Science.gov

Sample records for normal human heart

  1. General anesthesia suppresses normal heart rate variability in humans

    NASA Astrophysics Data System (ADS)

    Matchett, Gerald; Wood, Philip

    2014-06-01

    The human heart normally exhibits robust beat-to-beat heart rate variability (HRV). The loss of this variability is associated with pathology, including disease states such as congestive heart failure (CHF). The effect of general anesthesia on intrinsic HRV is unknown. In this prospective, observational study we enrolled 100 human subjects having elective major surgical procedures under general anesthesia. We recorded continuous heart rate data via continuous electrocardiogram before, during, and after anesthesia, and we assessed HRV of the R-R intervals. We assessed HRV using several common metrics including Detrended Fluctuation Analysis (DFA), Multifractal Analysis, and Multiscale Entropy Analysis. Each of these analyses was done in each of the four clinical phases for each study subject over the course of 24 h: Before anesthesia, during anesthesia, early recovery, and late recovery. On average, we observed a loss of variability on the aforementioned metrics that appeared to correspond to the state of general anesthesia. Following the conclusion of anesthesia, most study subjects appeared to regain their normal HRV, although this did not occur immediately. The resumption of normal HRV was especially delayed on DFA. Qualitatively, the reduction in HRV under anesthesia appears similar to the reduction in HRV observed in CHF. These observations will need to be validated in future studies, and the broader clinical implications of these observations, if any, are unknown.

  2. Mechanics of the normal heart.

    PubMed

    Tendulkar, Amod P; Harken, Alden H

    2006-01-01

    Even though studies on isolated papillary muscles and cardiomyocytes can be applied to the mechanics of a beating heart, it is not always easy for physicians to relate these findings to clinical medicine. Thus, it is important to extend the studies to intact heart either in simulations or in animal models and even better to validate the results with human subjects. Advances in engineering and computer technology have allowed us to bridge the gap between physiology and mechanics. Cardiomyocyte stress/strain relates to muscle energy expenditure, which dictates oxygen and substrate utilization. Appreciation of this sequential relationship by clinicians will facilitate the logical development and assessment of therapies. Theory of finite element analysis (FEA) can predict cardiac mechanics under normal and pathologic conditions. Imaging studies provide an avenue to relate these predictions indirectly to experimental studies. In this fashion, we can understand the mechanical basis for the micro- and macroanatomical twisting motion of the beating heart. The purposes of this manuscript are: (1) to examine the terms that are traditionally used to describe mechanical stresses and strain within the ventricle, (2) to explore the three-dimensional organization of cardiomyocytes that influences global ventricular function, (3) to apply mechanical measures to both single cardiomyofibrils and the intact ventricle (4) to evaluate mathematical and computer models used to characterize cardiac mechanics, and (5) to outline the clinical methods available to measure ventricular function and relate findings from FEA to pathologic conditions.

  3. Heterogeneity of Fractional Anisotropy and Mean Diffusivity Measurements by In Vivo Diffusion Tensor Imaging in Normal Human Hearts

    PubMed Central

    Ferreira, Pedro F.; Nielles-Vallespin, Sonia; Ismail, Tevfik; Kilner, Philip J.; Gatehouse, Peter D.; de Silva, Ranil; Prasad, Sanjay K.; Giannakidis, Archontis; Firmin, David N.; Pennell, Dudley J.

    2015-01-01

    Background Cardiac diffusion tensor imaging (cDTI) by cardiovascular magnetic resonance has the potential to assess microstructural changes through measures of fractional anisotropy (FA) and mean diffusivity (MD). However, normal variation in regional and transmural FA and MD is not well described. Methods Twenty normal subjects were scanned using an optimised cDTI sequence at 3T in systole. FA and MD were quantified in 3 transmural layers and 4 regional myocardial walls. Results FA was higher in the mesocardium (0.46 ±0.04) than the endocardium (0.40 ±0.04, p≤0.001) and epicardium (0.39 ±0.04, p≤0.001). On regional analysis, the FA in the septum was greater than the lateral wall (0.44 ±0.03 vs 0.40 ±0.05 p = 0.04). There was a transmural gradient in MD increasing towards the endocardium (epicardium 0.87 ±0.07 vs endocardium 0.91 ±0.08×10-3 mm2/s, p = 0.04). With the lateral wall (0.87 ± 0.08×10-3 mm2/s) as the reference, the MD was higher in the anterior wall (0.92 ±0.08×10-3 mm2/s, p = 0.016) and septum (0.92 ±0.07×10-3 mm2/s, p = 0.028). Transmurally the signal to noise ratio (SNR) was greatest in the mesocardium (14.5 ±2.5 vs endocardium 13.1 ±2.2, p<0.001; vs epicardium 12.0 ± 2.4, p<0.001) and regionally in the septum (16.0 ±3.4 vs lateral wall 11.5 ± 1.5, p<0.001). Transmural analysis suggested a relative reduction in the rate of change in helical angle (HA) within the mesocardium. Conclusions In vivo FA and MD measurements in normal human heart are heterogeneous, varying significantly transmurally and regionally. Contributors to this heterogeneity are many, complex and interactive, but include SNR, variations in cardiac microstructure, partial volume effects and strain. These data indicate that the potential clinical use of FA and MD would require measurement standardisation by myocardial region and layer, unless pathological changes substantially exceed the normal variation identified. PMID:26177211

  4. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments

    PubMed Central

    Genet, Martin; Lee, Lik Chuan; Nguyen, Rebecca; Haraldsson, Henrik; Acevedo-Bolton, Gabriel; Zhang, Zhihong; Ge, Liang; Ordovas, Karen; Kozerke, Sebastian

    2014-01-01

    Ventricular wall stress is believed to be responsible for many physical mechanisms taking place in the human heart, including ventricular remodeling, which is frequently associated with heart failure. Therefore, normalization of ventricular wall stress is the cornerstone of many existing and new treatments for heart failure. In this paper, we sought to construct reference maps of normal ventricular wall stress in humans that could be used as a target for in silico optimization studies of existing and potential new treatments for heart failure. To do so, we constructed personalized computational models of the left ventricles of five normal human subjects using magnetic resonance images and the finite-element method. These models were calibrated using left ventricular volume data extracted from magnetic resonance imaging (MRI) and validated through comparison with strain measurements from tagged MRI (950 ± 170 strain comparisons/subject). The calibrated passive material parameter values were C0 = 0.115 ± 0.008 kPa and B0 = 14.4 ± 3.18; the active material parameter value was Tmax = 143 ± 11.1 kPa. These values could serve as a reference for future construction of normal human left ventricular computational models. The differences between the predicted and the measured circumferential and longitudinal strains in each subject were 3.4 ± 6.3 and 0.5 ± 5.9%, respectively. The predicted end-diastolic and end-systolic myofiber stress fields for the five subjects were 2.21 ± 0.58 and 16.54 ± 4.73 kPa, respectively. Thus these stresses could serve as targets for in silico design of heart failure treatments. PMID:24876359

  5. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments.

    PubMed

    Genet, Martin; Lee, Lik Chuan; Nguyen, Rebecca; Haraldsson, Henrik; Acevedo-Bolton, Gabriel; Zhang, Zhihong; Ge, Liang; Ordovas, Karen; Kozerke, Sebastian; Guccione, Julius M

    2014-07-15

    Ventricular wall stress is believed to be responsible for many physical mechanisms taking place in the human heart, including ventricular remodeling, which is frequently associated with heart failure. Therefore, normalization of ventricular wall stress is the cornerstone of many existing and new treatments for heart failure. In this paper, we sought to construct reference maps of normal ventricular wall stress in humans that could be used as a target for in silico optimization studies of existing and potential new treatments for heart failure. To do so, we constructed personalized computational models of the left ventricles of five normal human subjects using magnetic resonance images and the finite-element method. These models were calibrated using left ventricular volume data extracted from magnetic resonance imaging (MRI) and validated through comparison with strain measurements from tagged MRI (950 ± 170 strain comparisons/subject). The calibrated passive material parameter values were C0 = 0.115 ± 0.008 kPa and B0 = 14.4 ± 3.18; the active material parameter value was Tmax = 143 ± 11.1 kPa. These values could serve as a reference for future construction of normal human left ventricular computational models. The differences between the predicted and the measured circumferential and longitudinal strains in each subject were 3.4 ± 6.3 and 0.5 ± 5.9%, respectively. The predicted end-diastolic and end-systolic myofiber stress fields for the five subjects were 2.21 ± 0.58 and 16.54 ± 4.73 kPa, respectively. Thus these stresses could serve as targets for in silico design of heart failure treatments.

  6. Reconstruction and Visualization of Fiber and Laminar Structure inthe Normal Human Heart from Ex Vivo DTMRI Data

    SciTech Connect

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-12-18

    Background - The human heart is composed of a helicalnetwork of muscle fibers. These fibers are organized to form sheets thatare separated by cleavage surfaces. This complex structure of fibers andsheets is responsible for the orthotropic mechanical properties ofcardiac muscle. The understanding of the configuration of the 3D fiberand sheet structure is important for modeling the mechanical andelectrical properties of the heart and changes in this configuration maybe of significant importance to understand the remodeling aftermyocardial infarction.Methods - Anisotropic least square filteringfollowed by fiber and sheet tracking techniques were applied to DiffusionTensor Magnetic Resonance Imaging (DTMRI) data of the excised humanheart. The fiber configuration was visualized by using thin tubes toincrease 3-dimensional visual perception of the complex structure. Thesheet structures were reconstructed from the DTMRI data, obtainingsurfaces that span the wall from the endo- to the epicardium. Allvisualizations were performed using the high-quality ray-tracing softwarePOV-Ray. Results - The fibers are shown to lie in sheets that haveconcave or convex transmural structure which correspond to histologicalstudies published in the literature. The fiber angles varied depending onthe position between the epi- and endocardium. The sheets had a complexstructure that depended on the location within the myocardium. In theapex region the sheets had more curvature. Conclusions - A high-qualityvisualization algorithm applied to demonstrated high quality DTMRI datais able to elicit the comprehension of the complex 3 dimensionalstructure of the fibers and sheets in the heart.

  7. Premature Ventricular Complexes in Apparently Normal Hearts.

    PubMed

    Luebbert, Jeffrey; Auberson, Denise; Marchlinski, Francis

    2016-09-01

    Premature ventricular complexes (PVCs) are consistently associated with worse prognosis and higher morbidity and mortality. This article reviews PVCs and their presentation in patients with an apparently normal heart. Patients with PVCs may be completely asymptomatic, whereas others may note severely disabling symptoms. Cardiomyopathy may occur with frequent PVCs. Diagnostic work-up is directed at obtaining 12-lead ECG to characterize QRS morphology, Holter monitor to assess frequency, and echo and advanced imaging to assess for early cardiomyopathy and exclude structural heart disease. Options for management include watchful waiting, medical therapy, or catheter ablation. Malignant variants of PVCs may induce ventricular fibrillation even in a normal heart. PMID:27521085

  8. Human heart by art.

    PubMed

    Tamir, Abraham

    2012-11-01

    Heart is of great importance in maintaining the life of the body. Enough to stop working for a few minutes to cause death, and hence the great importance in physiology, medicine, and research. This fact was already emphasized in the Bible in the Book of Proverbs, chapter 4 verse 23: "Keep your heart with all diligence, for out of it is the wellspring of life." Art was able to demonstrate the heart from various aspects; realistically, as done by Leonardo de Vinci who demonstrated the halves of the heart and its blood vessels. Symbolically, as a source of life, the heart was demonstrated by the artist Mrs. Erlondeiel, as a caricature by Salvador Dali, as an open heart by Sawaya, etc. Finally, it should be emphasized that different demonstrations of the human heart by many artworks make this most important organ of our body (that cannot be seen from outside) more familiar and clearer to us. And this is the purpose of this article-to demonstrate the heart through a large number of artworks of different kinds.

  9. Robert Feulgen Prize Lecture. Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease.

    PubMed

    Green, C R; Severs, N J

    1993-02-01

    In the heart, individual cardiac muscle cells are linked by gap junctions. These junctions form low resistance pathways along which the electrical impulse flows rapidly and repeatedly between all the cells of the myocardium, ensuring their synchronous contraction. To obtain probes for mapping the distribution of gap junctions in cardiac tissue, polyclonal antisera were raised to three synthetic peptides, each matching different cytoplasmically exposed portions of the sequence of connexin43, the major gap-junctional protein reported in the heart. The specificity of each antiserum for the peptide to which it was raised was established by dot blotting. New methods were developed for isolating enriched fractions of gap junctions from whole heart and from dissociated adult myocytes, in which detergent-treatment and raising the temperature (potentially damaging steps in previously described techniques) are avoided. Analysis of these fractions by SDS-polyacrylamide gel electrophoresis revealed major bands at 43 kDa (matching the molecular mass of connexin43) and at 70 kDa. Western blot experiments using our antisera indicated that both the 43-kDa and the 70-kDa bands represent cardiac gap-junctional proteins. Pre-embedding immunogold labelling of isolated gap junctions and post-embedding immunogold labelling of Lowicryl-embedded whole tissue demonstrated the specific binding of the antibodies to ultrastructurally defined gap junctions. One antiserum (raised to residues 131-142) was found to be particularly effective for cytochemical labelling. Using this antiserum for immunofluorescence labelling in combination with confocal scanning laser microscopy enabled highly sensitive detection and three-dimensional mapping of gap junctions through thick slices of cardiac tissue. By means of the serial optical sectioning ability of the confocal microscope, images of the entire gap junction population of complete en face-viewed disks were reconstructed. These reconstructions reveal

  10. Robert Feulgen Prize Lecture. Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease.

    PubMed

    Green, C R; Severs, N J

    1993-02-01

    In the heart, individual cardiac muscle cells are linked by gap junctions. These junctions form low resistance pathways along which the electrical impulse flows rapidly and repeatedly between all the cells of the myocardium, ensuring their synchronous contraction. To obtain probes for mapping the distribution of gap junctions in cardiac tissue, polyclonal antisera were raised to three synthetic peptides, each matching different cytoplasmically exposed portions of the sequence of connexin43, the major gap-junctional protein reported in the heart. The specificity of each antiserum for the peptide to which it was raised was established by dot blotting. New methods were developed for isolating enriched fractions of gap junctions from whole heart and from dissociated adult myocytes, in which detergent-treatment and raising the temperature (potentially damaging steps in previously described techniques) are avoided. Analysis of these fractions by SDS-polyacrylamide gel electrophoresis revealed major bands at 43 kDa (matching the molecular mass of connexin43) and at 70 kDa. Western blot experiments using our antisera indicated that both the 43-kDa and the 70-kDa bands represent cardiac gap-junctional proteins. Pre-embedding immunogold labelling of isolated gap junctions and post-embedding immunogold labelling of Lowicryl-embedded whole tissue demonstrated the specific binding of the antibodies to ultrastructurally defined gap junctions. One antiserum (raised to residues 131-142) was found to be particularly effective for cytochemical labelling. Using this antiserum for immunofluorescence labelling in combination with confocal scanning laser microscopy enabled highly sensitive detection and three-dimensional mapping of gap junctions through thick slices of cardiac tissue. By means of the serial optical sectioning ability of the confocal microscope, images of the entire gap junction population of complete en face-viewed disks were reconstructed. These reconstructions reveal

  11. Correcting human heart 31P NMR spectra for partial saturation. Evidence that saturation factors for PCr/ATP are homogeneous in normal and disease states

    NASA Astrophysics Data System (ADS)

    Bottomley, Paul A.; Hardy, Christopher J.; Weiss, Robert G.

    Heart PCr/ATP ratios measured from spatially localized 31P NMR spectra can be corrected for partial saturation effects using saturation factors derived from unlocalized chest surface-coil spectra acquired at the heart rate and approximate Ernst angle for phosphor creatine (PCr) and again under fully relaxed conditions during each 31P exam. To validate this approach in studies of normal and disease states where the possibility of heterogeneity in metabolite T1 values between both chest muscle and heart and normal and disease states exists, the properties of saturation factors for metabolite ratios were investigated theoretically under conditions applicable in typical cardiac spectroscopy exams and empirically using data from 82 cardiac 31P exams in six study groups comprising normal controls ( n = 19) and patients with dilated ( n = 20) and hypertrophic ( n = 5) cardiomyopathy, coronary artery disease ( n = 16), heart transplants ( n = 19), and valvular heart disease ( n = 3). When TR ≪ T1,(PCr), with T1(PCr) ⩾ T1(ATP), the saturation factor for PCr/ATP lies in the range 1.5 ± 0.5, regardless of the T1 values. The precise value depends on the ratio of metabolite T1 values rather than their absolute values and is insensitive to modest changes in TR. Published data suggest that the metabolite T1 ratio is the same in heart and muscle. Our empirical data reveal that the saturation factors do not vary significantly with disease state, nor with the relative fractions of muscle and heart contributing to the chest surface-coil spectra. Also, the corrected myocardial PCr/ATP ratios in each normal or disease state bear no correlation with the corresponding saturation factors nor the fraction of muscle in the unlocalized chest spectra. However, application of the saturation correction (mean value, 1.36 ± 0.03 SE) significantly reduced scatter in myocardial PCr/ATP data by 14 ± 11% (SD) ( p ⩽ 0.05). The findings suggest that the relative T1 values of PCr and ATP are

  12. Generating Purkinje networks in the human heart.

    PubMed

    Sahli Costabal, Francisco; Hurtado, Daniel E; Kuhl, Ellen

    2016-08-16

    The Purkinje network is an integral part of the excitation system in the human heart. Yet, to date, there is no in vivo imaging technique to accurately reconstruct its geometry and structure. Computational modeling of the Purkinje network is increasingly recognized as an alternative strategy to visualize, simulate, and understand the role of the Purkinje system. However, most computational models either have to be generated manually, or fail to smoothly cover the irregular surfaces inside the left and right ventricles. Here we present a new algorithm to reliably create robust Purkinje networks within the human heart. We made the source code of this algorithm freely available online. Using Monte Carlo simulations, we demonstrate that the fractal tree algorithm with our new projection method generates denser and more compact Purkinje networks than previous approaches on irregular surfaces. Under similar conditions, our algorithm generates a network with 1219±61 branches, three times more than a conventional algorithm with 419±107 branches. With a coverage of 11±3mm, the surface density of our new Purkije network is twice as dense as the conventional network with 22±7mm. To demonstrate the importance of a dense Purkinje network in cardiac electrophysiology, we simulated three cases of excitation: with our new Purkinje network, with left-sided Purkinje network, and without Purkinje network. Simulations with our new Purkinje network predicted more realistic activation sequences and activation times than simulations without. Six-lead electrocardiograms of the three case studies agreed with the clinical electrocardiograms under physiological conditions, under pathological conditions of right bundle branch block, and under pathological conditions of trifascicular block. Taken together, our results underpin the importance of the Purkinje network in realistic human heart simulations. Human heart modeling has the potential to support the design of personalized strategies

  13. Generating Purkinje networks in the human heart.

    PubMed

    Sahli Costabal, Francisco; Hurtado, Daniel E; Kuhl, Ellen

    2016-08-16

    The Purkinje network is an integral part of the excitation system in the human heart. Yet, to date, there is no in vivo imaging technique to accurately reconstruct its geometry and structure. Computational modeling of the Purkinje network is increasingly recognized as an alternative strategy to visualize, simulate, and understand the role of the Purkinje system. However, most computational models either have to be generated manually, or fail to smoothly cover the irregular surfaces inside the left and right ventricles. Here we present a new algorithm to reliably create robust Purkinje networks within the human heart. We made the source code of this algorithm freely available online. Using Monte Carlo simulations, we demonstrate that the fractal tree algorithm with our new projection method generates denser and more compact Purkinje networks than previous approaches on irregular surfaces. Under similar conditions, our algorithm generates a network with 1219±61 branches, three times more than a conventional algorithm with 419±107 branches. With a coverage of 11±3mm, the surface density of our new Purkije network is twice as dense as the conventional network with 22±7mm. To demonstrate the importance of a dense Purkinje network in cardiac electrophysiology, we simulated three cases of excitation: with our new Purkinje network, with left-sided Purkinje network, and without Purkinje network. Simulations with our new Purkinje network predicted more realistic activation sequences and activation times than simulations without. Six-lead electrocardiograms of the three case studies agreed with the clinical electrocardiograms under physiological conditions, under pathological conditions of right bundle branch block, and under pathological conditions of trifascicular block. Taken together, our results underpin the importance of the Purkinje network in realistic human heart simulations. Human heart modeling has the potential to support the design of personalized strategies

  14. Biventricular thrombosis in a structurally normal heart at high altitude.

    PubMed

    Malani, Susheel; Chadha, Davinder; Banerji, Anup

    2014-01-01

    We present a rare case of biventricular thrombus in a young patient with a structurally normal heart at high altitude, complicated with pulmonary embolism. Detailed evaluation revealed him to have protein S deficiency. Altered environmental conditions at high altitude associated with protein S deficiency resulted in thrombus formation at an unusual location; the same is discussed in this case report.

  15. Heart failure with a normal left ventricular ejection fraction: diastolic heart failure.

    PubMed

    Little, William C

    2008-01-01

    A reduced left ventricular ejection fraction measured by echocardiography in a patient with clinical features of heart failure demonstrates that the patient has a cardiac abnormality and that the clinical picture is, in fact, due to heart failure. As such, a reduced ejection fraction (< 0.30 or 0.35) has been used as entry criteria for almost all the large clinical trials that guide our therapy of patients with heart failure. However, it has been recently recognized that a substantial and increasing proportion of patients with heart failure have a normal ejection fraction (> 0.50). Such patients are typically elderly women with systolic hypertension. These patients are subject to the sudden development of pulmonary congestion (flash pulmonary edema). The finding of heart failure in patients with a normal ejection fraction has focused attention on the role of diastolic dysfunction in producing symptomatic heart failure. The optimal treatment of patients with heart failure and normal ejection fraction has not yet been defined, but the control of systolic hypertension and the avoidance of fluid overload are important.

  16. A novel distributed model of the heart under normal and congestive heart failure conditions.

    PubMed

    Ravanshadi, Samin; Jahed, Mehran

    2013-04-01

    Conventional models of cardiovascular system frequently lack required detail and focus primarily on the overall relationship between pressure, flow and volume. This study proposes a localized and regional model of the cardiovascular system. It utilizes noninvasive blood flow and pressure seed data and temporal cardiac muscle regional activity to predict the operation of the heart under normal and congestive heart failure conditions. The analysis considers specific regions of the heart, namely, base, mid and apex of left ventricle. The proposed method of parameter estimation for hydraulic electric analogy model is recursive least squares algorithm. Based on simulation results and comparison to clinical data, effect of congestive heart failure in the heart is quantified. Accumulated results for simulated ejection fraction percentage of the apex, mid and base regions of the left ventricle in congestive heart failure condition were 39 ± 6, 36 ± 9 and 38 ± 8, respectively. These results are shown to satisfactorily match those found through clinical measurements. The proposed analytical method can in effect be utilized as a preclinical and predictive tool for high-risk heart patients and candidates for heart transplant, assistive device and total artificial heart.

  17. Universal structures of normal and pathological heart rate variability

    PubMed Central

    Gañán-Calvo, Alfonso M.; Fajardo-López, Juan

    2016-01-01

    The circulatory system of living organisms is an autonomous mechanical system softly tuned with the respiratory system, and both developed by evolution as a response to the complex oxygen demand patterns associated with motion. Circulatory health is rooted in adaptability, which entails an inherent variability. Here, we show that a generalized N-dimensional normalized graph representing heart rate variability reveals two universal arrhythmic patterns as specific signatures of health one reflects cardiac adaptability, and the other the cardiac-respiratory rate tuning. In addition, we identify at least three universal arrhythmic profiles whose presences raise in proportional detriment of the two healthy ones in pathological conditions (myocardial infarction; heart failure; and recovery from sudden death). The presence of the identified universal arrhythmic structures together with the position of the centre of mass of the heart rate variability graph provide a unique quantitative assessment of the health-pathology gradient. PMID:26912108

  18. Universal structures of normal and pathological heart rate variability.

    PubMed

    Gañán-Calvo, Alfonso M; Fajardo-López, Juan

    2016-02-25

    The circulatory system of living organisms is an autonomous mechanical system softly tuned with the respiratory system, and both developed by evolution as a response to the complex oxygen demand patterns associated with motion. Circulatory health is rooted in adaptability, which entails an inherent variability. Here, we show that a generalized N-dimensional normalized graph representing heart rate variability reveals two universal arrhythmic patterns as specific signatures of health one reflects cardiac adaptability, and the other the cardiac-respiratory rate tuning. In addition, we identify at least three universal arrhythmic profiles whose presences raise in proportional detriment of the two healthy ones in pathological conditions (myocardial infarction; heart failure; and recovery from sudden death). The presence of the identified universal arrhythmic structures together with the position of the centre of mass of the heart rate variability graph provide a unique quantitative assessment of the health-pathology gradient.

  19. Universal structures of normal and pathological heart rate variability.

    PubMed

    Gañán-Calvo, Alfonso M; Fajardo-López, Juan

    2016-01-01

    The circulatory system of living organisms is an autonomous mechanical system softly tuned with the respiratory system, and both developed by evolution as a response to the complex oxygen demand patterns associated with motion. Circulatory health is rooted in adaptability, which entails an inherent variability. Here, we show that a generalized N-dimensional normalized graph representing heart rate variability reveals two universal arrhythmic patterns as specific signatures of health one reflects cardiac adaptability, and the other the cardiac-respiratory rate tuning. In addition, we identify at least three universal arrhythmic profiles whose presences raise in proportional detriment of the two healthy ones in pathological conditions (myocardial infarction; heart failure; and recovery from sudden death). The presence of the identified universal arrhythmic structures together with the position of the centre of mass of the heart rate variability graph provide a unique quantitative assessment of the health-pathology gradient. PMID:26912108

  20. Systems biology applied to heart failure with normal ejection fraction.

    PubMed

    Mesquita, Evandro Tinoco; Jorge, Antonio Jose Lagoeiro; Souza Junior, Celso Vale de; Cassino, João Paulo Pedroza

    2014-05-01

    Heart failure with normal ejection fraction (HFNEF) is currently the most prevalent clinical phenotype of heart failure. However, the treatments available have shown no reduction in mortality so far. Advances in the omics sciences and techniques of high data processing used in molecular biology have enabled the development of an integrating approach to HFNEF based on systems biology. This study aimed at presenting a systems-biology-based HFNEF model using the bottom-up and top-down approaches. A literature search was conducted for studies published between 1991 and 2013 regarding HFNEF pathophysiology, its biomarkers and systems biology. A conceptual model was developed using bottom-up and top-down approaches of systems biology. The use of systems-biology approaches for HFNEF, a complex clinical syndrome, can be useful to better understand its pathophysiology and to discover new therapeutic targets.

  1. Systems Biology Applied to Heart Failure With Normal Ejection Fraction

    PubMed Central

    Mesquita, Evandro Tinoco; Jorge, Antonio Jose Lagoeiro; de Souza, Celso Vale; Cassino, João Paulo Pedroza

    2014-01-01

    Heart failure with normal ejection fraction (HFNEF) is currently the most prevalent clinical phenotype of heart failure. However, the treatments available have shown no reduction in mortality so far. Advances in the omics sciences and techniques of high data processing used in molecular biology have enabled the development of an integrating approach to HFNEF based on systems biology. This study aimed at presenting a systems-biology-based HFNEF model using the bottom-up and top-down approaches. A literature search was conducted for studies published between 1991 and 2013 regarding HFNEF pathophysiology, its biomarkers and systems biology. A conceptual model was developed using bottom-up and top-down approaches of systems biology. The use of systems-biology approaches for HFNEF, a complex clinical syndrome, can be useful to better understand its pathophysiology and to discover new therapeutic targets. PMID:24918915

  2. The Scaling Exponent Distinguishes the Injured Sick Hearts Against Normal Healthy Hearts

    NASA Astrophysics Data System (ADS)

    Yazawa, Toru; Tanaka, Katsunori

    2009-05-01

    We analyzed heartbeat-intervals with our own program of detrended fluctuation analysis (DFA) to quantify the irregularity of the heartbeat. The present analysis revealed that normal healthy subjects have the scaling exponent of 1.0, and ischemic heart disease pushes the scaling exponent up to 1.2-1.5. We conclude that the scaling exponent, calculated by the DFA, reflects a risk for the "failing" heart. The scaling exponents could determine whether the subjects are under sick or in healthy conditions on the basis of cardiac physiology.

  3. Electrical heart disease: Genetic and molecular basis of cardiac arrhythmias in normal structural hearts.

    PubMed

    Farwell, David; Gollob, Michael H

    2007-08-01

    Purely electrical heart diseases, defined by the absence of any structural cardiac defects, are responsible for a large number of sudden, unexpected deaths in otherwise healthy, young individuals. These conditions include the long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia and the short QT syndrome. Collectively, these conditions have been referred to as channelopathies. Ion channels provide the molecular basis for cardiac electrical activity. These channels have specific ion selectivity and are responsible for the precise and timely regulation of the passage of charged ions across the cell membrane in myocytes, and the summation of their activity in cardiac muscle defines the surface electrocardiogram. Impairment in the flow of these ions in heart cells may mean the difference between a normal, prosperous life and the tragedy of a sudden, unexpected death due to ventricular arrhythmia. The present paper reviews the current clinical and molecular understanding of the electrical diseases of the heart associated with sudden cardiac death.

  4. Predictability of normal heart rhythms and deterministic chaos

    NASA Astrophysics Data System (ADS)

    Lefebvre, J. H.; Goodings, D. A.; Kamath, M. V.; Fallen, E. L.

    1993-04-01

    The evidence for deterministic chaos in normal heart rhythms is examined. Electrocardiograms were recorded of 29 subjects falling into four groups—a young healthy group, an older healthy group, and two groups of patients who had recently suffered an acute myocardial infarction. From the measured R-R intervals, a time series of 1000 first differences was constructed for each subject. The correlation integral of Grassberger and Procaccia was calculated for several subjects using these relatively short time series. No evidence was found for the existence of an attractor having a dimension less than about 4. However, a prediction method recently proposed by Sugihara and May and an autoregressive linear predictor both show that there is a measure of short-term predictability in the differenced R-R intervals. Further analysis revealed that the short-term predictability calculated by the Sugihara-May method is not consistent with the null hypothesis of a Gaussian random process. The evidence for a small amount of nonlinear dynamical behavior together with the short-term predictability suggest that there is an element of deterministic chaos in normal heart rhythms, although it is not strong or persistent. Finally, two useful parameters of the predictability curves are identified, namely, the `first step predictability' and the `predictability decay rate,' neither of which appears to be significantly correlated with the standard deviation of the R-R intervals.

  5. Computer Simulation of the Beating Human Heart

    NASA Astrophysics Data System (ADS)

    Peskin, Charles S.; McQueen, David M.

    2001-06-01

    The mechanical function of the human heart couples together the fluid mechanics of blood and the soft tissue mechanics of the muscular heart walls and flexible heart valve leaflets. We discuss a unified mathematical formulation of this problem in which the soft tissue looks like a specialized part of the fluid in which additional forces are applied. This leads to a computational scheme known as the Immersed Boundary (IB) method for solving the coupled equations of motion of the whole system. The IB method is used to construct a three-dimensional Virtual Heart, including representations of all four chambers of the heart and all four valves, in addition to the large arteries and veins that connect the heart to the rest of the circulation. The chambers, valves, and vessels are all modeled as collections of elastic (and where appropriate, actively contractile) fibers immersed in viscous incompressible fluid. Results are shown as a computer-generated video animation of the beating heart.

  6. On the nature of heart rate variability in a breathing normal subject: A stochastic process analysis

    NASA Astrophysics Data System (ADS)

    Buchner, Teodor; Petelczyc, Monika; Żebrowski, Jan J.; Prejbisz, Aleksander; Kabat, Marek; Januszewicz, Andrzej; Piotrowska, Anna Justyna; Szelenberger, Waldemar

    2009-06-01

    Human heart rate is moderated by the autonomous nervous system acting predominantly through the sinus node (the main cardiac physiological pacemaker). One of the dominant factors that determine the heart rate in physiological conditions is its coupling with the respiratory rhythm. Using the language of stochastic processes, we analyzed both rhythms simultaneously taking the data from polysomnographic recordings of two healthy individuals. Each rhythm was treated as a sum of a deterministic drift term and a diffusion term (Kramers-Moyal expansion). We found that normal heart rate variability may be considered as the result of a bidirectional coupling of two nonlinear oscillators: the heart itself and the respiratory system. On average, the diffusion (noise) component measured is comparable in magnitude to the oscillatory (deterministic) term for both signals investigated. The application of the Kramers-Moyal expansion may be useful for medical diagnostics providing information on the relation between respiration and heart rate variability. This interaction is mediated by the autonomous nervous system, including the baroreflex, and results in a commonly observed phenomenon—respiratory sinus arrhythmia which is typical for normal subjects and often impaired by pathology.

  7. Streptococcus agalactiae mural infective endocarditis in a structurally normal heart.

    PubMed

    Ariyoshi, Nobuhiro; Miyamoto, Keisuke; Bolger, Dennis T

    2016-01-01

    A 38-year-old Caucasian man with uncontrolled diabetes mellitus type 2 was admitted with a 1-week duration of fevers, chills, and a non-productive cough. He had a left ischiorectal abscess 1 month prior to admission. Physical examination revealed caries on a left upper molar and a well-healed scar on the left buttock, but no heart murmur or evidence of micro-emboli. Blood cultures grew Streptococcus agalactiae. A transesophageal echocardiogram revealed a mobile mass in the right ventricle that attached to chordae tendineae without valvular disease or dysfunction. A computed tomography (CT) with contrast revealed the mass within the right ventricle, a left lung cavitary lesion, and a splenic infarction. He was initially treated with penicillin G for a week. Subsequently, ceftriaxone was continued for a total of 8 weeks. A follow-up CT showed no evidence of right ventricular mass 8 weeks after discharge. This is the first reported case of S. agalactiae mural infective endocarditis in a structurally normal heart. PMID:27124171

  8. Streptococcus agalactiae mural infective endocarditis in a structurally normal heart

    PubMed Central

    Ariyoshi, Nobuhiro; Miyamoto, Keisuke; Bolger, Dennis T.

    2016-01-01

    A 38-year-old Caucasian man with uncontrolled diabetes mellitus type 2 was admitted with a 1-week duration of fevers, chills, and a non-productive cough. He had a left ischiorectal abscess 1 month prior to admission. Physical examination revealed caries on a left upper molar and a well-healed scar on the left buttock, but no heart murmur or evidence of micro-emboli. Blood cultures grew Streptococcus agalactiae. A transesophageal echocardiogram revealed a mobile mass in the right ventricle that attached to chordae tendineae without valvular disease or dysfunction. A computed tomography (CT) with contrast revealed the mass within the right ventricle, a left lung cavitary lesion, and a splenic infarction. He was initially treated with penicillin G for a week. Subsequently, ceftriaxone was continued for a total of 8 weeks. A follow-up CT showed no evidence of right ventricular mass 8 weeks after discharge. This is the first reported case of S. agalactiae mural infective endocarditis in a structurally normal heart. PMID:27124171

  9. [Sudden cardiac death in individuals with normal hearts: an update].

    PubMed

    González-Melchor, Laila; Villarreal-Molina, Teresa; Iturralde-Torres, Pedro; Medeiros-Domingo, Argelia

    2014-01-01

    Sudden death (SD) is a tragic event and a world-wide health problem. Every year, near 4-5 million people experience SD. SD is defined as the death occurred in 1h after the onset of symptoms in a person without previous signs of fatality. It can be named "recovered SD" when the case received medical attention, cardiac reanimation effective defibrillation or both, surviving the fatal arrhythmia. Cardiac channelopathies are a group of diseases characterized by abnormal ion channel function due to genetic mutations in ion channel genes, providing increased susceptibility to develop cardiac arrhythmias and SD. Usually the death occurs before 40 years of age and in the autopsy the heart is normal. In this review we discuss the main cardiac channelopathies involved in sudden cardiac death along with current management of cases and family members that have experienced such tragic event.

  10. [Sudden cardiac death in individuals with normal hearts: an update].

    PubMed

    González-Melchor, Laila; Villarreal-Molina, Teresa; Iturralde-Torres, Pedro; Medeiros-Domingo, Argelia

    2014-01-01

    Sudden death (SD) is a tragic event and a world-wide health problem. Every year, near 4-5 million people experience SD. SD is defined as the death occurred in 1h after the onset of symptoms in a person without previous signs of fatality. It can be named "recovered SD" when the case received medical attention, cardiac reanimation effective defibrillation or both, surviving the fatal arrhythmia. Cardiac channelopathies are a group of diseases characterized by abnormal ion channel function due to genetic mutations in ion channel genes, providing increased susceptibility to develop cardiac arrhythmias and SD. Usually the death occurs before 40 years of age and in the autopsy the heart is normal. In this review we discuss the main cardiac channelopathies involved in sudden cardiac death along with current management of cases and family members that have experienced such tragic event. PMID:25128006

  11. Mitochondrial Fission and Autophagy in the Normal and Diseased Heart

    PubMed Central

    Iglewski, Myriam; Hill, Joseph A.; Lavandero, Sergio; Rothermel, Beverly A.

    2011-01-01

    Sustained hypertension promotes structural, functional and metabolic remodeling of cardiomyocyte mitochondria. As long-lived, postmitotic cells, cardiomyocytes turn over mitochondria continuously to compensate for changes in energy demands and to remove damaged organelles. This process involves fusion and fission of existing mitochondria to generate new organelles and separate old ones for degradation via autophagy. Autophagy is a lysosome-dependent proteolytic pathway capable of processing cellular components, including organelles and protein aggregates. Autophagy can be either nonselective or selective and contributes to remodeling of the myocardium under stress. Fission of mitochondria, loss of membrane potential, and ubiquitination are emerging as critical steps that direct selective autophagic degradation of mitochondria. This review discusses the molecular mechanisms controlling mitochondrial dynamics, including fission, fusion, transport, and degradation. Furthermore, it examines recent studies revealing the importance of these processes in normal and diseased heart. PMID:20865352

  12. Development of the human heart.

    PubMed

    Sylva, Marc; van den Hoff, Maurice J B; Moorman, Antoon F M

    2014-06-01

    Molecular and genetic studies around the turn of this century have revolutionized the field of cardiac development. We now know that the primary heart tube, as seen in the early embryo contains little more than the precursors for the left ventricle, whereas the precursor cells for the remainder of the cardiac components are continuously added, to both the venous and arterial pole of the heart tube, from a single center of growth outside the heart. While the primary heart tube is growing by addition of cells, it does not show significant cell proliferation, until chamber differentiation and expansion starts locally in the tube, by which the chambers balloon from the primary heart tube. The transcriptional repressors Tbx2 and Tbx3 locally repress the chamber-specific program of gene expression, by which these regions are allowed to differentiate into the distinct components of the conduction system. Molecular genetic lineage analyses have been extremely valuable to assess the distinct developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Despite the enormous advances in our knowledge on cardiac development, even the most common congenital cardiac malformations are only poorly understood. The challenge of the newly developed molecular genetic techniques is to unveil the basic gene regulatory networks underlying cardiac morphogenesis.

  13. Metabolic gene profile in early human fetal heart development.

    PubMed

    Iruretagoyena, J I; Davis, W; Bird, C; Olsen, J; Radue, R; Teo Broman, A; Kendziorski, C; Splinter BonDurant, S; Golos, T; Bird, I; Shah, D

    2014-07-01

    The primitive cardiac tube starts beating 6-8 weeks post fertilization in the developing embryo. In order to describe normal cardiac development during late first and early second trimester in human fetuses this study used microarray and pathways analysis and created a corresponding 'normal' database. Fourteen fetal hearts from human fetuses between 10 and 18 weeks of gestational age (GA) were prospectively collected at the time of elective termination of pregnancy. RNA from recovered tissues was used for transcriptome analysis with Affymetrix 1.0 ST microarray chip. From the amassed data we investigated differences in cardiac development within the 10-18 GA period dividing the sample by GA in three groups: 10-12 (H1), 13-15 (H2) and 16-18 (H3) weeks. A fold change of 2 or above adjusted for a false discovery rate of 5% was used as initial cutoff to determine differential gene expression for individual genes. Test for enrichment to identify functional groups was carried out using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Array analysis correctly identified the cardiac specific genes, and transcripts reported to be differentially expressed were confirmed by qRT-PCR. Single transcript and Ontology analysis showed first trimester heart expression of myosin-related genes to be up-regulated >5-fold compared with second trimester heart. In contrast the second trimester hearts showed further gestation-related increases in many genes involved in energy production and cardiac remodeling. In conclusion, fetal heart development during the first trimester was dominated by heart-specific genes coding for myocardial development and differentiation. During the second trimester, transcripts related to energy generation and cardiomyocyte communication for contractile coordination/proliferation were more dominant. Transcripts related to fatty acid metabolism can be seen as early as 10 weeks and clearly increase as the heart matures. Retinol

  14. Tissue microarray profiling in human heart failure.

    PubMed

    Lal, Sean; Nguyen, Lisa; Tezone, Rhenan; Ponten, Fredrik; Odeberg, Jacob; Li, Amy; Dos Remedios, Cristobal

    2016-09-01

    Tissue MicroArrays (TMAs) are a versatile tool for high-throughput protein screening, allowing qualitative analysis of a large number of samples on a single slide. We have developed a customizable TMA system that uniquely utilizes cryopreserved human cardiac samples from both heart failure and donor patients to produce formalin-fixed paraffin-embedded sections. Confirmatory upstream or downstream molecular studies can then be performed on the same (biobanked) cryopreserved tissue. In a pilot study, we applied our TMAs to screen for the expression of four-and-a-half LIM-domain 2 (FHL2), a member of the four-and-a-half LIM family. This protein has been implicated in the pathogenesis of heart failure in a variety of animal models. While FHL2 is abundant in the heart, not much is known about its expression in human heart failure. For this purpose, we generated an affinity-purified rabbit polyclonal anti-human FHL2 antibody. Our TMAs allowed high-throughput profiling of FHL2 protein using qualitative and semiquantitative immunohistochemistry that proved complementary to Western blot analysis. We demonstrated a significant relative reduction in FHL2 protein expression across different forms of human heart failure.

  15. Nonsustained Ventricular Tachycardia in the Normal Heart: Risk Stratification and Management.

    PubMed

    Marine, Joseph E

    2016-09-01

    Nonsustained ventricular tachycardia (NSVT) may trigger concern, particularly in patients with known congestive heart failure, structural heart disease, or prolonged QT interval. When NSVT occurs in patients with normal hearts, it usually has a benign prognosis. Therefore, establishing the presence or absence of structural or inherited heart disease is a critical step in each patient's evaluation. It is important to approach a wide-complex tachycardia in a systematic manner, to ensure correct diagnosis and treatment. When NSVT occurs in a patient with a normal heart, treatment is targeted toward symptoms and may consist of observation, medical therapy, or catheter ablation. PMID:27521087

  16. Morphology and biomechanics of human heart

    NASA Astrophysics Data System (ADS)

    Chelnokova, Natalia O.; Golyadkina, Anastasiya A.; Kirillova, Irina V.; Polienko, Asel V.; Ivanov, Dmitry V.

    2016-03-01

    Object of study: A study of the biomechanical characteristics of the human heart ventricles was performed. 80 hearts were extracted during autopsy of 80 corpses of adults (40 women and 40 men) aged 31-70 years. The samples were investigated in compliance with the recommendations of the ethics committee. Methods: Tension and compression tests were performed with help of the uniaxial testing machine Instron 5944. Cardiometry was also performed. Results: In this work, techniques for human heart ventricle wall biomechanical properties estimation were developed. Regularities of age and gender variability in deformative and strength properties of the right and left ventricle walls were found. These properties were characterized by a smooth growth of myocardial tissue stiffness and resistivity at a relatively low strain against reduction in their strength and elasticity from 31-40 to 61-70 years. It was found that tissue of the left ventricle at 61-70 years had a lower stretchability and strength compared with tissues of the right ventricle and septum. These data expands understanding of the morphological organization of the heart ventricles, which is very important for the development of personalized medicine. Taking into account individual, age and gender differences of the heart ventricle tissue biomechanical characteristics allows to rationally choosing the type of patching materials during reconstructive operations on heart.

  17. Programming and reprogramming a human heart cell.

    PubMed

    Sahara, Makoto; Santoro, Federica; Chien, Kenneth R

    2015-03-12

    The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the "programming" and "reprogramming" of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart.

  18. Nonlinear control of heart rate variability in human infants.

    PubMed Central

    Sugihara, G; Allan, W; Sobel, D; Allan, K D

    1996-01-01

    Nonlinear analyses of infant heart rhythms reveal a marked rise in the complexity of the electrocardiogram with maturation. We find that normal mature infants (gestation greater than or equal to 35 weeks) have complex and distinctly nonlinear heart rhythms (consistent with recent reports for healthy adults) but that such nonlinearity is lacking in preterm infants (gestation > or = to 27 weeks) where parasympathetic-sympathetic interaction and function are presumed to be less well developed. Our study further shows that infants with clinical brain death and those treated with atropine exhibit a similar lack of nonlinear feedback control. These three lines of evidence support the hypothesis championed by Goldberger et al. [Goldberger, A.L., Rigney, D.R. & West, B.J. (1990) Sci. Am. 262, 43-49] that autonomic nervous system control underlies the nonlinearity and possible chaos of normal heart rhythms. This report demonstrates the acquisition of nonlinear heart rate dynamics and possible chaos in developing human infants and its loss in brain death and with the administration of atropine. It parallels earlier work documenting changes in the variability of heart rhythms in each of these cases and suggests that nonlinearity may provide additional power in characterizing physiological states. PMID:8637921

  19. Nonlinear Control of Heart Rate Variability in Human Infants

    NASA Astrophysics Data System (ADS)

    Sugihara, George; Allan, Walter; Sobel, Daniel; Allan, Kenneth D.

    1996-03-01

    Nonlinear analyses of infant heart rhythms reveal a marked rise in the complexity of the electrocardiogram with maturation. We find that normal mature infants (gestation >= 35 weeks) have complex and distinctly nonlinear heart rhythms (consistent with recent reports for healthy adults) but that such nonlinearity is lacking in preterm infants (gestation <= 27 weeks) where parasympathetic-sympathetic interaction and function are presumed to be less well developed. Our study further shows that infants with clinical brain death and those treated with atropine exhibit a similar lack of nonlinear feedback control. These three lines of evidence support the hypothesis championed by Goldberger et al. [Goldberger, A. L., Rigney, D. R. & West, B. J. (1990) Sci. Am. 262, 43-49] that autonomic nervous system control underlies the nonlinearity and possible chaos of normal heart rhythms. This report demonstrates the acquisition of nonlinear heart rate dynamics and possible chaos in developing human infants and its loss in brain death and with the administration of atropine. It parallels earlier work documenting changes in the variability of heart rhythms in each of these cases and suggests that nonlinearity may provide additional power in characterizing physiological states.

  20. Heart rate variability in normal and pathological sleep

    PubMed Central

    Tobaldini, Eleonora; Nobili, Lino; Strada, Silvia; Casali, Karina R.; Braghiroli, Alberto; Montano, Nicola

    2013-01-01

    Sleep is a physiological process involving different biological systems, from molecular to organ level; its integrity is essential for maintaining health and homeostasis in human beings. Although in the past sleep has been considered a state of quiet, experimental and clinical evidences suggest a noteworthy activation of different biological systems during sleep. A key role is played by the autonomic nervous system (ANS), whose modulation regulates cardiovascular functions during sleep onset and different sleep stages. Therefore, an interest on the evaluation of autonomic cardiovascular control in health and disease is growing by means of linear and non-linear heart rate variability (HRV) analyses. The application of classical tools for ANS analysis, such as HRV during physiological sleep, showed that the rapid eye movement (REM) stage is characterized by a likely sympathetic predominance associated with a vagal withdrawal, while the opposite trend is observed during non-REM sleep. More recently, the use of non-linear tools, such as entropy-derived indices, have provided new insight on the cardiac autonomic regulation, revealing for instance changes in the cardiovascular complexity during REM sleep, supporting the hypothesis of a reduced capability of the cardiovascular system to deal with stress challenges. Interestingly, different HRV tools have been applied to characterize autonomic cardiac control in different pathological conditions, from neurological sleep disorders to sleep disordered breathing (SDB). In summary, linear and non-linear analysis of HRV are reliable approaches to assess changes of autonomic cardiac modulation during sleep both in health and diseases. The use of these tools could provide important information of clinical and prognostic relevance. PMID:24137133

  1. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction.

    PubMed

    Wang, Qingjie; Yang, Hui; Bai, Aobing; Jiang, Wei; Li, Xiuya; Wang, Xinhong; Mao, Yishen; Lu, Chao; Qian, Ruizhe; Guo, Feng; Ding, Tianling; Chen, Haiyan; Chen, Sifeng; Zhang, Jianyi; Liu, Chen; Sun, Ning

    2016-10-01

    With the advent of induced pluripotent stem cells and directed differentiation techniques, it is now feasible to derive individual-specific cardiac cells for human heart tissue engineering. Here we report the generation of functional engineered human cardiac patches using human induced pluripotent stem cells-derived cardiac cells and decellularized natural heart ECM as scaffolds. The engineered human cardiac patches can be tailored to any desired size and shape and exhibited normal contractile and electrical physiology in vitro. Further, when patching on the infarct area, these patches improved heart function of rats with acute myocardial infarction in vivo. These engineered human cardiac patches can be of great value for normal and disease-specific heart tissue engineering, drug screening, and meet the demands for individual-specific heart tissues for personalized regenerative therapy of myocardial damages in the future. PMID:27509303

  2. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction.

    PubMed

    Wang, Qingjie; Yang, Hui; Bai, Aobing; Jiang, Wei; Li, Xiuya; Wang, Xinhong; Mao, Yishen; Lu, Chao; Qian, Ruizhe; Guo, Feng; Ding, Tianling; Chen, Haiyan; Chen, Sifeng; Zhang, Jianyi; Liu, Chen; Sun, Ning

    2016-10-01

    With the advent of induced pluripotent stem cells and directed differentiation techniques, it is now feasible to derive individual-specific cardiac cells for human heart tissue engineering. Here we report the generation of functional engineered human cardiac patches using human induced pluripotent stem cells-derived cardiac cells and decellularized natural heart ECM as scaffolds. The engineered human cardiac patches can be tailored to any desired size and shape and exhibited normal contractile and electrical physiology in vitro. Further, when patching on the infarct area, these patches improved heart function of rats with acute myocardial infarction in vivo. These engineered human cardiac patches can be of great value for normal and disease-specific heart tissue engineering, drug screening, and meet the demands for individual-specific heart tissues for personalized regenerative therapy of myocardial damages in the future.

  3. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank.

    PubMed

    Li, Amy; Estigoy, Colleen; Raftery, Mark; Cameron, Darryl; Odeberg, Jacob; Pontén, Fredrik; Lal, Sean; Dos Remedios, Cristobal G

    2013-10-01

    This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing.

  4. Virtual histology of the human heart using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ambrosi, Christina M.; Moazami, Nader; Rollins, Andrew M.; Efimov, Igor R.

    2009-09-01

    Optical coherence tomography (OCT) allows for the visualization of micron-scale structures within nontransparent biological tissues. For the first time, we demonstrate the use of OCT in identifying components of the cardiac conduction system and other structures in the explanted human heart. Reconstructions of cardiac structures up to 2 mm below the tissue surface were achieved and validated with Masson Trichrome histology in atrial, ventricular, sinoatrial nodal, and atrioventricular nodal preparations. The high spatial resolution of OCT provides visualization of cardiac fibers within the myocardium, as well as elements of the cardiac conduction system; however, a limiting factor remains its depth penetration, demonstrated to be ~2 mm in cardiac tissues. Despite its currently limited imaging depth, the use of OCT to identify the structural determinants of both normal and abnormal function in the intact human heart is critical in its development as a potential aid to intracardiac arrhythmia diagnosis and therapy.

  5. NORMAL HUMAN VARIATION: REFOCUSSING THE ENHANCEMENT DEBATE

    PubMed Central

    Kahane, Guy; Savulescu, Julian

    2015-01-01

    This article draws attention to several common mistakes in thinking about biomedical enhancement, mistakes that are made even by some supporters of enhancement. We illustrate these mistakes by examining objections that John Harris has recently raised against the use of pharmacological interventions to directly modulate moral decision-making. We then apply these lessons to other influential figures in the debate about enhancement. One upshot of our argument is that many considerations presented as powerful objections to enhancement are really strong considerations in favour of biomedical enhancement, just in a different direction. Another upshot is that it is unfortunate that much of the current debate focuses on interventions that will radically transform normal human capacities. Such interventions are unlikely to be available in the near future, and may not even be feasible. But our argument shows that the enhancement project can still have a radical impact on human life even if biomedical enhancement operated entirely within the normal human range. PMID:23906367

  6. Viscoelastic properties of the normal human bladder.

    PubMed

    Andersson, S; Kronström, A; Bjerle, P

    1989-01-01

    Continuous and stepwise cystometry were performed through suprapubic catheters in 12 healthy young subjects in order to assess passive viscoelastic variables of the normal human bladder during the collection phase. Elastic contants increased non-linearly with bladder distension. Relative elastic modulus and relaxation time of the bladder wall increased or tended to increase with bladder distension and infusion rate. There was considerable interindividual variation in all variables suggesting that discrimination between normal and abnormal bladder wall viscoelasticity may be difficult in routine clinical practice.

  7. Sustained Ventricular Tachycardia in Apparently Normal Hearts: Ablation Should Be the First Step in Management.

    PubMed

    Moss, Joshua D; Tung, Roderick

    2016-09-01

    Patients without structural heart disease tend to have fewer morphologies of ventricular tachycardia, with automaticity and triggered activity a more common mechanism than re-entry associated with extremely low risk of sudden death. Ablation can be curative in patients with a single morphology of ventricular tachycardia that is focal in origin, particularly in patients without overt structural heart disease. There are limited data in secondary prevention implantable cardioverter defibrillator literature to support the routine implementation of implantable cardioverter defibrillator in normal hearts. Antiarrhythmic drugs have not been shown to reduce all-cause mortality in patients with and without structural heart disease. PMID:27521095

  8. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats

    PubMed Central

    Opie, L. H.; Mansford, K. R. L.; Owen, Patricia

    1971-01-01

    1. In the isolated perfused rat heart, the contractile activity and the oxygen uptake were varied by altering the aortic perfusion pressure, or by the atrial perfusion technique (`working heart'). 2. The maximum increase in the contractile activity brought about an eightfold increase in the oxygen uptake. The rate of glycolytic flux rose, while tissue contents of hexose monophosphates, citrate, ATP and creatine phosphate decreased, and contents of ADP and AMP rose. 3. The changes in tissue contents of adenine nucleotides during increased heart work were time-dependent. The ATP content fell temporarily (30s and 2min) after the start of left-atrial perfusion; at 5 and 10min values were normal; and at 30 and 60min values were decreased. ADP and AMP values were increased in the first 15min, but were at control values 30 or 60min after the onset of increased heart work. 4. During increased heart work changes in the tissue contents of adenine nucleotide and of citrate appeared to play a role in altered regulation of glycolysis at the level of phosphofructokinase activity. 5. In recirculation experiments increased heart work for 30min was associated with increased entry of [14C]glucose (11.1mm) and glycogen into glycolysis and a comparable increase in formation of products of glycolysis (lactate, pyruvate and 14CO2). There was no major accumulation of intermediates. Glycogen was not a major fuel for respiration. 6. Increased glycolytic flux in Langendorff perfused and working hearts was obtained by the addition of insulin to the perfusion medium. The concomitant increases in the tissue values of hexose phosphates and of citrate contrasted with the decreased values of hexose monophosphates and of citrate during increased glycolytic flux obtained by increased heart work. 7. Decreased glycolytic flux in Langendorff perfused hearts was obtained by using acute alloxan-diabetic and chronic streptozotocin-diabetic rats; in the latter condition there were decreased tissue

  9. Effect of propranolol on normal human erythrocytes.

    PubMed

    Fortier, N L; Snyder, L M; Palek, J; Weiss, E B; Mancini, C; Falcone, J

    1977-01-01

    The present study was undertaken to standardize the effect of propranolol on normal human red cells and thus establish certain parameters enabling us to evaluate propranolol's effect on pathological cells. Normal human erythrocytes lost 40 MEq. of potassium, decreased the intracellular pH by 0.06 units, and shifted the oxyhemoglobin dissociation curve 6.0 mm. Hg to the right in the presence of propranolol. The series of events and magnitude of the response induced by propranolol was time dependent and sensitive to temperature, pH, drug concentration, and erythrocyte concentration. Calcium was an absolute requirement for maximal propranolol action with simultaneous incorporation of trace amounts of radioactive calcium into the cell. Chelation of calcium with EDTA or EGTA inhibited the response to propranolol.

  10. Gated magnetic resonance imaging of the normal and diseased heart

    SciTech Connect

    Lieberman, J.M.; Alfidi, R.J.; Nelson, A.D.; Botti, R.E.; Moir, T.W.; Haaga, J.R.; Kopiwoda, S.; Miraldi, F.D.; Cohen, A.M.; Butler, H.E.

    1984-08-01

    Gated cardiac magnetic resonance (MR) images were obtained in two normal volunteers and 21 adults with a variety of cardiovascular abnormalities. The images were correlated with data from clinical examination, electrocardiograms, and cardiac catheterization. Gated cardiac images were superior to nongated images. Combined cardiac and respiratory gated images were superior to images obtained with cardiac gating only, but acquisition time was longer. Portions of the coronary arteries were visualized in seven of 23 examinations (30%), and subacute and old myocardial infarcts were seen in five of nine patients (55%) as areas of thinned myocardium. Normal cardiac anatomy (chambers, valves, and papillary muscles) was well visualized. Examples of aortic stenosis and atherosclerosis of the abdominal aorta are shown.

  11. Cardiac Extracellular Vesicles in Normal and Infarcted Heart

    PubMed Central

    Chistiakov, Dimitry A.; Orekhov, Alexander N.; Bobryshev, Yuri V.

    2016-01-01

    Heart is a complex assembly of many cell types constituting myocardium, endocardium and epicardium that intensively communicate to each other in order to maintain the proper cardiac function. There are many types of intercellular intracardiac signals, with a prominent role of extracellular vesicles (EVs), such as exosomes and microvesicles, for long-distant delivering of complex messages. Cardiomyocytes release EVs, whose content could significantly vary depending on the stimulus. In stress, such as hypoxia, inflammation or injury, cardiomyocytes increase secretion of EVs. In hypoxic conditions, cardiac EVs are enriched with angiogenic and prosurvival factors. In acute myocardial infarction (AMI), damaged cardiac muscle cells produce EVs with increased content of angiogenic, anti-apoptotic, mitogenic and growth factors in order to induce repair and healing of the infarcted myocardium. Exosomal microRNAs play a central role in cardiac regeneration. In AMI, circulating cardiac EVs abundantly contain cardiac-specific miRNAs that serve as indicators of cardiac damage and have a big diagnostic potential as AMI biomarkers. Cardioprotective and regenerative properties of exosomes derived from cardiac and non-cardiac stem/progenitor cells are very helpful to be used in cell-free cardiotherapy and regeneration of post-infarct myocardium. PMID:26742038

  12. Fatty acid uptake in normal human myocardium

    SciTech Connect

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R. )

    1991-09-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 {plus minus} 0.024 mumol/g and 0.37 {plus minus} 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells.

  13. Sodium MRI in human heart: a review.

    PubMed

    Bottomley, Paul A

    2016-02-01

    This paper offers a critical review of the properties, methods and potential clinical application of sodium ((23)Na) MRI in human heart. Because the tissue sodium concentration (TSC) in heart is about ~40 µmol/g wet weight, and the (23)Na gyromagnetic ratio and sensitivity are respectively about one-quarter and one-11th of that of hydrogen ((1)H), the signal-to-noise ratio of (23)Na MRI in the heart is about one-6000th of that of conventional cardiac (1)H MRI. In addition, as a quadrupolar nucleus, (23)Na exhibits ultra-short and multi-component relaxation behavior (T1 ~ 30 ms; T2 ~ 0.5-4 ms and 12-20 ms), which requires fast, specialized, ultra-short echo-time MRI sequences, especially for quantifying TSC. Cardiac (23)Na MRI studies from 1.5 to 7 T measure a volume-weighted sum of intra- and extra-cellular components present at cytosolic concentrations of 10-15 mM and 135-150 mM in healthy tissue, respectively, at a spatial resolution of about 0.1-1 ml in 10 min or so. Currently, intra- and extra-cellular sodium cannot be unambiguously resolved without the use of potentially toxic shift reagents. Nevertheless, increases in TSC attributable to an influx of intra-cellular sodium and/or increased extra-cellular volume have been demonstrated in human myocardial infarction consistent with prior animal studies, and arguably might also be seen in future studies of ischemia and cardiomyopathies--especially those involving defects in sodium transport. While technical implementation remains a hurdle, a central question for clinical use is whether cardiac (23)Na MRI can deliver useful information unobtainable by other more convenient methods, including (1)H MRI.

  14. Characterisation of heart failure with normal ejection fraction in a tertiary hospital in Nigeria

    PubMed Central

    2009-01-01

    Background The study aimed to determine the frequency and characteristics of heart failure with normal EF in a native African population with heart failure. Methods It was a hospital cohort study. Subjects were 177 consecutive individuals with heart failure and ninety apparently normal control subjects. All the subjects underwent transthoracic echocardiography. The group with heart failure was further subdivided into heart failure with normal EF (EF ≥ 50) (HFNEF) and heart failure with low EF(EF <50)(HFLEF). Results The subjects with heart failure have a mean age of 52.3 ± 16.64 years vs 52.1 ± 11.84 years in the control subjects; p = 0.914. Other baseline characteristics except blood pressure parameters and height were comparable between the group with heart failure and the control subjects. The frequency of HFNEF was 39.5%. Compared with the HFLEF group, the HFNEF group have a smaller left ventricular diameter (in diastole and systole): (5.2 ± 1.22 cm vs 6.2 ± 1.39 cm; p < 0.0001 and 3.6 ± 1.24 cm vs 5.4 ± 1.35 cm;p < 0.0001) respectively, a higher relative wall thickness and deceleration time of the early mitral inflow velocity: (0.4 ± 0.12 vs 0.3 ± 0.14 p < 0.0001 and 149.6 ± 72.35 vs 110.9 ± 63.40 p = 0.001) respectively. The two groups with heart failure differed significantly from the control subjects in virtually all echocardiographic measurements except aortic root diameter, LV posterior wall thickness(HFLEF), and late mitral inflow velocity(HFNEF). HFNEF accounted for 70(39.5%) of cases of heart failure in this study. Hypertension is the underlying cardiovascular disease in 134(75.7%) of the combined heart failure population, 58 (82.9%) of the subjects with HFNEF group and 76(71%) of the HFLEF group. Females accounted for 44 (62.9%) of the subjects with HFNEF against 42(39.3%) in the HFLEF group (p = 0.002). Conclusion The frequency of heart failure with normal EF in this native African cohort with heart failure is comparable with the

  15. Transthyretin and Normal Human Pregnancy: Mini Review.

    PubMed

    Wang, Qiushi; Liu, Chongdong; Zhang, Zhenyu

    2016-01-01

    Since transthyretin (TTR) was discovered, it has been regarded as a serum protein carrier of thyroid hormones and retinol. However, many other important functions of TTR have been found recently, and current evidence suggests that it plays a role in human receptivity and normal pregnancy. TTR is abundant in the uterine cavity, uterine secretion, placenta, and serum of pregnant females in the peri-implantation uterus and the first trimester of pregnancy. It may be involved in the delivery of maternal thyroid hormones to the fetus. In addition, it appears to play a key role in the preeclampsia mechanism and may be involved in spiral artery remodeling. This review will summarize what is currently known about TTR and normal pregnancy; it will focus on our findings regarding the role of TTR in the spiral artery remodeling process and the additional research required in the future. PMID:27650990

  16. Cardiovascular cast model fabrication and casting effectiveness evaluation in fetus with severe congenital heart disease or normal heart.

    PubMed

    Wang, Yu; Cao, Hai-yan; Xie, Ming-xing; He, Lin; Han, Wei; Hong, Liu; Peng, Yuan; Hu, Yun-fei; Song, Ben-cai; Wang, Jing; Wang, Bin; Deng, Cheng

    2016-04-01

    To investigate the application and effectiveness of vascular corrosion technique in preparing fetal cardiovascular cast models, 10 normal fetal heart specimens with other congenital disease (control group) and 18 specimens with severe congenital heart disease (case group) from induced abortions were enrolled in this study from March 2013 to June 2015 in our hospital. Cast models were prepared by injecting casting material into vascular lumen to demonstrate real geometries of fetal cardiovascular system. Casting effectiveness was analyzed in terms of local anatomic structures and different anatomical levels (including overall level, atrioventricular and great vascular system, left-sided and right-sided heart), as well as different trimesters of pregnancy. In our study, all specimens were successfully casted. Casting effectiveness analysis of local anatomic structures showed a mean score from 1.90±1.45 to 3.60±0.52, without significant differences between case and control groups in most local anatomic structures except left ventricle, which had a higher score in control group (P=0.027). Inter-group comparison of casting effectiveness in different anatomical levels showed no significant differences between the two groups. Intra-group comparison also revealed undifferentiated casting effectiveness between atrioventricular and great vascular system, or left-sided and right-sided heart in corresponding group. Third-trimester group had a significantly higher perfusion score in great vascular system than second-trimester group (P=0.046), while the other anatomical levels displayed no such difference. Vascular corrosion technique can be successfully used in fabrication of fetal cardiovascular cast model. It is also a reliable method to demonstrate three-dimensional anatomy of severe congenital heart disease and normal heart in fetus.

  17. Dynamic holographic imaging of the beating human heart

    PubMed

    Hunziker; Smith; Scherrer-Crosbie; Liel-Cohen; Levine; Nesbitt; Benton; Picard

    1999-02-01

    Background--Currently, the reporting and archiving of echocardiographic data suffer from the difficulty of representing heart motion on printable 2-dimensional (2D) media. Methods and Results--We studied the capability of holography to integrate motion into 2D echocardiographic prints. Images of normal human hearts and of a variety of mitral valve function abnormalities (mitral valve prolapse, systolic anterior motion of the mitral leaflets, and obstruction of the mitral valve by a myxoma) were acquired digitally on standard echocardiographic machines. Images were processed into a data format suitable for holographic printing. Angularly multiplexed holograms were then printed on a prototype holographic "laser" printer, with integration of time in vertical parallax, so that heart motion became visible when the hologram was tilted up and down. The resulting holograms displayed the anatomy with the same resolution as the original acquisition and allowed detailed study of valve motion with side-by-side comparison of normal and abnormal findings. Comparison of standard echocardiographic measurements in original echo frames and corresponding hologram views showed an excellent correlation of both methods (P<0.0001, r2=0.979, mean bias=2.76 mm). In this feasibility study, both 2D and 3D holographic images were produced. The equipment needed to view these holograms consists of only a simple point-light source. Conclusions--Holographic representation of myocardial and valve motion from echocardiographic data is feasible and allows the printing on a 2D medium of the complete heart cycle. Combined with the recent development of online holographic printing, this novel technique has the potential to improve reporting, visualization, and archiving of echocardiographic imaging.

  18. Echocardiographic image of an active human heart

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiographic images provide quick, safe images of the heart as it beats. While a state-of-the art echocardiograph unit is part of the Human Research Facility on International Space Station, quick transmission of images and data to Earth is a challenge. NASA is developing techniques to improve the echocardiography available to diagnose sick astronauts as well as study the long-term effects of space travel on their health. Echocardiography uses ultrasound, generated in a sensor head placed against the patient's chest, to produce images of the structure of the heart walls and valves. However, ultrasonic imaging creates an enormous volume of data, up to 220 million bits per second. This can challenge ISS communications as well as Earth-based providers. Compressing data for rapid transmission back to Earth can degrade the quality of the images. Researchers at the Cleveland Clinic Foundation are working with NASA to develop compression techniques that meet imaging standards now used on the Internet and by the medical community, and that ensure that physicians receive quality diagnostic images.

  19. Human heart conjugate cooling simulation: unsteady thermo-fluid-stress analysis.

    PubMed

    Abdoli, Abas; Dulikravich, George S; Bajaj, Chandrajit; Stowe, David F; Jahania, M Salik

    2014-11-01

    The main objective of this work was to demonstrate computationally that realistic human hearts can be cooled much faster by performing conjugate heat transfer consisting of pumping a cold liquid through the cardiac chambers and major veins while keeping the heart submerged in cold gelatin filling a cooling container. The human heart geometry used for simulations was obtained from three-dimensional, high resolution CT-angio scans. Two fluid flow domains for the right (pulmonic) and left (systemic) heart circulations, and two solid domains for the heart tissue and gelatin solution were defined for multi-domain numerical simulation. Detailed unsteady temperature fields within the heart tissue were calculated during the conjugate cooling process. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart due to the coolant fluid shear and normal forces and to examine the thermal stress caused by temperature variation inside the heart. It was demonstrated that a conjugate cooling effort with coolant temperature at +4°C is capable of reducing the average heart temperature from +37°C to +8°C in 25 minutes for cases in which the coolant was steadily pumped only through major heart inlet veins and cavities.

  20. Human heart conjugate cooling simulation: Unsteady thermo-fluid-stress analysis

    PubMed Central

    Abdoli, Abas; Dulikravich, George S.; Bajaj, Chandrajit; Stowe, David F.; Jahania, M. Salik

    2015-01-01

    The main objective of this work was to demonstrate computationally that realistic human hearts can be cooled much faster by performing conjugate heat transfer consisting of pumping a cold liquid through the cardiac chambers and major veins while keeping the heart submerged in cold gelatin filling a cooling container. The human heart geometry used for simulations was obtained from three-dimensional, high resolution MRI scans. Two fluid flow domains for the right (pulmonic) and left (systemic) heart circulations, and two solid domains for the heart tissue and gelatin solution were defined for multi-domain numerical simulation. Detailed unsteady temperature fields within the heart tissue were calculated during the conjugate cooling process. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart due to the coolant fluid shear and normal forces and to examine the thermal stress caused by temperature variation inside the heart. It was demonstrated that a conjugate cooling effort with coolant temperature at +4°C is capable of reducing the average heart temperature from +37°C to +8°C in 25 minutes for cases in which the coolant was steadily pumped only through major heart inlet veins and cavities. PMID:25045006

  1. Atrial BNP endocrine function during chronic unloading of the normal canine heart.

    PubMed

    Lisy, Ondrej; Redfield, Margaret M; Schirger, John A; Burnett, John C

    2005-01-01

    The goal of the study was to define the effect of chronic unloading of the normal heart on atrial endocrine function with a focus on brain natriuretic peptide (BNP), specifically addressing the role of load and neurohumoral stimulation. Although produced primarily by atrial myocardium in the normal heart, controversy persists with regard to load-dependent vs. neurohumoral mechanisms controlling atrial BNP synthesis and storage. We used a unique canine model of chronic unloading of the heart produced by thoracic inferior vena caval constriction (TIVCC), which also resulted in activation of plasma endothelin (ET-1), ANG II, and norepinephrine (NE), known activators of BNP synthesis, compared with sham. TIVCC was produced by banding of the inferior vena cava for 10 days (n = 6), whereas in control (n = 5) the band was not constricted (sham). In a third group (n = 7), the band was released on day 11, thus acutely reloading the heart. Chronic TIVCC decreased cardiac output and right atrial pressure with a decrease in atrial mass index consistent with atrial atrophy. Atrial BNP mRNA decreased compared with sham. Immunoelectron microscopy revealed an increase in BNP in atrial granules consistent with increased storage. Acute reloading increased cardiac filling pressures and resulted in an increase in plasma BNP. We conclude that chronic unloading of the normal heart results in atrial atrophic remodeling and in suppression of atrial BNP mRNA despite intense stimulation by ET, ANG II, and NE, underscoring the primacy of load in the control of atrial endocrine function and structure.

  2. Disposition of human fibrinopeptide A in normal and nephrectomized rabbits

    SciTech Connect

    Harenberg, J.; Stehle, G.; Waibel, S.; Hermann, H.J.; Eisenhut, M.; Zimmermann, R.

    1983-10-01

    The distribution, elimination, and metabolism of human fibrinopeptide A (FPA) were studied in normal and nephrectomized rabbits. The activity of /sup 125/I-labeled desamino-tyrosyl human FPA (DAT-FPA) was followed over 4 hours after i.v. administration. Results show that in normal rabbits (n . 10) DAT-FPA is eliminated from plasma in four phases with half-lives of 30 sec, 3.5 min, 15 min, and 90 min. The distribution of /sup 123/I-labeled DAT-FPA in plasma was determined in 15 control rabbits with scintigraphy over 2 hours. DAT-FPA was distributed primarily in the cardiovascular system, liver, and kidneys. In some animals minimal radioactivity was detected over the gall bladder. Radioactivity accumulated rapidly in the urinary bladder, approximately 50% being recorded after 15 min and 90% after 120 min. In the heart area radioactivity decreased with half-lives of 25 sec, 7.5 min, 25 min, and 180 min. Nephrectomized rabbits had similar initial fast distribution of DAT-FPA after administration of /sup 125/I-labeled (n . 10) and /sup 123/I-labeled peptide (n . 10). The estimated half-life of the slow component was in the order of several hours. The results of the scintigraphic and gel chromatographic studies show that FPA is primarily excreted in the urine. Previously reported half-lives of FPA reflect distribution rather than steady state conditions.

  3. Teaching Recognition of Normal and Abnormal Heart Sounds Using Computer-Assisted Instruction

    ERIC Educational Resources Information Center

    Musselman, Eugene E.; Grimes, George M.

    1976-01-01

    The computer is being used in an innovative manner to teach the recognition of normal and abnormal canine heart sounds at the University of Chicago. Experience thus far indicates that the PLATO program resources allow the maximum development of the student's proficiency in auscultation. (Editor/LBH)

  4. Multivariate Normal Tissue Complication Probability Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors

    SciTech Connect

    Cella, Laura; Liuzzi, Raffaele; Conson, Manuel; D’Avino, Vittoria; Salvatore, Marco; Pacelli, Roberto

    2013-10-01

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced asymptomatic heart valvular defects (RVD). Methods and Materials: Fifty-six patients treated with sequential chemoradiation therapy for Hodgkin lymphoma (HL) were retrospectively reviewed for RVD events. Clinical information along with whole heart, cardiac chambers, and lung dose distribution parameters was collected, and the correlations to RVD were analyzed by means of Spearman's rank correlation coefficient (Rs). For the selection of the model order and parameters for NTCP modeling, a multivariate logistic regression method using resampling techniques (bootstrapping) was applied. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). Results: When we analyzed the whole heart, a 3-variable NTCP model including the maximum dose, whole heart volume, and lung volume was shown to be the optimal predictive model for RVD (Rs = 0.573, P<.001, AUC = 0.83). When we analyzed the cardiac chambers individually, for the left atrium and for the left ventricle, an NTCP model based on 3 variables including the percentage volume exceeding 30 Gy (V30), cardiac chamber volume, and lung volume was selected as the most predictive model (Rs = 0.539, P<.001, AUC = 0.83; and Rs = 0.557, P<.001, AUC = 0.82, respectively). The NTCP values increase as heart maximum dose or cardiac chambers V30 increase. They also increase with larger volumes of the heart or cardiac chambers and decrease when lung volume is larger. Conclusions: We propose logistic NTCP models for RVD considering not only heart irradiation dose but also the combined effects of lung and heart volumes. Our study establishes the statistical evidence of the indirect effect of lung size on radio-induced heart toxicity.

  5. Critical Scale Invariance in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Sakata, Seiichiro; Hayano, Junichiro; Yamamoto, Yoshiharu

    2004-10-01

    We demonstrate the robust scale-invariance in the probability density function (PDF) of detrended healthy human heart rate increments, which is preserved not only in a quiescent condition, but also in a dynamic state where the mean level of the heart rate is dramatically changing. This scale-independent and fractal structure is markedly different from the scale-dependent PDF evolution observed in a turbulentlike, cascade heart rate model. These results strongly support the view that a healthy human heart rate is controlled to converge continually to a critical state.

  6. Right ventricular wall abscess in structurally normal heart after leg osteomyelitis: First case.

    PubMed

    Ahmad, Tanveer; Pasarad, Ashwini Kumar; Kishore, Kolkebaile Sadanand; Maheshwarappa, Nandakumar Neralakere

    2016-09-01

    A 3-year-old girl presented with fever and acute dyspnea for 4 days. She had suffered an injury to the left lower leg 3 weeks earlier, with abscess formation. Magnetic resonance imaging showed osteomyelitis of the lower tibia. Echocardiography showed a mass in the right ventricular wall. She underwent concomitant heart surgery for removal of the right ventricular mass and limb arthrotomy. We believe this is a first reported case in which a ventricular wall abscess developed in a structurally normal heart following leg osteomyelitis.

  7. Evolutionary anticipation of the human heart.

    PubMed Central

    Victor, S.; Nayak, V. M.

    2000-01-01

    We have studied the comparative anatomy of hearts from fish, frog, turtle, snake, crocodile, birds (duck, chicken, quail), mammals (elephant, dolphin, sheep, goat, ox, baboon, wallaby, mouse, rabbit, possum, echidna) and man. The findings were analysed with respect to the mechanism of evolution of the heart. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:11041025

  8. Study of the normal heart size in Northwest part of Iranian population: a cadaveric study

    PubMed Central

    Mohammadi, Shabnam; Hedjazi, Arya; Sajjadian, Maryam; Ghoroubi, Naser; Mohammadi, Maryam; Erfani, Saeed

    2016-01-01

    Introduction: The heart is in a muscular organ in the middle mediastinum. According to our knowledge, there is no standard data about the anthropologic parameters of normal Iranian hearts. Hence, the aim of the present study was to investigate the normal heart size in Iranian cadavers. Methods: In a cross-sectional study, 550 cadavers (104 female/446 male) from June 2014 to July 2015 in the Razavi Khorasan province of Iran were included in the study. After approval of the Ethical Committee, cadavers were divided into 10 groups based on age groups. Length, width, weight, chordae tendineae, papillary muscles, and heart valves were measured using vernier caliper. Finally, data were analyzed using SPSS software. Results: The mean values of the demographic data were as follows: age= 42.12 ± 21.34 years; weight = 60.38 ± 15.32 kg; height = 158.14 ± 23.77 cm; and BMI = 24.66 ± 17.60 kg/m2. The mean values of the heart length, width, chordae tendineae, pupillary muscles, weight, and index of the heart were 11.41 ± 2.15 cm, 8.21 ± 4.38 cm, 19.41 ± 6.70, 5.74 ± 1.96, 247.78 ± 62.27 grams, and 5.74 ± 1.96, respectively. In addition, the circumference of the tricuspid valve, circumference of the mitral valves, and tricuspid and mitral areas were 8.80 ± 1.11 cm, 9.43 ± 1.44 cm, 4.11 ± 0.71 cm2, and 4.50 ± 0.90 cm2, respectively. Conclusion: Mean values of the heart’s length and width was similar to previous reports from western population. The circumference of the tricuspid valve was less than the textbook’s data, while circumference of the mitral valves was more than it. The study findings provide valuable information about standard data of the heart in the Iranian population, which is useful for surgeons as well as anthropologists. However, multi-center studies with a larger sample size are required to complete data about anatomical characteristics of normal hearts. PMID:27777697

  9. Polymorphic Ventricular Tachycardia/Ventricular Fibrillation and Sudden Cardiac Death in the Normal Heart.

    PubMed

    Shah, Ashok J; Hocini, Meleze; Denis, Arnaud; Derval, Nicolas; Sacher, Frederic; Jais, Pierre; Haissaguerre, Michel

    2016-09-01

    Primary electrical diseases manifest with polymorphic ventricular tachycardia (PMVT) and ventricular fibrillation (VF) and along with idiopathic VF contribute to about 10% of sudden cardiac deaths (SCDs) overall. These disorders include long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, short QT syndrome, and early repolarization syndrome. This article reviews the clinical electrophysiological management of PMVT/VF in a structurally normal heart affected with these disorders. PMID:27521091

  10. Changes in oxygen saturation and heart frequency during sleep in young normal subjects.

    PubMed Central

    Gimeno, F; Peset, R

    1984-01-01

    Changes in oxygen saturation and heart frequency were measured during sleep in a group of 21 normal subjects (9 women and 12 men) aged 19-25. At the time of the investigation all were non-smokers, they had no respiratory complaints, and indices of lung function (lung volumes, volume-pressure diagram, and diffusing capacity for carbon monoxide) were within normal limits. In contrast to published data, there were no major changes in oxygen saturation and no differences between men and women. PMID:6474401

  11. Normal and abnormal intestinal absorption by humans

    PubMed Central

    Heizer, William D.

    1979-01-01

    Adults eating a Western diet digest and absorb ingested food containing approximately 100 g fat, 350 g carbohydrate, and 75 g protein daily. Normal fat absorption requires adequate gastric, pancreatic, liver-biliary, mucosal, and lymphatic function. Carbohydrate and protein absorption is much less dependent on liver-biliary and lymphatic function. The intestine has a large reserve capacity for digestion and absorption of nutrients which is due to both excess function and to adaptive changes which increase function in one segment of the digestive-absorptive system when it is decreased or lost in another segment. The large reserve capacity explains why most of the prevalent intestinal diseases seldom cause clinically detectable changes in absorption. However, there are more than 30 less-common human diseases which cause malabsorption of one or more nutrients. Those that cause the malabsorption syndrome, i.e., steatorrhea and weight loss, can be conveniently categorized according to the major deficiency leading to the absorptive defect as follows: insufficient pancreatic enzyme activity, insufficient bile acid, disease of the small intestinal wall, multiple defects, mechanism unknown, and drug-induced malabsorption. A few diseases, most of which are congenital, cause malabsorption of only one or a few related nutrients such as lactose malabsorption in lactase deficiency. Most of the tests currently in use for detecting and diagnosing the cause of malabsorption are relatively insensitive and nonspecific. Chemical analysis of the fat in a three-day stool collection remains the single best test for diagnosing the malabsorption syndrome. However, a breath test using Triolein labeled with either the radioactive or stable isotope of carbon may be an important recent advance. Other breath tests are also currently being investigated for quantitating absorption or malabsorption of various substances including bile acids and various sugars. Studies of the function of the

  12. Diffusion MRI Tractography of the Developing Human Fetal Heart

    PubMed Central

    Jackowski, Marcel P.; Kostis, William J.; Dai, Guangping; Sanders, Stephen; Sosnovik, David E.

    2013-01-01

    Objective Human myocardium has a complex and anisotropic 3D fiber pattern. It remains unknown, however, when in fetal life this anisotropic pattern develops and whether the human heart is structurally fully mature at birth. We aimed here to use diffusion tensor MRI (DTI) tractography to characterize the evolution of fiber architecture in the developing human fetal heart. Methods Human fetal hearts (n = 5) between 10–19 weeks of gestation were studied. The heart from a 6-day old neonate and an adult human heart served as controls. The degree of myocardial anisotropy was measured by calculating the fractional anisotropy (FA) index. In addition, fiber tracts were created by numerically integrating the primary eigenvector field in the heart into coherent streamlines. Results At 10–14 weeks the fetal hearts were highly isotropic and few tracts could be resolved. Between 14–19 weeks the anisotropy seen in the adult heart began to develop. Coherent fiber tracts were well resolved by 19 weeks. The 19-week myocardium, however, remained weakly anisotropic with a low FA and no discernable sheet structure. Conclusions The human fetal heart remains highly isotropic until 14–19 weeks, at which time cardiomyocytes self-align into coherent tracts. This process lags 2–3 months behind the onset of cardiac contraction, which may be a prerequisite for cardiomyocyte maturation and alignment. No evidence of a connective tissue scaffold guiding this process could be identified by DTI. Maturation of the heart’s sheet structure occurs late in gestation and evolves further after birth. PMID:23991152

  13. Phase Transition in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Togo, Fumiharu; Yamamoto, Yoshiharu

    2005-07-01

    A healthy human heart rate displays complex fluctuations which share characteristics of physical systems in a critical state. We demonstrate that the human heart rate in healthy individuals undergoes a dramatic breakdown of criticality characteristics, reminiscent of continuous second order phase transitions. By studying the germane determinants, we show that the hallmark of criticality—highly correlated fluctuations—is observed only during usual daily activity, and a breakdown of these characteristics occurs in prolonged, strenuous exercise and sleep. This finding is the first reported discovery of the dynamical phase transition phenomenon in a biological control system and will be a key to understanding the heart rate control system in health and disease.

  14. [Intrathoracic movement of the normal and hypertrophied hearts measured by biplane coronary cineangiography].

    PubMed

    Osato, S; Ishikawa, K; Kanamasa, K; Ogai, T; Oda, A; Katori, R

    1984-06-01

    The shift of the heart during systole within the thorax was measured using bifurcations of the left coronary artery as cineangiographic markers. Biplane coronary cineangiography was performed in 13 normal subjects and 6 patients with non-obstructive hypertrophic cardiomyopathy (HCM). The spatial coordinates (X, Y, Z) of the bifurcations on the cineangiograms were measured using a motion analizer-digitizer-computer system. The systolic excursion of the motion of a bifurcation located at the anterior-basal point of the heart was 1.4 +/- 0.1 (+/-SD) cm leftward, 3.0 +/- 0.3 cm caudally and 2.5 +/- 0.1 cm anteriorly in normal subjects. In the cases with HCM, on the other hand, the bifurcation moved 2.2 +/- 1.1, 2.7 +/- 1.2 and 2.2 +/- 0.6 cm during systole, respectively. The movement at the apex in the normal subjects was 1.7 +/- 0.2 cm rightward, 1.5 +/- 0.2 cm caudally and 1.5 +/- 0.2 cm posteriorly, although the direction was reversed as compared to that of the anterior wall of the cardiac base. The amplitude of the excursion was also reduced at the apex, suggesting the systolic twist of the ventricular wall. The excursion of the apex in HCM was 0.6 +/- 1.7, 1.5 +/- 1.8 and 2.5 +/- 1.4 cm, respectively, toward the base of the heart as in the normal subjects. The maximum speeds of these motions were 34.0 +/- 9.2 cm/sec leftward, caudally and anteriory at the anterior-basal point and 36.2 +/- 7.3 cm/sec rightward, caudally and posteriorly in the normal subjects.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  16. Interpretation of Normalized Spectral Heart Rate Variability Indices In Sleep Research: A Critical Review

    PubMed Central

    Burr, Robert L.

    2007-01-01

    The normalized spectral heart rate variability (HRV) measures low-frequency (LF)nu and high-frequency (HF)nu are frequently used in contemporary sleep research studies to quantify modulation of the sympathetic and parasympathetic branches of the autonomic nervous system. The purpose of this tutorial and methodologic critique is to concisely demonstrate the structural algebraic redundancy inherent in the normalized spectral HRV measures with respect to each other, and also with respect to the well-known HRV index of sympathovagal balance, LF:HF ratio. The statistical problems and interpretational paradoxes related to the mathematical definitions of LFnu and HFnu are briefly outlined. Examples of use of normalized spectral HRV measures in recent articles from the sleep-relevant research literature are critically reviewed. LFnu, HFnu, and LF:HF ratio should be considered equivalent carriers of information about sympathovagal balance. Citation: Burr RL. Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review. SLEEP 2007;30(7):913-919. PMID:17682663

  17. Effect of ICI 118551 on bronchial beta-adrenoceptor function and exercise heart rate in normal man.

    PubMed Central

    Tattersfield, A E; Cragg, D J

    1983-01-01

    To determine whether the beta 2-selectivity of ICI 118551 extended to human airways, we measured bronchial beta-adrenoceptor blockade and the reduction in exercise heart rate in six normal subjects on different occasions after ingestion of ICI 118551 20 or 50 mg, propranolol 40 mg or placebo in random order. Bronchial beta-adrenoceptor blockade after each active drug was measured as the displacement of the airway dose-response curve to salbutamol and expressed as a dose ratio. Exercise heart rate was measured during the fifth minute of steady state exercise at 70% of the subject's maximum work load. The mean dose ratios for the salbutamol airway dose-response curves following ICI 118551 20 and 50 mg and propranolol 40 mg were 11, 55 and 48 respectively. The mean reductions in exercise heart rate for the three drugs were 0.6, 6.6 and 16.6% respectively. These results confirm that the beta 2-selectivity of ICI 118551 includes airway beta 2-adrenoceptors in man. PMID:6140938

  18. Right Heart 4DMRI Flow Visualization in Normal and Hypertensive subjects

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jean; Browning, James; Fenster, Brett; Schroeder, Joyce

    2015-11-01

    Recent advances in time-resolved 3D cardiac magnetic resonance imaging (4DMRI) have allowed for the 3-dimensional characterization of blood flow in the right ventricle (RV) and right atrium (RA). In this talk, an overview of a large, ongoing, multi-disciplinary investigation of 4D right heart hemodynamics in normal and pathologic patients is given, as well as lessons learned from 4DMRI cardiac research. Time-resolved visualization techniques for understanding and communicating complex right heart flow structures throughout the cardiac cycle are presented. Finally, a qualitative visual comparison of 3D flow structures in the vena cava, RA, and RV between healthy subjects and pulmonary hypertensive patients is presented.

  19. Na⁺ transport in the normal and failing heart - remember the balance.

    PubMed

    Despa, Sanda; Bers, Donald M

    2013-08-01

    In the heart, intracellular Na(+) concentration ([Na(+)]i) is a key modulator of Ca(2+) cycling, contractility and cardiac myocyte metabolism. Several Na(+) transporters are electrogenic, thus they both contribute to shaping the cardiac action potential and at the same time are affected by it. [Na(+)]i is controlled by the balance between Na(+) influx through various pathways, including the Na(+)/Ca(2+) exchanger and Na(+) channels, and Na(+) extrusion via the Na(+)/K(+)-ATPase. [Na(+)]i is elevated in HF due to a combination of increased entry through Na(+) channels and/or Na(+)/H(+) exchanger and reduced activity of the Na(+)/K(+)-ATPase. Here we review the major Na(+) transport pathways in cardiac myocytes and how they participate in regulating [Na(+)]i in normal and failing hearts. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes."

  20. Influence of peak exercise heart rate on normal thallium-201 myocardial clearance

    SciTech Connect

    Kaul, S.; Chesler, D.A.; Pohost, G.M.; Strauss, H.W.; Okada, R.D.; Boucher, C.A.

    1986-01-01

    Measurement of myocardial clearance rates between initial and delayed images is a major justification for adding computer quantification to the interpretation of exercise /sup 201/TI images. To clarify the range of normal thallium clearance and its relationship to the level of exercise achieved, exercise thallium images in 89 normal subjects were analyzed: 45 asymptomatic subjects with less than 1% probability of coronary artery disease (CAD) (Group I), and 44 patients with chest pain found to have no significant CAD on angiography (Group II). Mean initial regional thallium uptake was similar in the two groups, but myocardial thallium clearance (mean +/- 1 s.d.) was slower in Group II, expressed as a longer half-life in the myocardium (8.2 +/- 7.6 hr compared with 3.4 +/- 0.7 hr p less than 0.001). Analysis of variance using ten clinical and exercise variables as covariates showed that the slower clearance in Group II was related to a lower peak exercise heart rate (HR) (154 +/- 27 compared with 183 +/- 11, respectively, p less than 0.001). By linear regression analysis, a decrease in peak HR of 1 beat/min was associated with a slower thallium clearance (longer half-life) of 0.05 hr. Using this formula, the clearance value in each patient was then corrected for peak exercise heart rate by decreasing measured clearance by 0.05 hr multiplied by the amount peak exercise heart rate which was below 183 (the mean value in Group I). There were no differences in the corrected clearance between the two groups. We conclude that thallium myocardial clearance after exercise is related in part to factors other than the presence of CAD, being slower when peak exercise HR is lower. Therefore, thallium clearance rates alone uncorrected for peak exercise heart rate should be used with caution when diagnosing CAD.

  1. Acellular human heart matrix: A critical step toward whole heart grafts.

    PubMed

    Sánchez, Pedro L; Fernández-Santos, M Eugenia; Costanza, Salvatore; Climent, Andreu M; Moscoso, Isabel; Gonzalez-Nicolas, M Angeles; Sanz-Ruiz, Ricardo; Rodríguez, Hugo; Kren, Stefan M; Garrido, Gregorio; Escalante, Jose L; Bermejo, Javier; Elizaga, Jaime; Menarguez, Javier; Yotti, Raquel; Pérez del Villar, Candelas; Espinosa, M Angeles; Guillem, María S; Willerson, James T; Bernad, Antonio; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco

    2015-08-01

    The best definitive treatment option for end-stage heart failure currently is transplantation, which is limited by donor availability and immunorejection. Generating an autologous bioartificial heart could overcome these limitations. Here, we have decellularized a human heart, preserving its 3-dimensional architecture and vascularity, and recellularized the decellularized extracellular matrix (dECM). We decellularized 39 human hearts with sodium-dodecyl-sulfate for 4-8 days. Cell removal and architectural integrity were determined anatomically, functionally, and histologically. To assess cytocompatibility, we cultured human cardiac-progenitor cells (hCPC), bone-marrow mesenchymal cells (hMSCs), human endothelial cells (HUVECs), and H9c1 and HL-1 cardiomyocytes in vitro on dECM ventricles up to 21 days. Cell survival, gene expression, organization and/or electrical coupling were analyzed and compared to conventional 2-dimensional cultures. Decellularization removed cells but preserved the 3-dimensional cardiac macro and microstructure and the native vascular network in a perfusable state. Cell survival was observed on dECM for 21 days. hCPCs and hMSCs expressed cardiocyte genes but did not adopt cardiocyte morphology or organization; HUVECs formed a lining of endocardium and vasculature; differentiated cardiomyocytes organized into nascent muscle bundles and displayed mature calcium dynamics and electrical coupling in recellularized dECM. In summary, decellularization of human hearts provides a biocompatible scaffold that retains 3-dimensional architecture and vascularity and that can be recellularized with parenchymal and vascular cells. dECM promotes cardiocyte gene expression in stem cells and organizes existing cardiomyocytes into nascent muscle showing electrical coupling. These findings represent a first step toward manufacturing human heart grafts or matrix components for treating cardiovascular disease.

  2. Scaling Behaviour and Memory in Heart Rate of Healthy Human

    NASA Astrophysics Data System (ADS)

    Cai, Shi-Min; Peng, Hu; Yang, Hui-Jie; Zhou, Tao; Zhou, Pei-Ling; Wang, Bing-Hong

    2007-10-01

    We investigate a set of complex heart rate time series from healthy human in different behaviour states with the detrended fluctuation analysis and diffusion entropy (DE) method. It is proposed that the scaling properties are influenced by behaviour states. The memory detected by DE exhibits an approximately same pattern after a detrending procedure. Both of them demonstrate the long-range strong correlations in heart rate. These findings may be helpful to understand the underlying dynamical evolution process in the heart rate control system, as well as to model the cardiac dynamic process.

  3. How Live Performance Moves the Human Heart.

    PubMed

    Shoda, Haruka; Adachi, Mayumi; Umeda, Tomohiro

    2016-01-01

    We investigated how the audience member's physiological reactions differ as a function of listening context (i.e., live versus recorded music contexts). Thirty-seven audience members were assigned to one of seven pianists' performances and listened to his/her live performances of six pieces (fast and slow pieces by Bach, Schumann, and Debussy). Approximately 10 weeks after the live performance, each of the audience members returned to the same room and listened to the recorded performances of the same pianists' via speakers. We recorded the audience members' electrocardiograms in listening to the performances in both conditions, and analyzed their heart rates and the spectral features of the heart-rate variability (i.e., HF/TF, LF/HF). Results showed that the audience's heart rate was higher for the faster than the slower piece only in the live condition. As compared with the recorded condition, the audience's sympathovagal balance (LF/HF) was less while their vagal nervous system (HF/TF) was activated more in the live condition, which appears to suggest that sharing the ongoing musical moments with the pianist reduces the audience's physiological stress. The results are discussed in terms of the audience's superior attention and temporal entrainment to live performance.

  4. How Live Performance Moves the Human Heart

    PubMed Central

    Shoda, Haruka; Adachi, Mayumi; Umeda, Tomohiro

    2016-01-01

    We investigated how the audience member’s physiological reactions differ as a function of listening context (i.e., live versus recorded music contexts). Thirty-seven audience members were assigned to one of seven pianists’ performances and listened to his/her live performances of six pieces (fast and slow pieces by Bach, Schumann, and Debussy). Approximately 10 weeks after the live performance, each of the audience members returned to the same room and listened to the recorded performances of the same pianists’ via speakers. We recorded the audience members’ electrocardiograms in listening to the performances in both conditions, and analyzed their heart rates and the spectral features of the heart-rate variability (i.e., HF/TF, LF/HF). Results showed that the audience’s heart rate was higher for the faster than the slower piece only in the live condition. As compared with the recorded condition, the audience’s sympathovagal balance (LF/HF) was less while their vagal nervous system (HF/TF) was activated more in the live condition, which appears to suggest that sharing the ongoing musical moments with the pianist reduces the audience’s physiological stress. The results are discussed in terms of the audience’s superior attention and temporal entrainment to live performance. PMID:27104377

  5. Developmental hematopoiesis in normal human fetal blood.

    PubMed

    Forestier, F; Daffos, F; Catherine, N; Renard, M; Andreux, J P

    1991-06-01

    Using an easy and safe procedure for fetal blood sampling in utero, we studied 3,415 fetuses for prenatal diagnosis. Retrospectively, 2,860 normal blood samples, performed from the 18th week of gestation to the end of pregnancy, were selected. Differentials were evaluated in 732 cases. Burst-forming unit erythroid (BFU-E) and erythropoietin (Epo) were measured in 27 and 163 cases, respectively. Total nucleated cell and platelet counts did not change from the 18th to the 30th week of gestation. The lymphocytes represented the main population and the decrease of normoblastic cells made up for the increase in neutrophils. The increase of red blood cells and hemoglobin was substantial during the studied period. At mid trimester threefold more BFU-E were obtained than at birth. Epo levels remained stable throughout the pregnancy and no correlation was found between Epo and gestational age. These normal values of fetal erythropoiesis will improve our knowledge of physiology and provide a better insight into developmental hematopoiesis.

  6. Assessment and comparison of left ventricular shear in normal and situs inversus totalis hearts by means of magnetic resonance tagging.

    PubMed

    Rossi, Alessandro C; Pluijmert, Marieke; Bovendeerd, Peter H M; Kroon, Wilco; Arts, Theo; Delhaas, Tammo

    2015-03-01

    Situs inversus totalis (SIT) is characterized by complete mirroring of gross cardiac anatomy and position combined with an incompletely mirrored myofiber arrangement, being normal at the apex but inverted at the base of the left ventricle (LV). This study relates myocardial structure to mechanical function by analyzing and comparing myocardial deformation patterns of normal and SIT subjects, focusing especially on circumferential-radial shear. In nine control and nine SIT normotensive human subjects, myocardial deformation was assessed from magnetic resonance tagging (MRT) image sequences of five LV short-axis slices. During ejection, no significant difference in either circumferential shortening (εcc) or its axial gradient (Δεcc) is found between corresponding LV levels in control and SIT hearts. Circumferential-radial shear (εcr) has a clear linear trend from apex-to-base in controls, while in SIT it hovers close to zero at all levels. Torsion as well as axial change in εcr (Δεcr) is as in controls in apical sections of SIT hearts but deviates significantly towards the base, changing sign close to the LV equator. Interindividual variability in torsion and Δεcr values is higher in SIT than in controls. Apex-to-base trends of torsion and Δεcr in SIT, changing sign near the LV equator, further substantiate a structural transition in myofiber arrangement close to the LV equator itself. Invariance of εcc and Δεcc patterns between controls and SIT subjects shows that normal LV pump function is achieved in SIT despite partial mirroring of myocardial structure leading to torsional and shear patterns that are far from normality.

  7. Spectrum of Ventricular Arrhythmias Arising from Papillary Muscle in the Structurally Normal Heart.

    PubMed

    Naksuk, Niyada; Kapa, Suraj; Asirvatham, Samuel J

    2016-09-01

    Papillary muscle is an endocavitary structure that can give rise to ventricular arrhythmias in a structurally normal heart. Its manifestation is generally benign. The papillary muscle's complex anatomy and the presence of intermixed Purkinje fibers can create a substrate for idiopathic ventricular fibrillation. Although differentiating ventricular arrhythmias originating from the papillary muscle and the fascicles is challenging and not always possible, the distinction may be helpful for planning ablation. The propensity for difficulty with ablation of papillary arrhythmias results in a variable success rate. Improvement in techniques to stabilize the catheter, use of imaging, and methods of energy delivery are required to improve ablation outcomes.

  8. Dynamics and Molecular Mechanisms of Ventricular Fibrillation in Structurally Normal Hearts.

    PubMed

    Jalife, José

    2016-09-01

    Ventricular fibrillation (VF) is the most severe cardiac rhythm disturbance and one of the most important immediate causes of sudden cardiac death. In the structurally normal heart, a small number of stable reentrant sources, perhaps 1 or 2, underlie the mechanism of VF, and the stabilization of the sources, their frequency, and the complexity of the turbulent waves they generate depend on the expression, spatial distribution, and intermolecular interactions of the 2 most important ion channels that control cardiac excitability: the inward rectifier potassium channel, Kir2.1, and the alpha subunit of the main cardiac sodium channel, NaV1.5. PMID:27521093

  9. Construction of a normalized directionally cloned cDNA library from adult heart and analysis of 3040 clones by partial sequencing.

    PubMed

    Tanaka, T; Ogiwara, A; Uchiyama, I; Takagi, T; Yazaki, Y; Nakamura, Y

    1996-07-01

    Large-scale sequencing of clones from cDNA libraries derived from specific tissues is a rapid and efficient way of discovering novel genes expressed in those tissues. However, because the heart is continually contracting and relaxing, it strongly expresses muscle-contractile genes and/or mitochondrial genes, a bias that reduces the efficiency of this method. To improve the efficiency of identifying novel genes expressed in the heart, we constructed a normalized directionally cloned cDNA library from adult heart and partially sequenced 3040 clones. Comparisons of these sequence data with known DNA sequences in the database revealed that 57.1% of the clones matched human genes already known, 23.4% were identical or almost identical to human expressed sequence tags (ESTs), 14.2% bore no significant homology to any sequences in the database, and 1.2% represented repetitive sequences. The remaining 4.1% showed some homology with known genes, and Northern blot analysis of several clones in this category revealed that most of them were expressed mainly in the heart and skeletal muscle. After redundancy was excluded, the 3040 clones accounted for 1395 distinctive ESTs, 446 of which exhibited no match to any known sequence. Our results suggest that our normalized library is less redundant than standard libraries and is a useful resource for cataloging genes expressed in the heart. PMID:8661126

  10. The Living Heart Project: A robust and integrative simulator for human heart function

    PubMed Central

    Baillargeon, Brian; Rebelo, Nuno; Fox, David D.; Taylor, Robert L.; Kuhl, Ellen

    2014-01-01

    The heart is not only our most vital, but also our most complex organ: Precisely controlled by the interplay of electrical and mechanical fields, it consists of four chambers and four valves, which act in concert to regulate its filling, ejection, and overall pump function. While numerous computational models exist to study either the electrical or the mechanical response of its individual chambers, the integrative electro-mechanical response of the whole heart remains poorly understood. Here we present a proof-of-concept simulator for a four-chamber human heart model created from computer topography and magnetic resonance images. We illustrate the governing equations of excitation-contraction coupling and discretize them using a single, unified finite element environment. To illustrate the basic features of our model, we visualize the electrical potential and the mechanical deformation across the human heart throughout its cardiac cycle. To compare our simulation against common metrics of cardiac function, we extract the pressure-volume relationship and show that it agrees well with clinical observations. Our prototype model allows us to explore and understand the key features, physics, and technologies to create an integrative, predictive model of the living human heart. Ultimately, our simulator will open opportunities to probe landscapes of clinical parameters, and guide device design and treatment planning in cardiac diseases such as stenosis, regurgitation, or prolapse of the aortic, pulmonary, tricuspid, or mitral valve. PMID:25267880

  11. The Living Heart Project: A robust and integrative simulator for human heart function.

    PubMed

    Baillargeon, Brian; Rebelo, Nuno; Fox, David D; Taylor, Robert L; Kuhl, Ellen

    2014-11-01

    The heart is not only our most vital, but also our most complex organ: Precisely controlled by the interplay of electrical and mechanical fields, it consists of four chambers and four valves, which act in concert to regulate its filling, ejection, and overall pump function. While numerous computational models exist to study either the electrical or the mechanical response of its individual chambers, the integrative electro-mechanical response of the whole heart remains poorly understood. Here we present a proof-of-concept simulator for a four-chamber human heart model created from computer topography and magnetic resonance images. We illustrate the governing equations of excitation-contraction coupling and discretize them using a single, unified finite element environment. To illustrate the basic features of our model, we visualize the electrical potential and the mechanical deformation across the human heart throughout its cardiac cycle. To compare our simulation against common metrics of cardiac function, we extract the pressure-volume relationship and show that it agrees well with clinical observations. Our prototype model allows us to explore and understand the key features, physics, and technologies to create an integrative, predictive model of the living human heart. Ultimately, our simulator will open opportunities to probe landscapes of clinical parameters, and guide device design and treatment planning in cardiac diseases such as stenosis, regurgitation, or prolapse of the aortic, pulmonary, tricuspid, or mitral valve. PMID:25267880

  12. Right ventricular long noncoding RNA expression in human heart failure.

    PubMed

    Di Salvo, Thomas G; Guo, Yan; Su, Yan Ru; Clark, Travis; Brittain, Evan; Absi, Tarek; Maltais, Simon; Hemnes, Anna

    2015-03-01

    The expression of long noncoding RNAs (lncRNAs) in human heart failure (HF) has not been widely studied. Using RNA sequencing (RNA-Seq), we compared lncRNA expression in 22 explanted human HF hearts with lncRNA expression in 5 unused donor human hearts. We used Cufflinks to identify isoforms and DESeq to identify differentially expressed genes. We identified the noncoding RNAs by cross-reference to Ensembl release 73 (Genome Reference Consortium human genome build 37) and explored possible functional roles using a variety of online tools. In HF hearts, RNA-Seq identified 84,793 total messenger RNA coding and noncoding different transcripts, including 13,019 protein-coding genes, 2,085 total lncRNA genes, and 1,064 pseudogenes. By Ensembl noncoding RNA categories, there were 48 lncRNAs, 27 pseudogenes, and 30 antisense RNAs for a total of 105 differentially expressed lncRNAs in HF hearts. Compared with donor hearts, HF hearts exhibited differential expression of 7.7% of protein-coding genes, 3.7% of lncRNAs (including pseudogenes), and 2.5% of pseudogenes. There were not consistent correlations between antisense lncRNAs and parent genes and between pseudogenes and parent genes, implying differential regulation of expression. Exploratory in silico functional analyses using online tools suggested a variety of possible lncRNA regulatory roles. By providing a comprehensive profile of right ventricular polyadenylated messenger RNA transcriptome in HF, RNA-Seq provides an inventory of differentially expressed lncRNAs, including antisense transcripts and pseudogenes, for future mechanistic study.

  13. Characteristic parameters of electromagnetic signals from a human heart system

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Yuan; Pei, Liu-Qing; Wang, Yin; Zhang, Su-Ming; Gao, Hong-Lei; Dai, Yuan-Dong

    2011-04-01

    The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired; the MCG data are captured using a high-Tc radio frequency superconducting quantum interference device (HTc rf SQUIDs) and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency fz of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs) of ECG and MCG in the time—frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and fz for healthy subjects. We have postulated the following criterion: if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology.

  14. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo

    SciTech Connect

    Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike; Ramos, Meg; Fisher, Robyn L.; Vickers, Alison E.M.

    2014-01-15

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in an apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol

  15. Computational modeling of electrocardiograms: Repolarization and T-wave polarity in the human heart

    PubMed Central

    Hurtado, Daniel E.; Kuhl, Ellen

    2012-01-01

    For more than a century, electrophysiologists, cardiologists, and engineers have studied the electrical activity of the human heart to better understand rhythm disorders and possible treatment options. While the depolarization sequence of the heart is relatively well characterized, the repolarization sequence remains a subject of great controversy. Here we study regional and temporal variations in both depolarization and repolarization using a finite element approach. We discretize the governing equations in time using an unconditionally stable implicit Euler backward scheme and in space using a consistently linearized Newton-Raphson-based finite element solver. Through systematic parameter-sensitivity studies, we establish a direct relation between a normal positive T-wave and the non-uniform distribution of the controlling parameter, which we have termed refractoriness. To establish a healthy baseline model, we calibrate the refractoriness using clinically measured action potential durations at different locations in the human heart. We demonstrate the potential of our model by comparing the computationally predicted and clinically measured depolarization and repolarization profiles across the left ventricle. The proposed framework allows us to explore how local action potential durations on the microscopic scale translate into global repolarization sequences on the macroscopic scale. We anticipate that our calibrated human heart model can be widely used to explore cardiac excitation in health and disease. For example, our model can serve to identify optimal pacing sites in patients with heart failure and to localize optimal ablation sites in patients with cardiac fibrillation. PMID:23113842

  16. FISH CONSUMPTION, METHYLMERCURY, AND HUMAN HEART DISEASE.

    SciTech Connect

    LIPFERT, F.W.; SULLIVAN, T.M.

    2005-09-21

    Environmental mercury continues to be of concern to public health advocates, both in the U.S. and abroad, and new research continues to be published. A recent analysis of potential health benefits of reduced mercury emissions has opened a new area of public health concern: adverse effects on the cardiovascular system, which could account for the bulk of the potential economic benefits. The authors were careful to include caveats about the uncertainties of such impacts, but they cited only a fraction of the applicable health effects literature. That literature includes studies of the potentially harmful ingredient (methylmercury, MeHg) in fish, as well as of a beneficial ingredient, omega-3 fatty acids or ''fish oils''. The U.S. Food and Drug Administration (FDA) recently certified that some of these fat compounds that are primarily found in fish ''may be beneficial in reducing coronary heart disease''. This paper briefly summarizes and categorizes the extensive literature on both adverse and beneficial links between fish consumption and cardiovascular health, which are typically based on studies of selected groups of individuals (cohorts). Such studies tend to comprise the ''gold standard'' of epidemiology, but cohorts tend to exhibit a great deal of variability, in part because of the limited numbers of individuals involved and in part because of interactions with other dietary and lifestyle considerations. Note that eating fish will involve exposure to both the beneficial effects of fatty acids and the potentially harmful effects of contaminants like Hg or PCBs, all of which depend on the type of fish but tend to be correlated within a population. As a group, the cohort studies show that eating fish tends to reduce mortality, especially due to heart disease, for consumption rates up to about twice weekly, above which the benefits tend to level off. A Finnish cohort study showed increased mortality risks in the highest fish-consuming group ({approx}3 times

  17. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction.

    PubMed Central

    Studer, R; Reinecke, H; Müller, B; Holtz, J; Just, H; Drexler, H

    1994-01-01

    Local activation of the components of the renin angiotensin system in the heart is regarded as an important modulator of cardiac phenotype and function; however, little is known about their presence, regulation, and potential activation in the human heart. To investigate the gene expression of major angiotensin-II-forming enzymes in left ventricles of normal (n = 9) and failing human hearts (n = 20), we established a competitive RNA-polymerase chain reaction (PCR) for mRNA quantification of angiotensin-I converting enzyme (ACE) and human heart chymase. For each gene, competitor RNA targets with small internal deletions were used as internal standards to quantify the original number of transcripts and to control reverse transcription and PCR. In PCR, each target and the corresponding competitor were amplified by competing for the same primer oligonucleotides. The variability of ACE RNA-PCR was 11% indicating a high reproducibility of this method. In addition, ACE mRNA levels obtained by competitive RNA-PCR correlated favorably with traditional slot blot hybridization (r = 0.69, n = 10; P < 0.05). Compared with nonfailing hearts, the number of ACE transcripts referred to 100 ng of total RNA was increased threefold in patients with chronic heart failure (4.2 +/- 2.5 vs. 12.8 +/- 6 x 10(5); P < 0.0005). In contrast, no significant difference was found in chymase gene expression between normal and failing hearts. Thus, the expression of the cardiac ACE but not of human heart chymase is upregulated in failing human heart indicating an activation of the cardiac renin-angiotensin system in patients with advanced heart failure. Images PMID:8040271

  18. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    PubMed

    Khodiyar, Varsha K; Howe, Doug; Talmud, Philippa J; Breckenridge, Ross; Lovering, Ruth C

    2013-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'.  'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.

  19. Direct observation of homoclinic orbits in human heart rate variability

    NASA Astrophysics Data System (ADS)

    Żebrowski, J. J.; Baranowski, R.

    2003-05-01

    Homoclinic trajectories of the interbeat intervals between contractions of ventricles of the human heart are identified. The interbeat intervals are extracted from 24-h Holter ECG recordings. Three such recordings are discussed in detail. Mappings of the measured consecutive interbeat intervals are constructed. In the second and in some cases in the fourth iterate of the map of interbeat intervals homoclinic trajectories associated with a hyperbolic saddle are found. The homoclinic trajectories are often persistent for many interbeat intervals, sometimes spanning many thousands of heartbeats. Several features typical for homoclinic trajectories found in other systems were identified, including a signature of the gluing bifurcation. The homoclinic trajectories are present both in recordings of heart rate variability obtained from patients with an increased number of arrhythmias and in cases in which the sinus rhythm is dominant. The results presented are a strong indication of the importance of deterministic nonlinear instabilities in human heart rate variability.

  20. Programming and reprogramming a human heart cell

    PubMed Central

    Sahara, Makoto; Santoro, Federica; Chien, Kenneth R

    2015-01-01

    The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the “programming” and “reprogramming” of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart. PMID:25712211

  1. Application of Laser Doppler Vibrometery for human heart auscultation.

    PubMed

    Koegelenberg, S; Scheffer, C; Blanckenberg, M M; Doubell, A F

    2014-01-01

    In this study the potential of a Laser Doppler Vibrometer (LDV) was tested as a non-contact sensor for the classification of heart sounds. Of the twenty participants recorded using the LDV, five presented with Aortic Stenosis (AS), three were healthy and twelve presented with other pathologies. The recorded heart sounds were denoised and segmented using a combination of the Electrocardiogram (ECG) data and the complexity of the signal. Frequency domain features were extracted from the segmented heart sound cycles and used to train a K-nearest neighbor classifier. Due to the small number of participants, the classifier could not be trained to differentiate between normal and abnormal participants, but could successfully distinguish between participants who presented with AS and those who did not. A sensitivity of 80 % and a specificity of 100 % were achieved a test dataset.

  2. Somatostatin in the human heart and comparison with guinea pig and rat heart.

    PubMed Central

    Day, S M; Gu, J; Polak, J M; Bloom, S R

    1985-01-01

    Somatostatin has been shown to have negative inotropic and chronotopic effects and to restore sinus rhythm in some cases of cardiac arrhythmia. Using acid extracts, regions of human heart were examined by radioimmunoassay to determine their somatostatin content. Mean (SD) concentrations of 4.1 (0.8) pmol/g and 2.9 (0.8) pmol/g were found in atrioventricular node and right atria respectively and were significantly higher than in other heart regions. Using fresh heart tissue from guinea pigs, somatostatin was localised to cardiac nerves by immunocytochemistry. Nerves containing somatostatin were most abundant in the atria, where the concentrations measured by radioimmunoassay were 7.6 (1.0) and 2.6 (0.4) pmol/g for right and left atria respectively. Somatostatin contained in cardiac nerves may have a physiological role in the cardiac conduction system. Images PMID:2857086

  3. Oxygen consumption of human heart cells in monolayer culture.

    PubMed

    Sekine, Kaori; Kagawa, Yuki; Maeyama, Erina; Ota, Hiroki; Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya

    2014-09-26

    Tissue engineering in cardiovascular regenerative therapy requires the development of an efficient oxygen supply system for cell cultures. However, there are few studies which have examined human cardiomyocytes in terms of oxygen consumption and metabolism in culture. We developed an oxygen measurement system equipped with an oxygen microelectrode sensor and estimated the oxygen consumption rates (OCRs) by using the oxygen concentration profiles in culture medium. The heart is largely made up of cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Therefore, we measured the oxygen consumption of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), cardiac fibroblasts, human cardiac microvascular endothelial cell and aortic smooth muscle cells. Then we made correlations with their metabolisms. In hiPSC-CMs, the value of the OCR was 0.71±0.38pmol/h/cell, whereas the glucose consumption rate and lactate production rate were 0.77±0.32pmol/h/cell and 1.61±0.70pmol/h/cell, respectively. These values differed significantly from those of the other cells in human heart. The metabolism of the cells that constitute human heart showed the molar ratio of lactate production to glucose consumption (L/G ratio) that ranged between 1.97 and 2.2. Although the energy metabolism in adult heart in vivo is reported to be aerobic, our data demonstrated a dominance of anaerobic glycolysis in an in vitro environment. With our measuring system, we clearly showed the differences in the metabolism of cells between in vivo and in vitro monolayer culture. Our results regarding cell OCRs and metabolism may be useful for future tissue engineering of human heart.

  4. Influence of heart failure on nucleolar organization and protein expression in human hearts

    SciTech Connect

    Rosello-Lleti, Esther; Rivera, Miguel; Cortes, Raquel; Azorin, Inmaculada; Sirera, Rafael; Martinez-Dolz, Luis; Hove, Leif; Cinca, Juan; Lago, Francisca; Gonzalez-Juanatey, Jose R.; Salvador, Antonio; Portoles, Manuel

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Heart failure alters nucleolar morphology and organization. Black-Right-Pointing-Pointer Nucleolin expression is significant increased in ischemic and dilated cardiomyopathy. Black-Right-Pointing-Pointer Ventricular function of heart failure patients was related with nucleolin levels. -- Abstract: We investigate for the first time the influence of heart failure (HF) on nucleolar organization and proteins in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). A total of 71 human hearts from ICM (n = 38) and DCM (n = 27) patients, undergoing heart transplantation and control donors (n = 6), were analysed by western-blotting, RT-PCR and cell biology methods. When we compared protein levels according to HF etiology, nucleolin was increased in both ICM (117%, p < 0.05) and DCM (141%, p < 0.01). Moreover, mRNA expression were also upregulated in ICM (1.46-fold, p < 0.05) and DCM (1.70-fold, p < 0.05. Immunofluorescence studies showed that the highest intensity of nucleolin was into nucleolus (p < 0.0001), and it was increased in pathological hearts (p < 0.0001). Ultrastructure analysis by electron microscopy showed an increase in the nucleus and nucleolus size in ICM (17%, p < 0.05 and 131%, p < 0.001) and DCM (56%, p < 0.01 and 69%, p < 0.01). Nucleolar organization was influenced by HF irrespective of etiology, increasing fibrillar centers (p < 0.001), perinucleolar chromatin (p < 0.01) and dense fibrillar components (p < 0.01). Finally, left ventricular function parameters were related with nucleolin levels in ischemic hearts (p < 0.0001). The present study demonstrates that HF influences on morphology and organization of nucleolar components, revealing changes in the expression and in the levels of nucleolin protein.

  5. Quantification of pulmonary thallium-201 activity after upright exercise in normal persons: importance of peak heart rate and propranolol usage in defining normal values

    SciTech Connect

    Brown, K.A.; Boucher, C.A.; Okada, R.D.; Strauss, H.W.; Pohost, G.M.

    1984-06-01

    Fifty-nine normal patients (34 angiographically normal and 25 clinically normal by Bayesian analysis) underwent thallium-201 imaging after maximal upright exercise. Lung activity was quantitated relative to myocardial activity and a lung/myocardial activity ratio was determined for each patient. Stepwise regression analysis was then used to examine the influence of patient clinical characteristics and exercise variables on the lung/myocardium ratio. Peak heart rate during exercise and propranolol usage both showed significant negative regression coefficients (p less than 0.001). No other patient data showed a significant relation. Using the regression equation and the estimated variance, a 95% confidence level upper limit of normal could be determined for a give peak heart rate and propranolol status. Sixty-one other patients were studied to validate the predicted upper limits of normal based on this model. None of the 27 patients without coronary artery disease had an elevated lung/myocardial ratio, compared with 1 of 8 with 1-vessel disease (difference not significant), 6 of 14 with 2-vessel disease (p less than 0.005), and 6 of 12 with 3-vessel disease (p less than 0.0001). Thus, lung activity on upright exercise thallium-201 studies can be quantitated relative to myocardial activity, and is inversely related to peak heart rate and propranolol use. Use of a regression analysis allows determination of a 95% confidence upper limit of normal to be anticipated in an individual patient.

  6. Clinical iron deficiency disturbs normal human responses to hypoxia

    PubMed Central

    Frise, Matthew C.; Cheng, Hung-Yuan; Nickol, Annabel H.; Curtis, M. Kate; Pollard, Karen A.; Roberts, David J.; Ratcliffe, Peter J.; Dorrington, Keith L.; Robbins, Peter A.

    2016-01-01

    BACKGROUND. Iron bioavailability has been identified as a factor that influences cellular hypoxia sensing, putatively via an action on the hypoxia-inducible factor (HIF) pathway. We therefore hypothesized that clinical iron deficiency would disturb integrated human responses to hypoxia. METHODS. We performed a prospective, controlled, observational study of the effects of iron status on hypoxic pulmonary hypertension. Individuals with absolute iron deficiency (ID) and an iron-replete (IR) control group were exposed to two 6-hour periods of isocapnic hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron. Pulmonary artery systolic pressure (PASP) was serially assessed with Doppler echocardiography. RESULTS. Thirteen ID individuals completed the study and were age- and sex-matched with controls. PASP did not differ by group or study day before each hypoxic exposure. During the first 6-hour hypoxic exposure, the rise in PASP was 6.2 mmHg greater in the ID group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7–9.7 mmHg, P = 0.001). Intravenous iron attenuated the PASP rise in both groups; however, the effect was greater in ID participants than in controls (absolute reductions 11.1 and 6.8 mmHg, respectively; 95% CI for difference in change, –8.3 to –0.3 mmHg, P = 0.035). Serum erythropoietin responses to hypoxia also differed between groups. CONCLUSION. Clinical iron deficiency disturbs normal responses to hypoxia, as evidenced by exaggerated hypoxic pulmonary hypertension that is reversed by subsequent iron administration. Disturbed hypoxia sensing and signaling provides a mechanism through which iron deficiency may be detrimental to human health. TRIAL REGISTRATION. ClinicalTrials.gov (NCT01847352). FUNDING. M.C. Frise is the recipient of a British Heart Foundation Clinical Research Training Fellowship (FS/14/48/30828). K.L. Dorrington is supported by the Dunhill Medical Trust (R178/1110). D.J. Roberts was

  7. Hear the beat: decellularized mouse heart regenerated with human induced pluripotent stem cells.

    PubMed

    Lin, Bo; Lu, Tung-Ying; Yang, Lei

    2014-02-01

    Heart tissue engineering holds a great potential for human heart disease therapy. Regeneration of whole biofunctional human heart is the ultimate goal of tissue engineering. Recent advances take the first step towards whole heart regeneration. However, a substantial amount of challenges have to be overcome.

  8. Trends in cardiovascular engineering: organizing the human heart.

    PubMed

    Tulloch, Nathaniel L; Murry, Charles E

    2013-11-01

    The regulation of heart growth through the interaction of cell types, matrix molecules, and mechanical cues is poorly understood, yet is necessary for the heart to reach its proper size and function. Using mechanical load and vascular cell co-culture in combination with a tissue engineering approach, we have recently been able to generate organized human myocardium in vitro and to modulate cardiomyocyte alignment, proliferation, and hypertrophy within the engineered tissue construct; further, we measured contractile function and the force-length dependence of the engineered tissue as a whole. The goal of these studies has been to characterize in vitro models of human cardiac development and to work towards human therapeutics using organized, vascularized, contractile human cardiac tissue. This review will touch on the current state of knowledge in this field, give an overview of the results of our own recent findings, and present areas of active investigation and new directions for future research.

  9. Re-evaluation of normal splitting of the second heart sound in patients with classical left bundle branch block.

    PubMed

    Xiao, H B; Faiek, A H; Gibson, D G

    1994-07-01

    To study the mechanism of normal splitting of the second heart sound in patients with classical left bundle branch block, we investigated 43 such patients and 15 normal controls, using electro-, phono- and echo-cardiography and comparing the relative timing of mechanical activity in the two ventricles. The splitting of the second heart sound is reversed in only two-thirds of the patients and normal in remaining one-third. Comparing patients with and without reversed splitting, there are no significant differences in left ventricular cavity size, heart rate, pre-ejection period and the distribution of age, gender, or aetiology. QRS duration is longer (P < 0.01) in patients with reversed splitting. Diastolic events of the left ventricle do not differ between groups. The onset of the left ventricular free wall motion is delayed compared with normal by a similar extent in the two groups. In patients with normal splitting, the onset of the right ventricular wall motion is also delayed, both with respect to normal and to those with reversed splitting to an extent similar to that seen in classical right bundle branch block. Normal splitting of the second heart sound associated with an electrocardiographic pattern of left bundle branch block therefore suggests bilateral block. This combination can be documented from the precise timing of the movement of the two ventricles by M-mode echocardiography and identified by simple auscultation. PMID:7960260

  10. Left ventricular pacing improves haemodynamic variables in patients with heart failure with a normal QRS duration

    PubMed Central

    Turner, M S; Bleasdale, R A; Mumford, C E; Frenneaux, M P; Morris-Thurgood, J A

    2004-01-01

    Objectives: To assess whether patients with congestive heart failure (CHF) and a normal QRS duration can benefit from left ventricular (VDD-LV) pacing. Design: Cardiac resynchronisation is reserved for patients with a broad QRS duration on the premise that systolic resynchronisation is the mechanism of benefit, yet improvement from pacing correlates poorly with QRS duration. In CHF patients with a broad QRS duration, those with a high resting pulmonary capillary wedge pressure (PCWP) > 15 mm Hg benefit. In this acute haemodynamic VDD-LV pacing study, patients with CHF with a normal QRS duration were divided into two groups—patients with a resting PCWP > 15 mm Hg and patients with a resting PCWP < 15 mm Hg—to determine whether benefit is predicted by a high resting PCWP. Patients: 20 patients with CHF, New York Heart Association functional class IIb–IV, all with a normal QRS duration (⩽ 120 ms). Interventions: Temporary pacing wires were positioned to enable VDD-LV pacing and a pulmonary artery catheter was inserted for measurement of PCWP, right atrial pressure, and cardiac output. Results: In patients with a PCWP > 15 mm Hg (n  =  10), cardiac output increased from 3.9 (1.5) to 4.5 (1.65) l/min (p < 0.01), despite a fall in PCWP from 24.7 (7.1) to 21.0 (6.2) mm Hg (p < 0.001). In patients with a PCWP < 15 mm Hg there was no change in PCWP or cardiac output. Combined data showed that PCWP decreased from 17.0 (9.1) to 15.3 (7.7) mm Hg during VDD-LV pacing (p < 0.014) and cardiac output increased non-significantly from 4.7 (1.5) to 4.9 (1.5) (p  =  0.125). Conclusions: Patients with CHF with a normal QRS duration and PCWP > 15 mm Hg derive acute haemodynamic benefit from VDD-LV pacing. PMID:15084543

  11. Partial LVAD restores ventricular outputs and normalizes LV but not RV stress distributions in the acutely failing heart in silico

    PubMed Central

    Sack, Kevin L.; Baillargeon, Brian; Acevedo-Bolton, Gabriel; Genet, Martin; Rebelo, Nuno; Kuhl, Ellen; Klein, Liviu; Weiselthaler, Georg M.; Burkhoff, Daniel; Franz, Thomas; Guccione, Julius M.

    2016-01-01

    Purpose Heart failure is a worldwide epidemic that is unlikely to change as the population ages and life expectancy increases. We sought to detail significant recent improvements to the Dassault Systèmes Living Heart Model (LHM) and use the LHM to compute left ventricular (LV) and right ventricular (RV) myofiber stress distributions under the following 4 conditions: (1) normal cardiac function; (2) acute left heart failure (ALHF); (3) ALHF treated using an LV assist device (LVAD) flow rate of 2 L/min; and (4) ALHF treated using an LVAD flow rate of 4.5 L/min. Methods and Results Incorporating improved systolic myocardial material properties in the LHM resulted in its ability to simulate the Frank-Starling law of the heart. We decreased myocardial contractility in the LV myocardium so that LV ejection fraction decreased from 56% to 28%. This caused mean LV end diastolic (ED) stress to increase to 508% of normal, mean LV end systolic (ES) stress to increase to 113% of normal, mean RV ED stress to decrease to 94% of normal and RV ES to increase to 570% of normal. When ALHF in the model was treated with an LVAD flow rate of 4.5 L/min, most stress results normalized. Mean LV ED stress became 85% of normal, mean LV ES stress became 109% of normal and mean RV ED stress became 95% of normal. However, mean RV ES stress improved less dramatically (to 342% of normal values). Conclusions These simulations strongly suggest that an LVAD is effective in normalizing LV stresses but not RV stresses that become elevated as a result of ALHF. PMID:27646633

  12. Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm.

    PubMed

    Messinger-Rapport, B J; Rudy, Y

    1990-04-01

    The inverse problem in electrocardiography implies the reconstruction of electrical events within the heart from information measured noninvasively on the body surface. Deduction of these electrical events is possible from measured epicardial potentials, and, thus, a noninvasive method of recovering epicardial potentials from body surface data is useful in experimental and clinical studies. In the present study, an inverse method that uses Tikhonov regularization was shown to reconstruct, with good accuracy, important events in cardiac excitation. The inverse procedure was employed on data obtained from a human-torso tank in which a beating canine heart was placed in the correct anatomical position. Comparison with the actual, measured epicardial potentials indicates that positions and shapes of potential features (maxima, minima, zero potential line, saddles, etc.) are recovered with good accuracy throughout the QRS. An error in position of up to 1 cm is typical, while amplitudes are slightly diminished. In addition, application was extended from the above setting, in which the geometry was precisely known and potentials at a large number of leads were measured accurately, to a situation that is more representative of clinical and experimental settings. Effects of inaccuracy in location of the position of the heart were examined. A stylized torso that approximates the actual geometry was designed, and its performance in the inverse computations was evaluated. A systematic method of reduction of the number of leads on the body surface was proposed, and the resulting lead configurations were evaluated in terms of the accuracy of inverse solutions. The results indicate that the inverse problem can be stabilized with respect to different types of uncertainties in measured data and offer promise in the use of the inverse procedure in clinical and experimental situations.

  13. Dynamics of Cell Generation and Turnover in the Human Heart.

    PubMed

    Bergmann, Olaf; Zdunek, Sofia; Felker, Anastasia; Salehpour, Mehran; Alkass, Kanar; Bernard, Samuel; Sjostrom, Staffan L; Szewczykowska, Mirosława; Jackowska, Teresa; Dos Remedios, Cris; Malm, Torsten; Andrä, Michaela; Jashari, Ramadan; Nyengaard, Jens R; Possnert, Göran; Jovinge, Stefan; Druid, Henrik; Frisén, Jonas

    2015-06-18

    The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart.

  14. Influence of heart failure on nucleocytoplasmic transport in human cardiomyocytes

    PubMed Central

    Cortés, Raquel; Roselló-Lletí, Esther; Rivera, Miguel; Martínez-Dolz, Luis; Salvador, Antonio; Azorín, Inmaculada; Portolés, Manuel

    2010-01-01

    Aims The role of the cell nucleus in the development of heart failure (HF) is unknown, so the objectives of this study were to analyse the effect of HF on nucleocytoplasmic transport and density of the nuclear pore complex (NPC). Methods and results A total of 51 human heart samples from ischaemic (ICM, n = 30) and dilated (DCM, n = 16) patients undergoing heart transplantation and control donors (CNT, n = 5) were analysed by western blotting. Subcellular distribution of proteins and NPC were analysed by fluorescence and electron microscopy, respectively. When we compared nucleocytoplasmic machinery protein levels according to aetiology of HF, ICM showed higher levels of importins [(IMP-β3) (150%, P < 0.0001), IMP-α2 (69%, P = 0.001)] and exportins [EXP-1 (178%, P < 0.0001), EXP-4 (81%, P = 0.006)] than those of the CNT group. Furthermore, DCM also showed significant differences for IMP-β3 (192%, P < 0.0001), IMP-α2 (52%, P = 0.025), and EXP-1 (228%, P < 0.0001). RanGTPase-activating proteins (RanGAP1 and RaGAP1u) were increased in ICM (76%, P = 0.005; 51%, P = 0.012) and DCM (41%, P = 0.042; 50%, P = 0.029). Furthermore, subcellular distribution of nucleocytoplasmic machinery was not altered in pathological hearts. Finally, nucleoporin (Nup) p62 was increased in ICM (80%) and DCM (109%) (P < 0.001 and P = 0.024). Nuclear pore density was comparable in pathological and CNT hearts, and ICM showed a low diameter (P = 0.005) and different structural configuration of NPC. Conclusion This study shows the effect of HF on nucleocytoplasmic trafficking machinery, evidenced by higher levels of importins, exportins, Ran regulators and Nup p62 in ischaemic and dilated human hearts than those in the controls, with NPCs acquiring a different configuration and morphology in ICM. PMID:19819881

  15. Establishing the Proteome of Normal Human Cerebrospinal Fluid

    PubMed Central

    Natelson, Benjamin H.; Angel, Thomas E.; Schepmoes, Athena A.; Purvine, Samuel O.; Hixson, Kim K.; Lipton, Mary S.; Camp, David G.; Coyle, Patricia K.; Smith, Richard D.; Bergquist, Jonas

    2010-01-01

    Background Knowledge of the entire protein content, the proteome, of normal human cerebrospinal fluid (CSF) would enable insights into neurologic and psychiatric disorders. Until now technologic hurdles and access to true normal samples hindered attaining this goal. Methods and Principal Findings We applied immunoaffinity separation and high sensitivity and resolution liquid chromatography-mass spectrometry to examine CSF from healthy normal individuals. 2630 proteins in CSF from normal subjects were identified, of which 56% were CSF-specific, not found in the much larger set of 3654 proteins we have identified in plasma. We also examined CSF from groups of subjects previously examined by others as surrogates for normals where neurologic symptoms warranted a lumbar puncture but where clinical laboratory were reported as normal. We found statistically significant differences between their CSF proteins and our non-neurological normals. We also examined CSF from 10 volunteer subjects who had lumbar punctures at least 4 weeks apart and found that there was little variability in CSF proteins in an individual as compared to subject to subject. Conclusions Our results represent the most comprehensive characterization of true normal CSF to date. This normal CSF proteome establishes a comparative standard and basis for investigations into a variety of diseases with neurological and psychiatric features. PMID:20552007

  16. In vivo epicardial force and strain characterisation in normal and MLP-knockout murine hearts.

    PubMed

    Michaelides, M; Georgiadou, S; Constantinides, C

    2015-07-01

    The study's objective is to quantify in vivo epicardial force and strain in the normal and transgenic myocardium using microsensors.Male mice (n = 39), including C57BL/6 (n = 26), 129/Sv (n = 5), wild-type (WT) C57  ×  129Sv (n = 5), and muscle LIM protein (MLP) knock-out (n = 3), were studied under 1.5% isoflurane anaesthesia. Microsurgery allowed the placement of two piezoelectric crystals at longitudinal epicardial loci at the basal, middle, and apical LV regions, and the independent (and/or concurrent) placement of a cantilever force sensor. The findings demonstrate longitudinal contractile and relaxation strains that ranged between 4.8-9.3% in the basal, middle, and apical regions of C57BL/6 mice, and in the mid-ventricular regions of 129/Sv, WT, and MLP mice. Measured forces ranged between 3.1-8.9 mN. The technique's feasibility is also demonstrated in normal mice following afterload, occlusion-reperfusion challenges.Furthermore, the total mid-ventricular forces developed in MLP mice were significantly reduced compared to the WT controls (5.9  ±  0.4 versus 8.9  ±  0.2 mN, p < 0.0001), possibly owing to the fibrotic and stiffer myocardium. No significant strain differences were noted between WT and MLP mice.The possibility of quantifying in vivo force and strain from the normal murine heart is demonstrated with a potential usefulness in the characterisation of transgenic and diseased mice, where regional myocardial function may be significantly altered.

  17. Posture and Gender Differentially Affect Heart Rate Variability of Symptomatic Mitral Valve Prolapse and Normal Adults

    PubMed Central

    Chang, Chien-Jung; Chen, Ya-Chu; Lee, Chih-Hsien; Yang, Ing-Fang; Yang, Ten-Fang

    2016-01-01

    Background Heart rate variability (HRV) has been shown to be a useful measure of autonomic activity in healthy and mitral valve prolapsed (MVP) subjects. However, the effects of posture and gender on HRV in symptomatic MVP and normal adults had not been elucidated in Taiwan. Methods A total of 118 MVP patients (7 males, 39 ± 7 years old; and 111 females, 42 ± 13 years old) and 148 healthy control (54 males, 28 ± 4 years old; and 94 females, 26 ± 6 years old) were investigated. The diagnosis of MVP was confirmed by cross-sectional echocardiography. A locally developed Taiwanese machine was used to record the HRV parameters for MVP and control groups in three stationary positions. Thereafter, the HRV time-domain parameters, and the frequency-domain parameters derived from fast Fourier transform or autoregressive methods were analyzed. Results The MVP group showed a decrease in time domain parameters and obtunded postural effects on frequency domain parameters moreso than the control group. Though the parasympathetic tone was dominant in female (higher RMSSD, nHF and lower nLF vs. male), the sympathetic outflow was higher in MVP female (lower SDNN, NN50 and higher nLF vs. normal female). While the parasympathetic activity was lower in male, sympathetic outflow was dominant in MVP male (lower nHF and higher nLF vs. normal male). Conclusions Both MVP female and male subjects had elevated levels of sympathetic outflow. The obtunded postural effects on frequency domain measures testified to the autonomic dysregulation of MVP subjects. PMID:27471360

  18. Decorin and biglycan of normal and pathologic human corneas

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Hevelone, N. D.; Roth, M. R.; Funderburgh, M. L.; Rodrigues, M. R.; Nirankari, V. S.; Conrad, G. W.

    1998-01-01

    PURPOSE: Corneas with scars and certain chronic pathologic conditions contain highly sulfated dermatan sulfate, but little is known of the core proteins that carry these atypical glycosaminoglycans. In this study the proteoglycan proteins attached to dermatan sulfate in normal and pathologic human corneas were examined to identify primary genes involved in the pathobiology of corneal scarring. METHODS: Proteoglycans from human corneas with chronic edema, bullous keratopathy, and keratoconus and from normal corneas were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), quantitative immunoblotting, and immunohistology with peptide antibodies to decorin and biglycan. RESULTS: Proteoglycans from pathologic corneas exhibit increased size heterogeneity and binding of the cationic dye alcian blue compared with those in normal corneas. Decorin and biglycan extracted from normal and diseased corneas exhibited similar molecular size distribution patterns. In approximately half of the pathologic corneas, the level of biglycan was elevated an average of seven times above normal, and decorin was elevated approximately three times above normal. The increases were associated with highly charged molecular forms of decorin and biglycan, indicating modification of the proteins with dermatan sulfate chains of increased sulfation. Immunostaining of corneal sections showed an abnormal stromal localization of biglycan in pathologic corneas. CONCLUSIONS: The increased dermatan sulfate associated with chronic corneal pathologic conditions results from stromal accumulation of decorin and particularly of biglycan in the affected corneas. These proteins bear dermatan sulfate chains with increased sulfation compared with normal stromal proteoglycans.

  19. Effect of Nebivolol on MIBG Parameters and Exercise in Heart Failure with Normal Ejection Fraction

    PubMed Central

    Messias, Leandro Rocha; Ferreira, Aryanne Guimarães; de Miranda, Sandra Marina Ribeiro; Teixeira, José Antônio Caldas; de Azevedo, Jader Cunha; Messias, Ana Carolina Nader Vasconcelos; Maróstica, Elisabeth; Mesquita, Claudio Tinoco

    2016-01-01

    Background More than 50% of the patients with heart failure have normal ejection fraction (HFNEF). Iodine-123 metaiodobenzylguanidine (123I-MIBG) scintigraphy and cardiopulmonary exercise test (CPET) are prognostic markers in HFNEF. Nebivolol is a beta-blocker with vasodilating properties. Objectives To evaluate the impact of nebivolol therapy on CPET and123I-MIBG scintigraphic parameters in patients with HFNEF. Methods Twenty-five patients underwent 123I-MIBG scintigraphy to determine the washout rate and early and late heart-to-mediastinum ratios. During the CPET, we analyzed the systolic blood pressure (SBP) response, heart rate (HR) during effort and recovery (HRR), and oxygen uptake (VO2). After the initial evaluation, we divided our cohort into control and intervention groups. We then started nebivolol and repeated the tests after 3 months. Results After treatment, the intervention group showed improvement in rest SBP (149 mmHg [143.5-171 mmHg] versus 135 mmHg [125-151 mmHg, p = 0.016]), rest HR (78 bpm [65.5-84 bpm] versus 64.5 bpm [57.5-75.5 bpm, p = 0.028]), peak SBP (235 mmHg [216.5-249 mmHg] versus 198 mmHg [191-220.5 mmHg], p = 0.001), peak HR (124.5 bpm [115-142 bpm] versus 115 bpm [103.7-124 bpm], p= 0.043), HRR on the 1st minute (6.5 bpm [4.75-12.75 bpm] versus 14.5 bpm [6.7-22 bpm], p = 0.025) and HRR on the 2nd minute (15.5 bpm [13-21.75 bpm] versus 23.5 bpm [16-31.7 bpm], p = 0.005), but no change in peak VO2 and 123I-MIBG scintigraphic parameters. Conclusion Despite a better control in SBP, HR during rest and exercise, and improvement in HRR, nebivolol failed to show a positive effect on peak VO2 and 123I-MIBG scintigraphic parameters. The lack of effect on adrenergic activity may be the cause of the lack of effect on functional capacity. PMID:27096522

  20. gamma. sub 2 -MSH immunoreactivity in the human heart

    SciTech Connect

    Ekman, R.; Bjartell, A.; Lisander, J.; Edvinsson, L. )

    1989-01-01

    In patients undergoing aorto-coronary by-pass surgery, we found a 26% arterial-venous difference of immunoreactive {gamma}{sub 2}-melanocytostimulating hormone (MSH), a proopiomelanocortin (POMC) derived peptide known to possess profound hemodynamic effects. These results prompted an investigation of the presence of {gamma}{sub 2}-MSH in the human heart. Using a two-step extraction procedure, regions of human hearts were examined by sensitive and specific radioimmunoassays to determine their {gamma}{sub 2}-MSH content. Mean ({plus minus} SEM) concentrations of 0.14 {plus minus} 0.023 pmol/g and 0.12 {plus minus} 0.017 were found in right atrium and right ventricle, respectively. High performance liquid chromatography indicated that 80-90 % of the total immunoreactivity eluted in a single sharp peak in a position identical to that of synthetic {gamma}{sub 2}-MSH.

  1. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    PubMed

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu

    2014-01-01

    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  2. Quantitative Tagged Magnetic Resonance Imaging of the Normal Human Left Ventricle

    PubMed Central

    Moore, Christopher C.; McVeigh, Elliot R.; Zerhouni, Elias A.

    2007-01-01

    Summary Magnetic resonance imaging with tissue tagging is a noninvasive technique for measuring three-dimensional motion and deformation in the human heart. Tags are regions of tissue whose longitudinal magnetization has been altered before imaging so that they appear dark in subsequent magnetic resonance images. They then move with the underlying tissue and serve as easily identifiable landmarks within the heart for the detailed detection of motion. Many different motion and strain parameters can be determined from tagged magnetic resonance imaging. Strain components that are based on a high density of tag data, such as circumferential and longitudinal shortening, or parameters that are combinations of multiple strain components, have highest measurement precision and tightest normal ranges. The pattern of three-dimensional motion and strain in the heart is important clinically, because it reflects the basic mechanical function of the myocardium at both local and global levels. Localized abnormalities can be detected and quantified if the pattern of deformation in a given heart is compared to the normal range for that region, because normal motion and strain in the left ventricle is spatially heterogeneous. Contraction strains typically are greatest in the anterior and lateral walls and increase toward the apex. The direction of greatest contraction lies along a counter clockwise helix from base to apex (viewed from the base) and approximates the epicardial muscle fiber direction. This fiber geometry also results in long-axis torsion during systole. Ejection is accomplished primarily by radially inward motion of the endocardium and by descent of the base toward the apex during systole. PMID:11153703

  3. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo.

    PubMed

    Herrmann, Julia E; Heale, Jason; Bieraugel, Mike; Ramos, Meg; Fisher, Robyn L; Vickers, Alison E M

    2014-01-15

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24h. In this in vivo rat study (0.5mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in an apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices.

  4. Telomere attrition and Chk2 activation in human heart failure

    PubMed Central

    Oh, Hidemasa; Wang, Sam C.; Prahash, Arun; Sano, Motoaki; Moravec, Christine S.; Taffet, George E.; Michael, Lloyd H.; Youker, Keith A.; Entman, Mark L.; Schneider, Michael D.

    2003-01-01

    The “postmitotic” phenotype in adult cardiac muscle exhibits similarities to replicative senescence more generally and constitutes a barrier to effective restorative growth in heart disease. Telomere dysfunction is implicated in senescence and apoptotic signaling but its potential role in heart disorders is unknown. Here, we report that cardiac apoptosis in human heart failure is associated specifically with defective expression of the telomere repeat- binding factor TRF2, telomere shortening, and activation of the DNA damage checkpoint kinase, Chk2. In cultured cardiomyocytes, interference with either TRF2 function or expression triggered telomere erosion and apoptosis, indicating that cell death can occur via this pathway even in postmitotic, noncycling cells; conversely, exogenous TRF2 conferred protection from oxidative stress. In vivo, mechanical stress was sufficient to down-regulate TRF2, shorten telomeres, and activate Chk2 in mouse myocardium, and transgenic expression of telomerase reverse transcriptase conferred protection from all three responses. Together, these data suggest that apoptosis in chronic heart failure is mediated in part by telomere dysfunction and suggest an essential role for TRF2 even in postmitotic cells. PMID:12702777

  5. Successful Orthotopic Heart Transplantation and Immunosuppressive Management in 2 Human Immunodeficiency Virus-Seropositive Patients.

    PubMed

    Conte, Antonio Hernandez; Kittleson, Michelle M; Dilibero, Deanna; Hardy, W David; Kobashigawa, Jon A; Esmailian, Fardad

    2016-02-01

    Few orthotopic heart transplantations have been performed in patients infected with the human immunodeficiency virus since the first such case was reported in 2001. Since that time, advances in highly active antiretroviral therapy have resulted in potent and durable suppression of the causative human immunodeficiency virus-accompanied by robust immune reconstitution, reversal of previous immunodeficiency, a marked decrease in opportunistic and other infections, and near-normal long-term survival. Although human immunodeficiency virus infection is not an absolute contraindication, few centers in the United States and Canada have performed heart transplantations in this patient population; these patients have been de facto excluded from this procedure in North America. Re-evaluation of the reasons for excluding these patients from cardiac transplantation is warranted in light of such significant advances in antiretroviral therapy. This case report documents successful orthotopic heart transplantation in 2 patients infected with human immunodeficiency virus, and we describe their antiretroviral therapy and immunosuppressive management challenges. Both patients were doing well without sequelae 43 and 38 months after transplantation.

  6. Human Mesenchymal Stem Cells Reendothelialize Porcine Heart Valve Scaffolds: Novel Perspectives in Heart Valve Tissue Engineering.

    PubMed

    Lanuti, Paola; Serafini, Francesco; Pierdomenico, Laura; Simeone, Pasquale; Bologna, Giuseppina; Ercolino, Eva; Di Silvestre, Sara; Guarnieri, Simone; Canosa, Carlo; Impicciatore, Gianna Gabriella; Chiarini, Stella; Magnacca, Francesco; Mariggiò, Maria Addolorata; Pandolfi, Assunta; Marchisio, Marco; Di Giammarco, Gabriele; Miscia, Sebastiano

    2015-01-01

    Heart valve diseases are usually treated by surgical intervention addressed for the replacement of the damaged valve with a biosynthetic or mechanical prosthesis. Although this approach guarantees a good quality of life for patients, it is not free from drawbacks (structural deterioration, nonstructural dysfunction, and reintervention). To overcome these limitations, the heart valve tissue engineering (HVTE) is developing new strategies to synthesize novel types of valve substitutes, by identifying efficient sources of both ideal scaffolds and cells. In particular, a natural matrix, able to interact with cellular components, appears to be a suitable solution. On the other hand, the well-known Wharton's jelly mesenchymal stem cells (WJ-MSCs) plasticity, regenerative abilities, and their immunomodulatory capacities make them highly promising for HVTE applications. In the present study, we investigated the possibility to use porcine valve matrix to regenerate in vitro the valve endothelium by WJ-MSCs differentiated along the endothelial lineage, paralleled with human umbilical vein endothelial cells (HUVECs), used as positive control. Here, we were able to successfully decellularize porcine heart valves, which were then recellularized with both differentiated-WJ-MSCs and HUVECs. Data demonstrated that both cell types were able to reconstitute a cellular monolayer. Cells were able to positively interact with the natural matrix and demonstrated the surface expression of typical endothelial markers. Altogether, these data suggest that the interaction between a biological scaffold and WJ-MSCs allows the regeneration of a morphologically well-structured endothelium, opening new perspectives in the field of HVTE.

  7. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  8. Normalization.

    ERIC Educational Resources Information Center

    Cuevas, Eduardo J.

    1997-01-01

    Discusses cornerstone of Montessori theory, normalization, which asserts that if a child is placed in an optimum prepared environment where inner impulses match external opportunities, the undeviated self emerges, a being totally in harmony with its surroundings. Makes distinctions regarding normalization, normalized, and normality, indicating how…

  9. The thermal sensitivity of normal and ataxia telangiectasia human fibroblasts

    SciTech Connect

    Raaphorst, G.P.; Azzam, E.I.

    1982-01-01

    Human normal and ataxia telangiectasia (AT) heterozygote and homozygote cell strains were heated at 42.0 and 45.0/sup 0/C to determine their thermal responses. All cell strains had approximately the same thermal sensitivity and were less thermally sensitive than Chinese hamster cells or many other rodent cell lines reported in the literature. No shoulders were observed on the survival curves for heating at 42.0 or 45.0/sup 0/C. Thermal tolerance developed in both the normal and AT cell strains with heating for prolonged intervals at 42.0/sup 0/C.

  10. The thermal sensitivity of normal and ataxia telangiectasia human fibroblasts

    SciTech Connect

    Raaphorst, G.P.; Azzam, E.I.

    1982-11-01

    Human normal and ataxia telangiectasia (AT) heterozygote and homozygote cell strains were heated at 42.0 and 45.0/sup 0/C to determine their thermal responses. All cell strains had approximately the same thermal sensitivity and were less thermally sensitive than Chinese hamster cells or many other rodent cell lines reported in the literature. No shoulders were observed on the survival curves for heating at 42.0 or 45.0/sup 0/C. Thermal tolerance developed in both the normal and AT cells strains with heating for prolonged intervals at 42.0GAMMA.

  11. Drosophila as a model for the identification of genes causing adult human heart disease

    PubMed Central

    Wolf, Matthew J.; Amrein, Hubert; Izatt, Joseph A.; Choma, Michael A.; Reedy, Mary C.; Rockman, Howard A.

    2006-01-01

    Drosophila melanogaster genetics provides the advantage of molecularly defined P-element insertions and deletions that span the entire genome. Although Drosophila has been extensively used as a model system to study heart development, it has not been used to dissect the genetics of adult human heart disease because of an inability to phenotype the adult fly heart in vivo. Here we report the development of a strategy to measure cardiac function in awake adult Drosophila that opens the field of Drosophila genetics to the study of human dilated cardiomyopathies. Through the application of optical coherence tomography, we accurately distinguish between normal and abnormal cardiac function based on measurements of internal cardiac chamber dimensions in vivo. Normal Drosophila have a fractional shortening of 87 ± 4%, whereas cardiomyopathic flies that contain a mutation in troponin I or tropomyosin show severe impairment of systolic function. To determine whether the fly can be used as a model system to recapitulate human dilated cardiomyopathy, we generated transgenic Drosophila with inducible cardiac expression of a mutant of human δ-sarcoglycan (δsgS151A), which has previously been associated with familial dilated cardiomyopathy. Compared to transgenic flies overexpressing wild-type δsg, or the standard laboratory strain w1118, Drosophila expressing δsgS151A developed marked impairment of systolic function and significantly enlarged cardiac chambers. These data illustrate the utility of Drosophila as a model system to study dilated cardiomyopathy and the applicability of the vast genetic resources available in Drosophila to systematically study the genetic mechanisms responsible for human cardiac disease. PMID:16432241

  12. Arrhythmogenic remodelling of activation and repolarization in the failing human heart.

    PubMed

    Holzem, Katherine M; Efimov, Igor R

    2012-11-01

    Heart failure is a major cause of disability and death worldwide, and approximately half of heart failure-related deaths are sudden and presumably due to ventricular arrhythmias. Patients with heart failure have been shown to be at 6- to 9-fold increased risk of sudden cardiac death compared to the general population. (AHA. Heart Disease and Stroke Statistics-2003 Update. Heart and Stroke Facts. Dallas, TX: American Heart Association; 2002) Thus, electrophysiological remodelling associated with heart failure is a leading cause of disease mortality and has been a major investigational focus examined using many animal models of heart failure. While these studies have provided an important foundation for understanding the arrhythmogenic pathophysiology of heart failure, the need for corroborating studies conducted on human heart tissue has been increasingly recognized. Many human heart studies of conduction and repolarization remodelling have now been published and shed some light on important, potentially arrhythmogenic, changes in human heart failure. These studies are being conducted at multiple experimental scales from isolated cells to whole-tissue preparations and have provided insight into regulatory mechanisms such as decreased protein expression, alternative mRNA splicing of ion channel genes, and defective cellular trafficking. Further investigations of heart failure in the human myocardium will be essential for determining possible therapeutic targets to prevent arrhythmia in heart failure and for facilitating the translation of basic research findings to the clinical realm.

  13. Arrhythmogenic remodelling of activation and repolarization in the failing human heart.

    PubMed

    Holzem, Katherine M; Efimov, Igor R

    2012-11-01

    Heart failure is a major cause of disability and death worldwide, and approximately half of heart failure-related deaths are sudden and presumably due to ventricular arrhythmias. Patients with heart failure have been shown to be at 6- to 9-fold increased risk of sudden cardiac death compared to the general population. (AHA. Heart Disease and Stroke Statistics-2003 Update. Heart and Stroke Facts. Dallas, TX: American Heart Association; 2002) Thus, electrophysiological remodelling associated with heart failure is a leading cause of disease mortality and has been a major investigational focus examined using many animal models of heart failure. While these studies have provided an important foundation for understanding the arrhythmogenic pathophysiology of heart failure, the need for corroborating studies conducted on human heart tissue has been increasingly recognized. Many human heart studies of conduction and repolarization remodelling have now been published and shed some light on important, potentially arrhythmogenic, changes in human heart failure. These studies are being conducted at multiple experimental scales from isolated cells to whole-tissue preparations and have provided insight into regulatory mechanisms such as decreased protein expression, alternative mRNA splicing of ion channel genes, and defective cellular trafficking. Further investigations of heart failure in the human myocardium will be essential for determining possible therapeutic targets to prevent arrhythmia in heart failure and for facilitating the translation of basic research findings to the clinical realm. PMID:23104915

  14. Ventricular tachycardia in infants with structurally normal heart: a benign disorder.

    PubMed

    Levin, Mark D; Stephens, Paul; Tanel, Ronn E; Vetter, Victoria L; Rhodes, Larry A

    2010-12-01

    We evaluated the presentation, treatment, and outcome of infants who present with ventricular tachycardia in the first year of life. Seventy-six infants were admitted to our institution with a diagnosis of ventricular tachycardia between January, 1987 and May, 2006. Forty-five infants were excluded from the study because of additional confounding diagnoses including accelerated idioventricular rhythm, Wolff-Parkinson-White syndrome, supraventricular tachycardia with aberrancy, long QT syndrome, cardiac rhabdomyoma, myocarditis, congenital lesions, or incomplete data. The remaining 31 included infants who had a median age at presentation of 1 day, with a range from 1 to 255 days, and a mean ventricular tachycardia rate of 213 beats per minute, with a range from 171 to 280, at presentation. The infants were treated chronically with propranolol (38.7%), amiodarone (12.9%), mexiletine (3.2%), propranolol and mexiletine (9.7%), or propranolol and procainamide (6.5%). The median duration of treatment was 13 months, with a range from 3 to 105 months. Ventricular tachycardia resolved spontaneously in all infants. No patient died, or received catheter ablation or device therapy. Median age at last ventricular tachycardia was 59 days, with a range from 1 to 836 days. Mean follow-up was 45 months, with a range from 5 to 164 months, with a mean ventricular tachycardia-free period of 40 months. Infants with asymptomatic ventricular tachycardia, a structurally normal heart, and no additional electrophysiological diagnosis all had spontaneous resolution of tachycardia. Furthermore, log-rank analysis of the time to ventricular tachycardia resolution showed no difference between children who received chronic outpatient anti-arrhythmic treatment and those who had no such therapy. While indications for therapy cannot be determined from this study, lack of symptoms or myocardial dysfunction suggests that therapy may not be necessary. PMID:20723269

  15. From hundreds to thousands: Widening the normal human Urinome

    PubMed Central

    Santucci, Laura; Candiano, Giovanni; Petretto, Andrea; Bruschi, Maurizio; Lavarello, Chiara; Inglese, Elvira; Giorgio Righetti, Pier; Marco Ghiggeri, Gian

    2014-01-01

    The limits on protein detection in urine are unknown. Improving the analytical approach to detection would increase the number of identified proteins and potentially strengthen their predictive potential in diseases. Here, we present the data that resulted from a combination of analytical procedures for maximizing sensitivity and reproducibility of normal human urinary proteome analysis. These procedures are ultracentrifugation, vesicle separation, combinatorial peptide ligand libraries (CPLL) and solvent removal of pigments. Proteins were identified by an Orbitrap Velos Mass Spectrometry. 3429 proteins are characterized, 1724 of which are novel discoveries. The data are related to Santucci et al. (in press) [1] and available both here and at ChorusProject.org under project name “From hundreds to thousands: widening the normal human Urinome”. The material supplied to Chorus Progect.org includes technical MS spectra data only. PMID:26217681

  16. Claspin promotes normal replication fork rates in human cells.

    PubMed

    Petermann, Eva; Helleday, Thomas; Caldecott, Keith W

    2008-06-01

    The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone.

  17. THERP and HEART integrated methodology for human error assessment

    NASA Astrophysics Data System (ADS)

    Castiglia, Francesco; Giardina, Mariarosa; Tomarchio, Elio

    2015-11-01

    THERP and HEART integrated methodology is proposed to investigate accident scenarios that involve operator errors during high-dose-rate (HDR) treatments. The new approach has been modified on the basis of fuzzy set concept with the aim of prioritizing an exhaustive list of erroneous tasks that can lead to patient radiological overexposures. The results allow for the identification of human errors that are necessary to achieve a better understanding of health hazards in the radiotherapy treatment process, so that it can be properly monitored and appropriately managed.

  18. Snake heart: a case of atavism in a human being.

    PubMed

    Walia, Ishmeet; Arora, Harvinder S; Barker, Esmond A; Delgado, Reynolds M; Frazier, O H

    2010-01-01

    Atavism is the rare reappearance, in a modern organism, of a trait from a distant evolutionary ancestor. We describe an apparent case of atavism involving a 59-year-old man with chest pain whose coronary circulation and myocardial architecture resembled those of the reptilian heart. The chest pain was attributed to a coronary steal phenomenon. The patient was discharged from the hospital on a heightened regimen of β-blockers, and his symptoms improved significantly. To our knowledge, this is only the 2nd reported clinical case of a human coronary circulation similar to that of reptiles.

  19. Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate Non-Human Primate Hearts

    PubMed Central

    Chong, James J.H.; Yang, Xiulan; Don, Creighton W.; Minami, Elina; Liu, Yen-Wen; Weyers, Jill J; Mahoney, William M.; Van Biber, Benjamin; Cook, Savannah M.; Palpant, Nathan J; Gantz, Jay; Fugate, James A.; Muskheli, Veronica; Gough, G. Michael; Vogel, Keith W.; Astley, Cliff A.; Hotchkiss, Charlotte E.; Baldessari, Audrey; Pabon, Lil; Reinecke, Hans; Gill, Edward A.; Nelson, Veronica; Kiem, Hans-Peter; Laflamme, Michael A.; Murry, Charles E.

    2014-01-01

    Pluripotent stem cells provide a potential solution to current epidemic rates of heart failure 1 by providing human cardiomyocytes to support heart regeneration 2. Studies of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in small animal models have shown favorable effects of this treatment 3–7. It remains unknown, however, whether clinical scale hESC-CMs transplantation is feasible, safe or can provide large-scale myocardial regeneration. Here we show that hESC-CMs can be produced at a clinical scale (>1 billion cells/batch) and cryopreserved with good viability. Using a non-human primate (NHP) model of myocardial ischemia-reperfusion, we show that that cryopreservation and intra-myocardial delivery of 1 billion hESC-CMs generates significant remuscularization of the infarcted heart. The hESC-CMs showed progressive but incomplete maturation over a three-month period. Grafts were perfused by host vasculature, and electromechanical junctions between graft and host myocytes were present within 2 weeks of engraftment. Importantly, grafts showed regular calcium transients that were synchronized to the host electrocardiogram, indicating electromechanical coupling. In contrast to small animal models 7, non-fatal ventricular arrhythmias were observed in hESC-CM engrafted primates. Thus, hESC-CMs can remuscularize substantial amounts of the infarcted monkey heart. Comparable remuscularization of a human heart should be possible, but potential arrhythmic complications need to be overcome. PMID:24776797

  20. hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function.

    PubMed

    Ye, Junqiang; Beetz, Nadine; O'Keeffe, Sean; Tapia, Juan Carlos; Macpherson, Lindsey; Chen, Weisheng V; Bassel-Duby, Rhonda; Olson, Eric N; Maniatis, Tom

    2015-06-01

    We report that mice lacking the heterogeneous nuclear ribonucleoprotein U (hnRNP U) in the heart develop lethal dilated cardiomyopathy and display numerous defects in cardiac pre-mRNA splicing. Mutant hearts have disorganized cardiomyocytes, impaired contractility, and abnormal excitation-contraction coupling activities. RNA-seq analyses of Hnrnpu mutant hearts revealed extensive defects in alternative splicing of pre-mRNAs encoding proteins known to be critical for normal heart development and function, including Titin and calcium/calmodulin-dependent protein kinase II delta (Camk2d). Loss of hnRNP U expression in cardiomyocytes also leads to aberrant splicing of the pre-mRNA encoding the excitation-contraction coupling component Junctin. We found that the protein product of an alternatively spliced Junctin isoform is N-glycosylated at a specific asparagine site that is required for interactions with specific protein partners. Our findings provide conclusive evidence for the essential role of hnRNP U in heart development and function and in the regulation of alternative splicing.

  1. hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function

    PubMed Central

    Ye, Junqiang; Beetz, Nadine; O’Keeffe, Sean; Tapia, Juan Carlos; Macpherson, Lindsey; Chen, Weisheng V.; Bassel-Duby, Rhonda; Olson, Eric N.; Maniatis, Tom

    2015-01-01

    We report that mice lacking the heterogeneous nuclear ribonucleoprotein U (hnRNP U) in the heart develop lethal dilated cardiomyopathy and display numerous defects in cardiac pre-mRNA splicing. Mutant hearts have disorganized cardiomyocytes, impaired contractility, and abnormal excitation–contraction coupling activities. RNA-seq analyses of Hnrnpu mutant hearts revealed extensive defects in alternative splicing of pre-mRNAs encoding proteins known to be critical for normal heart development and function, including Titin and calcium/calmodulin-dependent protein kinase II delta (Camk2d). Loss of hnRNP U expression in cardiomyocytes also leads to aberrant splicing of the pre-mRNA encoding the excitation–contraction coupling component Junctin. We found that the protein product of an alternatively spliced Junctin isoform is N-glycosylated at a specific asparagine site that is required for interactions with specific protein partners. Our findings provide conclusive evidence for the essential role of hnRNP U in heart development and function and in the regulation of alternative splicing. PMID:26039991

  2. Antenatal architecture and activity of the human heart

    PubMed Central

    Pervolaraki, Eleftheria; Anderson, Richard A.; Benson, Alan P.; Hayes-Gill, Barrie; Holden, Arun V.; Moore, Benjamin J. R.; Paley, Martyn N.; Zhang, Henggui

    2013-01-01

    We construct the components for a family of computational models of the electrophysiology of the human foetal heart from 60 days gestational age (DGA) to full term. This requires both cell excitation models that reconstruct the myocyte action potentials, and datasets of cardiac geometry and architecture. Fast low-angle shot and diffusion tensor magnetic resonance imaging (DT-MRI) of foetal hearts provides cardiac geometry with voxel resolution of approximately 100 µm. DT-MRI measures the relative diffusion of protons and provides a measure of the average intravoxel myocyte orientation, and the orientation of any higher order orthotropic organization of the tissue. Such orthotropic organization in the adult mammalian heart has been identified with myocardial sheets and cleavage planes between them. During gestation, the architecture of the human ventricular wall changes from being irregular and isotropic at 100 DGA to an anisotropic and orthotropic architecture by 140 DGA, when it has the smooth, approximately 120° transmural change in myocyte orientation that is characteristic of the adult mammalian ventricle. The DT obtained from DT-MRI provides the conductivity tensor that determines the spread of potential within computational models of cardiac tissue electrophysiology. The foetal electrocardiogram (fECG) can be recorded from approximately 60 DGA, and RR, PR and QT intervals between the P, R, Q and T waves of the fECG can be extracted by averaging from approximately 90 DGA. The RR intervals provide a measure of the pacemaker rate, the QT intervals an index of ventricular action potential duration, and its rate-dependence, and so these intervals constrain and inform models of cell electrophysiology. The parameters of models of adult human sinostrial node and ventricular cells that are based on adult cell electrophysiology and tissue molecular mapping have been modified to construct preliminary models of foetal cell electrophysiology, which reproduce these

  3. Effects of isoproterenol on the metabolism of normal and ischemic heart.

    PubMed

    Andrieu, J L; Vial, C; Font, B; Goldschmidt, D; Ollagnier, M; Faucon, G

    1980-04-01

    A study has been made of the simultaneous evolution of cardiac activity and metabolism in the dog heart in situ, during the perfusion of isoproterenol in a dose comparable to therapeutic doses (1 micrograms x kg-1 x min-1, 30 min). A total cardiopulmonary by-pass system allowed of taking the repeated myocardial tissue samples necessary for the determination of the main energetic substrate and high-energy phosphate content. Samples were taken from subendocardial and subepicardial layers separately. The acceleration of heart rate due to isoproterenol was quickly regressive but, in the well-irrigated heart, the drug elicited a rapid fall in glycogen content and a considerable rise in lactate content, a slower reduction in free fatty acid concentration restricted to the subendocardial layer, and no significant variation of creatine phosphate or ATP. In the ischemic heart, isoproterenol aggravated the glycolysis disturbances without completely losing its effects on lipolysis when the ischemia was not too marked.

  4. Acromegaly with Normal Insulin-Like Growth Factor-1 Levels and Congestive Heart Failure as the First Clinical Manifestation.

    PubMed

    Lee, Hyae Min; Lee, Sun Hee; Yang, In Ho; Hwang, In Kyoung; Hwang, You Cheol; Ahn, Kyu Jeung; Chung, Ho Yeon; Hwang, Hui Jeong; Jeong, In Kyung

    2015-09-01

    The leading cause of morbidity and mortality in patients with acromegaly is cardiovascular complications. Myocardial exposure to excessive growth hormone can cause ventricular hypertrophy, hypertension, arrhythmia, and diastolic dysfunction. However, congestive heart failure as a result of systolic dysfunction is observed only rarely in patients with acromegaly. Most cases of acromegaly exhibit high levels of serum insulin-like growth factor-1 (IGF-1). Acromegaly with normal IGF-1 levels is rare and difficult to diagnose. Here, we report a rare case of an acromegalic patient whose first clinical manifestation was severe congestive heart failure, despite normal IGF-1 levels. We diagnosed acromegaly using a glucose-loading growth hormone suppression test. Cardiac function and myocardial hypertrophy improved 6 months after transsphenoidal resection of a pituitary adenoma.

  5. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts.

    PubMed

    Garreta, Elena; de Oñate, Lorena; Fernández-Santos, M Eugenia; Oria, Roger; Tarantino, Carolina; Climent, Andreu M; Marco, Andrés; Samitier, Mireia; Martínez, Elena; Valls-Margarit, Maria; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco; Izpisua Belmonte, Juan Carlos; Montserrat, Nuria

    2016-08-01

    Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

  6. Proteoglycans on normal and migrating human corneal endothelium.

    PubMed

    Davies, Y; Lewis, D; Fullwood, N J; Nieduszynski, I A; Marcyniuk, B; Albon, J; Tullo, A

    1999-03-01

    Proteoglycans are of fundamental importance to the normal functioning of the cornea. They consist of a core protein to which one or more glycosaminoglycan chains are attached. Cell surface proteoglycans are known to mediate many aspects of cell behaviour including cell adhesion, control of extracellular matrix deposition, cell proliferation, cell migration, leukocyte adhesion and modulation of growth factor activity. This paper describes the first investigation into the distribution and function of the three main classes of proteoglycans on human corneal endothelium. Immuno-gold labelling techniques were used at the light, scanning and transmission electron microscope level to localise heparan sulphate, chondroitin sulphate and keratan sulphate proteoglycans on human corneal endothelium. Human corneas were freeze-wounded and kept in organ culture for 3 days in order to study the distribution of proteoglycans on migrating corneal endothelium. An Optimas image analysis system was used to quantify the change in proteoglycan labelling during cell migration. Labelling for chondroitin sulphate and heparan sulphate was at very low levels on normal corneal endothelium while keratan sulphate labelling was at high levels. The wound healing experiments showed that migrating cells had increased labelling for heparan sulphate and chondroitin sulphate with greatly decreased labelling for keratan sulphate. Statistical analysis showed these changes were highly significant (P<0.001). Transmission electron microscopy revealed that chondroitin sulphate and keratan sulphate were present throughout Descemet's membrane while heparan sulphate was concentrated at the interface of Descemet's membrane and the migrating corneal endothelial cells. The pattern of occurrence of chondroitin sulphate, heparan sulphate and keratan sulphate on the human endothelium in normal and wounded cornea suggests that these proteoglycans are linked to the process of cell migration.

  7. Human factors of flight-deck checklists: The normal checklist

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl L.

    1991-01-01

    Although the aircraft checklist has long been regarded as the foundation of pilot standardization and cockpit safety, it has escaped the scrutiny of the human factors profession. The improper use, or the non-use, of the normal checklist by flight crews is often cited as the probable cause or at least a contributing factor to aircraft accidents. An attempt is made to analyze the normal checklist, its functions, format, design, length, usage, and the limitations of the humans who must interact with it. The development of the checklist from the certification of a new model to its delivery and use by the customer are discussed. The influence of the government, particularly the FAA Principle Operations Inspector, the manufacturer's philosophy, the airline's culture, and the end user, the pilot, influence the ultimate design and usage of this device. The effects of airline mergers and acquisitions on checklist usage and design are noted. In addition, the interaction between production pressures and checklist usage and checklist management are addressed. Finally, a list of design guidelines for normal checklists is provided.

  8. Uroplakin Gene Expression by Normal and Neoplastic Human Urothelium

    PubMed Central

    Lobban, E. Dawn; Smith, Barbara A.; Hall, Geoffrey D.; Harnden, Patricia; Roberts, Paul; Selby, Peter J.; Trejdosiewicz, Ludwik K.; Southgate, Jennifer

    1998-01-01

    cDNA sequences for human uroplakins UPIa, UPIb, UPII, and UPIII were cloned and used to investigate uroplakin transcription by normal and neoplastic urothelial cells. Normal urothelium expressed mRNA for all four uroplakins, although UPIII could be detected only by ribonuclease protection assay. By in situ hybridization, UPIa and UPII were confined to superficial cells and UPIb was also expressed by intermediate cells. Cultured normal human urothelial cells showed a proliferative basal/intermediate cell phenotype and constitutive expression of UPIb only. Uroplakin expression by transitional cell carcinoma cell lines was related to their differentiated phenotype in vitro. RT4 cells expressed all uroplakins, VM-CUB-3 expressed three uroplakins, RT112 and HT1376 cells expressed only UPIb in high abundance, and COLO232, KK47, and EJ cells had no detectable expression. These results correlated with patterns of uroplakin expression in tumors. UPIa and UPII were detected superficially only in well differentiated transitional cell carcinoma papillae. UPIb was positive in seven of nine and overexpressed in five of nine noninvasive transitional cell carcinomas and was also present in four of eight invasive transitional cell carcinomas. Lymph node metastases retained the same pattern of UPIb expression as the primary tumor. Unlike the three differentiation-regulated uroplakins, UPIb may have an alternative role in urothelial cell/tissue processes. PMID:9846985

  9. Uroplakin gene expression by normal and neoplastic human urothelium.

    PubMed

    Lobban, E D; Smith, B A; Hall, G D; Harnden, P; Roberts, P; Selby, P J; Trejdosiewicz, L K; Southgate, J

    1998-12-01

    cDNA sequences for human uroplakins UPIa, UPIb, UPII, and UPIII were cloned and used to investigate uroplakin transcription by normal and neoplastic urothelial cells. Normal urothelium expressed mRNA for all four uroplakins, although UPIII could be detected only by ribonuclease protection assay. By in situ hybridization, UPIa and UPII were confined to superficial cells and UPIb was also expressed by intermediate cells. Cultured normal human urothelial cells showed a proliferative basal/intermediate cell phenotype and constitutive expression of UPIb only. Uroplakin expression by transitional cell carcinoma cell lines was related to their differentiated phenotype in vitro. RT4 cells expressed all uroplakins, VM-CUB-3 expressed three uroplakins, RT112 and HT1376 cells expressed only UPIb in high abundance, and COLO232, KK47, and EJ cells had no detectable expression. These results correlated with patterns of uroplakin expression in tumors. UPIa and UPII were detected superficially only in well differentiated transitional cell carcinoma papillae. UPIb was positive in seven of nine and overexpressed in five of nine noninvasive transitional cell carcinomas and was also present in four of eight invasive transitional cell carcinomas. Lymph node metastases retained the same pattern of UPIb expression as the primary tumor. Unlike the three differentiation-regulated uroplakins, UPIb may have an alternative role in urothelial cell/tissue processes. PMID:9846985

  10. Telocytes and putative stem cells in ageing human heart.

    PubMed

    Popescu, Laurentiu M; Curici, Antoanela; Wang, Enshi; Zhang, Hao; Hu, Shengshou; Gherghiceanu, Mihaela

    2015-01-01

    Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days-1 year), children (6-17 years) and adults (34-60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm(2) ) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52-62%; vascular smooth muscle cells and pericytes 22-28%, Schwann cells with nerve endings 6-7%, fibroblasts 3-10%, macrophages 1-8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults).

  11. Effects of ozone in normal human epidermal keratinocytes.

    PubMed

    McCarthy, James T; Pelle, Edward; Dong, Kelly; Brahmbhatt, Krupa; Yarosh, Dan; Pernodet, Nadine

    2013-05-01

    Ozone is a tropospheric pollutant that can form at ground level as a result of an interaction between sunlight and hydrocarbon engine emissions. As ozone is an extremely oxidative reaction product, epidermal cells are in the outer layer of defense against ozone. We exposed normal human epidermal keratinocytes (NHEK) to concentrations of ozone that have been measured in cities and assayed for its effects. Hydrogen peroxide and IL-1α levels both increased while ATP levels decreased. We found a decrease in the NAD-dependent histone deacetylase, sirtuin 3. Lastly, we found that ozone increased DNA damage as evaluated by Comet assay. Taken together, our results show increased damage to NHEK that will ultimately impair normal cellular function as a result of an environmentally relevant ozone exposure.

  12. Effects of water immersion on plasma catecholamines in normal humans

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Johnson, G.; Denunzio, A. G.

    1983-01-01

    An investigation was conducted in order to determine whether water immersion to the neck (NI) alters plasma catecholamines in normal humans. Eight normal subjects were studied during a seated control study (C) and during 4 hr of NI, and the levels of norepinephrine (NE) and epinephrine (E) as determined by radioenzymatic assay were measured hourly. Results show that despite the induction of a marked natriuresis and diuresis indicating significant central hypervolemia, NI failed to alter plasma NE or E levels compared with those of either C or the corresponding prestudy 1.5 hr. In addition, the diuresis and natriuresis was found to vary independently of NE. These results indicate that the response of the sympathetic nervous system to acute volume alteration may differ from the reported response to chronic volume expansion.

  13. Optical Properties of Human Cancer and Normal Cells

    NASA Astrophysics Data System (ADS)

    Sander, Christopher; Sun, Nan; Johnson, Jeffrey; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    2014-03-01

    We have investigated the optical properties of human oral and ovarian cancer and normal cells. Specifically, we have measured the absolute optical extinction for both whole cells and intra-cellular material in aqueous suspension. Measurements were conducted over a wavelength range of 250 to 1000nm with 1 nm resolution using Light Transmission Spectroscopy (LTS). This provides both the absolute extinction of materials under study and, with Mie inversion, the absolute number of particles of a given diameter as a function of diameter in the range of 1 to 3000 nm. Our preliminary studies show significant differences in both the extinction and particle size distributions associated with cancer versus normal cells, which appear to be correlated with differences in the particle size distribution in the range of ~ 50 to 250 nm.

  14. Immortalization of human normal and NF1 neurofibroma Schwann cells.

    PubMed

    Li, Hua; Chang, Lung-Ji; Neubauer, Debbie R; Muir, David F; Wallace, Margaret R

    2016-10-01

    Neurofibromas, which are benign Schwann cell tumors, are the hallmark feature in the autosomal dominant condition neurofibromatosis 1 (NF1) and are associated with biallelic loss of NF1 gene function. There is a need for effective therapies for neurofibromas, particularly the larger, plexiform neurofibromas. Tissue culture is an important tool for research. However, it is difficult to derive enriched human Schwann cell cultures, and most enter replicative senescence after 6-10 passages, impeding cell-based research in NF1. Through exogenous expression of human telomerase reverse transcriptase and murine cyclin-dependent kinase (mCdk4), normal (NF1 wild-type), neurofibroma-derived Schwann cells heterozygous for NF1 mutation, and neurofibroma-derived Schwann cells homozygous for NF1 mutation were immortalized, including some matched samples from the same NF1 patient. Initial experiments employed retroviral vectors, while subsequent work utilized lentiviral vectors carrying these genes because of improved efficiency. Expression of both transgenes was required for immortalization. Molecular and immunohistochemical analysis indicated that these cell lines are of Schwann cell lineage and have a range of phenotypes, many of which are consistent with their primary cultures. This is the first report of immortalization and detailed characterization of multiple human NF1 normal nerve and neurofibroma-derived Schwann cell lines, which will be highly useful research tools to study NF1 and other Schwann tumor biology and conditions. PMID:27617404

  15. A quantitative transcriptome reference map of the normal human brain.

    PubMed

    Caracausi, Maria; Vitale, Lorenza; Pelleri, Maria Chiara; Piovesan, Allison; Bruno, Samantha; Strippoli, Pierluigi

    2014-10-01

    We performed an innovative systematic meta-analysis of 60 gene expression profiles of whole normal human brain, to provide a quantitative transcriptome reference map of it, i.e. a reference typical value of expression for each of the 39,250 known, mapped and 26,026 uncharacterized (unmapped) transcripts. To this aim, we used the software named Transcriptome Mapper (TRAM), which is able to generate transcriptome maps based on gene expression data from multiple sources. We also analyzed differential expression by comparing the brain transcriptome with those derived from human foetal brain gene expression, from a pool of human tissues (except the brain) and from the two normal human brain regions cerebellum and cerebral cortex, which are two of the main regions severely affected when cognitive impairment occurs, as happens in the case of trisomy 21. Data were downloaded from microarray databases, processed and analyzed using TRAM software and validated in vitro by assaying gene expression through several magnitude orders by 'real-time' reverse transcription polymerase chain reaction (RT-PCR). The excellent agreement between in silico and experimental data suggested that our transcriptome maps may be a useful quantitative reference benchmark for gene expression studies related to the human brain. Furthermore, our analysis yielded biological insights about those genes which have an intrinsic over-/under-expression in the brain, in addition offering a basis for the regional analysis of gene expression. This could be useful for the study of chromosomal alterations associated to cognitive impairment, such as trisomy 21, the most common genetic cause of intellectual disability. PMID:25185649

  16. A quantitative transcriptome reference map of the normal human brain.

    PubMed

    Caracausi, Maria; Vitale, Lorenza; Pelleri, Maria Chiara; Piovesan, Allison; Bruno, Samantha; Strippoli, Pierluigi

    2014-10-01

    We performed an innovative systematic meta-analysis of 60 gene expression profiles of whole normal human brain, to provide a quantitative transcriptome reference map of it, i.e. a reference typical value of expression for each of the 39,250 known, mapped and 26,026 uncharacterized (unmapped) transcripts. To this aim, we used the software named Transcriptome Mapper (TRAM), which is able to generate transcriptome maps based on gene expression data from multiple sources. We also analyzed differential expression by comparing the brain transcriptome with those derived from human foetal brain gene expression, from a pool of human tissues (except the brain) and from the two normal human brain regions cerebellum and cerebral cortex, which are two of the main regions severely affected when cognitive impairment occurs, as happens in the case of trisomy 21. Data were downloaded from microarray databases, processed and analyzed using TRAM software and validated in vitro by assaying gene expression through several magnitude orders by 'real-time' reverse transcription polymerase chain reaction (RT-PCR). The excellent agreement between in silico and experimental data suggested that our transcriptome maps may be a useful quantitative reference benchmark for gene expression studies related to the human brain. Furthermore, our analysis yielded biological insights about those genes which have an intrinsic over-/under-expression in the brain, in addition offering a basis for the regional analysis of gene expression. This could be useful for the study of chromosomal alterations associated to cognitive impairment, such as trisomy 21, the most common genetic cause of intellectual disability.

  17. Regulation of p53 during senescence in normal human keratinocytes

    PubMed Central

    Kim, Reuben H; Kang, Mo K; Kim, Terresa; Yang, Paul; Bae, Susan; Williams, Drake W; Phung, Samantha; Shin, Ki-Hyuk; Hong, Christine; Park, No-Hee

    2015-01-01

    p53, the guardian of the genome, is a tumor suppressor protein and critical for the genomic integrity of the cells. Many studies have shown that intracellular level of p53 is enhanced during replicative senescence in normal fibroblasts, and the enhanced level of p53 is viewed as the cause of senescence. Here, we report that, unlike in normal fibroblasts, the level of intracellular p53 reduces during replicative senescence and oncogene-induced senescence (OIS) in normal human keratinocytes (NHKs). We found that the intracellular p53 level was also decreased in age-dependent manner in normal human epithelial tissues. Senescent NHKs exhibited an enhanced level of p16INK4A, induced G2 cell cycle arrest, and lowered the p53 expression and transactivation activity. We found that low level of p53 in senescent NHKs was due to reduced transcription of p53. The methylation status at the p53 promoter was not altered during senescence, but senescent NHKs exhibited notably lower level of acetylated histone 3 (H3) at the p53 promoter in comparison with rapidly proliferating cells. Moreover, p53 knockdown in rapidly proliferating NHKs resulted in the disruption of fidelity in repaired DNA. Taken together, our study demonstrates that p53 level is diminished during replicative senescence and OIS and that such diminution is associated with H3 deacetylation at the p53 promoter. The reduced intracellular p53 level in keratinocytes of the elderly could be a contributing factor for more frequent development of epithelial cancer in the elderly because of the loss of genomic integrity of cells. PMID:26138448

  18. Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function.

    PubMed

    Cordero-Reyes, Andrea M; Gupte, Anisha A; Youker, Keith A; Loebe, Matthias; Hsueh, Willa A; Torre-Amione, Guillermo; Taegtmeyer, Heinrich; Hamilton, Dale J

    2014-03-01

    In heart failure mitochondrial dysfunction is thought to be responsible for energy depletion and contractile dysfunction. The difficulties in procuring fresh left ventricular (LV) myocardium from humans for assessment of mitochondrial function have resulted in the reliance on surrogate markers of mitochondrial function and limited our understanding of cardiac energetics. We isolated mitochondria from fresh LV wall tissue of patients with heart failure and reduced systolic function undergoing heart transplant or left ventricular assist device placement, and compared their function to mitochondria isolated from the non-failing LV (NFLV) wall tissue with normal systolic function from patients with pulmonary hypertension undergoing heart-lung transplant. We performed detailed mitochondrial functional analyses using 4 substrates: glutamate-malate (GM), pyruvate-malate (PM) palmitoyl carnitine-malate (PC) and succinate. NFLV mitochondria showed preserved respiratory control ratios and electron chain integrity with only few differences for the 4 substrates. In contrast, HF mitochondria had greater respiration with GM, PM and PC substrates and higher electron chain capacity for PM than for PC. Surprisingly, HF mitochondria had greater respiratory control ratios and lower ADP-independent state 4 rates than NFLV mitochondria for GM, PM and PC substrates demonstrating that HF mitochondria are capable of coupled respiration ex vivo. Gene expression studies revealed decreased expression of key genes in pathways for oxidation of both fatty acids and glucose. Our results suggest that mitochondria from the failing LV myocardium are capable of tightly coupled respiration when isolated and supplied with ample substrates. Thus energy starvation in the failing heart may be the result of dysregulation of metabolic pathways, impaired substrate supply or reduced mitochondrial number but not the result of reduced mitochondrial electron transport capacity. PMID:24412531

  19. The ionic components of normal human oesophageal epithelium.

    PubMed

    Hopwood, D; Milne, G; Curtis, M; Nicholson, G

    1979-11-01

    The distribution of cations and anions in normal human oesophageal epithelium has been investigated with the pyroantimonate and silver-osmium tetroxide techniques. There is a discontinuous distribution of both ions in the intercellular space. The ions are associated with various organelles, as has already been described in the literature. Specifically, in the oesophageal epithelium, there are a few deposits of pyroantimonate and occasional silver in the membrane coating granules, but here is no apparent relationship of either ion with the tonofilaments or glycogen particles. The superficial cells are leaky and contain fewer ions than the deeper functional layer cells.

  20. Hierarchical Structure of Heart Rate Variability in Humans

    NASA Astrophysics Data System (ADS)

    Gao, X. Z.; Ching, E. S. C.; Lin, D. C.

    2004-03-01

    We show a hierarchical structure (HS) of the She-Leveque form in the beat-to-beat RR intervals of heart rate variability (HRV) in humans. This structure, first found as an empirical law in turbulent fluid flows, implies further details in the HRV multifractal scaling. We tested HS using daytime RRi data from healthy subjects and heart diseased patients with congestive heart failure and found a universal law C(b) where b characterizes the multifractality of HRV and C is related to a co-dimension parameter of the most violent events in the fluctuation. The potential of diagnosis is discussed based on the characteristics of this finding. To model the HRV phenomenology, we propose a local-feedback-global-cascade (LFGC) model based on the She-Waymire (SW) cascade solution to the HS in fluid turbulence. This model extends from the previous work in that it integrates additive law multiplicatively into the cascade structure. It is an attempt to relate to the cardiovascular physiology which consists of numerous feedback controls that function primarily on the principle of additive law. In particular, the model is based on the same philosophy as the SW cascade that its multifractal dynamics consists of a singular and a modulating component. In the LFGC model, we introduce local feedback to model the dynamics of the modulating effect. The novelty of our model is to incorporate the cascade structure in the scheduling for the feedback control. This model also represents an alternative solution to the HS. We will present the simulation results by the LFGC model and discuss its implication in physiology terms.

  1. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver.

    PubMed

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-02-26

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development.

  2. Human heart rate variability relation is unchanged during motion sickness

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.

    1998-01-01

    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  3. Statistical Properties of the Interbeat Interval Cascade in Human Hearts

    NASA Astrophysics Data System (ADS)

    Ghasemi, Fatemeh; Peinke, J.; Reza Rahimi Tabar, M.; Sahimi, Muhammad

    Statistical properties of interbeat intervals cascade in human hearts are evaluated by considering the joint probability distribution P (Δx2, τ2 Δx1, τ1) for two interbeat increments Δx1 and Δx2 of different time scales τ1 and τ2. We present evidence that the conditional probability distribution P (Δx2, τ2 | Δx1, τ1) may be described by a Chapman-Kolmogorov equation. The corresponding Kramers-Moyal (KM) coefficients are evaluated. The analysis indicates that while the first and second KM coefficients take on well-defined and significant values, the higher-order coefficients in the KM expansion are small. As a result, the joint probability distributions of the increments in the interbeat intervals are described by a Fokker-Planck equation, with the first two KM coefficients acting as the drift and diffusion coefficients. The method provides a novel technique for distinguishing two classes of subjects, namely, healthy ones and those with congestive heart failure, in terms of the drift and diffusion coefficients which behave differently for two classes of the subjects.

  4. Divergent viral presentation among human tumors and adjacent normal tissues

    PubMed Central

    Cao, Song; Wendl, Michael C.; Wyczalkowski, Matthew A.; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J.; Gay, Hiram; Chen, Ken; Rader, Janet S.; Dipersio, John F.; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  5. A multisegment computer simulation of normal human gait.

    PubMed

    Gilchrist, L A; Winter, D A

    1997-12-01

    The goal of this project was to develop a computer simulation of normal human walking that would use as driving moments resultant joint moments from a gait analysis. The system description, initial conditions and driving moments were taken from an inverse dynamics analysis of a normal walking trial. A nine-segment three-dimensional (3-D) model, including a two-part foot, was used. Torsional, linear springs and dampers were used at the hip joints to keep the trunk vertical and at the knee and ankle joints to prevent nonphysiological motion. Dampers at other joints were required to ensure a smooth and realistic motion. The simulated human successfully completed one step (550 ms), including both single and double support phases. The model proved to be sensitive to changes in the spring stiffness values of the trunk controllers. Similar sensitivity was found with the springs used to prevent hyperextension of the knee at heel contact and of the metatarsal-phalangeal joint at push-off. In general, there was much less sensitivity to the damping coefficients. This simulation improves on previous efforts because it incorporates some features necessary in simulations designed to answer clinical science questions. Other control algorithms are required, however, to ensure that the model can be realistically adapted to different subjects.

  6. Proliferation of normal human keratinocytes on silicone substrates.

    PubMed

    Rosdy, M; Grisoni, B; Clauss, L C

    1991-07-01

    Several polydimethylsiloxane elastomers and gels were tested as culture substrates for proliferating normal human epidermal keratinocytes. Growth kinetics of normal human keratinocytes (NHK) and dermal fibroblasts were compared on 'very soft', 'soft' and 'hard' silicone gels, as well as on standard cell culture polystyrene dishes. Water contact angles and chemical compositions (IRFT-HATR) of the different silicone surfaces were found to be equivalent, although very different from standard cell culture polystyrene. The topography of the surfaces as well as the shape of the keratinocytes and fibroblasts grown on the different substrates were visualized by scanning electron microscopy, and compared. Although the surface softness and topography of the substrates differed markedly, dermal fibroblasts proliferated in serum-containing medium in equivalent manner on all substrates. Again no correlation could be found between the characteristics and the attachment of the substrates and rapid proliferation of the epidermal keratinocytes in defined medium. The epidermal keratinocytes spread, secreted a structured extracellular matrix network and grew up to confluence on all silicone substrates (elastomers and gels), except the relatively 'hard' silicone gel; this could be due to a direct interference by the waves observed on the silicone gel surfaces. PMID:1654138

  7. Effects of gene regulatory reprogramming on gene expression in human and mouse developing hearts.

    PubMed

    Hsu, Chih-Hao; Ovcharenko, Ivan

    2013-01-01

    Lineage-specific regulatory elements underlie adaptation of species and play a role in disease susceptibility. We compared functionally conserved and lineage-specific enhancers by cross-mapping 5042 human and 6564 mouse heart enhancers. Of these, 79 per cent are lineage-specific, lacking a functional orthologue. Heart enhancers tend to cluster and, commonly, there are multiple heart enhancers in a heart locus providing a regulatory stability to the locus. We observed little cross-clustering, however, between lineage-specific and functionally conserved heart enhancers suggesting regulatory function acquisition and development in loci previously lacking heart activity. We also identified 862 human-specific heart enhancers: 417 featuring sequence conservation with mouse (class II) and 445 with neither sequence nor function conservation (class III). Ninety-eight per cent of class III enhancers were deleted from the mouse genome, and we estimated a similar-sized enhancer gain in the human lineage. Human-specific enhancers display no detectable decrease in the negative selection pressure and are strongly associated with genes partaking in the heart regulatory programmes. The loss of a heart enhancer could be compensated by activity of a redundant heart enhancer; however, we observed redundancy in only 15 per cent of class II and III enhancer loci indicating a large-scale reprogramming of the heart regulatory programme in mammals.

  8. Activation of the Poly(ADP-Ribose) Polymerase Pathway in Human Heart Failure

    PubMed Central

    Molnár, Andrea; Tóth, Attila; Bagi, Zsolt; Papp, Zoltán; Édes, István; Vaszily, Miklós; Galajda, Zoltán; Papp, Julius Gy.; Varró, András; Szüts, Viktória; Lacza, Zsombor; Gerö, Domokos; Szabó, Csaba

    2006-01-01

    Poly(ADP-ribose) polymerase (PARP) activation has been implicated in the pathogenesis of acute and chronic myocardial dysfunction and heart failure. The goal of the present study was to investigate PARP activation in human heart failure, and to correlate PARP activation with various indices of apoptosis and oxidative and nitrosative stress in healthy (donor) and failing (NYHA class III–IV) human heart tissue samples. Higher levels of oxidized protein end-products were found in failing hearts compared with donor heart samples. On the other hand, no differences in tyrosine nitration (a marker of peroxynitrite generation) were detected. Activation of PARP was demonstrated in the failing hearts by an increased abundance of poly-ADP ribosylated proteins. Immunohistochemical analysis revealed that PARP activation was localized to the nucleus of the cardiomyocytes from the failing hearts. The expression of full-length PARP-1 was not significantly different in donor and failing hearts. The expression of caspase-9, in contrast, was significantly higher in the failing than in the donor hearts. Immunohistochemical analysis was used to detect the activation of mitochondrial apoptotic pathways. We found no significant translocation of apoptosis-inducing factor (AIF) into the nucleus. Overall, the current data provide evidence of oxidative stress and PARP activation in human heart failure. Interventional studies with antioxidants or PARP inhibitors are required to define the specific roles of these factors in the pathogenesis of human heart failure. PMID:17088946

  9. Emergence of dynamical complexity related to human heart rate variability

    NASA Astrophysics Data System (ADS)

    Chang, Mei-Chu; Peng, C.-K.; Stanley, H. Eugene

    2014-12-01

    We apply the refined composite multiscale entropy (MSE) method to a one-dimensional directed small-world network composed of nodes whose states are binary and whose dynamics obey the majority rule. We find that the resulting fluctuating signal becomes dynamically complex. This dynamical complexity is caused (i) by the presence of both short-range connections and long-range shortcuts and (ii) by how well the system can adapt to the noisy environment. By tuning the adaptability of the environment and the long-range shortcuts we can increase or decrease the dynamical complexity, thereby modeling trends found in the MSE of a healthy human heart rate in different physiological states. When the shortcut and adaptability values increase, the complexity in the system dynamics becomes uncorrelated.

  10. Long-Term Outcome of Non-Sustained Ventricular Tachycardia in Structurally Normal Hearts

    PubMed Central

    Lin, Chin-Yu; Chang, Shih-Lin; Chung, Fa-Po; Chen, Yun-Yu; Lin, Yenn-Jiang; Lo, Li-Wei; Hu, Yu-Feng; Tuan, Ta-Chuan; Chao, Tze-Fan; Liao, Jo-Nan; Chang, Yao-Ting; Lin, Chung-Hsing; Allamsetty, Suresh; Walia, Rohit; Te, Abigail Louise D.; Yamada, Shinya; Chiang, Shuo-Ju; Tsao, Hsuan-Ming; Chen, Shih-Ann

    2016-01-01

    Background The impact of non-sustained ventricular tachycardia (NSVT) on the risk of thromboembolic event and clinical outcomes in patients without structural heart disease remains undetermined. This study aimed to evaluate the association between NSVT and clinical outcomes. Methods The study population of 5903 patients was culled from the “Registry of 24-hour ECG monitoring at Taipei Veterans General Hospital” (REMOTE database) between January 1, 2002 and December 31, 2004. Of that total, we enrolled 3767 patients without sustained ventricular tachycardia, structural heart disease, and permanent pacemaker. For purposes of this study, NSVT was defined as 3 or more consecutive beats arising below the atrioventricular node with an RR interval of <600 ms (>100 beats/min) and lasting < 30 seconds. Result There were 776 deaths, 2042 hospitalizations for any reason, 638 cardiovascular (CV)-related hospitalizations, 350 ischemic strokes, 409 transient ischemic accident (TIA), 368 new-onset heart failure (HF), and 260 new-onset atrial fibrillation (AF) with a mean follow-up duration of 10 ± 1 years. In multivariate analysis, the presence of NSVT was independently associated with death (hazard ratio [HR]: 1.362, 95% confidence interval [CI]: 1.071–1.731), CV hospitalization (HR: 1.527, 95% CI: 1.171–1.992), ischemic stroke (HR: 1.436, 95% CI: 1.014–2.032), TIA (HR 1.483, 95% CI: 1.069–2.057), and new-onset HF (HR: 1.716, 95% CI: 1.243–2.368). There was no significant association between the presence of NSVT and all-cause hospitalization or new-onset AF. Conclusion In patients without structural heart disease, presence of NSVT on 24-hour monitoring was independently associated with death, CV hospitalization, ischemic stroke, TIA, and new onset heart failure. PMID:27548469

  11. Heart rate variability of human in hypoxic oxygen-argon environment

    NASA Astrophysics Data System (ADS)

    Khayrullina, Rezeda; Smoleevskiy, Alexandr; Bubeev, Yuri

    Human adaptive capacity, reliability and stability in extreme environments depend primarily on the individual resistance to stresses, includes both innate and acquired components. We have conducted studies in six healthy subjects - men aged between 24 to 42 years who psychophysiological indicators acterizing the severity of stress reactions studied directly during an emergency situation, before and after it. The subjects were in a hypoxic oxygen-argon atmosphere 10 days. Cardiovascular system is one of the first to respond to stressful reaction. The method of heart rate variability (HRV) allows us to estimate balance of sympathetic and parasympathetic parts of vegetative nervous system. In the course of the baseline study it was found that resting heart rate (HR) in the examined individuals is within normal limits. During the experiment in all subjects there was a trend towards more frequent heartbeat. Each subject at one stage or another stay in a hypoxic oxygen-argon environment heart rate go beyond the group norm, but the extent and duration of these abnormalities were significantly different. Marked increase in middle heart rate during of subjects experiment, fluctuating within a wide range (from 2.3% to 29.1%). Marked increase in middle heart rate during of subjects experiment, fluctuating within a wide range (from 2.3% to 29.1%). This suggests that the ability to adapt to living in the investigated gas environment have marked individual differences. SDNN (mean square deviation of all R-R intervals) is the integral indicator of the total effect of the sinus node to the sympathetic and parasympathetic parts of vegetative nervous system, as well as indicating the higher functional reserves of the cardiovascular systems. Increase in heart rate in the majority of subject was accompanied by an increase in individual SDNN. This suggests that the parasympathetic system is able to balance the increase in activity of the sympathetic system, and functional reserves are

  12. Human cancers overexpress genes that are specific to a variety of normal human tissues

    PubMed Central

    Lotem, Joseph; Netanely, Dvir; Domany, Eytan; Sachs, Leo

    2005-01-01

    We have analyzed gene expression data from three different kinds of samples: normal human tissues, human cancer cell lines, and leukemic cells from lymphoid and myeloid leukemia pediatric patients. We have searched for genes that are overexpressed in human cancer and also show specific patterns of tissue-dependent expression in normal tissues. Using the expression data of the normal tissues, we identified 4,346 genes with a high variability of expression and clustered these genes according to their relative expression level. Of 91 stable clusters obtained, 24 clusters included genes preferentially expressed either only in hematopoietic tissues or in hematopoietic and one to two other tissues; 28 clusters included genes preferentially expressed in various nonhematopoietic tissues such as neuronal, testis, liver, kidney, muscle, lung, pancreas, and placenta. Analysis of the expression levels of these two groups of genes in the human cancer cell lines and leukemias identified genes that were highly expressed in cancer cells but not in their normal counterparts and, thus, were overexpressed in the cancers. The different cancer cell lines and leukemias varied in the number and identity of these overexpressed genes. The results indicate that many genes that are overexpressed in human cancer cells are specific to a variety of normal tissues, including normal tissues other than those from which the cancer originated. It is suggested that this general property of cancer cells plays a major role in determining the behavior of the cancers, including their metastatic potential. PMID:16339305

  13. Telocytes and putative stem cells in ageing human heart

    PubMed Central

    Popescu, Laurentiu M; Curici, Antoanela; Wang, Enshi; Zhang, Hao; Hu, Shengshou; Gherghiceanu, Mihaela

    2015-01-01

    Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit http://www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days–1 year), children (6–17 years) and adults (34–60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm2) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52–62%; vascular smooth muscle cells and pericytes 22–28%, Schwann cells with nerve endings 6–7%, fibroblasts 3–10%, macrophages 1–8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults). PMID:25545142

  14. A Simple Dissection Method for the Conduction System of the Human Heart

    ERIC Educational Resources Information Center

    Yanagawa, Nariaki; Nakajima, Yuji

    2009-01-01

    A simple dissection guide for the conduction system of the human heart is shown. The atrioventricular (AV) node, AV bundle, and right bundle branch were identified in a formaldehyde-fixed human heart. The sinu-atrial (SA) node could not be found, but the region in which SA node was contained was identified using the SA nodal artery. Gross…

  15. Developing a novel comprehensive framework for the investigation of cellular and whole heart electrophysiology in the in situ human heart: historical perspectives, current progress and future prospects.

    PubMed

    Taggart, Peter; Orini, Michele; Hanson, Ben; Hayward, Martin; Clayton, Richard; Dobrzynski, Halina; Yanni, Joseph; Boyett, Mark; Lambiase, Pier D

    2014-08-01

    Understanding the mechanisms of fatal ventricular arrhythmias is of great importance. In view of the many electrophysiological differences that exist between animal species and humans, the acquisition of basic electrophysiological data in the intact human heart is essential to drive and complement experimental work in animal and in-silico models. Over the years techniques have been developed to obtain basic electrophysiological signals directly from the patients by incorporating these measurements into routine clinical procedures which access the heart such as cardiac catheterisation and cardiac surgery. Early recordings with monophasic action potentials provided valuable information including normal values for the in vivo human heart, cycle length dependent properties, the effect of ischaemia, autonomic nervous system activity, and mechano-electric interaction. Transmural recordings addressed the controversial issue of the mid myocardial "M" cell. More recently, the technique of multielectrode mapping (256 electrodes) developed in animal models has been extended to humans, enabling mapping of activation and repolarisation on the entire left and right ventricular epicardium in patients during cardiac surgery. Studies have examined the issue of whether ventricular fibrillation was driven by a "mother" rotor with inhomogeneous and fragmented conduction as in some animal models, or by multiple wavelets as in other animal studies; results showed that both mechanisms are operative in humans. The simpler spatial organisation of human VF has important implications for treatment and prevention. To link in-vivo human electrophysiological mapping with cellular biophysics, multielectrode mapping is now being combined with myocardial biopsies. This technique enables region-specific electrophysiology changes to be related to underlying cellular biology, for example: APD alternans, which is a precursor of VF and sudden death. The mechanism is incompletely understood but related

  16. Human penile erection and organic impotence: normal histology and histopathology.

    PubMed

    Conti, G; Virag, R

    1989-01-01

    A very large amount of human material (7 embryos, 12 stillborns, 12 penes of males aged between 2 and 86 years, as well as bioptical material from 80 subjects affected by impotence problems) has been examined so as to study the penis arterial and venous walls, the blood flow regulation mechanisms and the intracavernal trabecular morphology. The amount of muscle tissue and of collagenous connective tissue has been numerically quantified by computer-assisted methods. This study enables the authors to underline three fundamental facts: (a) it confirms the normal penile erection mechanism, and the consequent theory, (b) it confirms that vascular sclerosis is a systemic phenomenon correlated to age, and that the penis is not exempt, and (c) in the case of impotence problems, the same sclerosis phenomenon may appear at an earlier age, and therefore induce pathological impotence. PMID:2800066

  17. Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency.

    PubMed

    Simonelli, Sara; Tinti, Cristina; Salvini, Laura; Tinti, Laura; Ossoli, Alice; Vitali, Cecilia; Sousa, Vitor; Orsini, Gaetano; Nolli, Maria Luisa; Franceschini, Guido; Calabresi, Laura

    2013-11-01

    Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for cholesterol esterification in plasma. Mutations in the LCAT gene leads to two rare disorders, familial LCAT deficiency and fish-eye disease, both characterized by severe hypoalphalipoproteinemia associated with several lipoprotein abnormalities. No specific treatment is presently available for genetic LCAT deficiency. In the present study, recombinant human LCAT was expressed and tested for its ability to correct the lipoprotein profile in LCAT deficient plasma. The results show that rhLCAT efficiently reduces the amount of unesterified cholesterol (-30%) and promotes the production of plasma cholesteryl esters (+210%) in LCAT deficient plasma. rhLCAT induces a marked increase in HDL-C levels (+89%) and induces the maturation of small preβ-HDL into alpha-migrating particles. Moreover, the abnormal phospholipid-rich particles migrating in the LDL region were converted in normally sized LDL.

  18. Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency.

    PubMed

    Simonelli, Sara; Tinti, Cristina; Salvini, Laura; Tinti, Laura; Ossoli, Alice; Vitali, Cecilia; Sousa, Vitor; Orsini, Gaetano; Nolli, Maria Luisa; Franceschini, Guido; Calabresi, Laura

    2013-11-01

    Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for cholesterol esterification in plasma. Mutations in the LCAT gene leads to two rare disorders, familial LCAT deficiency and fish-eye disease, both characterized by severe hypoalphalipoproteinemia associated with several lipoprotein abnormalities. No specific treatment is presently available for genetic LCAT deficiency. In the present study, recombinant human LCAT was expressed and tested for its ability to correct the lipoprotein profile in LCAT deficient plasma. The results show that rhLCAT efficiently reduces the amount of unesterified cholesterol (-30%) and promotes the production of plasma cholesteryl esters (+210%) in LCAT deficient plasma. rhLCAT induces a marked increase in HDL-C levels (+89%) and induces the maturation of small preβ-HDL into alpha-migrating particles. Moreover, the abnormal phospholipid-rich particles migrating in the LDL region were converted in normally sized LDL. PMID:24140107

  19. A fast method to measure the 3D surface of the human heart

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Su, Xianyu; Xiang, Liqun; Chen, Wenjing; Zhang, Qican

    2003-12-01

    Three-dimensional (3-D) automatic measurement of an object is widely used in many fields. In Biology and Medicine society, it can be applicable for surgery, orthopedics, viscera disease analysis and diagnosis etc. Here a new fast method to measure the 3D surface of human heart is proposed which can provide doctors a lot of information, such as the size of heart profile, the sizes of the left or right heart ventricle, and the curvature center and radius of heart ventricle, to fully analyze and diagnose pathobiology of human heart. The new fast method is optically and noncontacted and based upon the Phase Measurement Profilometry (PMP), which has higher measuring precision. A human heart specimen experiment has verified our method.

  20. Morphological Study of Chordae Tendinae in Human Cadaveric Hearts

    PubMed Central

    Gunnal, S. A.; Wabale, R. N.; Farooqui, M. S.

    2015-01-01

    Objectives: The chordae tendinae (CT) are strong, fibrous connections between the valve leaflets and the papillary muscles. Dysfunction of the papillary muscles and chordae is frequent. Mitral valve replacement with preservation of CT and papillary muscles may preserve postoperative left ventricular function better than conventional mitral valve replacement in patients with chronic mitral regurgitation. Methods: The study was carried out on 116 human cadaveric hearts. The heart was opened through the atrioventricular valve to view the constituents of the complex. Origin, attachments, insertions, distribution, branching pattern and gross structure of CT were observed and studied in detail. Results: In the present study more than 21 terminologies of CT were defined by classifying it into six different types. Classification is done according to the origin, attachments, insertion, distribution, branching pattern and gross structure. Terminologies defined are as follows. Apical pillar chordae, Basal pillar chordae, True chordae, False chordae, Interpillar chordae, Pillar wall chordae, Cusp chordae, Cleft chordae, Commissural chordae, First order chordae, Second order chordae, Free zone chordae, Marginal chordae, Rough zone chordae, Straight chordae, Branched-fan shaped chordae, Spiral chordae, Irregular-web chordae, Tendinous chordae, Muscular chordae, Membranous chordae. Basal pillar chordae are found in 9.48%. Mean number of chordae taking origin from apical half of a single papillary muscle or single head of papillary muscle was 9.09 with the range of 3-18. Mean number of the marginal chordae attached to a single cusp was 22.63 ranging from 11 to 35. Strut chordae showed interesting insertion with broad aponeurosis in 38.79% and large muscular flaps in 13.79%. Chordae muscularis were found in 14% and membranous chordae were found in 6%. Conclusions: This knowledge may prove useful for cardiologists and cardiac surgeons. PMID:25838872

  1. Regulation of Connective Tissue Growth Factor Gene Expression and Fibrosis in Human Heart Failure

    PubMed Central

    Koshman, Yevgeniya E.; Patel, Nilamkumar; Chu, Miensheng; Iyengar, Rekha; Kim, Taehoon; Ersahin, Cagatay; Lewis, William; Heroux, Alain; Samarel, Allen M.

    2013-01-01

    Background Heart failure (HF) is associated with excessive extracellular matrix (ECM) deposition and abnormal ECM degradation leading to cardiac fibrosis. Connective Tissue Growth Factor (CTGF) modulates ECM production during inflammatory tissue injury, but available data on CTGF gene expression in failing human heart and its response to mechanical unloading are limited. Methods and Results LV tissue from patients undergoing cardiac transplantation for ischemic (ICM; n=20) and dilated (DCM; n=20) cardiomyopathies, and from nonfailing (NF; n=20) donor hearts were examined. Paired samples (n=15) from patients undergoing LV assist device (LVAD) implantation as “bridge to transplant” (34-1145 days) were also analyzed. There was more interstitial fibrosis in both ICM and DCM compared to NF hearts. Hydroxyproline concentration was also significantly increased in DCM relative to NF samples. The expression of CTGF,TGFB1, COL1-A1, COL3-A1, MMP2 and MMP9 mRNAs in ICM and DCM were also significantly elevated as compared to NF controls. Although TGFB1, CTGF, COL1-A1, and COL3-A1 mRNA levels were reduced by unloading, there was only a modest reduction in tissue fibrosis and no difference in protein-bound hydroxyproline concentration between pre- and post-LVAD tissue samples. The persistent fibrosis may be related to a concomitant reduction in MMP9 mRNA and protein levels following unloading. Conclusions CTGF may be a key regulator of fibrosis during maladaptive remodeling and progression to HF. Although mechanical unloading normalizes most genotypic and functional abnormalities, its effect on ECM remodeling during HF is incomplete. PMID:23582094

  2. Genome-wide analysis of alternative splicing during human heart development

    PubMed Central

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-01-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development. PMID:27752099

  3. Protection against hyperacute xenograft rejection of transgenic rat hearts expressing human decay accelerating factor (DAF) transplanted into primates.

    PubMed Central

    Charreau, B.; Ménoret, S.; Tesson, L.; Azimzadeh, A.; Audet, M.; Wolf, P.; Marquet, R.; Verbakel, C.; Ijzermans, J.; Cowan, P.; Pearse, M.; d'Apice, A.; Soulillou, J. P.; Anegon, I.

    1999-01-01

    BACKGROUND: Production of transgenic pigs for multiple transgenes is part of a potential strategy to prevent immunological events involved in xenograft rejection. Use of a genetically engineerable rodent as a donor in primates could allow testing in vivo of the effects of different transgenes on controlling xenograft rejection. As a first step in the development of a donor containing multiple transgenes, transgenic rats for human decay-accelerating factor (DAF) were used as heart donors to test their resistance against complement (C)-mediated rejection by non-human primates. MATERIALS AND METHODS: Transgenic rats were generated by using a construct containing the human DAF cDNA under the transcriptional control of the endothelial cell (EC)-specific human ICAM-2 promoter. DAF expression was evaluated by immunohistology and by FACS analysis of purified ECs. Resistance of transgenic hearts against C-mediated damage was evaluated by ex vivo perfusion with human serum and by transplantation into cynomolgus monkeys. RESULTS: Immunohistological analysis of DAF expression in several organs from two transgenic lines showed uniform expression on the endothelium of all blood vessels. ECs purified from transgenic hearts showed 50% DAF expression compared to human ECs and >70% reduction of C-dependent cell lysis compared to control rat ECs. Hemizygous transgenic hearts perfused with human serum showed normal function for >60 min vs. 11. 2 +/- 1.7 min in controls. Hemi- or homozygous transgenic hearts transplanted into cynomolgus monkeys showed longer survival (15.2 +/- 7 min and >4.5 hr, respectively) than controls (5.5 +/- 1.4 min). In contrast to hyperacutely rejected control hearts, rejected homozygous DAF hearts showed signs of acute vascular rejection (AVR) characterized by edema, hemorrhage, and an intense PMN infiltration. CONCLUSIONS: We demonstrate that endothelial-specific DAF expression increased heart transplant survival in a rat-to-primate model of

  4. Structure and function relationship of human heart from DENSE MRI

    NASA Astrophysics Data System (ADS)

    Moghaddam, Abbas N.; Gharib, Morteza

    2007-03-01

    The study here, suggests a macroscopic structure for the Left Ventricle (LV), based on the heart kinematics which is obtained through imaging. The measurement of the heart muscle deformation using the Displacement ENcoding with Stimulated Echoes (DENSE) MRI, which describes the heart kinematics in the Lagrangian frame work, is used to determine the high resolution patterns of true myocardial strain. Subsequently, the tangential Shortening Index (SI) and the thickening of the LV wall are calculated for each data point. Considering the heart as a positive-displacement pump, the contribution of each segment of LV in the heart function, can be determined by the SI and thickening of the wall in the same portion. Hence the SI isosurfaces show the extent and spatial distribution of the heart activity and reveals its macro structure. The structure and function of the heart are, therefore, related which in turn results in a macroscopic model for the LV. In particular, it was observed that the heart functionality is not uniformly distributed in the LV, and the regions with greater effect on the pumping process, form a band which wraps around the heart. These results, which are supported by the established histological evidence, may be considered as a landmark in connecting the structure and function of the heart through imaging. Furthermore, the compatibility of this model with microscopic observations about the fiber direction is investigated. This method may be used for planning as well as post evaluation of the ventriculoplasty.

  5. Complement Interaction with Trypanosomatid Promastigotes in Normal Human Serum

    PubMed Central

    Domínguez, Mercedes; Moreno, Inmaculada; López-Trascasa, Margarita; Toraño, Alfredo

    2002-01-01

    In normal human serum (NHS), axenic promastigotes of Crithidia, Phytomonas, and Leishmania trigger complement activation, and from 1.2 to 1.8 × 105 C3 molecules are deposited per promastigote within 2.5 min. In Leishmania, promastigote C3 binding capacity remains constant during in vitro metacyclogenesis. C3 deposition on promastigotes activated through the classical complement pathway reaches a 50% maximum after ∼50 s, and represents >85% of total C3 bound. In C1q- and C2-deficient human sera, promastigotes cannot activate the classical pathway (CP) unless purified C1q or C2 factors, respectively, are supplemented, demonstrating a requirement for CP factor in promastigote C3 opsonization. NHS depleted of natural anti-Leishmania antibodies cannot trigger promastigote CP activation, but IgM addition restores C3 binding. Furthermore, Leishmania binds natural antibodies in ethylenediaminetetracetic acid (EDTA)-treated NHS; after EDTA removal, promastigote-bound IgM triggers C3 deposition in natural antibody-depleted NHS. Serum collectins and pentraxins thus do not participate significantly in NHS promastigote C3 opsonization. Real-time kinetic analysis of promastigote CP-mediated lysis indicates that between 85–95% of parasites are killed within 2.5 min of serum contact. These data indicate that successful Leishmania infection in man must immediately follow promastigote transmission, and that Leishmania evasion strategies are shaped by the selective pressure exerted by complement. PMID:11854358

  6. Altered Human Memory Modification in the Presence of Normal Consolidation.

    PubMed

    Censor, Nitzan; Buch, Ethan R; Nader, Karim; Cohen, Leonardo G

    2016-09-01

    Following initial learning, the memory is stabilized by consolidation mechanisms, and subsequent modification of memory strength occurs via reconsolidation. Yet, it is not clear whether consolidation and memory modification are the same or different systems-level processes. Here, we report disrupted memory modification in the presence of normal consolidation of human motor memories, which relate to differences in lesioned brain structure after stroke. Furthermore, this behavioral dissociation was associated with macrostructural network architecture revealed by a graph-theoretical approach, and with white-matter microstructural integrity measured by diffusion-weighted MRI. Altered macrostructural network architecture and microstructural integrity of white-matter underlying critical nodes of the related network predicted disrupted memory modification. To the best of our knowledge, this provides the first evidence of mechanistic differences between consolidation, and subsequent memory modification through reconsolidation, in human procedural learning. These findings enable better understanding of these memory processes, which may guide interventional strategies to enhance brain function and resulting behavior. PMID:26271110

  7. Ventricular Arrhythmias in Apparently Normal Hearts: Who Needs an Implantable Cardiac Defibrillator?

    PubMed

    Tan, Alex Y; Ellenbogen, Kenneth

    2016-09-01

    Idiopathic ventricular tachycardia is often considered a benign form of ventricular arrhythmia in patients without apparent structural heart disease. However, a subset of patients may develop malignant ventricular arrhythmias and present with syncope and sudden cardiac arrest. Survivors of cardiac arrest are candidates for implantable cardiac defibrillators (ICDs). The indications for ICDs in patients with less than a full-blown cardiac arrest presentation but with electrocardiographically high-risk ectopy features remain uncertain. This article addresses some of the uncertainties and pitfalls in ICD risk stratification in this patient group and explores potential mechanisms for malignant conversion of benign premature ventricular complexes to sustained arrhythmia. PMID:27521094

  8. Ventricular Arrhythmias in Apparently Normal Hearts: Who Needs an Implantable Cardiac Defibrillator?

    PubMed

    Tan, Alex Y; Ellenbogen, Kenneth

    2016-09-01

    Idiopathic ventricular tachycardia is often considered a benign form of ventricular arrhythmia in patients without apparent structural heart disease. However, a subset of patients may develop malignant ventricular arrhythmias and present with syncope and sudden cardiac arrest. Survivors of cardiac arrest are candidates for implantable cardiac defibrillators (ICDs). The indications for ICDs in patients with less than a full-blown cardiac arrest presentation but with electrocardiographically high-risk ectopy features remain uncertain. This article addresses some of the uncertainties and pitfalls in ICD risk stratification in this patient group and explores potential mechanisms for malignant conversion of benign premature ventricular complexes to sustained arrhythmia.

  9. Role of Genetic Testing in Patients with Ventricular Arrhythmias in Apparently Normal Hearts.

    PubMed

    Hofman, Nynke; Wilde, Arthur A M

    2016-09-01

    Ventricular arrhythmias without structural heart disease are responsible for ∼35% of patients who have sudden cardiac death before the age of 40 years. Molecular autopsy and/or cardiological investigation of nearby family members often reveals the diagnosis and genetic testing can be helpful in family screening and risk stratification in disease carriers. Extended gene panels can be screened in a short period of time at low cost. A multidisciplinary team of (genetically) specialized clinicians is necessary to judge all the available details and to decide on the significance of the variant and further strategies. PMID:27521086

  10. Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart.

    PubMed

    Lemieux, Hélène; Semsroth, Severin; Antretter, Herwig; Höfer, Daniel; Gnaiger, Erich

    2011-12-01

    Heart failure is a consequence of progressive deterioration of cardiac performance. Little is known about the role of impaired oxidative phosphorylation in the progression of the disease, since previous studies of mitochondrial injuries are restricted to end-stage chronic heart failure. The present study aimed at evaluating the involvement of mitochondrial dysfunction in the development of human heart failure. We measured the control of oxidative phosphorylation with high-resolution respirometry in permeabilized myocardial fibres from donor hearts (controls), and patients with no or mild heart failure but presenting with heart disease, or chronic heart failure due to dilated or ischemic cardiomyopathy. The capacity of the phosphorylation system exerted a strong limitation on oxidative phosphorylation in the human heart, estimated at 121 pmol O(2)s(-1)mg(-1) in the healthy left ventricle. In heart disease, a specific defect of the phosphorylation system, Complex I-linked respiration, and mass-specific fatty acid oxidation were identified. These early defects were also significant in chronic heart failure, where the capacities of the oxidative phosphorylation and electron transfer systems per cardiac tissue mass were decreased with all tested substrate combinations, suggesting a decline of mitochondrial density. Oxidative phosphorylation and electron transfer system capacities were higher in ventricles compared to atria, but the impaired mitochondrial quality was identical in the four cardiac chambers of chronic heart failure patients. Coupling was preserved in heart disease and chronic heart failure, in contrast to the mitochondrial dysfunction observed after prolonged cold storage of cardiac tissue. Mitochondrial defects in the phosphorylation system, Complex I respiration and mass-specific fatty acid oxidation occurred early in the development of heart failure. Targeting these mitochondrial injuries with metabolic therapy may offer a promising approach to delay

  11. Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV.

    PubMed

    Rosca, Mariana; Minkler, Paul; Hoppel, Charles L

    2011-11-01

    Mitochondrial dysfunction is a major contributor in heart failure (HF). We investigated whether the decrease in respirasome organization reported by us previously in cardiac mitochondria in HF is due to changes in the phospholipids of the mitochondrial inner membrane or modifications of the subunits of the electron transport chain (ETC) complexes. The contents of the main phospholipid species, including cardiolipin, as well as the molecular species of cardiolipin were unchanged in cardiac mitochondria in HF. Oxidized cardiolipin molecular species were not observed. In heart mitochondria isolated from HF, complex IV not incorporated into respirasomes exhibits increased threonine phosphorylation. Since HF is associated with increased adrenergic drive to cardiomyocytes, this increased protein phosphorylation might be explained by the involvement of cAMP-activated protein kinase. Does the preservation of cAMP-induced phosphorylation changes of mitochondrial proteins or the addition of exogenous cAMP have similar effects on oxidative phosphorylation? The usage of phosphatase inhibitors revealed a specific decrease in complex I-supported respiration with glutamate. In saponin-permeabilized cardiac fibers, pre-incubation with cAMP decreases oxidative phosphorylation due to a defect localized at complex IV of the ETC inter alia. We propose that phosphorylation of specific complex IV subunits decreases oxidative phosphorylation either by limiting the incorporation of complex IV in supercomplexes or by decreasing supercomplex stability.

  12. Contribution of the Arterial System and the Heart to Blood Pressure during Normal Aging – A Simulation Study

    PubMed Central

    Westerhof, Nico; Westerhof, Berend E.; Broomé, Michael; Stergiopulos, Nikos

    2016-01-01

    During aging, systolic blood pressure continuously increases over time, whereas diastolic pressure first increases and then slightly decreases after middle age. These pressure changes are usually explained by changes of the arterial system alone (increase in arterial stiffness and vascular resistance). However, we hypothesise that the heart contributes to the age-related blood pressure progression as well. In the present study we quantified the blood pressure changes in normal aging by using a Windkessel model for the arterial system and the time-varying elastance model for the heart, and compared the simulation results with data from the Framingham Heart Study. Parameters representing arterial changes (resistance and stiffness) during aging were based on literature values, whereas parameters representing cardiac changes were computed through physiological rules (compensated hypertrophy and preservation of end-diastolic volume). When taking into account arterial changes only, the systolic and diastolic pressure did not agree well with the population data. Between 20 and 80 years, systolic pressure increased from 100 to 122 mmHg, and diastolic pressure decreased from 76 to 55 mmHg. When taking cardiac adaptations into account as well, systolic and diastolic pressure increased from 100 to 151 mmHg and decreased from 76 to 69 mmHg, respectively. Our results show that not only the arterial system, but also the heart, contributes to the changes in blood pressure during aging. The changes in arterial properties initiate a systolic pressure increase, which in turn initiates a cardiac remodelling process that further augments systolic pressure and mitigates the decrease in diastolic pressure. PMID:27341106

  13. Contribution of the Arterial System and the Heart to Blood Pressure during Normal Aging - A Simulation Study.

    PubMed

    Maksuti, Elira; Westerhof, Nico; Westerhof, Berend E; Broomé, Michael; Stergiopulos, Nikos

    2016-01-01

    During aging, systolic blood pressure continuously increases over time, whereas diastolic pressure first increases and then slightly decreases after middle age. These pressure changes are usually explained by changes of the arterial system alone (increase in arterial stiffness and vascular resistance). However, we hypothesise that the heart contributes to the age-related blood pressure progression as well. In the present study we quantified the blood pressure changes in normal aging by using a Windkessel model for the arterial system and the time-varying elastance model for the heart, and compared the simulation results with data from the Framingham Heart Study. Parameters representing arterial changes (resistance and stiffness) during aging were based on literature values, whereas parameters representing cardiac changes were computed through physiological rules (compensated hypertrophy and preservation of end-diastolic volume). When taking into account arterial changes only, the systolic and diastolic pressure did not agree well with the population data. Between 20 and 80 years, systolic pressure increased from 100 to 122 mmHg, and diastolic pressure decreased from 76 to 55 mmHg. When taking cardiac adaptations into account as well, systolic and diastolic pressure increased from 100 to 151 mmHg and decreased from 76 to 69 mmHg, respectively. Our results show that not only the arterial system, but also the heart, contributes to the changes in blood pressure during aging. The changes in arterial properties initiate a systolic pressure increase, which in turn initiates a cardiac remodelling process that further augments systolic pressure and mitigates the decrease in diastolic pressure.

  14. A Multiscale Model of Cardiovascular System Including an Immersed Whole Heart in the Cases of Normal and Ventricular Septal Defect (VSD).

    PubMed

    Lee, Wanho; Jung, Eunok

    2015-07-01

    A mathematical and computational model combining the heart and circulatory system has been developed to understand the hemodynamics of circulation under normal conditions and ventricular septal defect (VSD). The immersed boundary method has been introduced to describe the interaction between the moving two-dimensional heart and intracardiac blood flow. The whole-heart model is governed by the Navier-Stokes system; this system is combined with a multi-compartment model of circulation using pressure-flow relations and the linearity of the discretized Navier-Stokes system. We investigate the velocity field, flowmeters, and pressure-volume loop in both normal and VSD cases. Simulation results show qualitatively good agreements with others found in the literature. This model, combining the heart and circulation, is useful for understanding the complex, hemodynamic mechanisms involved in normal circulation and cardiac diseases.

  15. A Multiscale Model of Cardiovascular System Including an Immersed Whole Heart in the Cases of Normal and Ventricular Septal Defect (VSD).

    PubMed

    Lee, Wanho; Jung, Eunok

    2015-07-01

    A mathematical and computational model combining the heart and circulatory system has been developed to understand the hemodynamics of circulation under normal conditions and ventricular septal defect (VSD). The immersed boundary method has been introduced to describe the interaction between the moving two-dimensional heart and intracardiac blood flow. The whole-heart model is governed by the Navier-Stokes system; this system is combined with a multi-compartment model of circulation using pressure-flow relations and the linearity of the discretized Navier-Stokes system. We investigate the velocity field, flowmeters, and pressure-volume loop in both normal and VSD cases. Simulation results show qualitatively good agreements with others found in the literature. This model, combining the heart and circulation, is useful for understanding the complex, hemodynamic mechanisms involved in normal circulation and cardiac diseases. PMID:26223734

  16. 3D reconstruction of a human heart fascicle using SurfDriver

    NASA Astrophysics Data System (ADS)

    Rader, Robert J.; Phillips, Steven J.; LaFollette, Paul S., Jr.

    2000-06-01

    The Temple University Medical School has a sequence of over 400 serial sections of adult normal ventricular human heart tissue, cut at 25 micrometer thickness. We used a Zeiss Ultraphot with a 4x planapo objective and a Pixera digital camera to make a series of 45 sequential montages to use in the 3D reconstruction of a fascicle (muscle bundle). We wrote custom software to merge 4 smaller image fields from each section into one composite image. We used SurfDriver software, developed by Scott Lozanoff of the University of Hawaii and David Moody of the University of Alberta, for registration, object boundary identification, and 3D surface reconstruction. We used an Epson Stylus Color 900 printer to get photo-quality prints. We describe the challenge and our solution to the following problems: image acquisition and digitization, image merge, alignment and registration, boundary identification, 3D surface reconstruction, 3D visualization and orientation, snapshot, and photo-quality prints.

  17. Autoradiographic mapping of calcitonin gene-related peptide receptors in human and guinea pig hearts

    SciTech Connect

    Coupe, M.O.; Mak, J.C.; Yacoub, M.; Oldershaw, P.J.; Barnes, P.J. )

    1990-03-01

    Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide that is a potent coronary vasodilator. Although CGRP is found in high concentrations around coronary arteries, its precise function in the control of coronary vasomotor tone remains unclear. We studied the distribution of specific receptors for CGRP in guinea pig and human hearts and found that the highest concentration of specific receptors for CGRP was in the major coronary arteries, which is consistent with the hypothesis that CGRP is implicated in control of coronary vasomotor tone. Areas of coronary artery with atheroma contained significantly decreased (158 +/- 35 grains/1,000 microns 2 tissue, n = 3) binding sites compared with binding sites in normal arteries (266 +/- 10 grains/1,000 microns 2 tissue, n = 11; p less than 0.001, t test). The decrease in receptors for CGRP around atheroma may predispose these vessels to coronary spasm.

  18. Inhibition of hydrogen sulfide restores normal breathing stability and improves autonomic control during experimental heart failure

    PubMed Central

    Del Rio, Rodrigo; Marcus, Noah J.

    2013-01-01

    Cardiovascular autonomic imbalance and breathing instability are major contributors to the progression of heart failure (CHF). Potentiation of the carotid body (CB) chemoreflex has been shown to contribute to these effects. Hydrogen sulfide (H2S) recently has been proposed to mediate CB hypoxic chemoreception. We hypothesized that H2S synthesis inhibition should decrease CB chemoreflex activation and improve breathing stability and autonomic function in CHF rats. Using the irreversible inhibitor of cystathione γ-lyase dl-propargylglycine (PAG), we tested the effects of H2S inhibition on resting breathing patterns, the hypoxic and hypercapnic ventilatory responses, and the hypoxic sensitivity of CB chemoreceptor afferents in rats with CHF. In addition, heart rate variability (HRV) and systolic blood pressure variability (SBPV) were calculated as an index of autonomic function. CHF rats, compared with sham rats, exhibited increased breath interval variability and number of apneas, enhanced CB afferent discharge and ventilatory responses to hypoxia, decreased HRV, and increased low-frequency SBPV. Remarkably, PAG treatment reduced the apnea index by 90%, reduced breath interval variability by 40–60%, and reversed the enhanced hypoxic CB afferent and chemoreflex responses observed in CHF rats. Furthermore, PAG treatment partially reversed the alterations in HRV and SBPV in CHF rats. Our results show that PAG treatment restores breathing stability and cardiac autonomic function and reduces the enhanced ventilatory and CB chemosensory responses to hypoxia in CHF rats. These results support the idea that PAG treatment could potentially represent a novel pathway to control sympathetic outflow and breathing instability in CHF. PMID:23449938

  19. A quantitative transcriptome reference map of the normal human hippocampus.

    PubMed

    Caracausi, Maria; Rigon, Vania; Piovesan, Allison; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2016-01-01

    We performed an innovative systematic meta-analysis of 41 gene expression profiles of normal human hippocampus to provide a quantitative transcriptome reference map of it, i.e. a reference typical value of expression for each of the 30,739 known mapped and the 16,258 uncharacterized (unmapped) transcripts. For this aim, we used the software called TRAM (Transcriptome Mapper), which is able to generate transcriptome maps based on gene expression data from multiple sources. We also analyzed differential expression by comparing the hippocampus with the whole brain transcriptome map to identify a typical expression pattern of this subregion compared with the whole organ. Finally, due to the fact that the hippocampus is one of the main brain region to be severely affected in trisomy 21 (the best known genetic cause of intellectual disability), a particular attention was paid to the expression of chromosome 21 (chr21) genes. Data were downloaded from microarray databases, processed, and analyzed using TRAM software. Among the main findings, the most over-expressed loci in the hippocampus are the expressed sequence tag cluster Hs.732685 and the member of the calmodulin gene family CALM2. The tubulin folding cofactor B (TBCB) gene is the best gene at behaving like a housekeeping gene. The hippocampus vs. the whole brain differential transcriptome map shows the over-expression of LINC00114, a long non-coding RNA mapped on chr21. The hippocampus transcriptome map was validated in vitro by assaying gene expression through several magnitude orders by "Real-Time" reverse transcription polymerase chain reaction (RT-PCR). The highly significant agreement between in silico and experimental data suggested that our transcriptome map may be a useful quantitative reference benchmark for gene expression studies related to human hippocampus. Furthermore, our analysis yielded biological insights about those genes that have an intrinsic over-/under-expression in the hippocampus. PMID

  20. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart.

  1. Resonance of about-weekly human heart rate rhythm with solar activity change.

    PubMed

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  2. Cyclooxygenase products sensitize muscle mechanoreceptors in humans with heart failure.

    PubMed

    Middlekauff, Holly R; Chiu, Josephine; Hamilton, Michele A; Fonarow, Gregg C; Maclellan, W Robb; Hage, Antoine; Moriguchi, Jaime; Patel, Jignesh

    2008-04-01

    Prior work in animals and humans suggests that muscle mechanoreceptor control of sympathetic activation [muscle sympathetic nerve activity (MSNA)] during exercise in heart failure (HF) patients is heightened compared with that of healthy humans and that muscle mechanoreceptors are sensitized by metabolic by-products. We sought to determine whether cyclooxygenase products and/or endogenous adenosine, two metabolites of ischemic exercise, sensitize muscle mechanoreceptors during rhythmic handgrip (RHG) exercise in HF patients. Indomethacin, which inhibits the production of prostaglandins, and saline control were infused in 12 HF patients. In a different protocol, aminophylline, which inhibits adenosine receptors, and saline control were infused in 12 different HF patients. MSNA was recorded (microneurography). During exercise following saline, MSNA increased in the first minute of exercise, consistent with baseline heightened mechanoreceptor sensitivity. MSNA continued to increase during 3 min of RHG, indicative that muscle mechanoreceptors are sensitized by ischemia metabolites. Indomethacin, but not aminophylline, markedly attenuated the increase in MSNA during the entire 3 min of low-level rhythmic exercise, consistent with the sensitization of muscle mechanoreceptors by cyclooxygenase products. Interestingly, even the early increase in MSNA was abolished by indomethacin infusion, indicative of the very early generation of cyclooxygenase products after the onset of exercise in HF patients. In conclusion, muscle mechanoreceptors mediate the increase in MSNA during low-level RHG exercise in HF. Cyclooxygenase products, but not endogenous adenosine, play a central role in muscle mechanoreceptor sensitization. Finally, muscle mechanoreceptors in patients with HF have heightened basal sensitivity to mechanical stimuli, which also appears to be mediated by the early generation of cyclooxygenase products, resulting in exaggerated early increases in MSNA.

  3. Progesterone Upregulates Gene Expression in Normal Human Thyroid Follicular Cells.

    PubMed

    Bertoni, Ana Paula Santin; Brum, Ilma Simoni; Hillebrand, Ana Caroline; Furlanetto, Tania Weber

    2015-01-01

    Thyroid cancer and thyroid nodules are more prevalent in women than men, so female sex hormones may have an etiological role in these conditions. There are no data about direct effects of progesterone on thyroid cells, so the aim of the present study was to evaluate progesterone effects in the sodium-iodide symporter NIS, thyroglobulin TG, thyroperoxidase TPO, and KI-67 genes expression, in normal thyroid follicular cells, derived from human tissue. NIS, TG, TPO, and KI-67 mRNA expression increased significantly after TSH 20 μUI/mL, respectively: 2.08 times, P < 0.0001; 2.39 times, P = 0.01; 1.58 times, P = 0.0003; and 1.87 times, P < 0.0001. In thyroid cells treated with 20 μUI/mL TSH plus 10 nM progesterone, RNA expression of NIS, TG, and KI-67 genes increased, respectively: 1.78 times, P < 0.0001; 1.75 times, P = 0.037; and 1.95 times, P < 0.0001, and TPO mRNA expression also increased, though not significantly (1.77 times, P = 0.069). These effects were abolished by mifepristone, an antagonist of progesterone receptor, suggesting that genes involved in thyroid cell function and proliferation are upregulated by progesterone. This work provides evidence that progesterone has a direct effect on thyroid cells, upregulating genes involved in thyroid function and growth. PMID:26089899

  4. Transcriptional analysis of normal human fibroblast responses to microgravity stress.

    PubMed

    Liu, Yongqing; Wang, Eugenia

    2008-03-01

    To understand the molecular mechanism(s) of how spaceflight affects cellular signaling pathways, quiescent normal human WI-38 fibroblasts were flown on the STS-93 space shuttle mission. Subsequently, RNA samples from the space-flown and ground-control cells were used to construct two cDNA libraries, which were then processed for suppression subtractive hybridization (SSH) to identify spaceflight-specific gene expression. The SSH data show that key genes related to oxidative stress, DNA repair, and fatty acid oxidation are activated by spaceflight, suggesting the induction of cellular oxidative stress. This is further substantiated by the up-regulation of neuregulin 1 and the calcium-binding protein calmodulin 2. Another obvious stress sign is that spaceflight evokes the Ras/mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling pathways, along with up-regulating several G1-phase cell cycle traverse genes. Other genes showing up-regulation of expression are involved in protein synthesis and pro-apoptosis, as well as pro-survival. Interactome analysis of functionally related genes shows that c-Myc is the "hub" for those genes showing significant changes. Hence, our results suggest that microgravity travel may impact changes in gene expression mostly associated with cellular stress signaling, directing cells to either apoptotic death or premature senescence.

  5. Accelerated aging syndromes, are they relevant to normal human aging?

    PubMed

    Dreesen, Oliver; Stewart, Colin L

    2011-09-01

    Hutchinson-Gilford Progeria (HGPS) and Werner syndromes are diseases that clinically resemble some aspects of accelerated aging. HGPS is caused by mutations in theLMNA gene resulting in post-translational processing defects that trigger Progeria in children. Werner syndrome, arising from mutations in the WRN helicase gene, causes premature aging in young adults. What are the molecular mechanism(s) underlying these disorders and what aspects of the diseases resemble physiological human aging? Much of what we know stems from the study of patient derived fibroblasts with both mutations resulting in increased DNA damage, primarily at telomeres. However, in vivo patients with Werner's develop arteriosclerosis, among other pathologies. In HGPS patients, including iPS derived cells from HGPS patients, as well as some mouse models for Progeria, vascular smooth muscle (VSM) appears to be among the most severely affected tissues. Defective Lamin processing, associated with DNA damage, is present in VSM from old individuals, indicating processing defects may be a factor in normal aging. Whether persistent DNA damage, particularly at telomeres, is the root cause for these pathologies remains to be established, since not all progeroid Lmna mutations result in DNA damage and genome instability.

  6. 7Li NMR study of normal human erythrocytes

    NASA Astrophysics Data System (ADS)

    Pettegrew, J. W.; Post, J. F. M.; Panchalingam, K.; Withers, G.; Woessner, D. E.

    The biological action of lithium is of great interest because of the therapeutic efficacy of the cation in manic-depressive illness. To investigate possible molecular interactions of lithium, 7Li NMR studies were conducted on normal human erythrocytes which had been incubated with lithium chloride. The uptake of lithium ions was followed by 7Li NMR, using a dysprosium, tripolyphosphate shift reagent. Lithium uptake followed single-exponential kinetics with a time constant of 14.7 h. The intracellular lithium relaxation times were T 1 ⋍ 5 s and T 2 ⋍ 0.15 s, which implies a lengthening of the lithium correlation time. It was found that lithium does not interact significantly with hemoglobin, the erythrocyte membrane, or artificial phospholipid membranes. Based on measurements of lithium T1 and T2 in concentrated agar gels, the large difference between T1 and T2 for intracellular lithium ions may be due to diffusion of the hydrated lithium ion through heterogeneous electrostatic field gradients created by the erythrocyte membrane-associated cytoskeletal network. Lithium binding to the membrane-associated cytoskeleton, however, cannot be ruled out. Because of the large differences between T1 and T2 of intracellular lithium ions, 1Li NMR may be a sensitive and promising noninvasive method to probe the intracellular environment.

  7. Progesterone Upregulates Gene Expression in Normal Human Thyroid Follicular Cells

    PubMed Central

    Bertoni, Ana Paula Santin; Brum, Ilma Simoni; Hillebrand, Ana Caroline; Furlanetto, Tania Weber

    2015-01-01

    Thyroid cancer and thyroid nodules are more prevalent in women than men, so female sex hormones may have an etiological role in these conditions. There are no data about direct effects of progesterone on thyroid cells, so the aim of the present study was to evaluate progesterone effects in the sodium-iodide symporter NIS, thyroglobulin TG, thyroperoxidase TPO, and KI-67 genes expression, in normal thyroid follicular cells, derived from human tissue. NIS, TG, TPO, and KI-67 mRNA expression increased significantly after TSH 20 μUI/mL, respectively: 2.08 times, P < 0.0001; 2.39 times, P = 0.01; 1.58 times, P = 0.0003; and 1.87 times, P < 0.0001. In thyroid cells treated with 20 μUI/mL TSH plus 10 nM progesterone, RNA expression of NIS, TG, and KI-67 genes increased, respectively: 1.78 times, P < 0.0001; 1.75 times, P = 0.037; and 1.95 times, P < 0.0001, and TPO mRNA expression also increased, though not significantly (1.77 times, P = 0.069). These effects were abolished by mifepristone, an antagonist of progesterone receptor, suggesting that genes involved in thyroid cell function and proliferation are upregulated by progesterone. This work provides evidence that progesterone has a direct effect on thyroid cells, upregulating genes involved in thyroid function and growth. PMID:26089899

  8. Reclassification of cardiovascular risk in patients with normal myocardial perfusion imaging using heart rate response to vasodilator stress.

    PubMed

    Iqbal, Fahad M; Al Jaroudi, Wael; Sanam, Kumar; Sweeney, Aaron; Heo, Jaekyeong; Iskandrian, Ami E; Hage, Fadi G

    2013-01-15

    Previous studies have shown that patients with normal vasodilator myocardial perfusion imaging (MPI) findings remain at a greater risk of future cardiac events than patients with normal exercise MPI findings. The aim was to assess improvement in risk classification provided by the heart rate response (HRR) in patients with normal vasodilator MPI findings when added to traditional risk stratification. We retrospectively studied 2,000 patients with normal regadenoson or adenosine MPI findings. Risk stratification was performed using Adult Treatment Panel III framework. Patients were stratified by HRR (percentage of increase from baseline) into tertiles specific to each vasodilator. All-cause mortality and cardiac death/nonfatal myocardial infarction (MI) ≤2 years from the index MPI were recorded. During follow-up, 11.8% patients died and 2.7% patients experienced cardiac death/nonfatal MI in the adenosine and regadenoson groups, respectively. The patients who died had a greater Framingham risk score (12 ± 4 vs 11 ± 4, p = 0.009) and lower HRR (22 ± 16 vs 32 ± 21, p <0.0001). In an adjusted Cox model, the lowest tertile HRR was associated with an increased risk of mortality (hazard ratio 2.1) and cardiac death/nonfatal MI (hazard ratio 2.9; p <0.01). Patients in the highest HRR tertile, irrespective of the Adult Treatment Panel III category, were at low risk. When added to the Adult Treatment Panel III categories, the HRR resulted in net reclassification improvement in mortality of 18% and cardiac death/nonfatal MI of 22%. In conclusion, a blunted HRR to vasodilator stress was independently associated with an increased risk of cardiac events and overall mortality in patients with normal vasodilator MPI findings. The HRR correctly reclassified a substantial proportion of these patients in addition to the traditional risk classification models and identified patients with normal vasodilator MPI findings, who had a truly low risk of events.

  9. Renal denervation in heart failure with normal left ventricular ejection fraction. Rationale and design of the DIASTOLE (DenervatIon of the renAl Sympathetic nerves in hearT failure with nOrmal Lv Ejection fraction) trial.

    PubMed

    Verloop, Willemien L; Beeftink, Martine M A; Nap, Alex; Bots, Michiel L; Velthuis, Birgitta K; Appelman, Yolande E; Cramer, Maarten-Jan; Agema, Willem R P; Scholtens, Asbjorn M; Doevendans, Pieter A; Allaart, Cor P; Voskuil, Michiel

    2013-12-01

    Aim Increasing evidence suggests an important role for hyperactivation of the sympathetic nervous system (SNS) in the clinical phenomena of heart failure with normal LVEF (HFNEF) and hypertension. Moreover, the level of renal sympathetic activation is directly related to the severity of heart failure. Since percutaneous renal denervation (pRDN) has been shown to be effective in modulating elevated SNS activity in patients with hypertension, it can be hypothesized that pRDN has a positive effect on HFNEF. The DIASTOLE trial will investigate whether renal sympathetic denervation influences parameters of HFNEF. Methods DIASTOLE is a multicentre, randomized controlled trial. Sixty patients, diagnosed with HFNEF and treated for hypertension, will be randomly allocated in a 1:1 ratio to undergo renal denervation on top of medical treatment (n = 30) or to maintain medical treatment alone (n = 30). The primary objective is to investigate the efficacy of pRDN by means of pulsed wave Doppler echocardiographic parameters. Secondary objectives include safety of pRDN and a comparison of changes in the following parameters after pRDN: LV mass, LV volume, LVEF, and left atrial volume as determined by magnetic resonance imaging. Also, MIBG (metaiodobenzylguanidine) uptake and washout, BNP levels, blood pressure, heart rate variability, exercise capacity, and quality of life will be assessed. Perspective DIASTOLE is a randomized controlled trial evaluating renal denervation as a treatment option for HFNEF. The results of the current trial will provide important information regarding the treatment of HFNEF, and therefore may have major impact on future therapeutic strategies. Trail registration NCT01583881.

  10. Transmural distribution and connectivity of coronary collaterals within the human heart.

    PubMed

    van Lier, Monique G J T B; Oost, Elco; Spaan, Jos A E; van Horssen, Pepijn; van der Wal, Allard C; vanBavel, Ed; Siebes, Maria; van den Wijngaard, Jeroen P H M

    2016-01-01

    Despite the importance of collateral vessels in human hearts, a detailed analysis of their distribution within the coronary vasculature based on three-dimensional vascular reconstructions is lacking. This study aimed to classify the transmural distribution and connectivity of coronary collaterals in human hearts. One normotrophic human heart and one hypertrophied human heart with fibrosis in the inferior wall from a previous infarction were obtained. After filling the coronary arteries with fluorescent replica material, hearts were frozen and alternately cut and block-face imaged using an imaging cryomicrotome. Transmural distribution, connectivity, and diameter of collaterals were determined. Numerous collateral vessels were found (normotrophic heart: 12.3 collaterals/cm(3); hypertrophied heart: 3.7 collaterals/cm(3)), with 97% and 92%, respectively, of the collaterals located within the perfusion territories (intracoronary collaterals). In the normotrophic heart, intracoronary collaterals {median diameter [interquartile range (IQR)]: 91.4 [73.0-115.7] μm} were most prevalent (74%) within the left anterior descending (LAD) territory. Intercoronary collaterals [median diameter (IQR): 94.3 (79.9-107.4) μm] were almost exclusively (99%) found between the LAD and the left circumflex artery (LCX). In the hypertrophied heart, intracoronary collaterals [median diameter (IQR): 101.1 (84.8-126.0) μm] were located within both the LAD (48%) and LCX (46%) territory. Intercoronary collaterals [median diameter (IQR): 97.8 (89.3-111.2) μm] were most prevalent between the LAD-LCX (68%) and LAD-right coronary artery (28%). This study shows that human hearts have abundant coronary collaterals within all flow territories and layers of the heart. The majority of these collaterals are small intracoronary collaterals, which would have remained undetected by clinical imaging techniques.

  11. Dilated cardiomyopathy alters the expression patterns of CAR and other adenoviral receptors in human heart.

    PubMed

    Toivonen, Raine; Mäyränpää, Mikko I; Kovanen, Petri T; Savontaus, Mikko

    2010-03-01

    Gene therapy trials for heart failure have demonstrated the key role of efficient gene transfer in achieving therapeutic efficacy. An attractive approach to improve adenoviral gene transfer is to use alternative virus serotypes with modified tropism. We performed a detailed analysis of cardiac expression of receptors for several adenovirus serotypes with a focus on differential expression of CAR and CD46, as adenoviruses targeting these receptors have been used in various applications. Explanted hearts from patients with DCM and healthy donors were analyzed using Q-RT-PCR, western blot and immunohistochemistry. Q-RT-PCR and Western analyses revealed robust expression of all receptors except CD80 in normal hearts with lower expression levels in DCM. Immunohistochemical analyses demonstrated that CD46 expression was somewhat higher than CAR both in normal and DCM hearts with highest levels of expression in intramyocardial coronary vessels. Total CAR expression was upregulated in DCM. Triple staining on these vessels demonstrated that both CAR and CD46 were confined to the subendothelial layer in normal hearts. The situation was clearly different in DCM, where both CAR and CD46 were expressed by endothelial cells. The induction of expression of CAR and CD46 by endothelial cells in DCM suggests that viruses targeting these receptors could more easily gain entry to heart cells after intravascular administration. This finding thus has potential implications for the development of targeted gene therapy for heart failure.

  12. Cardiac Function at Rest and During Exercise in Normals and in Patients with Coronary Heart Disease: Evaluation by Radionuclide Angiocardiography

    PubMed Central

    Rerych, Stephen K.; Scholz, Peter M.; Newman, Glenn E.; Sabiston, David C.; Jones, Robert H.

    1978-01-01

    This study demonstrates that radionuclide angiocardiography provides a simple and noninvasive approach for evaluation of myocardial function. Previous work concerning myocardial performance has been generally conducted with the patient in the supine position. Radionuclide angiocardiograms were performed in the present study at rest and during exercise in 30 normal subjects and in 30 patients with ischemic coronary artery disease. There were 30 normal controls (Group I), ten with single coronary artery disease (Group II), and 20 patients with multiple vessel coronary disease (Group III). All subjects were studied in the erect posture on a bicycle ergometer. In the normal controls, the mean heart rate doubled and the cardiac output tripled during exercise. Intensive training can lead to extraordinary levels of cardiac performance as shown in a world-class athlete who during peak exercise attained a heart rate of 210, an ejection fraction of 97%, and a cardiac output of 56 litres per minute. In the patients with coronary artery disease, both groups, were able to increase cardiac output to approximately twice the resting value. The magnitude of increase in blood pressure during exercise was not significantly different in the three groups. However, definite changes were present in the end-diastolic volume at rest was 116 and rose to 128 ml in Group I, 93 rising to 132 ml in Group II, and 138 increasing to 216 ml in Group III. The stroke volume increased comparably in all three groups, but the ejection fraction from rest to exercise showed a marked contrast in the controls compared to those with multivessel coronary disease. The ejection fraction rose in Group I from 66 to 80% during exercise, while in Group II it fell from 69 to 67%, and in Group III from 60 to 46%. These findings indicate that patients with ischemic myocardial disease respond to the stress of exercise by cardiac dilatation to maintain of increase stroke volume at increased heart rates. Moreover, the

  13. The atrioventricular nodal artery in the human heart.

    PubMed

    Krupa, U

    1993-01-01

    Studies were performed on 120 hearts taken from adult cadavers of both sexes. In the study,. prepared and corrosion technique was used. Arteries were filled with vinyl polichloride or Plastogen G through the aorta. The examined vessels were dissected and either partly, or totally etched in the concentrated hydrochloric acid soda lye. The arterial blood supply of the atrioventricular node arose in 108 (90%) of the hearts from the right coronary artery and in 12 (10%) of the hearts from the left coronary artery.

  14. Heart Anatomy

    MedlinePlus

    ... Incredible Machine Bonus poster (PDF) The Human Heart Anatomy Blood The Conduction System The Coronary Arteries The ... of the Leg Vasculature of the Torso Heart anatomy illustrations and animations for grades K-6. Heart ...

  15. Time course of ozone-induced neutrophilia in normal humans

    SciTech Connect

    Schelegle, E.S.; Siefkin, A.D.; McDonald, R.J. )

    1991-06-01

    Five normal human subjects were exposed for 1 h to filtered air (FA) once and to 0.3 ppm O{sub 3} on 3 separate days. Bronchoalveolar lavage (BAL) fluid was obtained less than 1 h after FA and either less than 1, 6, or 24 h after O{sub 3} exposure. FEV1 was measured before the exposures and the BAL. The first aliquot (proximal airway (PA) sample) was analyzed separately from the pooled Aliquots 2 through 4 (distal airway and alveolar surface (DAAS) sample). The data from the PA and DAAS samples were then combined to calculate the values that would have been obtained by pooling all BAL washes. FEV1 was significantly (p less than 0.05) decreased 1 h after O{sub 3} exposure, but it returned to preexposure values at 6 and 24 h after O{sub 3}. The percent of neutrophils in the PA sample was significantly elevated at less than 1 h (3.7%) at 6 h (16.5%), and at 24 h (9.2%) after O{sub 3}. The percent of neutrophils in the DAAS sample and calculated pooled values were significantly elevated at 6 h (4.1 and 7.6%) and at 24 h (5.1 and 5.8%) after O{sub 3}. These data demonstrate that O{sub 3}-induced symptoms, FEV1 decrements, and airway neutrophilia follow different time courses and indicate that the pooling of BAL washes may obscure the detection of an O{sub 3}-induced bronchiolitis. The degree of neutrophilia in the BAL did not correlate with the sensitivity of the individual subjects when measured by acute changes in FEV1, suggesting a dichotomy of pathways that result in O{sub 3}-induced airway neutrophilia and pulmonary function decrements.

  16. Long-term effect of continuing sports activity in competitive athletes with frequent ventricular premature complexes and apparently normal heart.

    PubMed

    Delise, Pietro; Sitta, Nadir; Lanari, Emanuela; Berton, Giuseppe; Centa, Monica; Allocca, Giuseppe; Cati, Arianna; Biffi, Alessandro

    2013-11-01

    The long-term outcome of athletes with frequent ventricular premature complexes (VPCs) and apparently normal heart has not been fully clarified. To evaluate the clinical and prognostic significance of VPCs and the influence of continuing sports activity during follow-up, we studied 120 healthy athletes (96 men; median age 16 years) in whom frequent VPCs (>100 VPCs/24 hours) were discovered by chance during preparticipation screening. All athletes were followed up for a median of 84 months. During follow-up, 96 underwent serial 24-hour Holter recording and 62 underwent serial echocardiography. The median number of VPCs/24 hours on basal Holter was 3,760. During follow-up, 81 athletes continued sports activity, whereas 39 did not. No athlete died or developed overt heart disease. The median number of VPCs/24 hours decreased in both athletes who continued sports activity and those who did not (from 3,805 to 1,124, p <0.0001 and from 5,787 to 1,298, p <0.0001, respectively). During follow-up, left ventricular ejection fraction slightly decreased to <55% in 9 of 62 athletes who, in respect to the remaining 53, had more VPCs/24 hours both in the basal state (12,000 vs 3,880) and during follow-up (10,702 vs 1,368), and a longer follow-up (95 vs 36 months). In conclusion, (1) frequent VPCs in athletes without heart disease have a long-term benign prognostic significance, (2) sporting activity does not modify this benign outcome, (3) during follow-up, the burden of VPCs decreases whether or not subjects continue sports activity, and (4) in 14.5% of athletes, ejection fraction slightly decreases over time.

  17. Usefulness of verapamil for congestive heart failure associated with abnormal left ventricular diastolic filling and normal left ventricular systolic performance

    SciTech Connect

    Setaro, J.F.; Zaret, B.L.; Schulman, D.S.; Black, H.R.; Soufer, R. )

    1990-10-15

    Normal left ventricular systolic performance with impaired left ventricular diastolic filling may be present in a substantial number of patients with congestive heart failure (CHF). To evaluate the effect of oral verapamil in this subset, 20 men (mean age 68 +/- 5 years) with CHF, intact left ventricular function (ejection fraction greater than 45%) and abnormal diastolic filling (peak filling rate less than 2.5 end-diastolic volumes per second (edv/s)) were studied in a placebo-controlled, double-blind 5-week crossover trial. All patients underwent echocardiography to rule out significant valvular disease, and thallium-201 stress scintigraphy to exclude major active ischemia. Compared to baseline values, verapamil significantly improved exercise capacity by 33% (13.9 +/- 4.3 vs 10.7 +/- 3.4 minutes at baseline) and peak filling rate by 30% (2.29 +/- 0.54 vs 1.85 +/- 0.45 edv/s at baseline) (all p less than 0.05). Placebo values were 12.3 +/- 4.0 minutes and 2.16 +/- 0.48 edv/s, respectively (difference not significant for both). Improvement from baseline in an objective clinico-radiographic heart failure score (scale 0 to 13) was significantly greater with verapamil compared to placebo (median improvement in score: 3 vs 1, p less than 0.01). Mean ejection fraction and systolic blood pressure were unchanged from baseline; diastolic blood pressure and heart rate decreased to a small degree. Verapamil may have therapeutic efficacy in patients with CHF, preserved systolic function and impaired diastolic filling.

  18. Comparisons of metabolism of apolipoprotein B in normal subjects, obese patients, and patients with coronary heart disease.

    PubMed Central

    Kesäniemi, Y A; Beltz, W F; Grundy, S M

    1985-01-01

    This study was designed to examine the integrated metabolism of apolipoprotein B (apo B) in very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL) in normal subjects, obese patients, and a group of patients with coronary heart disease (CHD). Turnover rates of 131I-VLDL-B, 131I-IDL-B, 125I-LDL-B, and [3H]VLDL-triglycerides (TG) were determined by the multicompartmental analysis that used the model described in the preceding article (Beltz, W.F., et al. 1985. J. Clin. Invest. 76: 575-585). Compared with five normal subjects, four obese subjects had increased synthesis rates of both VLDL-B and VLDL-TG. Production of LDL-B was inconsistently raised in these same patients. Five patients with CHD had enhanced production of both VLDL-B and LDL-B, but secretion rates of VLDL-TG were not increased. Thus, in patients with obesity and in those with CHD, synthesis rates of VLDL particles may be abnormally high. In the obese patients, the VLDL appeared to be of normal composition, but in patients with CHD, the VLDL were relatively poor in TG. The study also showed that a significant fraction of VLDL-B is removed directly from the circulation and never reaches LDL regardless of the type of patients. The fraction that does reach LDL is one factor that determines LDL concentrations. PMID:3861622

  19. Human gene copy number spectra analysis in congenital heart malformations

    PubMed Central

    Mahnke, Donna K.; Struble, Craig A.; Tuffnell, Maureen E.; Stamm, Karl D.; Hidestrand, Mats; Harris, Susan E.; Goetsch, Mary A.; Simpson, Pippa M.; Bick, David P.; Broeckel, Ulrich; Pelech, Andrew N.; Tweddell, James S.; Mitchell, Michael E.

    2012-01-01

    The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency “spectra” to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways. PMID:22318994

  20. Longitudinal Evaluation of Fatty Acid Metabolism in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic MicroSPECT Imaging

    DOE PAGES

    Reutter, Bryan W.; Huesman, Ronald H.; Brennan, Kathleen M.; Boutchko, Rostyslav; Hanrahan, Stephen M.; Gullberg, Grant T.

    2011-01-01

    The goal of this project is to develop radionuclide molecular imaging technologies using a clinical pinhole SPECT/CT scanner to quantify changes in cardiac metabolism using the spontaneously hypertensive rat (SHR) as a model of hypertensive-related pathophysiology. This paper quantitatively compares fatty acid metabolism in hearts of SHR and Wistar-Kyoto normal rats as a function of age and thereby tracks physiological changes associated with the onset and progression of heart failure in the SHR model. The fatty acid analog, 123 I-labeled BMIPP, was used in longitudinal metabolic pinhole SPECT imaging studies performed every seven months for 21 months. The uniquenessmore » of this project is the development of techniques for estimating the blood input function from projection data acquired by a slowly rotating camera that is imaging fast circulation and the quantification of the kinetics of 123 I-BMIPP by fitting compartmental models to the blood and tissue time-activity curves.« less

  1. The human subject: an integrative animal model for 21(st) century heart failure research.

    PubMed

    Chandrasekera, P Charukeshi; Pippin, John J

    2015-01-01

    Heart failure remains a leading cause of death and it is a major cause of morbidity and mortality affecting tens of millions of people worldwide. Despite decades of extensive research conducted at enormous expense, only a handful of interventions have significantly impacted survival in heart failure. Even the most widely prescribed treatments act primarily to slow disease progression, do not provide sustained survival advantage, and have adverse side effects. Since mortality remains about 50% within five years of diagnosis, the need to increase our understanding of heart failure disease mechanisms and development of preventive and reparative therapies remains critical. Currently, the vast majority of basic science heart failure research is conducted using animal models ranging from fruit flies to primates; however, insights gleaned from decades of animal-based research efforts have not been proportional to research success in terms of deciphering human heart failure and developing effective therapeutics for human patients. Here we discuss the reasons for this translational discrepancy which can be equally attributed to the use of erroneous animal models and the lack of widespread use of human-based research methodologies and address why and how we must position our own species at center stage as the quintessential animal model for 21(st) century heart failure research. If the ultimate goal of the scientific community is to tackle the epidemic status of heart failure, the best way to achieve that goal is through prioritizing human-based, human-relevant research.

  2. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells.

    PubMed

    van den Berg, Cathelijne W; Okawa, Satoshi; Chuva de Sousa Lopes, Susana M; van Iperen, Liesbeth; Passier, Robert; Braam, Stefan R; Tertoolen, Leon G; del Sol, Antonio; Davis, Richard P; Mummery, Christine L

    2015-09-15

    Differentiated derivatives of human pluripotent stem cells (hPSCs) are often considered immature because they resemble foetal cells more than adult, with hPSC-derived cardiomyocytes (hPSC-CMs) being no exception. Many functional features of these cardiomyocytes, such as their cell morphology, electrophysiological characteristics, sarcomere organization and contraction force, are underdeveloped compared with adult cardiomyocytes. However, relatively little is known about how their gene expression profiles compare with the human foetal heart, in part because of the paucity of data on the human foetal heart at different stages of development. Here, we collected samples of matched ventricles and atria from human foetuses during the first and second trimester of development. This presented a rare opportunity to perform gene expression analysis on the individual chambers of the heart at various stages of development, allowing us to identify not only genes involved in the formation of the heart, but also specific genes upregulated in each of the four chambers and at different stages of development. The data showed that hPSC-CMs had a gene expression profile similar to first trimester foetal heart, but after culture in conditions shown previously to induce maturation, they cluster closer to the second trimester foetal heart samples. In summary, we demonstrate how the gene expression profiles of human foetal heart samples can be used for benchmarking hPSC-CMs and also contribute to determining their equivalent stage of development.

  3. The human subject: an integrative animal model for 21st century heart failure research

    PubMed Central

    Chandrasekera, P Charukeshi; Pippin, John J

    2015-01-01

    Heart failure remains a leading cause of death and it is a major cause of morbidity and mortality affecting tens of millions of people worldwide. Despite decades of extensive research conducted at enormous expense, only a handful of interventions have significantly impacted survival in heart failure. Even the most widely prescribed treatments act primarily to slow disease progression, do not provide sustained survival advantage, and have adverse side effects. Since mortality remains about 50% within five years of diagnosis, the need to increase our understanding of heart failure disease mechanisms and development of preventive and reparative therapies remains critical. Currently, the vast majority of basic science heart failure research is conducted using animal models ranging from fruit flies to primates; however, insights gleaned from decades of animal-based research efforts have not been proportional to research success in terms of deciphering human heart failure and developing effective therapeutics for human patients. Here we discuss the reasons for this translational discrepancy which can be equally attributed to the use of erroneous animal models and the lack of widespread use of human-based research methodologies and address why and how we must position our own species at center stage as the quintessential animal model for 21st century heart failure research. If the ultimate goal of the scientific community is to tackle the epidemic status of heart failure, the best way to achieve that goal is through prioritizing human-based, human-relevant research. PMID:26550463

  4. Macro-micro imaging of cardiac-neural circuits in co-cultures from normal and diseased hearts.

    PubMed

    Bub, Gil; Burton, Rebecca-Ann B

    2015-07-15

    The autonomic nervous system plays an important role in the modulation of normal cardiac rhythm, but is also implicated in modulating the heart's susceptibility to re-entrant ventricular and atrial arrhythmias. The mechanisms by which the autonomic nervous system is pro-arrhythmic or anti-arrhythmic is multifaceted and varies for different types of arrhythmia and their cardiac substrates. Despite decades of research in this area, fundamental questions related to how neuron density and spatial organization modulate cardiac wave dynamics remain unanswered. These questions may be ill-posed in intact tissues where the activity of individual cells is often experimentally inaccessible. Development of simplified biological models that would allow us to better understand the influence of neural activation on cardiac activity can be beneficial. This Symposium Review summarizes the development of in vitro cardiomyocyte cell culture models of re-entrant activity, as well as challenges associated with extending these models to include the effects of neural activation.

  5. In situ expression of cytokines in human heart allografts.

    PubMed Central

    Van Hoffen, E.; Van Wichen, D.; Stuij, I.; De Jonge, N.; Klöpping, C.; Lahpor, J.; Van Den Tweel, J.; Gmelig-Meyling, F.; De Weger, R.

    1996-01-01

    Although allograft rejection, the major complication of human organ transplantation, has been extensively studied, little is known about the exact cellular localization of the cytokine expression inside the graft during rejection. Therefore, we used in situ hybridization and immunohistochemistry to study local cytokine mRNA and protein expression in human heart allografts, in relation to the phenotypical characteristics of the cellular infiltrate. Clear expression of mRNA for interleukin (IL)-6, IL-8, IL-9, and IL-10 and weak expression for IL-2, IL-4, IL-5, and tumor necrosis factor (TNF)-alpha was detected in biopsies exhibiting high rejection grades (grade 3A/B). Also at lower grades of rejection, mRNA for IL-6 and IL-9 was present. Some mRNA for IL-1 beta, TNF-beta, and interferon (IFN)-gamma was detected in only a few biopsies. Using immunohistochemistry, IL-2, IL-3, and IL-10 protein was detected in biopsies with high rejection grades, whereas few cells expressed IL-6, IL-8, and IFN-gamma. In biopsies with lower grades of rejection, a weaker expression of these cytokines was observed. IL-4 was hardly detected in any of the biopsies. The level of IL-12 expression was equal in all biopsies. Although mRNA expression of several cytokines was expressed at a low level compared with the protein level of those cytokines, there was a good correlation between localization of cytokine mRNA and protein. Expression of IL-2, IL-4, IL-5, TNF-alpha, and IFN-gamma was mainly detected in lymphocytes. IL-3, IL-6, IL-10, and IL-12 were not detected or not only detected in lymphocytes but also in other stromal elements (eg, macrophages). Macrophage production of IL-3 and IL-12 was confirmed by immunofluorescent double labeling with CD68. We conclude that cardiac allograft rejection is not simply regulated by T helper cell cytokine production, but other intragraft elements contribute considerably to this process. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8952534

  6. Myocardial bridges of the coronary arteries in the human fetal heart.

    PubMed

    Cakmak, Yusuf Ozgür; Cavdar, Safiye; Yalin, Aymelek; Yener, Nuran; Ozdogmus, Omer

    2010-09-01

    During the last century, many investigators reported on myocardial bridges in the adult human heart. In the present study, 39 human fetal hearts (the mean gestastional age was 30 weeks) were studied for myocardial bridging, and the results were correlated with adult data. Among the 39 (27 male and 12 female) fetal hearts studied, 26 bridges were observed on 18 fetal hearts (46.2%). Ten of the bridges had one myocardial bridge, whereas double myocardial bridges were observed in eight fetal hearts. The most frequent myocardial bridges were observed on the left anterior descending artery (LAD), which had 13 bridges (50%). Eight (30.7%) myocardial bridges were on the diagonal artery, and on the posterior descending artery there were five (19.3%). Myocardial bridges were not observed on the circumflex artery. The data presented in this study may provide potentially useful information for the preoperative evaluation of the newborn and may have a clinical implication for sudden fetal death.

  7. A biochemical comparison of normal human liver and hepatocellular carcinoma ferritins.

    PubMed

    Bullock, S; Bomford, A; Williams, R

    1980-03-01

    1. The iron contents, gel migration rates and isoelectric-focusing patterns of normal liver and hepatocellular carcinoma ferritins from the same patients were compared. 2. Sucrose-density-gradient centrifugation showed that the number of iron atoms per ferritin molecule was decreased to approximately half in carcinoma tissue when compared with normal liver. 3. On electrophoresis, hepatocellular carcinoma ferritin migrates faster and is therefore more negatively charged than normal liver ferritin, thus refuting the general view that the more negatively charged a ferritin molecule the greater its iron content. 4. Comparison of tumour and normal liver ferritin subunit compositions on acid/urea/polyacrylamide gels showed hepatocellular carcinoma ferritin to contain an additional, more negatively charged, subunit to normal liver ferritin. 5. Isoelectric focusing showed that hepatocellular carcinoma tissue contains isoferritins with isoelectric points intermediate between the ranges of normal liver and normal heart isoferritins. PMID:6248028

  8. Visualization of Fiber Structurein the Left and Right Ventricleof a Human Heart

    SciTech Connect

    Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.

    2006-07-12

    The human heart is composed of a helical network of musclefibers. Anisotropic least squares filtering followed by fiber trackingtechniques were applied to Diffusion Tensor Magnetic Resonance Imaging(DTMRI) data of the excised human heart. The fiber configuration wasvisualized by using thin tubes to increase 3-dimensional visualperception of the complex structure. All visualizations were performedusing the high-quality ray-tracing software POV-Ray. The fibers are shownwithin the left and right ventricles. Both ventricles exhibit similarfiber architecture and some bundles of fibers are shown linking right andleft ventricles on the posterior region of the heart.

  9. Minimal changes in heart rate of incubating American Oystercatchers (Haematopus palliatus) in response to human activity

    USGS Publications Warehouse

    Borneman, Tracy E.; Rose, Eli T.; Simons, Theodore R.

    2014-01-01

    An organism's heart rate is commonly used as an indicator of physiological stress due to environmental stimuli. We used heart rate to monitor the physiological response of American Oystercatchers (Haematopus palliatus) to human activity in their nesting environment. We placed artificial eggs with embedded microphones in 42 oystercatcher nests to record the heart rate of incubating oystercatchers continuously for up to 27 days. We used continuous video and audio recordings collected simultaneously at the nests to relate physiological response of birds (heart rate) to various types of human activity. We observed military and civilian aircraft, off-road vehicles, and pedestrians around nests. With the exception of high-speed, low-altitude military overflights, we found little evidence that oystercatcher heart rates were influenced by most types of human activity. The low-altitude flights were the only human activity to significantly increase average heart rates of incubating oystercatchers (12% above baseline). Although statistically significant, we do not consider the increase in heart rate during high-speed, low-altitude military overflights to be of biological significance. This noninvasive technique may be appropriate for other studies of stress in nesting birds.

  10. Effects of Moxa (Folium Artemisiae argyi) Smoke Exposure on Heart Rate and Heart Rate Variability in Healthy Young Adults: A Randomized, Controlled Human Study

    PubMed Central

    Cui, Yingxue; Zhao, Baixiao; Huang, Yuhai; Chen, Zhanghuang; Liu, Ping; Huang, Jian; Lao, Lixing

    2013-01-01

    Objective. To determine the effects of the moxa smoke on human heart rate (HR) and heart rate variability (HRV). Methods. Fifty-five healthy young adults were randomly divided into experimental (n = 28) and control (n = 27) groups. Experimental subjects were exposed to moxa smoke (2.5 ± 0.5 mg/m3) twice for 25 minutes in one week. ECG monitoring was performed before, during, and after exposure. Control subjects were exposed to normal indoor air in a similar environment and similarly monitored. Followup was performed the following week. Short-term (5 min) HRV parameters were analyzed with HRV analysis software. SPSS software was used for statistical analysis. Results. During and after the first exposure, comparison of percentage changes or changes in all parameters between groups showed no significant differences. During the second exposure, percentage decrease in HR, percentage increases in lnTP, lnHF, lnLF, and RMSSD, and increase in PNN50 were significantly greater in the experimental group than in control. Conclusion. No significant adverse HRV effects were associated with this clinically routine 25-minute exposure to moxa smoke, and the data suggests that short-term exposure to moxa smoke might have positive regulating effects on human autonomic function. Further studies are warranted to confirm these findings. PMID:23762143

  11. Normal human serum contains a natural IgM antibody cytotoxic for human neuroblastoma cells.

    PubMed Central

    Ollert, M W; David, K; Schmitt, C; Hauenschild, A; Bredehorst, R; Erttmann, R; Vogel, C W

    1996-01-01

    Neuroblastoma (NB) is characterized by the second highest spontaneous regression of any human malignant disorder, a phenomenon that remains to be elucidated. In this study, a survey of 94 normal human adult sera revealed a considerable natural humoral cytotoxicity against human NB cell lines in approximately one-third of the tested sera of both genders. Specific cell killing by these sera was in the range of 40% to 95%. Serum cytotoxicity was dependent on an intact classical pathway of complement. By several lines of evidence, IgM antibodies were identified as the cytotoxic factor in the sera. Further analyses revealed that a 260-kDa protein was recognized by natural IgM of cytotoxic sera in Western blots of NB cell extracts. The antigen was expressed on the surface of seven human NB cell lines but not on human melanoma or other control tumor cell lines derived from kidney, pancreas, colon, bone, skeletal muscle, lymphatic system, and bone marrow. Furthermore, no reactivity was observed with normal human fibroblasts, melanocytes, and epidermal keratinocytes. The antigen was expressed in vivo as detected by immunohistochemistry in both the tumor of a NB patient and NB tumors established in nude rats from human NB cell lines. Most interestingly, the IgM anti-NB antibody was absent from the sera of 11 human NB patients with active disease. The anti-NB IgM also could not be detected in tumor tissue obtained from a NB patient. Collectively, our data suggest the existence of a natural humoral immunological tumor defense mechanism, which could account for the in vivo phenomenon of spontaneous NB tumor regression. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8633097

  12. Congestive heart failure arising from diastolic dysfunction in the presence of normal left-ventricular systolic function.

    PubMed Central

    Stainback, R F

    1999-01-01

    Congestive heart failure due to diastolic dysfunction is a common clinical entity, particularly in the elderly. As outlined, such patients fall into a larger group of all patients with CHF symptoms and normal systolic function. When finding "normal" systolic function, the clinician should embark upon a carefully outlined diagnostic work-up geared toward eliminating confounding or treatable contributing causes of dyspnea or typical CHF symptoms. The prognosis for CHF patients with primarily diastolic dysfunction is not as poor as for those with LV systolic dysfunction, although the prevalence, associated morbidity, and costs are great. In contrast to the large number of successful clinical trials that have guided treatment of LV systolic failure, an extremely limited number of trials have specifically addressed themselves to diastolic dysfunction. Marked symptomatic relief can often be provided with careful attention to tailored therapy, although little is known with regard to outcome. Refinements in noninvasive imaging methods and hemodynamic indices of diastolic function may lead to improved patient care. PMID:10217469

  13. Early changes in contractility and coronary blood flow in the normal areas of the ischemic porcine heart.

    PubMed

    Pashkow, F; Holland, R; Brooks, H

    1977-03-01

    The regional responses of normal myocardium distant from an ischemic area were studied during acute anterior descending occlusion in the open-chest chloralose-anesthetized pig. Three markers of regional response in both normal and ischemic areas were used: surface ECG electrode, a force gauge in series with left ventricular outer wall fibers, and coronary blood inflow to each region as determined by electromagnetic cuff-probes. Following brief anterior descending artery occlusion (120 sec)., a characteristic rapid decline in contractile force and evolution of TQ-ST segment changes was observed in the ischemic area. In contrast, in the distant area increases in contractil force (p less than 0.001) and coronary blood flow (p less than 0.002) occurred. These distant responses were essentially obliterated following transection and cannulation of the artery supplying this region (p less than 0.05). The findings are consistent with a reflex neurovascular mechanism operating within the intact heart. This reflex is rapidly activated in order to maintain adequate levels of cardiac performance despite sudden loss of functional myocardial mass.

  14. Labile methyl balances for normal humans on various dietary regimens.

    PubMed

    Mudd, S H; Poole, J R

    1975-06-01

    Normal young adult male and female subjects were maintained on fixed dietary regimens which were either essentially normal or were semisynthetic and curtailed in methionine and choline intakes and virtually free of cystine. The subjects maintained stable weights and remained in positive nitrogen balance or within the zone of sulfur equilibrium. Choline intakes were calculated, and urinary excretions of creatinine, creatine, and sacrosine were measured. Creatinine excretions of male subjects on essentially normal diets outweighed the total intakes of labile methyl groups. Taking into account the excretions of additional methylated compounds, as judged from published values, it appears that methyl neogenesis must normally play a role in both males and females. When labile methyl intake is curtailed, de novo formation of methyl groups is quantitatively more significant than ingestion of preformed methyl moieties. On the normal diets used in these experiments, the average homocysteinyl moiety in males cycled between methionine and homocysteine at least 1.9 times before being converted to cystathionine. For females, the average number of cycles was at least 1.5. When labile methyl intake was curtailed, the average number of cycles rose to 3.9 for males and 3.0 for females under the conditions employed.

  15. The anatomic basis for ventricular arrhythmia in the normal heart: what the student of anatomy needs to know.

    PubMed

    Hai, Jo Jo; Lachman, Nirusha; Syed, Faisal F; Desimone, Christopher V; Asirvatham, Samuel J

    2014-09-01

    The traditional route for teaching cardiac anatomy involves didactic instruction, cadaver dissections, and familiarization with the main structure and relationships of the cardiac chambers, valves, and vasculature. In contemporary cardiac electrophysiology, however, a very different view of anatomy is required including details rarely appreciated with a general overview. In this review, we discuss the critical advances in cardiac electrophysiology that were possible only because of understanding detailed anatomic relationships. While we briefly discuss the clinical relevance, we explain in depth the necessary structural information for the student of clinical anatomy. Interspersed through the text are boxes that highlight and summarize the critical pieces of knowledge to be borne in mind while studying the fascinating structural anatomy of the human heart.

  16. Heart Rate and Heart Rate Variability in Dairy Cows with Different Temperament and Behavioural Reactivity to Humans

    PubMed Central

    Tőzsér, János; Szenci, Ottó; Póti, Péter; Pajor, Ferenc

    2015-01-01

    From the 1990s, extensive research was started on the physiological aspects of individual traits in animals. Previous research has established two extreme (proactive and reactive) coping styles in several animal species, but the means of reactivity with the autonomic nervous system (ANS) activity has not yet been investigated in cattle. The aim of this study was the characterization of cardiac autonomic activity under different conditions in cows with different individual characteristics. For this purpose, we investigated heart rate and ANS-related heart rate variability (HRV) parameters of dairy cows (N = 282) on smaller- and larger-scale farms grouped by (1) temperament and (2) behavioural reactivity to humans (BRH). Animals with high BRH scores were defined as impulsive, while animals with low BRH scores were defined as reserved. Cardiac parameters were calculated for undisturbed lying (baseline) and for milking bouts, the latter with the presence of an unfamiliar person (stressful situation). Sympathetic tone was higher, while vagal activity was lower in temperamental cows than in calm animals during rest both on smaller- and larger-scale farms. During milking, HRV parameters were indicative of a higher sympathetic and a lower vagal activity of temperamental cows as compared to calm ones in farms of both sizes. Basal heart rate did not differ between BRH groups either on smaller- or larger-scale farms. Differences between basal ANS activity of impulsive and reserved cows reflected a higher resting vagal and lower sympathetic activity of reserved animals compared to impulsive ones both on smaller- and larger-scale farms. There was no difference either in heart rate or in HRV parameters between groups during milking neither in smaller- nor in larger-scale farms. These two groupings allowed to draw possible parallels between personality and cardiac autonomic activity during both rest and milking in dairy cows. Heart rate and HRV seem to be useful for

  17. Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts

    NASA Technical Reports Server (NTRS)

    Ito, K.; Yan, X.; Tajima, M.; Su, Z.; Barry, W. H.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    Mouse myocyte contractility and the changes induced by pressure overload are not fully understood. We studied contractile reserve in isolated left ventricular myocytes from mice with ascending aortic stenosis (AS) during compensatory hypertrophy (4-week AS) and the later stage of early failure (7-week AS) and from control mice. Myocyte contraction and [Ca(2+)](i) transients with fluo-3 were measured simultaneously. At baseline (0.5 Hz, 1.5 mmol/L [Ca(2+)](o), 25 degrees C), the amplitude of myocyte shortening and peak-systolic [Ca(2+)](i) in 7-week AS were not different from those of controls, whereas contraction, relaxation, and the decline of [Ca(2+)](i) transients were slower. In response to the challenge of high [Ca(2+)](o), fractional cell shortening was severely depressed with reduced peak-systolic [Ca(2+)](i) in 7-week AS compared with controls. In response to rapid pacing stimulation, cell shortening and peak-systolic [Ca(2+)](i) increased in controls, but this response was depressed in 7-week AS. In contrast, the responses to both challenge with high [Ca(2+)](o) and rapid pacing in 4-week AS were similar to those of controls. Although protein levels of Na(+)-Ca(2+) exchanger were increased in both 4-week and 7-week AS, the ratio of SR Ca(2+)-ATPase to phospholamban protein levels was depressed in 7-week AS compared with controls but not in 4-week AS. This was associated with an impaired capacity to increase sarcoplasmic reticulum Ca(2+) load during high work states in 7-week AS myocytes. In hypertrophied failing mouse myocytes, depressed contractile reserve is related to an impaired augmentation of systolic [Ca(2+)](i) and SR Ca(2+) load and simulates findings in human failing myocytes.

  18. Encounters with the Human Heart: An Interview with John Stone.

    ERIC Educational Resources Information Center

    Flynn, Dale Bachman

    1995-01-01

    Interviews Dale Bachman Flynn, professor of cardiology and dean of admissions and student affairs at Emory University School of Medicine, about his "In the Country of Hearts," a collection of stories about his medical practice. Discusses Flynn's personal life; his life-long practice of writing; and his interest in the intersections among medicine,…

  19. Angiotensin II formation in the intact human heart. Predominance of the angiotensin-converting enzyme pathway.

    PubMed Central

    Zisman, L S; Abraham, W T; Meixell, G E; Vamvakias, B N; Quaife, R A; Lowes, B D; Roden, R L; Peacock, S J; Groves, B M; Raynolds, M V

    1995-01-01

    It has been proposed that the contribution of myocardial tissue angiotensin converting enzyme (ACE) to angiotensin II (Ang II) formation in the human heart is low compared with non-ACE pathways. However, little is known about the actual in vivo contribution of these pathways to Ang II formation in the human heart. To examine angiotensin II formation in the intact human heart, we administered intracoronary 123I-labeled angiotensin I (Ang I) with and without intracoronary enalaprilat to orthotopic heart transplant recipients. The fractional conversion of Ang I to Ang II, calculated after separation of angiotensin peptides by HPLC, was 0.415 +/- 0.104 (n = 5, mean +/- SD). Enalaprilat reduced fractional conversion by 89%, to a value of 0.044 +/- 0.053 (n = 4, P = 0.002). In a separate study of explanted hearts, a newly developed in vitro Ang II-forming assay was used to examine cardiac tissue ACE activity independent of circulating components. ACE activity in solubilized left ventricular membrane preparations from failing hearts was 49.6 +/- 5.3 fmol 125I-Ang II formed per minute per milligram of protein (n = 8, +/- SE), and 35.9 +/- 4.8 fmol/min/mg from nonfailing human hearts (n = 7, P = 0.08). In the presence of 1 microM enalaprilat, ACE activity was reduced by 85%, to 7.3 +/- 1.4 fmol/min/mg in the failing group and to 4.6 +/- 1.3 fmol/min/mg in the nonfailing group (P < 0.001). We conclude that the predominant pathway for angiotensin II formation in the human heart is through ACE. Images PMID:7657820

  20. Normal and shear strains of the left ventricle in healthy human subjects measured by two-dimensional speckle tracking echocardiography

    PubMed Central

    2014-01-01

    Background Animal studies have shown that shear deformation of myocardial sheets in transmural planes of left ventricular (LV) wall is an important mechanism for systolic wall thickening, and normal and shear strains of the LV free wall differ from those of the interventricular septum (IVS). We sought to test whether these also hold for human hearts. Methods Thirty healthy volunteers (male 23 and female 7, aged 34 ± 6 years) from Outpatient Department of the University of Tokyo Hospital were included. Echocardiographic images were obtained in the left decubitus position using a commercially available system (Aloka SSD-6500, Japan) equipped with a 3.5-MHz transducer. The ECG was recorded simultaneously. The peak systolic radial normal strain (length change), shear strain (angle change) and time to peak systolic radial normal strain were obtained non-invasively by two-dimensional speckle tracking echocardiography. Results The peak systolic radial normal strain in both IVS and LV posterior wall (LVPW) showed a trend to increase progressively from the apical level to the basal level, especially at short axis views, and the peak systolic radial normal strain of LVPW was significantly greater than that of IVS at all three levels. The time to peak systolic radial normal strain was the shortest at the basal IVS, and increased progressively from the base to the apical IVS. It gradually increased from the apical to the basal LVPW in sequence, especially at short axis views. The peak of radial normal strain of LVPW occurred much later than the peak of IVS at all three levels. For IVS, the shear deformation was clockwise at basal level, and counterclockwise at mid and apical levels in LV long-axis view. For LVPW, the shear deformations were all counterclockwise in LV long-axis view and increased slightly from base to the apex. LVPW showed larger shear strains than IVS at all three levels. Bland-Altman analysis shows very good agreement between measurements taken by the

  1. Quantitative analysis of p53 expression in human normal and cancer tissue microarray with global normalization method

    PubMed Central

    Idikio, Halliday A

    2011-01-01

    Tissue microarray based immunohistochemical staining and proteomics are important tools to create and validate clinically relevant cancer biomarkers. Immunohistochemical stains using formalin-fixed tissue microarray sections for protein expression are scored manually and semi-quantitatively. Digital image analysis methods remove some of the drawbacks of manual scoring but may need other methods such as normalization to provide across the board utility. In the present study, quantitative proteomics-based global normalization method was used to evaluate its utility in the analysis of p53 protein expression in mixed human normal and cancer tissue microarray. Global normalization used the mean or median of β-actin to calculate ratios of individual core stain intensities, then log transformed the ratios, calculate a mean or median and subtracted the value from the log of ratios. In the absence of global normalization of p53 protein expression, 44% (42 of 95) of tissue cores were positive using the median of intensity values and 40% (38 of 95) using the mean of intensities as cut-off points. With global normalization, p53 positive cores changed to 20% (19 of 95) when using median of intensities and 15.8%(15 of 95) when the mean of intensities were used. In conclusion, the global normalization method helped to define positive p53 staining in the tissue microarray set used. The method used helped to define clear cut-off points and confirmed all negatively stained tissue cores. Such normalization methods should help to better define clinically useful biomarkers. PMID:21738821

  2. Electrical impedance characterization of normal and cancerous human hepatic tissue.

    PubMed

    Laufer, Shlomi; Ivorra, Antoni; Reuter, Victor E; Rubinsky, Boris; Solomon, Stephen B

    2010-07-01

    The four-electrode method was used to measure the ex vivo complex electrical impedance of tissues from 14 hepatic tumors and the surrounding normal liver from six patients. Measurements were done in the frequency range 1-400 kHz. It was found that the conductivity of the tumor tissue was much higher than that of the normal liver tissue in this frequency range (from 0.14 +/- 0.06 S m(-1) versus 0.03 +/- 0.01 S m(-1) at 1 kHz to 0.25 +/- 0.06 S m(-1) versus 0.15 +/- 0.03 S m(-1) at 400 kHz). The Cole-Cole models were estimated from the experimental data and the four parameters (rho(0), rho(infinity), alpha, f(c)) were obtained using a least-squares fit algorithm. The Cole-Cole parameters for the cancerous and normal liver are 9 +/- 4 Omega m(-1), 2.2 +/- 0.7 Omega m(-1), 0.5 +/- 0.2, 140 +/- 103 kHz and 50 +/- 28 Omega m(-1), 3.2 +/- 0.6 Omega m(-1), 0.64 +/- 0.04, 10 +/- 7 kHz, respectively. These data can contribute to developing bioelectric applications for tissue diagnostics and in tissue treatment planning with electrical fields such as radiofrequency tissue ablation, electrochemotherapy and gene therapy with reversible electroporation, nanoscale pulsing and irreversible electroporation.

  3. Dynamic boundary estimation of human heart within a complete cardiac cycle using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Rashid, A.; Kim, B. S.; Khambampati, A. K.; Liu, Dong; Kim, S.; Kim, K. Y.

    2010-04-01

    This paper presents an EKF based boundary estimation algorithm to estimate the shape and size of human heart ventricle during a complete cardiac cycle. First-order kinematic model is used as a state evolution model. The boundary of the heart is expressed as coefficients of truncated Fourier series and the conductivity distribution inside the thorax region is assumed to be known a priori. The proposed method is tested with the use of a realistic chest shape FEM mesh.

  4. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue

    SciTech Connect

    Magnusson, Lisa U.; Lundqvist, Annika; Asp, Julia; Synnergren, Jane; Johansson, Cecilia Thalen; Palmqvist, Lars; Jeppsson, Anders; Hulten, Lillemor Mattsson

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We found a 17-fold upregulation of ALOX15 in the ischemic heart. Black-Right-Pointing-Pointer Incubation of human muscle cells in hypoxia showed a 22-fold upregulation of ALOX15. Black-Right-Pointing-Pointer We observed increased levels of proinflammatory markers in ischemic heart tissue. Black-Right-Pointing-Pointer Suggesting a link between ischemia and inflammation in ischemic heart biopsies. -- Abstract: A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1{alpha} (HIF-1{alpha}) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1{alpha} mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield

  5. Effect of physical activity on heart rate variability in normal weight, overweight and obese subjects: results from the SAPALDIA study

    PubMed Central

    Dietrich, Denise Felber; Ackermann-Liebrich, Ursula; Schindler, Christian; Barthélémy, Jean-Claude; Brändli, Otto; Gold, Diane R; Knöpfli, Bruno; Probst-Hensch, Nicole M; Roche, Frédéric; Tschopp, Jean-Marie; von Eckardstein, Arnold; Gaspoz, Jean-Michel

    2011-01-01

    Many studies have demonstrated an association of both a sedentary lifestyle and a high body mass index (BMI) with greater risk for cardiovascular disease. Within the prospective SAPALDIA cohort (Swiss cohort study on Air Pollution and Lung Diseases in Adults), we investigated whether regular exercise was protective against reduced heart rate variability (HRV), a clinically relevant predictor of cardiovascular morbidity and mortality, and whether adverse effects of obesity and weight gain on HRV were modified by regular exercise. 24-hour electrocardiograms were recorded in 1712 randomly selected SAPALDIA participants aged ≥50, for whom BMI was assessed in the years 1991 and 2001–2003. Other examinations included an interview investigating health status (especially respiratory and cardiovascular health and health relevant behaviours including physical activity) and measurements of blood pressure, body height and weight. The association between regular physical activity and HRV and interactions with BMI and BMI change was assessed in multivariable linear regression analyses. Compared to sedentary obese subjects, SDNN (standard deviation of all RR intervals) was 14% (95% CI: 8–20%) higher in sedentary normal weight subjects; 19% (CI: 12–27%) higher in normal weight subjects exercising regularly ≥ 2h/week; and 19% (CI:11–28%) higher in obese subjects exercising regularly ≥ 2h/week. Compared with sedentary subjects who gained weight, those who gained weight but did exercise regularly had a 13% higher SDNN (CI: 7–20%). Regular physical exercise has strong beneficial effects on cardiac autonomic nervous function and thus appears to offset the negative effect of obesity on HRV. PMID:18597107

  6. Hexyl-nicotinate-induced vasodilation in normal human skin.

    PubMed

    Dowd, P M; Whitefield, M; Greaves, M W

    1987-01-01

    Hexyl nicotinate in a lotion formulation was applied topically to the skin of 10 healthy volunteers with clinically normal skin. Erythematous responses were assessed visually and skin blood flow determined by means of a laser Doppler flow meter which measures the blood cell flux (Pf2 Perimed, Sweden). Mean erythematous responses and increased blood cell flux were dose-related but in several subjects increases in blood flow occurred in the presence of barely detectable erythematous responses. In some subjects, hexyl nicotinate may be an effective cutaneous vasodilator even in the presence of minimal erythema.

  7. A functional genetic study identifies HAND1 mutations in septation defects of the human heart.

    PubMed

    Reamon-Buettner, Stella Marie; Ciribilli, Yari; Traverso, Ilaria; Kuhls, Beate; Inga, Alberto; Borlak, Juergen

    2009-10-01

    Heart and neural crest derivatives expressed 1 (HAND1) is a basic helix-loop-helix (bHLH) transcription factor essential for mammalian heart development. Absence of Hand1 in mice results in embryonal lethality, as well as in a wide spectrum of cardiac abnormalities including failed cardiac looping, defective chamber septation and impaired ventricular development. Therefore, Hand1 is a strong candidate for the many cardiac malformations observed in human congenital heart disease (CHD). Recently, we identified a loss-of-function frameshift mutation (p.A126fs) in the bHLH domain of HAND1 frequent in hypoplastic hearts. This finding prompted us to continue our search for HAND1 gene mutations in a different cohort of malformed hearts affected primarily by septation defects. Indeed, in tissue samples of septal defects, we detected 32 sequence alterations leading to amino acid change, of which 12 are in the bHLH domain of HAND1. Interestingly, 10 sequence alterations, such as p.L28H and p.L138P, had been identified earlier in hypoplastic hearts, but the frequent p.A126fs mutation was absent except in one aborted case with ventricular septal defect and outflow tract abnormalities. Functional studies in yeast and mammalian cells enabled translation of sequence alterations to HAND1 transcriptional activity, which was reduced or abolished by certain mutations, notably p.L138P. Our results suggest that HAND1 may also be affected in septation defects of the human hearts, and thus has a broader role in human heart development and CHD.

  8. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography

    SciTech Connect

    Schwaiger, M.; Hutchins, G.D.; Kalff, V.; Rosenspire, K.; Haka, M.S.; Mallette, S.; Deeb, G.M.; Abrams, G.D.; Wieland, D. )

    1991-05-01

    Positron emission tomography in combination with the newly introduced catecholamine analogue ({sup 11}C)hydroxyephedrine (({sup 11}C)HED) enables the noninvasive delineation of sympathetic nerve terminals of the heart. To address the ongoing controversy over possible reinnervation of the human transplant, 5 healthy control subjects and 11 patients were studied after cardiac transplant by this imaging approach. Regional ({sup 11}C)HED retention was compared to regional blood flow as assessed by rubidium-82. Transplant patients were divided into two groups. Group I had recent (less than 1 yr, 4.4 +/- 2.3 mo) surgery, while group II patients underwent cardiac transplantation more than 2 yr before imaging (3.5 +/- 1.3 yr). ({sup 11}C)HED retention paralleled blood flow in normals, but was homogeneously reduced in group I. In contrast, group II patients revealed heterogeneous ({sup 11}C)HED retention, with increased uptake in the proximal anterior and septal wall. Quantitative evaluation of ({sup 11}C)HED retention revealed a 70% reduction in group I and 59% reduction in group II patients (P less than 0.001). In group II patients, ({sup 11}C)HED retention reached 60% of normal in the proximal anterior wall. These data suggest the presence of neuronal tissue in the transplanted human heart, which may reflect regional sympathetic reinnervation.

  9. Establishing normal values for nickel in human lung disease.

    PubMed

    Andersen, I; Svenes, K

    1999-12-01

    People working in the nickel refining industry are known to have a higher concentration of nickel in lung tissue than the general population. To be able to evaluate a potential nickel exposure from other sources, e.g., welding, it is important to have sufficient data on what is normal for a local population. Several local factors such as the content of nickel in air and soil can have a significant impact on this so-called normal value. As almost all surgical equipment contains nickel, the sampling process can in itself be a source of contamination. The scope of this work was to investigate if there was any measurable contamination from the sampling instruments routinely used in hospitals, and if the presence of a nickel refinery had any effect on the nickel content in the lungs of the general population. Autopsy lung tissue samples were collected in situ from 50 people who had lived in the county of Vest Agder in Norway. Two samples were collected from each person; one with a regular scalpel (Swann-Norton) and forceps, and one with a titanium knife and plastic forceps. None of the persons had any known connection to the nickel refinery. The samples were collected at random and no special attention was given to age, sex and place of residence. The autopsies were performed according to Norwegian law and in understanding with the next of kin. The arithmetic mean value +/- s of nickel was 0.64 +/- 0.56 microgram g-1 and 0.29 +/- 0.20 microgram g-1 dry weight, respectively, for samples collected with a regular scalpel and a titanium knife (P < 0.0001). For people who lived 8 km and closer to the refinery by the time of death, the nickel content was 0.41 +/- 0.19 microgram g-1 and for those who had lived between 8 and 70 km away from the refinery it was 0.18 +/- 0.13 microgram g-1 (P < 0.015). No statistical difference was established between results for males and females. Previous investigations have shown that the nickel content in lung tissue varies in the so

  10. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    SciTech Connect

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R. )

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV.

  11. Prevalences of human herpesvirus 6 and human herpesvirus 7 in normal Thai population.

    PubMed

    Thawaranantha, D; Chimabutra, K; Balachandra, K; Warachit, P; Pantuwatana, S; Inagi, R; Kurata, T; Yamanishi, K

    1999-06-01

    Prevalences of human herpesvirus 6 (HHV-6) and human herpesvirus 7 (HHV-7) DNA were investigated in normal Thai population. Peripheral blood mononuclear cells (PBMC) and saliva were collected from 238 healthy adults in five provinces which might be a representative of each part of the country, and 120 normal children in one province. Prevalences of HHV-6 DNA PBMC were 45.5-74.3% in adults and 78.3% in children, and in saliva, very low prevalences were detected; 5.7-8.6% in adults and 15.0% in children, respectively. Additionally, all HHV-6 DNA detected in this study were variant B. Comparingly to those of HHV-7 DNA, the prevalences were significantly higher than those of HHV-6, ie, 82.9-91.4% in PBMC of adults, 85% in PBMC of children, 84.8-89.0% in saliva of adults and 92.5% in saliva of children. HHV-6 and HHV-7 isolation from saliva specimens were also performed. No HHV-6 could be isolated from any samples, whereas, in the present study, HHV-7 could be isolated as 90.0% from children and as 20.0-54.5% from adults.

  12. Specific binding of beta-endorphin to normal human erythrocytes

    SciTech Connect

    Chenet, B.; Hollis, V. Jr.; Kang, Y.; Simpkins, C.

    1986-03-05

    Beta-endorphin (BE) exhibits peripheral functions which may not be mediated by interactions with receptors in the brain. Recent studies have demonstrated binding of BE to both opioid and non-opioid receptors on lymphocytes and monocytes. Abood has reported specific binding of /sup 3/H-dihydromorphine in erythrocytes. Using 5 x 10/sup -11/M /sup 125/I-beta-endorphin and 10/sup -5/M unlabeled BE, they have detected 50% specific binding to human erythrocytes. This finding is supported by results from immunoelectron microscopy using rabbit anti-BE antibody and biotinylated secondary antibody with avidin-biotin complexes horseradish peroxidase. Binding is clearly observed and is confined to only one side of the cells. Conclusions: (1) BE binding to human erythrocytes was demonstrated by radioreceptor assay and immunoelectron microscopy, and (2) BE binding sites exist on only one side of the cells.

  13. Neurophysiological model of the normal and abnormal human pupil

    NASA Technical Reports Server (NTRS)

    Krenz, W.; Robin, M.; Barez, S.; Stark, L.

    1985-01-01

    Anatomical, experimental, and computer simulation studies were used to determine the structure of the neurophysiological model of the pupil size control system. The computer simulation of this model demonstrates the role played by each of the elements in the neurological pathways influencing the size of the pupil. Simulations of the effect of drugs and common abnormalities in the system help to illustrate the workings of the pathways and processes involved. The simulation program allows the user to select pupil condition (normal or an abnormality), specific site along the neurological pathway (retina, hypothalamus, etc.) drug class input (barbiturate, narcotic, etc.), stimulus/response mode, display mode, stimulus type and input waveform, stimulus or background intensity and frequency, the input and output conditions, and the response at the neuroanatomical site. The model can be used as a teaching aid or as a tool for testing hypotheses regarding the system.

  14. Mineral density volume gradients in normal and diseased human tissues.

    PubMed

    Djomehri, Sabra I; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W; Yun, Wenbing; Lau, S H; Webb, Samuel; Ho, Sunita P

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations. PMID:25856386

  15. Mineral density volume gradients in normal and diseased human tissues

    DOE PAGES

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore » fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  16. Mineral Density Volume Gradients in Normal and Diseased Human Tissues

    PubMed Central

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations. PMID:25856386

  17. Mineral density volume gradients in normal and diseased human tissues

    SciTech Connect

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  18. Three-dimensional Systolic Strain Patterns in the Normal Human Left Ventricle: Characterization with Tagged MR Imaging1

    PubMed Central

    Moore, Christopher C.; Lugo-Olivieri, Carlos H.; McVeigh, Elliot R.; Zerhouni, Elias A.

    2007-01-01

    PURPOSE To present a database of systolic three-dimensional (3D) strain evolution throughout the normal left ventricle (LV) in humans. MATERIALS AND METHODS In 31 healthy volunteers, magnetic resonance (MR) tissue tagging and breath-hold MR imaging were used to generate and then detect the motion of transient fiducial markers (ie, tags) in the heart every 32 msec. Strain and motion were calculated from a 3D displacement field that was fit to the tag data. Special indexes of contraction and thickening that were based on multiple strain components also were evaluated. RESULTS The temporal evolution of local strains was linear during the first half of systole. The peak shortening and thickening strain components were typically greatest in the anterolateral wall, increased toward the apex, and increased toward the endocardium. Shears and displacements were more spatially variable. The two specialized indexes of contraction and thickening had higher measurement precision and tighter normal ranges than did the traditional strain components. CONCLUSION In this study, the authors noninvasively characterized the normal systolic ranges of 3D displacement and strain evolution throughout the human LV. Comparison against this multidimensional database may permit sensitive detection of systolic LV dysfunction. PMID:10671594

  19. Spectroscopic fluorescence measurements of lamb and human heart tissue in vitro

    NASA Astrophysics Data System (ADS)

    Filippidis, George; Zacharakis, Giannis; Kochiadakis, G. E.; Chrysostomakis, S. I.; Vardas, P. E.; Fotakis, Costas; Papazoglou, Theodore G.

    2003-10-01

    Laser-induced fluorescence spectra were obtained during the exposure of lamb heart (n=20) tissue to Argon-ion radiation (457.9nm). Fluorescence spectra from different heart compartments (the left and right atria and ventricles, the myocardium, the epicardium, and the aorta) were recorded. Simple algebraic algorithms based on the spectral intensity variation were constructed in order to detect spectral features and characterize the different cardiac compartments. Additionally, it was investigated whether each chamber exhibited constant spectral response. After the end of each experiment the lamb hearts were stored in formalin (10%). The samples were irradiated again after forty eight (48) hours in order to investigate the spectral differences that appear due to formalin conservation. Similar fluorescence measurements were taken from a limited number of human heart tissues (n=2) ex vivo.

  20. Reinforcing and subjective effects of caffeine in normal human volunteers.

    PubMed

    Stern, K N; Chait, L D; Johanson, C E

    1989-01-01

    The reinforcing and subjective effects of caffeine (100 and 300 mg, PO) were determined in a group of 18 normal, healthy adults. Subjects (eight females, ten males) were light to moderate users of caffeine, and had no history of drug abuse. A discrete-trial choice procedure was used in which subjects were allowed to choose between the self-administration of color-coded capsules containing either placebo or caffeine. The number of times caffeine was chosen over placebo was used as the primary index of reinforcing efficacy. Subjective effects were measured before and several times after capsule ingestion. The low dose of caffeine was chosen on 42.6% of occasions, not significantly different from chance (50%). The high dose of caffeine was chosen on 38.9% of occasions, significantly less than expected by chance, indicating that this dose served as a punisher. Both doses of caffeine produced stimulant-like subjective effects, with aversive effects such as increased anxiety predominating after the high dose. When subjects were divided into groups of caffeine-sensitive choosers and nonchoosers, a consistent relationship emerged between caffeine choice and subjective effects; nonchoosers reported primarily aversive effects after caffeine (increased anxiety and dysphoria), whereas choosers reported stimulant and "positive" mood effects. When compared with previous findings, these results demonstrate that caffeine is less reinforcing than amphetamine and related psychomotor stimulants. PMID:2498963

  1. A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human SCN5A heart sodium channels.

    PubMed

    Makielski, Jonathan C; Ye, Bin; Valdivia, Carmen R; Pagel, Matthew D; Pu, Jielin; Tester, David J; Ackerman, Michael J

    2003-10-31

    Amino acid sequence variations in SCN5A are known to affect function of wild-type channels and also those with coexisting mutations; therefore, it is important to know the exact sequence and function of channels most commonly present in human myocardium. SCN5A was analyzed in control panels of human alleles, demonstrating that the existing clones (hH1, hH1a, hH1b) each contained a rare variant and thus none represented the common sequence. Confirming prior work, the H558R polymorphism was present in approximately 30% of subjects. Quantitative mRNA analysis from human hearts showed that a shorter 2015 amino acid splice variant lacking glutamine at position 1077 (Q1077del) made up 65% of the transcript in every heart examined. Age, sex, race, or structural heart disease did not affect this proportion of Q1077del. Estimated population frequencies for the four common variants were 25% SCN5A, 10% [H558R], 45% [Q1077del], and 20% [H558R;Q1077del], where the reference sequence SCN5A is GenBank AC137587. When expressed in HEK-293 cells, these common variants had a more positive mid-point of the voltage dependence of inactivation than the standard clone hH1. Also, channels containing Q1077 expressed smaller currents. When H558R was present with Q1077 ([H558R]), current expression was profoundly reduced despite normal trafficking to the cell surface. Thus, four variant sequences for SCN5A are commonly present in human myocardium and they exhibit functional differences among themselves and with the previous standard clone. These results have implications for the choice of background sequence for experiments with heterologous expression systems, and possibly implications for electrophysiological function in vivo. PMID:14500339

  2. Effects of Load on Normal Human Osteoblast Function

    NASA Astrophysics Data System (ADS)

    Reseland, J. E.; Devakottai, Sundar; Sundaresan, A.

    2013-02-01

    The effects of load on the secretion and expression of bone markers were tested at different stages of differentiation of primary human osteoblasts. NHOs were both seeded with and without cytodex 3 beads (Sigma),transferred to a NASA rotating wall vessel (modeled microgravity) and harvested at day 7 and day 14. Differentiated and undifferentiated NHOs were loaded at 6-50G for 30 min and compared to cells incubated at 1G after 1 day and 3 days. Collectively the results demonstrate that load has a differential effect on osteoblast differentiation as seen in modeled microgravity and shows specificity in expression of bone cell markers vs. expression of secreted paracrine signaling markers.

  3. Nonlinear time series analysis of normal and pathological human walking

    NASA Astrophysics Data System (ADS)

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2000-12-01

    Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the

  4. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart

    PubMed Central

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H.

    2009-01-01

    Background Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. Methods We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and paediatric cardiology. This has permitted the preparation of three-dimensional (3-D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. Results We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. Conclusion We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning. PMID:19363807

  5. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart.

    PubMed

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H

    2009-01-01

    Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and pediatric cardiology. This has permitted the preparation of three-dimensional (3D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning. PMID:19363807

  6. Differentiation of Overweight from Normal Weight Young Adults by Postprandial Heart Rate Variability and Systolic Blood Pressure

    PubMed Central

    Taffe, Lauren; Stancil, Kimani; Bond, Vernon; Pemminati, Sudhakar; Gorantla, Vasavi Rakesh; Kadur, Kishan

    2016-01-01

    Introduction Obesity and cardiovascular disease are inextricably linked and the health community’s response to the current epidemic of adolescent obesity may be improved by the ability to target adolescents at highest risk for developing cardiovascular disease in the future. Overweight manifests early as autonomic dysregulation and current methods do not permit differentiation of overweight adolescents or young adults at highest risk for developing cardiovascular disease. Aim This study was designed to test the hypothesis that scaling exponents motivated by nonlinear fractal analyses of Heart Rate Variability (HRV) differentiate overweight, otherwise healthy adolescent/young adult subjects at risk for developing prehypertension, the primary forerunner of cardiovascular disease. Materials and Methods The subjects were 18-20year old males with Body Mass Index (BMI) 20.1-42.5kg/m2. Electrocardiographic inter-beat (RR) intervals were measured during 3h periods of bed rest after overnight fasting and ingestion of 900Cal high-carbohydrate and high-fat test beverages on separate days. Detrended Fluctuation Analysis (DFA), k-means cluster and ANOVA analyses of scaling coefficients α, α1, and α2, showed dependencies on hourly measurements of systolic blood pressure and on premeasured BMI. Results It was observed that α value increased during the caloric challenge, appears to represent metabolically-induced changes in HRV across the participants. An ancillary analysis was performed to determine the dependency on BMI without BMI as a parameter. Cluster analysis of the high-carbohydrate test beverage treatment and the high-fat treatment produced grouping with very little overlap. ANOVA on both clusters demonstrated significance at p<0.001. We were able to demonstrate increased sympathetic modulation of our study group during ingestion and metabolism of isocaloric high-carbohydrate and high-fat test beverages. Conclusion These findings demonstrate significantly different

  7. A Bayesian classification of heart rate variability data

    NASA Astrophysics Data System (ADS)

    Muirhead, R. J.; Puff, R. D.

    2004-05-01

    We propose a simple Bayesian method for the classification of time series signals originating from mutually exclusive sources. In particular, the method is used to address the question of whether a 24-h recording of human heart rate data is produced by a normally functioning heart or by one exhibiting symptoms of congestive heart failure. Our method correctly classifies 18 of 18 normal heart data sets, and 38 of 44 congestive failure data sets.

  8. The presence of mu-, delta-, and kappa-opioid receptors in human heart tissue.

    PubMed

    Sobanski, Piotr; Krajnik, Malgorzata; Shaqura, Mohammed; Bloch-Boguslawska, Elzbieta; Schäfer, Michael; Mousa, Shaaban A

    2014-11-01

    Functional evidence suggests that the stimulation of peripheral and central opioid receptors (ORs) is able to modulate heart function. Moreover, selective stimulation of either cardiac or central ORs evokes preconditioning and, therefore, protects the heart against ischemic injury. However, anatomic evidence for OR subtypes in the human heart is scarce. Human heart tissue obtained during autopsy after sudden death was examined immunohistochemically for mu- (MOR), kappa- (KOR), and delta- (DOR) OR subtypes. MOR and DOR immunoreactivity was found mainly in myocardial cells, as well as on sparse individual nerve fibers. KOR immunoreactivity was identified predominantly in myocardial cells and on intrinsic cardiac adrenergic (ICA) cell-like structures. Double immunofluorescence confocal microscopy revealed that DOR colocalized with the neuronal marker PGP9.5, as well as with the sensory neuron marker calcitonin gene-related peptide (CGRP). CGRP-immunoreactive (IR) fibers were detected either in nerve bundles or as sparse individual fibers containing varicose-like structures. Our findings offer the first hint of an anatomic basis for the existence of OR subtypes in the human heart by demonstrating their presence in CGRP-IR sensory nerve fibers, small cells with an eccentric nucleus resembling ICA cells, and myocardial cells. Taken together, this suggests the role of opioids in both the neural transmission and regulation of myocardial cell function.

  9. Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types.

    PubMed

    Loh, Kyle M; Chen, Angela; Koh, Pang Wei; Deng, Tianda Z; Sinha, Rahul; Tsai, Jonathan M; Barkal, Amira A; Shen, Kimberle Y; Jain, Rajan; Morganti, Rachel M; Shyh-Chang, Ng; Fernhoff, Nathaniel B; George, Benson M; Wernig, Gerlinde; Salomon, Rachel E A; Chen, Zhenghao; Vogel, Hannes; Epstein, Jonathan A; Kundaje, Anshul; Talbot, William S; Beachy, Philip A; Ang, Lay Teng; Weissman, Irving L

    2016-07-14

    Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT. PMID:27419872

  10. Cardiac myosin-Th17 responses promote heart failure in human myocarditis

    PubMed Central

    Myers, Jennifer M.; Cooper, Leslie T.; Kem, David C.; Stavrakis, Stavros; Kosanke, Stanley D.; Shevach, Ethan M.; Fairweather, DeLisa; Stoner, Julie A.; Cox, Carol J.; Cunningham, Madeleine W.

    2016-01-01

    In human myocarditis and its sequela dilated cardiomyopathy (DCM), the mechanisms and immune phenotype governing disease and subsequent heart failure are not known. Here, we identified a Th17 cell immunophenotype of human myocarditis/DCM with elevated CD4+IL17+ T cells and Th17-promoting cytokines IL-6, TGF-β, and IL-23 as well as GM-CSF–secreting CD4+ T cells. The Th17 phenotype was linked with the effects of cardiac myosin on CD14+ monocytes, TLR2, and heart failure. Persistent heart failure was associated with high percentages of IL-17–producing T cells and IL-17–promoting cytokines, and the myocarditis/DCM phenotype included significantly low percentages of FOXP3+ Tregs, which may contribute to disease severity. We demonstrate a potentially novel mechanism in human myocarditis/DCM in which TLR2 peptide ligands from human cardiac myosin stimulated exaggerated Th17-related cytokines including TGF-β, IL-6, and IL-23 from myocarditic CD14+ monocytes in vitro, and an anti-TLR2 antibody abrogated the cytokine response. Our translational study explains how an immune phenotype may be initiated by cardiac myosin TLR ligand stimulation of monocytes to generate Th17-promoting cytokines and development of pathogenic Th17 cells in human myocarditis and heart failure, and provides a rationale for targeting IL-17A as a therapeutic option. PMID:27366791

  11. ProNormz--an integrated approach for human proteins and protein kinases normalization.

    PubMed

    Subramani, Suresh; Raja, Kalpana; Natarajan, Jeyakumar

    2014-02-01

    The task of recognizing and normalizing protein name mentions in biomedical literature is a challenging task and important for text mining applications such as protein-protein interactions, pathway reconstruction and many more. In this paper, we present ProNormz, an integrated approach for human proteins (HPs) tagging and normalization. In Homo sapiens, a greater number of biological processes are regulated by a large human gene family called protein kinases by post translational phosphorylation. Recognition and normalization of human protein kinases (HPKs) is considered to be important for the extraction of the underlying information on its regulatory mechanism from biomedical literature. ProNormz distinguishes HPKs from other HPs besides tagging and normalization. To our knowledge, ProNormz is the first normalization system available to distinguish HPKs from other HPs in addition to gene normalization task. ProNormz incorporates a specialized synonyms dictionary for human proteins and protein kinases, a set of 15 string matching rules and a disambiguation module to achieve the normalization. Experimental results on benchmark BioCreative II training and test datasets show that our integrated approach achieve a fairly good performance and outperforms more sophisticated semantic similarity and disambiguation systems presented in BioCreative II GN task. As a freely available web tool, ProNormz is useful to developers as extensible gene normalization implementation, to researchers as a standard for comparing their innovative techniques, and to biologists for normalization and categorization of HPs and HPKs mentions in biomedical literature. URL: http://www.biominingbu.org/pronormz.

  12. Heterogeneity of serum low density lipoproteins in normal human subjects

    SciTech Connect

    Shen, M.M.S.; Krauss, R.M.; Lindgren, F.T.; Forte, T.M.

    1981-01-01

    Equilibrium density gradient ultracentrifugation of serum low density lipoprotein (LDL) from twelve healthy human subjects was used to separate six subfractions with mean dinsity ranging from 1.0268 to 1.0597 g/ml. Mean corrected peak flotation rate (S/sup o//sub f/) measured by analytic ultracentrifugation, and mean particle diameter determined by negative staining electron microscopy, both declined significantly with increasing density of the subfractions. Major differences in chemical composition of the subfractions were noted, including a singnificantly lower triglyceride content and higher ratio of cholesteryl ester to triglyceride in the middle fractions compared with those of highest and lowest density. Concentration of fraction 2 correlated positively with HDL (P < 0.01) and negatively with VLDL (P < 0.001); concentration of fraction 4 correlated negatively with HDL (P < 0.05) and positively with VLDL (P < 0.001) and IDL (P < 0.01). LDL may thus include subspecies of differing structure and composition which might also have different metabolic and atherogenic roles.

  13. Sleep Stage Dependence of Invariance Characteristics in Fluctuations of Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Togo, Fumiharu; Kiyono, Ken; Struzik, Zbigniew R.; Yamamoto, Yoshiharu

    2005-08-01

    The outstanding feature of healthy human heart rate is the robust scale invariance in the non-Gaussian probability density function (PDF), which is preserved not only in a quiescent condition, but also in a dynamic state during waking hours [K. Kiyono et al. Phys. Rev. Lett. 93 (2004)]. Together with 1/f like scaling, this characteristic is a strong indication of far-from-equilibrium, critical-like dynamics of heart rate regulation. Our results suggest that healthy human heart rate departs from a critical state-like operation during sleeping hours, at a rate which is heterogeneous with respect to sleep stages annotated according to traditional techniques. We study specific contributions of sleep stages to the relative departure from criticality through the analysis of sleep stage dependence of the root mean square of multiscale local energy and the multiscale PDF. There is a possibility that the involvement of cortical activity may be important for a critical state-like operation.

  14. Mapping of corticotropic cells in the normal human pituitary.

    PubMed

    Trouillas, J; Guigard, M P; Fonlupt, P; Souchier, C; Girod, C

    1996-05-01

    We accomplished the first mapping of corticotropic cells in the whole human adult pituitary. Corticotropic cells were identified by immunocytochemistry (ICC) and quantified by image analysis on 12 pituitaries obtained from people who had died suddenly. An overall view of each pituitary was given by 15-21 sections (mean 18 sections) at 300-micron intervals on six slides. Each section was systematically treated by indirect immunoperoxidase using an anti-ACTH[17-39] polyclonal antiserum. All the measures were done with a x 6.3 objective lens, each field (0. 5 mm2) being considered as the unit area. The mean pituitary density (surface of labeled cells/total surface) of corticotropic cells (9.5 +/- 3.0% per 0. 5 mm2) is significantly higher in men (11.5 +/- 5.1%) than in women (7.0 +/- 1.3%). This difference is due to an inverse relationship between the corticotropic cell density and the weight of the pituitary, which is higher in women than in men. The mean diameter of corticotropic cells is 14.9 micron and their total number per pituitary is approximately 10(7) cells. We confirmed that the spatial distribution of corticotropic cells is nonuniform: they are mainly distributed in the anteromedian part of the anterior lobe. In addition, our results demonstrated that the inferior part of the pituitary contained three times more corticotropic cells than the superior part (mean density 18.0% vs 6.0%) and the anterior part twice as many as the posterior part (mean density 12.3% vs 6.8%). On the horizontal plane, the pituitary was divided into eight zones, in which the mean of area was 2.5-21.0%. The maximal cell density may reach 40-60%. The use of this map should help the pathologist to recognize if there is corticotropic hyperplasia in a small pituitary fragment surgically removed from a patient with Cushing's disease. On the basis of this study, we put forward some criteria for diagnosing corticotropic hyperplasia. PMID:8627004

  15. Estimation of human core temperature from sequential heart rate observations.

    PubMed

    Buller, Mark J; Tharion, William J; Cheuvront, Samuel N; Montain, Scott J; Kenefick, Robert W; Castellani, John; Latzka, William A; Roberts, Warren S; Richter, Mark; Jenkins, Odest Chadwicke; Hoyt, Reed W

    2013-07-01

    Core temperature (CT) in combination with heart rate (HR) can be a good indicator of impending heat exhaustion for occupations involving exposure to heat, heavy workloads, and wearing protective clothing. However, continuously measuring CT in an ambulatory environment is difficult. To address this problem we developed a model to estimate the time course of CT using a series of HR measurements as a leading indicator using a Kalman filter. The model was trained using data from 17 volunteers engaged in a 24 h military field exercise (air temperatures 24-36 °C, and 42%-97% relative humidity and CTs ranging from 36.0-40.0 °C). Validation data from laboratory and field studies (N = 83) encompassing various combinations of temperature, hydration, clothing, and acclimation state were examined using the Bland-Altman limits of agreement (LoA) method. We found our model had an overall bias of -0.03 ± 0.32 °C and that 95% of all CT estimates fall within ±0.63 °C (>52 000 total observations). While the model for estimating CT is not a replacement for direct measurement of CT (literature comparisons of esophageal and rectal methods average LoAs of ±0.58 °C) our results suggest it is accurate enough to provide practical indication of thermal work strain for use in the work place.

  16. An ex vivo model for the reperfusion of explanted human hearts.

    PubMed Central

    Kadipasaoglu, K A; Bennink, G W; Conger, J L; Birovljev, S; Sartori, M; Clubb, F J; Noda, H; Ferguson, J J; Frazier, O H

    1993-01-01

    A model of an ex vivo-reperfused human heart was developed by using a modified Langendorff coronary perfusion circuit. The technical and physiologic aspects of reestablishing myocardial contractility are described. Preliminary studies were conducted in animals. In the present study, we obtained 12 human hearts that had been arrested with cardioplegic solution and excised from cardiac transplant recipients. The perfusate contained type-specific human donor red blood cells in a lactated Ringer's solution containing 5% dextrose. Myocardial contractility was successfully reestablished in 11 hearts and sustained for an average of 98 minutes (range, 79 to 180 minutes) at a coronary perfusion pressure of 80 mmHg. Left ventricular contraction pressures reached 40 mmHg (against intraventricular balloons at an internal pressure of 50 to 75 mmHg). Partial oxygen pressure (PO2) dropped significantly across the empty beating myocardium (from 498 +/- 40 mmHg to 219 +/- 53 mmHg [mean +/- SD]), but no significant change in hemoglobin saturation was observed. Myocardial failure generally stemmed from edematous changes leading to progressive impairment of myocardial relaxation. The intracoronary insertion of over-the-wire catheters did not adversely affect myocardial function. In conclusion, an ex vivo-supported human heart model has been developed that may have a number of applications, including the preclinical evaluation of new interventional diagnostic and therapeutic techniques aimed at the coronary circulation, and the investigation of myocardial mechanics, preservation, and metabolism. Images PMID:8508061

  17. [Healthcare and Christianity, the human person at the heart of God's concerns].

    PubMed

    Onfray, Jean-Marie

    2015-10-01

    French society is still influenced by its Christian traditions and many patients are attached to this aspect. It is therefore important to clarify the reference framework put forward by the Christian religion when dealing with the notions of health, illness and care in this context. The human person, with his/her strengths and weaknesses, is at the heart of Christian reflections.

  18. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  19. A New MRI-Based Model of Heart Function with Coupled Hemodynamics and Application to Normal and Diseased Canine Left Ventricles

    PubMed Central

    Choi, Young Joon; Constantino, Jason; Vedula, Vijay; Trayanova, Natalia; Mittal, Rajat

    2015-01-01

    A methodology for the simulation of heart function that combines an MRI-based model of cardiac electromechanics (CE) with a Navier–Stokes-based hemodynamics model is presented. The CE model consists of two coupled components that simulate the electrical and the mechanical functions of the heart. Accurate representations of ventricular geometry and fiber orientations are constructed from the structural magnetic resonance and the diffusion tensor MR images, respectively. The deformation of the ventricle obtained from the electromechanical model serves as input to the hemodynamics model in this one-way coupled approach via imposed kinematic wall velocity boundary conditions and at the same time, governs the blood flow into and out of the ventricular volume. The time-dependent endocardial surfaces are registered using a diffeomorphic mapping algorithm, while the intraventricular blood flow patterns are simulated using a sharp-interface immersed boundary method-based flow solver. The utility of the combined heart-function model is demonstrated by comparing the hemodynamic characteristics of a normal canine heart beating in sinus rhythm against that of the dyssynchronously beating failing heart. We also discuss the potential of coupled CE and hemodynamics models for various clinical applications. PMID:26442254

  20. Visualization of human heart conduction system by means of fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Venius, Jonas; Bagdonas, Saulius; Žurauskas, Edvardas; Rotomskis, Ricardas

    2011-10-01

    The conduction system of the heart is a specific muscular tissue, where a heartbeat signal originates and initiates the depolarization of the ventricles. The muscular origin makes it complicated to distinguish the conduction system from the surrounding tissues. A surgical intervention can lead to the accidental harm of the conduction system, which may eventually result in a dangerous obstruction of the heart functionality. Therefore, there is an immense necessity for developing a helpful method to visualize the conduction system during the operation time. The specimens for the spectroscopic studies were taken from nine diverse human hearts. The localization of distinct types of the tissue was preliminary marked by the pathologist and approved histologically after the spectral measurements. Variations in intensity, as well as in shape, were detected in autofluorescence spectra of different heart tissues. The most distinct differences were observed between the heart conduction system and the surrounding tissues under 330 and 380 nm excitation. The spectral region around 460 nm appeared to be the most suitable for an unambiguous differentiation of the human conduction system avoiding the absorption peak of blood. The visualization method, based on the intensity ratios calculated for two excitation wavelengths, was also demonstrated.

  1. Reduced response to IKr blockade and altered hERG1a/1b stoichiometry in human heart failure.

    PubMed

    Holzem, Katherine M; Gomez, Juan F; Glukhov, Alexey V; Madden, Eli J; Koppel, Aaron C; Ewald, Gregory A; Trenor, Beatriz; Efimov, Igor R

    2016-07-01

    Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents. Thus, we aimed to examine whether decreased expression of the rapid delayed rectifier potassium current, IKr, contributes to repolarization abnormalities in human HF. To map functional IKr expression across the left ventricle (LV), we optically imaged coronary-perfused LV free wall from donor and end-stage failing human hearts. The LV wedge preparation was used to examine transmural AP durations at 80% repolarization (APD80), and treatment with the IKr-blocking drug, E-4031, was utilized to interrogate functional expression. We assessed the percent change in APD80 post-IKr blockade relative to baseline APD80 (∆APD80) and found that ∆APD80s are reduced in failing versus donor hearts in each transmural region, with 0.35-, 0.43-, and 0.41-fold reductions in endo-, mid-, and epicardium, respectively (p=0.008, 0.037, and 0.022). We then assessed hERG1 isoform gene and protein expression levels using qPCR and Western blot. While we did not observe differences in hERG1a or hERG1b gene expression between donor and failing hearts, we found a shift in the hERG1a:hERG1b isoform stoichiometry at the protein level. Computer simulations were then conducted to assess IKr block under E-4031 influence in failing and nonfailing conditions. Our results confirmed the experimental observations and E-4031-induced relative APD80 prolongation was greater in normal conditions than in failing conditions, provided that the cellular model of HF included a significant downregulation of IKr. In human HF, the response to IKr blockade is reduced, suggesting decreased functional IKr expression. This attenuated functional response is associated with

  2. Low Left Atrial Compliance Contributes to the Clinical Recurrence of Atrial Fibrillation after Catheter Ablation in Patients with Structurally and Functionally Normal Heart

    PubMed Central

    Park, Junbeom; Yang, Pil-sung; Kim, Tae-Hoon; Uhm, Jae-Sun; Kim, Joung-Youn; Joung, Boyoung; Lee, Moon-Hyoung; Hwang, Chun; Pak, Hui-Nam

    2015-01-01

    Stiff left atrial (LA) syndrome was initially reported in post-cardiac surgery patients and known to be associated with low LA compliance. We investigated the physiological and clinical implications of LA compliance by estimating LA pulse pressure (LApp) among patients with atrial fibrillation (AF) and structurally and functionally normal heart. Among 1038 consecutive patients with LA pressure measurements before AF ablation, we included 334 patients with structurally and functionally normal heart (81.7% male, 54.1±10.6 years, 77.0% paroxysmal AF) after excluding those with hypertension, diabetes, and previous ablation or cardiac surgery. We measured LApp (peak-nadir LA pressure) at the beginning of the ablation procedure and compared the values with clinical parameters and the AF recurrence rate.AF patients with normal heart were younger and more frequently male and had paroxysmal AF, a lower body mass index, and a lower LApp compared to others (all p<0.05).Based on the median value, the low LA compliance group (LApp≥13mmHg) had a smaller LA volume index and lower LA voltage (all p<0.05) compared to the high LA compliance group. During a mean follow-up of 16.7±11.8 months, low LA compliance was independently associated with two fold-higher risk of clinical AF recurrence (HR:2.202; 95%CI:1.077–4.503; p = 0.031).Low LA compliance, as determined by an elevated LApp, was associated with a smaller LA volume index and lower LA voltage and independently associated with higher clinical recurrence after catheter ablation in AF patients with structurally and functionally normal heart. PMID:26624617

  3. Cardiac primitive cells become committed to a cardiac fate in adult human heart with chronic ischemic disease but fail to acquire mature phenotype: genetic and phenotypic study.

    PubMed

    Nurzynska, Daria; Di Meglio, Franca; Romano, Veronica; Miraglia, Rita; Sacco, Anna Maria; Latino, Francesca; Bancone, Ciro; Della Corte, Alessandro; Maiello, Ciro; Amarelli, Cristiano; Montagnani, Stefania; Castaldo, Clotilde

    2013-01-01

    Adult human heart hosts a population of cardiac primitive CD117-positive cells (CPCs), which are responsible for physiological tissue homeostasis and regeneration. While the bona fide stem cells express telomerase, their progenies are no longer able to preserve telomeric DNA; hence the balance between their proliferation and differentiation has to be tightly controlled in order to prevent cellular senescence and apoptosis of CPCs before their maturation can be accomplished. We have examined at cellular and molecular level the proliferation, apoptosis and commitment of CPCs isolated from normal (CPC-N) and age-matched pathological adult human hearts (CPC-P) with ischemic heart disease. In the CPC-P, genes related to early stages of developmental processes, nervous system development and neurogenesis, skeletal development, bone and cartilage development were downregulated, while those involved in mesenchymal cell differentiation and heart development were upregulated, together with the transcriptional activation of TGFβ/BMP signaling pathway. In the pathological heart, asymmetric division was the prevalent type of cardiac stem cell division. The population of CPC-P consisted mainly of progenitors of cardiac cell lineages and less precursors; these cells proliferated more, but were also more susceptible to apoptosis with respect to CPC-N. These results indicate that CPCs fail to reach terminal differentiation and functional competence in pathological conditions. Adverse effects of underlying pathology, which disrupts cardiac tissue structure and composition, and cellular senescence, resulting from cardiac stem cell activation in telomere dysfunctional environment, can be responsible for such outcome.

  4. Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis

    PubMed Central

    Margan, Madalin Marius; Jitariu, Andreea Adriana; Nica, Cristian; Raica, Marius

    2016-01-01

    Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis. PMID:27382385

  5. Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis.

    PubMed

    Margan, Madalin Marius; Jitariu, Andreea Adriana; Cimpean, Anca Maria; Nica, Cristian; Raica, Marius

    2016-06-01

    Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis. PMID:27382385

  6. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  7. Towards real-time simulation of cardiac electrophysiology in a human heart at high resolution.

    PubMed

    Richards, David F; Glosli, James N; Draeger, Erik W; Mirin, Arthur A; Chan, Bor; Fattebert, Jean-Luc; Krauss, William D; Oppelstrup, Tomas; Butler, Chris J; Gunnels, John A; Gurev, Viatcheslav; Kim, Changhoan; Magerlein, John; Reumann, Matthias; Wen, Hui-Fang; Rice, John Jeremy

    2013-01-01

    We have developed the capability to rapidly simulate cardiac electrophysiological phenomena in a human heart discretised at a resolution comparable with the length of a cardiac myocyte. Previous scientific investigation has generally invoked simplified geometries or coarse-resolution hearts, with simulation duration limited to 10s of heartbeats. Using state-of-the-art high-performance computing techniques coupled with one of the most powerful computers available (the 20 PFlop/s IBM BlueGene/Q at Lawrence Livermore National Laboratory), high-resolution simulation of the human heart can now be carried out over 1200 times faster compared with published results in the field. We demonstrate the utility of this capability by simulating, for the first time, the formation of transmural re-entrant waves in a 3D human heart. Such wave patterns are thought to underlie Torsades de Pointes, an arrhythmia that indicates a high risk of sudden cardiac death. Our new simulation capability has the potential to impact a multitude of applications in medicine, pharmaceuticals and implantable devices.

  8. The Physiological Effect of Human Grooming on the Heart Rate and the Heart Rate Variability of Laboratory Non-Human Primates: A Pilot Study in Male Rhesus Monkeys

    PubMed Central

    Grandi, Laura Clara; Ishida, Hiroaki

    2015-01-01

    Grooming is a widespread, essential, and complex behavior with social and affiliative valence in the non-human primate world. Its impact at the autonomous nervous system level has been studied during allogrooming among monkeys living in a semi-naturalistic environment. For the first time, we investigated the effect of human grooming to monkey in a typical experimental situation inside laboratory. We analyzed the autonomic response of male monkeys groomed by a familiar human (experimenter), in terms of the heart rate (HR) and heart rate variability (HRV) at different body parts. We considered the HRV in both the time (SDNN, RMSSD, and RMSSD/SDNN) and the frequency domain (HF, LF, and LF/HF). For this purpose, we recorded the electrocardiogram of two male rhesus monkeys seated in a primate chair while the experimenter groomed their mouth, chest, or arm. We demonstrated that (1) the grooming carried out by a familiar human determined a decrement of the HR and an increment of the HRV; (2) there was a difference in relation to the groomed body part. In particular, during grooming the mouth the HRV was higher than during grooming the arm and the chest. Taken together, the results represent the first evidence that grooming carried out by a familiar human on experimental monkeys has the comparable positive physiological effect of allogrooming between conspecifics. Moreover, since the results underlined the positive modulation of both HR and HRV, the present study could be a starting point to improve the well-being of non-human primates in experimental condition by means of grooming by a familiar person. PMID:26664977

  9. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    SciTech Connect

    Giometti, C.S.; Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  10. Positive and negative aggregation responses to cultured human tumor cell lines among different normal individuals.

    PubMed

    Bastida, E; Ordinas, A; Jamieson, G A

    1982-01-01

    Platelets from approximately 50% (7/16) of normal individuals have been shown to have greater sensitivity to aggregation induced by critical threshold concentrations of three human tumor cell lines. These results may have implications for the genetics and epidemiology of human neoplastic disease.

  11. Decellularized GGTA1-KO pig heart valves do not bind preformed human xenoantibodies.

    PubMed

    Ramm, Robert; Niemann, Heiner; Petersen, Björn; Haverich, Axel; Hilfiker, Andres

    2016-07-01

    Pre-clinical and clinical data have unequivocally demonstrated the usefulness of decellularized heart valve (HV) matrices implanted for HV replacement therapy. However, human donor valves applicable for decellularization are in short supply, which prompts the search for suitable alternatives, such as porcine grafts. Since decellularization might be insufficient to remove all xenoantigens, we analysed the interaction of human preformed antibodies with decellularized porcine HV in vitro to assess potential immune reactions upon implantation. Detergent-decellularized pulmonary HV from German Landrace wild-type (wt) or α1,3-galactosyltransferase knockout (GGTA1-KO) pigs were investigated by inhibition ELISA and GSL I-B4 staining to localize and quantify matrix-bound αGal epitopes, which represent the most prominent xenoantigen. Additionally, preformed human xenoantibodies were affinity purified by perfusing porcine kidneys. Binding of purified human antibodies to decellularized HV was investigated by inhibition ELISA. Furthermore, binding of human plasma proteins to decellularized matrices was determined by western blot. Decellularized human pulmonary artery served as controls. Decellularization of wt HV led to a reduction of αGal epitopes by 70 %. Residual epitopes were associated with the subendothelial extracellular matrix. As expected, no αGal epitopes were found on decellularized GGTA1-KO matrix. The strongest binding of preformed human anti-pig antibodies was found on wt matrices, whereas GGTA1-KO matrices bound similar or even fewer xenoantibodies than human controls. These results demonstrate the suitability of GGTA1-KO pigs as donors for decellularized heart valves for human patients. Besides the presence of αGal antibodies on decellularized heart valves, no further preformed xenoantibodies against porcine matrix were detected in tested human sera.

  12. Decellularized GGTA1-KO pig heart valves do not bind preformed human xenoantibodies.

    PubMed

    Ramm, Robert; Niemann, Heiner; Petersen, Björn; Haverich, Axel; Hilfiker, Andres

    2016-07-01

    Pre-clinical and clinical data have unequivocally demonstrated the usefulness of decellularized heart valve (HV) matrices implanted for HV replacement therapy. However, human donor valves applicable for decellularization are in short supply, which prompts the search for suitable alternatives, such as porcine grafts. Since decellularization might be insufficient to remove all xenoantigens, we analysed the interaction of human preformed antibodies with decellularized porcine HV in vitro to assess potential immune reactions upon implantation. Detergent-decellularized pulmonary HV from German Landrace wild-type (wt) or α1,3-galactosyltransferase knockout (GGTA1-KO) pigs were investigated by inhibition ELISA and GSL I-B4 staining to localize and quantify matrix-bound αGal epitopes, which represent the most prominent xenoantigen. Additionally, preformed human xenoantibodies were affinity purified by perfusing porcine kidneys. Binding of purified human antibodies to decellularized HV was investigated by inhibition ELISA. Furthermore, binding of human plasma proteins to decellularized matrices was determined by western blot. Decellularized human pulmonary artery served as controls. Decellularization of wt HV led to a reduction of αGal epitopes by 70 %. Residual epitopes were associated with the subendothelial extracellular matrix. As expected, no αGal epitopes were found on decellularized GGTA1-KO matrix. The strongest binding of preformed human anti-pig antibodies was found on wt matrices, whereas GGTA1-KO matrices bound similar or even fewer xenoantibodies than human controls. These results demonstrate the suitability of GGTA1-KO pigs as donors for decellularized heart valves for human patients. Besides the presence of αGal antibodies on decellularized heart valves, no further preformed xenoantibodies against porcine matrix were detected in tested human sera. PMID:27154491

  13. Displacement of Cortisol From Human Heart by Acute Administration of a Mineralocorticoid Receptor Antagonist

    PubMed Central

    Iqbal, Javaid; Andrew, Ruth; Cruden, Nicholas L.; Kenyon, Christopher J.; Hughes, Katherine A.; Newby, David E.; Hadoke, Patrick W. F.; Walker, Brian R.

    2015-01-01

    Context Mineralocorticoid receptor (MR) antagonists have beneficial effects in patients with heart failure and myocardial infarction, often attributed to blocking aldosterone action in the myocardium. However, binding of aldosterone to MR requires local activity of the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which inactivates cortisol to cortisone and thereby prevents receptor occupancy by cortisol. In vivo activity of 11β-HSD2 and potential occupancy of MR by cortisol in human heart have not been quantified. Objective This study aimed to measure in vivo activity of 11β-HSD2 and to establish whether cortisol binds MR in human heart. Participants and Interventions Nine patients without heart failure undergoing diagnostic coronary angiography were infused to steady state with the stable isotope tracers 9,11,12,12-[2H]4-cortisol and 1,2-[2H]2-cortisone to quantify cortisol and cortisone production. Samples were obtained from the femoral artery and coronary sinus before and for 40 minutes after bolus iv administration of an MR antagonist, potassium canrenoate. Coronary sinus blood flow was measured by venography and Doppler flow wire. Results There was no detectable production of cortisol or cortisone across the myocardium. After potassium canrenoate administration, plasma aldosterone concentrations increased substantially but aldosterone was not detectably released from the myocardium. In contrast, plasma cortisol concentrations did not change in the systemic circulation but tissue-bound cortisol was released transiently from the myocardium after potassium canrenoate administration. Conclusions Human cardiac 11β-HSD2 activity appears too low to inactivate cortisol to cortisone. Cortisol is displaced acutely from the myocardium by MR antagonists and may contribute to adverse MR activation in human heart. PMID:24423282

  14. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells.

    PubMed

    Sirabella, Dario; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2015-08-01

    The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human-induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing, and regenerative medicine.

  15. Calcium handling in human heart failure--abnormalities and target for therapy.

    PubMed

    Reuter, Hannes; Schwinger, Robert H G

    2012-07-01

    The fast cycling of calcium between internal stores and the myofilaments with rapid diffusion down steep concentration gradients provides the cellular basis for cardiac contraction and relaxation. In heart failure, the intracellular Ca(2) (+) dynamics are impaired showing reduced systolic peak Ca(2) (+), elevated diastolic Ca(2) (+) levels, and prolonged diastolic Ca(2) (+) decay. The recognition that defects in the function of Ca(2) (+) handling proteins are central to the pathogenesis of heart failure has attracted attention to these proteins as potential targets for therapy. Besides pharmacologic interventions including digitalis, ranolazine, levosimendan and others, cardiac gene therapy holds great promise and the recent clinical studies have proven the feasibility of this therapeutic approach. In this review, the rationale underlying modern therapies that modulate intracellular Ca(2) (+) handling for the treatment of human heart failure are presented and discussed.

  16. Guided Tissue Regeneration in Heart Valve Replacement: From Preclinical Research to First-in-Human Trials

    PubMed Central

    Iop, L.; Gerosa, G.

    2015-01-01

    Heart valve tissue-guided regeneration aims to offer a functional and viable alternative to current prosthetic replacements. Not requiring previous cell seeding and conditioning in bioreactors, such exceptional tissue engineering approach is a very fascinating translational regenerative strategy. After in vivo implantation, decellularized heart valve scaffolds drive their same repopulation by recipient's cells for a prospective autologous-like tissue reconstruction, remodeling, and adaptation to the somatic growth of the patient. With such a viability, tissue-guided regenerated conduits can be delivered as off-the-shelf biodevices and possess all the potentialities for a long-lasting resolution of the dramatic inconvenience of heart valve diseases, both in children and in the elderly. A review on preclinical and clinical investigations of this therapeutic concept is provided with evaluation of the issues still to be well deliberated for an effective and safe in-human application. PMID:26495295

  17. Hypertrophy of Neurons Within Cardiac Ganglia in Human, Canine, and Rat Heart Failure: The Potential Role of Nerve Growth Factor

    PubMed Central

    Singh, Sanjay; Sayers, Scott; Walter, James S.; Thomas, Donald; Dieter, Robert S.; Nee, Lisa M.; Wurster, Robert D.

    2013-01-01

    Background Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Methods and Results Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm2; P<0.01) and canine hearts (767.80±18.37 versus 650.23±9.84 μm2; P<0.01) failing secondary to ischemia and neurons from spontaneously hypertensive rat hearts (327.98±3.15 versus 271.29±2.79 μm2; P<0.01) failing secondary to hypertension reveal significant hypertrophy of neurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Conclusions Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia. PMID:23959444

  18. A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts.

    PubMed

    Reamon-Buettner, Stella Marie; Ciribilli, Yari; Inga, Alberto; Borlak, Juergen

    2008-05-15

    Hypoplasia of the human heart is the most severe form of congenital heart disease (CHD) and usually lethal during early infancy. It is a leading cause of neonatal loss, especially in infants diagnosed with hypoplastic left heart syndrome (HLHS), a condition where the left side of the heart including the aorta, aortic valve, left ventricle (LV) and mitral valve are underdeveloped. The molecular causes of HLHS are unclear, but the basic helix-loop-helix (bHLH) transcription factor heart and neural crest derivatives expressed 1 (Hand1), may be a candidate culprit for this condition. The absence of Hand1 in mice resulted in the failure of rightward looping of the heart tube, a severely hypoplastic LV and outflow tract abnormalities. Nonetheless, no HAND1 mutations associated with human CHD have been reported so far. We sequenced the human HAND1 gene in heart tissues derived from 31 unrelated patients diagnosed with hypoplastic hearts. We detected in 24 of 31 hypoplastic ventricles, a common frameshift mutation (A126fs) in the bHLH domain, which is necessary for DNA binding and combinatorial interactions. The resulting mutant protein, unlike wild-type (wt) HAND1, was unable to modulate transcription of reporter constructs containing specific DNA-binding sites. Thus, in hypoplastic human hearts HAND1 function is impaired.

  19. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease.

    PubMed

    Doyle, Michelle J; Lohr, Jamie L; Chapman, Christopher S; Koyano-Nakagawa, Naoko; Garry, Mary G; Garry, Daniel J

    2015-10-01

    Congenital heart disease (CHD) remains a significant health problem, with a growing population of survivors with chronic disease. Despite intense efforts to understand the genetic basis of CHD in humans, the etiology of most CHD is unknown. Furthermore, new models of CHD are required to better understand the development of CHD and to explore novel therapies for this patient population. In this review, we highlight the role that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes can serve to enhance our understanding of the development, pathophysiology and potential therapeutic targets for CHD. We highlight the use of hiPSC-derived cardiomyocytes to model gene regulatory interactions, cell-cell interactions and tissue interactions contributing to CHD. We further emphasize the importance of using hiPSC-derived cardiomyocytes as personalized research models. The use of hiPSCs presents an unprecedented opportunity to generate disease-specific cellular models, investigate the underlying molecular mechanisms of disease and uncover new therapeutic targets for CHD.

  20. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease

    PubMed Central

    Doyle, Michelle J.; Lohr, Jamie L.; Chapman, Christopher S.; Nakagawa-Koyano, Naoko; Garry, Mary G.; Garry, Daniel J.

    2015-01-01

    Congenital heart disease (CHD) remains a significant health problem, with a growing population of survivors with chronic disease. Despite intense efforts to understand the genetic basis of CHD in humans, the etiology of most CHD is unknown. Furthermore, new models of CHD are required to better understand the development of CHD and to explore novel therapies for this patient population. In this review, we highlight the role that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes can serve to enhance our understanding of the development, pathophysiology and potential therapeutic targets in CHD. We highlight the use of hiPSC-derived cardiomyocytes to model gene regulatory interactions, cell-cell interactions and tissue interactions contributing to CHD. We further emphasize the importance of using hiPSC-derived cardiomyocytes as personalized research models. The use of hiPSCs presents an unprecedented opportunity to generate disease-specific cellular models, investigate the underlying molecular mechanisms of disease and uncover new therapeutic targets for CHD. PMID:26085192

  1. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart.

    PubMed

    Bulatovic, Ivana; Månsson-Broberg, Agneta; Sylvén, Christer; Grinnemo, Karl-Henrik

    2016-02-01

    The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure.

  2. Novel experimental results in human cardiac electrophysiology: measurement of the Purkinje fibre action potential from the undiseased human heart.

    PubMed

    Nagy, Norbert; Szél, Tamás; Jost, Norbert; Tóth, András; Gy Papp, Julius; Varró, András

    2015-09-01

    Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K(+) currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.

  3. Detection of aryl hydrocarbon hydroxylase activity in normal and neoplastic human breast epithelium

    SciTech Connect

    Greiner, J.W.; Malan-Shibley, L.B.; Janss, D.H.

    1980-01-28

    Studies were conducted to determine whether normal and/or neoplastic (MCF-7) human breast epithelial cells contain the microsomal aryl hydrocarbon hydroxylase (AHH) which catalyses the conversion of polycyclic aromatic hydrocarbons (PAH) to carcinogenic intermediates. Low constitutive levels of AHH activity were found in homogenates of both normal human breast epithelial and MCF-7 cells. The addition of 7,12-dimethylbenz(a)anthracene (DMBA) to the culture medium of either cell type significantly increased AHH activity. Peak induction of hydroxylase activity occurred following the in vitro addition of 10 ..mu..M DMBA. A time course of DMBA-induced AHH activity in both normal human breast epithelium and MCF-7 cells revealed maximal induction 16 hr after 10 ..mu..M DMBA was added to the culture medium. Benzo(a)pyrene (BP), 3-methylcholanthrene (MCA) and benz(a)anthracene (BA) also induced AHH activity in normal and MCF-7 cells. For example, the addition of 10 ..mu..M BP to the culture medium of either normal human breast epithelial or MCF-7 cells for 16 hr increased AHH activity 13.8 and 65.3-fold, respectively. For all PAH, the magnitude of AHH induction was substantially greater in MCF-7 than normal breast epithelial cells. Finally, ..cap alpha..-naphthoflavone inhibited BA-induced AHH activity in MCF-7 cells. The study demonstrates the presence of a PAH-inducible AHH enzyme(s) in normal human breast epithelial cells grown in primary culture and in the human breast tumor cell line, MCF-7.

  4. [Induction of myocardial neoangiogenesis by human growth factors. A new therapeutic approach in coronary heart disease].

    PubMed

    Stegmann, T J; Hoppert, T; Schneider, A; Gemeinhardt, S; Köcher, M; Ibing, R; Strupp, G

    2000-09-01

    Currently available approaches for treating human coronary heart disease aim to relieve symptoms and the risk of myocardial infarction either by reducing myocardial oxygen demand, preventing further disease progression, restoring coronary blood flow pharmacologically or mechanically, or bypassing the stenotic lesions and obstructed coronary artery segments. Gene therapy, especially using angiogenic growth factors, has emerged recently as a potential new treatment for cardiovascular disease. Following extensive experimental research on angiogenic growth factors, the first clinical studies on patients with coronary heart disease and peripheral vascular lesions have been performed. The polypeptides fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) appear to be particularly effective in initiating neovascularization (neoangiogenesis) in hypoxic or ischemic tissues. The first clinical study on patients with coronary heart disease treated by local intramyocardial injection of FGF-1 showed a 3-fold increase of capillary density mediated by the growth factor. Also, angiogenic growth factor injection intramyocardially as sole therapy for end-stage coronary disease showed an improvement of myocardial perfusion in the target areas as well as a reduction of symptoms and an increase in working capacity. Angiogenic therapy of the human myocardium introduces a new modality of treatment for coronary heart disease in terms of regulation of blood vessel growth. Beyond drug therapy, angioplasty and bypass surgery, this new approach may evolve into a fourth principle of treatment of atherosclerotic cardiovascular disease. PMID:11076317

  5. Insights into the genetic structure of congenital heart disease from human and murine studies on monogenic disorders.

    PubMed

    Prendiville, Terence; Jay, Patrick Y; Pu, William T

    2014-10-01

    Study of monogenic congenital heart disease (CHD) has provided entry points to gain new understanding of heart development and the molecular pathogenesis of CHD. In this review, we discuss monogenic CHD caused by mutations of the cardiac transcription factor genes NKX2-5 and GATA4. Detailed investigation of these genes in mice and humans has expanded our understanding of heart development, shedding light on the complex genetic and environmental factors that influence expression and penetrance of CHD gene mutations.

  6. Vortex ring behavior provides the epigenetic blueprint for the human heart

    PubMed Central

    Arvidsson, Per M.; Kovács, Sándor J.; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-01-01

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R2 = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health. PMID:26915473

  7. Vortex ring behavior provides the epigenetic blueprint for the human heart.

    PubMed

    Arvidsson, Per M; Kovács, Sándor J; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-01-01

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R(2) = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health. PMID:26915473

  8. Dynamic organization of mitochondria in human heart and in myocardial disease

    PubMed Central

    Hoppel, Charles L.; Tandler, Bernard; Fujioka, Hisashi; Riva, Alessandro

    2009-01-01

    Heart mitochondria, which, depending on their location within cardiomyofibers, are classified as either subsarcolemmal or interfibrillar, are the major sources of the high-energy compound, adenosine triphosphate. Physiological differences between these two populations are reflected by differences in the morphology of their cristae, with those of subsarcolemmal mitochondria being mostly lamelliform, and those of interfibrillar mitochondria being mostly tubular. What determines the configuration of cristae, not only in cardiac mitochondria but in mitochondria in general, is unclear. The morphology of cardiac mitochondria, as well as their physiology, is responsive to the exigencies posed by a large variety of pathological situations. Giant cardiac mitochondria make an appearance in certain types of cardiomyopathy and as a result of dietary, pharmacological, and toxicological manipulation; such megamitochondria probably arise by a combination of fusion and true growth. Some of these enlarged organelles occasionally contain a membrane-bound deposit of β-glycogen. Those giant mitochondria induced by experimental treatment usually can be restored to normal dimensions simply by supplying the missing nutrient or by deleting the noxious substance. In some conditions, such as endurance training and ischemia, the mitochondrial matrices become pale. Dense rods or plates are present in the outer compartment of mitochondria under certain conditions. Biochemical alterations in cardiac mitochondria appear to be important in heart failure. In aging, only interfibrillar mitochondria exhibit such changes, with the subsarcolemmal mitochondria unaffected. In certain heart afflictions, biochemical defects are not accompanied by obvious morphological transformations. Mitochondria clearly play a cardinal role in homeostasis of the heart. PMID:19446651

  9. Activation of calcineurin in human failing heart ventricle by endothelin-1, angiotensin II and urotensin II.

    PubMed

    Li, Joan; Wang, Jianchun; Russell, Fraser D; Molenaar, Peter

    2005-06-01

    1 The calcineurin (CaN) enzyme-transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. 2 Human right ventricular trabeculae from explanted human (14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1 Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 M, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. 3 ET-1 increased contractile force in all 13 patients (P<0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P>0.1). FK506 had no effect on contractile force (P=0.12). 4 ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P=0.1). 5 There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKC(epsilon) compared to samples incubated without PKC(epsilon). 6 Endogenous cardiostimulants which activate G(alpha)q-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate.

  10. Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account for its inotropic effect in failing human heart

    PubMed Central

    Ørstavik, Ø; Ata, S H; Riise, J; Dahl, C P; Andersen, G Ø; Levy, F O; Skomedal, T; Osnes, J-B; Qvigstad, E

    2014-01-01

    Background and Purpose Levosimendan is known as a calcium sensitizer, although it is also known to inhibit PDE3. We aimed to isolate each component and estimate their contribution to the increased cardiac contractility induced by levosimendan. Experimental Approach Contractile force was measured in electrically stimulated ventricular strips from explanted failing human hearts and left ventricular strips from normal male Wistar rats. PDE activity was measured in a two-step PDE activity assay on failing human ventricle. Key Results Levosimendan exerted a positive inotropic effect (PIE) reaching maximum at 10−5 M in ventricular strips from failing human hearts. In the presence of the selective PDE3 inhibitor cilostamide, the PIE of levosimendan was abolished. During treatment with a PDE4 inhibitor and a supra-threshold concentration of isoprenaline, levosimendan generated an amplified inotropic response. This effect was reversed by β-adrenoceptor blockade and undetectable in strips pretreated with cilostamide. Levosimendan (10−6 M) increased the potency of β-adrenoceptor agonists by 0.5 log units in failing human myocardium, but not in the presence of cilostamide. Every inotropic response to levosimendan was associated with a lusitropic response. Levosimendan did not affect the concentration–response curve to calcium in rat ventricular strips, in contrast to the effects of a known calcium sensitizer, EMD57033 [5-(1-(3,4-dimethoxybenzoyl)-1,2,3,4-tetrahydroquinolin-6-yl)-6-methyl-3,6-dihydro-2H-1,3,4-thiadiazin-2-one]. PDE activity assays confirmed that levosimendan inhibited PDE3 as effectively as cilostamide. Conclusions and Implications Our results indicate that the PDE3-inhibitory property of levosimendan was enough to account for its inotropic effect, leaving a minor, if any, effect to a calcium-sensitizing component. PMID:24547784

  11. CaMKII Phosphorylation of Na(V)1.5: Novel in Vitro Sites Identified by Mass Spectrometry and Reduced S516 Phosphorylation in Human Heart Failure.

    PubMed

    Herren, Anthony W; Weber, Darren M; Rigor, Robert R; Margulies, Kenneth B; Phinney, Brett S; Bers, Donald M

    2015-05-01

    The cardiac voltage-gated sodium channel, Na(V)1.5, drives the upstroke of the cardiac action potential and is a critical determinant of myocyte excitability. Recently, calcium (Ca(2+))/calmodulin(CaM)-dependent protein kinase II (CaMKII) has emerged as a critical regulator of Na(V)1.5 function through phosphorylation of multiple residues including S516, T594, and S571, and these phosphorylation events may be important for the genesis of acquired arrhythmias, which occur in heart failure. However, phosphorylation of full-length human Na(V)1.5 has not been systematically analyzed and Na(V)1.5 phosphorylation in human heart failure is incompletely understood. In the present study, we used label-free mass spectrometry to assess phosphorylation of human Na(V)1.5 purified from HEK293 cells with full coverage of phosphorylatable sites and identified 23 sites that were phosphorylated by CaMKII in vitro. We confirmed phosphorylation of S516 and S571 by LC-MS/MS and found a decrease in S516 phosphorylation in human heart failure, using a novel phospho-specific antibody. This work furthers our understanding of the phosphorylation of Na(V)1.5 by CaMKII under normal and disease conditions, provides novel CaMKII target sites for functional validation, and provides the first phospho-proteomic map of full-length human Na(V)1.5.

  12. Patterns of evolution of myocyte damage after human heart transplantation detected by indium-111 monoclonal antimyosin

    SciTech Connect

    Ballester-Rodes, M.; Carrio-Gasset, I.; Abadal-Berini, L.; Obrador-Mayol, D.; Berna-Roqueta, L.; Caralps-Riera, J.M.

    1988-09-15

    The indium-111 labeled Fab fragment of antimyosin monoclonal antibody was used to study cardiac rejection and the time course of myocyte damage after transplantation. Fifty-three studies were performed in 21 patients, 17 men and 4 women, aged 19 to 54 years (mean 37 +/- 8), from 7 to 40 months after transplantation. Repeat studies were available in 8, and 10 were studied after the first year of transplantation. A heart-to-lung ratio was used for quantitation of uptake (normal 1.46 +/- 0.04). Differences between absent (1.69 +/- 0.29) and moderate (1.90 +/- 0.36) rejection were significant (p less than 0.03). Antimyosin ratio at 1 to 3 months (1.89 +/- 0.35) differed from that at greater than 12 months (1.65 +/- 0.2) (p less than 0.01). Repeat studies revealed a decrease in antimyosin ratio in 5 patients with uneventful clinical course; 2 had persistent activity after transplantation and suffered heart failure from rejection. After 1 year of transplantation uptake was within normal limits in 7 of 10 patients, and high uptake was associated with vascular rejection in 1. Because they can define evolving patterns of myocardial lesion activity, antimyosin studies could be useful both in patient management and in concentrating resources for those patients who most require them. The heart-to-lung ratio is suggested to monitor sequentially the degree of myocyte damage after transplantation.

  13. Tracking Fusion of Human Mesenchymal Stem Cells After Transplantation to the Heart

    PubMed Central

    Freeman, Brian T.; Kouris, Nicholas A.

    2015-01-01

    Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. Significance Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the

  14. Proteomics in human disease: cancer, heart and infectious diseases.

    PubMed

    Jungblut, P R; Zimny-Arndt, U; Zeindl-Eberhart, E; Stulik, J; Koupilova, K; Pleissner, K P; Otto, A; Müller, E C; Sokolowska-Köhler, W; Grabher, G; Stöffler, G

    1999-07-01

    In recent years, genomics has increased the understanding of many diseases. Proteomics is a rapidly growing research area that encompasses both genetic and environmental factors. The protein composition represents the functional status of a biological compartment. The five approaches presented here resulted in the detection of disease-associated proteins. Calgranulin B was upregulated in colorectal cancer, and hepatoma-derived aldose reductase-like protein was reexpressed in a rat model during hepatocarcinogenesis. In these two investigations, attention was focused on one protein, obviously differing in amount, directly after two-dimensional electrophoresis (2-DE). Additional methods, such as enzyme activity measurements and immunohistochemistry, confirmed the disease association of the two candidates resulting from 2-DE subtractive analysis. The following three investigations take advantage of the holistic potential of the 2-DE approach. The comparison of 2-DE patterns from dilated cardiomyopathy patients with those of controls revealed 25 statistically significant intensity differences, from which 12 were identified by amino acid analysis, Edman degradation or matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). A human myocardial 2-DE database was constructed, containing 3300 protein spots and 150 identified protein species. The number of identified proteins was limited by the capacity of our group, rather than by the principle of feasibility. Another field where proteomics proves to be a valuable tool in identifying proteins of importance for diagnosis is proteome analysis of pathogenic microorganisms such as Borrelia burgdorferi (Lyme disease) and Toxoplasma gondii (toxoplasmosis). Sera from patients with early or late symptoms of Lyme borreliosis contained antibodies of various classes against about 80 antigens each, containing the already described antigens OspA, B and C, flagellin, p83/100, and p39. Similarly, antibody reactivity to

  15. A Dominant-Negative Isoform of IKAROS Expands Primitive Normal Human Hematopoietic Cells

    PubMed Central

    Beer, Philip A.; Knapp, David J.H.F.; Kannan, Nagarajan; Miller, Paul H.; Babovic, Sonja; Bulaeva, Elizabeth; Aghaeepour, Nima; Rabu, Gabrielle; Rostamirad, Shabnam; Shih, Kingsley; Wei, Lisa; Eaves, Connie J.

    2014-01-01

    Summary Disrupted IKAROS activity is a recurrent feature of some human leukemias, but effects on normal human hematopoietic cells are largely unknown. Here, we used lentivirally mediated expression of a dominant-negative isoform of IKAROS (IK6) to block normal IKAROS activity in primitive human cord blood cells and their progeny. This produced a marked (10-fold) increase in serially transplantable multipotent IK6+ cells as well as increased outputs of normally differentiating B cells and granulocytes in transplanted immunodeficient mice, without producing leukemia. Accompanying T/natural killer (NK) cell outputs were unaltered, and erythroid and platelet production was reduced. Mechanistically, IK6 specifically increased human granulopoietic progenitor sensitivity to two growth factors and activated CREB and its targets (c-FOS and Cyclin B1). In more primitive human cells, IK6 prematurely initiated a B cell transcriptional program without affecting the hematopoietic stem cell-associated gene expression profile. Some of these effects were species specific, thus identifying novel roles of IKAROS in regulating normal human hematopoietic cells. PMID:25418728

  16. Human Normal Bronchial Epithelial Cells: A Novel In Vitro Cell Model for Toxicity Evaluation

    PubMed Central

    Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  17. [Study of heart region of interest setting method in the hepatic functional reserve index of (99m)tc-diethylenetriamine pentaacetic Acid-galactosyl human serum albumin].

    PubMed

    Takahashi, Yoshimasa; Akiyama, Masayuki; Saitou, Toru; Kato, Kyoichi; Nakazawa, Yasuo

    2014-08-01

    In this study we analyzed the influence of region of interest (ROI) selection on the uptake ratio of the liver to the liver plus heart at 15 min (LHL15) during (99m)Tc-galactosyl human serum albumin (GSA) scintigraphy and determined the optimal ROI by evaluating the individual effects of different ROIs in the heart on LHL15. Twenty patients were randomly selected from those who had undergone (99m)Tc-GSA scintigraphy GSA between April 2008 and June 2009. The liver body (L/B) ratio, liver uptake 15 min (LU15), and LHL15 were analyzed and compared among the following ROIs: entire heart, both ventricles, right ventricle, and left ventricle. There were significant differences in the L/B ratio and LU15 values among the different ROIs. However, LHL15 showed a tendency to shift toward a normal value when the size of the ROI was small (only the right or left ventricle), resulting in a lack of distinction between normal and abnormal LHL15 values. Furthermore, setting the entire heart as the ROI was difficult and reproducibility was low. Our results suggest that the use of both ventricles as the ROI provides optimal LHL15 values during (99m)Tc-GSA scintigraphy.

  18. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    NASA Astrophysics Data System (ADS)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  19. Towards in vivo diffusion tensor MRI on human heart using edge-preserving regularization.

    PubMed

    Frindel, Carole; Robini, Marc; Rapacchi, Stanislas; Stephant, Eric; Zhu, Yue-Min; Croisille, Pierre

    2007-01-01

    We investigate the noise sensitivity in various Diffusion Tensor MRI acquisition protocols in sixteen human ex vivo hearts. In particular, we compare the accuracy of protocols with various numbers of excitations and diffusion sensitizing directions for estimating the principal diffusion directions in the myocardium. It is observed that noise sensitivity decreases as the number of excitations and the number of sensitizing directions increase (and hence as the acquisition time increases). To reduce the effects of noise and to improve the results obtained with a smaller number of excitations and/or a smaller number of sensitizing directions, we introduce a 3-D edge-preserving regularization method operating on diffusion weighted images. It allows to maintain the quality of the principal diffusion direction field while minimizing the acquisition time, which is a necessary step for in vivo diffusion tensor MR imaging of the human heart. PMID:18003383

  20. High-Resolution Strain Analysis of the Human Heart with Fast-DENSE

    NASA Astrophysics Data System (ADS)

    Aletras, Anthony H.; Balaban, Robert S.; Wen, Han

    1999-09-01

    Single breath-hold displacement data from the human heart were acquired with fast-DENSE (fast displacement encoding with stimulated echoes) during systolic contraction at 2.5 × 2.5 mm in-plane resolution. Encoding strengths of 0.86-1.60 mm/π were utilized in order to extend the dynamic range of the phase measurements and minimize effects of physiologic and instrument noise. The noise level in strain measurements for both contraction and dilation corresponded to a strain value of 2.8%. In the human heart, strain analysis has sufficient resolution to reveal transmural variation across the left ventricular wall. Data processing required minimal user intervention and provided a rapid quantitative feedback. The intrinsic temporal integration of fast-DENSE achieves high accuracy at the expense of temporal resolution.

  1. Localization of coxsackie virus and adenovirus receptor (CAR) in normal and regenerating human muscle.

    PubMed

    Sinnreich, M; Shaw, C A; Pari, G; Nalbantoglu, J; Holland, P C; Karpati, G

    2005-08-01

    The primary receptor for Adenovirus and Coxsackie virus (CAR) serves as main port of entry of the adenovirus vector mediating gene transfer into skeletal muscle. Information about CAR expression in normal and diseased human skeletal muscle is lacking. C'- or N'-terminally directed polyclonal antibodies against CAR were generated and immunohistochemical analysis of CAR on morphologically normal and regenerating human skeletal muscle of children and adults was performed. In morphologically normal human muscle fibers, CAR immunoreactivity was limited to the neuromuscular junction. In regenerating muscle fibers, CAR was abundantly co-expressed with markers of regeneration. The function of CAR at the neuromuscular junction is currently unknown. Co-expression of CAR with markers of regeneration suggests that CAR is developmentally regulated, and may serve as a marker of skeletal muscle fiber regeneration.

  2. Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model.

    PubMed

    Lee, Jeong-Hyun; Kim, Hye-Lee; Lee, Mi Hee; You, Kyung Eun; Kwon, Byeong-Ju; Seo, Hyok Jin; Park, Jong-Chul

    2012-10-15

    Wound healing proceeds through a complex collaborative process involving many types of cells. Keratinocytes and fibroblasts of epidermal and dermal layers of the skin play prominent roles in this process. Asiaticoside, an active component of Centella asiatica, is known for beneficial effects on keloid and hypertrophic scar. However, the effects of this compound on normal human skin cells are not well known. Using in vitro systems, we observed the effects of asiaticoside on normal human skin cell behaviors related to healing. In a wound closure seeding model, asiaticoside increased migration rates of skin cells. By observing the numbers of cells attached and the area occupied by the cells, we concluded that asiaticoside also enhanced the initial skin cell adhesion. In cell proliferation assays, asiaticoside induced an increase in the number of normal human dermal fibroblasts. In conclusion, asiaticoside promotes skin cell behaviors involved in wound healing; and as a bioactive component of an artificial skin, may have therapeutic value.

  3. Heart Murmurs (For Kids)

    MedlinePlus

    ... than normal. You also might get an electrocardiogram (EKG), which measures electrical activity of the heart. None ... MORE ON THIS TOPIC The Heart Getting an EKG (Video) Your Heart & Circulatory System Mitral Valve Prolapse ...

  4. Left heart ventricular angiography

    MedlinePlus

    ... through the left side of the heart. Blood volumes and pressures are also normal. ... of the catheter Heart failure due to the volume of the dye Infection Kidney failure from the dye Low blood pressure Heart attack Hemorrhage Stroke

  5. Human Immunodeficiency Virus and Heart Failure in Low- and Middle-Income Countries.

    PubMed

    Bloomfield, Gerald S; Alenezi, Fawaz; Barasa, Felix A; Lumsden, Rebecca; Mayosi, Bongani M; Velazquez, Eric J

    2015-08-01

    Successful combination therapy for human immunodeficiency virus (HIV) has transformed this disease from a short-lived infection with high mortality to a chronic disease associated with increasing life expectancy. This is true for high- as well as low- and middle-income countries. As a result of this increased life expectancy, people living with HIV are now at risk of developing other chronic diseases associated with aging. Heart failure has been common among people living with HIV in the eras of pre- and post- availability of antiretroviral therapy; however, our current understanding of the pathogenesis and approaches to management have not been systematically addressed. HIV may cause heart failure through direct (e.g., viral replication, mitochondrial dysfunction, cardiac autoimmunity, autonomic dysfunction) and indirect (e.g., opportunistic infections, antiretroviral therapy, alcohol abuse, micronutrient deficiency, tobacco use) pathways. In low- and middle-income countries, 2 large observational studies have recently reported clinical characteristics and outcomes in these patients. HIV-associated heart failure remains a common cardiac diagnosis in people living with heart failure, yet a unifying set of diagnostic criteria is lacking. Treatment patterns for heart failure fall short of society guidelines. Although there may be promise in cardiac glycosides for treating heart failure in people living with HIV, clinical studies are needed to validate in vitro findings. Owing to the burden of HIV in low- and middle-income countries and the concurrent rise of traditional cardiovascular risk factors, strategic and concerted efforts in this area are likely to impact the care of people living with HIV around the globe.

  6. Structure and function of adenylate kinase isozymes in normal humans and muscular dystrophy patients.

    PubMed

    Hamada, M; Takenaka, H; Fukumoto, K; Fukamachi, S; Yamaguchi, T; Sumida, M; Shiosaka, T; Kurokawa, Y; Okuda, H; Kuby, S A

    1987-01-01

    Two isozymes of adenylate kinase from human Duchenne muscular dystrophy serum, one of which was an aberrant form specific to DMD patients, were separated by Blue Sepharose CL-6B affinity chromatography. The separated aberrant form possessed a molecular weight of 98,000 +/- 1,500, whereas the normal serum isozyme had a weight of 87,000 +/- 1,600, as determined by SDS-polyacrylamide gel electrophoresis, gel filtration, and sedimentation equilibrium. The sedimentation coefficients were 5.8 S and 5.6 S for the aberrant form and the normal form, respectively. Both serum isozymes are tetramers. The subunit size of the aberrant isozyme (Mr = 24,700) was very similar to that of the normal human liver isozyme, and the subunit size of the normal isozyme (Mr = 21,700) was very similar to that of the normal human muscle enzyme. The amino acid composition of the normal serum isozyme was similar to that of the muscle-type enzyme, and that of the aberrant isozyme was similar to that of the liver enzyme, with some exceptions in both cases.

  7. Magnetic measurements on human erythrocytes: Normal, beta thalassemia major, and sickle

    NASA Astrophysics Data System (ADS)

    Sakhnini, Lama

    2003-05-01

    In this article magnetic measurements were made on human erythrocytes at different hemoglobin states (normal and reduced hemoglobin). Different blood samples: normal, beta thalassemia major, and sickle were studied. Beta thalassemia major and sickle samples were taken from patients receiving lifelong blood transfusion treatment. All samples examined exhibited diamagnetic behavior. Beta thalassemia major and sickle samples showed higher diamagnetic susceptibilities than that for the normal, which was attributed to the increase of membrane to hemoglobin volume ratio of the abnormal cells. Magnetic measurements showed that the erythrocytes in the reduced state showed less diamagnetic response in comparison with erythrocytes in the normal state. Analysis of the paramagnetic component of magnetization curves gave an effective magnetic moment of μeff=7.6 μB per reduced hemoglobin molecule. The same procedure was applied to sickle and beta thalassemia major samples and values for μeff were found to be comparable to that of the normal erythrocytes.

  8. Normalization of human RNA-seq experiments using chimpanzee RNA as a spike-in standard

    PubMed Central

    Yu, Hannah; Hahn, Yoonsoo; Park, Sang-Ryoul; Chung, Sun-Ku; Jeong, Sangkyun; Yang, Inchul

    2016-01-01

    Normalization of human RNA-seq experiments employing chimpanzee RNA as a spike-in standard is reported. Human and chimpanzee RNAs exhibit single nucleotide variations (SNVs) in average 210-bp intervals. Spike-in chimpanzee RNA would behave the same as the human counterparts during the whole NGS procedures owing to the high sequence similarity. After discrimination of species origins of the NGS reads based on SNVs, the chimpanzee reads were used to read-by-read normalize biases and variations of human reads. By this approach, as many as 10,119 transcripts were simultaneously normalized for the entire NGS procedures leading to accurate and reproducible quantification of differential gene expression. In addition, incomparable data sets from different in-process degradations or from different library preparation methods were made well comparable by the normalization. Based on these results, we expect that the normalization approaches using near neighbor genomes as internal standards could be employed as a standard protocol, which will improve both accuracy and comparability of NGS results across different sample batches, laboratories and NGS platforms. PMID:27554056

  9. Normalization of human RNA-seq experiments using chimpanzee RNA as a spike-in standard.

    PubMed

    Yu, Hannah; Hahn, Yoonsoo; Park, Sang-Ryoul; Chung, Sun-Ku; Jeong, Sangkyun; Yang, Inchul

    2016-01-01

    Normalization of human RNA-seq experiments employing chimpanzee RNA as a spike-in standard is reported. Human and chimpanzee RNAs exhibit single nucleotide variations (SNVs) in average 210-bp intervals. Spike-in chimpanzee RNA would behave the same as the human counterparts during the whole NGS procedures owing to the high sequence similarity. After discrimination of species origins of the NGS reads based on SNVs, the chimpanzee reads were used to read-by-read normalize biases and variations of human reads. By this approach, as many as 10,119 transcripts were simultaneously normalized for the entire NGS procedures leading to accurate and reproducible quantification of differential gene expression. In addition, incomparable data sets from different in-process degradations or from different library preparation methods were made well comparable by the normalization. Based on these results, we expect that the normalization approaches using near neighbor genomes as internal standards could be employed as a standard protocol, which will improve both accuracy and comparability of NGS results across different sample batches, laboratories and NGS platforms. PMID:27554056

  10. Deep sequencing as a probe of normal stem cell fate and preneoplasia in human epidermis

    PubMed Central

    Simons, Benjamin D.

    2016-01-01

    Using deep sequencing technology, methods based on the sporadic acquisition of somatic DNA mutations in human tissues have been used to trace the clonal evolution of progenitor cells in diseased states. However, the potential of these approaches to explore cell fate behavior of normal tissues and the initiation of preneoplasia remain underexploited. Focusing on the results of a recent deep sequencing study of eyelid epidermis, we show that the quantitative analysis of mutant clone size provides a general method to resolve the pattern of normal stem cell fate and to detect and characterize the mutational signature of rare field transformations in human tissues, with implications for the early detection of preneoplasia. PMID:26699486

  11. Expression of corticosteroid-binding globulin CBG in the human heart.

    PubMed

    Schäfer, H H; Gebhart, V M; Hertel, K; Jirikowski, G F

    2015-07-01

    Glucocorticoids are known to be involved in myocardial regeneration and destruction. Cardiomyocytes are mostly devoid of nuclear glucocorticoid receptors (GRs) and it is generally assumed that effects of adrenal steroids in heart are mediated through the mineralocorticoid receptor (MR). Here we used immunocytochemistry to study localization of corticosteroid binding globulin (CBG) in semithin sections of human cardiac tissue samples. With staining of consecutive sections we examined colocalization with GR and MR immunoreactivities. While GR staining was almost undetectable, a portion of myocytes with MR immunostained nuclei was found. Almost all cardiomyocytes exhibited CBG immunostaining in cytoplasm and on the cell membrane. Most pronounced CBG immunoreactivities were found in Purkinje fibers and in smooth muscle cells of arterial walls. With RT-PCR, we found in homogenates of cardiac tissue detectable levels of CBG encoding mRNA. Our findings indicate that CBG is expressed in human heart. Known cardiac effects of adrenal steroids may in part be mediated through the binding globulin and its putative membrane receptor in addition to nuclear steroid receptors and direct genomic action. Highlights of our study: Human cardiomyocytes express mineralocorticoid receptors, but are mostly free of nuclear glucocorticoid receptors. CBG is expressed in myocardium and in Purkinje fibers. CBG in heart is colocalized with mineralocorticoid receptor. Endothelia and smooth muscle cells of arterial walls show colocalization of CBG and MR.

  12. Expression of Sarco (Endo) plasmic Reticulum Calcium ATPase (SERCA) system in normal mouse cardiovascular tissues, heart failure and atherosclerosis

    PubMed Central

    Lipskaia, Larissa; Keuylian, Zela; Blirando, Karl; Mougenot, Nathalie; Jacquet, Adeline; Rouxel, Clotilde; Sghairi, Haifa; Elaib, Ziane; Blaise, Regis; Adnot, Serge; Hajjar, Roger J.; Chemaly, Elie R.; Limon, Isabelle; Bobe, Regis

    2014-01-01

    The sarco(endo)plasmic reticulum Ca2+ ATPases (SERCA) system, a key regulator of calcium cycling and signaling, is composed of several isoforms. We aimed to characterize the expression of SERCA isoforms in mouse cardiovascular tissues and their modulation in cardiovascular pathologies (heart failure and/or atherosclerosis). Five isoforms (SERCA2a, 2b, 3a, 3b and 3c) were detected in the mouse heart and thoracic aorta. Absolute mRNA quantification revealed SERCA2a as the dominant isoform in the heart (~99%). Both SERCA2 isoforms co-localized in cardiomyocytes (CM) longitudinal sarcoplasmic reticulum (SR), SERCA3b was located at the junctional SR. In the aorta, SERCA2a accounted for ~91% of total SERCA and SERCA2b for ~5%. Among SERCA3, SERCA3b was the most expressed (~3.3%), mainly found in vascular smooth muscle cells (VSMC), along with SERCA2a and 2b. In failing CM, SERCA2a was down-regulated by 2-fold and re-localized from longitudinal to junctional SR. A strong down-regulation of SERCA2a was also observed in atherosclerotic vessels containing mainly synthetic VSMCs. The proportion of both SERCA2b and SERCA3b increased to 9.5% and 8.3%, respectively. In conclusion: 1) SERCA2a is the major isoform in both cardiac and vascular myocytes; 2) the expression of SERCA2a mRNA is ~30 fold higher in the heart compared to vascular tissues; 3) nearly half the amount of SERCA2a mRNA is measured in both failing cardiomyocytes and synthetic VSMCs compared to healthy tissues, with a relocation of SERCA2a in failing cardiomyocytes. Thus, SERCA2a is the principal regulator of excitation-contraction coupling in both CMs and contractile VSMCs. PMID:25110346

  13. Noninvasive Imaging of Human Atrial Activation during Atrial Flutter and Normal Rhythm from Body Surface Potential Maps

    PubMed Central

    Zhou, Zhaoye; Jin, Qi; Yu, Long; Wu, Liqun; He, Bin

    2016-01-01

    Background Knowledge of atrial electrophysiological properties is crucial for clinical intervention of atrial arrhythmias and the investigation of the underlying mechanism. This study aims to evaluate the feasibility of a novel noninvasive cardiac electrical imaging technique in imaging bi-atrial activation sequences from body surface potential maps (BSPMs). Methods The study includes 7 subjects, with 3 atrial flutter patients, and 4 healthy subjects with normal atrial activations. The subject-specific heart-torso geometries were obtained from MRI/CT images. The equivalent current densities were reconstructed from 208-channel BSPMs by solving the inverse problem using individual heart-torso geometry models. The activation times were estimated from the time instant corresponding to the highest peak in the time course of the equivalent current densities. To evaluate the performance, a total of 32 cycles of atrial flutter were analyzed. The imaged activation maps obtained from single beats were compared with the average maps and the activation maps measured from CARTO, by using correlation coefficient (CC) and relative error (RE). Results The cardiac electrical imaging technique is capable of imaging both focal and reentrant activations. The imaged activation maps for normal atrial activations are consistent with findings from isolated human hearts. Activation maps for isthmus-dependent counterclockwise reentry were reconstructed on three patients with typical atrial flutter. The method was capable of imaging macro counterclockwise reentrant loop in the right atrium and showed inter-atria electrical conduction through coronary sinus. The imaged activation sequences obtained from single beats showed good correlation with both the average activation maps (CC = 0.91±0.03, RE = 0.29±0.05) and the clinical endocardial findings using CARTO (CC = 0.70±0.04, RE = 0.42±0.05). Conclusions The noninvasive cardiac electrical imaging technique is able to reconstruct complex

  14. Human Cardiac Tissue Engineering: From Pluripotent Stem Cells to Heart Repair

    PubMed Central

    Jackman, Christopher P.; Shadrin, Ilya Y.; Carlson, Aaron L.; Bursac, Nenad

    2014-01-01

    Engineered cardiac tissues hold great promise for use in drug and toxicology screening, in vitro studies of human physiology and disease, and as transplantable tissue grafts for myocardial repair. In this review, we discuss recent progress in cell-based therapy and functional tissue engineering using pluripotent stem cell-derived cardiomyocytes and we describe methods for delivery of cells into the injured heart. While significant hurdles remain, notable advances have been made in the methods to derive large numbers of pure human cardiomyocytes, mature their phenotype, and produce and implant functional cardiac tissues, bringing the field a step closer to widespread in vitro and in vivo applications. PMID:25599018

  15. Secretion of Unconjugated Androgens and Estrogens by the Normal and Abnormal Human Testis before and after Human Chorionic Gonadotropin

    PubMed Central

    Weinstein, R. L.; Kelch, R. P.; Jenner, M. R.; Kaplan, S. L.; Grumbach, M. M.

    1974-01-01

    The secretion of androgens and estrogens by normal and abnormal testes was compared by determining the concentrations of dehydroepiandrosterone (DHEA), androstenedione (Δ4A), testosterone (T), estrone (E1), and 17β-estradiol (E2) in peripheral and spermatic venous plasma samples from 14 normal men and 5 men with unilateral testicular atrophy. Four normal men and one patient with unilateral atrophy of the testis were given human chorionic gonadotropin (HCG) before surgery. Plasma estrogens were determined by radioimmunoassay; plasma androgens were measured by the double-isotope dilution derivative technique. Peripheral concentrations of these steroids before and after HCG were similar in both the normal men and the patients with unilateral testicular atrophy. In normal men, the mean ±SE spermatic venous concentrations were DHEA, 73.1±11.7 ng/ml; Δ4A, 30.7±7.9 ng/ml; T, 751±114 ng/ml; E1, 306±55 pg/ml; and E2, 1298±216 pg/ml. Three of four subjects with unilateral testicular atrophy had greatly diminished spermatic venous levels of androgens and estrogens. HCG treatment increased the testicular secretion of DHEA and T fivefold, Δ4A threefold, E1 sixfold, and E2 eightfold in normal men. In the single subject with an atrophic testis who received HCG, the spermatic venous concentrations of androgens and estrogens were much less than in normal men similarly treated. We conclude that: (a) E1 is secreted by the human testis, but testicular secretion of E1 accounts for less than 5% of E1 production in normal men; (b) HCG stimulation produces increases in spermatic venous estrogens equal to or greater than the changes in androgens, including testosterone; and (c) strikingly decreased secretion of androgen and estrogen by unilateral atrophic human tests cannot be appreciated by analyses of peripheral steroid concentrations. PMID:4271572

  16. Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts

    PubMed Central

    Gerbin, Kaytlyn A.; Yang, Xiulan; Murry, Charles E.; Coulombe, Kareen L. K.

    2015-01-01

    Cardiac tissue engineering is a promising approach to provide large-scale tissues for transplantation to regenerate the heart after ischemic injury, however, integration with the host myocardium will be required to achieve electromechanical benefits. To test the ability of engineered heart tissues to electrically integrate with the host, 10 million human embryonic stem cell (hESC)-derived cardiomyocytes were used to form either scaffold-free tissue patches implanted on the epicardium or micro-tissue particles (~1000 cells/particle) delivered by intramyocardial injection into the left ventricular wall of the ischemia/reperfusion injured athymic rat heart. Results were compared to intramyocardial injection of 10 million dispersed hESC-cardiomyocytes. Graft size was not significantly different between treatment groups and correlated inversely with infarct size. After implantation on the epicardial surface, hESC-cardiac tissue patches were electromechanically active, but they beat slowly and were not electrically coupled to the host at 4 weeks based on ex vivo fluorescent imaging of their graft-autonomous GCaMP3 calcium reporter. Histologically, scar tissue physically separated the patch graft and host myocardium. In contrast, following intramyocardial injection of micro-tissue particles and suspended cardiomyocytes, 100% of the grafts detected by fluorescent GCaMP3 imaging were electrically coupled to the host heart at spontaneous rate and could follow host pacing up to a maximum of 300–390 beats per minute (5–6.5 Hz). Gap junctions between intramyocardial graft and host tissue were identified histologically. The extensive coupling and rapid response rate of the human myocardial grafts after intramyocardial delivery suggest electrophysiological adaptation of hESC-derived cardiomyocytes to the rat heart’s pacemaking activity. These data support the use of the rat model for studying electromechanical integration of human cardiomyocytes, and they identify lack of

  17. Induction of autoantibody-producing cells after the coculture of haptenated and normal human mononuclear leukocytes.

    PubMed

    Pisko, E J; Foster, S L; Turner, R A

    1981-10-01

    The coculture of normal human peripheral blood mononuclear leukocytes (PBL) and autologous mononuclear leukocytes coupled to the trinitrophenyl (TNP) hapten (TNP-PBL) was found to induce a polyclonal activation of antibody-producing cells. The polyclonal activation of antibody-producing cells was demonstrated by detecting the induction of cells producing antibody to sheep red blood cells using a complement-dependent, direct, hemolytic plaque-forming cell (PFC) assay. A ratio of four normal to one haptenated mononuclear leukocyte was found to be optimal for inducing the polyclonal activation of antibody-producing cell in these cultures. The plaque-forming cells assay in these experiments utilized monolayers of indicator red cells. Further evidence for the polyclonal induction of antibody-producing cells by TNP-PBL was provided by demonstrating PFC on monolayers of not only sheep red blood cells, but also autologous human red cells, bromelain-treated autologous red cells, TNP-coupled human and sheep red cells, and human autologous red cells coupled to human heat-aggregated IgG with chromic chloride. Thus cells secreting antibody to TNP, human red cells, and human IgG were induced. Anti-IgG and anti-human red cell-producing cells were first detected on Day 2 of culture and were still present on Day 9. Mononuclear leukocytes altered by chemical haptenation polyclonally stimulate normal mononuclear leukocytes to become antibody-producing cells. This polyclonal stimulation of antibody-producing cells includes cells producing antibodies to human IgG and human autologous red blood cells suggesting that autoantibody-producing cells are induced.

  18. Transient Early Embryonic Expression of Nkx2-5 Mutations Linked to Congenital Heart Defects in Human Causes Heart Defects in Xenopus laevis

    PubMed Central

    Bartlett, Heather L.; Sutherland, Lillian; Kolker, Sandra J.; Welp, Chelsea; Tajchman, Urszula; Desmarais, Vera; Weeks, Daniel L.

    2007-01-01

    Nkx2-5 is a homeobox containing transcription factor that is conserved and expressed in organisms that form hearts. Fruit flies lacking the gene (tinman) fail to form a dorsal vessel, mice that are homozygous null for Nkx2-5 form small, deformed hearts, and several human cardiac defects have been linked to dominant mutations in the Nkx2-5 gene. The Xenopus homologs (XNkx2-5) of two truncated forms of Nkx2-5 that have been identified in humans with congenital heart defects were used in the studies reported here. mRNAs encoding these mutations were injected into single cell Xenopus embryos, and heart development was monitored. Our results indicate that the introduction of truncated XNkx2-5 variants leads to three principle developmental defects. The atrial septum and the valve of the atrioventricular canal were both abnormal. In addition, video microscopic timing of heart contraction indicated that embryos injected with either mutant form of XNkx2-5 have conduction defects. PMID:17685485

  19. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    SciTech Connect

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  20. Effects of Hyponatremia Normalization on the Short-Term Mortality and Rehospitalizations in Patients with Recent Acute Decompensated Heart Failure: A Retrospective Study

    PubMed Central

    De Vecchis, Renato; Di Maio, Marco; Di Biase, Giuseppina; Ariano, Carmelina

    2016-01-01

    Background: Several studies have shown that hyponatremia is associated with increased risk of rehospitalization and death in patients with heart failure. In these studies, chronic heart failure (CHF) patients with persistent hyponatremia were compared only with CHF patients with a normal sodium level at hospital admission. Aims: In the present retrospective study, conducted in a cohort of patients with recent acute decompensated heart failure (ADHF), all with hyponatremia ascertained at the time of hospital admission, we aimed to evaluate the effect of the normalization of serum sodium on the composite endpoint of short-term rehospitalization and mortality. Methods: A retrospective study centered on medical records of patients hospitalized for ADHF in the period April 2013 to April 2016 was performed. Data regarding serum sodium measurements had to be collected from medical records of cardiology wards of two hospitals, and were then processed for statistical analysis. As an inclusion criterion for enrollment, patients had to be suffering from heart failure that had required at least one hospitalization. Moreover, they had to be suffering from a state of hyponatremia (serum sodium < 135 mEq/L) at admission on the occasion of the index hospitalization. Patients with hyponatremia at admission were divided into two groups, one comprising patients with hyponatremia that persisted at the time of discharge (persistent hyponatremia) and a second including patients who had achieved normalization of their serum sodium levels (serum Na+ ≥ 135 mEq/L) during hospitalization until discharge. For both groups, the risk of mortality and rehospitalization during a 30-day follow-up was assessed. Results: One hundred and sixty CHF patients with various degrees of functional impairment were enrolled in the study. Among them, 56 (35%) had persistent hyponatremia over the course of hospitalization. At multivariable Cox proportional-hazards regression analysis, the risk of having a 30

  1. Immunochemistry of the Streptococcus mutans BHT cell membrane: detection of determinants cross-reactive with human heart tissue.

    PubMed Central

    Ayakawa, G Y; Siegel, J L; Crowley, P J; Bleiweis, A S

    1985-01-01

    Cell membranes of Streptococcus mutans BHT serotype b were prepared after glass bead disruption or mutanolysin digestion of whole cells. Immunoblot analyses of BHT membrane extracts revealed major polypeptides of 42,000, 46,000, 62,000, and 82,000 daltons, as well as several minor bands, to be reactive with rabbit anti-human heart immunoglobulins. Heart cross-reactive antigens have been reported in the cell walls and culture fluids of several S. mutans serotypes. This represents the first report of cell membrane-localized heart cross-reactive antigens in this oral pathogen. Positive enzyme-linked immunosorbent assay and immunoblot reactions were also obtained with heart tissue antigen and anti-BHT sera, indicating mutual cross-reactivity. The major cross-reactive component detected by immunoblotting of human heart extracts was a 69,000-dalton polypeptide. Images PMID:3886543

  2. Characterization of human retinal vessel arborisation in normal and amblyopic eyes using multifractal analysis

    PubMed Central

    Tălu, Stefan; Vlăduţiu, Cristina; Lupaşcu, Carmen A.

    2015-01-01

    AIM To characterize the human retinal vessel arborisation in normal and amblyopic eyes using multifractal geometry and lacunarity parameters. METHODS Multifractal analysis using a box counting algorithm was carried out for a set of 12 segmented and skeletonized human retinal images, corresponding to both normal (6 images) and amblyopia states of the retina (6 images). RESULTS It was found that the microvascular geometry of the human retina network represents geometrical multifractals, characterized through subsets of regions having different scaling properties that are not evident in the fractal analysis. Multifractal analysis of the amblyopia images (segmented and skeletonized versions) show a higher average of the generalized dimensions (Dq) for q=0, 1, 2 indicating a higher degree of the tree-dimensional complexity associated with the human retinal microvasculature network whereas images of healthy subjects show a lower value of generalized dimensions indicating normal complexity of biostructure. On the other hand, the lacunarity analysis of the amblyopia images (segmented and skeletonized versions) show a lower average of the lacunarity parameter Λ than the corresponding values for normal images (segmented and skeletonized versions). CONCLUSION The multifractal and lacunarity analysis may be used as a non-invasive predictive complementary tool to distinguish amblyopic subjects from healthy subjects and hence this technique could be used for an early diagnosis of patients with amblyopia. PMID:26558216

  3. Synergistic action of photosensitizers and normal human serum in a bactericidal process. I. Effect of chlorophylls.

    PubMed

    Jankowski, Andrzej; Jankowski, Stanisław; Mirończyk, Agnieszka

    2003-01-01

    Susceptibility of some Gram-negative strains against the bactericidal action of normal human serum (NHS) and of chlorophyll, which induces production of reactive oxygen species by light, was studied. A synergistic bactericidal activity of NHS and chlorophyll against E. coli K1 and Shigella flexneri strains was observed.

  4. Assessing the Toxicities of Regulated and Unregulated Disinfection By-products in Normal Human Colon Cells.

    EPA Science Inventory

    The presence of over six hundred disinfection by-products (DBPs) and less than half of the total organic halides present in finished water has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. . We are using a normal...

  5. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    SciTech Connect

    Verrando, P.; Ortonne, J.P.

    1985-10-01

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders.

  6. Identification of normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Chen, Zhifen; Kang, Deyong; li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Guan, Guoxian; Chen, Jianxin

    2016-01-01

    Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) as a potential diagnostic tool is attractive. MPM can effectively provide information about morphological and biochemical changes in biological tissues at the molecular level. In this paper, we attempt to identify normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections (both in transverse and longitudinal sections). The results show that MPM can display different microstructure changes in the transverse and longitudinal sections of colorectal muscularis propria. MPM also can quantitatively describe the alteration of collagen content between normal and cancerous muscle layers. These are important pathological findings that MPM images can bring more detailed complementary information about tissue architecture and cell morphology through observing the transverse and longitudinal sections of colorectal muscularis propria. This work demonstrates that MPM can be better for identifying the microstructural characteristics of normal and cancerous human colorectal muscularis propria in different sections.

  7. Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype.

    PubMed Central

    Eldadah, Z A; Brenn, T; Furthmayr, H; Dietz, H C

    1995-01-01

    The Marfan syndrome (MFS) is a connective tissue disorder inherited as an autosomal dominant trait and caused by mutations in the gene encoding fibrillin, a 350-kD glycoprotein that multimerizes to form extracellular microfibrils. It has been unclear whether disease results from a relative deficiency of wild-type fibrillin; from a dominant-negative effect, in which mutant fibrillin monomers disrupt the function of the wild-type protein encoded by the normal allele; or from a dynamic and variable interplay between these two pathogenetic mechanisms. We have now addressed this issue in a cell culture system. A mutant fibrillin allele from a patient with severe MFS was expressed in normal human and murine fibroblasts by stable transfection. Immunohistochemical analysis of the resultant cell lines revealed markedly diminished fibrillin deposition and disorganized microfibrillar architecture. Pulse-chase studies demonstrated normal levels of fibrillin synthesis but substantially reduced deposition into the extracellular matrix. These data illustrate that expression of a mutant fibrillin allele, on a background of two normal alleles, is sufficient to disrupt normal microfibrillar assembly and reproduce the MFS cellular phenotype. This underscores the importance of the fibrillin amino-terminus in normal microfibrillar assembly and suggests that expression of the human extreme 5' fibrillin coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Lastly, this substantiation of a dominant-negative effect offers mutant allele knockout as a potential strategy for gene therapy. Images PMID:7860770

  8. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing.

    PubMed

    Hoang, Margaret L; Kinde, Isaac; Tomasetti, Cristian; McMahon, K Wyatt; Rosenquist, Thomas A; Grollman, Arthur P; Kinzler, Kenneth W; Vogelstein, Bert; Papadopoulos, Nickolas

    2016-08-30

    We present the bottleneck sequencing system (BotSeqS), a next-generation sequencing method that simultaneously quantifies rare somatic point mutations across the mitochondrial and nuclear genomes. BotSeqS combines molecular barcoding with a simple dilution step immediately before library amplification. We use BotSeqS to show age- and tissue-dependent accumulations of rare mutations and demonstrate that somatic mutational burden in normal human tissues can vary by several orders of magnitude, depending on biologic and environmental factors. We further show major differences between the mutational patterns of the mitochondrial and nuclear genomes in normal tissues. Lastly, the mutation spectra of normal tissues were different from each other, but similar to those of the cancers that arose in them. This technology can provide insights into the number and nature of genetic alterations in normal tissues and can be used to address a variety of fundamental questions about the genomes of diseased tissues.

  9. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing

    PubMed Central

    Hoang, Margaret L.; Kinde, Isaac; Tomasetti, Cristian; McMahon, K. Wyatt; Rosenquist, Thomas A.; Grollman, Arthur P.; Kinzler, Kenneth W.; Vogelstein, Bert; Papadopoulos, Nickolas

    2016-01-01

    We present the bottleneck sequencing system (BotSeqS), a next-generation sequencing method that simultaneously quantifies rare somatic point mutations across the mitochondrial and nuclear genomes. BotSeqS combines molecular barcoding with a simple dilution step immediately before library amplification. We use BotSeqS to show age- and tissue-dependent accumulations of rare mutations and demonstrate that somatic mutational burden in normal human tissues can vary by several orders of magnitude, depending on biologic and environmental factors. We further show major differences between the mutational patterns of the mitochondrial and nuclear genomes in normal tissues. Lastly, the mutation spectra of normal tissues were different from each other, but similar to those of the cancers that arose in them. This technology can provide insights into the number and nature of genetic alterations in normal tissues and can be used to address a variety of fundamental questions about the genomes of diseased tissues. PMID:27528664

  10. Combined use of autogenic therapy and biofeedback in training effective control of heart rate by humans

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.

    1977-01-01

    Experiments were performed on 24 men and women (aged 20-27 yr) in three equal groups who were taught to control their own heart rates by autogenic training and biofeedback under dark and sound-isolated conditions. Group I was parasympathetic dominant, group II was sympathetic dominant, and group III consisted of parasympathetic-dominant subjects and controls who received only biofeedback of their own heart rates. The results corroborate three hypotheses: (1) subjects with para-sympathetic-dominant autonomic profiles perform in a way that is both qualitatively and quantitatively different from subjects with sympathetic-dominant autonomic profiles; (2) tests of interindividual variability yield data relevant to individual performance in visceral learning tasks; and (3) the combined use of autogenic training, biofeedback, and verbal feedback is suitable for conditioning large stable autonomic responses in humans.

  11. Sodium MRI of the human heart at 7.0 T: preliminary results.

    PubMed

    Graessl, Andreas; Ruehle, Anjuli; Waiczies, Helmar; Resetar, Ana; Hoffmann, Stefan H; Rieger, Jan; Wetterling, Friedrich; Winter, Lukas; Nagel, Armin M; Niendorf, Thoralf

    2015-08-01

    The objective of this work was to examine the feasibility of three-dimensional (3D) and whole heart coverage (23)Na cardiac MRI at 7.0 T including single-cardiac-phase and cinematic (cine) regimes. A four-channel transceiver RF coil array tailored for (23)Na MRI of the heart at 7.0 T (f = 78.5 MHz) is proposed. An integrated bow-tie antenna building block is used for (1)H MR to support shimming, localization and planning in a clinical workflow. Signal absorption rate simulations and assessment of RF power deposition were performed to meet the RF safety requirements. (23) Na cardiac MR was conducted in an in vivo feasibility study. 3D gradient echo (GRE) imaging in conjunction with Cartesian phase encoding (total acquisition time T(AQ)  = 6 min 16 s) and whole heart coverage imaging employing a density-adapted 3D radial acquisition technique (T(AQ)  = 18 min 20 s) were used. For 3D GRE-based (23)Na MRI, acquisition of standard views of the heart using a nominal in-plane resolution of (5.0 × 5.0) mm(2) and a slice thickness of 15 mm were feasible. For whole heart coverage 3D density-adapted radial (23)Na acquisitions a nominal isotropic spatial resolution of 6 mm was accomplished. This improvement versus 3D conventional GRE acquisitions reduced partial volume effects along the slice direction and enabled retrospective image reconstruction of standard or arbitrary views of the heart. Sodium cine imaging capabilities were achieved with the proposed RF coil configuration in conjunction with 3D radial acquisitions and cardiac gating. Cardiac-gated reconstruction provided an enhancement in blood-myocardium contrast of 20% versus the same data reconstructed without cardiac gating. The proposed transceiver array enables (23)Na MR of the human heart at 7.0 T within clinical acceptable scan times. This capability is in positive alignment with the needs of explorations that are designed to examine the potential of (23)Na MRI for the assessment of cardiovascular and

  12. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-01-01

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961

  13. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.

    PubMed

    Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki

    2016-01-01

    Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961

  14. Rapid manufacturing techniques for the tissue engineering of human heart valves.

    PubMed

    Lueders, Cora; Jastram, Ben; Hetzer, Roland; Schwandt, Hartmut

    2014-10-01

    Three-dimensional (3D) printing technologies have reached a level of quality that justifies considering rapid manufacturing for medical applications. Herein, we introduce a new approach using 3D printing to simplify and improve the fabrication of human heart valve scaffolds by tissue engineering (TE). Custom-made human heart valve scaffolds are to be fabricated on a selective laser-sintering 3D printer for subsequent seeding with vascular cells from human umbilical cords. The scaffolds will be produced from resorbable polymers that must feature a number of specific properties: the structure, i.e. particle granularity and shape, and thermic properties must be feasible for the printing process. They must be suitable for the cell-seeding process and at the same time should be resorbable. They must be applicable for implementation in the human body and flexible enough to support the full functionality of the valve. The research focuses mainly on the search for a suitable scaffold material that allows the implementation of both the printing process to produce the scaffolds and the cell-seeding process, while meeting all of the above requirements. Computer tomographic data from patients were transformed into a 3D data model suitable for the 3D printer. Our current activities involve various aspects of the printing process, material research and the implementation of the cell-seeding process. Different resorbable polymeric materials have been examined and used to fabricate heart valve scaffolds by rapid manufacturing. Human vascular cells attached to the scaffold surface should migrate additionally into the inner structure of the polymeric samples. The ultimate intention of our approach is to establish a heart valve fabrication process based on 3D rapid manufacturing and TE. Based on the computer tomographic data of a patient, a custom-made scaffold for a valve will be produced on a 3D printer and populated preferably by autologous cells. The long-term goal is to support

  15. A new twist on an old idea part 2: cyclosporine preserves normal mitochondrial but not cardiomyocyte function in mini‐swine with compensated heart failure

    PubMed Central

    Hiemstra, Jessica A.; Gutiérrez‐Aguilar, Manuel; Marshall, Kurt D.; McCommis, Kyle S.; Zgoda, Pamela J.; Cruz‐Rivera, Noelany; Jenkins, Nathan T.; Krenz, Maike; Domeier, Timothy L.; Baines, Christopher P.; Emter, Craig A.

    2014-01-01

    Abstract We recently developed a clinically relevant mini‐swine model of heart failure with preserved ejection fraction (HFpEF), in which diastolic dysfunction was associated with increased mitochondrial permeability transition (MPT). Early diastolic function is ATP and Ca2+‐dependent, thus, we hypothesized chronic low doses of cyclosporine (CsA) would preserve mitochondrial function via inhibition of MPT and subsequently maintain normal cardiomyocyte Ca2+ handling and contractile characteristics. Left ventricular cardiomyocytes were isolated from aortic‐banded Yucatan mini‐swine divided into three groups; control nonbanded (CON), HFpEF nontreated (HF), and HFpEF treated with CsA (HF‐CsA). CsA mitigated the deterioration of mitochondrial function observed in HF animals, including functional uncoupling of Complex I‐dependent mitochondrial respiration and increased susceptibility to MPT. Attenuation of mitochondrial dysfunction in the HF‐CsA group was not associated with commensurate improvement in cardiomyocyte Ca2+ handling or contractility. Ca2+ transient amplitude was reduced and transient time to peak and recovery (tau) prolonged in HF and HF‐CsA groups compared to CON. Alterations in Ca2+ transient parameters observed in the HF and HF‐CsA groups were associated with decreased cardiomyocyte shortening and shortening rate. Cellular function was consistent with impaired in vivo systolic and diastolic whole heart function. A significant systemic hypertensive response to CsA was observed in HF‐CsA animals, and may have played a role in the accelerated the development of heart failure at both the whole heart and cellular levels. Given the significant detriment to cardiac function observed in response to CsA, our findings suggest chronic CsA treatment is not a viable therapeutic option for HFpEF. PMID:24963034

  16. Influence of 50 Hz magnetic field on human heart rate variability: linear and nonlinear analysis.

    PubMed

    Tabor, Zbisław; Michalski, Józef; Rokita, Eugeniusz

    2004-09-01

    This study investigated the problem of the influence of 50 Hz magnetic field (MF) on human heart rate variability (HRV). The exposure system was a commercial device for magnetotherapy, generating field of the strength of 500 microT at the center of the coil, 150-200 microT at the position of human subjects' heart and 20-30 microT at the position of subjects' head. The exposure protocols, applied randomly, were either "half hour MF-off/half hour MF-on" or "half hour MF-off/half hour MF-off." The phonocardiographic (PhCG) signal of 15 volunteers were obtained during exposure and used for calculation of time-domain HRV parameters (mean time between heart beats (N-N), standard deviation of time between heart beats (SDNN), and the number of differences of successive beat-to-beat intervals greater than 50 ms, divided by the total number of beat-to-beat intervals (pNN50)) and nonlinear HRV measures (approximate entropy (ApEn), detrended fluctuation scaling exponents). The protocol MF-off/MF-on was applied in nine subjects. Repeated measures ANOVA (RMANOVA) performed for Mf-off/MF-off protocol indicated no statistical difference among four 15 min intervals of HRV data (P value >20% for all parameters except for N-N, where P = 3.7%). RMANOVA followed by the post hoc Tukey test performed for Mf-off/MF-on protocol indicated a statistically significant difference during MF on for N-N (8% increase, P <.1%), SDNN (40% increase, P = 1.1%), and pNN50 (110% increase, P <.1%). The results of the analysis indicate that the changes of these parameters could be associated with the influence of MF. PMID:15300734

  17. Effects of acute beta-adrenoceptor blockade with metoprolol on the renal response to dopamine in normal humans.

    PubMed Central

    Olsen, N V; Lang-Jensen, T; Hansen, J M; Plum, I; Thomsen, J K; Strandgaard, S; Leyssac, P P

    1994-01-01

    The present study investigated the contribution of adrenergic beta 1-receptor stimulation to the cardiovascular and renal effects of low-dose dopamine in eight normal, water-loaded humans. Metoprolol (100 mg) or placebo was administered orally at 08.00 h in a randomized, double-blind fashion on two different days. Renal clearance studies were performed during a 1 h baseline period, two 1 h periods with dopamine infusion (3 micrograms kg-1 min-1), and a 1 h recovery period. Cardiac output was measured by an ultrasonic Doppler method, and lithium clearance (CLLi) was used to estimate proximal tubular outflow. Baseline values of heart rate, systolic pressure and mean arterial pressure decreased with metoprolol compared with placebo, but cardiac output, effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) were not significantly changed. Metoprolol significantly decreased baseline CLLi and sodium clearance (CLNa) by 19% (P < 0.01) and 34% (P < 0.01), respectively. Metoprolol blunted the dopamine-induced increases in heart rate and systolic pressure, but cardiac output increased to the same extent on both study days by 26% (placebo, P < 0.05) and by 31% (metoprolol, P < 0.01), respectively. With and without metoprolol, dopamine did not significantly change GFR, and the percentage increases in ERPF were similar on the two study days (40% (P < 0.001) and 42% (P < 0.001), respectively). Dopamine increased CLLi and CLNa by 31% (P < 0.01) and 114% (P < 0.01), respectively, with placebo, and by 36% (P < 0.01) and 114% (P < 0.01), respectively, with metoprolol. Values during infusion remained significantly lower with metoprolol compared with placebo.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8018456

  18. Characterisation of the human embryonic and foetal epicardium during heart development.

    PubMed

    Risebro, Catherine A; Vieira, Joaquim Miguel; Klotz, Linda; Riley, Paul R

    2015-11-01

    The epicardium is essential for mammalian heart development. At present, our understanding of the timing and morphogenetic events leading to the formation of the human epicardium has essentially been extrapolated from model organisms. Here, we studied primary tissue samples to characterise human epicardium development. We reveal that the epicardium begins to envelop the myocardial surface at Carnegie stage (CS) 11 and this process is completed by CS15, earlier than previously inferred from avian studies. Contrary to prevailing dogma, the formed human epicardium is not a simple squamous epithelium and we reveal evidence of more complex structure, including novel spatial differences aligned to the developing chambers. Specifically, the ventricular, but not atrial, epicardium exhibited areas of expanded epithelium, preferential cell alignment and spindle-like morphology. Likewise, we reveal distinct properties ex vivo, such that ventricular cells spontaneously differentiate and lose epicardial identity, whereas atrial-derived cells remained 'epithelial-like'. These data provide insight into the developing human epicardium that may contribute to our understanding of congenital heart disease and have implications for the development of strategies for endogenous cell-based cardiac repair.

  19. Characterisation of the human embryonic and foetal epicardium during heart development

    PubMed Central

    Risebro, Catherine A.; Vieira, Joaquim Miguel; Klotz, Linda; Riley, Paul R.

    2015-01-01

    The epicardium is essential for mammalian heart development. At present, our understanding of the timing and morphogenetic events leading to the formation of the human epicardium has essentially been extrapolated from model organisms. Here, we studied primary tissue samples to characterise human epicardium development. We reveal that the epicardium begins to envelop the myocardial surface at Carnegie stage (CS) 11 and this process is completed by CS15, earlier than previously inferred from avian studies. Contrary to prevailing dogma, the formed human epicardium is not a simple squamous epithelium and we reveal evidence of more complex structure, including novel spatial differences aligned to the developing chambers. Specifically, the ventricular, but not atrial, epicardium exhibited areas of expanded epithelium, preferential cell alignment and spindle-like morphology. Likewise, we reveal distinct properties ex vivo, such that ventricular cells spontaneously differentiate and lose epicardial identity, whereas atrial-derived cells remained ‘epithelial-like’. These data provide insight into the developing human epicardium that may contribute to our understanding of congenital heart disease and have implications for the development of strategies for endogenous cell-based cardiac repair. PMID:26395486

  20. The roadmap of WT1 protein expression in the human fetal heart.

    PubMed

    Duim, Sjoerd N; Smits, Anke M; Kruithof, Boudewijn P T; Goumans, Marie-José

    2016-01-01

    The transcription factor Wilms' Tumor-1 (WT1) is essential for cardiac development. Deletion of Wt1 in mice results in disturbed epicardial and myocardial formation and lack of cardiac vasculature, causing embryonic lethality. Little is known about the role of WT1 in the human fetal heart. Therefore, as a first step, we analyzed the expression pattern of WT1 protein during human cardiac development from week 4 till week 20. WT1 expression was apparent in epicardial, endothelial and endocardial cells in a spatiotemporal manner. The expression of WT1 follows a pattern starting at the epicardium and extending towards the lumen of the heart, with differences in timing and expression levels between the atria and ventricles. The expression of WT1 in cardiac arterial endothelial cells reduces in time, whereas WT1 expression in the endothelial cells of cardiac veins and capillaries remains present at all stages studied. This study provides for the first time a detailed description of the expression of WT1 protein during human cardiac development, which indicates an important role for WT1 also in human cardiogenesis.

  1. Heart regeneration.

    PubMed

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  2. Apoptosis in Heart Failure: Release of Cytochrome c from Mitochondria and Activation of Caspase-3 in Human Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Narula, Jagat; Pandey, Pramod; Arbustini, Eloisa; Haider, Nezam; Narula, Navneet; Kolodgie, Frank D.; dal Bello, Barbara; Semigran, Marc J.; Bielsa-Masdeu, Anna; Dec, G. William; Israels, Sara; Ballester, Manel; Virmani, Renu; Saxena, Satya; Kharbanda, Surender

    1999-07-01

    Apoptosis has been shown to contribute to loss of cardiomyocytes in cardiomyopathy, progressive decline in left ventricular function, and congestive heart failure. Because the molecular mechanisms involved in apoptosis of cardiocytes are not completely understood, we studied the biochemical and ultrastructural characteristics of upstream regulators of apoptosis in hearts explanted from patients undergoing transplantation. Sixteen explanted hearts from patients undergoing heart transplantation were studied by electron microscopy or immunoblotting to detect release of mitochondrial cytochrome c and activation of caspase-3. The hearts explanted from five victims of motor vehicle accidents or myocardial ventricular tissues from three donor hearts were used as controls. Evidence of apoptosis was observed only in endstage cardiomyopathy. There was significant accumulation of cytochrome c in the cytosol, over myofibrils, and near intercalated discs of cardiomyocytes in failing hearts. The release of mitochondrial cytochrome c was associated with activation of caspase-3 and cleavage of its substrate protein kinase C δ but not poly(ADP-ribose) polymerase. By contrast, there was no apparent accumulation of cytosolic cytochrome c or caspase-3 activation in the hearts used as controls. The present study provides in vivo evidence of cytochrome c-dependent activation of cysteine proteases in human cardiomyopathy. Activation of proteases supports the phenomenon of apoptosis in myopathic process. Because loss of myocytes contributes to myocardial dysfunction and is a predictor of adverse outcomes in the patients with congestive heart failure, the present demonstration of an activated apoptotic cascade in cardiomyopathy could provide the basis for novel interventional strategies.

  3. Heart Murmurs and Your Child (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Heart Murmurs and Your Child KidsHealth > For Parents > Heart ... to know how the heart works. How the Heart Works The normal heart has four chambers and ...

  4. Human neural tuning estimated from compound action potentials in normal hearing human volunteers

    NASA Astrophysics Data System (ADS)

    Verschooten, Eric; Desloovere, Christian; Joris, Philip X.

    2015-12-01

    The sharpness of cochlear frequency tuning in humans is debated. Evoked otoacoustic emissions and psychophysical measurements suggest sharper tuning in humans than in laboratory animals [15], but this is disputed based on comparisons of behavioral and electrophysiological measurements across species [14]. Here we used evoked mass potentials to electrophysiologically quantify tuning (Q10) in humans. We combined a notched noise forward masking paradigm [9] with the recording of trans tympanic compound action potentials (CAP) from masked probe tones in awake human and anesthetized monkey (Macaca mulatta). We compare our results to data obtained with the same paradigm in cat and chinchilla [16], and find that CAP-Q10values in human are ˜1.6x higher than in cat and chinchilla and ˜1.3x higher than in monkey. To estimate frequency tuning of single auditory nerve fibers (ANFs) in humans, we derive conversion functions from ANFs in cat, chinchilla, and monkey and apply these to the human CAP measurements. The data suggest that sharp cochlear tuning is a feature of old-world primates.

  5. Radiographic Comparison of Human Lung Shape During Normal Gravity and Weightlessness

    NASA Technical Reports Server (NTRS)

    Michels, D. B.; Friedman, P. J.; West, J. B.

    1979-01-01

    Chest radiographs in five seated normal volunteers at 1 G and 0 G were made with a view toward comparing human lung shape during normal gravity and weightlessness. Lung shape was assessed by measuring lung heights and widths in upper, middle and lower lung regions. No significant differences were found between any of the 1-G and 0-G measurements, although there was a slight tendency for the lung to become shorter and wider at 0 G. The evidence that gravity causes regional differences in ventilation by direct action on the lung is consistent with the theoretical analysis of West and Matthews (1972).

  6. Myoarchitecture and connective tissue in hearts with tricuspid atresia

    PubMed Central

    Sanchez-Quintana, D; Climent, V; Ho, S; Anderson, R

    1999-01-01

    Objective—To compare the atrial and ventricular myoarchitecture in the normal heart and the heart with tricuspid atresia, and to investigate changes in the three dimensional arrangement of collagen fibrils.
Methods—Blunt dissection and cell maceration with scanning electron microscopy were used to study the architecture of the atrial and ventricular musculature and the arrangement of collagen fibrils in three specimens with tricuspid atresia and six normal human hearts.
Results—There were significant modifications in the myoarchitecture of the right atrium and the left ventricle, both being noticeably hypertrophied. The middle layer of the ventricle in the abnormal hearts was thicker than in the normal hearts. The orientation of the superficial layer in the left ventricle in hearts with tricuspid atresia was irregular compared with the normal hearts. Scanning electron microscopy showed coarser endomysial sheaths and denser perimysial septa in hearts with tricuspid atresia than in normal hearts.
Conclusions—The overall architecture of the muscle fibres and its connective tissue matrix in hearts with tricuspid atresia differed from normal, probably reflecting modelling of the myocardium that is inherent to the malformation. This is in concordance with clinical observations showing deterioration in pump function of the dominant left ventricle from very early in life.

 Keywords: tricuspid atresia; congenital heart defects; connective tissue; fibrosis PMID:9922357

  7. Hyperthermia and thermal tolerance in normal and ataxia telangiectasia human cell strains

    SciTech Connect

    Raaphorst, G.P.; Azzam, E.I.

    1983-06-01

    Three normal human fibroblast strains, two human ataxia telangiectasia heterozygote cell strains, and two human ataxia telangiectasia homozygote cell strains were studied for their thermal responses between 41.0 and 46.0/sup 0/. The heat sensitivities of all cell strains were comparable, and all cell strains were relatively heat resistant compared to Chinese hamster cells. Both normal and ataxia telangiectasia human cells developed thermal tolerance during heating at temperatures less than or equal to 43/sup 0/ and during incubation at 37/sup 0/ after acute heating at 45.0/sup 0/. For survival measured down to the 5 to 10% level, heat survival curves for all seven human cell strains lacked shoulders, indicating the inability of such cells to accumulate sublethal heat damage. Analysis of the cell survival curve data by the method of Arrhenius showed that the thermal inactivation energies for human cells were 127 and 230 kcal/mol above and below the break at 43.5/sup 0/, respectively, and are about the same as for Chinese hamster cells and other animal cells, implying similar mechanisms of heat inactivation. Patients with AT are very radiosensitive, making radiotherapy in such patients difficult. Hyperthermia may provide an alternate means for cancer therapy in such patients.

  8. Heat shock protein 27 expression in the human testis showing normal and abnormal spermatogenesis.

    PubMed

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk A

    2008-10-01

    Heat shock proteins (HSPs) are molecular chaperones involved in protein folding, assembly and transport, and which play critical roles in the regulation of cell growth, survival and differentiation. We set out to test the hypothesis that HSP27 protein is expressed in the human testes and its expression varies with the state of spermatogenesis. HSP27 expression was examined in 30 human testicular biopsy specimens (normal spermatogenesis, maturation arrest and Sertoli cell only syndrome, 10 cases each) using immunofluorescent methods. The biopsies were obtained from patients undergoing investigations for infertility. The seminiferous epithelium of the human testes showing normal spermatogenesis had a cell type-specific expression of HSP27. HSP27 expression was strong in the cytoplasm of the Sertoli cells, spermatogonia, and Leydig cells. Alternatively, the expression was moderate in the spermatocytes, weak in the spermatids and absent in the spermatozoa. In testes showing maturation arrest, HSP27 expression was strong in the Sertoli cells, weak in the spermatogonia, and spermatocytes. It was absent in the spermatids and Leydig cells. In Sertoli cell only syndrome, HSP27 expression was strong in the Sertoli cells and absent in the Leydig cells. We report for the first time the expression patterns of HSP27 in the human testes and show differential expression during normal spermatogenesis, indicating a possible role in this process. The altered expression of this protein in testes showing abnormal spermatogenesis may be related to the pathogenesis of male infertility.

  9. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    SciTech Connect

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-08-26

    Highlights: {yields} Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. {yields} The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. {yields} Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  10. 3D engineered cardiac tissue models of human heart disease: learning more from our mice.

    PubMed

    Ralphe, J Carter; de Lange, Willem J

    2013-02-01

    Mouse engineered cardiac tissue constructs (mECTs) are a new tool available to study human forms of genetic heart disease within the laboratory. The cultured strips of cardiac cells generate physiologic calcium transients and twitch force, and respond to electrical pacing and adrenergic stimulation. The mECT can be made using cells from existing mouse models of cardiac disease, providing a robust readout of contractile performance and allowing a rapid assessment of genotype-phenotype correlations and responses to therapies. mECT represents an efficient and economical extension to the existing tools for studying cardiac physiology. Human ECTs generated from iPSCMs represent the next logical step for this technology and offer significant promise of an integrated, fully human, cardiac tissue model.

  11. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure.

    PubMed

    Sheeran, Freya L; Pepe, Salvatore

    2016-08-01

    Deficiency of energy supply is a major complication contributing to the syndrome of heart failure (HF). Because the concurrent activity profile of mitochondrial bioenergetic enzymes has not been studied collectively in human HF, our aim was to examine the mitochondrial enzyme defects in left ventricular myocardium obtained from explanted end-stage failing hearts. Compared with nonfailing donor hearts, activity rates of complexes I and IV and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase, and aconitase were lower in HF, as determined spectrophotometrically. However, activity rates of complexes II and III and citrate synthase did not differ significantly between the two groups. Protein expression, determined by Western blotting, did not differ between the groups, implying posttranslational perturbation. In the face of diminished total glutathione and coenzyme Q10 levels, oxidative modification was explored as an underlying cause of enzyme dysfunction. Of the three oxidative modifications measured, protein carbonylation was increased significantly by 31% in HF (P < 0.01; n = 18), whereas levels of 4-hydroxynonenal and protein nitration, although elevated, did not differ. Isolation of complexes I and IV and F1FoATP synthase by immunocapture revealed that proteins containing iron-sulphur or heme redox centers were targets of oxidative modification. Energy deficiency in end-stage failing human left ventricle involves impaired activity of key electron transport chain and Krebs cycle enzymes without altered expression of protein levels. Augmented oxidative modification of crucial enzyme subunit structures implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, thus contributing further to reduced bioenergetics in human HF. PMID:27406740

  12. Human Engineered Heart Muscles Engraft and Survive Long-Term in a Rodent Myocardial Infarction Model

    PubMed Central

    Riegler, Johannes; Tiburcy, Malte; Ebert, Antje; Tzatzalos, Evangeline; Raaz, Uwe; Abilez, Oscar J.; Shen, Qi; Kooreman, Nigel G.; Neofytou, Evgenios; Chen, Vincent C.; Wang, Mouer; Meyer, Tim; Tsao, Philip S.; Connolly, Andrew J.; Couture, Larry A.; Gold, Joseph D.; Zimmermann, Wolfram H.; Wu, Joseph C.

    2015-01-01

    Rational Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocte (ESC-CM) transplantation, thereby potentially preventing dilative remodelling and progression to heart failure. Objective Assessment of transport stability, long term survival, structural organisation, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction (MI) model. Methods and Results We constructed EHMs from ESC-CMs and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). After ischemia/reperfusion (I/R) injury, EHMs were implanted onto immunocompromised rat hearts at 1 month to simulate chronic ischemia. Bioluminescence imaging (BLI) showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving up to 25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs −6.7±1.4% vs control −10.9±1.5%, n>12, P=0.05), we observed no difference between EHMs containing viable or non-viable human cardiomyocytes in this chronic xenotransplantation model (n>12, P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. Conclusions EHM transplantation led to high engraftment rates, long term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic MI model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation. PMID:26291556

  13. Cardiac Repair With a Novel Population of Mesenchymal Stem Cells Resident in the Human Heart.

    PubMed

    Zhang, Yuan; Sivakumaran, Priyadharshini; Newcomb, Andrew E; Hernandez, Damián; Harris, Nicole; Khanabdali, Ramin; Liu, Guei-Sheung; Kelly, Darren J; Pébay, Alice; Hewitt, Alex W; Boyle, Andrew; Harvey, Richard; Morrison, Wayne A; Elliott, David A; Dusting, Gregory J; Lim, Shiang Y

    2015-10-01

    Cardiac resident stem cells (CRSCs) hold much promise to treat heart disease but this remains a controversial field. Here, we describe a novel population of CRSCs, which are positive for W8B2 antigen and were obtained from adult human atrial appendages. W8B2(+) CRSCs exhibit a spindle-shaped morphology, are clonogenic and capable of self-renewal. W8B2(+) CRSCs show high expression of mesenchymal but not hematopoietic nor endothelial markers. W8B2(+) CRSCs expressed GATA4, HAND2, and TBX5, but not C-KIT, SCA-1, NKX2.5, PDGFRα, ISL1, or WT1. W8B2(+) CRSCs can differentiate into cardiovascular lineages and secrete a range of cytokines implicated in angiogenesis, chemotaxis, inflammation, extracellular matrix remodeling, cell growth, and survival. In vitro, conditioned medium collected from W8B2(+) CRSCs displayed prosurvival, proangiogenic, and promigratory effects on endothelial cells, superior to that of other adult stem cells tested, and additionally promoted survival and proliferation of neonatal rat cardiomyocytes. Intramyocardial transplantation of human W8B2(+) CRSCs into immunocompromised rats 1 week after myocardial infarction markedly improved cardiac function (∼40% improvement in ejection fraction) and reduced fibrotic scar tissue 4 weeks after infarction. Hearts treated with W8B2(+) CRSCs showed less adverse remodeling of the left ventricle, a greater number of proliferating cardiomyocytes (Ki67(+) cTnT(+) cells) in the remote region, higher myocardial vascular density, and greater infiltration of CD163(+) cells (a marker for M2 macrophages) into the border zone and scar regions. In summary, W8B2(+) CRSCs are distinct from currently known CRSCs found in human hearts, and as such may be an ideal cell source to repair myocardial damage after infarction.

  14. Do Lambs Perceive Regular Human Stroking as Pleasant? Behavior and Heart Rate Variability Analyses

    PubMed Central

    Coulon, Marjorie; Nowak, Raymond; Peyrat, Julie; Chandèze, Hervé; Boissy, Alain; Boivin, Xavier

    2015-01-01

    Stroking by humans is beneficial to the human-animal relationship and improves welfare in many species that express intraspecific allogrooming, but very few studies have looked at species like sheep that do not express such contact except around parturition. This study investigated the way lambs perceive regular human tactile contact using behavioral and physiological responses. Twenty-four lambs were reared and bucket-fed in groups of four. All were stroked daily by their familiar caregiver. At 8 weeks of age, the lambs were individually tested in their home pen but in a 1×1m open-barred pen after a 15h period of habituation to physical separation from peers while remaining in visual and auditory contact. Half of the lambs received stroking by their caregiver for 8min and half were exposed to their caregiver’s immobile presence. Heart rate and heart rate variability were recorded and analyzed by 2-min slots over the same interval based on three measures: mean heart rate value (HR), root mean square of successive differences (RMSSD) and standard deviation of all intervals measured between consecutive sinus beats (SDNN). Behavioral responses (ear postures of the lamb and time spent in contact with the familiar caregiver, on the knees of the familiar caregiver, and moving) were recorded throughout the test. Lamb HR decreased continuously while in the presence of their caregiver. Lambs being stroked showed slower HR and higher RMSSD which reflected positive emotional states compared to lambs left unstroked. All behavioral variables were highly correlated with the main component axis of the PCA analyses: the more the animals stayed in contact with their caregiver, the less they moved and the more their ears were hanging. This first component clearly differentiates lambs being stroked or not. Behavioral and physiological observations support the hypothesis that gentle physical contact with the caregiver is perceived positively by lambs. PMID:25714604

  15. Sex differences in healthy human heart rate variability: A meta-analysis.

    PubMed

    Koenig, Julian; Thayer, Julian F

    2016-05-01

    The present meta-analysis aimed to quantify current evidence on sex differences in the autonomic control of the heart, indexed by measures of heart rate variability (HRV) in healthy human subjects. An extensive search of the literature yielded 2020 titles and abstracts, of which 172 provided sufficient reporting of sex difference in HRV. Data from 63,612 participants (31,970 females) were available for analysis. Meta-analysis yielded a total of 1154 effect size estimates (k) across 50 different measures of HRV in a cumulated total of 296,247 participants. Females showed a significantly lower mean RR interval and standard deviation of RR intervals (SDNN). The power spectral density of HRV in females is characterized by significantly less total power that contains significantly greater high- (HF) and less low-frequency (LF) power. This is further reflected by a lower LF/HF ratio. Meta-regression revealed significant effects of age, respiration control and the length of recording available for analysis. Although women showed greater mean heart rate, they showed greater vagal activity indexed by HF power of HRV. Underlying mechanisms of these findings are discussed.

  16. Modeling of human Heart Rate response during walking, cycling and rowing.

    PubMed

    Baig, Dur-E-Zehra; Su, Hao; Cheng, Teddy M; Savkin, Andrey V; Su, Steven W; Celler, Branko G

    2010-01-01

    The aim of this paper is to study the human Heart Rate (HR) response during walking, cycling and rowing exercises using linear time varying (LTV) models. We used the frequency of exercise locomotion as the input to the model. This frequency characterizes the stride rate, cadence rate and strokes rate of the walking, cycling and rowing exercises respectively. The time varying parameters in the LTV models were estimated by the Kalman Filter (KF). The results in this study demonstrate that HR responses to these exercises exhibit some degree of time varying nature.

  17. FTIR microscopic comparative study on normal, premalignant, and malignant tissues of human intenstine

    NASA Astrophysics Data System (ADS)

    Mordechai, Shaul; Argov, Shmuel; Salman, Ahmad O.; Cohen, Beny; Ramesh, Jagannathan; Erukhimovitch, Vitaly; Goldstein, Jed; Sinelnikov, Igor

    2000-07-01

    Fourier-Transform Infrared Spectroscopy (FTIR) employs a unique approach to optical diagnosis of tissue pathology based on the characteristic molecular vibrational spectra of the tissue. The architectural changes in the cellular and sub-cellular levels developing in abnormal tissue, including a majority of cancer forms, manifest themselves in different optical signatures, which can be detected in infrared spectroscopy. The biological systems we have studied include normal, premalignant (polyp) and malignant human colonic tissues from three patients. Our method is based on microscopic infrared study (FTIR-microscopy) of thin tissue specimens and a direct comparison with normal histopathological analysis, which serves as a `gold' reference. The normal intestine tissue has a stronger absorption than polyp and cancerous types over a wide region in all three cases. The detailed analysis showed that there is a significant decrease in total phosphate and creatine contents for polyp and cancerous tissue types in comparison to the controls.

  18. Expression of CD1d protein in human testis showing normal and abnormal spermatogenesis.

    PubMed

    Adly, Mohamed A; Abdelwahed Hussein, Mahmoud-Rezk

    2011-05-01

    CD1d is a member of CD1 family of transmembrane glycoproteins, which represent antigen-presenting molecules. Immunofluorescent staining methods were utilized to examine expression pattern of CD1d in human testicular specimens. In testis showing normal spermatogenesis, a strong CD1d cytoplasmic expression was seen the Sertoli cells, spermatogonia, and Leydig cells. A moderate expression was observed in the spermatocytes. In testes showing maturation arrest, CD1d expression was strong in the Sertoli cells and weak in spermatogonia and spermatocytes compared to testis with normal spermatogenesis. In Sertoli cell only syndrome, CD1d expression was strong in the Sertoli and Leydig cells. This preliminary study displayed testicular infertility-related changes in CD1d expression. The ultrastructural changes associated with with normal and abnormal spermatogenesis are open for further investigations.

  19. Ethanolic Extracts of California Mugwort (Artemisia douglasiana Besser) Are Cytotoxic against Normal and Cancerous Human Cells

    PubMed Central

    Somaweera, Himali; Lai, Gary C.; Blackeye, Rachel; Littlejohn, Beverly; Kirksey, Justine; Aguirre, Richard M.; LaPena, Vince; Pasqua, Anna; Hintz, Mary McCarthy

    2013-01-01

    California mugwort (Artemisia douglasiana Besser) is used by many tribes throughout California to treat a variety of conditions, including colds, allergies, and pain. California mugwort is also utilized as women’s medicine. Its use is on the rise outside of Native communities, often without the guidance of a traditional healer or experienced herbalist. Because it has been shown to have antiproliferative activity against plant and animal cells, we investigated whether California mugwort extracts have an effect on normal human cells as well as estrogen receptor positive (ER+) and estrogen receptor negative (ER−) human breast cancer cells. Ethanolic and aqueous extracts of A. douglasiana leaves were tested for cytotoxicity against unstimulated normal human peripheral blood mononuclear cells (hPBMC), as well as against an ER+ human breast cancer cell line (BT-474) and an ER− human breast cancer cell line (MDA-MB-231). An ethanolic leaf extract killed hPBMC, BT-474, and MDA-MB-231 cells with IC50 values of 23.6 ± 0.3, 27 ± 5, and 37 ± 4 μg/ml, respectively. An aqueous extract killed hPBMC with an IC50 value of 60 ± 10 μg/ml, but had no effect on the two cancer cell lines at concentrations up to 100 μg/ml. The results of this study indicate that the cytotoxicity of California mugwort extends to normal human cells, as well as cancerous cells. Therefore, until further is known about the safety of this medicine, caution should be taken when consuming extracts of California mugwort, whether as a tincture or as a tea. PMID:24073389

  20. Morphological description of great cardiac vein in pigs compared to human hearts

    PubMed Central

    Alejandro Gómez, Fabian; Ballesteros, Luis Ernesto; Stella Cortés, Luz

    2015-01-01

    Introduction In spite of its importance as an experimental model, the information on the great cardiac vein in pigs is sparse. Objective To determine the morphologic characteristics of the great cardiac vein and its tributaries in pigs. Methods 120 hearts extracted from pigs destined to the slaughterhouse with stunning method were studied. This descriptive cross-over study evaluated continuous variables with T test and discrete variables with Pearson χ square test. A level of significance P<0.05 was used. The great cardiac vein and its tributaries were perfused with polyester resin (85% Palatal and 15% Styrene) and then subjected to potassium hydroxide infusion to release the subepicardial fat. Calibers were measured, and trajectories and relations with adjacent arterial structures were evaluated. Results The origin of the great cardiac vein was observed at the heart apex in 91 (76%) hearts. The arterio-venous trigone was present in 117 (97.5%) specimens, corresponding to the open expression in its lower segment and to the closed expression in the upper segment in the majority of the cases (65%). The caliber of the great cardiac vein at the upper segment of the paraconal interventricular sulcus was 3.73±0.79 mm. An anastomosis between the great cardiac vein and the middle cardiac vein was found in 59 (49%) specimens. Conclusion The morphological and biometric characteristics of the great cardiac vein and its tributaries had not been reported in prior studies, and due to their similitude with those of the human heart, allows us to propose the pig model for procedural and hemodynamic applications. PMID:25859869

  1. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture

    PubMed Central

    Fridriksdottir, Agla J.; Kim, Jiyoung; Villadsen, René; Klitgaard, Marie Christine; Hopkinson, Branden M.; Petersen, Ole William; Rønnov-Jessen, Lone

    2015-01-01

    Investigating the susceptibility of oestrogen receptor-positive (ERpos) normal human breast epithelial cells (HBECs) for clinical purposes or basic research awaits a proficient cell-based assay. Here we set out to identify markers for isolating ERpos cells and to expand what appear to be post-mitotic primary cells into exponentially growing cultures. We report a robust technique for isolating ERpos HBECs from reduction mammoplasties by FACS using two cell surface markers, CD166 and CD117, and an intracellular cytokeratin marker, Ks20.8, for further tracking single cells in culture. We show that ERpos HBECs are released from growth restraint by small molecule inhibitors of TGFβ signalling, and that growth is augmented further in response to oestrogen. Importantly, ER signalling is functionally active in ERpos cells in extended culture. These findings open a new avenue of experimentation with normal ERpos HBECs and provide a basis for understanding the evolution of human breast cancer. PMID:26564780

  2. Human skin fibroblast stromelysin: structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells

    SciTech Connect

    Wilhelm, S.M.; Collier, I.E.; Kronberger, A.; Eisen, A.Z.; Marmer, B.L.; Grant, G.A.; Bauer, E.A.; Goldberg, G.I.

    1987-10-01

    The authors have purified and determined the complete primary structure of human stromelysin, a secreted metalloprotease with a wide range of substrate specificities. Human stromelysin is synthesized in a preproenzyme form with a calculated size of 53,977 Da and a 17-amino acid long signal peptide. Prostromelysin is secreted in two forms, with apparent molecular masses on NaDodSO/sub 4//PAGE of 60 and 57 kDa. Human stromelysin is capable of degrading proteoglycan, fibronectin, laminin, and type IV collagen but not interstitial type I collagen. The enzyme is not capable of activating purified human fibroblast procollagenase. Analysis of its primary structure shows that stromelysin is in all likelihood the human analog of rat transin, which is an oncogene transformation-induced protease. The pattern of enzyme expression in normal and tumorigenic cells revealed that human skin fibroblasts in vitro secrete stromelysin constitutively. Human fetal lung fibroblasts transformed with simian virus 40, human bronchial epithelial cells transformed with the ras oncogene, fibrosarcoma cells (HT-1080), and a melanoma cell strain (A 2058), do not express this protease nor can the enzyme be induced in these cells by treatment with phorbol 12-myristate 13-acetate. The data indicate that the expression and the possible involvement of secreted metalloproteases in tumorigenesis result from a specific interaction between the transforming factor and the target cell, which may vary in different species.

  3. 3D Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent VZV Infection

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2013-01-01

    Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.

  4. Amount, avidity, and specificity of antibodies to Pseudomonas aeruginosa in normal human sera.

    PubMed Central

    Grzybowski, J; Trafny, E A; Wrembel-Wargocka, J; Patzer, J; Dzierzanowska, D; Zawistowska-Marciniak, I; Kłos, M

    1989-01-01

    Seventy-two normal human sera from healthy blood donors were tested by an enzyme-linked immunosorbent assay in order to determine the amounts and avidities of immunoglobulins M and G antibodies to lipopolysaccharides of seven Fisher's immunotypes of Pseudomonas aeruginosa and to exotoxin A. The patterns of specificity for seven immunotypes in all individual sera were determined. These data show a predominance of antibodies directed to Fisher's immunotypes 7 and 4 in the human population tested and may reflect frequency of occurrence of immunotypes outside the hospital environment. PMID:2502560

  5. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  6. A simple procedure for the purification of eosinophil peroxidase from normal human blood.

    PubMed

    Menegazzi, R; Zabucchi, G; Patriarca, P

    1986-07-24

    A simple procedure to purify human eosinophil peroxidase (EPO) is described. The method uses pure anucleated granule-rich eosinophil fragments (cytosomes) as a suitable starting material from which EPO can be quickly isolated. The enzyme obtained by this procedure has both the biochemical and the spectral properties of EPO and shows a reasonable degree of purity, as judged by its rz value. This procedure, besides its simplicity and reproducibility, offers at least two other advantages over the methods currently used for EPO purification, the possibility of isolating EPO from small amounts of normal human blood and a very high recovery of the enzyme activity.

  7. Complementary antioxidant function of caffeine and green tea polyphenols in normal human skin fibroblasts.

    PubMed

    Jagdeo, Jared; Brody, Neil

    2011-07-01

    The study of free radicals is particularly relevant in the context of human skin carcinogenesis and photoaging because of these oxidants' ability to induce DNA mutations and produce lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (HNE). Therefore, it is important to identify and evaluate agents with the ability to modulate intracellular free radicals and HNE. The purpose of this research is to investigate the ability of antioxidants green tea polyphenols (GTPs) and caffeine, alone and in combination, to modulate the hydrogen peroxide (H2O2)-induced upregulation of reactive oxygen species (ROS) free radicals and HNE in normal human skin fibroblast WS-1 cells in vitro. GTPs and caffeine were selected for evaluation because these compounds have demonstrated antioxidative properties in various skin models. Furthermore, GTPs and caffeine share a close natural botanical association as caffeine is present in green tea, as well. Hydrogen peroxide is a well-known generator of free radicals that is produced during endogenous and UV-induced oxidation processes in human skin and was used to upregulate ROS and HNE in normal human fibroblast WS-1 cells. Using a flow cytometry-based assay, the results demonstrate that at 0.001% concentration, green tea polyphenols alone, and in combination with 0.1 mM caffeine, inhibited the upregulation of H2O2-generated free radicals and HNE in human skin fibroblasts in vitro. Caffeine alone demonstrated limited anti-oxidant properties.

  8. Polymorphism of the long-wavelength cone in normal human colour vision

    NASA Astrophysics Data System (ADS)

    Neitz, Jay; Jacobs, Gerald H.

    1986-10-01

    Colour vision is based on the presence of multiple classes of cone each of which contains a different type of photopigment1. Colour matching tests have long revealed that the normal human has three cone types. Results from these tests have also been used to provide estimates of cone spectral sensitivities2. There are significant variations in colour matches made by individuals whose colour vision is classified as normal3-6. Some of this is due to individual differences in preretinal absorption and photopigment density, but some is also believed to arise because there is variation in the spectral positioning of the cone pigments among those who have normal colour vision. We have used a sensitive colour matching test to examine the magnitude and nature of this individual variation and here report evidence for the existence of two different long-wavelength cone mechanisms in normal humans. The different patterns of colour matches made by male and female subjects indicate these two mechanisms are inherited as an X-chromosome linked trait.

  9. Intraepithelial lymphocytes in normal human intestine do not express proteins associated with cytolytic function.

    PubMed Central

    Chott, A.; Gerdes, D.; Spooner, A.; Mosberger, I.; Kummer, J. A.; Ebert, E. C.; Blumberg, R. S.; Balk, S. P.

    1997-01-01

    Human small intestine contains a very large population of intraepithelial T lymphocytes (IELs) that are oligoclonal, appear functionally to be cytolytic T cells, and may contribute to the normal and pathological turnover of intestinal epithelial cells. This report addresses the cytolytic function of IELs in normal small intestine by examining their expression of molecules that carry out cell-mediated cytolysis. Immunohistochemical analyses of granzyme B, perforin, Fas ligand, and tumor necrosis factor-alpha demonstrated these proteins were not expressed by small intestinal IELs in situ. These proteins also were not expressed by colonic IELs or by lamina propria lymphocytes in the small or large intestine. Granzyme A, however, was expressed by a large fraction of IELs. In contrast to these in situ results, isolated and in vitro activated IELs were shown to express effector proteins consistent with cytolytic T cells, including granzyme B, Fas ligand, tumor necrosis factor-alpha, and interferon-gamma. These results are most consistent with the vast majority of IELs in normal human small intestine being resting cytolytic T cells and suggest that these cells do not contribute to the apoptotic cell death of epithelial cells in normal intestine. Images Figure 1 Figure 2 Figure 3 PMID:9250156

  10. Expression of matricellular proteins in human uterine leiomyomas and normal myometrium.

    PubMed

    Bogusiewicz, Michal; Semczuk, Andrzej; Juszczak, Malgorzata; Langner, Ewa; Walczak, Katarzyna; Rzeski, Wojciech; Tomaszewski, Jacek; Rechberger, Tomasz

    2012-11-01

    Growth of human leiomyomas can probably be initiated as a response to injury, in a way similar to the development of keloids. Among many bioactive molecules, which are implicated in tissue repair, a pivotal role is attributed to matricellular proteins. The aim of the current study was to evaluate the immunohistochemical expression of tenascin-C (TNC), thrombospondin-1 (TSP-1), SPARC/osteonectin and tenascin-X (TNX) in human uterine leiomyomas and normal myometrium. Immunostaining was performed on 33 pairs of paraffin-fixed sections and 9 cell-lines derived from uterine leiomyomas and normal myometrium. Fifteen (45.5%) leiomyomas investigated were positive for TNC, whereas all normal myometrial samples were immunonegative (χ²=19.41; p<0.001). Immunostaining for TSP-1 was observed in 20 (60.6%) uterine fibroids and in 12 (36.4%) control samples (χ²=3.88; p<0.05). The expression of SPARC/osteonectin protein was more frequently found in leiomyomas than in normal myometrium, but this difference was not significant. Apart from one fibroid culture and one myometrial culture, all the others revealed strong TNC immunostaining. Expression of TSP-1 and SPARC/osteonectin was weak to moderate in all established cell-lines. None of the tissues or cell lines investigated showed positive staining for TNX. In conclusion, TSP-1 and TNC are likely to play important roles in the pathogenesis of uterine leiomyomas, presumably affecting cell proliferation and/or extracellular matrix deposition.

  11. Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes

    PubMed Central

    Bheda, A; Creek, KE; Pirisi, L

    2008-01-01

    Overexpression of the epidermal growth factor receptor (EGFR) in human papillomavirus type 16-immortalized human keratinocytes (HKc) is caused by the viral oncoprotein E6, which targets p53 for degradation. We have previously observed that expression of p53 RNAi in normal HKc is associated with an increase in EGFR mRNA and protein. We now report that p53 RNAi induces EGFR promoter activity up to approximately 10-fold in normal HKc, and this effect does not require intact p53 binding sites on the EGFR promoter. Exogenous wild-type p53 inhibits the EGFR promoter at low levels, and activates it at higher concentrations. Yin Yang 1 (YY1), which negatively regulates p53, induces EGFR promoter activity, and this effect is augmented by p53 RNAi. Intact p53 binding sites on the EGFR promoter are not required for activation by YY1. In addition, Sp1 and YY1 synergistically induce the EGFR promoter in normal HKc, indicating that Sp1 may recruit YY1 as a co-activator. Wild-type p53 suppressed Sp1- and YY1-mediated induction of the EGFR promoter. We conclude that acute loss of p53 in normal HKc induces EGFR expression bya mechanism that involves YY1 and Sp1 and does not require p53 binding to the EGFR promoter. PMID:18391986

  12. Transcriptional repression in normal human keratinocytes by wild-type and mutant p53.

    PubMed

    Alvarez-Salas, L M; Velazquez, A; Lopez-Bayghen, E; Woodworth, C D; Garrido, E; Gariglio, P; DiPaolo, J A

    1995-05-01

    Wild-type p53 is a nuclear phosphoprotein that inhibits cell proliferation and represses transcriptionally most TATA box-containing promoters in transformed or tumor-derived cell lines. This study demonstrates that p53 alters transcription of the long control region (LCR) of human papillomavirus type 18 (HPV-18). Wild-type and mutant p53 143Val to Ala repressed the HPV-18 LCR promoter in normal human keratinocytes, the natural host cell for HPV infections. Repression by wild-type p53 was also observed in C-33A cells and in an HPV-16-immortalized cell line with an inducible wild-type p53. However, when C-33A cells were cotransfected with the HPV-18 LCR and mutant 143Val to Ala, repression did not occur. Mutant p53 135Cys to Ser did not induce repression in either normal human keratinocytes or in the C-33A line; although like 143Val to Ala, it is thought to affect the DNA binding activity of the wild-type protein. The ability of mutant p53 143Val to Ala to inactivate the HPV early promoter in normal cells (by approximately 60% reduction) suggests that this mutant may be able to associate with wild-type p53 and interact with TATA box-binding proteins. Therefore, these results demonstrate that the transcriptional activities of p53 mutants may be dependent upon the cell type assayed and the form of its endogenous p53. Furthermore, normal human keratinocytes represent an alternative model for determining the activities of p53 mutants.

  13. Normalizing and scaling of data to derive human response corridors from impact tests.

    PubMed

    Yoganandan, Narayan; Arun, Mike W J; Pintar, Frank A

    2014-06-01

    It is well known that variability is inherent in any biological experiment. Human cadavers (Post-Mortem Human Subjects, PMHS) are routinely used to determine responses to impact loading for crashworthiness applications including civilian (motor vehicle) and military environments. It is important to transform measured variables from PMHS tests (accelerations, forces and deflections) to a standard or reference population, termed normalization. The transformation process should account for inter-specimen variations with some underlying assumptions used during normalization. Scaling is a process by which normalized responses are converted from one standard to another (example, mid-size adult male to large-male and small-size female adults, and to pediatric populations). These responses are used to derive corridors to assess the biofidelity of anthropomorphic test devices (crash dummies) used to predict injury in impact environments and design injury mitigating devices. This survey examines the pros and cons of different approaches for obtaining normalized and scaled responses and corridors used in biomechanical studies for over four decades. Specifically, the equal-stress equal-velocity and impulse-momentum methods along with their variations are discussed in this review. Methods ranging from subjective to quasi-static loading to different approaches are discussed for deriving temporal mean and plus minus one standard deviation human corridors of time-varying fundamental responses and cross variables (e.g., force-deflection). The survey offers some insights into the potential efficacy of these approaches with examples from recent impact tests and concludes with recommendations for future studies. The importance of considering various parameters during the experimental design of human impact tests is stressed.

  14. Normalizing and scaling of data to derive human response corridors from impact tests.

    PubMed

    Yoganandan, Narayan; Arun, Mike W J; Pintar, Frank A

    2014-06-01

    It is well known that variability is inherent in any biological experiment. Human cadavers (Post-Mortem Human Subjects, PMHS) are routinely used to determine responses to impact loading for crashworthiness applications including civilian (motor vehicle) and military environments. It is important to transform measured variables from PMHS tests (accelerations, forces and deflections) to a standard or reference population, termed normalization. The transformation process should account for inter-specimen variations with some underlying assumptions used during normalization. Scaling is a process by which normalized responses are converted from one standard to another (example, mid-size adult male to large-male and small-size female adults, and to pediatric populations). These responses are used to derive corridors to assess the biofidelity of anthropomorphic test devices (crash dummies) used to predict injury in impact environments and design injury mitigating devices. This survey examines the pros and cons of different approaches for obtaining normalized and scaled responses and corridors used in biomechanical studies for over four decades. Specifically, the equal-stress equal-velocity and impulse-momentum methods along with their variations are discussed in this review. Methods ranging from subjective to quasi-static loading to different approaches are discussed for deriving temporal mean and plus minus one standard deviation human corridors of time-varying fundamental responses and cross variables (e.g., force-deflection). The survey offers some insights into the potential efficacy of these approaches with examples from recent impact tests and concludes with recommendations for future studies. The importance of considering various parameters during the experimental design of human impact tests is stressed. PMID:24726322

  15. Iodinated Contrast Opacification Gradients in Normal Coronary Arteries Imaged with Prospectively ECG-Gated Single Heart Beat 320-Detector Row Computed Tomography

    PubMed Central

    Steigner, Michael L.; Mitsouras, Dimitrios; Whitmore, Amanda G.; Otero, Hansel J.; Wang, Chunliang; Buckley, Orla; Levit, Noah A.; Hussain, Alia Z.; Cai, Tianxi; Mather, Richard T.; Smedby, Örjan; DiCarli, Marcelo F.; Rybicki, Frank J.

    2011-01-01

    Background To define and evaluate coronary contrast opacification gradients using prospectively ECG-gated single heart beat 320-detector row coronary angiography (CTA). Methods and Results Thirty-six patients with normal coronary arteries determined by 320 × 0.5 mm detector row coronary CTA were retrospectively evaluated with customized image post-processing software to measure Hounsfield Units (HU) at 1 mm intervals orthogonal to the artery center line. Linear regression determined correlation between mean HU and distance from the coronary ostium (regression slope defined as the distance gradient Gd), lumen cross-sectional area (Ga), and lumen short axis diameter (Gs). For each gradient, differences between the three coronary arteries were analyzed with ANOVA. Linear regression determined correlations between measured gradients, heart rate, body-mass index (BMI), and cardiac phase. To determine feasibility in lesions, all three gradients were evaluated in 22 consecutive patients with left anterior descending artery lesions greater than or equal to 50% stenosis. For all 3 coronary arteries in all patients, the gradients Ga and Gs were significantly different from zero (p<0.0001), highly linear (Pearson r values 0.77-0.84), and had no significant difference between the LAD, LCx, and RCA (p>0.503). The distance gradient Gd demonstrated nonlinearities in a small number of vessels and was significantly smaller in the RCA when compared to the left coronary system (p<0.001). Gradient variations between cardiac phases, heart rates, BMI, and readers were low. Gradients in patients with lesions were significantly different (p<0.021) than in patients considered normal by CTA. Conclusions Measurement of contrast opacification gradients from temporally uniform coronary CTA demonstrates feasibility and reproducibility in patients with normal coronary arteries. For all patients the gradients defined with respect to the coronary lumen cross-sectional area and short axis

  16. Evidence for keratin proteins in normal and abnormal human meibomian fluids.

    PubMed

    Ong, B L; Hodson, S A; Wigham, T; Miller, F; Larke, J R

    1991-12-01

    Hyperkeratinization of meibomian glands has been postulated to cause gland dysfunction. Recent investigations on rabbits show that keratin proteins are indeed present in the meibomian fluids of these animals. In this report we present our findings on the presence of these water-insoluble proteins in human meibomian secretions. 6 anti-cytokeratin antibodies, CK8, 18, 19, CK7, CK8, CK14, CK19 and AE1/AE3 were used against the keratin proteins expressed from the human meibomian fluids. Using the immunoblotting (dot blot) technique, abnormal waxy meibomian fluids obtained from subjects diagnosed to have meibomian gland dysfunction (MGD) were compared to normal clear meibomian fluids. The results show that keratins are present in a higher concentration (10%) in the abnormal human meibomian excreta as compared to the normals. Even though the presence of protein markers for keratinization in the abnormal meibomian excreta were not shown, the increased presence of keratin proteins in the abnormal meibomian fluids suggests that, in MGD patients, hyperkeratinization of ductal epithelium may have taken place. More keratin proteins (possibly those of higher molecular weights) were produced in addition to the keratin proteins normally produced by the duct epithelium. The increased amount of keratin proteins in the abnormal meibomian fluids may be explained by the susceptibility of duct epithelium to undergo the process of hyperkeratinization as postulated by other researchers.

  17. Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota

    PubMed Central

    Chen, T; Isomäki, P; Rimpiläinen, M; Toivanen, P

    1999-01-01

    The normal microbiota plays an important role in the health of the host, but little is known of how the human immune system recognizes and responds to Gram-positive indigenous bacteria. We have investigated cytokine responses of peripheral blood mononuclear cells (PBMC) to Gram-positive cell walls (CW) derived from four common intestinal indigenous bacteria, Eubacterium aerofaciens (Eu.a.), Eubacterium limosum(Eu.l.), Lactobacillus casei(L.c.), and Lactobacillus fermentum (L.f.). Our results indicate that Gram-positive CW of the normal intestinal microbiota can induce cytokine responses of the human PBMC. The profile, level and kinetics of these responses are similar to those induced by lipopolysaccharide (LPS) or CW derived from a pathogen, Streptococcus pyogenes (S.p.). Bacterial CW are capable of inducing production of a proinflammatory cytokine, tumour necrosis factor-alpha (TNF-α), and an anti-inflammatory cytokine, IL-10, but not that of IL-4 or interferon-gamma (IFN-γ). Monocytes are the main cell population in PBMC to produce TNF-α and IL-10. Induction of cytokine secretion is serum-dependent; both CD14-dependent and -independent pathways are involved. These findings suggest that the human cytokine responses induced by Gram-positive CW of the normal intestinal microbiota are similar to those induced by LPS or Gram-positive CW of the pathogens. PMID:10540188

  18. Comparative normal/failing rat myocardium cell membrane chromatographic analysis system for screening specific components that counteract doxorubicin-induced heart failure from Acontium carmichaeli.

    PubMed

    Chen, Xiaofei; Cao, Yan; Zhang, Hai; Zhu, Zhenyu; Liu, Min; Liu, Haibin; Ding, Xuan; Hong, Zhanying; Li, Wuhong; Lv, Diya; Wang, Lirong; Zhuo, Xianyi; Zhang, Junping; Xie, Xiang-Qun; Chai, Yifeng

    2014-05-20

    Cell membrane chromatography (CMC) derived from pathological tissues is ideal for screening specific components acting on specific diseases from complex medicines owing to the maximum simulation of in vivo drug-receptor interactions. However, there are no pathological tissue-derived CMC models that have ever been developed, as well as no visualized affinity comparison of potential active components between normal and pathological CMC columns. In this study, a novel comparative normal/failing rat myocardium CMC analysis system based on online column selection and comprehensive two-dimensional (2D) chromatography/monolithic column/time-of-flight mass spectrometry was developed for parallel comparison of the chromatographic behaviors on both normal and pathological CMC columns, as well as rapid screening of the specific therapeutic agents that counteract doxorubicin (DOX)-induced heart failure from Acontium carmichaeli (Fuzi). In total, 16 potential active alkaloid components with similar structures in Fuzi were retained on both normal and failing myocardium CMC models. Most of them had obvious decreases of affinities on failing myocardium CMC compared with normal CMC model except for four components, talatizamine (TALA), 14-acetyl-TALA, hetisine, and 14-benzoylneoline. One compound TALA with the highest affinity was isolated for further in vitro pharmacodynamic validation and target identification to validate the screen results. Voltage-dependent K(+) channel was confirmed as a binding target of TALA and 14-acetyl-TALA with high affinities. The online high throughput comparative CMC analysis method is suitable for screening specific active components from herbal medicines by increasing the specificity of screened results and can also be applied to other biological chromatography models.

  19. Glycosaminoglycan metabolism and cytokine release in normal and otosclerotic human bone cells interleukin-1 treated.

    PubMed

    Bodo, M; Carinci, P; Venti, G; Giammarioli, M; Donti, E; Stabellini, G; Paludetti, G; Becchetti, E

    1997-01-01

    Glycosaminoglycans (GAGs), normal components of the extracellular matrix (ECM), and the glycosidases, that degrade them, play a key role in the bone remodelling process. The effects of interleukin-1 alpha (IL-1 alpha) on GAG metabolism in normal and otosclerotic human bone cells as well as its capacity to modulate IL-1 alpha, IL-1 beta and IL-6 secretion in both populations was analyzed. The amount of radiolabeled GAGs was lower in otosclerotic than in normal bone cells. IL-1 alpha reduced newly synthesized cellular and extracellular GAGs in normal cells, but only those of the cellular compartment in otosclerotic bone cells. It depressed heparan sulphate (HS) more in normal cells and chondroitin sulphate (CS) more in otosclerotic bone cells. The HA/total sulphated GAG ratio was shifted in favour of the latter in otosclerotic cells, whereas the opposite effect was seen after IL-1 alpha treatment. There was little difference in the beta-D-glucuronidase levels of the normal and pathological cells, while beta-N-acetyl-D-glucosaminidase was significantly increased in otosclerotic bone cells. As the activity of neither enzyme was modified by treatment with IL-1 alpha, the cytokine seems to exert its influences on GAG synthesis rather than on the degradation process. IL-1 alpha, IL-1 beta and IL-6 secretion was markedly higher in otosclerotic cells. IL-1 alpha modulated the secretion of each interleukin differently, thus resulting in a cytokine cascade that may act in autocrine/paracrine manner on target cells. The authors suggest that changes in the cytokine network may have a specific, yet still unknown, role during normal and pathological osteogenesis.

  20. Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation.

    PubMed

    Hirt, Marc N; Boeddinghaus, Jasper; Mitchell, Alice; Schaaf, Sebastian; Börnchen, Christian; Müller, Christian; Schulz, Herbert; Hubner, Norbert; Stenzig, Justus; Stoehr, Andrea; Neuber, Christiane; Eder, Alexandra; Luther, Pradeep K; Hansen, Arne; Eschenhagen, Thomas

    2014-09-01

    Spontaneously beating engineered heart tissue (EHT) represents an advanced in vitro model for drug testing and disease modeling, but cardiomyocytes in EHTs are less mature and generate lower forces than in the adult heart. We devised a novel pacing system integrated in a setup for videooptical recording of EHT contractile function over time and investigated whether sustained electrical field stimulation improved EHT properties. EHTs were generated from neonatal rat heart cells (rEHT, n=96) or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hEHT, n=19). Pacing with biphasic pulses was initiated on day 4 of culture. REHT continuously paced for 16-18 days at 0.5Hz developed 2.2× higher forces than nonstimulated rEHT. This was reflected by higher cardiomyocyte density in the center of EHTs, increased connexin-43 abundance as investigated by two-photon microscopy and remarkably improved sarcomere ultrastructure including regular M-bands. Further signs of tissue maturation include a rightward shift (to more physiological values) of the Ca(2+)-response curve, increased force response to isoprenaline and decreased spontaneous beating activity. Human EHTs stimulated at 2Hz in the first week and 1.5Hz thereafter developed 1.5× higher forces than nonstimulated hEHT on day 14, an ameliorated muscular network of longitudinally oriented cardiomyocytes and a higher cytoplasm-to-nucleus ratio. Taken together, continuous pacing improved structural and functional properties of rEHTs and hEHTs to an unprecedented level. Electrical stimulation appears to be an important step toward the generation of fully mature EHT.

  1. Imaging of Keratoconic and normal human cornea with a Brillouin imaging system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Besner, Sebastien; Shao, Peng; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun (Andy)

    2016-03-01

    Keratoconus is a degenerative disorder of the eye characterized by human cornea thinning and morphological change to a more conical shape. Current diagnosis of this disease relies on topographic imaging of the cornea. Early and differential diagnosis is difficult. In keratoconus, mechanical properties are found to be compromised. A clinically available invasive technique capable of measuring the mechanical properties of the cornea is of significant importance for understanding the mechanism of keratoconus development and improve detection and intervention in keratoconus. The capability of Brillouin imaging to detect local longitudinal modulus in human cornea has been demonstrated previously. We report our non-contact, non-invasive, clinically viable Brillouin imaging system engineered to evaluate mechanical properties human cornea in vivo. The system takes advantage of a highly dispersive 2-stage virtually imaged phased array (VIPA) to detect weak Brillouin scattering signal from biological samples. With a 1.5-mW light beam from a 780-nm single-wavelength laser source, the system is able to detect Brillouin frequency shift of a single point in human cornea less than 0.3 second, at a 5μm/30μm lateral/axial resolution. Sensitivity of the system was quantified to be ~ 10 MHz. A-scans at different sample locations on a human cornea with a motorized human interface. We imaged both normal and keratoconic human corneas with this system. Whereas no significantly difference were observed outside keratocnic cones compared with normal cornea, a highly statistically significantly decrease was found in the cone regions.

  2. Towards causally cohesive genotype-phenotype modelling for characterization of the soft-tissue mechanics of the heart in normal and pathological geometries.

    PubMed

    Nordbø, Øyvind; Gjuvsland, Arne B; Nermoen, Anders; Land, Sander; Niederer, Steven; Lamata, Pablo; Lee, Jack; Smith, Nicolas P; Omholt, Stig W; Vik, Jon Olav

    2015-05-01

    A scientific understanding of individual variation is key to personalized medicine, integrating genotypic and phenotypic information via computational physiology. Genetic effects are often context-dependent, differing between genetic backgrounds or physiological states such as disease. Here, we analyse in silico genotype-phenotype maps (GP map) for a soft-tissue mechanics model of the passive inflation phase of the heartbeat, contrasting the effects of microstructural and other low-level parameters assumed to be genetically influenced, under normal, concentrically hypertrophic and eccentrically hypertrophic geometries. For a large number of parameter scenarios, representing mock genetic variation in low-level parameters, we computed phenotypes describing the deformation of the heart during inflation. The GP map was characterized by variance decompositions for each phenotype with respect to each parameter. As hypothesized, the concentric geometry allowed more low-level parameters to contribute to variation in shape phenotypes. In addition, the relative importance of overall stiffness and fibre stiffness differed between geometries. Otherwise, the GP map was largely similar for the different heart geometries, with little genetic interaction between the parameters included in this study. We argue that personalized medicine can benefit from a combination of causally cohesive genotype-phenotype modelling, and strategic phenotyping that captures effect modifiers not explicitly included in the mechanistic model.

  3. Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes

    PubMed Central

    Eschenhagen, Thomas; Mummery, Christine; Knollmann, Bjorn C.

    2015-01-01

    One of the obstacles to a better understanding of the pathogenesis of human cardiomyopathies has been poor availability of heart-tissue samples at early stages of disease development. This has possibly changed by the advent of patient-derived induced pluripotent stem cell (hiPSC) from which cardiomyocytes can be derived in vitro. The main promise of hiPSC technology is that by capturing the effects of thousands of individual gene variants, the phenotype of differentiated derivatives of these cells will provide more information on a particular disease than simple genotyping. This article summarizes what is known about the ‘human cardiomyopathy or heart failure phenotype in vitro’, which constitutes the reference for modelling sarcomeric cardiomyopathies in hiPSC-derived cardiomyocytes. The current techniques for hiPSC generation and cardiac myocyte differentiation are briefly reviewed and the few published reports of hiPSC models of sarcomeric cardiomyopathies described. A discussion of promises and challenges of hiPSC-modelling of sarcomeric cardiomyopathies and individualized approaches is followed by a number of questions that, in the view of the authors, need to be answered before the true potential of this technology can be evaluated. PMID:25618410

  4. Generating fibre orientation maps in human heart models using Poisson interpolation.

    PubMed

    Wong, Jonathan; Kuhl, Ellen

    2014-01-01

    Smoothly varying muscle fibre orientations in the heart are critical to its electrical and mechanical function. From detailed histological studies and diffusion tensor imaging, we now know that fibre orientations in humans vary gradually from approximately -70° in the outer wall to +80° in the inner wall. However, the creation of fibre orientation maps for computational analyses remains one of the most challenging problems in cardiac electrophysiology and cardiac mechanics. Here, we show that Poisson interpolation generates smoothly varying vector fields that satisfy a set of user-defined constraints in arbitrary domains. Specifically, we enforce the Poisson interpolation in the weak sense using a standard linear finite element algorithm for scalar-valued second-order boundary value problems and introduce the feature to be interpolated as a global unknown. User-defined constraints are then simply enforced in the strong sense as Dirichlet boundary conditions. We demonstrate that the proposed concept is capable of generating smoothly varying fibre orientations, quickly, efficiently and robustly, both in a generic bi-ventricular model and in a patient-specific human heart. Sensitivity analyses demonstrate that the underlying algorithm is conceptually able to handle both arbitrarily and uniformly distributed user-defined constraints; however, the quality of the interpolation is best for uniformly distributed constraints. We anticipate our algorithm to be immediately transformative to experimental and clinical settings, in which it will allow us to quickly and reliably create smooth interpolations of arbitrary fields from data-sets, which are sparse but uniformly distributed.

  5. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5.

    PubMed

    Garg, Vidu; Kathiriya, Irfan S; Barnes, Robert; Schluterman, Marie K; King, Isabelle N; Butler, Cheryl A; Rothrock, Caryn R; Eapen, Reenu S; Hirayama-Yamada, Kayoko; Joo, Kunitaka; Matsuoka, Rumiko; Cohen, Jonathan C; Srivastava, Deepak

    2003-07-24

    Congenital heart defects (CHDs) are the most common developmental anomaly and are the leading non-infectious cause of mortality in newborns. Only one causative gene, NKX2-5, has been identified through genetic linkage analysis of pedigrees with non-syndromic CHDs. Here, we show that isolated cardiac septal defects in a large pedigree were linked to chromosome 8p22-23. A heterozygous G296S missense mutation of GATA4, a transcription factor essential for heart formation, was found in all available affected family members but not in any control individuals. This mutation resulted in diminished DNA-binding affinity and transcriptional activity of Gata4. Furthermore, the Gata4 mutation abrogated a physical interaction between Gata4 and TBX5, a T-box protein responsible for a subset of syndromic cardiac septal defects. Conversely, interaction of Gata4 and TBX5 was disrupted by specific human TBX5 missense mutations that cause similar cardiac septal defects. In a second family, we identified a frame-shift mutation of GATA4 (E359del) that was transcriptionally inactive and segregated with cardiac septal defects. These results implicate GATA4 as a genetic cause of human cardiac septal defects, perhaps through its interaction with TBX5. PMID:12845333

  6. A phenotypic in vitro model for the main determinants of human whole heart function.

    PubMed

    Stancescu, Maria; Molnar, Peter; McAleer, Christopher W; McLamb, William; Long, Christopher J; Oleaga, Carlota; Prot, Jean-Matthieu; Hickman, James J

    2015-08-01

    This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model features a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems.

  7. Atrioventricular valves development in human heart: the Paris embryological collection revisited.

    PubMed

    Mandarim-de-Lacerda, C A

    1989-01-01

    29 human embryos staging from stage 15 to stage 23 (post-somitic period, collection of the UER Biomedicale des Saints-Péres, Université René Descartes Paris V) have been studied. The most important morphological events of the atrioventricular valves development have been reinvestigated and photographed. This is a complementary information about cardiac development analysing this french collection of human embryos (Mandarim-de-Lacerda, in press). At stage 15, we can observe the gelatinous reticulum well organized when cardiac valves will become established; progressively the fused endocardial cushions and right and left lateral cushions encircle the atrioventricular channels indicating the site of the tricuspid valves. These cushions, however, have a temporary influence being replaced gradually by atrial and ventricular myocardium. At stage 23, the heart presents a complete atrioventricular valvular structure.

  8. A phenotypic in vitro model for the main determinants of human whole heart function

    PubMed Central

    Stancescu, Maria; Molnar, Peter; McAleer, Christopher W.; McLamb, William; Long, Christopher J.; Oleaga, Carlota; Prot, Jean-Matthieu; Hickman, James J.

    2015-01-01

    This article details the construction and testing of a phenotypic assay system that models in vivo cardiac function in a parallel in vitro environment with human stem cell derived cardiomyocytes. The major determinants of human whole-heart function were experimentally modeled by integrating separate 2D cellular systems with BioMicroelectromechanical Systems (BioMEMS) constructs. The model featured a serum-free defined medium to enable both acute and chronic evaluation of drugs and toxins. The integration of data from both systems produced biologically relevant predictions of cardiac function in response to varying concentrations of selected drugs. Sotalol, norepinephrine and verapamil were shown to affect the measured parameters according to their specific mechanism of action, in agreement with clinical data. This system is applicable for cardiac side effect assessment, general toxicology, efficacy studies, and evaluation of in vitro cellular disease models in body-on-a-chip systems. PMID:25978005

  9. Microgravity alters respiratory sinus arrhythmia and short-term heart rate variability in humans

    NASA Technical Reports Server (NTRS)

    Migeotte, P-F; Prisk, G. Kim; Paiva, M.; West, J. B. (Principal Investigator)

    2003-01-01

    We studied heart rate (HR), heart rate variability (HRV), and respiratory sinus arrhythmia (RSA) in four male subjects before, during, and after 16 days of spaceflight. The electrocardiogram and respiration were recorded during two periods of 4 min controlled breathing at 7.5 and 15 breaths/min in standing and supine postures on the ground and in microgravity. Low (LF)- and high (HF)-frequency components of the short-term HRV (< or =3 min) were computed through Fourier spectral analysis of the R-R intervals. Early in microgravity, HR was decreased compared with both standing and supine positions and had returned to the supine value by the end of the flight. In microgravity, overall variability, the LF-to-HF ratio, and RSA amplitude and phase were similar to preflight supine values. Immediately postflight, HR increased by approximately 15% and remained elevated 15 days after landing. LF/HF was increased, suggesting an increased sympathetic control of HR standing. The overall variability and RSA amplitude in supine decreased postflight, suggesting that vagal tone decreased, which coupled with the decrease in RSA phase shift suggests that this was the result of an adaptation of autonomic control of HR to microgravity. In addition, these alterations persisted for at least 15 days after return to normal gravity (1G).

  10. Anti-galactose antibodies do not bind to normal human red cells

    SciTech Connect

    Kay, M.M.B.; Bosman, G.J.C.G.M.

    1986-03-01

    The authors investigated the possibility that senescent cell IgG might have an anti-galactose (anti-gal) specificity as suggested by others. Anti-gal was isolated from normal human serum with ..cap alpha.. melibiose-agarose. The assays used were hemagglutination, rosetting, phagocytosis, and /sup 125/I protein A binding assay, immunoblotting, and glycine/HCL, pH 2.3, versus sugar elutions. Results revealed binding of anti-gal to rabbit but not human RBC. Immunoblotting of anti-gal revealed labeling of approx.29 bands in rabbit red cell membranes and no labeling of autologous human red cell membranes. The authors attempted to inhibit binding of anti-gal with various sugars. Melibiose caused enhancement rather than inhibition of agglutination when used at concentrations reported by previous investigators to cause inhibition. Neither ..cap alpha.. melibiose or galactose caused inhibition of phagocytosis of senescent cells. Senescent cell IgG was not displaced from freshly isolated old red cells by incubation with melibiose or galactose as determined by an /sup 125/I protein A binding assay. The authors were also unable to elute IgG from stored red cells with galactose. The authors conclude that senescent cell IgG does not have an anti-galactose specificity. The authors were unable to demonstrate an anti-gal antibody to normal human red cells.

  11. Immunohistochemical Study of Expression of Sohlh1 and Sohlh2 in Normal Adult Human Tissues

    PubMed Central

    Zhang, Xiaoli; Liu, Ruihua; Su, Zhongxue; Zhang, Yuecun; Zhang, Wenfang; Liu, Xinyu; Wang, Fuwu; Guo, Yuji; Li, Chuangang; Hao, Jing

    2015-01-01

    The expression pattern of Sohlh1 (spermatogenesis and oogenesis specific basic helix-loop-helix 1) and Sohlh2 in mice has been reported in previous studies. Sohlh1 and Sohlh2 are specifically expressed in spermatogonia, prespermatogonia in male mice and oocytes of primordial and primary follicles in female mice. In this report, we studied the expression pattern of Sohlh1 and Sohlh2 in human adult tissues. Immunohistochemical staining of Sohlh1 and Sohlh2 was performed in 5 samples of normal ovaries and testes, respectively. The results revealed that Sohlh genes are not only expressed in oocytes and spermatogonia, but also in granular cells, theca cells, Sertoli cells and Leydig cells, and in smooth muscles of blood vessel walls. To further investigate the expression of Sohlh genes in other adult human tissues, we collected representative normal adult tissues developed from three embryonic germ layers. Compared with the expression in mice, Sohlhs exhibited a much more extensive expression pattern in human tissues. Sohlhs were detected in testis, ovary and epithelia developed from embryonic endoderm, ectoderm and tissues developed from embryonic mesoderm. Sohlh signals were found in spermatogonia, Sertoli cells and also Leydig cells in testis, while in ovary, the expression was mainly in oocytes of primordial and primary follicles, granular cells and theca cells of secondary follicles. Compared with Sohlh2, the expression of Sohlh1 was stronger and more extensive. Our study explored the expression of Sohlh genes in human tissues and might provide insights for functional studies of Sohlh genes. PMID:26375665

  12. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells

    PubMed Central

    Ito, Shuhei; Murphy, Conleth G.; Doubrovina, Ekaterina; Jasin, Maria; Moynahan, Mary Ellen

    2016-01-01

    Poly(ADP-ribose) polymerases (PARPs) are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR), a DNA double-strand break (DSB) repair pathway, are hypersensitive to PARP inhibitors (PARPi). Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer. Unlike HR-defective cells, HR-proficient cells manifest very low cytotoxicity when exposed to PARPi, although they mount a DNA damage response. However, the genotoxic effects on normal human cells when agents including PARPi disturb proficient cellular repair processes have not been substantially investigated. We quantified cytogenetic alterations of human cells, including primary lymphoid cells and non-tumorigenic and tumorigenic epithelial cell lines, exposed to PARPi at clinically relevant doses by both sister chromatid exchange (SCE) assays and chromosome spreading. As expected, both olaparib and veliparib effectively inhibited poly-ADP-ribosylation (PAR), and caused marked hypersensitivity in HR-deficient cells. Significant dose-dependent increases in SCEs were observed in normal and non-tumorigenic cells with minimal residual PAR activity. Clinically relevant doses of the FDA-approved olaparib led to a marked increase of SCEs (5-10-fold) and chromatid aberrations (2-6-fold). Furthermore, olaparib potentiated SCE induction by cisplatin in normal human cells. Our data have important implications for therapies with regard to sustained genotoxicity to normal cells. Genomic instability arising from PARPi warrants consideration, especially if these agents will be used in people with early stage cancers, in prevention strategies or for non-oncologic indications. PMID:27428646

  13. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells.

    PubMed

    Ito, Shuhei; Murphy, Conleth G; Doubrovina, Ekaterina; Jasin, Maria; Moynahan, Mary Ellen

    2016-01-01

    Poly(ADP-ribose) polymerases (PARPs) are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR), a DNA double-strand break (DSB) repair pathway, are hypersensitive to PARP inhibitors (PARPi). Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer. Unlike HR-defective cells, HR-proficient cells manifest very low cytotoxicity when exposed to PARPi, although they mount a DNA damage response. However, the genotoxic effects on normal human cells when agents including PARPi disturb proficient cellular repair processes have not been substantially investigated. We quantified cytogenetic alterations of human cells, including primary lymphoid cells and non-tumorigenic and tumorigenic epithelial cell lines, exposed to PARPi at clinically relevant doses by both sister chromatid exchange (SCE) assays and chromosome spreading. As expected, both olaparib and veliparib effectively inhibited poly-ADP-ribosylation (PAR), and caused marked hypersensitivity in HR-deficient cells. Significant dose-dependent increases in SCEs were observed in normal and non-tumorigenic cells with minimal residual PAR activity. Clinically relevant doses of the FDA-approved olaparib led to a marked increase of SCEs (5-10-fold) and chromatid aberrations (2-6-fold). Furthermore, olaparib potentiated SCE induction by cisplatin in normal human cells. Our data have important implications for therapies with regard to sustained genotoxicity to normal cells. Genomic instability arising from PARPi warrants consideration, especially if these agents will be used in people with early stage cancers, in prevention strategies or for non-oncologic indications. PMID:27428646

  14. Decreased phosphorylation levels of cardiac myosin-binding protein-C in human and experimental heart failure.

    PubMed

    El-Armouche, Ali; Pohlmann, Lutz; Schlossarek, Saskia; Starbatty, Jutta; Yeh, Yung-Hsin; Nattel, Stanley; Dobrev, Dobromir; Eschenhagen, Thomas; Carrier, Lucie

    2007-08-01

    Cardiac myosin-binding protein-C (cMyBP-C) is an important regulator of cardiac contractility, and its phosphorylation by PKA is a mechanism that contributes to increased cardiac output in response to beta-adrenergic stimulation. It is presently unknown whether heart failure alters cMyBP-C phosphorylation. The present study determined the level of phosphorylated cMyBP-C in failing human hearts and in a canine model of pacing-induced heart failure. A polyclonal antibody directed against the major phosphorylation site of cMyBP-C (Ser-282) was generated and its specificity was confirmed by PKA phosphorylation with isoprenaline in cardiomyocytes and Langendorff-perfused mouse hearts. Left ventricular myocardial tissue from (i) patients with terminal heart failure (hHF; n=12) and nonfailing donor hearts (hNF; n=6) and (ii) dogs with rapid-pacing-induced end-stage heart failure (dHF; n=10) and sham-operated controls (dNF; n=10) were used for quantification of total cMyBP-C and phospho-cMyBP-C by Western blotting. Total cMyBP-C protein levels were similar in hHF and hNF as well as in dHF and dNF. In contrast, the ratio of phospho-cMyBP-C to total cMyBP-C levels were >50% reduced in hHF and >40% reduced in dHF. In summary, cMyBP-C phosphorylation levels are markedly decreased in human and experimental heart failure. Thus, the compromised contractile function of the failing heart might be in part attributable to reduced cMyBP-C phosphorylation levels.

  15. Calcium currents and transients in co-cultured contracting normal and Duchenne muscular dystrophy human myotubes

    PubMed Central

    Imbert, Nathalie; Vandebrouck, Clarisse; Duport, Gérard; Raymond, Guy; Hassoni, Abdul A; Constantin, Bruno; Cullen, Michael J; Cognard, Christian

    2001-01-01

    The goal of the present study was to investigate differences in calcium movements between normal and Duchenne muscular dystrophy (DMD) human contracting myotubes co-cultured with explants of rat spinal cord with attached dorsal root ganglia. Membrane potential, variations of intracellular calcium concentration and T- and L-type calcium currents were recorded. Further, a descriptive and quantitative study by electron microscopy of the ultrastructure of the co-cultures was carried out. The resting membrane potential was slightly less negative in DMD (−61.4 ± 1.1 mV) than in normal myotubes (−65.5 ± 0.9 mV). Both types of myotube displayed spontaneous action potentials (mean firing frequency, 0.42 and 0.16 Hz, respectively), which triggered spontaneous calcium transients measured with Indo-1. The time integral under the spontaneous Ca2+ transients was significantly greater in DMD myotubes (97 ± 8 nm s) than in normal myotubes (67 ± 13 nm s). The L- and T-type current densities estimated from patch-clamp recordings were smaller in DMD cells (2.0 ± 0.5 and 0.90 ± 0.19 pA pF−1, respectively) than in normal cells (3.9 ± 0.7 and 1.39 ± 0.30 pA pF−1, respectively). The voltage-dependent inactivation relationships revealed a shift in the conditioning potential at which inactivation is half-maximal (Vh,0.5) of the T- and L-type currents towards less negative potentials, from −72.1 ± 0.7 and −53.7 ± 1.5 mV in normal cells to −61.9 ± 1.4 and −29.2 ± 1.4 mV in DMD cells, respectively. Both descriptive and quantitative studies by electron microscopy suggested a more advanced development of DMD myotubes as compared to normal ones. This conclusion was supported by the significantly larger capacitance of the DMD myotubes (408 ± 45 pF) than of the normal myotubes (299 ± 34 pF) of the same apparent size. Taken together, these results show that differences in T- and L-type calcium currents between normal and DMD myotubes cannot simply explain all observed

  16. Antigens of human trophoblasts: A working hypothesis for their role in normal and abnormal pregnancies

    PubMed Central

    Faulk, W. Page; Temple, Anne; Lovins, R. E.; Smith, Nancy

    1978-01-01

    This report describes the preparation and characterization of antisera to human trophoblast membranes. Rabbit antisera were raised to trophoblast microvilli prepared by differential ultracentrifugation. Antibodies to serum proteins were removed by solid-phase immunoabsorption with normal human serum, and indirect immunofluorescence experiments with cryostat sections of human placentas showed that the absorbed anti-trophoblast sera reacted with trophoblasts as well as with stromal cells and endothelium of chorionic villi. The antisera also produced membrane fluorescence when studied on viable lymphocytes and certain human cell lines. These anti-trophoblast sera were also lymphocytotoxic, and this reaction was abolished by prior absorption of the antisera with leukocytes. The leukocyte-absorbed anti-trophoblast sera retained their ability to react with trophoblasts and certain human cell lines, but no longer reacted with lymphocytes or placental stromal cells and endothelium. Two categories of trophoblast membrane antigens are thus defined: one present on trophoblasts and certain human cells lines (tentatively designated TA1), and the other on trophoblasts and lymphocytes, villous fibroblasts, and endothelium (tentatively designated TA2). A working hypothesis is proposed stating that normal pregnancy involves the generation of anti-TA2 subsequent to blastocyst implantation and entrance of trophoblasts into the maternal circulation. This involves a mechanism similar to allogeneic cell stimulation and results in antibodies that block either the recognition or cytotoxicity of TA1. Failure to mount this response allows TA1 recognition and trophoblast immunopathology. Experimental and clinical studies in support of this working hypothesis, particularly involving abortion and toxemia, are cited from published reports. Images PMID:273921

  17. The measurement of intrinsic cellular radiosensitivity in human tumours and normal tissues

    NASA Astrophysics Data System (ADS)

    Lawton, Patricia Ann

    Human tumour and normal cell radiosensitivity are thought to be important factors determining the response of tumour and normal tissues to radiotherapy, respectively. Clonogenic assays are the standard method for measuring radiosensitivity but they are of limited applicability for clinical use with fresh human tumours. The main aim of this work was to evaluate the Adhesive Tumour Cell Culture System (ATCCS), as a method for measuring the radiosensitivity of human tumours. A soft agar clonogenic assay, the modified Courtenay-Mills assay, was used as a standard to compare with the ATCCS. The demonstration that fibroblast contamination could occur with both assay methods led to the investigation of a new technique for removing unwanted fibroblasts from tumour cell suspensions and to the use of a multiwell assay for measuring fibroblast radiosensitivity. Established tumour cell lines were used to validate and optimise the ATCCS. Success rates with human tumour biopsy specimens were initially poor with both assay methods but further modifications led to success rates of ~70%. In a comparison of the modified Courtenay-Mills assay and the ATCCS there was close agreement between the measurements of surviving fraction at 2 Gy (SF2) for established tumour cell lines but with primary tumour cultures the SF2 values were significantly lower in the ATCCS. The main limitations of the ATCCS for clinical use were inter-experimental variability and fibroblast contamination. Using antibody-coated magnetic beads as a method for removing fibroblasts from tumour cell suspensions, some selectivity for fibroblasts was shown, but the specificity was too low for this method to be of value in its current form. The multiwell assay was found to be a satisfactory method for measuring fibroblast radiosensitivity although inter-experimental variability may limit its clinical use as a predictive test for normal tissue damage in patients.

  18. Human lymphocyte surface immunoglobulin capping. Normal characteristics and anomalous behavior of chronic lymphocytic leukemic lymphocytes.

    PubMed Central

    Cohen, H J

    1975-01-01

    The phenomenon of redistribution of surface membrane immunoglobulin (Ig) components (capping) has been well described in mouse lymphoid cells. The characteristics of this process in human lymphocytes are less clear. This study characterizes the phenomenon of surface membrane Ig redistribution of normal and chronic lymphocytic leukemia (CLL) lymphocytes with the use of fluoroscein-labeled anti-Ig sera. Normal lymphocytes underwent rapid cap formation after incubation with anti-Ig serum in the cold and subsequent rewarming. The morphology was characteristic with aggregation over the pole of the cell opposite the nucleus and over the uropod when present. The process was energy dependent but independent of protein synthesis, and could be inhibited by vincristine, vinblastine, and colchicine but not by cytochalasin B. CLL cells, on the other hand, though showing fluorescent complex aggregation on the surface, rarely demonstrated unidirectional movement of these aggregates to form a cap. Cap formation in these cells could not be stimulated by supplementing the energy source or protein concentration of the medium nor by adding glutamic acid which could partially reverse the vincristine and vinblastine inhibition of normal capping. The failure of agents which inhibit motility to inhibit capping of the normal lymphocytes suggests that active locomotion is not a direct prerequisite for capping. The results also suggest the involvement of microtubules in normal capping and the possibility that abnormal membrane structure or microtubular function could explain the failure of CLL cells to behave normally in this regard. The role of this cellular defect in the immune deficiencies exhibited by many patients with CLL, however, is not established. Images PMID:1088910

  19. Human care system for heart-rate and human-movement trajectory in home and its application to detect mental disease

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi

    2012-06-01

    This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.

  20. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  1. Preferential orientation of biological apatite in normal and osteoporotic human vertebral trabeculae

    NASA Astrophysics Data System (ADS)

    Miyabe, S.; Ishimoto, T.; Nakano, T.

    2009-05-01

    The preferential orientation of biological apatite (BAp) is a possible bone quality parameter for the comparison of the bone mechanical property. The preferential BAp orientation undergoes sensitive changes according to the change in the in vivo stress distribution, bone turnover rate etc., resulting in a variation of bone function. Osteoporosis is a metabolic bone disease characterized by reduced bone mass and deterioration of bone microstructure. The effect of osteoporosis on the preferential BAp orientation is however unknown. In this study, a microbeam-X-ray diffraction (μXRD) study was carried out on a trabecula extracted from osteoporotic and normal human vertebral bones and the degree of orientation for the BAp c-axis along its craniocaudal axis was analysed based on our previous report. A micro-computed tomography (μCT) measurement was also performed to analyze trabecular density and structure. In osteoporotic human vertebra, the trabecular number is markedly lower than that in normal vertebra. To sustain increased stress because of bone loss, the primary trabeculae, which are aligned parallel to the craniocaudal axis, tend to selectively remain while the secondary trabeculae, which are perpendicular to the craniocaudal axis, mostly disappear. Moreover, the primary trabecula from osteoporotic vertebra showed a significantly higher degree of BAp preferential orientation than the normal bone. This suggests that the remaining primary trabecula in osteoporotic vertebra is further reinforced by an increase in applied stress in vivo by enhancing the preferred BAp c-axis orientation along the trabecular direction.

  2. Dielectric spectroscopy of normal and malignant human lung cells at ultra-high frequencies.

    PubMed

    Egot-Lemaire, S; Pijanka, J; Sulé-Suso, J; Semenov, S

    2009-04-21

    Microwave techniques for biomedical applications aimed at cancer treatment or diagnosis, either by imaging or spectroscopy, are promising. Their use relies on knowledge of the dielectric properties of tissues, especially on a detectable difference between malignant and normal tissues. As most studies investigated the dielectric properties of ex vivo tissues, there is a need for better biophysical understanding of human tissues in their living state. As an essential component of tissues, cells represent valuable objects of analysis. The approach developed in this study is an investigation at cell level. Its aim was to compare human lung normal and malignant cells by dielectric spectroscopy in the beginning of the microwave range, where such information is of substantial biomedical importance. These cells were embedded in small and low-conductivity agarose hydrogels and laid on an open-ended coaxial probe connected to a vector network analyser operated from 200 MHz to 2 GHz. The comparison between normal and malignant cells was drawn using the variation of measured dielectric properties and fitting the measurements using the Maxwell-Wagner equation. Both methods revealed slight differences between the two cell lines, which were statistically significant regarding conductivities of composite gels and cells. PMID:19321925

  3. Effect of alpha 1-adrenoceptor blockade on resting and hyperemic myocardial blood flow in normal humans.

    PubMed

    Lorenzoni, R; Rosen, S D; Camici, P G

    1996-10-01

    In the present study we aimed to assess the effect of alpha 1-adrenoceptor blockade on resting and hyperemic myocardial blood flow in normal humans. Myocardial blood flow, at baseline and after dipyridamole, was measured with positron emission tomography and 15O-labeled water in 11 normal volunteers at control and during alpha 1-blockade with doxazosin. Baseline myocardial blood flow during alpha 1-blockade was not different from control, whereas coronary resistance was significantly lower (73.48 +/- 18.31 vs. 89.84 +/- 27.96 mmHg.min.ml-1.g-1; P < 0.05). After dipyridamole, myocardial blood flow during alpha 1-blockade was significantly higher (3.50 +/- 0.75 vs. 2.58 +/- 0.54 ml.min-1.g-1; P < 0.01) and coronary resistance lower (25.30 +/- 7.37 vs. 33.89 +/- 7.04 mmHg.min.ml-1.g-1; P < 0.01) compared with control. In conclusion, in normal humans, dipyridamole-induced increase in myocardial blood flow is limited by alpha 1-mediated coronary vasoconstriction.

  4. Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Hu, Yaogai; Shen, Aiguo; Jiang, Tao; Ai, Yong; Hu, Jiming

    2008-02-01

    Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at ˜1156 cm -1 and intensity decrease at ˜1587 cm -1. The quantitative criterion based upon the intensity ratio of the ˜1156 and ˜1587 cm -1 was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.

  5. Normal genetic variation of the human foot: part 1: the paradox of normal anatomical alignment in an evolutionary epigenetic context.

    PubMed

    Quinn, Greg

    2012-01-01

    Molecular genetics is changing our understanding of the developmental translation of genotype to phenotype between and within different phylogenetic groups. Together with a growing understanding of our own evolutionary relationships to common ancestors, the epigenetic processes involved enforce a reexamination of what is regarded as a normal foot structure. A revised populationist approach is proposed and supported by paleoanthropologic evidence that reflects a picture of emerging suitability for bipedalism that is driven by natural genetic divergence.

  6. Tensile Strength of Mineralized/Demineralized Human Normal and Carious Dentin

    PubMed Central

    Nishitani, Y.; Yoshiyama, M.; Tay, F.R.; Wadgaonkar, B.; Waller, J.; Agee, K.; Pashley, D.H.

    2006-01-01

    The bond strengths of resins to caries-affected dentin are low. This could be due to weakened organic matrix. The purpose of this work was to determine if the ultimate tensile strength (UTS) of excavated carious dentin is weaker than that of normal dentin. Soft caries was excavated from extracted human molars, and the tooth was vertically sectioned into slabs. Each slab was trimmed to an hourglass shape, parallel or perpendicular to the tubule direction. Half of the specimens were mineralized, while the other half were completely demineralized in EDTA. ANOVA on ranks showed that the three-factor interactions (mineralization, caries, tubule direction) were all significant (p < 0.0001), indicating that mineralization and tubule direction gave different UTS results in normal and caries-affected dentin. No significant differences were seen between the UTS of normal and and that of caries-affected demineralized dentin in the parallel or perpendicular group. The matrix of demineralized caries-affected dentin was as strong as that of normal demineralized dentin when tested in the same direction. PMID:16246945

  7. Immunosuppressive activity of human amniotic fluid of normal and abnormal pregnancies.

    PubMed

    Shohat, B; Faktor, J M

    1988-01-01

    Twenty specimens of amniotic fluid (AF) obtained between week 16 and 18 of gestation from normal pregnant women and six specimens from pregnant women in which trisomia of chromosome 21 was found were tested for immunosuppressive activity. Incubation of normal human donor lymphocytes with 0.2-1 mL of AF from normal pregnant women for one hour at 37 degrees C was sufficient for induction of significant inhibition of the ability of these cells to induce a local xenogeneic graft-versus-host reaction (GVHR) as well as inhibition of E and E-active rosette formation, the GVHR being the most sensitive test. On the other hand, amniotic fluid obtained from the six pregnant women in which trisomia of chromosome 21 was found showed no inhibitory activity in either the E or E-active rosette formation, nor in the local xenogeneic graft-versus-host reaction. AF from all the women tested was found to have no effect on phenotype expression of the lymphocytes, as tested by the monoclonal antibodies OKT4+ and OKT8+, nor on B-lymphocytes, as tested by surface immunoglobulins. No correlation was found between the alpha-fetoprotein levels in the sera of those women and the immunosuppressive activity. These findings indicate that genetic defects of the conceptus are not limited to the embryo but may affect the composition of immunosuppressive components present in normal amniotic fluid.

  8. Dynamic Knee Alignment and Collateral Knee Laxity and Its Variations in Normal Humans.

    PubMed

    Deep, Kamal; Picard, Frederic; Clarke, Jon V

    2015-01-01

    Alignment of normal, arthritic, and replaced human knees is a much debated subject as is the collateral ligamentous laxity. Traditional quantitative values have been challenged. Methods used to measure these are also not without flaws. Authors review the recent literature and a novel method of measurement of these values has been included. This method includes use of computer navigation technique in clinic setting for assessment of the normal or affected knee before the surgery. Computer navigation has been known for achievement of alignment accuracy during knee surgery. Now its use in clinic setting has added to the inventory of measurement methods. Authors dispel the common myth of straight mechanical axis in normal knees and also look at quantification of amount of collateral knee laxity. Based on the scientific studies, it has been shown that the mean alignment is in varus in normal knees. It changes from lying non-weight-bearing position to standing weight-bearing position in both coronal and the sagittal planes. It also varies with gender and race. The collateral laxity is also different for males and females. Further studies are needed to define the ideal alignment and collateral laxity which the surgeon should aim for individual knees. PMID:26636090

  9. Dynamic Knee Alignment and Collateral Knee Laxity and Its Variations in Normal Humans

    PubMed Central

    Deep, Kamal; Picard, Frederic; Clarke, Jon V.

    2015-01-01

    Alignment of normal, arthritic, and replaced human knees is a much debated subject as is the collateral ligamentous laxity. Traditional quantitative values have been challenged. Methods used to measure these are also not without flaws. Authors review the recent literature and a novel method of measurement of these values has been included. This method includes use of computer navigation technique in clinic setting for assessment of the normal or affected knee before the surgery. Computer navigation has been known for achievement of alignment accuracy during knee surgery. Now its use in clinic setting has added to the inventory of measurement methods. Authors dispel the common myth of straight mechanical axis in normal knees and also look at quantification of amount of collateral knee laxity. Based on the scientific studies, it has been shown that the mean alignment is in varus in normal knees. It changes from lying non-weight-bearing position to standing weight-bearing position in both coronal and the sagittal planes. It also varies with gender and race. The collateral laxity is also different for males and females. Further studies are needed to define the ideal alignment and collateral laxity which the surgeon should aim for individual knees. PMID:26636090

  10. Simple Dispersion Equation Based on Lamb-Wave Model for Propagating Pulsive Waves in Human Heart Wall

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Shintani, Seine A.

    2015-12-01

    We consider the Rayleigh-Lamb-type equation for propagating pulsive waves excited by aortic-valve closure at end-systole in the human heart wall. We theoretically investigate the transcendental dispersion equation of pulsive waves for the asymmetrical zero-order mode of the Lamb wave. We analytically find a simple dispersion equation with a universal constant for a small Lamb wavenumber. We show that the simple dispersion equation can qualitatively explain the myocardial noninvasive measurements in vivo of pulsive waves in the human heart wall. We can also consistently estimate the viscoelastic constant of the myocardium in the human heart wall using the simple dispersion equation for a small Lamb wavenumber instead of using a complex nonlinear optimization.

  11. Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation.

    PubMed

    Zhong, Xu; Hilton, H John; Gates, Gregory J; Jelic, Sanja; Stern, Yaakov; Bartels, Matthew N; Demeersman, Ronald E; Basner, Robert C

    2005-06-01

    Cardiovascular autonomic modulation during 36 h of total sleep deprivation (SD) was assessed in 18 normal subjects (16 men, 2 women, 26.0 +/- 4.6 yr old). ECG and continuous blood pressure (BP) from radial artery tonometry were obtained at 2100 on the first study night (baseline) and every subsequent 12 h of SD. Each measurement period included resting supine, seated, and seated performing computerized tasks and measured vigilance and executive function. Subjects were not supine in the periods between measurements. Spectral analysis of heart rate variability (HRV) and BP variability (BPV) was computed for cardiac parasympathetic modulation [high-frequency power (HF)], sympathetic modulation [low-frequency power (LF)], sympathovagal balance (LF/HF power of R-R variability), and BPV sympathetic modulation (at LF). All spectral data were expressed in normalized units [(total power of the components/total power-very LF) x 100]. Spontaneous baroreflex sensitivity (BRS), based on systolic BP and pulse interval powers, was also measured. Supine and sitting, BPV LF was significantly increased from baseline at 12, 24, and 36 h of SD. Sitting, HRV LF was increased at 12 and 24 h of SD, HRV HF was decreased at 12 h SD, and HRV LF/HF power of R-R variability was increased at 12 h of SD. BRS was decreased at 24 h of SD supine and seated. During the simple reaction time task (vigilance testing), the significantly increased sympathetic and decreased parasympathetic cardiac modulation and BRS extended through 36 h of SD. In summary, acute SD was associated with increased sympathetic and decreased parasympathetic cardiovascular modulation and decreased BRS, most consistently in the seated position and during simple reaction-time testing.

  12. Macro-micro imaging of cardiac–neural circuits in co-cultures from normal and diseased hearts

    PubMed Central

    Bub, Gil; Burton, Rebecca-Ann B

    2015-01-01

    The autonomic nervous system plays an important role in the modulation of normal cardiac rhythm, but is also implicated in modulating the heart’s susceptibility to re-entrant ventricular and atrial arrhythmias. The mechanisms by which the autonomic nervous system is pro-arrhythmic or anti-arrhythmic is multifaceted and varies for different types of arrhythmia and their cardiac substrates. Despite decades of research in this area, fundamental questions related to how neuron density and spatial organization modulate cardiac wave dynamics remain unanswered. These questions may be ill-posed in intact tissues where the activity of individual cells is often experimentally inaccessible. Development of simplified biological models that would allow us to better understand the influence of neural activation on cardiac activity can be beneficial. This Symposium Review summarizes the development of in vitro cardiomyocyte cell culture models of re-entrant activity, as well as challenges associated with extending these models to include the effects of neural activation. PMID:25398529

  13. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells

    NASA Astrophysics Data System (ADS)

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-06-01

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.

  14. Phosphatidic acid phosphatase activity in subcellular fractions of normal and dystrophic human muscle.

    PubMed

    Kunze, D; Rüstow, B; Olthoff, D; Jung, K

    1985-03-15

    Biopsy samples from normal and dystrophic human muscle (Duchenne type) were fractionated by differential centrifugation and microsomes, mitochondria and cytosol were assayed for phosphatidic acid phosphatase (EC 3.1.3.4) and marker enzymes of mitochondria and cytosol. The activity of phosphatidic acid phosphatase was significantly lower in microsomes and higher in cytosol and mitochondria of dystrophic muscle than in the corresponding subcellular fractions of normal muscle. The results support an explanation of earlier findings that there is reduced G3P incorporation into diglycerides and phosphatidylcholine and a qualitative and quantitative change in the amount of phosphatidylcholine in dystrophic microsomes. The possible reasons for the reduction in the activity of only microsomal PA-P-ase were discussed.

  15. Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears.

    PubMed

    Rosowski, John J; Nakajima, Hideko H; Merchant, Saumil N

    2008-01-01

    The laser-Doppler vibrometer (LDV) is a research tool that can be used to quickly measure the sound-induced velocity of the tympanic membrane near the umbo (the inferior tip of the malleus) in live human subjects and patients. In this manuscript we demonstrate the LDV to be a sensitive and selective tool for the diagnosis and differentiation of various ossicular disorders in patients with intact tympanic membranes and aerated middle ears. Patients with partial or total ossicular interruption or malleus fixation are readily separated from normal-hearing subjects with the LDV. The combination of LDV measurements and air-bone gap can distinguish patients with fixed stapes from those with normal ears. LDV measurements can also help differentiate air-bone gaps produced by ossicular pathologies from those associated with pathologies of inner-ear sound conduction such as a superior semicircular canal dehiscence.

  16. Immunohistochemical expression of tenascin in normal human salivary glands and in pleomorphic adenomas.

    PubMed

    Sunardhi-Widyaputra, S; Van Damme, B

    1993-03-01

    The presence of the extracellular matrix glycoprotein tenascin was studied immunohistochemically in normal human salivary glands and in pleomorphic adenomas. Its expression was compared to that of fibronectin, and type IV collagen. In the normal salivary gland, tenascin was found with interruptions in periductal tissues, and continuously in blood vessels, fat cells and around nerve bundles. In pleomorphic adenoma, tenascin was detected surrounding the clusters of epithelioid cells, in areas with a myxoid and a chondroid matrix, and around some myoepithelial cells as a halo. As compared to fibronectin, there is a similar location of tenascin and fibronectin around tumor cell clusters but not in myxoid and chondroid matrices. Fibronectin was found around the cells in chondroid matrix. In conclusion, tenascin is not only found in malignant tumors but also in benign tumors such as pleomorphic adenoma. The presence of tenascin as a halo around myoepithelial cells suggests a role of these cells in development of myxoid and chondroid matrices.

  17. Thyroid hormone receptor and IGF1/IGFR systems: possible relations in the human heart.

    PubMed

    Sabatino, Laura; Gliozheni, Enri; Molinaro, Sabrina; Bonotti, Alessandra; Azzolina, Sienne; Popoff, Georges; Carpi, Angelo; Iervasi, Giorgio

    2007-09-01

    Thyroid hormone (TH) and insulin growth factor 1 (IGF1) systems both play crucial roles in the regulation of cardiac remodeling and hypertrophy processes. The mediation of this regulation is attributed to specific thyroid hormone receptors (TRs) and to the IGF1 receptor (IGF1R). In humans, two TR genes are expressed in the heart, TRalpha and TRbeta. Each gene generates two isoforms: TRalpha1, TRalpha2 and TRbeta1, TRbeta2. The aim of the present work was to study the local thyroid hormone and IGF1 signaling in human myocardium through the evaluation of the gene expression of TRalpha1, TRalpha2, TRbeta1 and IGF1R among atrial and ventricular biopsies obtained from patients undergoing cardiac surgery. Moreover, we evaluated possible correlations between TR and IGF1/IGF1R systems. Eighteen clinically and biochemically euthyroid patients (aged 68.3+/-3.2years, mean+/-SEM) without overt heart failure (Ejection Fraction (EF), 46.4+/-2.8%; Left Ventricular End Diastolic Diameter (LVEDD), 54.3+/-1.2mm, mean+/-SEM; NYHA I-II) were enrolled in the study: 13 undergoing aorto-coronary bypass and 5 undergoing valve replacement (aortic/mitral valve). The examination of total RNA, using real time PCR (LightCycler Technology) confirmed the expression of specific mRNAs encoding TRalpha1, TRalpha2, TRbeta1 and both IGF1 and IGF1R. We found that the three TR genes are co-expressed in the human atrium and ventricle. The finding of a strong correlation among IGF1R and the three TR genes expressed in the atrium (p<0.001) and among the three TRs in the atrium (p<0.001) suggests the interesting possibility that the two systems, TRs and IGF1R could also be functionally associated. PMID:17560756

  18. Characterization of two different agglutinators in the latex fixation test, occurring in normal human sera

    PubMed Central

    Klein, F.; Valkenburg, H. A.; Van Zwet, Theda L.; Lafeber, Geertruida J. M.

    1966-01-01

    Using a sensitive modification of the latex fixation test it is possible to detect a small agglutinating effect in about 60 per cent of normal human sera, after these have been heated for 30 minutes at 56°. This was shown to be caused by an IgM globulin with the properties of a rheumatoid factor. The factor is able to react with human IgG globulin and may represent an antibody to the IgG part of circulating antigen—antibody complexes. The heat treatment probably inactivates an inhibitor of the latex fixation reaction. In addition all normal human sera give an agglutination reaction with IgG coated latex at incubation temperatures of 37° or lower. It was shown that these reactions are caused by a thermolabile, non-reducible component with a sedimentation constant of about 10. This component is probably identical with the complement component C'1q. The agglutinating activity was found in the α2—β1 region after electrophoresis of untreated serum, but in the slow γ region after treatment of the serum with EDTA. This kind of agglutination may cause false positive reactions in latex tests which are carried out at 37° or less. ImagesFIG. 1FIG. 3 PMID:4160336

  19. A Myocardial Slice Culture Model Reveals Alpha-1A-Adrenergic Receptor Signaling in the Human Heart

    PubMed Central

    Thomas, R. Croft; Singh, Abhishek; Cowley, Patrick; Myagmar, Bat-Erdene; Montgomery, Megan D.; Swigart, Philip M.; De Marco, Teresa; Baker, Anthony J.; Simpson, Paul C.

    2016-01-01

    Background Translation of preclinical findings could benefit from a simple, reproducible, high throughput human model to study myocardial signaling. Alpha-1A-adrenergic receptors (ARs) are expressed at very low levels in the human heart, and it is unknown if they function. Objectives To develop a high throughput human myocardial slice culture model, and to test the hypothesis that alpha-1A- ARs are functional in the human heart. Methods Cores of LV free wall 8 mm diameter were taken from 52 hearts (18 failing and 34 nonfailing). Slices 250 μm thick were cut with a Krumdieck apparatus and cultured using a rotating incubation unit. Results About 60 slices were cut from each LV core, and a typical study could use 96 slices. Myocyte morphology was maintained, and diffusion into the slice center was rapid. Slice viability was stable for at least 3 days in culture by ATP and MTT assays. The beta-AR agonist isoproterenol stimulated phospholamban phosphorylation, and the alpha-1A-AR agonist A61603 stimulated ERK phosphorylation, with nanomolar EC50 values in slices from both failing and nonfailing hearts. Strips cut from the slices were used to quantify activation of contraction by isoproterenol, A61603, and phenylephrine. The slices supported transduction by adenovirus. Conclusions We have developed a simple, high throughput LV myocardial slice culture model to study signaling in the human heart. This model can be useful for translational studies, and we show for the first time that the alpha-1A-AR is functional in signaling and contraction in the human heart. PMID:27453955

  20. Identification and characterization of specific binding proteins for growth hormone in normal human sera.

    PubMed Central

    Herington, A C; Ymer, S; Stevenson, J

    1986-01-01

    The well-recognized "big" forms (45,000-100,000 mol wt) of immunoreactive human growth hormone (hGH) in human serum have been reported to be random aggregates or formal polymers. However, we have now investigated the possibility that they are protein-bound forms. After incubation of monomeric 125I-hGH with normal serum, gel chromatography indicated a peak of bound 125I-hGH (at approximately 120,000 mol wt), which was completely displaced by excess unlabeled hGH. When serum alone was chromatographed two peaks of specific binding were subsequently detected, the major peak, eluting between 74,000 and 85,000 mol wt corresponded to the 125I-hGH-binding protein complex observed at approximately 120,000 mol wt. Using a mini-gel filtration system for separating bound from free hormone, binding of 125I-hGH by normal human serum was dependent on time (equilibrium was reached in 2 h at 21 degrees C), temperature (21 degrees C greater than 37 degrees C), Ca2+ and serum concentrations. Binding was reversible and highly specific for hGH, not being displayed by GH or prolactins from several species. Scatchard analysis revealed linear plots with an affinity (KA) of 0.32 +/- 0.06 X 10(9) M-1 (n = 7). Human serum with low endogenous hGH levels, when added to rabbit liver membranes, decreased the binding of 125I-hGH in this tissue in a dose-dependent manner. These data indicate that human sera contain a specific, high affinity binding protein for hGH and that this may account, at least in part, for the known size heterogeneity of GH in serum. Its effect on GH binding to target tissues may indicate a role for the binding protein in the regulation of GH action. PMID:3711337

  1. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis

    PubMed Central

    Grogan, Shawn P; Miyaki, Shigeru; Asahara, Hiroshi; D'Lima, Darryl D; Lotz, Martin K

    2009-01-01

    Introduction Recent findings suggest that articular cartilage contains mesenchymal progenitor cells. The aim of this study was to examine the distribution of stem cell markers (Notch-1, Stro-1 and VCAM-1) and of molecules that modulate progenitor differentiation (Notch-1 and Sox9) in normal adult human articular cartilage and in osteoarthritis (OA) cartilage. Methods Expression of the markers was analyzed by immunohistochemistry (IHC) and flow cytometry. Hoechst 33342 dye was used to identify and sort the cartilage side population (SP). Multilineage differentiation assays including chondrogenesis, osteogenesis and adipogenesis were performed on SP and non-SP (NSP) cells. Results A surprisingly high number (>45%) of cells were positive for Notch-1, Stro-1 and VCAM-1 throughout normal cartilage. Expression of these markers was higher in the superficial zone (SZ) of normal cartilage as compared to the middle zone (MZ) and deep zone (DZ). Non-fibrillated OA cartilage SZ showed reduced Notch-1 and Sox9 staining frequency, while Notch-1, Stro-1 and VCAM-1 positive cells were increased in the MZ. Most cells in OA clusters were positive for each molecule tested. The frequency of SP cells in cartilage was 0.14 ± 0.05% and no difference was found between normal and OA. SP cells displayed chondrogenic and osteogenic but not adipogenic differentiation potential. Conclusions These results show a surprisingly high number of cells that express putative progenitor cell markers in human cartilage. In contrast, the percentage of SP cells is much lower and within the range of expected stem cell frequency. Thus, markers such as Notch-1, Stro-1 or VCAM-1 may not be useful to identify progenitors in cartilage. Instead, their increased expression in OA cartilage implicates involvement in the abnormal cell activation and differentiation process characteristic of OA. PMID:19500336

  2. Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells.

    PubMed

    Jeannet, Natalie; Fierz, Martin; Schneider, Sarah; Künzi, Lisa; Baumlin, Nathalie; Salathe, Matthias; Burtscher, Heinz; Geiser, Marianne

    2016-01-01

    Inhalation of engineered nanoparticles (NP) poses a still unknown risk. Individuals with chronic lung diseases are expected to be more vulnerable to adverse effects of NP than normal subjects, due to altered respiratory structures and functions. Realistic and dose-controlled aerosol exposures were performed using the deposition chamber NACIVT. Well-differentiated normal and cystic fibrosis (CF) human bronchial epithelia (HBE) with established air-liquid interface and the human bronchial epithelial cell line BEAS-2B were exposed to spark-generated silver and carbon nanoaerosols (20 nm diameter) at three different doses. Necrotic and apoptotic cell death, pro-inflammatory response, epithelial function and morphology were assessed within 24 h after aerosol exposure. NP exposure resulted in significantly higher necrosis in CF than normal HBE and BEAS-2B cells. Before and after NP treatment, CF HBE had higher caspase-3 activity and secreted more IL-6 and MCP-1 than normal HBE. Differentiated HBE had higher baseline secretion of IL-8 and less caspase-3 activity and MCP-1 secretion compared to BEAS-2B cells. These biomarkers increased moderately in response to NP exposure, except for MCP-1, which was reduced in HBE after AgNP treatment. No functional and structural alterations of the epithelia were observed in response to NP exposure. Significant differences between cell models suggest that more than one and fully differentiated HBE should be used in future toxicity studies of NP in vitro. Our findings support epidemiologic evidence that subjects with chronic airway diseases are more vulnerable to adverse effects of particulate air pollution. Thus, this sub-population needs to be included in nano-toxicity studies. PMID:26011645

  3. Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells.

    PubMed

    Jeannet, Natalie; Fierz, Martin; Schneider, Sarah; Künzi, Lisa; Baumlin, Nathalie; Salathe, Matthias; Burtscher, Heinz; Geiser, Marianne

    2016-01-01

    Inhalation of engineered nanoparticles (NP) poses a still unknown risk. Individuals with chronic lung diseases are expected to be more vulnerable to adverse effects of NP than normal subjects, due to altered respiratory structures and functions. Realistic and dose-controlled aerosol exposures were performed using the deposition chamber NACIVT. Well-differentiated normal and cystic fibrosis (CF) human bronchial epithelia (HBE) with established air-liquid interface and the human bronchial epithelial cell line BEAS-2B were exposed to spark-generated silver and carbon nanoaerosols (20 nm diameter) at three different doses. Necrotic and apoptotic cell death, pro-inflammatory response, epithelial function and morphology were assessed within 24 h after aerosol exposure. NP exposure resulted in significantly higher necrosis in CF than normal HBE and BEAS-2B cells. Before and after NP treatment, CF HBE had higher caspase-3 activity and secreted more IL-6 and MCP-1 than normal HBE. Differentiated HBE had higher baseline secretion of IL-8 and less caspase-3 activity and MCP-1 secretion compared to BEAS-2B cells. These biomarkers increased moderately in response to NP exposure, except for MCP-1, which was reduced in HBE after AgNP treatment. No functional and structural alterations of the epithelia were observed in response to NP exposure. Significant differences between cell models suggest that more than one and fully differentiated HBE should be used in future toxicity studies of NP in vitro. Our findings support epidemiologic evidence that subjects with chronic airway diseases are more vulnerable to adverse effects of particulate air pollution. Thus, this sub-population needs to be included in nano-toxicity studies.

  4. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers.

    PubMed

    Akat, Kemal Marc; Moore-McGriff, D'Vesharronne; Morozov, Pavel; Brown, Miguel; Gogakos, Tasos; Correa Da Rosa, Joel; Mihailovic, Aleksandra; Sauer, Markus; Ji, Ruiping; Ramarathnam, Aarthi; Totary-Jain, Hana; Williams, Zev; Tuschl, Thomas; Schulze, P Christian

    2014-07-29

    Heart failure (HF) is associated with high morbidity and mortality and its incidence is increasing worldwide. MicroRNAs (miRNAs) are potential markers and targets for diagnostic and therapeutic applications, respectively. We determined myocardial and circulating miRNA abundance and its changes in patients with stable and end-stage HF before and at different time points after mechanical unloading by a left ventricular assist device (LVAD) by small RNA sequencing. miRNA changes in failing heart tissues partially resembled that of fetal myocardium. Consistent with prototypical miRNA-target-mRNA interactions, target mRNA levels were negatively correlated with changes in abundance for highly expressed miRNAs in HF and fetal hearts. The circulating small RNA profile was dominated by miRNAs, and fragments of tRNAs and small cytoplasmic RNAs. Heart- and muscle-specific circulating miRNAs (myomirs) increased up to 140-fold in advanced HF, which coincided with a similar increase in cardiac troponin I (cTnI) protein, the established marker for heart injury. These extracellular changes nearly completely reversed 3 mo following initiation of LVAD support. In stable HF, circulating miRNAs showed less than fivefold differences compared with normal, and myomir and cTnI levels were only captured near the detection limit. These findings provide the underpinning for miRNA-based therapies and emphasize the usefulness of circulating miRNAs as biomarkers for heart injury performing similar to established diagnostic protein biomarkers.

  5. Calcitriol inhibits interleukin-10 expression in cultured human trophoblasts under normal and inflammatory conditions.

    PubMed

    Barrera, David; Noyola-Martínez, Nancy; Avila, Euclides; Halhali, Ali; Larrea, Fernando; Díaz, Lorenza

    2012-03-01

    Preeclampsia is associated with systemic inflammation and increased expression of placental Th1-cytokines. IL-10 and calcitriol inhibit proinflammatory cytokines expression in human placenta helping to fetal allograft toleration. Regulation of placental IL-10 by calcitriol and Th-1 cytokines has not yet been fully elucidated. Since it is believed that calcitriol promotes a shift from a Th1- to a Th2 profile, we hypothesized that it would stimulate IL-10 in a normal and an inflammatory scenario to conjointly restrain inflammation. Therefore, we investigated calcitriol effects upon IL-10 expression in cultured human trophoblasts obtained from normal (NT) and preeclamptic (PE) pregnancies. Similar studies in the presence of TNF-α (as an inflammatory stressor) were also performed. Calcitriol dose-dependently inhibited IL-10 expression in NT, PE and TNF-α-challenged trophoblasts (P<0.05). This effect was prevented by a vitamin D receptor (VDR) antagonist. IL-10 expression was significantly stimulated by TNF-α and IL-1β, inhibited by IFN-γ and was not affected by IL-6. Finally, calcitriol inhibited TNF-α and IL-1β stimulation upon IL-10. In summary, in cultured human trophoblasts, calcitriol down-regulates IL-10 expression under normal as well as under natural and experimental inflammatory conditions. This effect is mediated by the VDR and might involve direct inhibition of TNF-α. In view of these and previous results it seems that in placenta calcitriol suppresses both Th1- and Th2 cytokines while undertakes the anti-inflammatory effects of IL-10 by itself, since both factors exert this task redundantly. The regulation of IL-10 by IFN-γ suggests that this cytokine could be a viable candidate to explain low IL-10 levels in preeclampsia.

  6. Estimation of polyclonal IgG4 hybrids in normal human serum

    PubMed Central

    Young, Elizabeth; Lock, Emma; Ward, Douglas G; Cook, Alexander; Harding, Stephen; Wallis, Gregg L F

    2014-01-01

    The in vivo or in vitro formation of IgG4 hybrid molecules, wherein the immunoglobulins have exchanged half molecules, has previously been reported under experimental conditions. Here we estimate the incidence of polyclonal IgG4 hybrids in normal human serum and comment on the existence of IgG4 molecules with different immunoglobulin light chains. Polyclonal IgG4 was purified from pooled or individual donor human sera and sequentially fractionated using light-chain affinity and size exclusion chromatography. Fractions were analysed by SDS–PAGE, immunoblotting, ELISA, immunodiffusion and matrix-assisted laser-desorption mass spectrometry. Polyclonal IgG4 purified from normal serum contained IgG4κ, IgG4λ and IgG4κ/λ molecules. Size exclusion chromatography showed that IgG4 was principally present in monomeric form (150 000 MW). SDS–PAGE, immunoblotting and ELISA showed the purity of the three IgG4 samples. Immunodiffusion, light-chain sandwich ELISA and mass spectrometry demonstrated that both κ and λ light chains were present on only the IgG4κ/λ molecules. The amounts of IgG4κ/λ hybrid molecules ranged from 21 to 33% from the five sera analysed. Based on the molecular weight these molecules were formed of two IgG4 heavy chains plus one κ and one λ light chain. Polyclonal IgG (IgG4-depleted) was similarly fractionated according to light-chain specificity. No evidence of hybrid IgG κ/λ antibodies was observed. These results indicate that hybrid IgG4κ/λ antibodies compose a substantial portion of IgG4 from normal human serum. PMID:24512211

  7. Effects of a prolonged standardized diet on normalizing the human metabolome123

    PubMed Central

    Winnike, Jason H; Busby, Marjorie G; Watkins, Paul B

    2009-01-01

    Background: Although the effects of acute dietary interventions on the human metabolome have been studied, the extent to which the metabolome can be normalized by extended dietary standardization has not yet been examined. Objective: We examined the metabolic profiles of healthy human subjects after extended dietary standardization to see whether the inherent variation in the human metabolome could be decreased. Design: A cohort of 10 healthy volunteers was admitted to a clinical research center for 2 wk of dietary standardization. Daily serum and urine samples and serum samples at a 2-wk follow-up visit were collected. The samples were analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analyses. Results: NMR spectra were collected to globally profile the higher-concentration metabolites (>μmol/L concentrations). Metabolic changes were observed in some serum samples after day 1 or the 2-wk follow-up visit. For each subject, the samples from all other days had similar profiles. The urinary metabolome reflected no effects from dietary standardization. Pooled 24-h urine samples were studied, which indicated that any normalization that does occur would do so in <24 h. Conclusions: For both the urinary and serum metabolome, a single day of dietary standardization appears to provide all of the normalization that is achievable within the strict controls implemented in a clinical research setting. After 24 h, the subjects remain in their metabolic space; the remaining intra- and intersubject variations appear to be influenced by variables such as genetics, age, and lifestyle. PMID:19864408

  8. Ecological Effect of Ceftaroline-Avibactam on the Normal Human Intestinal Microbiota

    PubMed Central

    Rashid, Mamun-Ur; Rosenborg, Staffan; Panagiotidis, Georgios; Söderberg-Löfdal, Karin; Weintraub, Andrej

    2015-01-01

    Ceftaroline-avibactam is a new combination of the antibiotic ceftaroline with a novel non-β-lactam β-lactamase inhibitor, avibactam. The purpose of the present study was to investigate the effect of ceftaroline-avibactam on the human intestinal microbiota. Fourteen healthy volunteers received ceftaroline-avibactam (600 mg ceftaroline fosamil and 600 mg avibactam) intravenously over 2 h every 8 h on days 1 to 6 and as a single dose on day 7. Fecal samples were collected on day −1 (within 24 h of the first infusion on day 1) and on days 2, 5, 7, 9, 14, and 21. Escherichia coli numbers decreased during the study and normalized on day 21. An increased number of Klebsiella bacteria appeared on day 14 and normalized on day 21. The number of other enterobacteria decreased during the study, and the number of enterococci decreased from days 2 to 7 and normalized on day 9. Candida numbers increased from days 5 to 9 and normalized after day 14. The number of lactobacilli decreased during the study and recovered on day 14. The number of bifidobacteria decreased on day 2 and normalized on day 21. The number of Bacteroides bacteria was unchanged. Clostridium difficile numbers decreased on days 7 and 9 and increased on days 14 and 21. A toxigenic C. difficile strain was detected in one volunteer on day 21 with no reported adverse events. Plasma samples were collected on days −1, 2, 5, and 7. Ceftaroline and avibactam concentrations were 0 to 34.5 mg/liter and 0 to 61.6 mg/liter, respectively, in plasma and 0 to 35.4 mg/kg and 0 to 98.5 mg/kg, respectively, in feces. (This study is registered in the European Clinical Trials Database [https://eudract.ema.europa.eu/] under number EudraCT 2012 004921-25.) PMID:25987638

  9. Isolation of alpha 1-protease inhibitor from human normal and malignant ovarian tissue.

    PubMed Central

    Bagdasarian, A; Wheeler, J; Stewart, G J; Ahmed, S S; Colman, R W

    1981-01-01

    Proteolytic enzymes are associated with normal and neoplastic tissues. Therefore protease inhibitors might also be involved in the control of cell function. alpha 1-protease antigen and antitryptic activity have been found in normal and neoplastic human ovarian homogenate. The inhibitor has been localized to ovarian stromal cells or tumor cells by immunoperoxidase staining. The protein was purified to apparent homogeneity as judged by alkaline gel and sodium dodecyl sulfate (SDS) gel electrophoresis. Immunochemical studies revealed antigenic similarity of plasma alpha 1-protease inhibitor by double immunodiffusion and similar mobility on immunoelectrophoresis and two-dimensional electroimmunodiffusion. The molecular weight was similar to that described for plasma alpha 1-protease inhibitor: 60,000 by gel filtration and 53,500 by SDS electrophoresis. Furthermore, the phenotypic pattern as determined by acid starch gel electrophoresis and immunoprecipitation was PiMM, which is the predominant genetic variant in normal plasma alpha 1-protease inhibitor. An inhibitor ws isolated and purified from an ovarian carcinoma that exhibited functional, immunochemical, and physical similarity to the normal ovarian alpha 1-protease inhibitor. alpha 1-protease inhibitor from normal and malignant ovaries competitively inhibited bovine pancreatic trypsin at incubation times of 5 min at 30 degrees C. Inhibition constant (Ki) values were calculated at 0.67 and 0.51 inhibitory units, respectively. The alpha 1-protease inhibitor in malignant cells may be a factor in the control of proliferation in this tissue. Since ovulation is in part a proteolytic event, the alpha 1-protease inhibitor in ovarian cells may play a role in the control of this specialized tissue. Persistance of this protein in malignant ovarian tissue may be a vestige of its differentiated origin. Images PMID:6161137

  10. Multi-Atlas Library for Eliminating Normalization Failures in Non-Human Primates.

    PubMed

    Maldjian, Joseph A; Shively, Carol A; Nader, Michael A; Friedman, David P; Whitlow, Christopher T

    2016-04-01

    Current tools for automated skull stripping, normalization, and segmentation of non-human primate (NHP) brain MRI studies typically demonstrate high failure rates. Many of these failures are due to a poor initial estimate for the affine component of the transformation. The purpose of this study is to introduce a multi-atlas approach to overcome these limitations and drive the failure rate to near zero. A library of study-specific templates (SST) spanning three Old World primate species (Macaca fascicularis, M. mulatta, Chlorocebus aethiops) was created using a previously described unbiased automated approach. Several modifications were introduced to the methodology to improve initial affine estimation at the study-specific template level, and at the individual subject level. These involve performing multiple separate normalizations to a multi-atlas library of templates and selecting the best performing template on the basis of a covariance similarity metric. This template was then used as an initialization for the affine component of subsequent skull stripping and normalization procedures. Normalization failure rate for SST generation and individual-subject segmentation on a set of 150 NHP was evaluated on the basis of visual inspection. The previous automated template creation procedure results in excellent skull stripping, segmentation, and atlas labeling across species. Failure rate at the individual-subject level was approximately 1%, however at the SST generation level it was 17%. Using the new multi-atlas approach, failure rate was further reduced to zero for both SST generation and individual subject processing. We describe a multi-atlas library registration approach for driving normalization failures in NHP to zero. It is straightforward to implement, and can have application to a wide variety of existing tools, as well as in difficult populations including neonates and the elderly. This approach is also an important step towards developing fully automated

  11. Perturbations of heart development and function in cardiomyocytes from human embryonic stem cells with trisomy 21.

    PubMed

    Bosman, Alexis; Letourneau, Audrey; Sartiani, Laura; Del Lungo, Martina; Ronzoni, Flavio; Kuziakiv, Rostyslav; Tohonen, Virpi; Zucchelli, Marco; Santoni, Federico; Guipponi, Michel; Dumevska, Biljana; Hovatta, Outi; Antonarakis, Stylianos E; Jaconi, Marisa E

    2015-05-01

    Congenital heart defects (CHD) occur in approximately 50% of patients with Down syndrome (DS); the mechanisms for this occurrence however remain unknown. In order to understand how these defects evolve in early development in DS, we focused on the earliest stages of cardiogenesis to ascertain perturbations in development leading to CHD. Using a trisomy 21 (T21) sibling human embryonic stem cell (hESC) model of DS, we show that T21-hESC display many significant differences in expression of genes and cell populations associated with mesodermal, and more notably, secondary heart field (SHF) development, in particular a reduced number of ISL1(+) progenitor cells. Furthermore, we provide evidence for two candidate genes located on chromosome 21, ETS2 and ERG, whose overexpression during cardiac commitment likely account for the disruption of SHF development, as revealed by downregulation or overexpression experiments. Additionally, we uncover an abnormal electrophysiological phenotype in functional T21 cardiomyocytes, a result further supported by mRNA expression data acquired using RNA-Seq. These data, in combination, revealed a cardiomyocyte-specific phenotype in T21 cardiomyocytes, likely due to the overexpression of genes such as RYR2, NCX, and L-type Ca(2+) channel. These results contribute to the understanding of the mechanisms involved in the development of CHD. Stem Cells 2015;33:1434-1446.

  12. An Update on Heart Transplantation in Human Immunodeficiency Virus-Infected Patients.

    PubMed

    Agüero, F; Castel, M A; Cocchi, S; Moreno, A; Mestres, C A; Cervera, C; Pérez-Villa, F; Tuset, M; Cartañà, R; Manzardo, C; Guaraldi, G; Gatell, J M; Miró, J M

    2016-01-01

    Cardiovascular diseases have become a significant cause of morbidity in patients with human immunodeficiency virus (HIV) infection. Heart transplantation (HT) is a well-established treatment of end-stage heart failure (ESHF) and is performed in selected HIV-infected patients in developed countries. Few data are available on the prognosis of HIV-infected patients undergoing HT in the era of combined antiretroviral therapy (cART) because current evidence is limited to small retrospective cohorts, case series, and case reports. Many HT centers consider HIV infection to be a contraindication for HT; however, in the era of cART, HT recipients with HIV infection seem to achieve satisfactory outcomes without developing HIV-related events. Consequently, selected HIV-infected patients with ESHF who are taking effective cART should be considered candidates for HT. The present review provides epidemiological data on ESHF in HIV-infected patients from all published experience on HT in HIV-infected patients since the beginning of the epidemic. The practical management of these patients is discussed, with emphasis on the challenging issues that must be addressed in the pretransplant (including HIV criteria) and posttransplant periods. Finally, proposals are made for future management and research priorities. PMID:26523614

  13. [The function of the heart changes in implementation of the diving reactions in humans].

    PubMed

    Baranova, T I; Berlov, D N; Zavarina, L B; Minigalin, A D; Smith, N Y; Xu, S; Yanvareva, I N

    2015-03-01

    The changes of chronotropic function of the heart and of the myocardium in the implementation of the diving response in humans were studied by the electrocardiographic method. The study involved 80 students aged 18-20 years. Diving simulation was performed by immersing the face in cold water during breath-hold exhale. When the water temperature was 12.3 +/- 2.3 degrees C, average duration of apnea was 31 +/- 11 s. The oxygen content in the exhaled air after apnea was 98.8 +/- 8.7 mm Hg, carbon dioxide--49.1 +/- 3.5 mm Hg. It was observed slowing of the heart rate, mainly due to the increasing of diastole in 41 of the 80 surveyed during simulating diving. But it also can be observed symptoms of conduction deterioration: atrioventricular block type I (22% of reactive type and 29% of the highly reactive type subjects), and exceeds standards QTc-interval prolongation (at 7.5% of the subjects). These responses are adaptive in nature and disappear in the recovery process. But the fact abnormalities of conduction in the myocardium must be considered when using the diving reflex in medical practice, as may be due to a predisposition to a certain pathology of the cardiovascular system.

  14. Assessment of Mitochondrial Dysfunction and Monoamine Oxidase Contribution to Oxidative Stress in Human Diabetic Hearts

    PubMed Central

    Duicu, O. M.; Lighezan, R.; Sturza, A.; Balica, R.; Vaduva, A.; Feier, H.; Gaspar, M.; Ionac, A.; Noveanu, L.; Borza, C.; Muntean, D. M.; Mornos, C.

    2016-01-01

    Mitochondria-related oxidative stress is a pathomechanism causally linked to coronary heart disease (CHD) and diabetes mellitus (DM). Recently, mitochondrial monoamine oxidases (MAOs) have emerged as novel sources of oxidative stress in the cardiovascular system and experimental diabetes. The present study was purported to assess the mitochondrial impairment and the contribution of MAOs-related oxidative stress to the cardiovascular dysfunction in coronary patients with/without DM. Right atrial appendages were obtained from 75 patients randomized into 3 groups: (1) Control (CTRL), valvular patients without CHD; (2) CHD, patients with confirmed CHD; and (3) CHD-DM, patients with CHD and DM. Mitochondrial respiration was measured by high-resolution respirometry and MAOs expression was evaluated by RT-PCR and immunohistochemistry. Hydrogen peroxide (H2O2) emission was assessed by confocal microscopy and spectrophotometrically. The impairment of mitochondrial respiration was substrate-independent in CHD-DM group. MAOs expression was comparable among the groups, with the predominance of MAO-B isoform but no significant differences regarding oxidative stress were detected by either method. Incubation of atrial samples with MAOs inhibitors significantly reduced the H2O2 in all groups. In conclusion, abnormal mitochondrial respiration occurs in CHD and is more severe in DM and MAOs contribute to oxidative stress in human diseased hearts with/without DM. PMID:27190576

  15. Endothelin-1 production by normal human cultured keratinocytes and its regulation.

    PubMed

    Inoue, H; Wakisaka, N; Tane, N; Ando, K; Isono, E; Yamanaka, M; Aihara, M; Ishida, H

    1994-01-01

    The possibility that cultured keratinocytes produce endothelins were investigated. The results showed that cultured keratinocytes derived from normal human skin produce endothelin-1. Moreover, keratinocyte endothelin-1 production was completely inhibited by the presence of actinomycin D in the medium. As in the case of endothelial cells, recombinant interleukin-1beta was capable of promoting endothelin-1 production in keratinocytes, whereas herapin inhibited it. Thrombin also inhibited endothelin-1 production. These results indicate that the mechanism of endothelin-1 production in keratinocytes is slightly different from the mechanism in vascular endothelial cells.

  16. Nystagmus responses in a group of normal humans during earth-horizontal axis rotation

    NASA Technical Reports Server (NTRS)

    Wall, Conrad, III; Furman, Joseph M. R.

    1989-01-01

    Horizontal eye movement responses to earth-horizontal yaw axis rotation were evaluated in 50 normal human subjects who were uniformly distributed in age (20-69 years) and each age group was then divided by gender. Subjects were rotated with eyes open in the dark, using clockwise and counter-clockwise 60 deg velocity trapezoids. The nystagmus slow component velocity is analyzed. It is shown that, despite large intersubject variability, parameters which describe earth-horizontal yaw axis responses are loosely interrelated, and some of them vary significantly with gender and age.

  17. Autofluorescence of normal and tumor mucosa of human colon: a comprehensive analysis

    NASA Astrophysics Data System (ADS)

    Bottiroli, Giovanni F.; Marchesini, Renato; Croce, Anna C.; Dal Fante, Marco; Cuzzoni, Carolina; Di Palma, Silvana; Spinelli, Pasquale

    1993-08-01

    Both 'in vivo' and 'ex vivo' spectrofluorometric studies of neoplastic and non-neoplastic mucosa of human colon have been carried out, in order to verify the potentials of tissue natural fluorescence as a possible parameter to distinguish normal from diseased tissues, Spectrofluorometric analysis performed at colonoscopy on patients affected by neoplasia, showed that adenocarcinoma, adenoma and non-neoplastic mucosa differ in the fluorescence emissions. The results have been interpreted according to the data obtained on cryostatic sections from biopsies by means of a microspectrofluorometric analysis carried out on each histological component.

  18. Shilajit: evalution of its effects on blood chemistry of normal human subjects.

    PubMed

    Sharma, Praveen; Jha, Jagrati; Shrinivas, V; Dwivedi, L K; Suresh, P; Sinha, M

    2003-10-01

    The effect of Shilajit on blood chemistry was studied in normal human volunteers. Administration of two gms of Shilajit for 45 days did not produced any significant change in physical parameters i.e. blood pressure, pulse rate and body weight and similarly no charge was observed in hematological parameters. A signification reduction in Serum Triglycerides, Serum cholesterol with simultaneous improvement in HDL Cholesterol was seen, besides Shilajit also improved antioxidant status of volunteers. Results of study suggest hypolipidemic and strong antioxidant activity of Shilajit.

  19. The significance of paired astrocyte nuclei in normal human nervous tissue.

    PubMed Central

    Pittella, J E; Brasileiro-Filho, G

    1987-01-01

    A quantitative study of astrocytes was carried out in 80 microscopic fields and the number of paired nuclei in 100 consecutive astrocytes of the temporo-occipital gyrus cortex was determined in 13 patients with no cerebral or liver disease. No significant correlation was found between astrocyte number and the percentage of paired nuclei. When studies on astrocytes in hepatic encephalopathy, liver cirrhosis and hepatosplenic schistosomiasis are taken into consideration it is suggested that these cells are in continuous variable renewal in normal adult human nervous tissue, as occurs in other animal species. Images Fig. 1 PMID:3654344

  20. Functional Effects of Delivering Human Mesenchymal Stem Cell-Seeded Biological Sutures to an Infarcted Heart.

    PubMed

    Hansen, Katrina J; Favreau, John T; Guyette, Jacques P; Tao, Ze-Wei; Coffin, Spencer T; Cunha-Gavidia, Anny; D'Amore, Brian; Perreault, Luke R; Fitzpatrick, John P; DeMartino, Angelica; Gaudette, Glenn R

    2016-01-01

    Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation. At 1 week postinfarct, the heart was imaged to assess mechanical function in the infarct region. Regional parameters assessed were regional stroke work (RSW) and systolic area of contraction (SAC) and global parameters derived from the pressure waveform. MI (n = 6) significantly decreased RSW (0.026 ± 0.011) and SAC (0.022 ± 0.015) when compared with sham operation (RSW: 0.141 ± 0.009; SAC: 0.166 ± 0.005, n = 6) (p < 0.05). The delivery of unseeded biological sutures to the infarcted hearts did not change regional mechanical function compared with the infarcted hearts (RSW: 0.032 ± 0.004, SAC: 0.037 ± 0.008, n = 6). The delivery of hMSC-seeded sutures exerted a trend toward increase of regional mechanical function compared with the infarcted heart (RSW: 0.057 ± 0.011; SAC: 0.051 ± 0.014, n = 6). Global function showed no significant differences between any group (p > 0.05); however, there was a trend toward improved function with the addition of either unseeded or seeded biological suture. Histology demonstrated that Qdot-loaded hMSCs remained present in the infarcted myocardium after 1 week. Analysis of serial sections of Masson's trichrome staining revealed that the greatest infarct size was in the infarct group (7.0% ± 2.2%), where unseeded (3.8% ± 0.6%) and hMSC-seeded (3.7% ± 0.8%) suture groups maintained similar infarct sizes. Furthermore, the remaining suture area was

  1. Functional Effects of Delivering Human Mesenchymal Stem Cell-Seeded Biological Sutures to an Infarcted Heart

    PubMed Central

    Hansen, Katrina J.; Favreau, John T.; Guyette, Jacques P.; Tao, Ze-Wei; Coffin, Spencer T.; Cunha-Gavidia, Anny; D'Amore, Brian; Perreault, Luke R.; Fitzpatrick, John P.; DeMartino, Angelica; Gaudette, Glenn R.

    2016-01-01

    Abstract Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation. At 1 week postinfarct, the heart was imaged to assess mechanical function in the infarct region. Regional parameters assessed were regional stroke work (RSW) and systolic area of contraction (SAC) and global parameters derived from the pressure waveform. MI (n = 6) significantly decreased RSW (0.026 ± 0.011) and SAC (0.022 ± 0.015) when compared with sham operation (RSW: 0.141 ± 0.009; SAC: 0.166 ± 0.005, n = 6) (p < 0.05). The delivery of unseeded biological sutures to the infarcted hearts did not change regional mechanical function compared with the infarcted hearts (RSW: 0.032 ± 0.004, SAC: 0.037 ± 0.008, n = 6). The delivery of hMSC-seeded sutures exerted a trend toward increase of regional mechanical function compared with the infarcted heart (RSW: 0.057 ± 0.011; SAC: 0.051 ± 0.014, n = 6). Global function showed no significant differences between any group (p > 0.05); however, there was a trend toward improved function with the addition of either unseeded or seeded biological suture. Histology demonstrated that Qdot-loaded hMSCs remained present in the infarcted myocardium after 1 week. Analysis of serial sections of Masson's trichrome staining revealed that the greatest infarct size was in the infarct group (7.0% ± 2.2%), where unseeded (3.8% ± 0.6%) and hMSC-seeded (3.7% ± 0.8%) suture groups maintained similar infarct sizes. Furthermore, the remaining suture area

  2. Integrated Central-Autonomic Multifractal Complexity in the Heart Rate Variability of Healthy Humans

    PubMed Central

    Lin, D. C.; Sharif, A.

    2012-01-01

    Purpose of Study: The aim of this study was to characterize the central-autonomic interaction underlying the multifractality in heart rate variability (HRV) of healthy humans. Materials and Methods: Eleven young healthy subjects participated in two separate ~40 min experimental sessions, one in supine (SUP) and one in, head-up-tilt (HUT), upright (UPR) body positions. Surface scalp electroencephalography (EEG) and electrocardiogram (ECG) were collected and fractal correlation of brain and heart rate data was analyzed based on the idea of relative multifractality. The fractal correlation was further examined with the EEG, HRV spectral measures using linear regression of two variables and principal component analysis (PCA) to find clues for the physiological processing underlying the central influence in fractal HRV. Results: We report evidence of a central-autonomic fractal correlation (CAFC) where the HRV multifractal complexity varies significantly with the fractal correlation between the heart rate and brain data (P = 0.003). The linear regression shows significant correlation between CAFC measure and EEG Beta band spectral component (P = 0.01 for SUP and P = 0.002 for UPR positions). There is significant correlation between CAFC measure and HRV LF component in the SUP position (P = 0.04), whereas the correlation with the HRV HF component approaches significance (P = 0.07). The correlation between CAFC measure and HRV spectral measures in the UPR position is weak. The PCA results confirm these findings and further imply multiple physiological processes underlying CAFC, highlighting the importance of the EEG Alpha, Beta band, and the HRV LF, HF spectral measures in the supine position. Discussion and Conclusion: The findings of this work can be summarized into three points: (i) Similar fractal characteristics exist in the brain and heart rate fluctuation and the change toward stronger fractal correlation implies the change toward more complex

  3. Functional Effects of Delivering Human Mesenchymal Stem Cell-Seeded Biological Sutures to an Infarcted Heart

    PubMed Central

    Hansen, Katrina J.; Favreau, John T.; Guyette, Jacques P.; Tao, Ze-Wei; Coffin, Spencer T.; Cunha-Gavidia, Anny; D'Amore, Brian; Perreault, Luke R.; Fitzpatrick, John P.; DeMartino, Angelica; Gaudette, Glenn R.

    2016-01-01

    Abstract Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation. At 1 week postinfarct, the heart was imaged to assess mechanical function in the infarct region. Regional parameters assessed were regional stroke work (RSW) and systolic area of contraction (SAC) and global parameters derived from the pressure waveform. MI (n = 6) significantly decreased RSW (0.026 ± 0.011) and SAC (0.022 ± 0.015) when compared with sham operation (RSW: 0.141 ± 0.009; SAC: 0.166 ± 0.005, n = 6) (p < 0.05). The delivery of unseeded biological sutures to the infarcted hearts did not change regional mechanical function compared with the infarcted hearts (RSW: 0.032 ± 0.004, SAC: 0.037 ± 0.008, n = 6). The delivery of hMSC-seeded sutures exerted a trend toward increase of regional mechanical function compared with the infarcted heart (RSW: 0.057 ± 0.011; SAC: 0.051 ± 0.014, n = 6). Global function showed no significant differences between any group (p > 0.05); however, there was a trend toward improved function with the addition of either unseeded or seeded biological suture. Histology demonstrated that Qdot-loaded hMSCs remained present in the infarcted myocardium after 1 week. Analysis of serial sections of Masson's trichrome staining revealed that the greatest infarct size was in the infarct group (7.0% ± 2.2%), where unseeded (3.8% ± 0.6%) and hMSC-seeded (3.7% ± 0.8%) suture groups maintained similar infarct sizes. Furthermore, the remaining suture area

  4. Dimensional analysis of heart rate variability in heart transplant recipients

    SciTech Connect

    Zbilut, J.P.; Mayer-Kress, G.; Geist, K.

    1987-01-01

    We discuss periodicities in the heart rate in normal and transplanted hearts. We then consider the possibility of dimensional analysis of these periodicities in transplanted hearts and problems associated with the record.

  5. Expression of splice variants of mts1 gene in normal and neoplastic human tissues

    SciTech Connect

    Ambartsumyan, N.S. |; Grigorian, M.S.; Lukanidin, E.M.

    1995-09-01

    Data on cloning of cDNA corresponding to human mts1 gene transcripts are presented. By comparing nucleotide sequences of the genomic DNA clone and cDNA of mts1, it was shown that human osteosarcoma OHS cells contain two alternative splice variants of mts1 transcripts. Alternative splicing occurs in the 5{prime}-untranslated region of the mts1 pre-mRNA. Both splice variants, hu-mts1 and hu-mts1(var), demonstrate similar stability in the cells, and each contains one open reading frame for the MTS1 protein. However, the two types of transcripts are translated with different effectiveness. The level of transcription of mts1 splice variants in different normal and neoplastic tissues and cell lines varies significantly. The role of alternative splicing as the mechanism responsible for posttranscriptional regulation of mts1 gene expression is discussed. 31 refs., 5 figs.

  6. Expression, localisation and functional activation of NFAT-2 in normal human skin, psoriasis, and cultured keratocytes.

    PubMed

    Al-Daraji, Wael I; Malak, Tamer T; Prescott, Richard J; Abdellaoui, Adel; Ali, Mahmud M; Dabash, Tarek; Zelger, Bettina G; Zelger, Bernhard

    2009-06-18

    Ciclosporin A (CsA) is widely utilized for the treatment of inflammatory skin diseases such as psoriasis. The therapeutic effects of CsA are thought to be mediated via its immunosuppressive action on infiltrating lymphocytes in skin lesions. CsA and tacrolimus block T cell activation by inhibiting the phosphatase calcineurin and preventing translocation from the cytoplasm to the nucleus of the transcription factor Nuclear Factor of Activated T cells (NFAT). As calcineurin and NFAT 1 have been shown to be functionally active in cultured human keratocytes, expression of other NFAT family members such as NFAT-2 and possible functional activation was investigated in human keratocytes. RT-PCR and Western Analysis were used to investigate the presence of NFAT-2 mRNA and protein in human keratocytes. Tissue culture of human keratocytes and immunostaining of cells on coverslips and confocal microscopy were used to assess the degree of nuclear localisation of NFAT-2 in cultured cells. Keratome biopsies were taken from patients with psoriasis (lesional and non-lesional skin) and normal skin and immunohistochemistry was used to assess the NFAT-2 localisation in these biopsies using a well characterized anti-NFAT-2 antibody. The NFAT-2 mRNA and protein expression was demonstrated using RT-PCR and Western blotting. Moreover, the expression of NFAT-2 in normal skin, non-lesional and lesional psoriasis showed a striking basal staining suggesting a role for NFAT-2 in keratocytes proliferation. A range of cell types in the skin express NFAT-2. The expression of NFAT-2 in human keratocytes and response to different agonists provides perhaps a unique opportunity to examine the regulation, subcellular localization and kinetics of translocation of different NFATs in primary cultured human cells. In these experiments the author assessed the expression, localization of NFAT-2 in cultured human keratocytes and measured the degree of nuclear localisaion of NFAT-2 using immunofluorescence

  7. Visual Acuity of Simulated Thalamic Visual Prostheses in Normally Sighted Humans

    PubMed Central

    Jeffries, Ailsa; Pezaris, John S.

    2013-01-01

    Simulation in normally sighted individuals is a crucial tool to evaluate the performance of potential visual prosthesis designs prior to human implantation of a device. Here, we investigated the effects of electrode count on visual acuity, learning rate and response time in 16 normally sighted subjects using a simulated thalamic visual prosthesis, providing the first performance reports for thalamic designs. A new letter recognition paradigm using a multiple-optotype two-alternative forced choice task was adapted from the Snellen eye chart, and specifically devised to be readily communicated to both human and non-human primate subjects. Validation of the method against a standard Snellen acuity test in 21 human subjects showed no significant differences between the two tests. The novel task was then used to address three questions about simulations of the center-weighted phosphene p