citrate (Viagra) on coronary flow in normal subjects.

    PubMed

    Ishikura, Fuminobu; Beppu, Shintaro; Ueda, Hiroaki; Nehra, Ajay; Khandheria, Bijoy K

    2008-01-01

    The purpose of this study was to evaluate the effect of sildenafil citrate (Viagra) on coronary function in normal subjects. The study assessed mean blood pressure, left anterior descending coronary artery (LAD) flow, and echocardiographic variables before and 30 and 60 minutes after taking 50 mg of sildenafil citrate. The mean velocity of LAD flow was assessed with Doppler flow imaging. The study subjects were 6 healthy male volunteers (mean age 37 years). The mean velocity of LAD flow increased 60 minutes after taking sildenafil citrate, but there were no other changes. Two volunteers felt mild flashing and one had mild headache during the study. Sildenafil citrate caused vasodilatation in a normal coronary artery without systemic pressure drops. These results suggest that the agent itself did not have negative effects on the heart in normal subjects.

  11. A step-wise approach for analysis of the mouse embryonic heart using 17.6 Tesla MRI

    PubMed Central

    Gabbay-Benziv, Rinat; Reece, E. Albert; Wang, Fang; Bar-Shir, Amnon; Harman, Chris; Turan, Ozhan M.; Yang, Peixin; Turan, Sifa

    2018-01-01

    Background The mouse embryo is ideal for studying human cardiac development. However, laboratory discoveries do not easily translate into clinical findings partially because of histological diagnostic techniques that induce artifacts and lack standardization. Aim To present a step-wise approach using 17.6 T MRI, for evaluation of mice embryonic heart and accurate identification of congenital heart defects. Subjects 17.5-embryonic days embryos from low-risk (non-diabetic) and high-risk (diabetic) model dams. Study design Embryos were imaged using 17.6 Tesla MRI. Three-dimensional volumes were analyzed using ImageJ software. Outcome measures Embryonic hearts were evaluated utilizing anatomic landmarks to locate the four-chamber view, the left- and right-outflow tracts, and the arrangement of the great arteries. Inter- and intra-observer agreement were calculated using kappa scores by comparing two researchers’ evaluations independently analyzing all hearts, blinded to the model, on three different, timed occasions. Each evaluated 16 imaging volumes of 16 embryos: 4 embryos from normal dams, and 12 embryos from diabetic dams. Results Inter-observer agreement and reproducibility were 0.779 (95% CI 0.653–0.905) and 0.763 (95% CI 0.605–0.921), respectively. Embryonic hearts were structurally normal in 4/4 and 7/12 embryos from normal and diabetic dams, respectively. Five embryos from diabetic dams had defects: ventricular septal defects (n = 2), transposition of great arteries (n = 2) and Tetralogy of Fallot (n = 1). Both researchers identified all cardiac lesions. Conclusion A step-wise approach for analysis of MRI-derived 3D imaging provides reproducible detailed cardiac evaluation of normal and abnormal mice embryonic hearts. This approach can accurately reveal cardiac structure and, thus, increases the yield of animal model in congenital heart defect research. PMID:27569369

  12. Teaching Recognition of Normal and Abnormal Heart Sounds Using Computer-Assisted Instruction

    ERIC Educational Resources Information Center

    Musselman, Eugene E.; Grimes, George M.

    1976-01-01

    The computer is being used in an innovative manner to teach the recognition of normal and abnormal canine heart sounds at the University of Chicago. Experience thus far indicates that the PLATO program resources allow the maximum development of the student's proficiency in auscultation. (Editor/LBH)

  13. Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility.

    PubMed

    Leung, Ting-Kai; Chen, Chien-Ho; Tsai, Shih-Ying; Hsiao, George; Lee, Chi-Ming

    2012-10-31

    The present study examined the effects of BIOCERAMIC on psychological stress-conditioned elevated heart rate, blood pressure and oxidative stress-suppressed cardiac contractility using in vivo and in vitro animal models. We investigated the effects of BIOCERAMIC on the in vivo cardiovascular hemodynamic parameters of rats by monitoring their heart rates, systolic blood pressure, mean blood pressure and diastolic blood pressure. Thereafter, we assayed its effects on the heart rate in an isolated frog heart with and without adrenaline stimulation, and on cardiac contractility under oxidative stress. BIOCERAMIC caused significant decreases in heart rates and systolic and mean blood pressure in the stress-conditioned heart rate rat models (P < 0.05), as well as in the experimental models of an isolated frog heart with and without adrenaline stimulation (P < 0.05), and normalized cardiac contractility under oxidative stress (P < 0.05). BIOCERAMIC may, therefore, normalize the effects of psychological stress and oxidative stress conditions.

  14. Heart rates increase after hatching in two species of natricine snakes

    PubMed Central

    Aubret, Fabien

    2013-01-01

    Experimental studies have shown heart rates to decrease from embryo to hatchling stage in turtles, remain steady in skinks, and increase in birds. However, no snake species has been studied in this regard. I recorded heart rate evolution trajectories from embryo to juvenile stage in 78 eggs from two species of European Natricine snakes. Unexpectedly, snakes behaved more like birds than turtles or lizards: heart rates increased after hatching in both N. maura and N. natrix, respectively by 43.92 ± 22.84% and 35.92 ± 24.52%. Heart rate shift was not related to an abrupt elevation of metabolism per se (snakes that increased their heart rates the most sharply grew the least after birth), but rather due to a number of smaller eggs that experienced lower than normal heart rates throughout the incubation and recovered a normal heart rate post-birth. This finding is discussed in the light of hatching synchrony benefits. PMID:24287712

  15. Hemodynamic adaptation to suboptimal fetal growth in patients with single ventricle physiology.

    PubMed

    Alsaied, Tarek; Tseng, Stephanie; King, Eileen; Hahn, Eunice; Divanovic, Allison; Habli, Mounira; Cnota, James

    2018-06-10

    In fetuses with structurally normal heart and suboptimal fetal growth (SFG), umbilical artery vascular resistance increases as measured by umbilical artery pulsatility index (UA-PI). The objective of this study is to compare hemodynamic responses to SFG in fetuses with single ventricle (SV) and controls with structurally normal heart. Fetal echocardiograms around 30 weeks of gestation were reviewed. UA-PI and middle cerebral artery pulsatility index (MCA-PI) were calculated. SFG was defined as a birth weight below 25th percentile for gestational age. Studies from 92 fetuses were reviewed-SV (n = 50) and controls (n = 42). The prevalence of SFG was higher in SV compared to controls (46% vs 21%, P = .02). In patients with normal heart and SFG, UAPI was significantly higher than normal controls (P = .003) suggesting increased placental vascular resistance. In SV with SFG there was no difference in UAPI compared to SV without SFG. There was no difference in MCA-PI between the groups. The hemodynamic response to SFG in SV varies from fetuses with structurally normal heart. The mechanism of SFG and the placental pathology may be distinct in SV. © 2018 Wiley Periodicals, Inc.

  16. Total anomalous pulmonary venous return

    MedlinePlus

    ... the heart do not attach normally to the left atrium (left upper chamber of the heart). Instead, they attach ... returns through the pulmonary (lung) veins to the left side of the heart, which sends blood out ...

  17. Heart-lung transplant - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100147.htm Heart-lung transplant - series—Normal anatomy To use the sharing features ... Editorial team. Related MedlinePlus Health Topics Heart Transplantation Lung Transplantation A.D.A.M., Inc. is accredited by ...

  18. Heart failure - home monitoring

    MedlinePlus

    ... you lose a lot of weight. Checking Your Heart Rate and Pulse Know what your normal pulse rate ... may give you special equipment to check your heart rate. Checking Your Blood Pressure Your provider may ask ...

  19. The total right/left-volume index: a new and simplified cardiac magnetic resonance measure to evaluate the severity of Ebstein anomaly of the tricuspid valve: a comparison with heart failure markers from various modalities.

    PubMed

    Hösch, Olga; Sohns, Jan Martin; Nguyen, Thuy-Trang; Lauerer, Peter; Rosenberg, Christina; Kowallick, Johannes Tammo; Kutty, Shelby; Unterberg, Christina; Schuster, Andreas; Faßhauer, Martin; Staab, Wieland; Paul, Thomas; Lotz, Joachim; Steinmetz, Michael

    2014-07-01

    The classification of clinical severity of Ebstein anomaly still remains a challenge. The aim of this study was to focus on the interaction of the pathologically altered right heart with the anatomically-supposedly-normal left heart and to derive from cardiac magnetic resonance (CMR) a simple imaging measure for the clinical severity of Ebstein anomaly. Twenty-five patients at a mean age of 26±14 years with unrepaired Ebstein anomaly were examined in a prospective study. Disease severity was classified using CMR volumes and functional measurements in comparison with heart failure markers from clinical data, ECG, laboratory and cardiopulmonary exercise testing, and echocardiography. All examinations were completed within 24 hours. A total right/left-volume index was defined from end-diastolic volume measurements in CMR: total right/left-volume index=(RA+aRV+fRV)/(LA+LV). Mean total right/left-volume index was 2.6±1.7 (normal values: 1.1±0.1). This new total right/left-volume index correlated with almost all clinically used biomarkers of heart failure: brain natriuretic peptide (r=0.691; P=0.0003), QRS (r=0.432; P=0.039), peak oxygen consumption/kg (r=-0.479; P=0.024), ventilatory response to carbon dioxide production at anaerobic threshold (r=0.426; P=0.048), the severity of tricuspid regurgitation (r=0.692; P=0.009), tricuspid valve offset (r=0.583; P=0.004), and tricuspid annular plane systolic excursion (r=0.554; P=0.006). Previously described severity indices ([RA+aRV]/[fRV+LA+LV]) and fRV/LV end-diastolic volume corresponded only to some parameters. In patients with Ebstein anomaly, the easily acquired index of right-sided to left-sided heart volumes from CMR correlated well with established heart failure markers. Our data suggest that the total right/left-volume index should be used as a new and simplified CMR measure, allowing more accurate assessment of disease severity than previously described scoring systems. © 2014 American Heart Association, Inc.

  20. IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload

    PubMed Central

    Sbroggiò, Mauro; Carnevale, Daniela; Bertero, Alessandro; Cifelli, Giuseppe; De Blasio, Emanuele; Mascio, Giada; Hirsch, Emilio; Bahou, Wadie F.; Turco, Emilia; Silengo, Lorenzo; Brancaccio, Mara; Lembo, Giuseppe; Tarone, Guido

    2011-01-01

    Aims The Raf-MEK1/2-ERK1/2 (ERK1/2—extracellular signal-regulated kinases 1/2) signalling cascade is crucial in triggering cardiac responses to different stress stimuli. Scaffold proteins are key elements in coordinating signalling molecules for their appropriate spatiotemporal activation. Here, we investigated the role of IQ motif-containing GTPase-activating protein 1 (IQGAP1), a scaffold for the ERK1/2 cascade, in heart function and remodelling in response to pressure overload. Methods and results IQGAP1-null mice have unaltered basal heart function. When subjected to pressure overload, IQGAP1-null mice initially develop a compensatory hypertrophy indistinguishable from that of wild-type (WT) mice. However, upon a prolonged stimulus, the hypertrophic response develops towards a thinning of left ventricular walls, chamber dilation, and a decrease in contractility, in an accelerated fashion compared with WT mice. This unfavourable cardiac remodelling is characterized by blunted reactivation of the foetal gene programme, impaired cardiomyocyte hypertrophy, and increased cardiomyocyte apoptosis. Analysis of signalling pathways revealed two temporally distinct waves of both ERK1/2 and AKT phosphorylation peaking, respectively, at 10 min and 4 days after aortic banding in WT hearts. IQGAP1-null mice show strongly impaired phosphorylation of MEK1/2-ERK1/2 and AKT following 4 days of pressure overload, but normal activation of these kinases after 10 min. Pull-down experiments indicated that IQGAP1 is able to bind the three components of the ERK cascade, namely c-Raf, MEK1/2, and ERK1/2, as well as AKT in the heart. Conclusion These data demonstrate, for the first time, a key role for the scaffold protein IQGAP1 in integrating hypertrophy and survival signals in the heart and regulating long-term left ventricle remodelling upon pressure overload. PMID:21493702

  1. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury

    PubMed Central

    Cole, Mark A.; Abd Jamil, Amira H.; Heather, Lisa C.; Murray, Andrew J.; Sutton, Elizabeth R.; Slingo, Mary; Sebag-Montefiore, Liam; Tan, Suat Cheng; Aksentijević, Dunja; Gildea, Ottilie S.; Stuckey, Daniel J.; Yeoh, Kar Kheng; Carr, Carolyn A.; Evans, Rhys D.; Aasum, Ellen; Schofield, Christopher J.; Ratcliffe, Peter J.; Neubauer, Stefan; Robbins, Peter A.; Clarke, Kieran

    2016-01-01

    The role of peroxisome proliferator-activated receptor α (PPARα)-mediated metabolic remodeling in cardiac adaptation to hypoxia has yet to be defined. Here, mice were housed in hypoxia for 3 wk before in vivo contractile function was measured using cine MRI. In isolated, perfused hearts, energetics were measured using 31P magnetic resonance spectroscopy (MRS), and glycolysis and fatty acid oxidation were measured using [3H] labeling. Compared with a normoxic, chow-fed control mouse heart, hypoxia decreased PPARα expression, fatty acid oxidation, and mitochondrial uncoupling protein 3 (UCP3) levels, while increasing glycolysis, all of which served to maintain normal ATP concentrations ([ATP]) and thereby, ejection fractions. A high-fat diet increased cardiac PPARα expression, fatty acid oxidation, and UCP3 levels with decreased glycolysis. Hypoxia was unable to alter the high PPARα expression or reverse the metabolic changes caused by the high-fat diet, with the result that [ATP] and contractile function decreased significantly. The adaptive metabolic changes caused by hypoxia in control mouse hearts were found to have occurred already in PPARα-deficient (PPARα−/−) mouse hearts and sustained function in hypoxia despite an inability for further metabolic remodeling. We conclude that decreased cardiac PPARα expression is essential for adaptive metabolic remodeling in hypoxia, but is prevented by dietary fat.—Cole, M. A., Abd Jamil, A. H., Heather, L. C., Murray, A. J., Sutton, E. R., Slingo, M., Sebag-Montefiore, L., Tan, S. C., Aksentijević, D., Gildea, O. S., Stuckey, D. J., Yeoh, K. K., Carr, C. A., Evans, R. D., Aasum, E., Schofield, C. J., Ratcliffe, P. J., Neubauer, S., Robbins, P. A., Clarke, K. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. PMID:27103577

  2. Chronic aspirin via dose-dependent and selective inhibition of cardiac proteasome possibly contributed a potential risk to the ischemic heart.

    PubMed

    Tan, Chunjiang; Chen, Wenlie; Wu, Yanbin; Lin, Jiumao; Lin, Ruhui; Tan, Xuerui; Chen, Songming

    2013-08-01

    Impaired cardiac proteasome has been reported in ischemic heart and heart failure. Recent data highlighted aspirin as an inhibitor of the ubiquitin-proteasome system, however, it's unclear whether it affects cardiac proteasome functions. Myocardial infarction (MI), sham or normal male SD rats were injected intraperitoneally with high (300 mg/kg), low (5 mg/kg) aspirin or saline (control) once a day for seven weeks. Parallel experiments were performed in the hypoxia/reoxygenated human ventricular myocytes. Dose-related increases in heart and ventricular weight, and impaired cardiac functions, were found more exacerbated in the aspirin-treated MI rat hearts than the saline-treated MI counterparts. The activity of 26S, 20S and 19S declined by about 30%, or the 20S proteasome subunits β5, β2 and β1 decreased by 40%, 20% and 30%, respectively, in the MI rats compared with the non-MI rats (P<0.05). Compared with the saline-treated MI rats, 26S and 20S in high or low dose aspirin-treated MI rats further decreased by 30% and 20%, β5 by 30% and 12%, and β1 by 40% and 30%, respectively, and the lost activity was correlated with the compromised cardiac functions or the decreased cell viability. The dose-related and selective inhibition of 26S and 20S proteasome, or the 20S proteasome subunits β5 and β1 by aspirin was comparable to their protein expressions in the MI rats and in the cultured cells. The impaired cardiac proteasome, enhanced by chronic aspirin treatment, attenuated the removal of oxidative and ubiquitinated proteins, and chronic aspirin treatment via selective and dose-dependent inhibition of cardiac proteasome possibly constituted a potential risk to ischemic heart. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. High- and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity.

    PubMed

    Hafstad, Anne D; Lund, Jim; Hadler-Olsen, Elin; Höper, Anje C; Larsen, Terje S; Aasum, Ellen

    2013-07-01

    Although exercise reduces several cardiovascular risk factors associated with obesity/diabetes, the metabolic effects of exercise on the heart are not well-known. This study was designed to investigate whether high-intensity interval training (HIT) is superior to moderate-intensity training (MIT) in counteracting obesity-induced impairment of left ventricular (LV) mechanoenergetics and function. C57BL/6J mice with diet-induced obesity (DIO mice) displaying a cardiac phenotype with altered substrate utilization and impaired mechanoenergetics were subjected to a sedentary lifestyle or 8-10 weeks of isocaloric HIT or MIT. Although both modes of exercise equally improved aerobic capacity and reduced obesity, only HIT improved glucose tolerance. Hearts from sedentary DIO mice developed concentric LV remodeling with diastolic and systolic dysfunction, which was prevented by both HIT and MIT. Both modes of exercise also normalized LV mechanical efficiency and mechanoenergetics. These changes were associated with altered myocardial substrate utilization and improved mitochondrial capacity and efficiency, as well as reduced oxidative stress, fibrosis, and intracellular matrix metalloproteinase 2 content. As both modes of exercise equally ameliorated the development of diabetic cardiomyopathy by preventing LV remodeling and mechanoenergetic impairment, this study advocates the therapeutic potential of physical activity in obesity-related cardiac disorders.

  4. High- and Moderate-Intensity Training Normalizes Ventricular Function and Mechanoenergetics in Mice With Diet-Induced Obesity

    PubMed Central

    Hafstad, Anne D.; Lund, Jim; Hadler-Olsen, Elin; Höper, Anje C.; Larsen, Terje S.; Aasum, Ellen

    2013-01-01

    Although exercise reduces several cardiovascular risk factors associated with obesity/diabetes, the metabolic effects of exercise on the heart are not well-known. This study was designed to investigate whether high-intensity interval training (HIT) is superior to moderate-intensity training (MIT) in counteracting obesity-induced impairment of left ventricular (LV) mechanoenergetics and function. C57BL/6J mice with diet-induced obesity (DIO mice) displaying a cardiac phenotype with altered substrate utilization and impaired mechanoenergetics were subjected to a sedentary lifestyle or 8–10 weeks of isocaloric HIT or MIT. Although both modes of exercise equally improved aerobic capacity and reduced obesity, only HIT improved glucose tolerance. Hearts from sedentary DIO mice developed concentric LV remodeling with diastolic and systolic dysfunction, which was prevented by both HIT and MIT. Both modes of exercise also normalized LV mechanical efficiency and mechanoenergetics. These changes were associated with altered myocardial substrate utilization and improved mitochondrial capacity and efficiency, as well as reduced oxidative stress, fibrosis, and intracellular matrix metalloproteinase 2 content. As both modes of exercise equally ameliorated the development of diabetic cardiomyopathy by preventing LV remodeling and mechanoenergetic impairment, this study advocates the therapeutic potential of physical activity in obesity-related cardiac disorders. PMID:23493573

  5. The Cardiovascular Effects of Obesity on Ventricular Function and Mass in Patients after Tetralogy of Fallot Repair.

    PubMed

    Fogel, Mark A; Pawlowski, Thomas; Keller, Marc S; Cohen, Meryl S; Goldmuntz, Elizabeth; Diaz, Laura; Li, Christine; Whitehead, Kevin K; Harris, Matthew A

    2015-08-01

    To determine the cardiovascular effects of obesity on patients with tetralogy of Fallot (TOF) repair. Ventricular performance measures were compared between obese (body mass index [BMI] ≥95%), overweight (85% ≤BMI <95%), and normal weight subjects (BMI <85%) in a retrospective review of patients with TOF who underwent cardiac magnetic resonance from 2005-2010. Significance was P < .05. Of 260 consecutive patients with TOF, 32 were obese (12.3%), 48 were overweight (18.5%), and 180 were normal weight (69.2%). Biventricular mass was increased in obese compared with normal weight patients with right ventricular mass more affected than left ventricular mass. Obese patients demonstrated decreased biventricular end-diastolic volume (EDV) and stroke volume (SV) when indexed to body surface area (BSA) with an increased heart rate when compared with normal weight patients; cardiac index, ejection fraction, and pulmonary regurgitation fraction were similar. When indexed to ideal BSA, biventricular EDV and SV were similar. EDV and SV for overweight patients were nearly identical to normal weight patients with ventricular mass in between the other 2 groups. Approximately 12% of patients after TOF repair referred for cardiac magnetic resonance in a tertiary referral center are obese with increased biventricular mass. Obese patients and normal weight patients have similar cardiac indices, however, when indexed to actual BSA, obese patients demonstrate decreased EDV and SV with increased heart rate and similar cardiac indices. When indexed to ideal BSA, no differences in biventricular volumes were noted. Copyright © 2015. Published by Elsevier Inc.

  6. Comparative and Developmental Anatomy of Cardiac Lymphatics

    PubMed Central

    Ratajska, A.; Gula, G.; Flaht-Zabost, A.; Czarnowska, E.; Ciszek, B.; Jankowska-Steifer, E.; Niderla-Bielinska, J.; Radomska-Lesniewska, D.

    2014-01-01

    The role of the cardiac lymphatic system has been recently appreciated since lymphatic disturbances take part in various heart pathologies. This review presents the current knowledge about normal anatomy and structure of lymphatics and their prenatal development for a better understanding of the proper functioning of this system in relation to coronary circulation. Lymphatics of the heart consist of terminal capillaries of various diameters, capillary plexuses that drain continuously subendocardial, myocardial, and subepicardial areas, and draining (collecting) vessels that lead the lymph out of the heart. There are interspecies differences in the distribution of lymphatic capillaries, especially near the valves, as well as differences in the routes and number of draining vessels. In some species, subendocardial areas contain fewer lymphatic capillaries as compared to subepicardial parts of the heart. In all species there is at least one collector vessel draining lymph from the subepicardial plexuses and running along the anterior interventricular septum under the left auricle and further along the pulmonary trunk outside the heart and terminating in the right venous angle. The second collector assumes a different route in various species. In most mammalian species the collectors run along major branches of coronary arteries, have valves and a discontinuous layer of smooth muscle cells. PMID:24592145

  7. Comparative and developmental anatomy of cardiac lymphatics.

    PubMed

    Ratajska, A; Gula, G; Flaht-Zabost, A; Czarnowska, E; Ciszek, B; Jankowska-Steifer, E; Niderla-Bielinska, J; Radomska-Lesniewska, D

    2014-01-01

    The role of the cardiac lymphatic system has been recently appreciated since lymphatic disturbances take part in various heart pathologies. This review presents the current knowledge about normal anatomy and structure of lymphatics and their prenatal development for a better understanding of the proper functioning of this system in relation to coronary circulation. Lymphatics of the heart consist of terminal capillaries of various diameters, capillary plexuses that drain continuously subendocardial, myocardial, and subepicardial areas, and draining (collecting) vessels that lead the lymph out of the heart. There are interspecies differences in the distribution of lymphatic capillaries, especially near the valves, as well as differences in the routes and number of draining vessels. In some species, subendocardial areas contain fewer lymphatic capillaries as compared to subepicardial parts of the heart. In all species there is at least one collector vessel draining lymph from the subepicardial plexuses and running along the anterior interventricular septum under the left auricle and further along the pulmonary trunk outside the heart and terminating in the right venous angle. The second collector assumes a different route in various species. In most mammalian species the collectors run along major branches of coronary arteries, have valves and a discontinuous layer of smooth muscle cells.

  8. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway.

    PubMed

    Dong, Li-Ya; Chen, Feng; Xu, Min; Yao, Li-Ping; Zhang, Yun-Jiao; Zhuang, Yu

    2018-01-01

    The goal of this study was to assess the ability of quercetin (Qu) to protect against myocardial ischemia-reperfusion injury. Cardiac injury was assessed in the context of global ischemia of isolated hearts, coronary artery ligated rats, and H9C2 cells. Qu was shown to significantly inhibit inflammatory cytokine production in coronary artery occlusion-induced rats, isolated hearts, and H9C2 cells. Electrocardiographic analysis revealed a restoration of the ST segment to normal levels following treatment of Qu. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that Qu could significantly alleviate myocardial injury in vivo. Furthermore, ex vivo analyses showed improved recovery of heart function in response to Qu, characterized by enhanced myocardial contractility and coronary flow in isolated hearts. From a mechanistic standpoint, these effects appeared to be mediated through the HMGB1-related pathway, with expression of downstream targets significantly downregulated in rats, isolated hearts, and H9C2 cells following Qu treatment. Taken together, these data demonstrate the protective effects of Qu against myocardial injury via inhibition of the HMGB1 pathway in a myocardial ischemia-reperfusion injury (I/R) model.

  9. Increased passive stiffness promotes diastolic dysfunction despite improved Ca2+ handling during left ventricular concentric hypertrophy

    PubMed Central

    Røe, Åsmund T.; Aronsen, Jan Magnus; Skårdal, Kristine; Hamdani, Nazha; Linke, Wolfgang A.; Danielsen, Håvard E.; Sejersted, Ole M.; Sjaastad, Ivar; Louch, William E.

    2017-01-01

    Abstract Aims Concentric hypertrophy following pressure-overload is linked to preserved systolic function but impaired diastolic function, and is an important substrate for heart failure with preserved ejection fraction. While increased passive stiffness of the myocardium is a suggested mechanism underlying diastolic dysfunction in these hearts, the contribution of active diastolic Ca2+ cycling in cardiomyocytes remains unclear. In this study, we sought to dissect contributions of passive and active mechanisms to diastolic dysfunction in the concentrically hypertrophied heart following pressure-overload. Methods and results Rats were subjected to aortic banding (AB), and experiments were performed 6 weeks after surgery using sham-operated rats as controls. In vivo ejection fraction and fractional shortening were normal, confirming preservation of systolic function. Left ventricular concentric hypertrophy and diastolic dysfunction following AB were indicated by thickening of the ventricular wall, reduced peak early diastolic tissue velocity, and higher E/e’ values. Slowed relaxation was also observed in left ventricular muscle strips isolated from AB hearts, during both isometric and isotonic stimulation, and accompanied by increases in passive tension, viscosity, and extracellular collagen. An altered titin phosphorylation profile was observed with hypophosphorylation of the phosphosites S4080 and S3991 sites within the N2Bus, and S12884 within the PEVK region. Increased titin-based stiffness was confirmed by salt-extraction experiments. In contrast, isolated, unloaded cardiomyocytes exhibited accelerated relaxation in AB compared to sham, and less contracture at high pacing frequencies. Parallel enhancement of diastolic Ca2+ handling was observed, with augmented NCX and SERCA2 activity and lowered resting cytosolic [Ca2+]. Conclusion In the hypertrophied heart with preserved systolic function, in vivo diastolic dysfunction develops as cardiac fibrosis and alterations in titin phosphorylation compromise left ventricular compliance, and despite compensatory changes in cardiomyocyte Ca2+ homeostasis. PMID:28472418

  10. The effects of detomidine, romifidine or acepromazine on echocardiographic measurements and cardiac function in normal horses.

    PubMed

    Buhl, Rikke; Ersbøll, Annette K; Larsen, Nanna H; Eriksen, Lis; Koch, Jørgen

    2007-01-01

    To evaluate by echo- and electrocardiography the cardiac effects of sedation with detomidine hydrochloride, romifidine hydrochloride or acepromazine maleate in horses. An experimental study using a cross-over design without randomization. Eight clinically normal Standardbred trotters. Echocardiographic examinations (two-dimensional, guided M-mode and colour Doppler) were recorded on five different days. Heart rate (HR) and standard limb lead electrocardiograms were also obtained. Subsequently, horses were sedated with detomidine (0.01 mg kg(-1)), romifidine (0.04 mg kg(-1)) or acepromazine (0.1 mg kg(-1)) administered intravenously and all examinations repeated. Heart rate before treatment with the three drugs did not differ significantly (p = 0.98). Both detomidine and romifidine induced a significant decrease (p < 0.001) in HR during the first 25 minutes after sedation; while acepromazine had a varying effect on HR. For detomidine, there was a significant increase in LVIDd (left ventricular internal diameter in diastole; p = 0.034) and LVIDs (left ventricular internal diameter in systole; p < 0.001). In addition, a significant decrease was found in IVSs (the interventricular septum in systole; p < 0.001), LVFWs (the left ventricular free wall in systole; p = 0.002) and FS% (fractional shortening; p < 0.001). The frequency of pulmonary regurgitation was increased significantly (p < 0.001). Romifidine induced a significant increase in LVIDs (p < 0.001) and a significant decrease in IVSs (p < 0.001) and FS% (p = 0.002). Acepromazine had no significant effect upon any of the measured values. and clinical relevance The results indicate that sedation of horses with detomidine and to a lesser extent romifidine at the doses given in this study has a significant effect on heart function, echocardiographic measurements of heart dimensions and the occurrence of valvular regurgitation. Although the clinical significance of these results may be minimal, the potential effects of sedative drugs should be taken into account when echocardiographic variables are interpreted in clinical cases.

  11. Intravenous cannulation of adolescents does not affect the modulation of autonomic tone assessed by heart rate and blood pressure variability.

    PubMed

    Stewart, J M

    2000-02-01

    Invasive arterial monitoring alters autonomic tone. The effects of intravenous (i.v.) insertion are less clear. The author assessed the effects of i.v. insertion on autonomic activity in patients aged 11 to 19 years prior to head-up tilt by measuring heart rate, blood pressure, heart rate variability, blood pressure variability, and baroreceptor gain before and after i.v. insertion with continuous electrocardiography and arterial tonometry in patients with orthostatic tachycardia syndrome (OTS, N = 21), in patients who experienced simple fainting (N = 14), and in normal control subjects (N = 6). Five-minute samples were collected after 30 minutes supine. Fifteen minutes after i.v. insertion, data were collected again. These 5-minute samples were also collected in a separate control population without i.v. insertion after 30 minutes supine and again 30 minutes later. This population included 12 patients with OTS, 13 patients who experienced simple fainting, and 6 normal control subjects. Heart rate variability included the mean RR, the standard deviation of the RR interval (SDNN), and the root mean square of successive RR differences (RMSSD). Autoregressive spectral modeling was used. Low-frequency power (LFP, 0.04-0.15 Hz), high-frequency power (HFP, 0.15-0.40 Hz), and total power (TP, 0.01-0.40 Hz) were compared. Blood pressure variability included standard deviation of systolic blood pressure, LFP, and HFP. Baroreceptor gain at low frequency and high frequency was calculated from cross-spectral transfer function magnitudes when coherence was greater than 0.5. In patients with OTS, RR (790 +/- 50 msec), SDNN (54 +/- 6 msec), RMSSD (55 +/- 5 msec), LFP (422 +/- 200 ms2/Hz), HFP (846 +/- 400 ms2/Hz), and TP (1550 +/- 320 ms2/Hz) were less than in patients who experienced simple fainting (RR, 940 +/- 50 msec; SDNN, 84 +/- 10 msec; RMSSD, 91 +/- 7 msec; LFP, 880 +/- 342 ms2/Hz; HFP, 1720 +/- 210 ms2/Hz; and TP, 3228 +/- 490 ms2/Hz) or normal control subjects (RR, 920 +/- 30 msec; SDNN, 110 +/- 29 msec; RMSSD, 120 +/- 16 msec; LFP, 1600 +/- 331 ms2/Hz; HFP, 2700 +/- 526 ms2/Hz; and TP, 5400 +/- 1017 ms2/Hz). Blood pressure and blood pressure variability were not different in any group. Standard deviation, LFP, and HFP were, respectively, 5.24 +/- 0.8 mm Hg, 1.2 +/- 0.2, and 1.5 +/- 0.3 for patients with OTS; 4.6 +/- 0.4 mm Hg, 1.2 +/- 0.2, and 1.4 +/- 0.3 for patients who experienced simple fainting; and 5.55 +/- 1.0 mm Hg, 1.4 +/- 0.2, and 1.6 +/- 0.3 for normal control subjects. Baroreceptor gain at low frequency and high frequency in patients with OTS (16 +/- 4 msec/mm Hg, 17 +/- 5) was comparable to that in patients who experienced simple fainting (33 +/- 4, 32 +/- 3) and that in normal control subjects (31 +/- 8, 37 +/- 9). Heart rate variability differed between patients with OTS and patients who experienced simple fainting or normal control subjects, and blood pressure and blood pressure variability were not different, but no parameter changed after i.v. insertion. There were no differences from the groups that did not receive i.v. insertions. Data suggest, at most, a limited effect of i.v. insertion on autonomic function in adolescents.

  12. High Right Ventricular Stroke Work Index Is Associated with Worse Kidney Function in Patients with Heart Failure with Preserved Ejection Fraction.

    PubMed

    Kanjanahattakij, Napatt; Sirinvaravong, Natee; Aguilar, Francisco; Agrawal, Akanksha; Krishnamoorthy, Parasuram; Gupta, Shuchita

    2018-01-01

    In patients with heart failure with preserved ejection fraction (HFpEF), worse kidney function is associated with worse overall cardiac mechanics. Right ventricular stroke work index (RVSWI) is a parameter of right ventricular function. The aim of our study was to determine the relationship between RVSWI and glomerular filtration rate (GFR) in patients with HFpEF. This was a single-center cross-sectional study. HFpEF is defined as patients with documented heart failure with ejection fraction > 50% and pulmonary wedge pressure > 15 mm Hg from right heart catheterization. RVSWI (normal value 8-12 g/m/beat/m2) was calculated using the formula: RVSWI = 0.0136 × stroke volume index × (mean pulmonary artery pressure - mean right atrial pressure). Univariate and multivariate linear regression analysis was performed to study the correlation between RVSWI and GFR. Ninety-one patients were included in the study. The patients were predominantly female (n = 64, 70%) and African American (n = 61, 67%). Mean age was 66 ± 12 years. Mean GFR was 59 ± 35 mL/min/1.73 m2. Mean RVSWI was 11 ± 6 g/m/beat/m2. Linear regression analysis showed that there was a significant independent inverse relationship between RVSWI and GFR (unstandardized coefficient = -1.3, p = 0.029). In the subgroup with combined post and precapillary pulmonary hypertension (Cpc-PH) the association remained significant (unstandardized coefficient = -1.74, 95% CI -3.37 to -0.11, p = 0.04). High right ventricular workload indicated by high RVSWI is associated with worse renal function in patients with Cpc-PH. Further prospective studies are needed to better understand this association. © 2018 S. Karger AG, Basel.

  13. Accuracy and Reproducibility of Strain by Speckle Tracking in Pediatric Subjects with Normal Heart and Single Ventricular Physiology: A 2D Speckle Tracking Echocardiography and Magnetic Resonance Imaging Correlative Study

    PubMed Central

    Singh, Gautam K.; Cupps, Brian; Pasque, Michael; Woodard, Pamela K.; Holland, Mark R.; Ludomirsky, Achiau

    2013-01-01

    Background Myocardial strain is a sensitive measure of ventricular systolic function. Two-dimensional speckle-tracking echocardiography (2DSE) is an angle-independent method for strain measurement but has not been validated in pediatric subjects. We evaluated the accuracy and reproducibility of 2DSE-measured strain against reference tagged MRI-measured strain in pediatric subjects with normal hearts and those with single ventricle (SV) of left ventricle (LV) morphology s/p Fontan procedure. Methods Peak systolic circumferential (CS) and longitudinal (LS) strains in segments (n = 16) of LVs in age and BSA matched 20 healthy and 12 pediatric subjects with tricuspid atresia s/p Fontan procedure were measured by 2DSE and tagged MRI. Average (global) and regional segmental strains measured by two methods were compared using Spearman and Bland-Altman analyses. Results 2DSE and tagged MRI measured global strains demonstrated close agreements, which were better for LS than CS and in normal LVs than in SVs (95% limits of agreement: +0.0% to +3.12%, −2.48 % to +1.08%, −4.6% to +1.8% and −3.6% to +1.8% respectively). There was variability in agreement between regional strains with wider limits in apical than in basal regions in normal LVs and heterogeneous in SVs. The strain values were significantly (p < 0.05) higher in normal LVs than in SVs except for basal LSs, which were similar in both cohorts. The regional strains in normal LVs demonstrated an apico-basal magnitude gradient whereas SVs showed heterogeneity. The reproducibility was the most robust for images obtained with frame rates between 60 and 90 frame/sec; global LS in both cohorts; and basal strains in normal LVs. Conclusions 2DSE-measured strains agree with MRI-measured strain globally but vary regionally particularly in SVs. Global strain may be more robust tool for the cardiac function evaluation than regional strain in SV physiology. The reliability of 2DSE measured strain is affected by the frame rate, nature of strain, and ventricular geometry. PMID:20850945

  14. Diffuse myocardial fibrosis among healthy pediatric heart transplant recipients: Correlation of histology, cardiovascular magnetic resonance, and clinical phenotype.

    PubMed

    Feingold, Brian; Salgado, Cláudia M; Reyes-Múgica, Miguel; Drant, Stacey E; Miller, Susan A; Kennedy, Mark; Kellman, Peter; Schelbert, Erik B; Wong, Timothy C

    2017-08-01

    Fibrosis is commonly described in heart allografts lost late after transplantation. CMR-derived ECV is a validated measure of DMF in native adult hearts that may predict heart failure and mortality. We explored associations of ECV with histologic myocardial fibrosis and clinical features after pediatric heart transplantation. Twenty-five recipients (7.0±6.3 years at transplant and 10.7±6.5 years post-transplant) were prospectively recruited for CMR and BNP measurement at the time of surveillance biopsy. All had normal ejection fractions and lacked heart failure symptoms. Fibrosis was quantified on biopsy after picrosirius red staining as CVF. ECV was quantified using contemporaneous hematocrit on basal and mid-short-axis slices. ECV was moderately correlated with CVF (r=.47; P=.019). We found no associations of ECV with hemodynamics, ischemic time, time since transplantation, or number of prior biopsies or acute rejections. Compared to healthy non-transplant controls, there was no significant difference in ECV (25.1±3.0 vs 23.7±2.0%, P=.09). Log-transformed BNP was correlated with ECV (recipients: r=.46, P=.02; recipients and controls: r=.45, P=.006). These findings suggest ECV quantifies DMF and relates to biological indicators of cardiac function after pediatric heart transplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Decrease of cardiac chaos in congestive heart failure

    NASA Astrophysics Data System (ADS)

    Poon, Chi-Sang; Merrill, Christopher K.

    1997-10-01

    The electrical properties of the mammalian heart undergo many complex transitions in normal and diseased states. It has been proposed that the normal heartbeat may display complex nonlinear dynamics, including deterministic chaos,, and that such cardiac chaos may be a useful physiological marker for the diagnosis and management, of certain heart trouble. However, it is not clear whether the heartbeat series of healthy and diseased hearts are chaotic or stochastic, or whether cardiac chaos represents normal or abnormal behaviour. Here we have used a highly sensitive technique, which is robust to random noise, to detect chaos. We analysed the electrocardiograms from a group of healthy subjects and those with severe congestive heart failure (CHF), a clinical condition associated with a high risk of sudden death. The short-term variations of beat-to-beat interval exhibited strongly and consistently chaotic behaviour in all healthy subjects, but were frequently interrupted by periods of seemingly non-chaotic fluctuations in patients with CHF. Chaotic dynamics in the CHF data, even when discernible, exhibited a high degree of random variability over time, suggesting a weaker form of chaos. These findings suggest that cardiac chaos is prevalent in healthy heart, and a decrease in such chaos may be indicative of CHF.

  16. Ventricular myoarchitecture in tetralogy of Fallot.

    PubMed Central

    Sanchez-Quintana, D.; Anderson, R. H.; Ho, S. Y.

    1996-01-01

    BACKGROUND: Little attention has been paid to the architecture of the muscle fibres of the ventricular walls in congenitally malformed hearts. In this study the gross pattern of myocardial fibres in normal hearts was compared with that in cases of tetralogy of Fallot. METHODS AND RESULTS: After morphological examination nine specimens with tetralogy were dissected to study the ventricular myoarchitecture. Changes were found in the shape of the malformed ventricles. The ventricular walls were arranged in layers in all hearts. Superficial and deep layers were present in both ventricles, with the superficial layer showing a more oblique orientation in the specimens with tetralogy than in normal hearts. Modifications of muscle fibre that were related to the type of malformation were seen in the deep layer. A middle layer was present in the left ventricles of normal hearts and specimens with tetralogy: this showed a horizontal orientation in both groups. In contrast, a middle layer was found in the right ventricle only in specimens showing tetralogy. CONCLUSIONS: The malformed hearts showed modifications in ventricular shape, in the arrangement of muscle in the right ventricle, and in the overall myoarchitecture. These changes could well be the consequence of the same agent (or agents) that caused the structural defect. Images PMID:8868990

  17. Myocardial ischaemia and the cardiac nervous system.

    PubMed

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some tentative ideas concerning the importance of this nervous system in cardiac disease states with a view to stimulating further interest in neural control of the heart so that appropriate neurocardiological strategies can be devised for the management of heart disease.

  18. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis.

    PubMed

    Janyacharoen, Taweesak; Kunbootsri, Narupon; Arayawichanon, Preeda; Chainansamit, Seksun; Sawanyawisuth, Kittisak

    2015-06-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients. Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks. There were statistically significant increased low frequency normal units (LF n.u.), PNIF and showed decreased high frequency normal units (HF n.u.) at six weeks after aquatic exercise compared with the control group. Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergic rhinitis patients.

  19. Comparison of cardiac and 60 Hz magnetically induced electric fields measured in anesthetized rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.L.; Creim, J.A.

    1997-06-01

    Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate ofmore » about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32--95 Hz. When the rates were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface. Within the body, or in different directions relative to the applied field, the induced fields were reduced. The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals.« less

  20. Decreased heart rate and enhanced sinus arrhythmia during interictal sleep demonstrate autonomic imbalance in generalized epilepsy

    PubMed Central

    Sivakumar, Siddharth S.; Namath, Amalia G.; Tuxhorn, Ingrid E.; Lewis, Stephen J.

    2016-01-01

    We hypothesized that epilepsy affects the activity of the autonomic nervous system even in the absence of seizures, which should manifest as differences in heart rate variability (HRV) and cardiac cycle. To test this hypothesis, we investigated ECG traces of 91 children and adolescents with generalized epilepsy and 25 neurologically normal controls during 30 min of stage 2 sleep with interictal or normal EEG. Mean heart rate (HR) and high-frequency HRV corresponding to respiratory sinus arrhythmia (RSA) were quantified and compared. Blood pressure (BP) measurements from physical exams of all subjects were also collected and analyzed. RSA was on average significantly stronger in patients with epilepsy, whereas their mean HR was significantly lower after adjusting for age, body mass index, and sex, consistent with increased parasympathetic tone in these patients. In contrast, diastolic (and systolic) BP at rest was not significantly different, indicating that the sympathetic tone is similar. Remarkably, five additional subjects, initially diagnosed as neurologically normal but with enhanced RSA and lower HR, eventually developed epilepsy, suggesting that increased parasympathetic tone precedes the onset of epilepsy in children. ECG waveforms in epilepsy also displayed significantly longer TP intervals (ventricular diastole) relative to the RR interval. The relative TP interval correlated positively with RSA and negatively with HR, suggesting that these parameters are linked through a common mechanism, which we discuss. Altogether, our results provide evidence for imbalanced autonomic function in generalized epilepsy, which may be a key contributing factor to sudden unexpected death in epilepsy. PMID:26888110

  1. Regular Football Practice Improves Autonomic Cardiac Function in Male Children.

    PubMed

    Fernandes, Luis; Oliveira, Jose; Soares-Miranda, Luisa; Rebelo, Antonio; Brito, Joao

    2015-09-01

    The role of the autonomic nervous system (ANS) in the cardiovascular regulation is of primal importance. Since it has been associated with adverse conditions such as cardiac arrhythmias, sudden death, sleep disorders, hypertension and obesity. The present study aimed to investigate the impact of recreational football practice on the autonomic cardiac function of male children, as measured by heart rate variability. Forty-seven male children aged 9 - 12 years were selected according to their engagement with football oriented practice outside school context. The children were divided into a football group (FG; n = 22) and a control group (CG; n = 25). The FG had regular football practices, with 2 weekly training sessions and occasional weekend matches. The CG was not engaged with any physical activity other than complementary school-based physical education classes. Data from physical activity, physical fitness, and heart rate variability measured in time and frequency domains were obtained. The anthropometric and body composition characteristics were similar in both groups (P > 0.05). The groups were also similar in time spent daily on moderate-to-vigorous physical activities (FG vs. CG: 114 ± 64 vs. 87 ± 55 minutes; P > 0.05). However, the FG performed better (P < 0.05) in Yo-Yo intermittent endurance test (1394 ± 558 vs. 778 ± 408 m) and 15-m sprint test (3.06 ± 0.17 vs. 3.20 ± 0.23 s). Also, the FG presented enhanced autonomic function. Significant differences were detected (P < 0.05) between groups for low frequency normalized units (38.0 ± 15.2 vs. 47.3 ± 14.2 n.u (normalized units)), high frequency normalized units (62.1 ± 15.2 vs. 52.8 ± 14.2 n.u.), and LF:HF ratio (0.7 ± 0.4 vs. 1.1 ± 0.6 ms(2)). Children engaged with regular football practice presented enhanced physical fitness and autonomic function, by increasing vagal tone at rest.

  2. Effect of streptozotocin-induced diabetes on left ventricular function in adult rats: an in vivo Pinhole Gated SPECT study

    PubMed Central

    Cosyns, Bernard; Droogmans, Steven; Weytjens, Caroline; Lahoutte, Tony; Van Camp, Guy; Schoors, Danny; Franken, Philippe R

    2007-01-01

    Background Recent studies have suggested that diabetes mellitus (DM) may cause left ventricular (LV) dysfunction directly resulting in increased susceptibility to heart failure. Using pinhole collimators and advances in data processing, gated SPECT was recently adapted to image the rat heart. The present study was aimed to assess this new imaging technique for quantifying LV function and remodeling from the Streptozotocin (STZ) rat model compared to controls. Methods Twenty one rats were randomly assigned to control or diabetic group. Six months after the induction of diabetes by STZ, Pinhole 99 m Tc-sestamibi gated SPECT was performed for determining rat LV volumes and function. Post-mortem histopathologic analysis was performed to evaluate the determinant of LV remodeling in this model. Results After six months, the normalized to body weight LV End-systolic volume was significantly different in diabetic rats compared to controls (0.46 ± 0.02 vs 0.33 ± 0.03 μL/g; p = 0.01). The normalized LV End-diastolic volume was also different in both groups (1.51 ± 0.03 vs 0.88 ± 0.05 μL/g; p = 0.001) and the normalized stroke volume was significantly higher in STZ-rats (1.05 ± 0.02 vs 0.54 ± 0.06 μL/g; p = 0.001). The muscular fibers were thinner at histology in the diabetic rats (0.44 ± 0.07 vs 0.32 ± 0.06 AU; p = 0.01). Conclusion Pinhole 99 m Tc-sestamibi gated SPECT can successfully be applied for the evaluation of cardiac function and remodeling in STZ-induced diabetic rats. In this model, LV volumes were significantly changed compared to a control population, leading to a LV dysfunction. These findings were consistent with the histopathological abnormalities. Finally, these data further suggest the presence of diabetes cardiomyopathy. PMID:17937784

  3. Regular Football Practice Improves Autonomic Cardiac Function in Male Children

    PubMed Central

    Fernandes, Luis; Oliveira, Jose; Soares-Miranda, Luisa; Rebelo, Antonio; Brito, Joao

    2015-01-01

    Background: The role of the autonomic nervous system (ANS) in the cardiovascular regulation is of primal importance. Since it has been associated with adverse conditions such as cardiac arrhythmias, sudden death, sleep disorders, hypertension and obesity. Objectives: The present study aimed to investigate the impact of recreational football practice on the autonomic cardiac function of male children, as measured by heart rate variability. Patients and Methods: Forty-seven male children aged 9 - 12 years were selected according to their engagement with football oriented practice outside school context. The children were divided into a football group (FG; n = 22) and a control group (CG; n = 25). The FG had regular football practices, with 2 weekly training sessions and occasional weekend matches. The CG was not engaged with any physical activity other than complementary school-based physical education classes. Data from physical activity, physical fitness, and heart rate variability measured in time and frequency domains were obtained. Results: The anthropometric and body composition characteristics were similar in both groups (P > 0.05). The groups were also similar in time spent daily on moderate-to-vigorous physical activities (FG vs. CG: 114 ± 64 vs. 87 ± 55 minutes; P > 0.05). However, the FG performed better (P < 0.05) in Yo-Yo intermittent endurance test (1394 ± 558 vs. 778 ± 408 m) and 15-m sprint test (3.06 ± 0.17 vs. 3.20 ± 0.23 s). Also, the FG presented enhanced autonomic function. Significant differences were detected (P < 0.05) between groups for low frequency normalized units (38.0 ± 15.2 vs. 47.3 ± 14.2 n.u (normalized units)), high frequency normalized units (62.1 ± 15.2 vs. 52.8 ± 14.2 n.u.), and LF:HF ratio (0.7 ± 0.4 vs. 1.1 ± 0.6 ms2). Conclusions: Children engaged with regular football practice presented enhanced physical fitness and autonomic function, by increasing vagal tone at rest. PMID:26448848

  4. Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy.

    PubMed

    Hinze, Florian; Dieterich, Christoph; Radke, Michael H; Granzier, Henk; Gotthardt, Michael

    2016-12-01

    Impaired diastolic filling is a main contributor to heart failure with preserved ejection fraction (HFpEF), a syndrome with increasing prevalence and no treatment. Both collagen and the giant sarcomeric protein titin determine diastolic function. Since titin's elastic properties can be adjusted physiologically, we evaluated titin-based stiffness as a therapeutic target. We adjusted RBM20-dependent cardiac isoform expression in the titin N2B knockout mouse with increased ventricular stiffness. A ~50 % reduction of RBM20 activity does not only maintain cardiac filling in diastole but also ameliorates cardiac atrophy and thus improves cardiac function in the N2B-deficient heart. Reduced RBM20 activity partially normalized gene expression related to muscle development and fatty acid metabolism. The adaptation of cardiac growth was related to hypertrophy signaling via four-and-a-half lim-domain proteins (FHLs) that translate mechanical input into hypertrophy signals. We provide a novel link between cardiac isoform expression and trophic signaling via FHLs and suggest cardiac splicing as a therapeutic target in diastolic dysfunction. Increasing the length of titin isoforms improves ventricular filling in heart disease. FHL proteins are regulated via RBM20 and adapt cardiac growth. RBM20 is a therapeutic target in diastolic dysfunction.

  5. [Computer-aided Diagnosis and New Electronic Stethoscope].

    PubMed

    Huang, Mei; Liu, Hongying; Pi, Xitian; Ao, Yilu; Wang, Zi

    2017-05-30

    Auscultation is an important method in early-diagnosis of cardiovascular disease and respiratory system disease. This paper presents a computer-aided diagnosis of new electronic auscultation system. It has developed an electronic stethoscope based on condenser microphone and the relevant intelligent analysis software. It has implemented many functions that combined with Bluetooth, OLED, SD card storage technologies, such as real-time heart and lung sounds auscultation in three modes, recording and playback, auscultation volume control, wireless transmission. The intelligent analysis software based on PC computer utilizes C# programming language and adopts SQL Server as the background database. It has realized play and waveform display of the auscultation sound. By calculating the heart rate, extracting the characteristic parameters of T1, T2, T12, T11, it can analyze whether the heart sound is normal, and then generate diagnosis report. Finally the auscultation sound and diagnosis report can be sent to mailbox of other doctors, which can carry out remote diagnosis. The whole system has features of fully function, high portability, good user experience, and it is beneficial to promote the use of electronic stethoscope in the hospital, at the same time, the system can also be applied to auscultate teaching and other occasions.

  6. Effect of renal denervation on dynamic autoregulation of renal blood flow.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2004-06-01

    Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.

  7. Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model

    PubMed Central

    Kuai, Qiyuan; Wang, Chunyan; Wang, Yanbing; Li, Weijing; Zhang, Gongqing; Qiao, Zhixin; He, Min; Wang, Xuanlin; Wang, Yu; Jiang, Xingwei; Su, Lihua; He, Yuezhong; Ren, Suping; Yu, Qun

    2016-01-01

    A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting. PMID:27910887

  8. Cardiac and autonomic nerve function after reduced-intensity stem cell transplantation for hematologic malignancy in patients with pre-transplant cardiac dysfunction.

    PubMed

    Nakane, Takahiko; Nakamae, Hirohisa; Muro, Takashi; Yamagishi, Hiroyuki; Kobayashi, Yoshiki; Aimoto, Mizuki; Sakamoto, Erina; Terada, Yoshiki; Nakamae, Mika; Koh, Ki-Ryang; Yamane, Takahisa; Yoshiyama, Minoru; Hino, Masayuki

    2009-09-01

    Recent reports have shown that cardiomyopathy caused by hemochromatosis in severe aplastic anemia is reversible after reduced-intensity allogeneic stem-cell transplantation (RIST). We comprehensively evaluated cardiac and autonomic nerve function to determine whether cardiac dysfunction due to causes other than hemochromatosis is attenuated after RIST. In five patients with cardiac dysfunction before transplant, we analyzed the changes in cardiac and autonomic nerve function after transplant, using electrocardiography (ECG), echocardiography, radionuclide angiography (RNA), serum markers, and heart rate variability (HRV), before and up to 100 days after transplant. There was no significant improvement in cardiac function in any patient and no significant alteration in ECG, echocardiogram, RNA, or serum markers. However, on time-domain analysis of HRV, the SD of normal-to-normal RR intervals (SDNN) and the coefficient of variation of the RR interval (CVRR) decreased significantly 30 and 60 days after transplant (P = 0.04 and 0.01, respectively). Similarly, on frequency-domain analysis of HRV, low and high frequency power (LF and HF) significantly and temporarily decreased (P = 0.003 and 0.03, respectively). Notably, in one patient who had acute heart failure after transplantation, the values of SDNN, CVRR, r-MSSD, LF, and HF at 30 and 60 days after transplantation were the lowest of all the patients. In conclusion, this study suggests that (a) RIST is well-tolerated in patients with cardiac dysfunction, but we cannot expect improvement in cardiac dysfunction due to causes other than hemochromatosis; and (b) monitoring HRV may be useful in predicting cardiac events after RIST.

  9. Cardiac function in children with premature ventricular contractions: the effect of omega-3 polyunsaturated fatty acid supplementation.

    PubMed

    Oner, Taliha; Ozdemir, Rahmi; Doksöz, Onder; Genc, Dildar B; Guven, Baris; Demirpence, Savas; Yilmazer, Murat M; Yozgat, Yilmaz; Mese, Timur; Tavli, Vedide

    2018-07-01

    Premature ventricular contractions are accepted as benign in structurally normal hearts. However, reversible cardiomyopathy can sometimes develop. Omega-3 polyunsaturated fatty acids have anti-arrhythmic properties in animals and humans.AimWe evaluated left ventricular function in children with premature ventricular contractions with normal cardiac anatomy and assessed the impact of omega-3 fatty acid supplementation on left ventricular function in a prospective trial. A total of 25 patients with premature ventricular contraction, with more than 2% premature ventricular contractions on 24-hour Holter electrocardiography, and 30 healthy patients were included into study. All patients underwent electrocardiography, left ventricular M-mode echocardiography, and myocardial performance index testing. Patients with premature ventricular contraction were given omega-3 fatty acids at a dose of 1 g/day for 3 months, and control echocardiography and 24-hour Holter electrocardiography were performed. Neither placebo nor omega-3 fatty acids were given to the control group. Compared with the values of the control group, the patients with premature ventricular contraction had significantly lower fractional shortening. The myocardial performance index decreased markedly in the patient groups. The mean heart rate and mean premature ventricular contraction percentage of Group 2 significantly decreased in comparison with their baseline values after the omega-3 supplementation. In conclusion, premature ventricular contractions can lead to systolic cardiac dysfunction in children. Omega-3 supplementation may improve cardiac function in children with premature ventricular contractions. This is the first study conducted in children to investigate the possible role of omega-3 fatty acid supplementation on treatment of premature ventricular contractions.

  10. A Public University's Defense of Free Expression: The Issues and Events in the Staging of "The Normal Heart."

    ERIC Educational Resources Information Center

    Smith, Ralph R.; Moore, Dale

    In 1989, some Springfield, Missouri residents demanded cancellation of the Southwest Missouri State University (SMSU) theater department's production of Larry Kramer's play, "The Normal Heart," which they alleged to be obscene. Opponents purchased newspaper advertisements which charged that the publicly funded production promoted a…

  11. Influence of gestational age and time of day in baseline and heart rate variation of fetuses.

    PubMed

    Li, Guangfei; Zhang, Song; Yang, Lin; Li, Shufang; Wang, Yan; Hao, Dongmei; Yang, Yimin; Li, Xuwen; Zhang, Lei; Xu, Mingzhou

    2016-04-29

    Fetal electrocardiography (FECG) places electrodes on the maternal abdomen to convert the fetal electrocardiosignals into fetal heart rate (FHR), improving the accuracy and comfort of pregnant woman. At the same time, FECG simplifies the procedure of long term monitoring in the perinatal period. Investigating the influence of gestational age and time of day on FHR features to distinguish between non-stress test (NST) normal fetuses and NST suspicious fetuses. A novel method of FHR baseline estimation was presented; then baseline value and fetal heart rate variation (FHRV) were analyzed in the time domain using FHR signals recorded from 52 fetuses. Baseline values in 1:00, 2:00, 4:00, 5:00 and heart rate variation (HRV) distribution showed a significant difference (p< 0.05) between NST normal fetuses and NST suspicious fetuses. The results suggest that NST normal and suspicious fetuses had same outcome and different FHR features. Accurately distinguishing normal fetuses and suspicious fetuses is important for lowering the false positive rate and reducing unnecessary clinical intervention.

  12. High-Frequency Ultrasound for the Study of Early Mouse Embryonic Cardiovascular System.

    PubMed

    Greco, Adelaide; Coda, Anna Rita Daniela; Albanese, Sandra; Ragucci, Monica; Liuzzi, Raffaele; Auletta, Luigi; Gargiulo, Sara; Lamagna, Francesco; Salvatore, Marco; Mancini, Marcello

    2015-12-01

    An accurate diagnosis of congenital heart defects during fetal development is critical for interventional planning. Mice can be used to generate animal models with heart defects, and high-frequency ultrasound (HFUS) imaging enables in utero imaging of live mouse embryos. A wide range of physiological measurements is possible using Doppler-HFUS imaging; limitations of any single measurement warrant a multiparameter approach to characterize cardiovascular function. Doppler-HFUS was used to explore the embryonic (heart, aorta) and extraembryonic (umbilical blood flow) circulatory systems to create a database in normal mouse embryos between 9.5 and 16.5 days of gestation. Multivariate analyses were performed to explore correlations between gestational age and embryo echocardiographic parameters. Heart rate and peak velocity in the aorta were positively correlated with gestational time, whereas cardiac cycle length, isovolumetric relaxation time, myocardial performance index, and arterial deceleration time of the umbilical cord were negatively correlated with it. Doppler-HFUS facilitated detailed characterization of the embryonic mouse circulation and represents a useful tool for investigation of the early mouse embryonic cardiovascular system. © The Author(s) 2015.

  13. Plasma B-type natriuretic peptide concentration in beta-thalassaemia patients.

    PubMed

    Aessopos, Athanasios; Farmakis, Dimitrios; Polonifi, Aikaterini; Tsironi, Maria; Fragodimitri, Christina; Hatziliami, Antonia; Karagiorga, Markisia; Diamanti-Kandarakis, Evanthia

    2007-05-01

    Plasma B-type natriuretic peptide (BNP) concentration has significant diagnostic accuracy and prognostic value in various forms of heart disease. Whether BNP is also useful in the evaluation and management of thalassaemia heart disease remains to be determined. Eighty three thalassaemia major patients; 8 with acutely decompensated heart failure (New York Heart Association [NYHA] class III or IV, group A), 25 with NYHA class II symptoms and impaired systolic left ventricular function (ejection fraction<55% or fractional shortening<30%, group B) and 50 with normal systolic function (group C), as well as 50 healthy controls, were studied. Assessment included history, physical examination, Doppler echocardiography and plasma BNP determination. Mean BNP levels were 431+/-219 pg/mL (range, 283-890 pg/mL) in group A, 158+/-31 pg/mL in group B, 176+/-54 pg/mL in group C and 43+/-24 pg/mL in controls. BNP levels were significantly higher in group A (p<0.001), but did not differ between groups B and C. Moreover, BNP was not correlated with left ventricular end-diastolic diameter, left ventricular mass, right ventricular diameter index, Doppler diastolic indexes (except in group C), the mean 2-year serum ferritin concentration or the peak serum ferritin concentration in any of the three patient groups. A potential deficiency of BNP-related neurohormonal mechanisms may impair its clinical usefulness in thalassaemia major.

  14. Nitroxyl Improves Cellular Heart Function by Directly Enhancing Cardiac Sarcoplasmic Reticulum Ca2+ Cycling

    PubMed Central

    Tocchetti, Carlo G.; Wang, Wang; Froehlich, Jeffrey P.; Huke, Sabine; Aon, Miguel A.; Wilson, Gerald M.; Benedetto, Giulietta Di; O’Rourke, Brian; Gao, Wei Dong; Wink, David A.; Toscano, John P.; Zaccolo, Manuela; Bers, Donald M.; Valdivia, Hector H.; Cheng, Heping; Kass, David A.; Paolocci, Nazareno

    2009-01-01

    Heart failure remains a leading cause of morbidity and mortality worldwide. Although depressed pump function is common, development of effective therapies to stimulate contraction has proven difficult. This is thought to be attributable to their frequent reliance on cAMP stimulation to increase activator Ca2+. A potential alternative is nitroxyl (HNO), the 1-electron reduction product of nitric oxide (NO) that improves contraction and relaxation in normal and failing hearts in vivo. The mechanism for myocyte effects remains unknown. Here, we show that this activity results from a direct interaction of HNO with the sarcoplasmic reticulum Ca2+ pump and the ryanodine receptor 2, leading to increased Ca2+ uptake and release from the sarcoplasmic reticulum. HNO increases the open probability of isolated ryanodine-sensitive Ca2+-release channels and accelerates Ca2+ reuptake into isolated sarcoplasmic reticulum by stimulating ATP-dependent Ca2+ transport. Contraction improves with no net rise in diastolic calcium. These changes are not induced by NO, are fully reversible by addition of reducing agents (redox sensitive), and independent of both cAMP/protein kinase A and cGMP/protein kinase G signaling. Rather, the data support HNO/thiolate interactions that enhance the activity of intracellular Ca2+ cycling proteins. These findings suggest HNO donors are attractive candidates for the pharmacological treatment of heart failure. PMID:17138943

  15. Methylene blue improves mitochondrial respiration and decreases oxidative stress in a substrate-dependent manner in diabetic rat hearts.

    PubMed

    Duicu, Oana M; Privistirescu, Andreea; Wolf, Adrian; Petruş, Alexandra; Dănilă, Maria D; Raţiu, Corina D; Muntean, Danina M; Sturza, Adrian

    2017-11-01

    Diabetic cardiomyopathy has been systematically associated with compromised mitochondrial energetics and increased generation of reactive oxygen species (ROS) that underlie its progression to heart failure. Methylene blue is a redox drug with reported protective effects mainly on brain mitochondria. The purpose of the present study was to characterize the effects of acute administration of methylene blue on mitochondrial respiration, H 2 O 2 production, and calcium sensitivity in rat heart mitochondria isolated from healthy and 2 months (streptozotocin-induced) diabetic rats. Mitochondrial respiratory function was assessed by high-resolution respirometry. H 2 O 2 production and calcium retention capacity were measured spectrofluorimetrically. The addition of methylene blue (0.1 μmol·L -1 ) elicited an increase in oxygen consumption of mitochondria energized with complex I and II substrates in both normal and diseased mitochondria. Interestingly, methylene blue elicited a significant increase in H 2 O 2 release in the presence of complex I substrates (glutamate and malate), but had an opposite effect in mitochondria energized with complex II substrate (succinate). No changes in the calcium retention capacity of healthy or diabetic mitochondria were found in the presence of methylene blue. In conclusion, in cardiac mitochondria isolated from diabetic and nondiabetic rat hearts, methylene blue improved respiratory function and elicited a dichotomic, substrate-dependent effect on ROS production.

  16. Mechanosensitive Gene Regulation by Myocardin-Related Transcription Factors is Required for Cardiomyocyte Integrity in Load-Induced Ventricular Hypertrophy.

    PubMed

    Trembley, Michael A; Quijada, Pearl; Agullo-Pascual, Esperanza; Tylock, Kevin M; Colpan, Mert; Dirkx, Ronald A; Myers, Jason R; Mickelsen, Deanne M; de Mesy Bentley, Karen; Rothenberg, Eli; Moravec, Christine S; Alexis, Jeffrey D; Gregorio, Carol C; Dirksen, Robert T; Delmar, Mario; Small, Eric M

    2018-05-01

    Background -Hypertrophic cardiomyocyte (CM) growth and dysfunction accompanies various forms of heart disease. The mechanisms responsible for transcriptional changes that impact cardiac physiology and the transition to heart failure (HF) are not well understood. The intercalated disc (ID) is a specialized intercellular junction coupling CM electrical activity and force transmission, and is gaining attention as a mechanosensitive signaling hub and hotspot for causative mutations in cardiomyopathy. Methods -Transmission electron microscopy, confocal microscopy, and single-molecule localization microscopy (SMLM) were used to examine changes in ID structure and protein localization in the murine and human heart. We conducted detailed cardiac functional assessment and transcriptional profiling of mice lacking myocardin-related transcription factor-A (MRTF-A) and -B specifically in adult CMs to evaluate the role of mechanosensitive regulation of gene expression in load-induced ventricular remodeling. Results -We found that MRTFs localize to IDs in the healthy human heart and accumulate in the nucleus in heart failure (HF). Although mice lacking MRTFs in adult CMs display normal cardiac physiology at baseline, pressure overload leads to rapid HF characterized by sarcomere disarray, ID disintegration, chamber dilation and wall thinning, cardiac functional decline, and partially penetrant acute lethality. Transcriptional profiling reveals a program of actin cytoskeleton and CM adhesion genes driven by MRTFs during pressure overload. Indeed, conspicuous remodeling of gap junctions at IDs identified by SMLM may partially stem from a reduction in Mapre1 expression, which we show is a direct mechanosensitive MRTF target. Conclusions -Taken together, our study describes a novel paradigm in which MRTFs control an acute mechanosensitive signaling circuit that coordinates crosstalk between the actin and microtubule cytoskeleton and maintains ID integrity and CM homeostasis in heart disease.

  17. SU-E-T-572: Normal Lung Tissue Sparing in Radiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, C; Ju, S; Ahn, Y

    2015-06-15

    Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directionalmore » block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.« less

  18. Masking of the circadian rhythms of heart rate and core temperature by the rest-activity cycle in man

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Connell, Linda J.; Graeber, R. Curtis

    1986-01-01

    Experiments were conducted to estimate the magnitude of the masking effect produced in humans by alternate periods of physical activity and rest or sleep on the circadian rhythms of heart rate and core temperature. The heart rate, rectal temperature, and nondominant wrist activity were monitored in 12 male subjects during 6 days of normal routine at home and during 6 days of controlled bed-rest regimen. The comparisons of averaged waveforms for the activity, heart rate, and temperature indicated that about 45 percent of the range of the circadian heart rate rhythm during normal routine and about 14 percent of the range of the circadian temperature rhythm were attributable to the effects of activity. The smaller effect of activity on the temperature rhythm may be partially attributable to the fact that core temperature is being more rigorously conserved than heart rate, at least during moderate exercise.

  19. EMPOWERING ADULT STEM CELLS FOR MYOCARDIAL REGENERATION

    PubMed Central

    Mohsin, Sadia; Siddiqi, Sailay; Collins, Brett; Sussman, Mark A.

    2012-01-01

    Treatment strategies for heart failure remain a high priority for ongoing research due to the profound unmet need in clinical disease coupled with lack of significant translational progress. The underlying issue is the same whether the cause is acute damage, chronic stress from disease, or aging: progressive loss of functional cardiomyocytes and diminished hemodynamic output. To stave off cardiomyocyte losses, a number of strategic approaches have been embraced in recent years involving both molecular and cellular approaches to augment myocardial structure and performance. Resultant excitement surrounding regenerative medicine in the heart has been tempered by realizations that reparative processes in the heart are insufficient to restore damaged myocardium to normal functional capacity and that cellular cardiomyoplasty is hampered by poor survival, proliferation, engraftment and differentiation of the donated population. To overcome these limitations, a combination of molecular and cellular approaches needs to be adopted involving use of genetic engineering to enhance resistance to cell death and increase regenerative capacity. This review will highlight biological properties of approached to potentiate stem cell-mediated regeneration to promote enhanced myocardial regeneration, persistence of donated cells, and long lasting tissue repair. Optimizing cell delivery and harnessing the power of survival signaling cascades for ex vivo genetic modification of stem cells prior to reintroduction into the patient will be critical to enhance the efficacy of cellular cardiomyoplasty. Once this goal is achieved, then cell-based therapy has great promise for treatment of heart failure to combat the loss of cardiac structure and function associated with acute damage, chronic disease or aging. PMID:22158649

  20. Effects of depth and chest volume on cardiac function during breath-hold diving.

    PubMed

    Marabotti, Claudio; Scalzini, Alessandro; Cialoni, Danilo; Passera, Mirko; Ripoli, Andrea; L'Abbate, Antonio; Bedini, Remo

    2009-07-01

    Cardiac response to breath-hold diving in human beings is primarily characterized by the reduction of both heart rate and stroke volume. By underwater Doppler-echocardiography we observed a "restrictive/constrictive" left ventricular filling pattern compatible with the idea of chest squeeze and heart compression during diving. We hypothesized that underwater re-expansion of the chest would release heart constriction and normalize cardiac function. To this aim, 10 healthy male subjects (age 34.2 +/- 10.4) were evaluated by Doppler-echocardiography during breath-hold immersion at a depth of 10 m, before and after a single maximal inspiration from a SCUBA device. During the same session, all subjects were also studied at surface (full-body immersion) and at 5-m depth in order to better characterize the relationship of echo-Doppler pattern with depth. In comparison to surface immersion, 5-m deep diving was sufficient to reduce cardiac output (P = 0.042) and increase transmitral E-peak velocity (P < 0.001). These changes remained unaltered at a 10-m depth. Chest expansion at 10 m decreased left ventricular end-systolic volume (P = 0.024) and increased left ventricular stroke volume (P = 0.024). In addition, it decreased transmitral E-peak velocity (P = 0.012) and increased deceleration time of E-peak (P = 0.021). In conclusion the diving response, already evident during shallow diving (5 m) did not progress during deeper dives (10 m). The rapid improvement in systolic and diastolic function observed after lung volume expansion is congruous with the idea of a constrictive effect on the heart exerted by chest squeeze.

  1. An Exploratory Study of Autonomic Function Investigations in Hemophiliacs on Homoeopathy Medications Using Impedance Plethysmography.

    PubMed

    Kundu, Tapas K; Barde, Pradip B; Jindal, Ghanshyam D; Motiwala, Farooq F

    2017-10-01

    Status of autonomic homoeostasis in hemostasic disturbances due to hemophilia needs to be studied. To compare autonomic nervous system markers measured by heart rate variability (HRV) and blood flow variability (BFV) in hemophiliacs and healthy age-matched control population using medical analyzer system. Cross-sectional study. Motiwala Homoeopathy Medical College, and Hemophilia Clinics, Nashik. Eighty subjects. Nil. Autonomic function markers for HRV and BFV. Among 80 subjects, BFV time domain measure, root mean square of successive NN (normal-to-normal) interval differences (RMSSD), was significantly higher among hemophiliacs than nonhemophiliacs. Frequency domain analysis parameter, low frequency for both HRV and BFV was significantly higher among hemophiliacs as compared with nonhemophiliacs. Hemophiliacs were shown to have higher autonomic activity as compared with healthy controls. Homoeopathic medicines used as an adjunct was associated with decrease in parasympathetic modulations.

  2. Defining the molecular signatures of human right heart failure.

    PubMed

    Williams, Jordan L; Cavus, Omer; Loccoh, Emefah C; Adelman, Sara; Daugherty, John C; Smith, Sakima A; Canan, Benjamin; Janssen, Paul M L; Koenig, Sara; Kline, Crystal F; Mohler, Peter J; Bradley, Elisa A

    2018-03-01

    Right ventricular failure (RVF) varies significantly from the more common left ventricular failure (LVF). This study was undertaken to determine potential molecular pathways that are important in human right ventricular (RV) function and may mediate RVF. We analyzed mRNA of human non-failing LV and RV samples and RVF samples from patients with pulmonary arterial hypertension (PAH), and post-LVAD implantation. We then performed transcript analysis to determine differential expression of genes in the human heart samples. Immunoblot quantification was performed followed by analysis of non-failing and failing phenotypes. Inflammatory pathways were more commonly dysregulated in RV tissue (both non-failing and failing phenotypes). In non-failing human RV tissue we found important differences in expression of FIGF, TRAPPAC, and CTGF suggesting that regulation of normal RV and LV function are not the same. In failing RV tissue, FBN2, CTGF, SMOC2, and TRAPP6AC were differentially expressed, and are potential targets for further study. This work provides some of the first analyses of the molecular heterogeneity between human RV and LV tissue, as well as key differences in human disease (RVF secondary to pulmonary hypertension and LVAD mediated RVF). Our transcriptional data indicated that inflammatory pathways may be more important in RV tissue, and changes in FIGF and CTGF supported this hypothesis. In PAH RV failure samples, upregulation of FBN2 and CTGF further reinforced the potential significance that altered remodeling and inflammation play in normal RV function and failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Functional Task Test: 2. Spaceflight-Induced Cardiovascular Change and Recovery During NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Phillips, Tiffany; Arzeno, Natalia M.; Stenger, Michael; Lee, Stuart M. C.; Bloomberg, Jacob J.; Platts, Steven H.

    2011-01-01

    The overall objective of the functional task test (FTT) is to correlate spaceflight-induced physiological adaptations with changes in performance of high priority exploration mission-critical tasks. This presentation will focus on the recovery from fall/stand test (RFST), which measures the cardiovascular response to the transition from the prone posture (simulated fall) to standing in normal gravity, as well as heart rate (HR) during 11 functional tasks. As such, this test describes some aspects of spaceflight-induced cardiovascular deconditioning and the course of recovery in Space Shuttle and International Space Station (ISS) astronauts. The sensorimotor and neuromuscular components of the FTT are described in two separate abstracts: Functional Task Test 1 and 3.

  4. A novel two-step procedure to expand Sca-1+ cells clonally

    PubMed Central

    Tang, Yao Liang; Shen, Leping; Qian, Keping; Phillips, M. Ian

    2007-01-01

    Resident cardiac stem cells (CSCs) are characterized by their capacity to self-renew in culture, and are multi-potent for forming normal cell types in hearts. CSCs were originally isolated directly from enzymatically digested hearts using stem cell markers. However, long exposure to enzymatic digestion can affect the integrity of stem cell markers on the cell surface, and also compromise stem cell function. Alternatively resident CSCs can migrate from tissue explant and form cardiospheres in culture. However, fibroblast contamination can easily occur during CSC culture. To avoid these problems, we developed a two-step procedure by growing the cells before selecting the Sca1+ cells and culturing in cardiac fibroblast conditioned medium, they avoid fibroblast overgrowth. PMID:17577582

  5. Successful bridge to transplant in a highly sensitized patient with a complicated pump pocket infection.

    PubMed

    McGee, Edwin C; Cotts, William; Tambur, Anat R; Friedewald, John; Kim, John; O'Connell, John; Wallace, Suzanne; McCarthy, Patrick M

    2008-05-01

    A 32-year-old man with doxorubicin-induced cardiomyopathy presented in cardiogenic shock. He underwent placement of a Novacor (WorldHeart, Inc., Oakland, CA) left ventricular assist device as a bridge to transplant. Post-operatively he developed a pump pocket infection and dehiscence of his abdominal wound with exposure of the pump. This was treated with irrigation and drainage, antibiotic bead placement and flap closure. Both pre- and post-operative panel-reactive antibodies (PRA) were elevated. He underwent desensitization with intravenous immune globulin (IVIg), rituximab, mycophenolate mofetil and pre-operative plasmapheresis. A donor heart was identified and found to be acceptable by virtual crossmatch. He was transplanted and is doing well with normal graft function at >1 year post-operatively.

  6. Endocrine and cardiac paracrine actions of insulin-like growth factor-I (IGF-I) during thyroid dysfunction in the rat: is IGF-I implicated in the mechanism of heart weight/body weight change during abnormal thyroid function?

    PubMed

    Thomas, M R; Miell, J P; Taylor, A M; Ross, R J; Arnao, J R; Jewitt, D E; McGregor, A M

    1993-06-01

    Thyroid hormones are essential for the normal growth and development of many tissues. In the rat, hypothyroidism is associated with growth impairment, and hyperthyroidism with the development of a hypercatabolic state and skeletal muscle wasting but, paradoxically, cardiac hypertrophy. The mechanism by which thyroid hormone produces cardiac hypertrophy and myosin isoenzyme changes remains unclear. The role of IGF-I, an anabolic hormone with both paracrine and endocrine actions, in producing cardiac hypertrophy was investigated during this study in hyperthyroid, hypothyroid and control rats. A treated hypothyroid group was also included in order to assess the effect of acute normalization of thyroid function. Body weight was significantly lower in the hyperthyroid (mean +/- S.E.M.; 535.5 +/- 24.9 g, P < 0.05), hypothyroid (245.3 +/- 9.8 g, P < 0.001) and treated hypothyroid (265.3 +/- 9.8 g, P < 0.001) animals when compared with controls (618.5 +/- 28.6 g). Heart weight/body weight ratios were, however, significantly increased in the hyperthyroid (2.74 +/- 0.11 x 10(-3), P < 0.01) and treated hypothyroid (2.87 +/- 0.07 x 10(-3), P < 0.001) animals when compared with controls (2.26 +/- 0.03 x 10(-3). Serum IGF-I concentrations were similar in the control and hyperthyroid rats (0.91 +/- 0.07 vs 0.78 +/- 0.04 U/ml, P = 0.26), but bioactivity was reduced by 70% in hyperthyroid serum, suggesting a circulating inhibitor of IGF. Serum IGF-I levels (0.12 +/- 0.03 U/ml, P < 0.001) and bioactivity (0.12 +/- 0.04 U/ml, P < 0.001) were significantly lower in the hypothyroid group. Liver IGF-I mRNA levels were not statistically different in the control and hyperthyroid animals, but were significantly reduced in the hypothyroid animals (P < 0.05 vs control). Heart IGF-I mRNA levels were similar in the control and hypothyroid rats, but were significantly increased in the hyperthyroid and treated hypothyroid animals (increased by 32% in hyperthyroidism, P < 0.05; increased by 57% in treated hypothyroidism, P < 0.01). Cardiac IGF-I was significantly elevated in hyperthyroidism (0.16 +/- 0.01 U/mg heart tissue, P < 0.01), was low in hypothyroidism (0.08 +/- 0.01 U/mg, P < 0.01) and was normalized in the treated hypothyroid group (0.11 +/- 0.01 U/mg vs control, 0.13 +/- 0.01 U/mg). Low body mass during both hypothyroidism and hyperthyroidism is therefore associated with reduced systemic IGF bioactivity. In hypothyroidism there is a primary defect in the endocrine function of IGF-I, while in hyperthyroidism serum IGF bioactivity is reduced in the presence of normal endocrine production of this anabolic hormone.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure

    NASA Astrophysics Data System (ADS)

    Bhaduri, Anirban; Bhaduri, Susmita; Ghosh, Dipak

    2017-09-01

    Study of RR interval time series for Congestive Heart Failure had been an area of study with different methods including non-linear methods. In this article the cardiac dynamics of heart beat are explored in the light of complex network analysis, viz. visibility graph method. Heart beat (RR Interval) time series data taken from Physionet database [46, 47] belonging to two groups of subjects, diseased (congestive heart failure) (29 in number) and normal (54 in number) are analyzed with the technique. The overall results show that a quantitative parameter can significantly differentiate between the diseased subjects and the normal subjects as well as different stages of the disease. Further, the data when split into periods of around 1 hour each and analyzed separately, also shows the same consistent differences. This quantitative parameter obtained using the visibility graph analysis thereby can be used as a potential bio-marker as well as a subsequent alarm generation mechanism for predicting the onset of Congestive Heart Failure.

  8. The gut hormone ghrelin partially reverses energy substrate metabolic alterations in the failing heart.

    PubMed

    Mitacchione, Gianfranco; Powers, Jeffrey C; Grifoni, Gino; Woitek, Felix; Lam, Amy; Ly, Lien; Settanni, Fabio; Makarewich, Catherine A; McCormick, Ryan; Trovato, Letizia; Houser, Steven R; Granata, Riccarda; Recchia, Fabio A

    2014-07-01

    The gut-derived hormone ghrelin, especially its acylated form, plays a major role in the regulation of systemic metabolism and exerts also relevant cardioprotective effects; hence, it has been proposed for the treatment of heart failure (HF). We tested the hypothesis that ghrelin can directly modulate cardiac energy substrate metabolism. We used chronically instrumented dogs, 8 with pacing-induced HF and 6 normal controls. Human des-acyl ghrelin [1.2 nmol/kg per hour] was infused intravenously for 15 minutes, followed by washout (rebaseline) and infusion of acyl ghrelin at the same dose. (3)H-oleate and (14)C-glucose were coinfused and arterial and coronary sinus blood sampled to measure cardiac free fatty acid and glucose oxidation and lactate uptake. As expected, cardiac substrate metabolism was profoundly altered in HF because baseline oxidation levels of free fatty acids and glucose were, respectively, >70% lower and >160% higher compared with control. Neither des-acyl ghrelin nor acyl ghrelin significantly affected function and metabolism in normal hearts. However, in HF, des-acyl and acyl ghrelin enhanced myocardial oxygen consumption by 10.2±3.5% and 9.9±3.7%, respectively (P<0.05), and cardiac mechanical efficiency was not significantly altered. This was associated, respectively, with a 41.3±6.7% and 32.5±10.9% increase in free fatty acid oxidation and a 31.3±9.2% and 41.4±8.9% decrease in glucose oxidation (all P<0.05). Acute increases in des-acyl or acyl ghrelin do not interfere with cardiac metabolism in normal dogs, whereas they enhance free fatty acid oxidation and reduce glucose oxidation in HF dogs, thus partially correcting metabolic alterations in HF. This novel mechanism might contribute to the cardioprotective effects of ghrelin in HF. © 2014 American Heart Association, Inc.

  9. Normal values for myocardial deformation within the right heart measured by feature-tracking cardiovascular magnetic resonance imaging.

    PubMed

    Liu, Boyang; Dardeer, Ahmed M; Moody, William E; Edwards, Nicola C; Hudsmith, Lucy E; Steeds, Richard P

    2018-02-01

    Reproducible and repeatable assessment of right heart function is vital for monitoring congenital and acquired heart disease. There is increasing evidence for the additional value of myocardial deformation (strain and strain rate) in determining prognosis. This study aims to determine the reproducibility of deformation analyses in the right heart using cardiovascular magnetic resonance feature tracking (FT-CMR); and to establish normal ranges within an adult population. A cohort of 100 healthy subjects containing 10 males and 10 females from each decade of life between the ages of 20 and 70 without known congenital or acquired cardiovascular disease, hypertension, diabetes, dyslipidaemia or renal, hepatic, haematologic and systemic inflammatory disorders underwent FT-CMR assessment of right ventricular (RV) and right atrial (RA) myocardial strain and strain rate. RV longitudinal strain (Ell) was -21.9±3.24% (FW+S Ell) and -24.2±3.59% (FW-Ell). Peak systolic strain rate (S') was -1.45±0.39s -1 (FW+S) and -1.54±0.41s -1 (FW). Early diastolic strain rate (E') was 1.04±0.26s -1 (FW+S) and 1.04±0.33s -1 (FW). Late diastolic strain rate (A') was 0.94±0.33s -1 (FW+S) and 1.08±0.33s -1 (FW). RA peak strain was -21.1±3.76%. The intra- and inter-observer ICC for RV Ell (FW+S) was 0.92 and 0.80 respectively, while for RA peak strain was 0.92 and 0.89 respectively. Normal values of RV & RA deformation for healthy individuals using FT-CMR are provided with good RV Ell and RA peak strain reproducibility. Strain rate suffered from sub-optimal reproducibility and may not be satisfactory for clinical use. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Does oxidative stress modulate left ventricular diastolic function in asymptomatic subjects with hereditary hemochromatosis?

    PubMed

    Shizukuda, Yukitaka; Bolan, Charles D; Tripodi, Dorothy J; Sachdev, Vandana; Nguyen, Tammy T; Botello, Gilberto; Yau, Yu-Ying; Sidenko, Stanislav; Inez, Ernst; Ali, Mir I; Waclawiw, Myron A; Leitman, Susan F; Rosing, Douglas R

    2009-11-01

    Little is known about the early mechanisms mediating left ventricular (LV) diastolic dysfunction in patients with hereditary hemochromatosis (HH). However, the increased oxidative stress related to iron overload may be involved in this process, and strain rate (SR), a sensitive echocardiography-derived measure of diastolic function, may detect such changes. we evaluated the relationship between left ventricular diastolic function measured with tissue Doppler SR and oxidative stress in asymptomatic HH subjects and control normal subjects. Ninety-four consecutive visits of 43 HH subjects, age 30-74 (50 +/- 10, mean +/- SD), and 37 consecutive visits of 21 normal volunteers, age 30-63 (48 +/- 8), were evaluated over a 3-year period. SR was obtained from the basal septum in apical four-chamber views. All patients had confirmed C282Y homozygosity, a documented history of iron overload, and were New York Heart Association functional class I. Normal volunteers lacked HFE gene mutations causing HH. In the HH subjects, the SR demonstrated moderate but significant correlations with biomarkers of oxidative stress; however, no correlations were noted in normal subjects. The biomarkers of iron overload per se did not show significant correlations with the SR. Although our study was limited by the relatively small subject number, these results suggest that a possible role of oxidative stress to affect LV diastolic function in asymptomatic HH subjects and SR imaging may be a sensitive measure to detect that effect.

  11. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes.

    PubMed

    Thaung, H P Aye; Baldi, J Chris; Wang, Heng-Yu; Hughes, Gillian; Cook, Rosalind F; Bussey, Carol T; Sheard, Phil W; Bahn, Andrew; Jones, Peter P; Schwenke, Daryl O; Lamberts, Regis R

    2015-08-01

    Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. The serine/threonine-protein kinase/endoribonuclease IRE1α protects the heart against pressure overload-induced heart failure.

    PubMed

    Steiger, DeAnna; Yokota, Tomohiro; Li, Jin; Ren, Shuxun; Minamisawa, Susumu; Wang, Yibin

    2018-05-16

    Heart failure is associated with induction of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The serine/threonine protein kinase/endoribonuclease IRE1α is a key protein in ER stress signal transduction. IRE1α activity can induce both protective UPR and apoptotic downstream signaling events, but the specific role for IRE1α activity in the heart is unknown. A major aim of this study was to characterize the specific contribution of IRE1α in cardiac physiology and pathogenesis. We used both cultured myocytes and a transgenic mouse line with inducible and cardiomyocyte-specific IRE1α overexpression as experimental models to achieve targeted IRE1α activation. IRE1α expression induced a potent but transient ER stress response in cardiomyocytes and did not cause significant effects in the intact heart under normal physiological condition. Furthermore, the IRE1α-activated transgenic heart responding to pressure overload exhibited preserved function and reduced fibrotic area, associated with increased adaptive UPR signaling and with blunted inflammatory and pathological gene expression. Therefore, we conclude that IRE1α induces transient ER stress signaling and confers a protective effect against pressure overload-induced pathological remodeling in the heart. To our knowledge, this report provides first direct evidence of a specific and protective role for IRE1α in the heart and reveals an interaction between ER stress signaling and inflammatory regulation in the pathologically stressed heart. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Physical Activity and Heart Rate Variability in Older Adults: The Cardiovascular Health Study

    PubMed Central

    Soares-Miranda, Luisa; Sattelmair, Jacob; Chaves, Paulo; Duncan, Glen; Siscovick, David S; Stein, Phyllis K; Mozaffarian, Dariush

    2014-01-01

    Background Cardiac mortality and electrophysiologic dysfunction both increase with age. Heart rate variability (HRV) provides indices of autonomic function and electrophysiology that are associated with cardiac risk. How habitual physical activity (PA) among older adults prospectively relates to HRV, including nonlinear indices of erratic sinus patterns, is not established. We hypothesized that increasing levels of both total leisure-time activity and walking would be prospectively associated with more favorable time-domain, frequency-domain, and nonlinear HRV measures in older adults. Methods and Results We evaluated serial longitudinal measures of both PA and 24-hour Holter HRV over 5 years among 985 older US adults in the community-based Cardiovascular Health Study. After multivariable adjustment, greater total leisure-time activity, walking distance, and walking pace were each prospectively associated with specific, more favorable HRV indices, including higher 24-hour standard-deviation-of-all-normal-to-normal-intervals (SDNN, p-trend=0.009, 0.02, 0.06, respectively) and ultra-low-frequency-power (p-trend=0.02, 0.008, 0.16, respectively). Greater walking pace was also associated with higher short-term-fractal-scaling-exponent (p-trend=0.003) and lower Poincare ratio (p-trend=0.02), markers of less erratic sinus patterns. Conclusions Greater total leisure-time activity, as well as walking alone, were prospectively associated with more favorable and specific indices of autonomic function in older adults, including several suggestive of more normal circadian fluctuations and less erratic sinoatrial firing. Our results suggest potential mechanisms that might contribute to lower cardiovascular mortality with habitual PA later in life. PMID:24799513

  14. Depression and reduced heart rate variability after cardiac surgery: the mediating role of emotion regulation.

    PubMed

    Patron, Elisabetta; Messerotti Benvenuti, Simone; Favretto, Giuseppe; Gasparotto, Renata; Palomba, Daniela

    2014-02-01

    Heart rate variability (HRV), as an index of autonomic nervous system (ANS) functioning, is reduced by depression after cardiac surgery, but the underlying mechanisms of this relationship are poorly understood. Poor emotion regulation as a core symptom of depression has also been associated with altered ANS functioning. The present study aimed to examine whether emotion dysregulation could be a mediator of the depression-reduced HRV relationship observed after cardiac surgery. Self-reported emotion regulation and four-minute HRV were measured in 25 depressed and 43 nondepressed patients after cardiac surgery. Mediation analysis was conducted to evaluate emotion regulation as a mediator of the depression-reduced HRV relationship. Compared to nondepressed patients, those with depression showed lower standard deviation of normal-to-normal (NN) intervals (p<.05), root mean square successive difference of NN intervals (p<.004), and number of interval differences of successive NN intervals greater than 50ms (NN50) (p<.05). Increased low frequency (LF) in normalized units (n.u.) and reduced high frequency (HF) n.u. were also found in depressed compared to nondepressed patients (p's<.01). Mediation analysis revealed that suppression of emotion-expressive behavior partially mediated the effect of depression on LF n.u. and HF n.u. Results confirmed previous findings showing that depression is associated with reduced HRV, especially a reduced vagal tone and a sympathovagal imbalance, after cardiac surgery. This study also provides preliminary evidence that increased trait levels of suppression of emotion-expressive behavior may mediate the depression-related sympathovagal imbalance after cardiac surgery. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. New Role for Interleukin-13 Receptor α1 in Myocardial Homeostasis and Heart Failure.

    PubMed

    Amit, Uri; Kain, David; Wagner, Allon; Sahu, Avinash; Nevo-Caspi, Yael; Gonen, Nir; Molotski, Natali; Konfino, Tal; Landa, Natalie; Naftali-Shani, Nili; Blum, Galia; Merquiol, Emmanuelle; Karo-Atar, Danielle; Kanfi, Yariv; Paret, Gidi; Munitz, Ariel; Cohen, Haim Y; Ruppin, Eytan; Hannenhalli, Sridhar; Leor, Jonathan

    2017-05-20

    The immune system plays a pivotal role in myocardial homeostasis and response to injury. Interleukins-4 and -13 are anti-inflammatory type-2 cytokines, signaling via the common interleukin-13 receptor α1 chain and the type-2 interleukin-4 receptor. The role of interleukin-13 receptor α1 in the heart is unknown. We analyzed myocardial samples from human donors (n=136) and patients with end-stage heart failure (n=177). We found that the interleukin-13 receptor α1 is present in the myocardium and, together with the complementary type-2 interleukin-4 receptor chain Il4ra , is significantly downregulated in the hearts of patients with heart failure. Next, we showed that Il13ra1 -deficient mice develop severe myocardial dysfunction and dyssynchrony compared to wild-type mice (left ventricular ejection fraction 29.7±9.9 versus 45.0±8.0; P =0.004, left ventricular end-diastolic diameter 4.2±0.2 versus 3.92±0.3; P =0.03). A bioinformatic analysis of mouse hearts indicated that interleukin-13 receptor α1 regulates critical pathways in the heart other than the immune system, such as extracellular matrix (normalized enrichment score=1.90; false discovery rate q=0.005) and glucose metabolism (normalized enrichment score=-2.36; false discovery rate q=0). Deficiency of Il13ra1 was associated with reduced collagen deposition under normal and pressure-overload conditions. The results of our studies in humans and mice indicate, for the first time, a role of interleukin-13 receptor α1 in myocardial homeostasis and heart failure and suggests a new therapeutic target to treat heart disease. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. Optimal Body Temperature in Transitional ELBW Infants Using Heart Rate and Temperature as Indicators

    PubMed Central

    Knobel, Robin B.; Holditch-Davis, Diane; Schwartz, Todd A.

    2013-01-01

    Extremely low birth weight (ELBW) infants are vulnerable to cold stress after birth. Therefore, caregivers need to control body temperature optimally to minimize energy expenditure. Objective We explored body temperature in relationship to heart rate in ELBW infants during their first 12 hours to help identify the ideal set point for incubator control of body temperature. Design Within subject, multiple-case design. Setting A tertiary NICU in North Carolina. Participants 10 infants, born less than 29 weeks gestation and weighing 400-1000 grams. Methods Heart rate and abdominal body temperature were measured at 1-minute intervals for 12 hours. Heart rates were considered normal if they were between the 25th and 75th percentile for each infant. Results Abdominal temperatures were low throughout the 12-hour study period (mean 35.17° C-36.68° C). Seven of ten infants had significant correlations between abdominal temperature and heart rate. Heart rates above the 75th percentile were associated with low and high abdominal temperatures; heart rates less than the 25th percentile were associated with very low abdominal temperatures. The extent to which abdominal temperature was abnormally low was related the extent to which the heart rate trended away from normal in six of the ten infants. Optimal temperature control point that maximized normal heart rate observations for each infant was between 36.8° C and 37° C. Conclusions Hypothermia was associated with abnormal heart rates in transitional ELBW infants. We suggest nurses set incubator servo between 36.8° C and 36.9° C to optimally control body temperature for ELBW infants. PMID:20409098

  17. Pleural effusions and diseases of the pleura.

    PubMed

    Noone, K E

    1985-09-01

    There are four factors that govern fluid movement to or from the pleural space: hydrostatic pressure, colloid osmotic pressure, filtration coefficient, and lymphatic function. When any of these factors are altered, fluid accumulates within the pleural space. Congestive heart failure, pancreatitis, neoplasia, hypoalbuminemia, and pulmonary thromboembolism can evoke pleural effusions by altering normal fluid transport mechanisms. This approach to pleural effusion helps to explain fluid accumulation. Chylothorax, hemothorax, and empyema are also covered in the article.

  18. Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function.

    PubMed

    Wang, Vicky Y; Lam, H I; Ennis, Daniel B; Cowan, Brett R; Young, Alistair A; Nash, Martyn P

    2009-10-01

    The majority of patients with clinically diagnosed heart failure have normal systolic pump function and are commonly categorized as suffering from diastolic heart failure. The left ventricle (LV) remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions, which in turn can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element (FE) model was customized to geometric data segmented from in vivo tagged magnetic resonance images (MRI) data and myofibre orientation derived from ex vivo diffusion tensor MRI (DTMRI) of a canine heart using nonlinear finite element fitting techniques. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion in each voxel of a DTMRI directly corresponds to the local myocardial fibre orientation. Due to differences in myocardial geometry between in vivo and ex vivo imaging, myofibre orientations were mapped into the geometric FE model using host mesh fitting (a free form deformation technique). Pressure recordings, temporally synchronized to the tagging data, were used as the loading constraints to simulate the LV deformation during diastole. Simulation of diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. Integrated physiological modelling of this kind will allow more insight into mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction under pathological conditions.

  19. Cardiac Fibroblast: The Renaissance Cell

    PubMed Central

    Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.

    2012-01-01

    The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782

  20. Cats with diabetes mellitus have diastolic dysfunction in the absence of structural heart disease.

    PubMed

    Pereira, N J; Novo Matos, J; Baron Toaldo, M; Bartoszuk, U; Summerfield, N; Riederer, A; Reusch, C; Glaus, T M

    2017-07-01

    Diabetes mellitus (DM) can result in cardiovascular dysfunction and heart failure characterized by diastolic dysfunction with or without the presence of systolic dysfunction in people and laboratory animals. The objective of this prospective study was to determine if cats with newly diagnosed DM had myocardial dysfunction and, if present, whether it would progress if appropriate antidiabetic therapy was commenced. Thirty-two diabetic cats were enrolled and received baseline echocardiographic examination; of these, 15 cats were re-examined after 6 months. Ten healthy age- and weight-matched cats served as controls. Diabetic cats at diagnosis showed decreased diastolic, but not systolic function, when compared to healthy controls, with lower mitral inflow E wave (E) and E/E' than controls. After 6 months, E and E/IVRT' decreased further in diabetic cats compared to the baseline evaluation. After excluding cats whose DM was in remission at 6 months, insulin-dependent diabetic cats had lower E, E/A and E' than controls. When classifying diastolic function according to E/A and E'/A', there was shift towards impaired relaxation patterns at 6 months. All insulin-dependent diabetic cats at 6 months had abnormal diastolic function. These results indicate that DM has similar effects on diastolic function in feline and human diabetics. The dysfunction seemed to progress rather than to normalize after 6 months, despite antidiabetic therapy. In cats with pre-existing heart disease, the development of DM could represent an important additional health risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top