Sample records for normal human kidneys

  1. Urinary Virome Perturbations in Kidney Transplantation.

    PubMed

    Sigdel, Tara K; Mercer, Neil; Nandoe, Sharvin; Nicora, Carrie D; Burnum-Johnson, Kristin; Qian, Wei-Jun; Sarwal, Minnie M

    2018-01-01

    The human microbiome is important for health and plays a role in essential metabolic functions and protection from certain pathogens. Conversely, dysbiosis of the microbiome is seen in the context of various diseases. Recent studies have highlighted that a complex microbial community containing hundreds of bacteria colonizes the healthy urinary tract, but little is known about the human urinary viruses in health and disease. To evaluate the human urinary virome in the context of kidney transplantation (tx), variations in the composition of the urinary virome were evaluated in urine samples from normal healthy volunteers as well as patients with kidney disease after they had undergone kidney tx. Liquid chromatography-mass spectrometry/mass spectrometry analysis was undertaken on a selected cohort of 142 kidney tx patients and normal healthy controls, from a larger biobank of 770 kidney biopsy matched urine samples. In addition to analysis of normal healthy control urine, the cohort of kidney tx patients had biopsy confirmed phenotype classification, coincident with the urine sample analyzed, of stable grafts (STA), acute rejection, BK virus nephritis, and chronic allograft nephropathy. We identified 37 unique viruses, 29 of which are being identified for the first time in human urine samples. The composition of the human urinary virome differs in health and kidney injury, and the distribution of viral proteins in the urinary tract may be further impacted by IS exposure, diet and environmental, dietary, or cutaneous exposure to various insecticides and pesticides.

  2. Decellularized Human Kidney Cortex Hydrogels Enhance Kidney Microvascular Endothelial Cell Maturation and Quiescence.

    PubMed

    Nagao, Ryan J; Xu, Jin; Luo, Ping; Xue, Jun; Wang, Yi; Kotha, Surya; Zeng, Wen; Fu, Xiaoyun; Himmelfarb, Jonathan; Zheng, Ying

    2016-10-01

    The kidney peritubular microvasculature is highly susceptible to injury from drugs and toxins, often resulting in acute kidney injury and progressive chronic kidney disease. Little is known about the process of injury and regeneration of human kidney microvasculature, resulting from the lack of appropriate kidney microvascular models that can incorporate the proper cells, extracellular matrices (ECMs), and architectures needed to understand the response and contribution of individual vascular components in these processes. In this study, we present methods to recreate the human kidney ECM (kECM) microenvironment by fabricating kECM hydrogels derived from decellularized human kidney cortex. The majority of native matrix proteins, such as collagen-IV, laminin, and heparan sulfate proteoglycan, and their isoforms were preserved in similar proportions as found in normal kidneys. Human kidney peritubular microvascular endothelial cells (HKMECs) became more quiescent when cultured on this kECM gel compared with culture on collagen-I-assessed using phenotypic, genotypic, and functional assays; whereas human umbilical vein endothelial cells became stimulated on kECM gels. We demonstrate for the first time that human kidney cortex can form a hydrogel suitable for use in flow-directed microphysiological systems. Our findings strongly suggest that selecting the proper ECM is a critical consideration in the development of vascularized organs on a chip and carries important implications for tissue engineering of all vascularized organs.

  3. [The determination of the natural content of chemical elements in human biological objects (liver, kidney, stomach) by mass spectrometry with inductively coupled plasma].

    PubMed

    Luzanova, I S; Svetlolobov, D Iu; Zorin, Iu V

    2014-01-01

    The objective of the present work was to continue the studies of the sites of concentration of the chemical elements corresponding to normal homeostasis in human biological objects by mass spectrometry with inductively coupled plasma. The study yielded the data on the natural content of 27 elements in the cadaveric liver, kidney, and stomach. It is recommended to use these findings as the reference parameters corresponding to normal homeostasis.

  4. Renal synthesis of leukaemia inhibitory factor (LIF), under normal and inflammatory conditions.

    PubMed

    Morel, D S; Taupin, J L; Potier, M; Deminière, C; Potaux, L; Gualde, N; Moreau, J F

    2000-03-01

    Leukaemia inhibitory factor (LIF) is a pleiotropic cytokine that is particularly involved in nephrogenesis and repair of the extracellular matrix. Transgenic mice overexpressing LIF have mesangial proliferative glomerulonephritis. Also, during local inflammatory reactions, such as kidney graft rejection or urinary tract infections, urinary LIF excretion is enhanced. The aim of the study therefore was to study LIF production by normal and inflammatory diseased kidneys (glomerulonephritis or graft rejection), maintained in short cultures. To determine the responsibility of the kidney itself in LIF synthesis, we measured LIF secretion into the culture supernatants of human mesangial or renal tubular epithelial cells. Fragments from diseased kidneys, whether grafts or not, released more LIF than normal human kidney fragments, mesangial or renal tubular epithelial cells. However, LIF production was delayed in renal transplants compared to glomerulonephritic samples taken from untreated patients. In every case, LIF production was enhanced by interleukin 1beta (IL-1beta) and inhibited by IL-4 or dexamethasone, except in two severe rejection episodes. So, LIF appeared to respond to pro- and anti-inflammatory stimuli, in vitro and in vivo. Considering its biological effects, LIF could play a role in inflammatory renal diseases. Copyright 2000 Academic Press.

  5. Mapping of Carboxypeptidase M in Normal Human Kidney and Renal Cell Carcinoma

    PubMed Central

    Denis, Catherine J.; Van Acker, Nathalie; De Schepper, Stefanie; De Bie, Martine; Andries, Luc; Fransen, Erik; Hendriks, Dirk; Kockx, Mark M.

    2013-01-01

    Although the kidney generally has been regarded as an excellent source of carboxypeptidase M (CPM), little is known about its renal-specific expression level and distribution. This study provides a detailed localization of CPM in healthy and diseased human kidneys. The results indicate a broad distribution of CPM along the renal tubular structures in the healthy kidney. CPM was identified at the parietal epithelium beneath the Bowman’s basement membrane and in glomerular mesangial cells. Capillaries, podocytes, and most interstitial cells were CPM negative. Tumor cells of renal cell carcinoma subtypes lose CPM expression upon dedifferentiation. Tissue microarray analysis demonstrated a correlation between low CPM expression and tumor cell type. CPM staining was intense on phagocytotic tumor-associated macrophages. Immunoreactive CPM was also detected in the tumor-associated vasculature. The absence of CPM in normal renal blood vessels points toward a role for CPM in angiogenesis. Coexistence of CPM and the epidermal growth factor receptor (EGFR) was detected in papillary renal cell carcinoma. However, the different subcellular localization of CPM and EGFR argues against an interaction between these h proteins. The description of the distribution of CPM in human kidney forms the foundation for further study of the (patho)physiological activities of CPM in the kidney. PMID:23172796

  6. Understanding Kidney Disease: Toward the Integration of Regulatory Networks Across Species

    PubMed Central

    Ju, Wenjun; Brosius, Frank C.

    2010-01-01

    Animal models have long been useful in investigating both normal and abnormal human physiology. Systems biology provides a relatively new set of approaches to identify similarities and differences between animal models and humans that may lead to a more comprehensive understanding of human kidney pathophysiology. In this review, we briefly describe how genome-wide analyses of mouse models have helped elucidate features of human kidney diseases, discuss strategies to achieve effective network integration, and summarize currently available web-based tools that may facilitate integration of data across species. The rapid progress in systems biology and orthology, as well as the advent of web-based tools to facilitate these processes, now make it possible to take advantage of knowledge from distant animal species in targeted identification of regulatory networks that may have clinical relevance for human kidney diseases. PMID:21044762

  7. Apical Plasma Membrane Mispolarization of NaK-ATPase in Polycystic Kidney Disease Epithelia Is Associated with Aberrant Expression of the β2 Isoform

    PubMed Central

    Wilson, Patricia D.; Devuyst, Olivier; Li, Xiaohong; Gatti, Laura; Falkenstein, Doris; Robinson, Shawn; Fambrough, Douglas; Burrow, Christopher R.

    2000-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disease of the kidney, characterized by cystic enlargement of renal tubules, aberrant epithelial proliferation, and ion and fluid secretion into the lumen. Previous studies have shown abnormalities in polarization of membrane proteins, including mislocalization of the NaK-ATPase to the apical plasma membranes of cystic epithelia. Apically located NaK-ATPase has previously been shown to be fully functional in vivo and in membrane-grown ADPKD epithelial cells in vitro, where basal-to-apical 22Na transport was inhibited by application of ouabain to the apical membrane compartment. Studies were conducted with polymerase chain reaction-generated specific riboprobes and polyclonal peptide antibodies against human sequences of α1, α3, β1, and β2 subunits of NaK-ATPase. High levels of expression of α1 and β1 messenger RNA were detected in ADPKD and age-matched normal adult kidneys in vivo, whereas β2 messenger RNA was detected only in ADPKD kidneys. Western blot analysis and immunocytochemical studies showed that, in normal adult kidneys, peptide subunit-specific antibodies against α1 and β1 localized to the basolateral membranes of normal renal tubules, predominantly thick ascending limbs of Henle’s loop. In ADPKD kidneys, α1 and β2 subunits were localized to the apical epithelial cell membranes, whereas β1 was distributed throughout the cytoplasm and predominantly in the endoplasmic reticulum, but was not seen associated with cystic epithelial cell membranes or in cell membrane fractions. Polarizing, renal-derived epithelial Madin Darby canine kidney cells, stably expressing normal or N-terminally truncated chicken β1 subunits, showed selective accumulation in the basolateral Madin Darby canine kidney cell surface, whereas c-myc epitope-tagged chicken β2 or human β2 subunits accumulated selectively in the apical cell surface. Similarly, human ADPKD epithelial cell lines, which endogenously expressed α1 and β2 NaK-ATPase subunits, showed colocalization at the apical cell surface and coassociation by immunoprecipitation analysis. These results are consistent with a model in which the additional transcription and translation of the β2 subunit of NaK-ATPase may result in the apical mislocalization of NaK-ATPase in ADPKD cystic epithelia. PMID:10623674

  8. Se status in normal and pathological human individuals before and after Se supplementation

    NASA Astrophysics Data System (ADS)

    Bellisola, G.; Cinque, G.; Galassini, S.; Guidi, G. C.; Liu, N. Q.; Moschini, G.

    1996-04-01

    The determination of selenium in plasma and in urine samples has been suggested for the assessment of Se status in human individuals. The kidney is of fundamental importance in Se homeostasis: with low Se intake its excretion will be decreased and with high Se intake it will be increased. In 21 patients with kidney disease (8 with normal kidney function and 13 with moderate renal failure) Se was measured in 1 ml of urine by PIXE after preconcentration of the sample. The total urine volume was measured to calculate total daily Se excretion. The same procedure was applied to 14 normal individuals for comparison. All individuals were then supplemented orally with selenite for 8 weeks (Se = 600 μg/day) and the procedure was repeated. The behaviour of the major selenoproteins was also investigated by measuring glutathione peroxidase activities in plasma, in platelets and in erythrocyte samples. For renal function, serum and urine creatinine concentrations were utilised and creatinine clearances were calculated. Results obtained were compared before and after Se treatment and between groups. Some correlation studies were carried out between Se and kidney functions and/or selenoperoxidase activities.

  9. Separation of lymphocytes by electrophoresis under terrestrial conditions and at zero gravity

    NASA Technical Reports Server (NTRS)

    Rubin, A. L.

    1977-01-01

    Electrophoretic mobility (EPM) of human peripheral lymphocytes were examined with the following objectives: To determine differences in EPM of lymphocytes under immuno-stimulated and immuno-suppressed states. To define the conditions necessary for the separation of lymphocyte sub-populations in normal and pathological conditions; To investigate immunological active, charged chemical groups on lymphocyte surfaces; and to investigate pathophysiological mechanisms of immune responsiveness, as reflected by alterations in EPM. To evaluate the potential of lymphocyte electrophoresis as: (1) a means of monitoring the immune status of kidney transplant recipients, (2) in predicting the outcome of kidney transplants, and (3) as a method for separation of lymphocyte sub-populations, the EPM was studied for unfractionated human peripheral lymphocytes and of populations enriched with T and "B" cells from normal adults, hemodialysis patients and kidney transplant recipients.

  10. Two-dimensional electrophoretic profiling of normal human kidney glomerulus proteome and construction of an extensible markup language (XML)-based database.

    PubMed

    Yoshida, Yutaka; Miyazaki, Kenji; Kamiie, Junichi; Sato, Masao; Okuizumi, Seiji; Kenmochi, Akihisa; Kamijo, Ken'ichi; Nabetani, Takuji; Tsugita, Akira; Xu, Bo; Zhang, Ying; Yaoita, Eishin; Osawa, Tetsuo; Yamamoto, Tadashi

    2005-03-01

    To contribute to physiology and pathophysiology of the glomerulus of human kidney, we have launched a proteomic study of human glomerulus, and compiled a profile of proteins expressed in the glomerulus of normal human kidney by two-dimensional gel electrophoresis (2-DE) and identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kidney cortices with normal appearance were obtained from patients under surgical nephrectomy due to renal tumor, and glomeruli were highly purified by a standard sieving method followed by picking-up under a phase-contrast microscope. The glomerular proteins were separated by 2-DE with 24 cm immobilized pH gradient strips in the 3-10 range in the first dimension and 26 x 20 cm sodium dodecyl sulfate polyacrylamide electrophoresis gels of 12.5% in the second dimension. Gels were silver-stained, and valid spots were processed for identification through an integrated robotic system that consisted of a spot picker, an in-gel digester, and a MALDI-TOF MS and / or a LC-MS/MS. From 2-DE gel images of glomeruli of four subjects with no apparent pathologic manifestations, a synthetic gel image of normal glomerular proteins was created. The synthetic gel image contained 1713 valid spots, of which 1559 spots were commonly observed in the respective 2-DE gels. Among the 1559 spots, 347 protein spots, representing 212 proteins, have so far been identified, and used for the construction of an extensible markup language (XML)-based database. The database is deposited on a web site (http://www.sw.nec.co.jp/bio/rd/hgldb/index.html) in a form accessible to researchers to contribute to proteomic studies of human glomerulus in health and disease.

  11. Susceptibility of human liver cells to porcine endogenous retrovirus.

    PubMed

    Lin, Xinzi; Qi, Lin; Li, Zhiguo; Chi, Hao; Lin, Wanjun; Wang, Yan; Jiang, Zesheng; Pan, Mingxin; Gao, Yi

    2013-12-01

    The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.

  12. Captopril inhibits tumour growth in a xenograft model of human renal cell carcinoma.

    PubMed Central

    Hii, S. I.; Nicol, D. L.; Gotley, D. C.; Thompson, L. C.; Green, M. K.; Jonsson, J. R.

    1998-01-01

    The effect of captopril on tumour growth was examined in a xenograft model of human renal cell carcinoma (RCC). Inoculation of the human RCC cell line SN12K-1 (10(6) cells) under the left kidney capsule of severe combined immunodeficient (SCID) mice resulted in the growth of large tumours, with an increase in weight of the inoculated kidney of 3.69+/-1.63-fold (mean+/-s.d.) when compared with the contralateral normal kidney. In mice treated with captopril (19 mg kg(-1) day(-1) or 94 mg kg(-1) day(-1) administered in the drinking water), there was a significant dose-related reduction in tumour development; the tumour bearing kidneys weighed 1.9+/-0.42 and 1.55+/-0.42 times the normal kidneys, respectively (P< 0.05 compared with untreated animals). In vitro, captopril at clinically achievable doses (0.1-10 microM) had no significant effect on the incorporation of [3H]thymidine into SN12K-1 cells. Thus, this highly significant attenuation by captopril of in vivo tumour growth does not appear to be due to a direct effect on the proliferation of the tumour cells. Further studies are required to determine the mechanism of inhibition of tumour growth by captopril, in particular to evaluate the role of angiotensin II in this process. Images Figure 1 PMID:9528828

  13. Il-10 deficient mice express IFN-γ mRNA and clear Leptospira interrogans from their kidneys more rapidly than normal C57BL/6 mice.

    PubMed

    Devlin, Amy A; Halvorsen, Priya J; Miller, Jennifer C; Laster, Scott M

    2017-05-01

    Leptospira interrogans (L. interrogans), the causative agent of leptospirosis, is a widespread zoonotic spirochete that lives a dual lifestyle. L. interrogans infects mice, rats, and wildlife in a persistent and asymptomatic fashion, while also causing productive and acute infections in other mammals such as humans and hamsters. Infections in humans can be fatal, accompanied by a cytokine storm and shock-like symptoms. Production of IL-10 has been noted in both rodent and human infections which has led a number of investigators to hypothesize that IL-10 plays a role in the pathogenesis of this disease. To test this hypothesis we have compared bacteremia and the cytokine response of normal and IL-10 deficient C57Bl/6 mice following ip infection with L. interrogans. In normal mice bacterial 16s mRNA was detected in both lung and kidney tissues within a day after infection. Levels of 16s mRNA then dropped in both organs with complete elimination from the lung by day 3 but persistence in the kidney for 7days after infection. In contrast, in IL-10 deficient mice, the organism was eliminated more rapidly from the kidney. We found that infection of both control and IL-10 deficient mice produced similar levels of a number of pro-inflammatory cytokine mRNAs. On the other hand, IFN-γ mRNA was only induced in IL-10 deficient mice. These results support the hypothesis that L. interrogans ability to induce IL-10, which in turn prevents production of IFN-γ and inhibits T cell immunity, may contribute to the persistent growth of this microorganism in the murine kidney. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury

    PubMed Central

    Mami, Iadh; Bouvier, Nicolas; El Karoui, Khalil; Gallazzini, Morgan; Rabant, Marion; Laurent-Puig, Pierre; Li, Shuping; Tharaux, Pierre-Louis; Beaune, Philippe; Thervet, Eric; Chevet, Eric; Hu, Guo-Fu

    2016-01-01

    Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang−/−) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism. PMID:26195817

  15. Stereological study of developing glomerular forms during human fetal kidney development.

    PubMed

    Dakovic Bjelakovic, Marija; Vlajkovic, Slobodan; Petrovic, Aleksandar; Bjelakovic, Marko; Antic, Milorad

    2018-05-01

    Human fetal kidney development is a complex and stepwise process. The number, shape, size and distribution of glomeruli provide important information on kidney organization. The aim of this study was to quantify glomerular developing forms during human fetal kidney development using stereological methods. Kidney tissue specimens of 40 human fetuses with gestational ages ranging from 9 to 40 weeks were analyzed. Specimens were divided into eight groups based on gestational age, each corresponding to 1 lunar month. Stereological methods were used at the light microscopy level to estimate volume, surface and numerical density of the glomerular developing forms. During gestation, nephrogenesis continually advanced, and the number of nephrons increased. Volume, surface and numerical densities of vesicular forms and S-shaped bodies decreased gradually in parallel with gradual increases in estimated stereological parameters for vascularized glomeruli. Volume density and surface density of vascularized glomeruli increased gradually during fetal kidney development, and numerical density increased until the seventh lunar month. A relative decrease in vascularized glomeruli per unit volume of cortex occurred during the last 3 lunar months. Nephrogenesis began to taper off by 32 weeks and was completed by 36 weeks of gestation. The last sample in which we observed vesicles was from a fetus aged 32 weeks, and the last sample with S-shaped bodies was from a fetus aged 36 weeks. The present study is one of few quantitative studies conducted on human kidney development. Knowledge of normal human kidney morphogenesis during development could be important for future medical practice. Events occurring during fetal life may have significant consequences later in life.

  16. Human Alpha Defensin 5 Expression in the Human Kidney and Urinary Tract

    PubMed Central

    Porter, Edith; Bevins, Charles L.; DiRosario, Julianne; Becknell, Brian; Wang, Huanyu

    2012-01-01

    Background The mechanisms that maintain sterility in the urinary tract are incompletely understood. Recent studies have implicated the importance of antimicrobial peptides (AMP) in protecting the urinary tract from infection. Here, we characterize the expression and relevance of the AMP human alpha-defensin 5 (HD5) in the human kidney and urinary tract in normal and infected subjects. Methodology/Principal Findings Using RNA isolated from human kidney, ureter, and bladder tissue, we performed quantitative real-time PCR to show that DEFA5, the gene encoding HD5, is constitutively expressed throughout the urinary tract. With pyelonephritis, DEFA5 expression significantly increased in the kidney. Using immunoblot analysis, HD5 production also increased with pyelonephritis. Immunostaining localized HD5 to the urothelium of the bladder and ureter. In the kidney, HD5 was primarily produced in the distal nephron and collecting tubules. Using immunoblot and ELISA assays, HD5 was not routinely detected in non-infected human urine samples while mean urinary HD5 production increased with E.coli urinary tract infection. Conclusions/Significance DEFA5 is expressed throughout the urinary tract in non-infected subjects. Specifically, HD5 is expressed throughout the urothelium of the lower urinary tract and in the collecting tubules of the kidney. With infection, HD5 expression increases in the kidney and levels become detectable in the urine. To our knowledge, our findings represent the first to quantitate HD5 expression and production in the human kidney. Moreover, this is the first report to detect the presence of HD5 in infected urine samples. Our results suggest that HD5 may have an important role in maintaining urinary tract sterility. PMID:22359618

  17. Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment.

    PubMed

    Cain, Jason E; Di Giovanni, Valeria; Smeeton, Joanna; Rosenblum, Norman D

    2010-08-01

    Renal hypoplasia, defined as abnormally small kidneys with normal morphology and reduced nephron number, is a common cause of pediatric renal failure and adult-onset disease. Genetic studies performed in humans and mutant mice have implicated a number of critical genes, in utero environmental factors and molecular mechanisms that regulate nephron endowment and kidney size. Here, we review current knowledge regarding the genetic contributions to renal hypoplasia with particular emphasis on the mechanisms that control nephron endowment in humans and mice.

  18. Triglycerides in the human kidney cortex: relationship with body size.

    PubMed

    Bobulescu, Ion Alexandru; Lotan, Yair; Zhang, Jianning; Rosenthal, Tara R; Rogers, John T; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W

    2014-01-01

    Obesity is associated with increased risk for kidney disease and uric acid nephrolithiasis, but the pathophysiological mechanisms underpinning these associations are incompletely understood. Animal experiments have suggested that renal lipid accumulation and lipotoxicity may play a role, but whether lipid accumulation occurs in humans with increasing body mass index (BMI) is unknown. The association between obesity and abnormal triglyceride accumulation in non-adipose tissues (steatosis) has been described in the liver, heart, skeletal muscle and pancreas, but not in the human kidney. We used a quantitative biochemical assay to quantify triglyceride in normal kidney cortex samples from 54 patients undergoing nephrectomy for localized renal cell carcinoma. In subsets of the study population we evaluated the localization of lipid droplets by Oil Red O staining and measured 16 common ceramide species by mass spectrometry. There was a positive correlation between kidney cortex trigyceride content and BMI (Spearman R = 0.27, P = 0.04). Lipid droplets detectable by optical microscopy had a sporadic distribution but were generally more prevalent in individuals with higher BMI, with predominant localization in proximal tubule cells and to a lesser extent in glomeruli. Total ceramide content was inversely correlated with triglycerides. We postulate that obesity is associated with abnormal triglyceride accumulation (steatosis) in the human kidney. In turn, steatosis and lipotoxicity may contribute to the pathogenesis of obesity-associated kidney disease and nephrolithiasis.

  19. MEETING AT CAMBRIDGE, MA: GENE EXPRESSION IN NORMAL HUMAN KERATINOCYTES MODULATED BY TRIVALENT ARSENICALS

    EPA Science Inventory

    Arsenic exposure has been correlated with the development of several human cancers including those found in the skin, lung, liver, kidney and urinary bladder. Humans are generally exposed to inorganic forms of arsenic, which may be inhaled or ingested. Arsenic forms mono- and d...

  20. MEETING AT SAN DIEGO, CA: GENE EXPRESSION IN NORMAL HUMAN KERATINOCYTES MODULATED BY TRIVALENT ARSENICALS

    EPA Science Inventory

    Arsenic exposure has been correlated with the development of several human cancers including those found in the skin, lung, liver, kidney and urinary bladder. Humans are generally exposed to inorganic forms of arsenic, which may be inhaled or ingested. Arsenic forms mono- and di-...

  1. MicroRNAs and Drug-induced Kidney Injury

    PubMed Central

    Pavkovic, Mira; Vaidya, Vishal S.

    2016-01-01

    Drug-induced kidney injury (DIKI) is a severe complication in hospitalized patients associated with higher probabilities of developing progressive chronic kidney disease or end-stage renal diseases. Furthermore, DIKI is a problem during preclinical and clinical phases of drug development leading to high rates of project terminations. Understanding the molecular perturbations caused by DIKI would pave the way for a new class of therapeutics to mitigate the damage. Yet, another approach to ameliorate DIKI is identifying sensitive and specific translational biomarkers that outperform the current diagnostic analytes like serum creatinine and facilitate early diagnosis. MicroRNAs (miRNAs), a class of non-coding RNAs, are increasingly being recognized to have a two-pronged approach towards DIKI management: 1) miRNAs have a regulatory role in gene expression and signaling pathways thereby making them novel interventional targets and 2) miRNAs enable diagnosis and prognosis of DIKI because of their stable presence in biofluids. In this review, apart from summarizing the literature on miRNAs in DIKI, we report small RNA sequencing results showing miRNA expression profiles at baseline in normal kidney samples from mice and humans. Additionally, we also compared the miRNA expression in biopsies of normal human kidneys to patients with acute tubular necrosis, and found 76 miRNAs significantly downregulated and 47 miRNAs upregulated (FDR adjusted p<0.05, +/−2-fold change). In summary, we highlight the transformative potential of miRNAs in therapeutics and translational medicine with a focus on drug-induced kidney damage. PMID:27126472

  2. Pharmacokinetics and tissue distribution of parenterally administered human alpha-lymphotoxin in normal and meth-A tumor-bearing BALB/c mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Averbook, B.J.; Jeffes, E.B.; Yamamoto, R.S.

    1989-08-01

    These in vivo studies examine the pharmacokinetics of parenterally administered purified, native human alpha-lymphotoxin (LT) in normal and Meth-A bearing BALB/c mice. We found that the lytic activity of alpha-LT was inactivated within 5 h in the blood of both normal and tumor-bearing mice in vivo. However, LT bioactivity in vitro was not affected by incubation with fresh serum. Radioiodinated LT was rapidly sequestered in the kidneys of both normal and tumor-bearing animals. Systemically administered, radioiodinated LT did not selectively localize in tumor tissues.

  3. Quantitative Enzymatic and Immunologic Histophotometry of Diseased Human Kid-Ney Tissues Using Tv-Camera and Computer Assisted Image Processing Systems.

    NASA Astrophysics Data System (ADS)

    Heinert, G.; Mondorf, W.

    1982-11-01

    High speed image processing was used to analyse morphologic and metabolic characteristics of clinically relevant kidney tissue alterations.Qualitative computer-assisted histophotometry was performed to measure alterations in levels of the enzymes alkaline phosphatase (Ap),alanine aminopeptidase (AAP),g-glutamyltranspepti-dase (GGTP) and A-glucuronidase (B-G1) and AAP and GGTP immunologically determined in prepared renal and cancer tissue sections. A "Mioro-Videomat 2" image analysis system with a "Tessovar" macroscope,a computer-assisted "Axiomat" photomicroscope and an "Interactive Image Analysis System (IBAS)" were employed for analysing changes in enzyme activities determined by changes in absorbance or transmission.Diseased kidney as well as renal neoplastic tissues could be distinguished by significantly (wilcoxon test,p<0,05) decreased enzyme concentrations as compared to those found in normal human kidney tissues.This image analysis techniques might be of potential use in diagnostic and prognostic evaluation of renal cancer and diseased kidney tissues.

  4. Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease.

    PubMed

    Zhao, Juanjuan; Lupino, Katherine; Wilkins, Benjamin J; Qiu, Chengxiang; Liu, Jian; Omura, Yasuhiro; Allred, Amanda L; McDonald, Caitlin; Susztak, Katalin; Barish, Grant D; Pei, Liming

    2018-05-22

    Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1β) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1β. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1β loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1β-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.

  5. Dendrin expression in glomerulogenesis and in human minimal change nephrotic syndrome.

    PubMed

    Dunér, Fredrik; Patrakka, Jaakko; Xiao, Zhijie; Larsson, Jenny; Vlamis-Gardikas, Alexios; Pettersson, Erna; Tryggvason, Karl; Hultenby, Kjell; Wernerson, Annika

    2008-08-01

    Dendrin is an 81-kD cytosolic protein hitherto described in the brain, where it is associated with the actin cytoskeleton. Recently, we found dendrin in foot processes of mouse glomerular podocytes. Here we describe its expression both during mouse glomerulogenesis and in the normal and diseased human kidney for the first time. Dendrin expression was characterized using RT-PCR and immunohistochemistry and semi-quantified using immunoelectron microscopy. In glomerulogenesis, dendrin mRNA and protein appeared first at the early capillary loop stage. It was concentrated to the pre-podocytes on the basal side of podocalyxin, an apical cell membrane marker. In human tissue, dendrin transcripts were detected in the brain and kidney. In the mature kidney dendrin localized solely in the podocytes, close to the filtration slit diaphragms. A comparison with the slit-associated protein zonula occludens-1 (ZO-1) was done in minimal change nephrotic syndrome (MCNS). Dendrin and ZO-1 were re-distributed from slit regions to the podocyte cytoplasm in areas with foot process effacement (FPE). In areas without FPE, dendrin and ZO-1 distributions were unchanged compared to controls. The total amounts of dendrin or ZO-1 markers were unchanged. This differs from nephrin that, according to our previous results, is also decreased in non-effaced areas. The expression of dendrin during glomerulogenesis and in the normal human kidney is similar to that previously shown for nephrin, which suggests that dendrin associates with the slit diaphragm complex. In MCNS patients, dendrin and ZO-1 are re-distributed within the podocytes. Whether this is a cause or a consequence of FPE remains unclear.

  6. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    PubMed

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  7. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma

    PubMed Central

    Ambrosio, Maria R.; Rocca, Bruno J.; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T.; Tripodi, Sergio A.; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis. PMID:26425551

  8. COMPARISON OF IN VITRO AND IN VIVO RESPONSES TO ARSENIC: GENE EXPRESSION PROFILING IN NORMAL HUMAN EPIDERMAL KERATINOCYTES AND HYPERKERATOSES FROM ARSENIC-EXPOSED HUMANS

    EPA Science Inventory

    Chronic exposure to arsenic is positively associated with skin, urinary bladder, lung, liver and kidney cancer development in humans. Elucidating the mode of action of arsenic carcinogenesis is a complicated issue as target cells are exposed to different toxic species of arsenic....

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhenc-Gelas, F.; Weare, J.A.; Johnson, R.L. Jr.

    CE was purified from human lung, and antisera were raised in rabbits. Antisera inhibited the activity of the purified enzyme from lung and kidney and the plasma CE of normal persons and sarcoid patients. With antisera at a titer of 1:100,000, a sensitive, direct RIA was developed. CE purified from lung or kidney and CE present in normal and in sarcoid plasma gave parallel logit-log displacement lines, suggesting immunological identity. The level of CE in normal human plasma was 400 +/- 131 ng/ml. In untreated sarcoid patients, the enzyme level and activity increased in parallel. There was a negative correlationmore » (r . -0.81) between enzyme level and diffusing capacity of the lung for CO in sarcoid patients. Synthetic inhibitors such as captopril or MK 421 did not interfere with the RIA, permitting enzyme levels to be monitored in patients undergoing acute inhibitor therapy. During administration of MK 421, CE activity was negligible and plasma levels of CE did not change. In contrast, renin activity increased eightfold during the inhibitor therapy.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhenc-Gelas, F.; Weare, J.A.; Johnson, R.L. Jr.

    CE (converting enzyme) was purified from human lung, and antisera were raised in rabbits. Antisera inhibited the activity of the purified enzyme from lung and kidney and the plasma CE of normal persons and sarcoid patients. With antisera at a titer of 1:100,000, a sensitive, direct RIA was developed. CE purified from lung or kidney and CE present in normal and in sarcoid plasma gave parallel logit-log displacement lines, suggesting immunological identity. The level of CE in normal human plasma was 400 +/- 131 ng/ml. In untreated sarcoid patients, the enzyme level and activity increased in parallel. There was amore » negative correlation between enzyme level and diffusing capacity of the lung for CO in sarcoid patients. Synthetic inhibitors such as captopril or MK 421 did not interfere with the RIA, permitting enzyme levels to be monitored in patients undergoing acute inhibitor therapy. During administration of MK 421, CE activity was negligible and plasma levels of CE did not change. In contrast, renin activity increased eightfold during the inhibitor therapy.« less

  11. Cyclodextrin Protects Podocytes in Diabetic Kidney Disease

    PubMed Central

    Merscher-Gomez, Sandra; Guzman, Johanna; Pedigo, Christopher E.; Lehto, Markku; Aguillon-Prada, Robier; Mendez, Armando; Lassenius, Mariann I.; Forsblom, Carol; Yoo, TaeHyun; Villarreal, Rodrigo; Maiguel, Dony; Johnson, Kevin; Goldberg, Ronald; Nair, Viji; Randolph, Ann; Kretzler, Matthias; Nelson, Robert G.; Burke, George W.; Groop, Per-Henrik; Fornoni, Alessia

    2013-01-01

    Diabetic kidney disease (DKD) remains the most common cause of end-stage kidney disease despite multifactorial intervention. We demonstrated that increased cholesterol in association with downregulation of ATP-binding cassette transporter ABCA1 occurs in normal human podocytes exposed to the sera of patients with type 1 diabetes and albuminuria (DKD+) when compared with diabetic patients with normoalbuminuria (DKD−) and similar duration of diabetes and lipid profile. Glomerular downregulation of ABCA1 was confirmed in biopsies from patients with early DKD (n = 70) when compared with normal living donors (n = 32). Induction of cholesterol efflux with cyclodextrin (CD) but not inhibition of cholesterol synthesis with simvastatin prevented podocyte injury observed in vitro after exposure to patient sera. Subcutaneous administration of CD to diabetic BTBR (black and tan, brachiuric) ob/ob mice was safe and reduced albuminuria, mesangial expansion, kidney weight, and cortical cholesterol content. This was followed by an improvement of fasting insulin, blood glucose, body weight, and glucose tolerance in vivo and improved glucose-stimulated insulin release in human islets in vitro. Our data suggest that impaired reverse cholesterol transport characterizes clinical and experimental DKD and negatively influences podocyte function. Treatment with CD is safe and effective in preserving podocyte function in vitro and in vivo and may improve the metabolic control of diabetes. PMID:23835338

  12. Overexpression of esterase D in kidney from trisomy 13 fetuses.

    PubMed Central

    Loughna, S; Bennett, P; Gau, G; Nicolaides, K; Blunt, S; Moore, G

    1993-01-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. Images Figure 1 Figure 2 Figure 3 PMID:8213811

  13. MicroRNA profiling of human kidney cancer subtypes.

    PubMed

    Petillo, David; Kort, Eric J; Anema, John; Furge, Kyle A; Yang, Ximing J; Teh, Bin Tean

    2009-07-01

    Although the functions of most of the identified microRNAs (miRNAs) have yet to be determined, their use as potential biomarkers has been considered in several human diseases and cancers. In order to understand their role in renal tumorigenesis, we screened the expression levels of miRNAs in four subtypes of human renal neoplasms: clear cell, papillary, and chromophobe renal cell carcinomas (RCC) as well as benign renal oncocytomas. We found a unique miRNA signature for each subtype of renal tumor. Furthermore, we identified unique patterns of miRNA expression distinguishing clear cell RCC cases with favorable vs. unfavorable outcome. Specifically, we documented the overexpression of miRs 424 and 203 in clear cell RCC relative to papillary RCC, as well as the inversion of expression of miR-203 in the benign oncocytomas (where it is underexpressed relative to normal kidney) as compared to the malignant chromophobe RCC (where it is overexpressed relative to normal kidney). Our results further suggest that overexpression of S-has-miR-32 is associated with poor outcome. While previous studies have identified unique miRNA expression pattern distinguishing tumors from different anatomical locations, here we extend this principle to demonstrate the utility of miRNA expression profiling to identify a signature unique to various tumor subtypes at a single anatomic locus.

  14. IgA antibasement membrane nephritis with pulmonary hemorrhage.

    PubMed

    Border, W A; Baehler, R W; Bhathena, D; Glassock, R J

    1979-07-01

    Goodpasture's syndrome has characteristically been described as being mediated by IgG antibodies. We have recently seen a 55-year-old man who developed renal failure and hemoptysis; a renal biopsy showed linear deposits of IgA and C3 involving glomerular and tubular basement membrane. Serologic tests for detecting (IgG) antiglomerular basement membrane antibodies were negative. Elution studies of kidney and lung showed the presence of an IgA antibasement membrane antibody only. The patient's serum contained IgA, but not IgG, antibodies reactive with glomerular and tubular basement membrane of normal human kidney and alveolar basement membrane of normal human lung. Attempts to transfer disease with the patient's IgA antibody to a monkey and to Lewis and Brown-Norway rats were unsuccessful. Immunoglobulin A antibasement membrane antibody must be considered in the design of immunoserologic procedures for the diagnosis of Goodpasture's syndrome.

  15. Overexpression of esterase D in kidney from trisomy 13 fetuses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loughna, S.; Moore, G.; Gau, G.

    1993-10-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D wasmore » found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.« less

  16. Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT).

    PubMed

    Neirijnck, Yasmine; Reginensi, Antoine; Renkema, Kirsten Y; Massa, Filippo; Kozlov, Vladimir M; Dhib, Haroun; Bongers, Ernie M H F; Feitz, Wout F; van Eerde, Albertien M; Lefebvre, Veronique; Knoers, Nine V A M; Tabatabaei, Mansoureh; Schulz, Herbert; McNeill, Helen; Schaefer, Franz; Wegner, Michael; Sock, Elisabeth; Schedl, Andreas

    2018-05-01

    Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the nephrogenic cord and results in duplex kidney formation. On the molecular level SOX11 directly binds and regulates a locus control region of the protocadherin B cluster. At later stages of kidney development, SOX11 becomes restricted to the intermediate segment of the developing nephron where it is required for the elongation of Henle's loop. Finally, mutation analysis in a cohort of patients suffering from CAKUT identified a series of rare SOX11 variants, one of which interferes with the transactivation capacity of the SOX11 protein. Taken together these data demonstrate a key role for SOX11 in normal kidney development and may suggest that variants in this gene predispose to CAKUT in humans. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail

    PubMed Central

    Bai, Shaochun; Wang, Hongwei; Shen, Jikun; Zhou, Randal; Bushinsky, David A; Favus, Murray J

    2010-01-01

    Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)2D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H3. These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H3. © 2010 American Society for Bone and Mineral Research. PMID:19929616

  18. Characterization of kidney CD45intCD11bintF4/80+MHCII+CX3CR1+Ly6C- "intermediate mononuclear phagocytic cells".

    PubMed

    Lee, Sul A; Noel, Sanjeev; Sadasivam, Mohanraj; Allaf, Mohamad E; Pierorazio, Phillip M; Hamad, Abdel R A; Rabb, Hamid

    2018-01-01

    Kidney immune cells play important roles in pathogenesis of many diseases, including ischemia-reperfusion injury (IRI) and transplant rejection. While studying murine kidney T cells, we serendipitously identified a kidney mononuclear phagocytic cell (MPC) subset characterized by intermediate surface expression of CD45 and CD11b. These CD45intCD11bint MPCs were further identified as F4/80+MHCII+CX3CR1+Ly6C- cells, comprising ~17% of total CD45+ cells in normal mouse kidney (P < 0.01) and virtually absent from all other organs examined except the heart. Systemic clodronate treatment had more significant depletive effect on the CD45intCD11bint population (77.3%±5.9%, P = 0.03) than on CD45highCD11b+ population (14.8%±16.6%, P = 0.49). In addition, CD45intCD11bint MPCs had higher phagocytic function in the normal kidney (35.6%±3.3% vs. 24.1%±2.2%, P = 0.04), but lower phagocytic capacity in post-ischemic kidney (54.9%±1.0% vs. 67.8%±1.9%, P < 0.01) compared to the CD45highCD11b+ population. Moreover, the CD45intCD11bint population had higher intracellular production of the pro-inflammatory tumor necrosis factor (TNF)-α (58.4%±5.2% vs. 27.3%±0.9%, P < 0.001) after lipopolysaccharide (LPS) stimulation and lower production of the anti-inflammatory interleukin (IL)-10 (7.2%±1.3% vs. 14.9%±2.2%, P = 0.02) following kidney IRI, suggesting a functional role under inflammatory conditions. The CD45intCD11bint cells increased early after IRI, and then abruptly decreased 48h later, whereas CD45highCD11b+ cells steadily increased after IRI before declining at 72h (P = 0.03). We also identified the CD45intCD11bint MPC subtype in human kidney. We conclude that CD45intCD11bint F4/80+MHCII+CX3CR1+Ly6C-population represent a unique subset of MPCs found in both mouse and human kidneys. Future studies will further characterize their role in kidney health and disease.

  19. Effects of water uptake on melamine renal stone formation in mice.

    PubMed

    Peng, Jiao; Li, Daxu; Chan, Yee Kwan; Chen, Yan; Lamb, Jonathan R; Tam, Paul K H; El-Nezami, Hani

    2012-06-01

    Melamine-tainted food can induce kidney stones both in humans and animals and in domestic animals, severe cases caused acute kidney failure and death. Although increasing water intake can ameliorate kidney stone formation, its effect on melamine (Mel)-induced kidney stones has not been studied. We have analysed the effect of restricted ingestion of drinking water on melamine stone formation in mice. They were given melamine and cyanuric acid orally and received drinking water either freely or for a restricted time. Kidney stone formation and renal function were monitored. Mice receiving drinking water for a restricted 10-h period initially lost body weight, which returned to normal within 2 days. No other abnormalities were observed. Ingestion of melamine alone failed to induce kidney stones even under conditions of restricted drinking water. In mice treated with melamine together with cyanuric acid for 3 days, no renal stones were formed when the supply of drinking was normal. However, when drinking water was limited, stone formation was observed and accompanied by high levels of serum urea and creatinine. An increase in urine haemoglobin and glucose levels was also found. The administration resulted in up-regulated tissue osteopontin, kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin messenger RNA expression and macrophage infiltration. Our results indicate the importance of water intake in the formation of melamine-induced renal stone formation in the mouse and provide new information on the mechanisms of melamine stone formation.

  20. Tubular Obstruction Leads to Progressive Proximal Tubular Injury and Atubular Glomeruli in Polycystic Kidney Disease

    PubMed Central

    Galarreta, Carolina I.; Grantham, Jared J.; Forbes, Michael S.; Maser, Robin L.; Wallace, Darren P.; Chevalier, Robert L.

    2015-01-01

    In polycystic kidney disease (PKD), renal parenchyma is destroyed by cysts, hypothesized to obstruct nephrons. A signature of unilateral ureteral obstruction, proximal tubular atrophy leads to formation of atubular glomeruli. To determine whether this process occurs in PKD, kidneys from pcy mice (moderately progressive PKD), kidneys from cpk mice (rapidly progressive PKD), and human autosomal dominant PKD were examined in early and late stages. Integrity of the glomerulotubular junction and proximal tubular mass were determined in sections stained with Lotus tetragonolobus lectin. Development of proximal tubular atrophy and atubular glomeruli was determined in serial sections of individual glomeruli. In pcy mice, most glomerulotubular junctions were normal at 20 weeks, but by 30 weeks, 56% were atrophic and 25% of glomeruli were atubular; glomerulotubular junction integrity decreased with increasing cyst area (r = 0.83, P < 0.05). In cpk mice, all glomerulotubular junctions were normal at 10 days, but by 19 days, 26% had become abnormal. In early-stage autosomal dominant PKD kidneys, 50% of glomeruli were atubular or attached to atrophic tubules; in advanced disease, 100% were abnormal. Thus, proximal tubular injury in cystic kidneys closely parallels that observed with ureteral obstruction. These findings support the hypothesis that, in renal cystic disorders, cyst-dependent obstruction of medullary and cortical tubules initiates a process culminating in widespread destruction of proximal convoluted tubules at the glomerulotubular junction. PMID:24815352

  1. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report.

    PubMed

    Rahyussalim, Ahmad Jabir; Saleh, Ifran; Kurniawati, Tri; Lutfi, Andi Praja Wira Yudha

    2017-11-30

    Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Thoracic spinal cord entrapment induced by a metabolic yield deposit in patients with renal failure results in intrusion of nervous tissue and consequently loss of motor and sensory function. Human umbilical cord mesenchymal stem cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cell studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney. We report a case of a 62-year-old ethnic Indonesian woman previously diagnosed as having thoracic spinal cord entrapment with paraplegic condition and chronic renal failure on hemodialysis. She had diabetes mellitus that affected her kidneys and had chronic renal failure for 2 years, with creatinine level of 11 mg/dl, and no urinating since then. She was treated with human umbilical cord mesenchymal stem cell implantation protocol. This protocol consists of implantation of 16 million human umbilical cord mesenchymal stem cells intrathecally and 16 million human umbilical cord mesenchymal stem cells intravenously. Three weeks after first intrathecal and intravenous implantation she could move her toes and her kidney improved. Her creatinine level decreased to 9 mg/dl. Now after 8 months she can raise her legs and her creatinine level is 2 mg/dl with normal urinating. Human umbilical cord mesenchymal stem cell implantations led to significant improvement for spinal cord entrapment and kidney failure. The major histocompatibility in allogeneic implantation is an important issue to be addressed in the future.

  2. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus.

    PubMed

    Kanasaki, Keizo; Kanda, Yoshiko; Palmsten, Kristin; Tanjore, Harikrishna; Lee, Soo Bong; Lebleu, Valerie S; Gattone, Vincent H; Kalluri, Raghu

    2008-01-15

    The human kidneys filter 180 l of blood every day via about 2.5 million glomeruli. The three layers of the glomerular filtration apparatus consist of fenestrated endothelium, specialized extracellular matrix known as the glomerular basement membrane (GBM) and the podocyte foot processes with their modified adherens junctions known as the slit diaphragm (SD). In this study we explored the contribution of podocyte beta1 integrin signaling for normal glomerular function. Mice with podocyte specific deletion of integrin beta1 (podocin-Cre beta1-fl/fl mice) are born normal but cannot complete postnatal renal development. They exhibit detectable proteinuria on day 1 and die within a week. The kidneys of podocin-Cre beta1-fl/fl mice exhibit normal glomerular endothelium but show severe GBM defects with multilaminations and splitting including podocyte foot process effacement. The integrin linked kinase (ILK) is a downstream mediator of integrin beta1 activity in epithelial cells. To further explore whether integrin beta1-mediated signaling facilitates proper glomerular filtration, we generated mice deficient of ILK in the podocytes (podocin-Cre ILK-fl/fl mice). These mice develop normally but exhibit postnatal proteinuria at birth and die within 15 weeks of age due to renal failure. Collectively, our studies demonstrate that podocyte beta1 integrin and ILK signaling is critical for postnatal development and function of the glomerular filtration apparatus.

  3. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging.

    PubMed

    Vlassara, Helen; Torreggiani, Massimo; Post, James B; Zheng, Feng; Uribarri, Jaime; Striker, Gary E

    2009-12-01

    Oxidant stress (OS) and inflammation increase in normal aging and in chronic kidney disease (CKD), as observed in human and animal studies. In cross-sectional studies of the US population, these changes are associated with a decrease in renal function, which is exhibited by a significant proportion of the population. However, since many normal adults have intact renal function, and longitudinal studies show that some persons maintain normal renal function with age, the link between OS, inflammation, and renal decline is not clear. In aging mice, greater oxidant intake is associated with increased age-related CKD and mortality, which suggests that interventions that reduce OS and inflammation may be beneficial for older individuals. Both OS and inflammation can be readily lowered in normal subjects and patients with CKD stage 3-4 by a simple dietary modification that lowers intake and results in reduced serum and tissue levels of advanced glycation end products. Diabetic patients, including those with microalbuminuria, have a decreased ability to metabolize and excrete oxidants prior to observable changes in serum creatinine. Thus, OS and inflammation may occur in the diabetic kidney at an early time. We review the evidence that oxidants in the diet directly lead to increased serum levels of OS and inflammatory mediators in normal aging and in CKD. We also discuss a simple dietary intervention that helps reduce OS and inflammation, an important and achievable therapeutic goal for patients with CKD and aging individuals with reduced renal function.

  4. MRI quantification of non-Gaussian water diffusion in normal human kidney: a diffusional kurtosis imaging study.

    PubMed

    Huang, Yanqi; Chen, Xin; Zhang, Zhongping; Yan, Lifen; Pan, Dan; Liang, Changhong; Liu, Zaiyi

    2015-02-01

    Our aim was to prospectively evaluate the feasibility of diffusional kurtosis imaging (DKI) in normal human kidney and to report preliminary DKI measurements. Institutional review board approval and informed consent were obtained. Forty-two healthy volunteers underwent diffusion-weighted imaging (DWI) scans with a 3-T MR scanner. b values of 0, 500 and 1000 s/mm(2) were adopted. Maps of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (D⊥), axial diffusivity (D||), mean kurtosis (MK), radial kurtosis (K⊥) and axial kurtosis (K||) were produced. Three representative axial slices in the upper pole, mid-zone and lower pole were selected in the left and right kidney. On each selected slice, three regions of interest were drawn on the renal cortex and another three on the medulla. Statistical comparison was performed with t-test and analysis of variance. Thirty-seven volunteers successfully completed the scans. No statistically significant differences were observed between the left and right kidney for all metrics (p values in the cortex: FA, 0.114; MD, 0.531; D⊥, 0.576; D||, 0.691; MK, 0.934; K⊥, 0.722; K||, 0.891; p values in the medulla: FA, 0.348; MD, 0.732; D⊥, 0.470; D||, 0.289; MK, 0.959; K⊥, 0.780; K||, 0.287). Kurtosis metrics (MK, K||, K⊥) obtained in the renal medulla were significantly (p <0.001) higher than those in the cortex (0.552 ± 0.04, 0.637 ± 0.07 and 0.530 ± 0.08 in the medulla and 0.373 ± 0.04, 0.492 ± 0.06 and 0.295 ± 0.06 in the cortex, respectively). For the diffusivity measures, FA of the medulla (0.356 ± 0.03) was higher than that of the cortex (0.179 ± 0.03), whereas MD, D⊥ and D|| (mm(2) /ms) were lower in the medulla than in the cortex (3.88 ± 0.09, 3.50 ± 0.23 and 4.65 ± 0.29 in the cortex and 2.88 ± 0.11, 2.32 ± 0.20 and 3.47 ± 0.31 in the medulla, respectively). Our results indicate that DKI is feasible in the human kidney. We have reported the preliminary DKI measurements of normal human kidney that demonstrate well the non-Gaussian behavior of water diffusion, especially in the renal medulla. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Rhodotorula minuta fungemia in a ewe lamb

    USDA-ARS?s Scientific Manuscript database

    An 8-mo-old crossbred ewe, normal upon physical examination, was humanely euthanized for tissue collection. After approximately three weeks in tissue culture, fungi began budding out of cells obtained from the choroid plexus. After an additional three weeks, budding was observed in kidney cell cul...

  6. Insight into mechanism of oxidative DNA damage in angiomyolipomas from TSC patients

    PubMed Central

    Habib, Samy L

    2009-01-01

    Background The tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors, both angiomyolipomas and renal cell carcinomas. Loss of heterozygosity at the 8-oxoG-DNA glycosylase (OGG1) allele is found in human kidney clear cell carcinoma identifying loss of OGG1 function as a possible contributor to tumorigenesis in the kidney. Tuberin regulates OGG1 through the transcription factor NF-YA in cultured cells. The purpose of this study is to determine the effect of tuberin-deficiency on OGG1 protein and mRNA levels as well as on 8-oxodG levels in kidney tumors from patients with TSC. In addition we evaluated the phophorylation level of downstream targets of mTOR, phospho-S70K, in kidney tumor tissue from TSC patients. Results Kidney angiomyolipoma tissue from TSC patients expresses significant levels of phopho-tuberin and low levels of tuberin compared to control kidney tissue. The increase in tuberin phosphorylation and the decrease tuberin expression are associated with decrease in OGG1 protein and mRNA levels in tumor samples compared to normal kidney samples. The decrease OGG1 expression is also associated with significant decrease in the transcription factor, NF-YA, expression in tumor samples compared to normal tissues. In addition, the levels of 8-oxodG are 4-fold higher in tumors compared to control samples. The significant increase of phospho-tuberin expression is associated with increase phosphorylation of S6K in tumor samples compared to controls. Cyclin D1 expression is also 3-fold higher in increase in the tumor tissues compared to normal kidney tissues. Conclusion These data indicate that tuberin deficiency in angiomyolipoma enhances mTOR activation by phosphorylation of S6K and downregulation of protein and mRNA expression of OGG1 resulted in accumulation of oxidized DNA in patients with TSC. These data suggest that tuberin and OGG1 are important proteins in the pathogenesis of angiomyolipoma in TSC patients. PMID:19265534

  7. Reestablishment of radiographic kidney size in Miniature Schnauzer dogs

    PubMed Central

    SOHN, Jungmin; YUN, Sookyung; LEE, Jeosoon; CHANG, Dongwoo; CHOI, Mincheol; YOON, Junghee

    2016-01-01

    Kidney size may be altered in renal diseases, and the detection of kidney size alteration has diagnostic and prognostic values. We hypothesized that radiographic kidney size, the kidney length to the second lumbar vertebra (L2) length ratio, in normal Miniature Schnauzer dogs may be overestimated due to their shorter vertebral length. This study was conducted to evaluate radiographic and ultrasonographic kidney size and L2 length in clinically normal Miniature Schnauzers and other dog breeds to evaluate the effect of vertebral length on radiographic kidney size and to reestablish radiographic kidney size in normal Miniature Schnauzers. Abdominal radiographs and ultrasonograms from 49 Miniature Schnauzers and 54 other breeds without clinical evidence of renal disease and lumbar vertebral abnormality were retrospectively evaluated. Radiographic kidney size, in the Miniature Schnauzer (3.31 ± 0.26) was significantly larger than that in other breeds (2.94 ± 0.27). Relative L2 length, the L2 length to width ratio, in the Miniature Schnauzer (1.11 ± 0.06) was significantly shorter than that in other breeds (1.21 ± 0.09). However, ultrasonographic kidney sizes, kidney length to aorta diameter ratios, were within or very close to normal range both in the Miniature Schnauzer (6.75 ± 0.67) and other breeds (7.16 ± 1.01). Thus, Miniature Schnauzer dogs have breed-specific short vertebrae and consequently a larger radiographic kidney size, which was greater than standard reference in normal adult dogs. Care should be taken when evaluating radiographic kidney size in Miniature Schnauzers to prevent falsely diagnosed renomegaly. PMID:27594274

  8. Reestablishment of radiographic kidney size in Miniature Schnauzer dogs.

    PubMed

    Sohn, Jungmin; Yun, Sookyung; Lee, Jeosoon; Chang, Dongwoo; Choi, Mincheol; Yoon, Junghee

    2017-01-10

    Kidney size may be altered in renal diseases, and the detection of kidney size alteration has diagnostic and prognostic values. We hypothesized that radiographic kidney size, the kidney length to the second lumbar vertebra (L2) length ratio, in normal Miniature Schnauzer dogs may be overestimated due to their shorter vertebral length. This study was conducted to evaluate radiographic and ultrasonographic kidney size and L2 length in clinically normal Miniature Schnauzers and other dog breeds to evaluate the effect of vertebral length on radiographic kidney size and to reestablish radiographic kidney size in normal Miniature Schnauzers. Abdominal radiographs and ultrasonograms from 49 Miniature Schnauzers and 54 other breeds without clinical evidence of renal disease and lumbar vertebral abnormality were retrospectively evaluated. Radiographic kidney size, in the Miniature Schnauzer (3.31 ± 0.26) was significantly larger than that in other breeds (2.94 ± 0.27). Relative L2 length, the L2 length to width ratio, in the Miniature Schnauzer (1.11 ± 0.06) was significantly shorter than that in other breeds (1.21 ± 0.09). However, ultrasonographic kidney sizes, kidney length to aorta diameter ratios, were within or very close to normal range both in the Miniature Schnauzer (6.75 ± 0.67) and other breeds (7.16 ± 1.01). Thus, Miniature Schnauzer dogs have breed-specific short vertebrae and consequently a larger radiographic kidney size, which was greater than standard reference in normal adult dogs. Care should be taken when evaluating radiographic kidney size in Miniature Schnauzers to prevent falsely diagnosed renomegaly.

  9. Perspectives on using a multiplex human kidney safety biomarker panel to detect cisplatin-induced tubular toxicity in male and female Cynomolgus monkeys.

    PubMed

    Chen, Yafei; Dale Thurman, J; Kinter, Lewis B; Bialecki, Russell; Eric McDuffie, J

    2017-12-01

    Multiplex biomarker panel assays would enable early de-risking of discovery compound related kidney safety liabilities. The objective of this study was to evaluate the usefulness of the Myriad RBM Human KidneyMAP (Multi-Analyte Profile)® v.1.0 panel to detect experimental nephrotoxicity in Cynomolgus monkeys following a single intravenous administration of cisplatin (2.5mg/kg). Urine samples were collected at baseline on day -2; at approximately 4hr post-dose on day 1; and on days 4, 9, 15 and/or 20. Blood samples were collected at predose on day -2; at 4hr post-dose on day 1; and on days 2, 5, 10 and/or 21. Changes in toxicokinetic and biochemistry parameters in plasma, qualitative/quantitative urinalysis parameters, and urinary kidney safety biomarkers were assessed. Kidney tissues were collected on days 2, 5, 10 and 21 for routine microscopy. Cisplatin-induced tubular alterations were characterized by acute and progressive cortical tubular degeneration/necrosis, regeneration, tubular dilation and proteinaceous cast in the absence of statistically significant changes in traditional plasma biochemistry and urinalysis parameters. When normalized to urinary creatinine, cisplatin-induced significant increases in urinary levels of kidney injury molecule 1 (females on day 4), increases in calbindin D28k (males and females on day 4), decreases in Tamm-Horsfall glycoprotein (males on days 1, 4 and 9), and increases in clusterin (females and males on days 15 and 20, respectively), when compared to concurrent controls. This study revealed the usefulness of the Human KidneyMAP® multiplex panel when measuring changes in urine-based biomarkers to reliably detect cisplatin-induced acute/progressive cortical tubular injury in male and female Cynomolgus monkeys. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis.

    PubMed

    Humphreys, Benjamin D; Xu, Fengfeng; Sabbisetti, Venkata; Grgic, Ivica; Movahedi Naini, Said; Wang, Ningning; Chen, Guochun; Xiao, Sheng; Patel, Dhruti; Henderson, Joel M; Ichimura, Takaharu; Mou, Shan; Soeung, Savuth; McMahon, Andrew P; Kuchroo, Vijay K; Bonventre, Joseph V

    2013-09-01

    Acute kidney injury predisposes patients to the development of both chronic kidney disease and end-stage renal failure, but the molecular details underlying this important clinical association remain obscure. We report that kidney injury molecule-1 (KIM-1), an epithelial phosphatidylserine receptor expressed transiently after acute injury and chronically in fibrotic renal disease, promotes kidney fibrosis. Conditional expression of KIM-1 in renal epithelial cells (Kim1(RECtg)) in the absence of an injury stimulus resulted in focal epithelial vacuolization at birth, but otherwise normal tubule histology and kidney function. By 4 weeks of age, Kim1(RECtg) mice developed spontaneous and progressive interstitial kidney inflammation with fibrosis, leading to renal failure with anemia, proteinuria, hyperphosphatemia, hypertension, cardiac hypertrophy, and death, analogous to progressive kidney disease in humans. Kim1(RECtg) kidneys had elevated expression of proinflammatory monocyte chemotactic protein-1 (MCP-1) at early time points. Heterologous expression of KIM-1 in an immortalized proximal tubule cell line triggered MCP-1 secretion and increased MCP-1-dependent macrophage chemotaxis. In mice expressing a mutant, truncated KIM-1 polypeptide, experimental kidney fibrosis was ameliorated with reduced levels of MCP-1, consistent with a profibrotic role for native KIM-1. Thus, sustained KIM-1 expression promotes kidney fibrosis and provides a link between acute and recurrent injury with progressive chronic kidney disease.

  11. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice.

    PubMed

    Yang, Ping; Xiao, Yayun; Luo, Xuan; Zhao, Yunfei; Zhao, Lei; Wang, Yan; Wu, Tingting; Wei, Li; Chen, Yaxi

    2017-07-01

    Ectopic fat located in the kidney has emerged as a novel cause of obesity-related chronic kidney disease (CKD). In this study, we aimed to investigate whether inflammatory stress promotes ectopic lipid deposition in the kidney and causes renal injury in obese mice and whether the pathological process is mediated by the fatty acid translocase, CD36. High-fat diet (HFD) feeding alone resulted in obesity, hyperlipidemia, and slight renal lipid accumulation in mice, which nevertheless had normal kidney function. HFD-fed mice with chronic inflammation had severe renal steatosis and obvious glomerular and tubular damage, which was accompanied by increased CD36 expression. Interestingly, CD36 deficiency in HFD-fed mice eliminated renal lipid accumulation and pathological changes induced by chronic inflammation. In both human mesangial cells (HMCs) and human kidney 2 (HK2) cells, inflammatory stress increased the efficiency of CD36 protein incorporation into membrane lipid rafts, promoting FFA uptake and intracellular lipid accumulation. Silencing of CD36 in vitro markedly attenuated FFA uptake, lipid accumulation, and cellular stress induced by inflammatory stress. We conclude that inflammatory stress aggravates renal injury by activation of the CD36 pathway, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to CKD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. A human anti-dsDNA monoclonal antibody caused hyaline thrombi formation in kidneys of ‘leaky’ SCID mice

    PubMed Central

    Mason, L J; Ravirajan, C T; Latchman, D S; Isenberg, D A

    2001-01-01

    There are few studies assessing the pathogenicity of human monoclonal anti-DNA antibodies. The use of SCID mice avoids the problem of rejection of the human hybridoma cells thus allowing in vivo assessment of human immunoglobulins. Using electron microscopy we have shown that the human IgG anti-dsDNA monoclonal antibody, RH14, is nephritogenic in SCID mice, causing morphological changes in the kidney due to immunoglobulin deposition. The problem with using SCID mice is that they have an abnormal immune system; normally they are used at about 2 months of age, at which time they have virtually no functional T or B cells. It is known that older SCID mice become increasingly ‘leaky’, that is they develop some mature lymphocyte clones. Our aim was to assess if implanting anti-DNA antibodies into older ‘leaky’ SCID mice would result in pathology which was observable by light microscopy. Eight-month-old SCID mice were implanted with human hybridoma cells secreting either RH14 an anti-dsDNA IgG, CL24, an antiphospholipid antibody or an irrelevant human IgG control. As previously, RH14 deposited in the kidney and caused proteinuria but unexpectedly we also observed hyaline thrombi in the kidney glomeruli and peritubular capillaries. These thrombi occurred only in the case of RH14 implanted mice and were found to stain positively for human IgG and fibrin. However, apart from the interesting thrombi, we did not observe any greater pathological damage resulting from the anti-dsDNA antibody deposition than we had seen in the younger mice; indeed, the electron microscopic findings were more limited. PMID:11678910

  13. The impact of α-Lipoic acid on cell viability and expression of nephrin and ZNF580 in normal human podocytes.

    PubMed

    Leppert, Ulrike; Gillespie, Allan; Orphal, Miriam; Böhme, Karen; Plum, Claudia; Nagorsen, Kaj; Berkholz, Janine; Kreutz, Reinhold; Eisenreich, Andreas

    2017-09-05

    Human podocytes (hPC) are essential for maintaining normal kidney function and dysfunction or loss of hPC play a pivotal role in the manifestation and progression of chronic kidney diseases including diabetic nephropathy. Previously, α-Lipoic acid (α-LA), a licensed drug for treatment of diabetic neuropathy, was shown to exhibit protective effects on diabetic nephropathy in vivo. However, the effect of α-LA on hPC under non-diabetic conditions is unknown. Therefore, we analyzed the impact of α-LA on cell viability and expression of nephrin and zinc finger protein 580 (ZNF580) in normal hPC in vitro. Protein analyses were done via Western blot techniques. Cell viability was determined using a functional assay. hPC viability was dynamically modulated via α-LA stimulation in a concentration-dependent manner. This was associated with reduced nephrin and ZNF580 expression and increased nephrin phosphorylation in normal hPC. Moreover, α-LA reduced nephrin and ZNF580 protein expression via 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) inhibition. These data demonstrate that low α-LA had no negative influence on hPC viability, whereas, high α-LA concentrations induced cytotoxic effects on normal hPC and reduced nephrin and ZNF580 expression via NF-κB inhibition. These data provide first novel information about potential cytotoxic effects of α-LA on hPC under non-diabetic conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evaluation of [18F]Mefway biodistribution and dosimetry based on whole-body PET imaging of mice.

    PubMed

    Constantinescu, Cristian C; Sevrioukov, Evgueni; Garcia, Adriana; Pan, Min-Liang; Mukherjee, Jogeshwar

    2013-04-01

    [(18)F]Mefway is a novel radiotracer specific to the serotonin 5-HT1A receptor class. In preparation for using this tracer in humans, we have performed whole-body PET studies in mice to evaluate the biodistribution and dosimetry of [(18)F]Mefway. Six mice (three females and three males) received IV injections of [(18)F]Mefway and were scanned for 2 h in an Inveon-dedicated PET scanner. Each animal also received a high-resolution CT scan using an Inveon CT. The CT images were used to draw volume of interest on the following organs: the brain, large intestine, stomach, heart, kidneys, liver, lungs, pancreas, bone, spleen, testes, thymus, gallbladder, uterus, and urinary bladder. All organ time-activity curves without decay correction were normalized to the injected activity. The area under the normalized curves was then used to compute the residence times in each organ. Data were analyzed using PMOD and Matlab software. The absorbed doses in mouse organs were computed using the RAdiation Dose Assessment Resource animal models for dose assessment. The residence times in mouse organs were converted to human values using scale factors based on differences between organ and body weights. OLINDA/EXM 1.1 software was used to compute the absorbed human doses in multiple organs for both female and male phantoms. The highest mouse residence times were found in the liver, urinary bladder, and kidneys. The largest doses in mice were found in the urinary bladder (critical organ), kidney, and liver for both females and males, indicating primary elimination via urinary system. The projected human effective doses were 1.21E - 02 mSv/MBq for the adult female model and 1.13E - 02 mSv/MBq for the adult male model. The estimated human biodistribution of [(18)F]Mefway was similar to that of [(11)C]WAY 100,635, a 5-HT1A tracer for which dosimetry has been evaluated in humans. The elimination of radiotracer was primarily via the kidney and urinary bladder with the urinary bladder being the critical organ. Whole-body mouse imaging can be used as a preclinical tool to provide initial estimates of the absorbed doses of [(18)F]Mefway in humans.

  15. Transformation of primary human embryonic kidney cells to anchorage independence by a combination of BK virus DNA and the Harvey-ras oncogene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pater, A.; Pater, M.M.

    Primary human embryonic kidney (HEK) cells were transformed by a focus assay with BK virus (BKV) DNA molecularly cloned at its unique EcoRI site. Both viral DNA sequences and viral tumor antigens were present and expressed in all the foci that the authors examined. However, cells isolated from foci were incapable of growth in soft agar. They then examined the transformation of HEK cells after their transfection with a combination of BKV DNA and either the normal or the activated form of the human Ha-ras oncogene (EJ c-Ha-ras-1). Only the cells transfected with a combination of BKV DNA and themore » activated form of Ha-ras DNAs were present in the transformed colonies. BKV tumor antigens and the Ha-ras p21 protein were also expressed.« less

  16. Quantification of single-kidney glomerular filtration rate with electron-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Lerman, Lilach O.; Ritman, Erik L.; Pelaez, Laura I.; Sheedy, Patrick F., II; Krier, James D.

    2000-04-01

    The ability to accurately and noninvasively quantify single- kidney GFR could be invaluable for assessment of renal function. We developed a model that enables this measurement with EBCT. To examine the reliability of this method, EBCT renal flow and volume studies after contrast media administration were performed in pigs with unilateral renal artery stenosis (Group 1), controls (Group 2), and simultaneously with inulin clearance (Group 3). Renal flow curves, obtained from the bilateral renal cortex and medulla, depicted transit of the contrast through the vascular and tubular compartments, and were fitted using extended gamma- variate functions. Renal blood flow was calculated as the sum of products of cortical and medullary perfusions and volumes. Normalized GFR (mL/min/cc) was calculated using the rate (maximal slope) of proximal tubular contrast accumulation, and EBCT-GFR as normalized GFR* cortical volume. In Group 1, the decreased GFR of the stenotic kidney correlated well with its decreased volume and RBF, and with the degree of stenosis (r equals -0.99). In Group 3, EBCT-GFR correlated well with inulin clearance (slope 1.1, r equals 0.81). This novel approach can be very useful for quantification of concurrent regional hemodynamics and function in the intact kidneys, in a manner potentially applicable to humans.

  17. Dual roles for coactivator activator and its counterbalancing isoform coactivator modulator in human kidney cell tumorigenesis.

    PubMed

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y; Tsai, Ming-Jer; O'Malley, Bert W

    2008-10-01

    Coactivator activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein, we show that CoAA is a dual-function coregulator that inhibits G(1)-S transition in human kidney cells and suppresses anchorage-independent growth and xenograft tumor formation. Suppression occurs in part by down-regulating c-myc and its downstream effectors ccnd1 and skp2 and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, coactivator modulator (CoAM), antagonizes CoAA-induced G(1)-S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma compared with normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice isoform. This is, thus far, the only example of a nuclear receptor coregulator involved in suppression of kidney cancer and suggests potentially significant new roles for coregulators in renal cancer biology.

  18. Dual roles for CoAA and its counterbalancing isoform CoAM in human kidney cell tumorigenesis

    PubMed Central

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y.; Tsai, Ming-Jer; W. O’Malley, Bert

    2008-01-01

    Co-Activator Activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein we show that CoAA is a dual-function coregulator that inhibits G1/S transition in human kidney cells and suppresses anchorage independent growth and xenograft tumor formation. Suppression occurs in part by downregulating c-myc and its downstream effectors ccnd1 and skp2, and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene, c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, Coactivator Modulator (CoAM), antagonizes CoAA-induced G1/S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma as compared to normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice-isoform. This is so far the only example of a nuclear receptor coregulator involved in suppression of kidney cancer, and suggests potentially significant new roles for coregulators in renal cancer biology. PMID:18829545

  19. Role for transforming growth factor-beta1 in alport renal disease progression.

    PubMed

    Sayers, R; Kalluri, R; Rodgers, K D; Shield, C F; Meehan, D T; Cosgrove, D

    1999-11-01

    Alport syndrome results from mutations in either the alpha3(IV), alpha4(IV), or alpha5(IV) collagen genes. The disease is characterized by a progressive glomerulonephritis usually associated with a high-frequency sensorineural hearing loss. A mouse model for an autosomal form of Alport syndrome [collagen alpha3(IV) knockout] was produced and characterized. In this study, the model was exploited to demonstrate a potential role for transforming growth factor-beta1 (TGF-beta1) in Alport renal disease pathogenesis. Kidneys from normal and Alport mice, taken at different stages during the course of renal disease progression, were analyzed by Northern blot, in situ hybridization, and immunohistology for expression of TGF-beta1 and components of the extracellular matrix. Normal and Alport human kidney was examined for TGF-beta1 expression using RNase protection. The mRNAs encoding TGF-beta1 (in both mouse and human), entactin, fibronectin, and the collagen alpha1(IV) and alpha2(IV) chains were significantly induced in total kidney as a function of Alport renal disease progression. The induction of these specific mRNAs was observed in the glomerular podocytes of animals with advanced disease. Type IV collagen, laminin-1, and fibronectin were markedly elevated in the tubulointerstitium at 10 weeks, but not at 6 weeks, suggesting that elevated expression of specific mRNAs on Northern blots reflects events associated with tubulointerstitial fibrosis. The concomitant accumulation of mRNAs encoding TGF-beta1 and extracellular matrix components in the podocytes of diseased kidneys may reflect key events in Alport renal disease progression. These data suggest a role for TGF-beta1 in both glomerular and tubulointerstitial damage associated with Alport syndrome.

  20. Successful outcome of transplant of kidneys recovered from a brain-dead liver transplant recipient: case report.

    PubMed

    Domagała, Piotr; Kwiatkowski, Artur; Drozdowski, Jakub; Ostrowski, Krzysztof; Wszola, Michal; Diuwe, Piotr; Durlik, Magdalena; Paczek, Leszek; Chmura, Andrzej

    2012-12-01

    Few reports describing the use of organs donated by transplant recipients have been published. In this case report, kidneys procured from a brain-dead liver recipient were transplanted successfully. A 21-year-old man was referred for liver transplant after an overdose of acetaminophen. The patient's kidney function was initially normal, with proper urine production and normal kidney laboratory parameters. On the third day after admission, the patient's kidney laboratory parameters became elevated and hepatic encephalopathy requiring mechanical ventilation developed. An orthotopic liver transplant was performed the next day. The patient did not recover consciousness, and brain death was diagnosed on the third day after the liver transplant surgery. The maximum serum concentration of creatinine was 5.8 mg/dL (513 μmol/L) before kidney recovery, and urine production was normal. The kidneys were recovered with organ-perfusion support and were preserved by using machine perfusion. The kidneys were transplanted into 2 male recipients. Twelve months after transplant, the recipients remained in good health with satisfactory kidney function. This case demonstrates that transplanting kidneys recovered from liver transplant recipients is possible and beneficial, thus expanding the pool of potential donors.

  1. Aging and physiological changes of the kidneys including changes in glomerular filtration rate.

    PubMed

    Musso, Carlos G; Oreopoulos, Dimitrios G

    2011-01-01

    In addition to the structural changes in the kidney associated with aging, physiological changes in renal function are also found in older adults, such as decreased glomerular filtration rate, vascular dysautonomia, altered tubular handling of creatinine, reduction in sodium reabsorption and potassium secretion, and diminished renal reserve. These alterations make aged individuals susceptible to the development of clinical conditions in response to usual stimuli that would otherwise be compensated for in younger individuals, including acute kidney injury, volume depletion and overload, disorders of serum sodium and potassium concentration, and toxic reactions to water-soluble drugs excreted by the kidneys. Additionally, the preservation with aging of a normal urinalysis, normal serum urea and creatinine values, erythropoietin synthesis, and normal phosphorus, calcium and magnesium tubular handling distinguishes decreased GFR due to normal aging from that due to chronic kidney disease. Copyright © 2011 S. Karger AG, Basel.

  2. Concise Review: Kidney Generation with Human Pluripotent Stem Cells.

    PubMed

    Morizane, Ryuji; Miyoshi, Tomoya; Bonventre, Joseph V

    2017-11-01

    Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217. © 2017 AlphaMed Press.

  3. Betaine chemistry, roles, and potential use in liver disease.

    PubMed

    Day, Christopher R; Kempson, Stephen A

    2016-06-01

    Betaine is the trimethyl derivative of glycine and is normally present in human plasma due to dietary intake and endogenous synthesis in liver and kidney. Betaine is utilized in the kidney primarily as an osmoprotectant, whereas in the liver its primary role is in metabolism as a methyl group donor. In both organs, a specific betaine transporter mediates cellular uptake of betaine from plasma. The abundance of both betaine and the betaine transporter in liver greatly exceeds that of other organs. The remarkable contributions of betaine to normal human and animal health are summarized together with a discussion of the mechanisms and potential beneficial effects of dietary betaine supplements on liver disease. A significant amount of data from animal models of liver disease indicates that administration of betaine can halt and even reverse progression of the disruption of liver function. Betaine is well-tolerated, inexpensive, effective over a wide range of doses, and is already used in livestock feeding practices. The accumulated data indicate that carefully controlled additional investigations in humans are merited. The focus should be on the long-term use of betaine in large patient populations with liver diseases characterized by development of fatty liver, especially non-alcoholic fatty liver disease and alcoholic liver disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Functional capacity and cryopreservation of fetal rat pancreas in streptozotocin-diabetes. [Effectiveness of transplantation of fetal pancreas for control of diabetes in adult rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.; Clark, W.; Molnar, I.G.

    1976-01-01

    The fetal rat pancreas has a marked capacity for growth and maturation in glucose responsivity after transplantation under the kidney capsules of adult rats. The optimal conditions for function of the organ are a 3-week period of growth in a normal rat before transfer to a diabetic animal. Under these conditions diabetes is completely reversed by one fetal pancreas, and glucose disappearance rate and plasma insulin response to glucose are normal. Shunting of the venous drainage into the liver from fetal pancreases placed beneath the kidney capsule results in a marked improvement in diabetes control, and this technique may provemore » useful in experimental or human applications. Cryopreservation of the fetal pancreas has been successfully accomplished and will serve as a useful adjuvant to this method of reversing experimental diabetes.« less

  5. Age-related incidence of sclerotic glomeruli in human kidneys.

    PubMed Central

    Kaplan, C.; Pasternack, B.; Shah, H.; Gallo, G.

    1975-01-01

    The incidence of sclerotic glomeruli as a function of age in kidneys from 122 patients without clinical evidence of renal disease or hypertension was estimated by histologic quantitation. Based on statistical analysis of data from this sample, 95% of the normal population up to 40 years of age would be expected to have less than 10% sclerotic glomeruli. After the age of 40 years, the upper limit containing 95% of the normal population exceeds 10% sclerosis, and after the age of 50, there is a broad scatter of observed percentage of sclerotic glomeruli. These findings suggest that, in patients 40 years of age and younger, sclerosis of glomeruli at an incidence greater than 10% is disease-related, while in patients older than 40 years (and particularly those older than 50), there is a transition, and the distinction between abiotrophic involutional sclerosis and disease-related sclerosis becomes less clear. PMID:51591

  6. Anatomical study of variations in the blood supply of kidneys.

    PubMed

    Aristotle, Sharmila; Sundarapandian; Felicia, Christilda

    2013-08-01

    Each kidney is supplied by a single renal artery and a single renal vein, which accounts for about 20% of the cardiac output. However, variations in the form of level of origin and arrangement of renal arteries are so frequent. The present study aimed to note the vascular anatomy of kidneys with respect to the variations in their origin, course and any aberrant vessels which were present. The study material comprised of 15 formalin fixed human cadavers. During routine abdominal dissection for undergraduate students, the kidneys were exposed and the blood supply, along with its variations, were noted. The following anatomical findings are observed in this study: (i) Accessory renal arteries (ii) Presegmental arteries (iii) Upper polar arteries (iv) Lower polar arteries (v) Inferior suprarenal artery from accessory renal artery and (vi) Accessory renal vein. Awareness of the normal as well variational anatomy is mandatory for the surgeons, radiologists and urologists, for doing any uroradiological procedures or angiographic studies. Hence, this study will serve a useful guideline for the above mentioned procedures.

  7. Diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient (ADC) determination in normal and pathological fetal kidneys.

    PubMed

    Chaumoitre, K; Colavolpe, N; Shojai, R; Sarran, A; D' Ercole, C; Panuel, M

    2007-01-01

    To assess the use of diffusion-weighted magnetic resonance imaging (DW-MRI) in the evaluation of the fetal kidney and to estimate age-dependent changes in the apparent diffusion coefficient (ADC) of normal and pathological fetal kidneys. DW-MRI was performed on a 1.5-T machine at 23-38 gestational weeks in 51 pregnant women in whom the fetal kidneys were normal and in 10 whose fetuses had renal pathology (three with suspected nephropathy, three with renal tract dilatation, one with unilateral renal venous thrombosis, and three with twin-twin transfusion syndrome (TTTS)). The ADC was measured in an approximately 1-cm2 region of interest within the renal parenchyma. ADC values in normal renal parenchyma ranged from 1.1 to 1.8 10(-3) mm2 s-1. There was no significant age-dependent change in the ADC of normal kidneys. In cases of nephropathy, the ADC value was not always pathological but an ADC map could show abnormal findings. In cases of dilatation, the ADC value was difficult to determine when the dilatation was huge. In cases of TTTS, the ADC of the donor twin was higher than that of the recipient twin and the difference seemed to be related to the severity of the syndrome. Evaluation of the ADC for fetal kidneys is feasible. Fetal measurement of the ADC value and ADC maps may be useful tools with which to explore the fetal kidney when used in conjunction with current methods. DW-MR images, ADC value and ADC map seem to be useful in cases of suspected nephropathy (hyperechoic kidneys), dilated kidney and vascular pathology (renal venous thrombosis, TTTS). Copyright (c) 2006 ISUOG.

  8. Qualitative and Quantitative Imaging Evaluation of Renal Cell Carcinoma Subtypes with Grating-based X-ray Phase-contrast CT

    NASA Astrophysics Data System (ADS)

    Braunagel, Margarita; Birnbacher, Lorenz; Willner, Marian; Marschner, Mathias; De Marco, Fabio; Viermetz, Manuel; Notohamiprodjo, Susan; Hellbach, Katharina; Auweter, Sigrid; Link, Vera; Woischke, Christine; Reiser, Maximilian F.; Pfeiffer, Franz; Notohamiprodjo, Mike; Herzen, Julia

    2017-03-01

    Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media.

  9. Origin of Parietal Podocytes in Atubular Glomeruli Mapped by Lineage Tracing

    PubMed Central

    Schulte, Kevin; Berger, Katja; Boor, Peter; Jirak, Peggy; Gelman, Irwin H.; Arkill, Kenton P.; Neal, Christopher R.; Kriz, Wilhelm; Floege, Jürgen; Smeets, Bart

    2014-01-01

    Parietal podocytes are fully differentiated podocytes lining Bowman’s capsule where normally only parietal epithelial cells (PECs) are found. Parietal podocytes form throughout life and are regularly observed in human biopsies, particularly in atubular glomeruli of diseased kidneys; however, the origin of parietal podocytes is unresolved. To assess the capacity of PECs to transdifferentiate into parietal podocytes, we developed and characterized a novel method for creating atubular glomeruli by electrocoagulation of the renal cortex in mice. Electrocoagulation produced multiple atubular glomeruli containing PECs as well as parietal podocytes that projected from the vascular pole and lined Bowman’s capsule. Notably, induction of cell death was evident in some PECs. In contrast, Bowman’s capsules of control animals and normal glomeruli of electrocoagulated kidneys rarely contained podocytes. PECs and podocytes were traced by inducible and irreversible genetic tagging using triple transgenic mice (PEC- or Pod-rtTA/LC1/R26R). Examination of serial cryosections indicated that visceral podocytes migrated onto Bowman’s capsule via the vascular stalk; direct transdifferentiation from PECs to podocytes was not observed. Similar results were obtained in a unilateral ureter obstruction model and in human diseased kidney biopsies, in which overlap of PEC- or podocyte-specific antibody staining indicative of gradual differentiation did not occur. These results suggest that induction of atubular glomeruli leads to ablation of PECs and subsequent migration of visceral podocytes onto Bowman’s capsule, rather than transdifferentiation from PECs to parietal podocytes. PMID:24071005

  10. Generation of monoclonal antibodies reacting with human epithelial ovarian cancer.

    PubMed

    Tagliabue, E; Mènard, S; Della Torre, G; Barbanti, P; Mariani-Costantini, R; Porro, G; Colnaghi, M I

    1985-01-01

    Fusion of the murine myeloma line P3-X63-Ag8-U1 with spleen cells from a mouse immunized with a membrane preparations (CM) of a mucinous ovarian cystoadenocarcinoma yielded two monoclonal antibodies, MOv1 and MOv2, which reacted by solid-phase radioimmunoassay with immunizing tumor CM but were unreactive with normal kidney CM as well as with plasma proteins and peripheral blood cells from the immunizing carcinoma patient. MOv1 and MOv2 were further tested by solid-phase radioimunoassay on a panel of different CM from fresh surgical specimens of ovarian and nonovarian carcinomas, benign ovarian tumors, normal ovary and kidney tissues, and on various tumor cell lines. In addition, the antibodies were characterized by immunofluorescence on live cells from cell lines and surgical specimens, and on frozen sections of benign and malignant ovarian tumors, of nonovarian tumors, and of normal tissues. The results obtained indicate that MOv1 and MOv2 recognize two different epitopes on molecules present on malignant and benign ovarian mucinous tumors and colonic glands. In addition, the antigen recognized by MOv2 was also detected in carcinmas of lung, colon, stomach, and breast; in gastrointestinal glands; and in the glandular lumina of normal lactating breast.

  11. THE GLOMERULAR MESANGIUM

    PubMed Central

    Mauer, S. Michael; Sutherland, David E. R.; Howard, Richard J.; Fish, Alfred J.; Najarian, John S.; Michael, Alfred F.

    1973-01-01

    A mechanism of immune glomerular injury is described based on the fixation of antibody (Ab) to an antigen (Ag) that has localized in the glomerular mesangium. Rabbits were given, intravenously (i.v.), aggregated human IgG (AHIgG) or albumin (AHSA) and 10 h later, when the Ag by immunofluorescent microscopy was present in the mesangium, a kidney was removed and transplanted into a normal rabbit. The recipient then received, i.v., rabbit anti-HIgG or anti-HSA. Within minutes of Ab infusion, glomeruli of the donor kidney had polymorphonuclear (PMN) infiltration that over the next few hours became marked and was associated with glomerular cell swelling. At 24 h a decrease in PMN's and early mesangial proliferation was seen. By 3 days there was marked mesangial hypercellularity and increased mesangial matrix. Within minutes after Ab administration rabbit IgG, C3, and fibrin were seen in the glomerular mesangium. There was a fall in complement titer by 1 min after Ab infusion that was due to complement consumption by the donor kidney. Complement then returned to normal levels by 48 h. Significant glomerular injury did not occur (a) in the recipient's own kidney, (b) from Ag administration and transplantation without recipient Ab administration, or (c) from transplantation and Ab administration without prior Ag administration. These studies demonstrated that Ag localized in the glomerular mesangium can react with circulating Ab and complement resulting in severe glomerular injury. PMID:4570015

  12. Conserved and Divergent Features of Human and Mouse Kidney Organogenesis.

    PubMed

    Lindström, Nils O; McMahon, Jill A; Guo, Jinjin; Tran, Tracy; Guo, Qiuyu; Rutledge, Elisabeth; Parvez, Riana K; Saribekyan, Gohar; Schuler, Robert E; Liao, Christopher; Kim, Albert D; Abdelhalim, Ahmed; Ruffins, Seth W; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; Kesselman, Carl; McMahon, Andrew P

    2018-03-01

    Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species. Copyright © 2018 by the American Society of Nephrology.

  13. RBC indices

    MedlinePlus

    ... sudden blood loss, long-term diseases, kidney failure , aplastic anemia , or man-made heart valves). MCV above normal. ... sudden blood loss, long-term diseases, kidney failure, aplastic anemia, or man-made heart valves). MCH above normal. ...

  14. Early postnatal gentamicin and ceftazidime treatment in normal and food restricted neonatal wistar rats: Implications for kidney development.

    PubMed

    Bueters, Ruud R G; Jeronimus-Klaasen, Annelies; Brüggemann, Roger J M; van den Heuvel, Lambertus P; Schreuder, Michiel F

    2017-09-01

    Up to two-thirds of premature born neonates are treated for infections with aminoglycosides such as gentamicin. Although acute toxicities are well described, there is uncertainty on developmental changes after treatment of premature born neonates. We studied the effect of gentamicin and ceftazidime on kidney development in the rat. Additionally, we evaluated the modulating effect of extrauterine growth restriction. On postnatal day (PND) 2, Wistar rats were cross-fostered into normal sized litters (12 pups) or large litters (20 pups) to create normal food (NF) or food restricted (FR) litters to simulate growth restriction and dosed daily intraperitoneally with placebo, 4 mg/kg of gentamicin or 50 mg/kg ceftazidime until PND 8. Gentamicin pharmacokinetics were studied in a separate group of animals. Kidneys were weighed. Renal expression of 18 developmental genes was evaluated by quantitative PCR on PND 8. On PND 35, glomerular number was assessed by stereology and glomerular generations were counted. Food restricted litters showed 22% less body weight compared with controls by day 35 (p < 0.001), 1.4- to 1.5-fold down regulation of Renin, Oat1, and Agtr1a (p < 0.05) expression and a 12% reduction in glomerular numbers (mean 30841 vs. 35187, p < 0.001), whereas glomerular generation count was unaffected. Gentamicin pharmacokinetic parameters were found to be in a human clinical range (mean maximum concentration in plasma of 4.88 mg/L and mean area under the plasma-concentration time curve up to the last measured concentration after 4 hr of 10.71 mg.h/L for sexes combined) and all endpoints were unaffected. Ceftazidime reduced Renin expression by 1.7-fold (p < 0.01). Our experiments showed that gentamicin at clinical levels did not disturb kidney development, ceftazidime can affect Renin expression, and extrauterine growth restriction impairs kidney development, but did not modulate potential drug toxicity. Birth Defects Research 109:1228-1235, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Molecular pathophysiology of SLC4 bicarbonate transporters.

    PubMed

    Romero, Michael F

    2005-09-01

    Acid-base (H and HCO3) transport in the kidney is crucial for maintaining blood pH, cellular pH and excreting metabolic acid. HCO3 transport in the kidney is mediated by HCO3 transporter proteins which occur in two gene families in humans, vertebrates and invertebrates (SLC4 and SLC26). Since SLC26 transporters have other, non-HCO3 transport functions, this review highlights the history and recent advances in the SLC4 transporters in the kidney. The SLC4 gene and protein family (10 genes) contains three types of HCO3 transporters: Cl-HCO3 exchangers, Na/HCO3 cotransporters and Na-driven Cl-HCO3 exchangers. Function and human chromosomal location have been determined for most members. Human mutations in AE1 (SLC4A1) and NBCe1 (SLC4A4) are associated with distal and proximal renal tubular acidosis, respectively. Recent advances include the cellular and biophysical mechanisms by which AE1 and NBCe1 mutations lead to renal disease. Mutational and cellular trafficking studies have begun to elucidate the membrane topology and functional domains of AE1 and NBCe1. Knockout mice for AE2 and NBCn1 do not have obvious renal phenotypes. Recently, SLC4A11 (bicarbonate transporter 1) was shown to function as an electrogenic Na/borate cotransporter unable to transport HCO3 but involved in cell cycle control. SLC4 HCO3 transporters play critical roles in systemic and cellular pH homeostasis. Most of the SLC4 members are present at some level in the kidney. Future studies will likely continue to make use of knockout animals, for example mice and zebrafish, human mutations or polymorphisms to elucidate the normal and pathophysiologic roles of these proteins.

  16. Renal Parenchymal Area Growth Curves for Children 0 to 10 Months Old.

    PubMed

    Fischer, Katherine; Li, Chunming; Wang, Huixuan; Song, Yihua; Furth, Susan; Tasian, Gregory E

    2016-04-01

    Low renal parenchymal area, which is the gross area of the kidney in maximal longitudinal length minus the area of the collecting system, has been associated with increased risk of end stage renal disease during childhood in boys with posterior urethral valves. To our knowledge normal values do not exist. We aimed to increase the clinical usefulness of this measure by defining normal renal parenchymal area during infancy. In a cross-sectional study of children with prenatally detected mild unilateral hydronephrosis who were evaluated between 2000 and 2012 we measured the renal parenchymal area of normal kidney(s) opposite the kidney with mild hydronephrosis. Measurement was done with ultrasound from birth to post-gestational age 10 months. We used the LMS method to construct unilateral, bilateral, side and gender stratified normalized centile curves. We determined the z-score and the centile of a total renal parenchymal area of 12.4 cm(2) at post-gestational age 1 to 2 weeks, which has been associated with an increased risk of kidney failure before age 18 years in boys with posterior urethral valves. A total of 975 normal kidneys of children 0 to 10 months old were used to create renal parenchymal area centile curves. At the 97th centile for unilateral and single stratified curves the estimated margin of error was 4.4% to 8.8%. For bilateral and double stratified curves the estimated margin of error at the 97th centile was 6.6% to 13.2%. Total renal parenchymal area less than 12.4 cm(2) at post-gestational age 1 to 2 weeks had a z-score of -1.96 and fell at the 3rd percentile. These normal renal parenchymal area curves may be used to track kidney growth in infants and identify those at risk for chronic kidney disease progression. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Immunohistochemical evidence of ubiquitous distribution of the metalloendoprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cell lines.

    PubMed

    Weirich, Gregor; Mengele, Karin; Yfanti, Christina; Gkazepis, Apostolos; Hellmann, Daniela; Welk, Anita; Giersig, Cecylia; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Schmitt, Manfred

    2008-11-01

    Immunohistochemical evidence of ubiquitous distribution of the metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, and spleen) and on a cell microarray of 31 tumor cell lines of different origin, as well as trophoblast cells and normal blood lymphocytes and granulocytes. IDE protein was expressed in all the tissues assessed and all the tumor cell lines except for Raji and HL-60. Trophoblast cells and granulocytes, but not normal lymphocytes, were also IDE-positive.

  18. Immunohistochemical evidence for ubiquitous distribution of metalloendoprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cell lines

    PubMed Central

    Weirich, Gregor; Mengele, Karin; Yfanti, Christina; Gkazepis, Apostolos; Hellmann, Daniela; Welk, Anita; Giersig, Cecylia; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Schmitt, Manfred

    2013-01-01

    Immunohistochemical evidence for ubiquitous distribution of metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, spleen) and on a cell microarray encompassing 31 tumor cell lines of different origin plus trophoblast cells, and normal blood lymphocytes and granulocytes. IDE protein is expressed by all of the tissues assessed and in all of the tumor cell lines except Raji and HL-60; trophoblast cells and granulocytes but not normal lymphocytes are also IDE-positive. PMID:18783335

  19. Fell-Muir lecture: connective tissue growth factor (CCN2) – a pernicious and pleiotropic player in the development of kidney fibrosis

    PubMed Central

    Mason, Roger M

    2013-01-01

    Connective tissue growth factor (CTGF, CCN2) is a member of the CCN family of matricellular proteins. It interacts with many other proteins, including plasma membrane proteins, modulating cell function. It is expressed at low levels in normal adult kidney cells but is increased in kidney diseases, playing important roles in inflammation and in the development of glomerular and interstitial fibrosis in chronic disease. This review reports the evidence for its expression in human and animal models of chronic kidney disease and summarizes data showing that anti-CTGF therapy can successfully attenuate fibrotic changes in several such models, suggesting that therapies targeting CTGF and events downstream of it in renal cells may be useful for the treatment of human kidney fibrosis. Connective tissue growth factor stimulates the development of fibrosis in the kidney in many ways including activating cells to increase extracellular matrix synthesis, inducing cell cycle arrest and hypertrophy, and prolonging survival of activated cells. The relationship between CTGF and the pro-fibrotic factor TGFβ is examined and mechanisms by which CTGF promotes signalling by the latter are discussed. No specific cellular receptors for CTGF have been discovered but it interacts with and activates several plasma membrane proteins including low-density lipoprotein receptor-related protein (LRP)-1, LRP-6, tropomyosin-related kinase A, integrins and heparan sulphate proteoglycans. Intracellular signalling and downstream events triggered by such interactions are reviewed. Finally, the relationships between CTGF and several anti-fibrotic factors, such as bone morphogenetic factor-4 (BMP4), BMP7, hepatocyte growth factor, CCN3 and Oncostatin M, are discussed. These may determine whether injured tissue heals or progresses to fibrosis. PMID:23110747

  20. Arterial flow regulator enables transplantation and growth of human fetal kidneys in rats.

    PubMed

    Chang, N K; Gu, J; Gu, S; Osorio, R W; Concepcion, W; Gu, E

    2015-06-01

    Here we introduce a novel method of transplanting human fetal kidneys into adult rats. To overcome the technical challenges of fetal-to-adult organ transplantation, we devised an arterial flow regulator (AFR), consisting of a volume adjustable saline-filled cuff, which enables low-pressure human fetal kidneys to be transplanted into high-pressure adult rat hosts. By incrementally withdrawing saline from the AFR over time, blood flow entering the human fetal kidney was gradually increased until full blood flow was restored 30 days after transplantation. Human fetal kidneys were shown to dramatically increase in size and function. Moreover, rats which had all native renal mass removed 30 days after successful transplantation of the human fetal kidney were shown to have a mean survival time of 122 days compared to 3 days for control rats that underwent bilateral nephrectomy without a prior human fetal kidney transplant. These in vivo human fetal kidney models may serve as powerful platforms for drug testing and discovery. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. Sonographic Assessment of the Normal Dimensions of Liver, Spleen, and Kidney in Healthy Children at Tertiary Care Hospital.

    PubMed

    Thapa, N B; Shah, S; Pradhan, A; Rijal, K; Pradhan, A; Basnet, S

    2015-01-01

    Background Ultrasonography is one of the most common imaging modality to measure dimensions of visceral organs in children. However, the normal limit of size of visceral organs according to age and body habitus has not been specified in the standard textbooks. This might result in under detection of organomegaly in pediatrics population. Objective The objective of this study was to determine the normal range of dimensions for the liver, spleen, and kidney in healthy children. Method This is prospective cross-sectional, hospital-based study done at Tertiary-care teaching hospital. Participants included 272 pediatric subjects (152 male and 120 female) with normal physical or sonographic findings who were examined because of problems unrelated to the measured organs. The subjects were one month to 15 year (180 months) old. All measured organs were sonographically normal. Relationships of the dimensions of these organs with sex, age, body weight and height were investigated. Limits of normal dimensions of these organs were defined. Result Normal length of liver, kidneys and spleen were obtained sonographically for 272 children (152 male [55.9%] and 120 female [44.1%]) in the age group from 1 months to 15 (180 months) years. The mean age was 45.78 months (SD, 44.73). The measured dimensions of all these organs showed highest correlation with height and age so the descriptive analysis of the organ dimensions (mean, minimum, and maximum values, SD and 5th and 95th percentiles) were expressed in 10 age groups along with height range of the included children. The mean length of right kidney was shorter than the left kidney length, and the difference was statistically significant (p = 0.001). Conclusion This study provides practical and comprehensive guide to the normal visceral organ dimension in pediatric population. The normal range limit of the liver, spleen, and kidney determined in this study could be used as a reference in daily practice in local radiology clinics.

  2. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    NASA Astrophysics Data System (ADS)

    Hobbs, Robert F.; Song, Hong; Huso, David L.; Sundel, Margaret H.; Sgouros, George

    2012-07-01

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the human and murine models. The renal cortex and medulla S-values were also calculated and the results compared to traditional absorbed fraction calculations. The nephron model enables a more optimal implementation of treatment and is a critical step in understanding toxicity for human translation of targeted α-particle therapy. The S-values established here will enable a MIRD-type application of α-particle dosimetry for α-emitters, i.e. measuring the TIA in the kidney (or renal cortex) will provide meaningful and accurate nephron-level dosimetry.

  3. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells.

    PubMed

    García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J

    2014-01-01

    Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.

  4. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells

    PubMed Central

    García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J.

    2014-01-01

    Background/Aims Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD. PMID:24575118

  5. Cathepsin B is not the processing enzyme for mouse prorenin.

    PubMed

    Mercure, Chantal; Lacombe, Marie-Josée; Khazaie, Khashayarsha; Reudelhuber, Timothy L

    2010-05-01

    Renin, an aspartyl protease that catalyzes the rate-limiting step in the renin-angiotensin system (RAS), is proteolytically activated by a second protease [referred to as the prorenin processing enzyme (PPE)] before its secretion from the juxtaglomerular cells of the kidney. Although several enzymes are capable of activating renin in vitro, the leading candidate for the PPE in the kidney is cathepsin B (CTSB) due to is colocalization with the renin precursor (prorenin) in juxtaglomerular cell granules and because of its site-selective activation of human prorenin both in vitro and in transfected tissue culture cell models. To verify the role of CTSB in prorenin processing in vivo, we tested the ability of CTSB-deficient (CTSB-/-) mice to generate active renin. CTSB-/- mice do not exhibit any overt symptoms (renal malformation, preweaning mortality) typical of an RAS deficiency and have normal levels of circulating active renin, which, like those in control animals, rise more than 15-fold in response to pharmacologic inhibition of the RAS. The mature renin enzyme detected in kidney lysates of CTSB-/- mice migrates at the same apparent molecular weight as that in control mice, and the processing to active renin is not affected by chloroquine treatment of the animals. Finally, the distribution and morphology of renin-producing cells in the kidney is normal in CTSB-/- mice. In conclusion, CTSB-deficient mice exhibit no differences compared with controls in their ability to generate active renin, and our results do not support CTSB as the PPE in mice.

  6. A Compendium of Canine Normal Tissue Gene Expression

    PubMed Central

    Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand

    2011-01-01

    Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323

  7. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice

    PubMed Central

    Johansson, Elinn; Rönö, Birgitte; Johansson, Martin; Lindgren, David; Möller, Christina; Axelson, Håkan; Smith, Emma M. K.

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, representing approximately 75% of all renal neoplasms. ccRCC is known to be strongly associated with silencing of the von Hippel Lindau (VHL) tumor suppressor gene, yet VHL deficiency alone does not seem to be sufficient to drive the oncogenic transformation of normal renal epithelium and induce renal tumorigenesis. We, and others, have previously suggested that constitutive activation of the Notch signaling pathway, alongside with VHL loss, contribute to the oncogenic features of ccRCC. Here we report a prevailing hyperactivation of the Notch1 receptor in human ccRCC relative to the healthy counterpart. To explore the consequences of the elevated Notch1 signaling observed in ccRCC patient material, we made use of a conditional mouse model based on concurrent ectopic expression of constitutively active Notch1 (NICD1) and deletion of the Vhl gene. Histological examination of the kidneys of the conditional mice demonstrate the existence of nests of dysplastic cells with a clear cytoplasm as a consequence of lipid accumulation, thus displaying a one important hallmark of human ccRCC. PMID:27491826

  8. Population genetics of chronic kidney disease: the evolving story of APOL1.

    PubMed

    Wasser, Walter G; Tzur, Shay; Wolday, Dawit; Adu, Dwomoa; Baumstein, Donald; Rosset, Saharon; Skorecki, Karl

    2012-01-01

    Advances in human genome sequencing and generation of public databases of genomic diversity enable nephrologists to re-examine the genetics of common, complex kidney diseases. Non-diabetic kidney diseases prevalent in African ancestry populations and the allelic variation described in chromosome 22q12.3 is one such illustrative example. Newly available genomic database information enabled research groups to discover common functional DNA sequence risk variants in the APOL1 gene. These variants (termed G1 and G2) evolved to confer protection from a species of trypanosomal infection and thus achieved high prominence in many geographic regions of Africa and have been carried over to African diaspora communities worldwide. Since these discoveries two years ago, new insights have been gained: localization of APOL1 in normal and disease kidney tissues; influence of the APOL1 variants on the histopathology of HIV kidney disease; possible association with kidney transplant durability; onset of kidney failure at a younger age; association with blood lipid concentrations; more precise geographic localization of individuals with these variants to western and southern African ancestry; and the absence of the variants and kidney disease predisposition in Ethiopians. The definition of APOL1 nephropathy also confirms the long-held assumption by many clinicians that kidney disease attributed to hypertension in African populations represents an underlying glomerulopathy. Still awaited is the delineation of the biologic mechanisms of cellular injury related to these variants, to provide biologic proof of the APOL1 association and to provide potential targets for preventive and therapeutic intervention.

  9. Comparative anatomical study of the kidney position in amniotes using the origin of the renal artery as a landmark.

    PubMed

    Yokota, Eri; Kawashima, Tomokazu; Ohkubo, Fumie; Sasaki, Hiroshi

    2005-03-01

    The anatomical relationship between the kidney position and its arterial supply was investigated in 21 mammals, 1 bird, and 3 reptiles (n = 1 for each species) and in 43 human cadavers. The following observations were made. (1) Although the right kidney was located caudal to the left kidney in 29 out of 43 human cadavers (67.4%), the origin of the right renal artery from the aorta was located cranial to the origin of the left renal artery in 36 human cadavers (83.7%). Therefore, the relative positions of the kidneys do not correspond with the relative origins of the renal arteries in humans. (2) Among the mammals that were examined, the position of the kidney and the branching level of the renal artery on the right side were usually cranial to those on the left side. (3) In the bird and most reptiles that were examined, kidneys were typically located in the pelvic region and were supplied by segmental arterial branches. These results suggest that the right kidney and its arterial supply are generally located cranial to the left kidney in phylogeny of mammals. While the presence of a human accessory renal artery in 9 out of 86 sides (10.5%) and a cranial origin of the left renal artery relative to the right renal artery in 7 out of 43 cadavers (16.3%), shows some variation in the arterial supply to the kidneys, the origin of the renal arteries can generally be used as phylogenetic landmarks indicating the relative positions of the kidneys. Hence, from an ontological perspective, the human right kidney may be initially situated cranial to the left kidney during the early stages of development. Thereafter, the human right kidney may shift downwards secondary.

  10. Anatomical Study of Variations in the Blood Supply of Kidneys

    PubMed Central

    Aristotle, Sharmila; Sundarapandian; Felicia, Christilda

    2013-01-01

    Background: Each kidney is supplied by a single renal artery and a single renal vein, which accounts for about 20% of the cardiac output. However, variations in the form of level of origin and arrangement of renal arteries are so frequent. Aim: The present study aimed to note the vascular anatomy of kidneys with respect to the variations in their origin, course and any aberrant vessels which were present. Materials and Methods: The study material comprised of 15 formalin fixed human cadavers. During routine abdominal dissection for undergraduate students, the kidneys were exposed and the blood supply, along with its variations, were noted. Results: The following anatomical findings are observed in this study: (i) Accessory renal arteries (ii) Presegmental arteries (iii) Upper polar arteries (iv) Lower polar arteries (v) Inferior suprarenal artery from accessory renal artery and (vi) Accessory renal vein. Conclusion: Awareness of the normal as well variational anatomy is mandatory for the surgeons, radiologists and urologists, for doing any uroradiological procedures or angiographic studies. Hence, this study will serve a useful guideline for the above mentioned procedures. PMID:24086837

  11. Observation of human tissue with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-05-01

    Human tissues obtained from cancerous kidneys fixed in formalin were observed with phase-contrast X-ray computed tomography (CT) using 17.7-keV synchrotron X-rays. By measuring the distributions of the X-ray phase shift caused by samples using an X-ray interferometer, sectional images that map the distribution of the refractive index were reconstructed. Because of the high sensitivity of phase- contrast X-ray CT, a cancerous lesion was differentiated from normal tissue and a variety of other structures were revealed without the need for staining.

  12. Renal venogram

    MedlinePlus

    ... be black. Other structures will be shades of gray. Veins are not normally seen in an x- ... Venogram - kidney; Renal vein thrombosis - venogram Images Kidney anatomy Kidney - blood and urine flow Renal veins References ...

  13. Metabolomic Perfusate Analysis during Kidney Machine Perfusion: The Pig Provides an Appropriate Model for Human Studies

    PubMed Central

    Nath, Jay; Guy, Alison; Smith, Thomas B.; Cobbold, Mark; Inston, Nicholas G.; Hodson, James; Tennant, Daniel A.

    2014-01-01

    Introduction Hypothermic machine perfusion offers great promise in kidney transplantation and experimental studies are needed to establish the optimal conditions for this to occur. Pig kidneys are considered to be a good model for this purpose and share many properties with human organs. However it is not established whether the metabolism of pig kidneys in such hypothermic hypoxic conditions is comparable to human organs. Methods Standard criteria human (n = 12) and porcine (n = 10) kidneys underwent HMP using the LifePort Kidney Transporter 1.0 (Organ Recovery Systems) using KPS-1 solution. Perfusate was sampled at 45 minutes and 4 hours of perfusion and metabolomic analysis performed using 1-D 1H-NMR spectroscopy. Results There was no inter-species difference in the number of metabolites identified. Of the 30 metabolites analysed, 16 (53.3%) were present in comparable concentrations in the pig and human kidney perfusates. The rate of change of concentration for 3-Hydroxybutyrate was greater for human kidneys (p<0.001). For the other 29 metabolites (96.7%), there was no difference in the rate of change of concentration between pig and human samples. Conclusions Whilst there are some differences between pig and human kidneys during HMP they appear to be metabolically similar and the pig seems to be a valid model for human studies. PMID:25502759

  14. Diffusion-weighted MR imaging findings of kidneys in patients with early phase of obstruction.

    PubMed

    Bozgeyik, Zulkif; Kocakoc, Ercan; Sonmezgoz, Fitnet

    2009-04-01

    Diffusion-weighted (DW) magnetic resonance (MR) imaging is an MR technique used to show molecular diffusion. The apparent diffusion coefficient (ADC), as a quantitative parameter calculated from the DW MR images. The purpose of this study is to evaluate the ability of DW MR imaging in early phase of obstruction due to urolithiasis. Twenty-six patients with acute dilatation of the pelvicalyceal system detected by intravenous urography were included in this study. MR imaging was performed using a 1.5 T whole-body superconducting MR scanner. DW imaging can be performed using single-shot spin-echo, echo-planar imaging (EPI) sequences with the following diffusion gradient b values: 100, 600, 1000 s/mm(2). Circular region of interest (ROI) was placed in the renal parenchyma for the measurement of ADC values in the normal and obstructed kidney. For statistical analyses, Paired t test were used. In spite of obstructed kidneys had the lower ADC values compared to normal kidneys, these alterations were statistically insignificant. We did not observe significantly different ADC values of early phase of obstructed kidneys compared to normal kidneys.

  15. Cooperation of hTERT, SV40 T Antigen and Oncogenic Ras in Tumorigenesis: A Cell Transplantation Model Using Bovine Adrenocortical Cells1

    PubMed Central

    Thomas, Michael; Suwa, Tetsuya; Yang, Lianqing; Zhao, Lifang; Hawks, Christina L; Hornsby, Peter J

    2002-01-01

    Abstract Expression of TERT, the reverse transcriptase component of telomerase, is necessary to convert normal human cells to cancer cells. Despite this, “telomerization” by hTERT does not appear to alter the normal properties of cells. In a cell transplantation model in which bovine adrenocortical cells form vascularized tissue structures beneath the kidney capsule in scid mice, telomerization does not perturb the functional tissue-forming capacity of the cells. This cell transplantation model was used to study the cooperation of hTERT with SV40 T antigen (SV40 TAg) and oncogenic Ras in tumorigenesis. Only cells expressing all three genes were tumorigenic; this required large T, but not small t, antigen. These cells produced a continuously expanding tissue mass; they were invasive with respect to adjacent organs and eventually destroyed the kidney. Cells expressing only hTERT or only Ras produced minimally altered tissues. In contrast, SV40 TAg alone produced noninvasive nodules beneath the kidney capsule that had high proliferation rates balanced by high rates of apoptosis. The use of cell transplantation techniques in a cell type that is able to form tissue structures with or without full neoplastic conversion allows the phenotypes produced by individual cooperating oncogenes to be observed. PMID:12407443

  16. A COMPARISON OF 60, 70, AND 90 KDA STRESS PROTEIN EXPRESSION IN NORMAL RAT NRK-52 AND HUMAN HK-2 KIDNEY CELL LINES FOLLOWING IN VITRO EXPOSURE TO ARSENITE AND CADMIUM ALONE OR IN COMBINATION. (R827161)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. The meridian system and mechanism of acupuncture: a comparative review. Part 3: Mechanisms of acupuncture therapies.

    PubMed

    Chang, Shyang

    2013-06-01

    The human body is a hierarchical organism containing many levels of mutually interacting oscillatory systems. From the viewpoint of traditional Chinese medicine, health is a state of harmony emergent from the interactions of these systems and disease is a state of discord. Hence, human diseases are considered as disturbed functions rather than changed structures. Indeed, the change from normal to abnormal structure may be beneficent rather than maleficent. For example, when one kidney becomes twice the normal size following the destruction of the other kidney, it is good and not bad for us because we might be dead otherwise. Therefore, in Part 3 of this three-part series, emphasis is mainly laid on the acupuncture mechanisms of treating disturbed physiological functions rather than disordered structures. At first, the basic tenets of conventional neuroscience and cardiology are reevaluated so that clear understanding of how nervous and cardiovascular systems work together can be obtained. Then, the general principles of diagnosis and treatment in traditional Chinese medicine from the integrative perspective of complex dynamic systems are proposed. Finally, mechanisms of acupuncture therapies for treating 14 different categories of disorders will be elucidated via the magneto-electric inductive effects of the meridian system. Copyright © 2013. Published by Elsevier B.V.

  18. The normal and pathologic renal medulla: a comprehensive overview.

    PubMed

    López, José I; Larrinaga, Gorka; Kuroda, Naoto; Angulo, Javier C

    2015-04-01

    The renal medulla comprises an intricate system of tubules, blood vessels and interstitium that is not well understood by most general pathologists. We conducted an extensive review of the literature on the renal medulla, in both normal and pathologic conditions. We set out in detail the points of key interest to pathologists: normal and pathological development, physiology, microscopic anatomy, histology and immunohistochemistry; and the specific and most common other types of disease associated with this part of the kidney: developmental abnormalities, (multicystic dysplastic kidney, autosomal dominant and recessive polycystic kidney diseases, medullary cystic kidney disease), inflammatory conditions (xanthogranulomatous pyelonephritis, malakoplakia), hyperplasia and dysplasia, and neoplastic processes (oncocytoma, atypical oncocytic tumors, chromophobe cell carcinoma, collecting duct carcinoma, urothelial carcinoma, other carcinomas, renal medullary fibroma and metastatic tumors). This condensed overview of the origin, function and pathology of the renal medulla, both in terms of development, inflammation and neoplastic processes, should help focus the interest of clinical pathologists on this widely overlooked part of the kidney. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Potential Use of Autologous Renal Cells from Diseased Kidneys for the Treatment of Renal Failure.

    PubMed

    George, Sunil K; Abolbashari, Mehran; Jackson, John D; Aboushwareb, Tamer; Atala, Anthony; Yoo, James J

    2016-01-01

    Chronic kidney disease (CKD) occurs when certain conditions cause the kidneys to gradually lose function. For patients with CKD, renal transplantation is the only treatment option that restores kidney function. In this study, we evaluated primary renal cells obtained from diseased kidneys to determine whether their normal phenotypic and functional characteristics are retained, and could be used for cell therapy. Primary renal cells isolated from both normal kidneys (NK) and diseased kidneys (CKD) showed similar phenotypic characteristics and growth kinetics. The expression levels of renal tubular cell markers, Aquaporin-1 and E-Cadherin, and podocyte-specific markers, WT-1 and Nephrin, were similar in both NK and CKD kidney derived cells. Using fluorescence- activated cell sorting (FACS), specific renal cell populations were identified and included proximal tubular cells (83.1% from NK and 80.3% from CKD kidneys); distal tubular cells (11.03% from NK and 10.9% from CKD kidneys); and podocytes (1.91% from NK and 1.78% from CKD kidneys). Ultra-structural analysis using scanning electron microscopy (SEM) revealed microvilli on the apical surface of cultured cells from NK and CKD samples. Moreover, transmission electron microscopy (TEM) analysis showed a similar organization of tight junctions, desmosomes, and other intracellular structures. The Na+ uptake characteristics of NK and CKD derived renal cells were also similar (24.4 mmol/L and 25 mmol/L, respectively) and no significant differences were observed in the protein uptake and transport characteristics of these two cell isolates. These results show that primary renal cells derived from diseased kidneys such as CKD have similar structural and functional characteristics to their counterparts from a normal healthy kidney (NK) when grown in vitro. This study suggests that cells derived from diseased kidney may be used as an autologous cell source for renal cell therapy, particularly in patients with CKD or end-stage renal disease (ESRD).

  20. Embryonic kidney function in a chronic renal failure model in rodents.

    PubMed

    Fujimoto, Eisuke; Yamanaka, Shuichiro; Kurihara, Sho; Tajiri, Susumu; Izuhara, Luna; Katsuoka, Yuichi; Yokote, Shinya; Matsumoto, Kei; Kobayashi, Eiji; Okano, Hirotaka James; Chikaraishi, Tatsuya; Yokoo, Takashi

    2017-08-01

    Rapid advancements have been made in alternative treatments for renal diseases. Our goal for renal regeneration is to establish a kidney graft derived from human embryonic tissues. In this study, we investigated the effects of host renal failure on the structure and activity of transplanted embryonic kidney and bladder, and found that diuretics effectively induced urine production in the transplanted kidney. Uremic conditions were reproduced using a 5/6 renal infarction rat model. An embryonic kidney plus bladder (embryonic day 15) was isolated from a pregnant Lewis rat and transplanted into the para-aortic area of a 5/6 renal-infarcted Lewis rat. Following growth, the embryonic bladder was successfully anastomosed to the host ureter. We assessed graft function in terms of survival rates and found no differences between normal (n = 5) and renal failure (n = 8) groups (median survival: 70.5 vs 74.5 h; p = 0.331) in terms of survival, indicating that the grafts prolonged rat survival, even under renal failure conditions. Furosemide (n = 9) significantly increased urine volume compared with saline-treated controls (n = 7; p < 0.05), confirming that the grafts were functional. We also demonstrated the possibilities of an in vivo imaging system for determining the viability of transplanted embryonic kidney with bladder. The results of this study demonstrate that transplanted embryonic kidney and bladder can grow and function effectively, even under uremic conditions.

  1. Histopathologic Findings of Potential Kidney Donors With Asymptomatic Microscopic Hematuria: Impact on Donation.

    PubMed

    Hassan, E A; Ali, T Z; Abdulbaki, A; Ibrahim, I A; Almanae, H M; Aleid, H A

    2017-10-01

    Isolated microscopic hematuria (IMH) is not uncommon in potential kidney donors. The aim was to study the kidney biopsy findings of potential kidney donors with IMH and the impact of the histopathologic diagnoses on the decision to accept or decline such donors from kidney donation. In this retrospective study, all the potential kidney donors with IMH were identified from the medical records of patients who underwent kidney biopsies between January 2010 and December 2016. Forty-five such individuals were identified. The mean age of these potential donors was 32.6 years and 76% were male. All of them had normal blood pressure and no significant proteinuria. Seventeen (38%) biopsies showed histopathologic abnormalities; thin basement membrane disease (n = 13; 28%) was the most common cause followed by immunoglobulin (Ig)A nephropathy (n = 4; 9%). Donors with abnormal biopsy findings were excluded from donation. However, 62% of the potential donors had normal kidney biopsy findings and were accepted for kidney donation. IMH justifies extensive work-up including kidney biopsy to identify donors who may have underlying significant glomerular pathology excluding them from kidney donation. On the other hand, kidney biopsy also helps in accepting the donors if it does not show significant abnormality. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Conditional ablation of glycogen synthase kinase 3β in postnatal mouse kidney.

    PubMed

    Ge, Yan; Si, Jin; Tian, Li; Zhuang, Shougang; Dworkin, Lance D; Gong, Rujun

    2011-01-01

    Glycogen synthase kinase (GSK)3 is a ubiquitously expressed serine/threonine kinase existing in two isoforms, namely GSK3α and GSK3β. Aside from the long-recognized role in insulin signal transduction and glycogen biosynthesis, GSK3β has been recently coined as a master control molecule in nuclear factor-κB activation and inflammatory kidney injury. Nevertheless, previous studies are less conclusive because they relied greatly on small molecule inhibitors, which lack selectivity and barely distinguish between the GSK3 isoforms. In addition, early embryonic lethality after global knockout of GSK3β precludes interrogation of the biological role of GSK3β in the adult kidney. To circumvent these issues, the Cre/loxP system was used to generate a conditional knockout mouse model in which the GSK3β gene was specifically deleted in kidney cortical tubules at postnatal mature stage. Kidney-specific ablation of GSK3β resulted in a phenotype no different from control littermates. Knockout mice (KO) were viable and exhibited normal development and normal kidney physiology in terms of kidney function, urine albumin excretion, and urine-concentrating ability. It is noteworthy that apart from normal glomerular and tubulointerstitial morphology, the kidneys from KO demonstrated more glycogen accumulation in the renal cortical tubules as assessed by both periodic acid-Schiff staining for light microscopy and direct biochemical assay, consistent with an elevated glycogen synthetic activity as evidenced by diminished inhibitory phosphorylation of glycogen synthase that occurred subsequent to GSK3β ablation. This finding was further validated by electron microscopic observations of increased deposition of glycogen particles in the renal tubules of KO, suggesting that GSK3α could not fully compensate for the loss of GSK3β in regulating glycogen metabolism in the kidney. Collectively, our study suggests that kidney-specific ablation of GSK3β barely affects kidney function and histology under normal circumstances. Extended examinations of these KO under diseased conditions are merited to understand the role of GSK3β in renal pathophysiology.

  3. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease.

    PubMed

    Cornec-Le Gall, Emilie; Olson, Rory J; Besse, Whitney; Heyer, Christina M; Gainullin, Vladimir G; Smith, Jessica M; Audrézet, Marie-Pierre; Hopp, Katharina; Porath, Binu; Shi, Beili; Baheti, Saurabh; Senum, Sarah R; Arroyo, Jennifer; Madsen, Charles D; Férec, Claude; Joly, Dominique; Jouret, François; Fikri-Benbrahim, Oussamah; Charasse, Christophe; Coulibaly, Jean-Marie; Yu, Alan S; Khalili, Korosh; Pei, York; Somlo, Stefan; Le Meur, Yannick; Torres, Vicente E; Harris, Peter C

    2018-05-03

    Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney cysts, often resulting in end-stage renal disease (ESRD). This disorder is genetically heterogeneous with ∼7% of families genetically unresolved. We performed whole-exome sequencing (WES) in two multiplex ADPKD-like pedigrees, and we analyzed a further 591 genetically unresolved, phenotypically similar families by targeted next-generation sequencing of 65 candidate genes. WES identified a DNAJB11 missense variant (p.Pro54Arg) in two family members presenting with non-enlarged polycystic kidneys and a frameshifting change (c.166_167insTT) in a second family with small renal and liver cysts. DNAJB11 is a co-factor of BiP, a key chaperone in the endoplasmic reticulum controlling folding, trafficking, and degradation of secreted and membrane proteins. Five additional multigenerational families carrying DNAJB11 mutations were identified by the targeted analysis. The clinical phenotype was consistent in the 23 affected members, with non-enlarged cystic kidneys that often evolved to kidney atrophy; 7 subjects reached ESRD from 59 to 89 years. The lack of kidney enlargement, histologically evident interstitial fibrosis in non-cystic parenchyma, and recurring episodes of gout (one family) suggested partial phenotypic overlap with autosomal-dominant tubulointerstitial diseases (ADTKD). Characterization of DNAJB11-null cells and kidney samples from affected individuals revealed a pathogenesis associated with maturation and trafficking defects involving the ADPKD protein, PC1, and ADTKD proteins, such as UMOD. DNAJB11-associated disease is a phenotypic hybrid of ADPKD and ADTKD, characterized by normal-sized cystic kidneys and progressive interstitial fibrosis resulting in late-onset ESRD. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj) on brain cerebrum, liver & kidney in rats

    PubMed Central

    Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar

    2014-01-01

    Background & objectives: Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Methods: Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. Results: SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. Interpretation & conclusions: The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney. PMID:24927349

  5. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj) on brain cerebrum, liver & kidney in rats.

    PubMed

    Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar

    2014-04-01

    Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney.

  6. Extracts from black carrot tissue culture as potent anticancer agents.

    PubMed

    Sevimli-Gur, Canan; Cetin, Burcu; Akay, Seref; Gulce-Iz, Sultan; Yesil-Celiktas, Ozlem

    2013-09-01

    Black carrots contain anthocyanins possessing enhanced physiological activities. Explants of young black carrot shoots were cultured in Murashige and Skoog (MS) medium for callus initiation and were transferred to new MS medium supplemented with four different combinations of 2,4-dichlorophenoxyacetic acid and kinetin. Subsequently, the lyophilized calli and black carrot harvested from fields were subjected to ultrasound extraction with ethanol at a ratio of 1:15 (w:v). Obtained extracts were applied to various human cancer cell lines including MCF-7 SK-BR-3 and MDA-MB-231 (human breast adenocarcinomas), HT-29 (human colon adenocarcinoma), PC-3 (human prostate adenocarcinoma), Neuro 2A (Musmusculus neuroblastoma) cancer cell lines and VERO (African green monkey kidney) normal cell line by MTT assay. The highest cytotoxic activity was achieved against Neuro-2A cell lines exhibiting viability of 38-46% at 6.25 μg/ml concentration for all calli and natural extracts. However, a significantly high IC50 value of 170.13 μg/ml was attained in normal cell line VERO indicating that its natural counterpart is an ideal candidate for treatment of brain cancer without causing negative effects to normal healthy cells.

  7. History of Childhood Kidney Disease and Risk of Adult End-Stage Renal Disease.

    PubMed

    Calderon-Margalit, Ronit; Golan, Eliezer; Twig, Gilad; Leiba, Adi; Tzur, Dorit; Afek, Arnon; Skorecki, Karl; Vivante, Asaf

    2018-02-01

    The long-term risk associated with childhood kidney disease that had not progressed to chronic kidney disease in childhood is unclear. We aimed to estimate the risk of future end-stage renal disease (ESRD) among adolescents who had normal renal function and a history of childhood kidney disease. We conducted a nationwide, population-based, historical cohort study of 1,521,501 Israeli adolescents who were examined before compulsory military service in 1967 through 1997; data were linked to the Israeli ESRD registry. Kidney diseases in childhood included congenital anomalies of the kidney and urinary tract, pyelonephritis, and glomerular disease; all participants included in the primary analysis had normal renal function and no hypertension in adolescence. Cox proportional-hazards models were used to estimate the hazard ratio for ESRD associated with a history of childhood kidney disease. During 30 years of follow-up, ESRD developed in 2490 persons. A history of any childhood kidney disease was associated with a hazard ratio for ESRD of 4.19 (95% confidence interval [CI], 3.52 to 4.99). The associations between each diagnosis of kidney disease in childhood (congenital anomalies of the kidney and urinary tract, pyelonephritis, and glomerular disease) and the risk of ESRD in adulthood were similar in magnitude (multivariable-adjusted hazard ratios of 5.19 [95% CI, 3.41 to 7.90], 4.03 [95% CI, 3.16 to 5.14], and 3.85 [95% CI, 2.77 to 5.36], respectively). A history of kidney disease in childhood was associated with younger age at the onset of ESRD (hazard ratio for ESRD among adults <40 years of age, 10.40 [95% CI, 7.96 to 13.59]). A history of clinically evident kidney disease in childhood, even if renal function was apparently normal in adolescence, was associated with a significantly increased risk of ESRD, which suggests that kidney injury or structural abnormality in childhood has long-term consequences.

  8. Association between First Nations ethnicity and progression to kidney failure by presence and severity of albuminuria.

    PubMed

    Samuel, Susan M; Palacios-Derflingher, Luz; Tonelli, Marcello; Manns, Braden; Crowshoe, Lynden; Ahmed, Sofia B; Jun, Min; Saad, Nathalie; Hemmelgarn, Brenda R

    2014-02-04

    Despite a low prevalence of chronic kidney disease (estimated glomerular filtration rate [GFR]<60 mL/min per 1.73 m2), First Nations people have high rates of kidney failure requiring chronic dialysis or kidney transplantation. We sought to examine whether the presence and severity of albuminuria contributes to the progression of chronic kidney disease to kidney failure among First Nations people. We identified all adult residents of Alberta (age≥18 yr) for whom an outpatient serum creatinine measurement was available from May 1, 2002, to Mar. 31, 2008. We determined albuminuria using urine dipsticks and categorized results as normal (i.e., no albuminuria), mild, heavy or unmeasured. Our primary outcome was progression to kidney failure (defined as the need for chronic dialysis or kidney transplantation, or a sustained doubling of serum creatinine levels). We calculated rates of progression to kidney failure by First Nations status, by estimated GFR and by albuminuria category. We determined the relative hazard of progression to kidney failure for First Nations compared with non-First Nations participants by level of albuminuria and estimated GFR. Of the 1 816 824 participants we identified, 48 669 (2.7%) were First Nations. First Nations people were less likely to have normal albuminuria compared with non-First Nations people (38.7% v. 56.4%). Rates of progression to kidney failure were consistently 2- to 3-fold higher among First Nations people than among non-First Nations people, across all levels of albuminuria and estimated GFRs. Compared with non-First Nations people, First Nations people with an estimated GFR of 15.0-29.9 mL/min per 1.73 m2 had the highest risk of progression to kidney failure, with similar hazard ratios for those with normal and heavy albuminuria. Albuminuria confers a similar risk of progression to kidney failure for First Nations and non-First Nations people.

  9. Toxicological evaluation by in vitro and in vivo assays of an aqueous extract prepared from Echinodorus macrophyllus leaves.

    PubMed

    da Costa Lopes, L; Albano, F; Augusto Travassos Laranja, G; Marques Alves, L; Fernando Martins e Silva, L; Poubel de Souza, G; de Magalhães Araujo, I; Firmino Nogueira-Neto, J; Felzenszwalb, I; Kovary, K

    2000-08-16

    Toxicity of an aqueous extract prepared from Echinodorus macrophyllus dried leaves, a plant used in folk medicine to treat inflammation and kidney malfunctions, was estimated by different bioassays. Mutagenicity of the aqueous extract was evaluated in the Salmonella/microsome assay (TA97a, TA98, TA100 and TA102 strains), with or without metabolic activation. No mutagenic activity (lyophilized extract tested up to 50 mg/plate) could be detected to any of the tester strain. Furthermore, no cytotoxic effect has been observed when a crude extract of E. macrophyllus (up to 7.5 mg/ml) was tested on the exponential growth of hepatoma and normal kidney epithelial cells in culture. Toxicity of E. macrophyllus was also evaluated in male Swiss mice after 6 weeks of continuous ingestion of the aqueous extract in drinking water. Average daily ingested doses were 3, 23 and 297 mg/kg for a lyophilized extract, and 2200 mg/kg for a crude extract, with dose two being equivalent to the daily dose recommended to humans. At the end of the treatment, all animals revealed a deficit in final body weight ranging from 5 to 47%. Biochemical analysis of the plasma revealed some minor alterations indicating subclinical hepatic toxicity. Genotoxic effect on liver, kidney and blood cells has been also evaluated by the comet assay, being negative to liver and blood cells. However, DNA analyses of the kidney cells detected some genotoxic activity for the highest dose tested of E. macrophyllus extract, either lyophilized or crude. On the other hand, exposure dose of 23 mg/kg, equivalent to the daily dose recommended to humans, did not revealed any genotoxic effect and hence this herb seems to be safe to human organism.

  10. Radiographic kidney measurements in captive cheetahs (Acinonyx jubatus).

    PubMed

    Hackendahl, Nicole C; Citino, Scott B

    2005-06-01

    The prevalence of chronic renal disease is substantial among captive cheetahs (Acinonyx jubatus). The purpose of this study was to determine kidney measurements from radiographs of captive cheetahs (n = 15) with normal renal function. The ratio of kidney length to length of the body of the second lumbar vertebrae has been established for domestic cats with normal renal function. The mean ratio of renal length to length of the second lumbar vertebra was 1.81 +/- 0.14 in cheetahs. This baseline data may allow an objective evaluation of radiographic kidney size in cheetahs. However, evaluation of a small number of cheetahs with confirmed renal failure resulted in a similar ratio.

  11. What is the fate of insignificant residual fragment following percutaneous nephrolithotomy in pediatric patients with anomalous kidney? A comparison with normal kidney.

    PubMed

    Purkait, Bimalesh; Sinha, Rahul Janak; Bansal, Ankur; Sokhal, Ashok Kumar; Singh, Kawaljit; Singh, Vishwajeet

    2018-06-01

    Pediatric population has increasing incidence of renal calculus and it is estimated to be around 50/10,000 population. The treatment of choice for large and complex stone in anomalous kidney is percutaneous nephrolithotomy (PCNL). The fate of insignificant residual fragment after PCNL in pediatric patients is not well documented. Here, we are reporting our long-term experience and follow-up of insignificant residual fragment in pediatric patients with anomalous kidney in comparison to normal kidney. Intuitional ethical approval was taken. A retrospective analysis of PCNL in pediatric (<18 years) anomalous kidney was performed from 2001 to 2013. The data of 52 pediatric patients with anomalous kidney (group B) have been compared to 251 normal kidneys (group A). The mean age of the patients was 7.83 + 3.45 (range 3-18) in group A and 8.21 ± 3.25 (range 5-18) in group B. The mean size of the insignificant residual fragment was 2.2 + 0.5 mm (1-4) in group A and 2.1 + 0.6 mm (range 1-4) in group B. Most of these residual fragments were single in number (72.55 vs. 67.30%, respectively). 54.98% children in group A and 67.30% in group B were symptomatic in the follow-up. Stone size was increased, stable and spontaneously passed in 49.8 vs. 71.15, 22.7 vs. 19.23 and 27.49 vs. 9.61% (p < 0.03), respectively, over mean follow-up of 50.34 months. Insignificant residual fragments in children are notorious for regrowth (49.8% in normal and 71.15% in anomalous kidney) in future. Most of the children will require symptomatic treatment (55.37 vs. 82.69%) or reintervention (39 vs. 46%) for insignificant residual fragment.

  12. Influence of kidney function on risk of supratherapeutic international normalized ratio-related hemorrhage in warfarin users: a prospective cohort study

    USDA-ARS?s Scientific Manuscript database

    Background: Anticoagulation management is difficult in chronic kidney disease, with frequent supratherapeutic international normalized ratios (INRs >/= 4) increasing hemorrhagic risk. We evaluated whether the interaction of INR and lower estimated glomerular filtration rate (eGFR) increases hemorrha...

  13. Characterization of normal feline renal vascular anatomy with dual-phase CT angiography.

    PubMed

    Cáceres, Ana V; Zwingenberger, Allison L; Aronson, Lillian R; Mai, Wilfried

    2008-01-01

    Helical computed tomography angiography was used to evaluate the renal vascular anatomy of potential feline renal donors. One hundred and fourteen computed tomography angiograms were reviewed. The vessels were characterized as single without bifurcation, single with bifurcation, double, or triple. Multiplicity was most commonly seen for the right renal vein (45/114 vs. 3/114 multiple left renal veins, 0/114 multiple right renal arteries, and 8/114 multiple left renal arteries). The right kidney was 13.3 times more likely than the left to have multiple renal veins. Additional vascular variants included double caudal vena cava and an accessory renal artery. For the left kidney, surgery and computed tomography angiography findings were in agreement in 92% of 74 cats. For the right kidney, surgery and computed tomography angiography findings were in agreement in 6/6 cats. Our findings of renal vascular anatomy variations in cats were similar to previous reports in humans. Identifying and recognizing the pattern of distribution of these vessels is important when performing renal transplantation.

  14. Pantoprazole-induced acute kidney injury: A case report.

    PubMed

    Peng, Tao; Hu, Zhao; Zheng, Hongnan; Zhen, Junhui; Ma, Chengjun; Yang, Xiangdong

    2018-06-01

    The present study reports a case of pantoprazole-induced acute kidney disease. The patient was diagnosed with acute kidney injury with wide interstitial inflammation and eosinophil infiltration. Following 1 month of glucocorticoid therapy, the patient's serum creatinine and urea nitrogen decreased to within normal ranges. The presentation, clinical course, diagnosis and prognosis of pantoprazole-induced acute kidney injury are discussed herein to highlight the importance of early and correct diagnosis for good prognosis. Disease characteristics include short-term increased serum creatinine levels that respond to glucocorticoid treatment. The patient had no history of chronic kidney disease or proteinuria and presented with increased serum creatinine following treatment with pantoprazole. Following the end of pantoprazole treatment, short-term RRT and long-term prednisolone was administered, then serum creatinine returned to normal. Pantoprazole-induced acute kidney injury is commonly misdiagnosed and late diagnosis results in poor patient prognoses. Misdiagnosis leads to the administration of treatments that may exacerbate the condition, so appropriate diagnosis and treatment for pantoprazole-induced acute kidney injury is necessary.

  15. Anatomy and ultrasonography of the normal kidney in brown lemurs: Eulemur fulvus.

    PubMed

    Raharison, Fidiniaina; Mogicato, Giovanni; Sautet, Jean

    2009-08-01

    The purpose of this study is to describe the anatomy and obtain echographic measurements of normal kidneys in brown lemurs (Eulemur fulvus). The anatomical findings show that brown lemur kidneys are comparable to those of rats except for an elongated papilla. The kidneys of 16 (7 females and 9 males) lemurs were examined with two-dimensional and power Doppler ultrasonography under general anesthesia. Morphometrically, the left and right kidney surface areas are comparable (3.29 and 3.51 cm(2)). Kidney area has a significant linear correlation with body weight. Echo-Doppler findings show that the mean renal arterial blood flow speeds for the left and right kidneys are comparable (0.70 and 0.73 m/s). However, flow speed is higher in the male (0.79 m/s) than in the female (0.60 m/s). The renal arterial diameters are between 1.0 and 1.8 mm. The fact that anesthesia can have hemodynamic effects on renal vasculature should be taken into consideration when assessing these echographic results.

  16. The State of the Human Proteome in 2013 as viewed through PeptideAtlas: Comparing the Kidney, Urine, and Plasma Proteomes for the Biology and Disease-driven Human Proteome Project

    PubMed Central

    Farrah, Terry; Deutsch, Eric W.; Omenn, Gilbert S.; Sun, Zhi; Watts, Julian D.; Yamamoto, Tadashi; Shteynberg, David; Harris, Micheleen M.; Moritz, Robert L.

    2014-01-01

    The kidney, urine, and plasma proteomes are intimately related: proteins and metabolic waste products are filtered from the plasma by the kidney and excreted via the urine, while kidney proteins may be secreted into the circulation or released into the urine. Shotgun proteomics datasets derived from human kidney, urine, and plasma samples were collated and processed using a uniform software pipeline, and relative protein abundances were estimated by spectral counting. The resulting PeptideAtlas builds yielded 4005, 2491, and 3553 nonredundant proteins at 1% FDR for the kidney, urine, and plasma proteomes, respectively—for kidney and plasma, the largest high-confidence protein sets to date. The same pipeline applied to all available human data yielded a 2013 Human PeptideAtlas build containing 12,644 nonredundant proteins and at least one peptide for each of ~14,000 Swiss-Prot entries, an increase over 2012 of ~7.5% of the predicted human proteome. We demonstrate that abundances are correlated between plasma and urine, examine the most abundant urine proteins not derived from either plasma or kidney, and consider the biomarker potential of proteins associated with renal decline. This analysis forms part of the Biology and Disease-driven Human Proteome Project (B/D-HPP) and a contribution to the Chromosome-centric Human Proteome Project (C-HPP) special issue. PMID:24261998

  17. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines.

    PubMed

    Müller, Marcel A; Raj, V Stalin; Muth, Doreen; Meyer, Benjamin; Kallies, Stephan; Smits, Saskia L; Wollny, Robert; Bestebroer, Theo M; Specht, Sabine; Suliman, Tasnim; Zimmermann, Katrin; Binger, Tabea; Eckerle, Isabella; Tschapka, Marco; Zaki, Ali M; Osterhaus, Albert D M E; Fouchier, Ron A M; Haagmans, Bart L; Drosten, Christian

    2012-12-11

    A new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC is a member of the same virus genus as SARS-CoV but constitutes a sister species. Here we investigated whether it might utilize angiotensin-converting enzyme 2 (ACE2), the SARS-CoV receptor. Knowledge of the receptor is highly critical because the restriction of the SARS receptor to deep compartments of the human respiratory tract limited the spread of SARS. In baby hamster kidney (BHK) cells, lentiviral transduction of human ACE2 (hACE2) conferred permissiveness and replication for SARS-CoV but not for hCoV-EMC. Monkey and human kidney cells (LLC-MK2, Vero, and 769-P) and swine kidney cells were permissive for both viruses, but only SARS-CoV infection could be blocked by anti-hACE2 antibody and could be neutralized by preincubation of virus with soluble ACE2. Our data show that ACE2 is neither necessary nor sufficient for hCoV-EMC replication. Moreover, hCoV-EMC, but not SARS-CoV, replicated in cell lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and Carollia bats, representing four major chiropteran families from both suborders. As human CoV normally cannot replicate in bat cells from different families, this suggests that hCoV-EMC might use a receptor molecule that is conserved in bats, pigs, and humans, implicating a low barrier against cross-host transmission. IMPORTANCE A new human coronavirus (hCoV) emerged recently in the Middle East. The disease resembled SARS (severe acute respiratory syndrome), causing a fatal epidemic in 2002/2003. Coronaviruses have a reservoir in bats and because this novel virus is related to SARS-CoV, we investigated whether it might replicate in bat cells and use the same receptor (angiotensin-converting enzyme 2 [ACE2]). This knowledge is highly critical, because the SARS-CoV receptor influenced pathology, and its localization in the deep respiratory tract is thought to have restricted the transmissibility of SARS. Our data show that hCoV-EMC does not need the SARS-CoV receptor to infect human cells. Moreover, the virus is capable of infecting human, pig, and bat cells. This is remarkable, as human CoVs normally cannot replicate in bat cells as a consequence of host adaptation. Our results implicate that the new virus might use a receptor that is conserved between bats, pigs and humans suggesting a low barrier against cross-host transmission.

  18. Islet transplantation under the kidney capsule fully corrects the impaired skeletal muscle glucose transport system of streptozocin diabetic rats.

    PubMed Central

    Napoli, R; Davalli, A M; Hirshman, M F; Weitgasser, R; Weir, G C; Horton, E S

    1996-01-01

    Chronic insulin therapy improves but does not restore impaired insulin-mediated muscle glucose uptake in human diabetes or muscle glucose uptake, transport, and transporter translocation in streptozocin diabetic rats. To determine whether this inability is due to inadequate insulin replacement, we studied fasted streptozocin-induced diabetic Lewis rats either untreated or after islet transplantation under the kidney capsule. Plasma glucose was increased in untreated diabetics and normalized by the islet transplantation (110 +/- 5, 452 +/- 9, and 102 +/- 3 mg/dl in controls, untreated diabetics, and transplanted diabetics, respectively). Plasma membrane and intracellular microsomal membrane vesicles were prepared from hindlimb skeletal muscle of basal and maximally insulin-stimulated rats. Islet transplantation normalized plasma membrane carrier-mediated glucose transport Vmax, plasma membrane glucose transporter content, and insulin-induced transporter translocation. There were no differences in transporter intrinsic activity (Vmax/Ro) among the three groups. Microsomal membrane GLUT4 content was reduced by 30% in untreated diabetic rats and normal in transplanted diabetics, whereas the insulin-induced changes in microsomal membrane GLUT4 content were quantitatively similar in the three groups. There were no differences in plasma membrane GLUT1 among the groups and between basal and insulin stimulated states. Microsomal membrane GLUT1 content was increased 60% in untreated diabetics and normalized by the transplantation. In conclusion, an adequate insulin delivery in the peripheral circulation, obtained by islet transplantation, fully restores the muscle glucose transport system to normal in streptozocin diabetic rats. PMID:8617870

  19. Microgravity

    NASA Image and Video Library

    1996-06-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  20. Microgravity

    NASA Image and Video Library

    1988-07-14

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  1. Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  2. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  3. Kidney biopsy

    MedlinePlus

    ... normal structure. What Abnormal Results Mean An abnormal result means there are changes in the kidney tissue. This may be due to: Infection Poor blood flow through the kidney Connective tissue diseases such as systemic lupus erythematosus Other diseases that may be affecting the ...

  4. Generation of a KLF15 homozygous knockout human embryonic stem cell line using paired CRISPR/Cas9n, and human cardiomyocytes derivation.

    PubMed

    Noack, Claudia; Haupt, Luis Peter; Zimmermann, Wolfram-Hubertus; Streckfuss-Bömeke, Katrin; Zelarayán, Laura Cecilia

    2017-08-01

    Krueppel-like factor 15 (KLF15) is abundantly expressed in liver, kidney, and muscle, including myocardium. In the adult heart KLF15 is important to maintain homeostasis and to repress hypertrophic remodeling. We generated a homozygous hESC KLF15 knockout (KO) line using paired CRISPR/Cas9n. KLF15-KO cells maintained full pluripotency and differentiation potential as well as genomic integrity. We demonstrated that KLF15-KO cells can be differentiated into morphologically normal cardiomyocytes turning them into a valuable tool for studying human KLF15-mediated mechanisms resulting in human cardiac dysfunction. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. (Re)Building a Kidney

    PubMed Central

    Carroll, Thomas J.; Cleaver, Ondine; Gossett, Daniel R.; Hoshizaki, Deborah K.; Hubbell, Jeffrey A.; Humphreys, Benjamin D.; Jain, Sanjay; Jensen, Jan; Kaplan, David L.; Kesselman, Carl; Ketchum, Christian J.; Little, Melissa H.; McMahon, Andrew P.; Shankland, Stuart J.; Spence, Jason R.; Valerius, M. Todd; Wertheim, Jason A.; Wessely, Oliver; Zheng, Ying; Drummond, Iain A.

    2017-01-01

    (Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses. PMID:28096308

  6. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    PubMed Central

    Zhang, Ai-Di; Dai, Shao-Xing; Huang, Jing-Fei

    2013-01-01

    With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases. PMID:24222897

  7. THE INHIBITION OF THE BACTERIOSTATIC ACTION OF SULFONAMIDE DRUGS BY SUBSTANCES OF ANIMAL AND BACTERIAL ORIGIN

    PubMed Central

    MacLeod, Colin M.

    1940-01-01

    Sulfonamide inhibitor has been demonstrated in extracts of fresh normal muscle, pancreas, and spleen of certain animals. When autolysis of tissues takes place the amount of inhibitor is greatly increased. Fresh liver from beef, rabbit, and guinea pig is free of active inhibitor, although inhibitor is demonstrable in autolysates of this tissue. Fresh rabbit kidney is likewise free of active inhibitor. Following acid hydrolysis extracts of fresh rabbit liver and kidney cause sulfonamide inhibition. Normal human urine contains little or no active inhibitor. However, upon acid hydrolysis, inhibitor is uniformly present. Sulfonamide inhibitor is present in some, but not all, sterile serous effusions occurring during certain diseases. Inhibitor was found uniformly in pus. None was found in blood serum. In certain species of bacteria the inhibitor is found in the cells only and is not demonstrable in the culture medium, whereas in other species, the inhibitor is found in the culture supernatant, and the cells themselves are relatively free. The development of sulfapyridine fastness in a strain of Pneumococcus Type I is accompanied by a greatly increased production of sulfonamide inhibitor. PMID:19871019

  8. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury.

    PubMed

    Fani, Filippo; Regolisti, Giuseppe; Delsante, Marco; Cantaluppi, Vincenzo; Castellano, Giuseppe; Gesualdo, Loreto; Villa, Gianluca; Fiaccadori, Enrico

    2018-06-01

    Sepsis is a serious medical condition that can lead to multi-organ failure and shock, and it is associated with increased mortality. Acute kidney injury (AKI) is a frequent complication of sepsis in critically ill patients, and often requires renal replacement therapy. The pathophysiology of AKI in sepsis has not yet been fully defined. In the past, classic theories were mainly focused on systemic hemodynamic derangements, underscoring the key role of whole kidney hypoperfusion due to reduced renal blood flow. However, a growing body of experimental and clinical evidence now shows that, at least in the early phase of sepsis-associated AKI, renal blood flow is normal, or even increased. This could suggest a dissociation between renal blood flow and kidney function. In addition, the scant data available from kidney biopsies in human studies do not support diffuse acute tubular necrosis as the predominant lesion. Instead, increasing importance is now attributed to kidney damage resulting from a complex interaction between immunologic mechanisms, inflammatory cascade activation, and deranged coagulation pathways, leading to microvascular dysfunction, endothelial damage, leukocyte/platelet activation with the formation of micro-thrombi, epithelial tubular cell injury and dysfunction. Moreover, the same processes, through maladaptive responses leading to fibrosis acting from the very beginning, may set the stage for progression to chronic kidney disease in survivors from sepsis-associated AKI episodes. The aim of this narrative review is to summarize and discuss the latest evidence on the pathophysiological mechanisms involved in septic AKI, based on the most recent data from the literature.

  9. Novel Proinflammatory Function of Renal Intercalated Cells.

    PubMed

    Breton, Sylvie; Brown, Dennis

    2018-01-01

    Serious and often fatal acute kidney injury (AKI) is frequently seen after major surgery, local and remote organ damage, and sepsis. It is associated with uncontrolled inflammation, and is usually diagnosed only after the kidneys have gone through significant and often irreversible damage. During our work involving another type of kidney disease that leads to acid-base disorders of the blood, we unexpectedly found high levels of a protein called the P2Y14 "purinergic" receptor, in specialized kidney epithelial cells called intercalated cells (ICs). These cells are responsible for maintaining whole body acid-base balance by regulating the secretion of excess protons into the urine, which normalizes blood pH. However, it turns out that the P2Y14 receptor in these cells responds to a molecule called uridine diphosphate (UDP)-glucose, which is a danger signal released by damaged cells anywhere in the body. When UDP-glucose reaches the kidney, it stimulates ICs to produce chemoattractant cytokines; this results in renal inflammation and contributes to the onset of AKI. Key Message: Thus, our work now points to ICs as key mediators of renal inflammation and AKI, following surgery and/or damage to remote organs, sepsis, and also local insults to the kidney itself. The link between the proton secreting ICs of the kidney and AKI is an example of how a fundamental research project with a defined aim, in this case understanding acid-base homeostasis, can lead to a novel observation that has unexpected but major implications in another area of human health. © 2018 The Author(s) Published by S. Karger AG, Basel.

  10. Thermal Analyses of a Human Kidney and a Rabbit Kidney During Cryopreservation by Vitrification.

    PubMed

    Ehrlich, Lili E; Fahy, Gregory M; Wowk, Brian G; Malen, Jonathan A; Rabin, Yoed

    2018-01-01

    This study focuses on thermal analysis of the problem of scaling up from the vitrification of rabbit kidneys to the vitrification of human kidneys, where vitrification is the preservation of biological material in the glassy state. The basis for this study is a successful cryopreservation protocol for a rabbit kidney model, based on using a proprietary vitrification solution known as M22. Using the finite element analysis (FEA) commercial code ANSYS, heat transfer simulations suggest that indeed the rabbit kidney unquestionably cools rapidly enough to be vitrified based on known intrarenal concentrations of M22. Scaling up 21-fold, computer simulations suggest less favorable conditions for human kidney vitrification. In this case, cooling rates below -100 °C are sometimes slower than 1 °C/min, a rate that provides a clear-cut margin of safety at all temperatures based on the stability of rabbit kidneys in past studies. Nevertheless, it is concluded in this study that vitrifying human kidneys is possible without significant ice damage, assuming that human kidneys can be perfused with M22 as effectively as rabbit kidneys. The thermal analysis suggests that cooling rates can be further increased by a careful design of the cryogenic protocol and by tailoring the container to the shape of the kidney, in contrast to the present cylindrical container. This study demonstrates the critical need for the thermal analysis of experimental cryopreservation and highlights the unmet need for measuring the thermophysical properties of cryoprotective solutions under conditions relevant to realistic thermal histories.

  11. Laparoscopic kidney orthotopic transplant: preclinical study in the pig model.

    PubMed

    He, B; Musk, G C; Mou, L; Waneck, G L; Delriviere, L

    2013-06-01

    Laparoscopic surgery has rapidly expanded in clinical practice replacing conventional open surgery over the last three decades. Laparoscopic donor nephrectomy has been favored due to its multiple benefits. The aim of this study was to explore the safety and feasibility of kidney transplantation by a laparoscopic technique in a pig model. The study was approved by the university animal ethics committee. Eight female pigs (Sus Scrofra, weighing 45-50 kg) were divided into 2 groups: group I included 4 animals that underwent laparoscopic kidney orthotopic transplantation on the left side. The right kidney was remained functional in situ. The pigs recovered and were observed for 1 week. In the 4 hosts group II pigs underwent a laparoscopic kidney transplantation on the left side. With simultaneous clipping of the right ureter. After recovery, the pigs were observed for 4 weeks. A laparotomy for examination was performed prior to euthanasia. All 4 group I pigs survived for 1 week. The laparotomy showed normal graft perfusion with wall patent renal artery and vein as well as satisfactory urine output upon transection of ureter in 3 hosts. Renal artery stenosis occurred in one pig. In The Immediate kidney graft function was achieved in 3 group II pigs. The fourth died following extubation due to laryngospasm despite a functional graft. The average creatinine levels were 195.5 μmol/L on day 3; 224.5 μmol/L at week 1; 127 μmol/L at week 2; 182.7 umol/L at week 3; and 154.7 umol/L at week 4. Laparoscopic kidney transplantation was feasible and safe in a pig model with immediate graft function. This study will provide further evidence to support application of laparoscopic technique to human kidney transplant. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Soy Protein Alleviates Hypertension and Fish Oil Improves Diastolic Heart Function in the Han:SPRD-Cy Rat Model of Cystic Kidney Disease.

    PubMed

    Ibrahim, Naser H M; Thandapilly, Sijo J; Jia, Yong; Netticadan, Thomas; Aukema, Harold

    2016-05-01

    Abnormalities in cardiac structure and function are very common among people with chronic kidney disease, in whom cardiovascular disease is the major cause of death. Dietary soy protein and fish oil reduce kidney disease progression in the Han:SPRD-Cy model of cystic renal disease. However, the effects of these dietary interventions in preventing alterations in cardiac structure and function due to kidney disease (reno-cardiac syndrome) in a cystic kidney disease model are not known. Therefore, weanling Han:SPRD-Cy diseased (Cy/+) and normal (+/+) rats were given diets containing either casein or soy protein, and either soy or fish oil in a three-way design for 8 weeks. Diseased rats had larger hearts, augmented left ventricular mass, and higher systolic and mean arterial blood pressure compared to the normal rats. Assessment of cardiac function using two-dimensional guided M-mode and pulse-wave Doppler echocardiography revealed that isovolumic relaxation time was prolonged in the diseased compared to normal rats, reflecting a diastolic heart dysfunction, and fish oil prevented this elevation. Soy protein resulted in a small improvement in systolic and mean arterial pressure but did not improve diastolic heart function, while fish oil prevented diastolic heart dysfunction in this model of cystic kidney disease.

  13. Invasive Saccharomyces cerevisiae infection: a friend turning foe?

    PubMed

    Pillai, Unnikrishnan; Devasahayam, Joe; Kurup, Aparna Narayana; Lacasse, Alexandre

    2014-11-01

    We report a very rare case of acute pyelonephritis in a 51-year-old female with a history of chronic kidney disease (CKD) and diabetes caused by a normally benign and a well-known human commensal organism, Saccharomyces cerevisiae that is very often prescribed as a probiotic in modern medical practice. The causal role of S. cerevisiae was confirmed by its isolation in blood, urine, stool as well as vaginal swabs thus proving its virulent nature in suitable situations.

  14. Klotho and activin A in kidney injury: plasma Klotho is maintained in unilateral obstruction despite no upregulation of Klotho biosynthesis in the contralateral kidney.

    PubMed

    Nordholm, Anders; Mace, Maria L; Gravesen, Eva; Hofman-Bang, Jacob; Morevati, Marya; Olgaard, Klaus; Lewin, Ewa

    2018-05-01

    In a new paradigm of etiology related to chronic kidney disease-mineral and bone disorder (CKD-MBD), kidney injury may cause induction of factors in the injured kidney that are released into the circulation and thereby initiate and maintain renal fibrosis and CKD-MBD. Klotho is believed to ameliorate renal fibrosis and CKD-MBD, while activin A might have detrimental effects. The unilateral ureter obstruction (UUO) model is used here to examine this concept by investigating early changes related to renal fibrosis in the obstructed kidney, untouched contralateral kidney, and vasculature which might be affected by secreted factors from the obstructed kidney, and comparing with unilateral nephrectomized controls (UNX). Obstructed kidneys showed early Klotho gene and protein depletion, whereas plasma Klotho increased in both UUO and UNX rats, indicating an altered metabolism of Klotho. Contralateral kidneys had no compensatory upregulation of Klotho and maintained normal expression of the examined fibrosis-related genes, as did remnant UNX kidneys. UUO caused upregulation of transforming growth factor-β and induction of periostin and activin A in obstructed kidneys without changes in the contralateral kidneys. Plasma activin A doubled in UUO rats after 10 days while no changes were seen in UNX rats, suggesting secretion of activin A from the obstructed kidney with potentially systemic effects on CKD-MBD. As such, increased aortic sclerostin was observed in UUO rats compared with UNX and normal controls. The present results are in line with the new paradigm and show very early vascular effects of unilateral kidney fibrosis, supporting the existence of a new kidney-vasculature axis.

  15. l-Arginine normalizes NOS activity and zinc-MT homeostasis in the kidney of mice chronically exposed to inorganic mercury.

    PubMed

    Piacenza, Francesco; Malavolta, Marco; Cipriano, Catia; Costarelli, Laura; Giacconi, Robertina; Muti, Elisa; Tesei, Silvia; Pierpaoli, Sara; Basso, Andrea; Bracci, Massimo; Bonacucina, Viviana; Santarelli, Lory; Mocchegiani, Eugenio

    2009-09-28

    Inorganic mercury (HgCl2) exposure provokes damage in many organs, especially kidney. Inducible nitric oxide synthase (iNOS) expression, total NOS activity and the profiles of zinc (Zn), copper (Cu) and Hg as well as their distribution when bound to specific intracellular proteins, including metallothioneins (MT), were studied during HgCl2 exposure and after l-arginine treatment in C57BL/6 mouse kidney. HgCl2 exposure modulates differently iNOS expression and NOS activity, increasing iNOS expression but, conversely, decreasing total NOS activity in the mouse kidney. Moreover, during Hg exposure an increased MT production occurs. The kidney damage leads to a loss of urinary proteins, increased plasma creatinine and high Zn mobilization with consequent increased urinary Zn excretion. l-arginine treatment recovers NOS activity and induces a normalization of MT induction, plasma creatinine values and urinary proteins excretion, suggesting that l-arginine may limit kidney damages by Hg exposure.

  16. A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells

    NASA Astrophysics Data System (ADS)

    Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.

    1981-05-01

    Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.

  17. Gene Expression in Wilms’ Tumor Mimics the Earliest Committed Stage in the Metanephric Mesenchymal-Epithelial Transition

    PubMed Central

    Li, Chi-Ming; Guo, Meirong; Borczuk, Alain; Powell, Charles A.; Wei, Michelle; Thaker, Harshwardhan M.; Friedman, Richard; Klein, Ulf; Tycko, Benjamin

    2002-01-01

    Wilms’ tumor (WT) has been considered a prototype for arrested cellular differentiation in cancer, but previous studies have relied on selected markers. We have now performed an unbiased survey of gene expression in WTs using oligonucleotide microarrays. Statistical criteria identified 357 genes as differentially expressed between WTs and fetal kidneys. This set contained 124 matches to genes on a microarray used by Stuart and colleagues (Stuart RO, Bush KT, Nigam SK: Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci USA 2001, 98:5649–5654) to establish genes with stage-specific expression in the developing rat kidney. Mapping between the two data sets showed that WTs systematically overexpressed genes corresponding to the earliest stage of metanephric development, and underexpressed genes corresponding to later stages. Automated clustering identified a smaller group of 27 genes that were highly expressed in WTs compared to fetal kidney and heterologous tumor and normal tissues. This signature set was enriched in genes encoding transcription factors. Four of these, PAX2, EYA1, HBF2, and HOXA11, are essential for cell survival and proliferation in early metanephric development, whereas others, including SIX1, MOX1, and SALL2, are predicted to act at this stage. SIX1 and SALL2 proteins were expressed in the condensing mesenchyme in normal human fetal kidneys, but were absent (SIX1) or reduced (SALL2) in cells at other developmental stages. These data imply that the blastema in WTs has progressed to the committed stage in the mesenchymal-epithelial transition, where it is partially arrested in differentiation. The WT-signature set also contained the Wnt receptor FZD7, the tumor antigen PRAME, the imprinted gene NNAT and the metastasis-associated transcription factor E1AF. PMID:12057921

  18. Splicing alterations in human renal allografts: detection of a new splice variant of protein kinase Par1/Emk1 whose expression is associated with an increase of inflammation in protocol biopsies of transplanted patients.

    PubMed

    Hueso, Miguel; Beltran, Violeta; Moreso, Francesc; Ciriero, Eva; Fulladosa, Xavier; Grinyó, Josep Maria; Serón, Daniel; Navarro, Estanis

    2004-05-24

    Protein kinase Emk1/Par1 (GenBank accession no. X97630) has been identified as a regulator of the immune system homeostasis. Since immunological factors are critical for the development of chronic allograft nephropathy (CAN), we reasoned that expression of Par1/Emk1 could be altered in kidney allografts undergoing CAN. In this paper, we have analysed the association among renal allograft lesions and expression of Par1/Emk1, studied by RT-PCR on total RNA from 51 protocol biopsies of transplanted kidneys, five normal kidneys, and five dysfunctional allografts. The most significant result obtained has been the detection of alterations in the normal pattern of alternative splicing of the Par1/Emk1 transcript, alterations that included loss of expression of constitutively expressed isoforms, and the inclusion of a cryptic exon to generate a new Emk1 isoform (Emk1C). Expression of Emk1C was associated with an increase in the extension of the interstitial infiltrate (0.88+/-0.33 in Emk1C([+]) vs. 0.41+/-0.50 in Emk1C([-]); P<0.011), and with a trend to display higher interstitial scarring (0.66+/-0.70 vs. 0.29+/-0.52; P=0.09) in protocol biopsies when evaluated according to the Banff schema. Moreover, a higher mean arterial pressure (MAP) was also observed (110+/-11 vs. 99+/-11 mm Hg; P=0.012). From these results we propose that Par1/Emk1 could have a role in the development of CAN in kidney allografts.

  19. Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells.

    PubMed

    Pode-Shakked, Naomi; Pleniceanu, Oren; Gershon, Rotem; Shukrun, Rachel; Kanter, Itamar; Bucris, Efrat; Pode-Shakked, Ben; Tam, Gal; Tam, Hadar; Caspi, Revital; Pri-Chen, Sara; Vax, Einav; Katz, Guy; Omer, Dorit; Harari-Steinberg, Orit; Kalisky, Tomer; Dekel, Benjamin

    2016-03-29

    When assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms' tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1(+)CD133(-) marks SIX2(+) multipotent renal stem cells transiting to NCAM1(+)CD133(+) differentiating segment-specific SIX2(-) epithelial progenitors and NCAM1(-)CD133(+) differentiated nephron cells. In tumorigenesis, NCAM1(+)CD133(-) marks SIX2(+) blastema that includes the ALDH1(+) WT cancer stem/initiating cells, while NCAM1(+)CD133(+) and NCAM1(-)CD133(+) specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1(+) nephron stem cells in normal and malignant nephrogenesis.

  20. Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk.

    PubMed

    Ishikawa, Toshihisa; Aw, Wanping; Kaneko, Kiyoko

    2013-11-04

    In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid) in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs), i.e., 421C>A (major) and 376C>T (minor), in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.

  1. 6-Gingerol-Rich Fraction from Zingiber officinale Prevents Hematotoxicity and Oxidative Damage in Kidney and Liver of Rats Exposed to Carbendazim.

    PubMed

    Salihu, Mariama; Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-01-01

    Ginger (Zingiber officinale) is a globally marketed flavoring agent and cooking spice with a long history of human health benefits. The fungicide carbendazim (CBZ) is often detected in fruits and vegetables for human nutrition and has been reported to elicit toxic effects in different experimental animal models. The present study investigated the protective effects of 6-Gingerol-rich fraction (6-GRF) from ginger on hematotoxicity and hepatorenal damage in rats exposed to CBZ. CBZ was administered at a dose of 50 mg/kg alone or simultaneously administered with 6-GRF at 50, 100, and 200 mg/kg, whereas control rats received corn oil alone at 2 mL/kg for 14 days. Hematological examination showed that CBZ-mediated toxicity to the total white blood cell (WBC), neutrophils, lymphocytes, and platelets counts were normalized to the control values in rats cotreated with 6-GRF. Moreover, administration of CBZ significantly decreased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase as well as glutathione level in the livers and kidneys of rats compared with control. However, the levels of hydrogen peroxide (H2O2) and malondialdehyde were markedly elevated in kidneys and livers of CBZ-treated rats compared with control. The significant elevation in the plasma indices of renal and hepatic dysfunction in CBZ-treated rats was confirmed by light microscopy. Coadministration of 6-GRF exhibited chemoprotection against CBZ-mediated hematotoxicity, augmented antioxidant status, and prevented oxidative damage in the kidney and liver of rats.

  2. Synthesis, Characterization, and Anti-Cancer Activity of Some New N'-(2-Oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazones Derivatives.

    PubMed

    El-Faham, Ayman; Farooq, Muhammad; Khattab, Sherine N; Abutaha, Nael; Wadaan, Mohammad A; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-08-13

    Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 μM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.

  3. Effects of kidney or kidney-pancreas transplantation on plasma pentosidine.

    PubMed

    Hricik, D E; Schulak, J A; Sell, D R; Fogarty, J F; Monnier, V M

    1993-02-01

    Tissue and plasma concentrations of pentose-derived glycation end-products ("pentosidine") are elevated in diabetic patients with normal renal function and in both diabetic and nondiabetic patients with end-stage renal disease. To determine the effects of correcting hyperglycemia and/or renal failure on the accumulation of pentosidine, we used reverse phase and ion exchange high performance liquid chromatography to measure this advanced glycation end-product in plasma proteins of diabetic and nondiabetic transplant recipients at various time intervals after kidney-pancreas or kidney transplantation. Changes in plasma pentosidine levels after transplantation were compared to changes in simultaneously obtained glycohemoglobin levels. Both kidney and kidney-pancreas transplantation were accompanied by a dramatic, but incomplete, reduction of plasma pentosidine concentrations within three months of transplantation. Kidney-pancreas transplantation resulted in normal glycohemoglobin levels within three months but offered no advantage over kidney transplantation alone in the partial correction of plasma pentosidine levels. There was no correlation between posttransplant plasma pentosidine and glycohemoglobin levels in either diabetic or nondiabetic transplant recipients. We conclude that renal failure is the major factor accounting for the accumulation of pentosidine in both diabetic and nondiabetic patients with end-stage renal disease. Restoration of euglycemia after kidney-pancreas transplantation provides no additional benefit in reducing plasma pentosidine levels to that achieved by correction of renal failure after kidney transplantation alone.

  4. SWIR dispersive Raman spectroscopy for discrimination of normal and malignant kidney tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Haifler, Miki; Pence, Isaac J.; Zisman, Amnon; Uzzo, Robert G.; Greenberg, Richard; Kutikov, Alexander; Smaldone, Marc; Chen, David; Viterbo, Rosalia; Ristau, Benjamin; Mahadevan-Jansen, Anita; Dumont, Alexander; Patil, Chetan A.

    2017-02-01

    Kidney cancer affects 65,000 new patients every. As computerized tomography became ubiquitous, the number of small, incidentally detected renal masses increased. About 6,000 benign cases are misclassified radiographically as malignant and removed surgically. Raman spectroscopy (RS) has been widely demonstrated for disease discrimination, however intense near-infrared auto-fluorescence of certain tissues (e.g kidney) can present serious challenges to bulk tissue diagnosis. A 1064nm excitation dispersive detection RS system demonstrated the ability to collect spectra with superior quality in tissues with strong auto-fluorescence. Our objective is to develop a 1064 nm dispersive detection RS system capable of differentiating normal and malignant renal tissue. We will report on the design and development of a clinical system for use in nephron sparing surgeries. We will present pilot data that has been collected from normal and malignant ex vivo kidney specimens using a benchtop RS system. A total of 93 measurements were collected from 12 specimens (6 Renal Cell Carcinoma, 6 Normal ). Spectral classification was performed using sparse multinomial logistic regression (SMLR). Correct classification by SMLR was obtained in 78% of the trials with sensitivity and specificity of 82% and 75% respectively. We will present the association of spectral features with biological indicators of healthy and diseased kidney tissue. Our findings indicate that 1064nm RS is a promising technique for differentiation of normal and malignant renal tissue. This indicates the potential for accurately separating healthy and cancerous tissues and suggests implications for utilizing RS for optical biopsy and surgical guidance in nephron sparing surgery.

  5. Microgravity

    NASA Image and Video Library

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. COMPLEMENT FIXATION IN DISEASED TISSUES

    PubMed Central

    Burkholder, Peter M.

    1961-01-01

    An immunohistologic complement fixation test has been used in an effort to detect immune complexes in sections of kidney from rats injected with rabbit anti-rat kidney serum and in sections of biopsied kidneys from four humans with membranous glomerulonephritis. Sections of the rat and human kidneys were treated with fluorescein-conjugated anti-rabbit globulin or antihuman globulin respectively. Adjacent sections in each case were incubated first with fresh guinea pig serum and then in a second step were treated with fluorescein-conjugated antibodies against fixed guinea pig complement to detect sites of fixation of the complement. It was demonstrated that the sites of rabbit globulin in glomerular capillary walls of the rat kidneys and the sites of localized human globulin in thickened glomerular capillary walls and swollen glomerular endothelial cells of the human kidneys were the same sites in which guinea pig complement was fixed in vitro. It was concluded from these studies that rabbit nephrotoxic antibodies localize in rat glomeruli in complement-fixing antigen-antibody complexes. Furthermore, it was concluded that the deposits of human globulin in the glomeruli of the human kidneys behaved like antibody globulin in complement-fixing antigen-antibody complexes. The significance of demonstrating complement-fixing immune complexes in certain diseased tissues is discussed in regard to determination of the causative role of allergic reactions in disease. PMID:19867205

  8. Enhanced anticancer effect of fabricated gallic acid/CdS on the rGO nanosheets on human glomerular mesangial (IP15) and epithelial proximal (HK2) kidney cell lines - Cytotoxicity investigations.

    PubMed

    Peng, Wei; Luo, Pengcheng; Gui, Dingwen; Jiang, Weidong; Wu, Haixia; Zhang, Jie

    2018-01-01

    In spite of the technological innovation in the biomedical science, cancer remains a critical disease. In this study, we designed a gallic acid/cadmium sulfide (GA/CdS) nanocomposite fabricated on the reduced graphene oxide (GA/CdS-rGO) nanosheets for the treatment system of human kidney cancer cells. The GA/CdS-rGO nanosheets have been prepared using gallic acid as a reducing agent. The characterization of nanocomposites was studied using UV-Vis spectroscope, FT-IR, XRD, SEM and TEM. The microscopic images showed the spherical shape and nano-scaled CdS nanoparticles on the sheet like rGO nanomaterials. These structural and morphology investigations show that excellent properties of as-prepared GA/CdS-rGO has ability to treat the human glomerular mesangial (IP15) cancer cells at 50μg/ml as an IC 50 value, without affecting the epithelial proximal (HK-2) normal cells. In vitro cytotoxicity results showed that the variability of toxic effects after CdS exposure was strongly associated to the cellular Cd content. Release of Cd 2+ from nanocomposites depended to solubility and particle degradation of CdS nanoparticles were considered to be the main cause of these cytotoxicity. The in vitro analysis results indicated that heterogeneity of Cd and gallic acid toxicity that was highly dependent on the physico-chemical properties of the nanocomposites. The cytotoxicity results suggested that the prepared nanomaterials were toxic and inhibitory efficiency to human kidney cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Kidney removal - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100069.htm Kidney removal (nephrectomy) - series—Normal anatomy To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 5 Go to slide 2 out of ... to slide 5 out of 5 Overview The kidneys are paired organs that lie posterior to the ...

  10. Historical Incidence of Spontaneous Lesions in Kidneys from Naïve Swine Utilized In Interventional Renal Denervation Studies.

    PubMed

    Rouselle, Serge D; Dillon, Krista N; Rousselle-Sabiac, Theo H; Brady, Dane A; Tunev, Stefan; Tellez, Armando

    2016-08-01

    The use of preclinical animal models is integral to the safety assessment, pathogenesis research, and testing of diagnostic technologies and therapeutic interventions. With inherent similarity to human anatomy and physiology, various porcine models have been the preferred preclinical model in some research areas such as medical devices, wound healing, and skin therapies. The porcine model has been the cornerstone for interventional cardiology for the evaluation and development of this catheter-based renal denervation (RDN) therapy. The porcine model provides similar vascular access and renal neurovascular anatomy to humans. In these preclinical studies, the downstream kidneys from treated arteries are assessed for possible histopathological changes in the vessel dependent territories. In assessing renal safety following RDN, it becomes critical to distinguish treatment-related changes from pre-existing background pathologies. The incidence of background pathological changes in porcine kidneys has not been previously established in normal clinically healthy. Samples from the cranial, middle, and caudal portion of 331 naïve kidneys from 181 swine were processed histologically to slides and evaluated microscopically. The most commonly encountered spontaneous changes were chronic pyelonephritis found in nearly half of the evaluated naïve kidneys (∼40 %; score 1 = 91 %, score 2 = 8.4 %, score 3 = 0.76 %) followed by chronic interstitial inflammation in 9.7 % of the kidneys (score 1 = 90.6 %, score 2 = 9.4 %). Interestingly, there were a few rare spontaneous vascular changes that could potentially affect data interpretation in interventional and toxicology studies: arteritis and arteriolar dissection. The presence of pelvic cysts was a common occurrence (6.3 %) in the kidney. The domestic swine is a widely used preclinical species in interventional research, namely in the emerging field of transcatheter renal denervation. This retrospective study presents the historical incidence of spontaneous lesions recorded in the kidneys from naive pigs enrolled in renal denervation studies. There were commonly encountered changes of little pathological consequence such as pyelonephritis or pelvic cysts and rare vascular changes such as arteritis and arteriolar dissection that were of greater potential impact on study data interpretation. These results offer a benchmark by which to gage the potential effect of a procedure or treatment on renal histopathology in swine and assist in data interpretation.

  11. Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion.

    PubMed

    Plotnikov, E Y; Chupyrkina, A A; Jankauskas, S S; Pevzner, I B; Silachev, D N; Skulachev, V P; Zorov, D B

    2011-01-01

    Oxidative stress-related renal pathologies apparently include rhabdomyolysis and ischemia/reperfusion phenomenon. These two pathologies were chosen for study in order to develop a proper strategy for protection of the kidney. Mitochondria were found to be a key player in these pathologies, being both the source and the target for excessive production of reactive oxygen species (ROS). A mitochondria-targeted compound which is a conjugate of a positively charged rhodamine molecule with plastoquinone (SkQR1) was found to rescue the kidney from the deleterious effect of both pathologies. Intraperitoneal injection of SkQR1 before the onset of pathology not only normalized the level of ROS and lipid peroxidized products in kidney mitochondria but also decreased the level of cytochrome c in the blood, restored normal renal excretory function and significantly lowered mortality among animals having a single kidney exposed to ischemia/reperfusion. The SkQR1-derivative missing plastoquinone (C12R1) possessed some, although limited nephroprotective properties and enhanced animal survival after ischemia/reperfusion. SkQR1 was found to induce some elements of nephroprotective pathways providing ischemic tolerance such as an increase in erythropoietin levels and phosphorylation of glycogen synthase kinase 3β in the kidney. SkQR1 also normalized renal erythropoietin level lowered after kidney ischemia/reperfusion and injection of a well-known nephrotoxic agent gentamicin. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats

    PubMed Central

    Mulder, Jan; Hökfelt, Tomas; Knuepfer, Mark M.

    2013-01-01

    Efferent renal sympathetic nerves reinnervate the kidney after renal denervation in animals and humans. Therefore, the long-term reduction in arterial pressure following renal denervation in drug-resistant hypertensive patients has been attributed to lack of afferent renal sensory reinnervation. However, afferent sensory reinnervation of any organ, including the kidney, is an understudied question. Therefore, we analyzed the time course of sympathetic and sensory reinnervation at multiple time points (1, 4, and 5 days and 1, 2, 3, 4, 6, 9, and 12 wk) after renal denervation in normal Sprague-Dawley rats. Sympathetic and sensory innervation in the innervated and contralateral denervated kidney was determined as optical density (ImageJ) of the sympathetic and sensory nerves identified by immunohistochemistry using antibodies against markers for sympathetic nerves [neuropeptide Y (NPY) and tyrosine hydroxylase (TH)] and sensory nerves [substance P and calcitonin gene-related peptide (CGRP)]. In denervated kidneys, the optical density of NPY-immunoreactive (ir) fibers in the renal cortex and substance P-ir fibers in the pelvic wall was 6, 39, and 100% and 8, 47, and 100%, respectively, of that in the contralateral innervated kidney at 4 days, 4 wk, and 12 wk after denervation. Linear regression analysis of the optical density of the ratio of the denervated/innervated kidney versus time yielded similar intercept and slope values for NPY-ir, TH-ir, substance P-ir, and CGRP-ir fibers (all R2 > 0.76). In conclusion, in normotensive rats, reinnervation of the renal sensory nerves occurs over the same time course as reinnervation of the renal sympathetic nerves, both being complete at 9 to 12 wk following renal denervation. PMID:23408032

  13. Serum uric acid to creatinine ratio: A predictor of incident chronic kidney disease in type 2 diabetes mellitus patients with preserved kidney function.

    PubMed

    Gu, Liubao; Huang, Liji; Wu, Haidi; Lou, Qinglin; Bian, Rongwen

    2017-05-01

    Serum uric acid has shown to be a predictor of renal disease progression in most but not all studies. This study aims to test whether renal function-normalized serum uric acid is superior to serum uric acid as the predictor of incident chronic kidney disease in type 2 diabetes mellitus patients. In this study, 1339 type 2 diabetes mellitus patients with estimated glomerular filtration rate ⩾60 mL/min/1.73 m 2 and normouricemia were included. Renal function-normalized serum uric acid was calculated using serum uric acid/creatinine. Cox regression analysis was used to estimate the association between serum uric acid, renal function-normalized serum uric acid and incident chronic kidney disease. In total, 74 (5.53%) patients developed to chronic kidney disease 3 or greater during a median follow-up of 4 years, with older ages, longer diabetes duration and lower estimated glomerular filtration rate at baseline. The decline rate of estimated glomerular filtration rate was positively correlated with serum uric acid/creatinine ( r = 0.219, p < 0.001), but not serum uric acid ( r = 0.005, p = 0.858). Moreover, multivariate analysis revealed that serum uric acid was not an independent risk factor for incident chronic kidney disease ( p = 0.055), whereas serum uric acid to creatinine ratio was significantly associated with incident chronic kidney disease independently of potential confounders including baseline estimated glomerular filtration rate. serum uric acid to creatinine ratio might be a better predictor of incident chronic kidney disease in type 2 diabetes mellitus patients.

  14. Clinical case report: a rare cause of acute kidney failure - tissue is the issue.

    PubMed

    Heggermont, Ward A; Verhoef, Gregor; Evenepoel, Pieter; Sprangers, Ben; Lerut, Evelyn; Tousseyn, Thomas; Claes, Kathleen

    2017-06-01

    A patient was admitted to the medical emergency department by his family physician. His complaints were weakness and fatigue for more than one week. Four days before admission, he went to his general practitioner for these complaints and also for painful elbows. His physician prescribed diclofenac and esomeprazole. Upon presentation, he had high systolic/diastolic blood pressure (>180/>90 mm Hg, measured repeatedly), and otherwise normal parameters. He had gained 6.5 kg in body weight. Clinical examination was normal, except for very mild bilateral malleolar edema. Routine blood tests showed a strongly elevated serum creatinine, hyperkalemia, and elevated lactate dehydrogenase. Haptoglobin levels were normal. Urinalysis showed a normal sediment, urine and blood cultures remained sterile. Ophthalmoscopy was completely normal, as was a routine chest X-ray. Renal ultrasound demonstrated kidneys with a diameter of 13 cm. Due to uncontrollable hypertension, our patient was hospitalized at the intensive care department where intravenous nifedipine was started, with good instantaneous control of blood pressure. Because of increasing potassium levels acute hemodialysis was started within 24 h after admission. Differential diagnosis consisted of diclofenac- or esomeprazole-induced interstitial nephritis or rapidly progressive glomerulonephritis. A renal biopsy was performed within 72 h after admission. The kidney biopsy showed an overwhelming inflammatory cell infiltrate consisting of a monoclonal lymphocytic cell population. However, the numerous mitotic figures, polyploidy, and prominent nucleoli present, were indicative of a lymphoma. Additional stainings confirmed a non-Hodgkin diffuse large-cell B-cell lymphoma. Treatment with R-CHOP (rituximab, cyclophosphamide, doxorubicine, vincristine, and prednisolone) was initiated with very good clinical and biochemical response, yet only mild recovery of kidney function. Occasionally the kidney is involved as an extranodal non-Hodgkin lymphoma (NHL) localization. However, a primary presentation of acute kidney failure due to lymphoma localization is extremely rare. Our case demonstrates that early renal biopsy is indispensable for fast and adequate diagnosis and treatment.

  15. Renal development: a complex process dependent on inductive interaction.

    PubMed

    Upadhyay, Kiran K; Silverstein, Douglas M

    2014-01-01

    Renal development begins in-utero and continues throughout childhood. Almost one-third of all developmental anomalies include structural or functional abnormalities of the urinary tract. There are three main phases of in-utero renal development: Pronephros, Mesonephros and Metanephros. Within three weeks of gestation, paired pronephri appear. A series of tubules called nephrotomes fuse with the pronephric duct. The pronephros elongates and induces the nearby mesoderm, forming the mesonephric (Woffian) duct. The metanephros is the precursor of the mature kidney that originates from the ureteric bud and the metanephric mesoderm (blastema) by 5 weeks of gestation. The interaction between these two components is a reciprocal process, resulting in the formation of a mature kidney. The ureteric bud forms the major and minor calyces, and the collecting tubules while the metanephrogenic blastema develops into the renal tubules and glomeruli. In humans, all of the nephrons are formed by 32 to 36 weeks of gestation. Simultaneously, the lower urinary tract develops from the vesico urethral canal, ureteric bud and mesonephric duct. In utero, ureters deliver urine from the kidney to the bladder, thereby creating amniotic fluid. Transcription factors, extracellular matrix glycoproteins, signaling molecules and receptors are the key players in normal renal development. Many medications (e.g., aminoglycosides, cyclooxygenase inhibitors, substances that affect the renin-angiotensin aldosterone system) also impact renal development by altering the expression of growth factors, matrix regulators or receptors. Thus, tight regulation and coordinated processes are crucial for normal renal development.

  16. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharpfenecker, Marion, E-mail: m.scharpfenecker@nki.nl; Floot, Ben; Russell, Nicola S.

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, andmore » 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.« less

  17. Albumin contributes to kidney disease progression in Alport syndrome

    PubMed Central

    Knutsen, Russell H.; Mecham, Robert P.

    2016-01-01

    Alport syndrome is a familial kidney disease caused by defects in the collagen type IV network of the glomerular basement membrane. Lack of collagen-α3α4α5(IV) changes the glomerular basement membrane morphologically and functionally, rendering it leaky to albumin and other plasma proteins. Filtered albumin has been suggested to be a cause of the glomerular and tubular injuries observed at advanced stages of Alport syndrome. To directly investigate the role that albumin plays in the progression of disease in Alport syndrome, we generated albumin knockout (Alb−/−) mice to use as a tool for removing albuminuria as a component of kidney disease. Mice lacking albumin were healthy and indistinguishable from control littermates, although they developed hypertriglyceridemia. Dyslipidemia was observed in Alb+/− mice, which displayed half the normal plasma albumin concentration. Alb mutant mice were bred to collagen-α3(IV) knockout (Col4a3−/−) mice, which are a model for human Alport syndrome. Lack of circulating and filtered albumin in Col4a3−/−;Alb−/− mice resulted in dramatically improved kidney disease outcomes, as these mice lived 64% longer than did Col4a3−/−;Alb+/+ and Col4a3−/−;Alb+/− mice, despite similar blood pressures and serum triglyceride levels. Further investigations showed that the absence of albumin correlated with reduced transforming growth factor-β1 signaling as well as reduced tubulointerstitial, glomerular, and podocyte pathology. We conclude that filtered albumin is injurious to kidney cells in Alport syndrome and perhaps in other proteinuric kidney diseases, including diabetic nephropathy. PMID:27147675

  18. Albumin contributes to kidney disease progression in Alport syndrome.

    PubMed

    Jarad, George; Knutsen, Russell H; Mecham, Robert P; Miner, Jeffrey H

    2016-07-01

    Alport syndrome is a familial kidney disease caused by defects in the collagen type IV network of the glomerular basement membrane. Lack of collagen-α3α4α5(IV) changes the glomerular basement membrane morphologically and functionally, rendering it leaky to albumin and other plasma proteins. Filtered albumin has been suggested to be a cause of the glomerular and tubular injuries observed at advanced stages of Alport syndrome. To directly investigate the role that albumin plays in the progression of disease in Alport syndrome, we generated albumin knockout (Alb(-/-)) mice to use as a tool for removing albuminuria as a component of kidney disease. Mice lacking albumin were healthy and indistinguishable from control littermates, although they developed hypertriglyceridemia. Dyslipidemia was observed in Alb(+/-) mice, which displayed half the normal plasma albumin concentration. Alb mutant mice were bred to collagen-α3(IV) knockout (Col4a3(-/-)) mice, which are a model for human Alport syndrome. Lack of circulating and filtered albumin in Col4a3(-/-);Alb(-/-) mice resulted in dramatically improved kidney disease outcomes, as these mice lived 64% longer than did Col4a3(-/-);Alb(+/+) and Col4a3(-/-);Alb(+/-) mice, despite similar blood pressures and serum triglyceride levels. Further investigations showed that the absence of albumin correlated with reduced transforming growth factor-β1 signaling as well as reduced tubulointerstitial, glomerular, and podocyte pathology. We conclude that filtered albumin is injurious to kidney cells in Alport syndrome and perhaps in other proteinuric kidney diseases, including diabetic nephropathy. Copyright © 2016 the American Physiological Society.

  19. The Antagonistic Effect of Selenium on Cadmium-Induced Damage and mRNA Levels of Selenoprotein Genes and Inflammatory Factors in Chicken Kidney Tissue.

    PubMed

    Wang, Xinyue; Bao, Rongkun; Fu, Jing

    2018-02-01

    Selenium (Se) is a necessary trace mineral in the diet of humans and animals. Cadmium (Cd) is a toxic heavy metal that can damage animal organs, especially the kidneys. Antagonistic interactions between Se and Cd have been reported in previous studies. However, little is known about the effects of Se against Cd toxicity and on the mRNA levels of 25 selenoprotein genes and inflammatory factors in chicken kidneys. In the current study, we fed chickens with a Se-treated, Cd-treated, or Se/Cd treated diet for 90 days. We then analyzed the mRNA expression of inflammatory factors (including prostaglandin E synthase (PTGES), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2)) and 25 selenoprotein genes (Gpx1, Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, SPS2, Sepp1, SelPb, Sep15, Selh, Seli, Selm, Selo, Sels, Sepx1, Selu, Selk, Selw, Seln, Selt). The results demonstrated that Cd exposure increased the Cd content in the chicken kidneys, renal tubular epithelial cells underwent denaturation and necrosis, and the tubules became narrow or disappeared. However, Se supplementation reduced the Cd content in chicken kidneys and induced normal development of renal tubular epithelial cells. In addition, we also observed that Se alleviated the Cd-induced increase in the mRNA levels of inflammatory factors and ameliorated the Cd-induced downtrend in the mRNA levels of 25 selenoprotein genes in chicken kidneys.

  20. Overview of the cellular and molecular basis of kidney fibrosis

    PubMed Central

    Eddy, Allison A

    2014-01-01

    The common pathogenetic pathway of progressive injury in patients with chronic kidney disease (CKD) is epitomized as normal kidney parenchymal destruction due to scarring (fibrosis). Understanding the fundamental pathways that lead to renal fibrosis is essential in order to develop better therapeutic options for human CKD. Although complex, four cellular responses are pivotal. (1) An interstitial inflammatory response that has multiple consequences—some harmful and others healing. (2) The appearance of a unique interstitial cell population of myofibroblasts, primarily derived from kidney stromal cells (fibroblasts and pericytes), that are the primary source of the various extracellular matrix proteins that form interstitial scars. (3) Tubular epithelial cells that have variable and time-dependent roles as early responders to injury and later as victims of fibrosis due to the loss of their regenerative abilities. (4) Loss of interstitial capillary integrity that compromises oxygen delivery and leads to a vicious cascade of hypoxia–oxidant stress that accentuates injury and fibrosis. In the absence of adequate angiogenic responses, a healthy interstitial capillary network is not maintained. The fibrotic ‘scar' that typifies CKD is an interesting consortium of multifunctional macromolecules that not only change in composition and structure over time, but can be degraded via extracellular and intracellular proteases. Although transforming growth factor beta appears to be the primary driver of kidney fibrosis, a vast array of additional molecules may have modulating roles. The importance of genetic and epigenetic factors is increasingly appreciated. An intriguing but incompletely understood cardiorenal syndrome underlies the high morbidity and mortality rates that develop in association with progressive kidney fibrosis. PMID:25401038

  1. Defective glycolysis and the use of 2-deoxy-D-glucose in polycystic kidney disease: from animal models to humans.

    PubMed

    Magistroni, Riccardo; Boletta, Alessandra

    2017-08-01

    Autosomal dominant polycystic kidney disease (ADPKD) is an inherited renal disease characterized by bilateral renal cyst formation. ADPKD is one of the most common rare disorders, accounting for ~10% of all patients with end-stage renal disease (ESRD). ADPKD is a chronic disorder in which the gradual expansion of cysts that form in a minority of nephrons eventually causes loss of renal function due to the compression and degeneration of the surrounding normal parenchyma. Numerous deranged pathways have been identified in the cyst-lining epithelia, prompting the design of potential therapies. Several of these potential treatments have proved effective in slowing down disease progression in pre-clinical animal studies, while only one has subsequently been proven to effectively slow down disease progression in patients, and it has recently been approved for therapy in Europe, Canada and Japan. Among the affected cellular functions and pathways, recent investigations have described metabolic derangement in ADPKD as a major trait offering additional opportunities for targeted therapies. In particular, increased aerobic glycolysis (the Warburg effect) has been described as a prominent feature of ADPKD kidneys and its inhibition using the glucose analogue 2-deoxy-D-glucose (2DG) proved effective in slowing down disease progression in preclinical models of the disease. At the same time, previous clinical experiences have been reported with 2DG, showing that this compound is well tolerated in humans with minimal and reversible side effects. In this work, we review the literature and speculate that 2DG could be a good candidate for a clinical trial in humans affected by ADPKD.

  2. Resistive index for kidney evaluation in normal and diseased cats.

    PubMed

    Tipisca, Vlad; Murino, Carla; Cortese, Laura; Mennonna, Giuseppina; Auletta, Luigi; Vulpe, Vasile; Meomartino, Leonardo

    2016-06-01

    The objectives were to determine the resistive index (RI) in normal cats and in cats with various renal diseases, and to evaluate the effect of age on RI. The subjects were cats that had ultrasonography (US) of the urinary tract and RI measurement at our centre between January 2003 and April 2014. Based on clinical evaluation, biochemical and haematological tests, urinalysis and US, the cats were classified as healthy or diseased. RI measurements were made from the interlobar or arcuate arteries. Data were analysed for differences between the right and the left kidney, the two sexes, different age groups in healthy cats, and between healthy and diseased cats. A total of 116 cats (68 males, 48 females) were included: 24 healthy and 92 diseased. In the healthy cats, RI (mean ± SD) differed significantly (P = 0.02) between the right kidney (0.54 ± 0.07) and the left kidney (0.59 ± 0.08). For the left kidney, RI was significantly higher in cats with chronic kidney disease (0.73 ± 0.12) and acute kidney injury (0.72 ± 0.08) (P = 0.0008). For the right kidney, RI was significantly higher in cats with chronic kidney disease (0.72 ± 0.11), acute kidney injury (0.74 ± 0.08), polycystic kidney disease (0.77 ± 0.11) and renal tumour (0.74 ± 0.001) (P <0.0001). There was no significant effect on RI value in either kidney in terms of age or sex. RI could be considered a valuable diagnostic tool in cats, useful in the differential diagnosis of diffuse renal diseases. While it does not change with the age of the cat, ultrasonographers should be aware that RI may differ between the two kidneys. © ISFM and AAFP 2015.

  3. Successful Surgical Treatment of Anuria Caused by Renal Artery Occlusion

    PubMed Central

    Flye, M. Wayne; Anderson, Robert w.; Fish, Jay C.; Silver, Donald

    1982-01-01

    Anuria resulting from obstruction of the renal arteries to both Kidneys or to a solitary kidney is unusual. The tolerance of the kidney to this ischemia is largely dependent upon the presence of collaterals, stimulated by pre-existing arterial disease. Our experience with six patients with anuria caused by renal artery occlusion supports the role of revascularization in the recovery of significant renal function. Four of these patients had hypertension, impaired renal function, and the existence of collateral circulation to an ischemic kidney, prior to occlusion, while two patients had normal renal function (serum creatinine = 0.5 and 0.9 mg/dl) before occlusion. The intervals of anuria for the two previously normal kidneys were six hours and five days, and 2 to 14 days in the four patients with vascular disease. Isotope scanning suggested renal artery occlusion in two patients, but arteriograms confirmed the diagnosis in all six. A thrombectomy restored blood flow through the two previously normal renal arteries. Grafts from the aorta or celiax axis were used for three patients and the splenic artery was used for the sixth patient. Urine flow began during or soon after operation in all patients. Dialysis was necessary for 30 and 45 days in the two patients with normal kidneys, but in only one of the four patients with previous disease (for ten days). Serum creatinine decreased to <2.0 mg/dl after operation, except in the man with a solitary kidney, who five years later has a creatinine of 3 mg/dl. All four patients with previous arterial disease died from cardiac failure within 1 to 30 months after operation. Therefore, anuria of acute onset should be evaluated by renal scan and arteriogram to detect those patients with proximal renal artery occlusion in preparation for revascularization. ImagesFig. 2a.Fig. 2b.Fig. 3.Fig. 4a.Fig. 4b.Fig. 5.Fig. 6a.Fig. 6b. PMID:7059245

  4. Estimating the concentration of urea and creatinine in the human serum of normal and dialysis patients through Raman spectroscopy.

    PubMed

    de Almeida, Maurício Liberal; Saatkamp, Cassiano Junior; Fernandes, Adriana Barrinha; Pinheiro, Antonio Luiz Barbosa; Silveira, Landulfo

    2016-09-01

    Urea and creatinine are commonly used as biomarkers of renal function. Abnormal concentrations of these biomarkers are indicative of pathological processes such as renal failure. This study aimed to develop a model based on Raman spectroscopy to estimate the concentration values of urea and creatinine in human serum. Blood sera from 55 clinically normal subjects and 47 patients with chronic kidney disease undergoing dialysis were collected, and concentrations of urea and creatinine were determined by spectrophotometric methods. A Raman spectrum was obtained with a high-resolution dispersive Raman spectrometer (830 nm). A spectral model was developed based on partial least squares (PLS), where the concentrations of urea and creatinine were correlated with the Raman features. Principal components analysis (PCA) was used to discriminate dialysis patients from normal subjects. The PLS model showed r = 0.97 and r = 0.93 for urea and creatinine, respectively. The root mean square errors of cross-validation (RMSECV) for the model were 17.6 and 1.94 mg/dL, respectively. PCA showed high discrimination between dialysis and normality (95 % accuracy). The Raman technique was able to determine the concentrations with low error and to discriminate dialysis from normal subjects, consistent with a rapid and low-cost test.

  5. 9 CFR 311.3 - Hog cholera.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... kidneys and the lymph nodes which resemble lesions of hog cholera, they shall be regarded as those of hog... kidneys and lymph nodes of carcasses of hogs which appeared normal on ante-mortem inspection, further..., characteristic lesions of hog cholera are found in some organ or tissue in addition to those in the kidneys or in...

  6. 9 CFR 311.3 - Hog cholera.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... kidneys and the lymph nodes which resemble lesions of hog cholera, they shall be regarded as those of hog... kidneys and lymph nodes of carcasses of hogs which appeared normal on ante-mortem inspection, further..., characteristic lesions of hog cholera are found in some organ or tissue in addition to those in the kidneys or in...

  7. Influence of thyroid function on glomerular filtration rate and other estimates of kidney function in two pediatric patients.

    PubMed

    Uemura, Osamu; Iwata, Naoyuki; Nagai, Takuhito; Yamakawa, Satoshi; Hibino, Satoshi; Yamamoto, Masaki; Nakano, Masaru; Tanaka, Kazuki

    2018-05-01

    To determine the optimal method of evaluating kidney function in patients with thyroid dysfunction, this study compared the estimated glomerular filtration rate derived from serum creatinine, cystatin C, or β2-microglobulin with inulin or creatinine clearance in two pediatric patients, one with hypothyroidism and the other with hyperthyroidism. It was observed that the kidney function decreased in a hypothyroid child and enhanced in a hyperthyroid child, with their kidney function becoming normalized by treatment with drugs, which normalized their thyroid function. Kidney function cannot be accurately evaluated using cystatin C-based or β2-microglobulin-based estimated glomerular filtration rate in patients with thyroid dysfunction, as these tests overestimated glomerular filtration rate in a patient with hypothyroidism and underestimated glomerular filtration rate in a patient with hyperthyroidism, perhaps through a metabolic rate-mediated mechanism. In both our patients, 24-h urinary creatinine secretion was identical before and after treatment, suggesting that creatinine production is not altered in patients with thyroid dysfunction. Therefore, kidney function in patients with thyroid dysfunction should be evaluated using creatinine-based estimated glomerular filtration rate.

  8. Periodontitis associated with chronic kidney disease among Mexican Americans.

    PubMed

    Ioannidou, Effie; Hall, Yoshio; Swede, Helen; Himmelfarb, Jonathan

    2013-01-01

    In comparison to non-Hispanic whites, a number of health-care disparities, including poor oral health, have been identified among Hispanics in general and Mexican Americans in particular. We hypothesized that Mexican Americans with chronic kidney disease (CKD) would have higher prevalence of chronic periodontitis compared with Mexican Americans with normal kidney function, and that the level of kidney function would be inversely related to the prevalence of periodontal disease. We examined this hypothesis using the National Health and Nutrition Examination Survey 1988-1994 (NHANES III) data set. We followed the American Academy of Periodontology/Center for Disease Control and Prevention case definition for periodontitis. Glomerular filtration rate was estimated using the CKD-Epidemiology equation for Hispanic populations. The classification to CKD stages was based on the National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Periodontitis prevalence increased across the kidney function groups showing a statistically significant dose-response association (P<0.001). Mexican Americans with reduced kidney function were twofold more likely to have periodontitis compared with Mexican Americans with normal kidney function after adjusting for potential confounders such as smoking, diabetes, and socioeconomic status. Multivariate adjusted odds ratio for periodontitis significantly increased with 1, 5, and 10 mL/minute estimated glomerular filtration rate reduction from the mean. This is the first report, to the best our knowledge, that showed an increase of periodontitis prevalence with decreased kidney function in this population. © 2012 American Association of Public Health Dentistry.

  9. Periodontitis associated with Chronic Kidney Disease among Mexican Americans

    PubMed Central

    Ioannidou, Effie; Hall, Yoshio; Swede, Helen; Himmelfarb, Jonathan

    2012-01-01

    Objective In comparison to non-Hispanic whites, a number of healthcare disparities, including poor oral health, have been identified among Hispanics in general and Mexican-Americans in particular. We hypothesized that Mexican-Americans with Chronic Kidney disease (CKD) would have higher prevalence of chronic periodontitis compared to Mexican Americans with normal kidney function, and that the level of kidney function would be inversely related to the prevalence of periodontal disease. Method We examined this hypothesis using the National Health and Nutrition Examination Survey 1988–1994 (NHANES III) dataset. We followed the American Academy of Periodontology (AAP)/Center for Disease Control and Prevention (CDC) case definition for periodontitis. Glomerular filtration rate was estimated using the CKD-Epidemiology (EPI) equation for Hispanic populations. The classification to CKD stages was based on the National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Results Periodontitis prevalence increased across the kidney function groups showing a statistically significant dose-response association (p<0.001). Mexican Americans with reduced kidney function were 2-fold more likely to have periodontitis compared to Mexican Americans with normal kidney function after adjusting for potential confounders such as smoking, diabetes and socioeconomic status. Multivariate adjusted Odds Ratio for periodontitis significantly increased with 1, 5 and 10 mL/minute eGFR reduction from the mean. Conclusion This is the first report, to the best our knowledge, that showed an increase of periodontitis prevalence with decreased kidney function in this population. PMID:22775287

  10. The construction of a panel of serum amino acids for the identification of early chronic kidney disease patients.

    PubMed

    Li, Rui; Dai, Jinna; Kang, Hui

    2018-03-01

    Serum creatinine, urea, and cystatin-c are standardly used for the evaluation of renal function in the clinic. However, some patients have chronic kidney disease but still retain kidney function; a conventional serum index in these patients can be completely normal. Serum amino acid levels can reflect subtle changes in metabolism and are closely related to renal function. Here, we investigated how amino acids change as renal impairment increases. Subjects were divided into three groups by renal function glomerular filtration rate: healthy controls, patients with chronic kidney disease with normal kidney function, and patients with chronic kidney disease with decreased kidney function group. We identified 11 amino acids of interest using LC-MS/MS on MRM (+) mode. Statistical analysis indicated that alanine (ALA), valine (VAL), and tyrosine (TYR) decrease with renal function impairment, whereas phenylalanine (PHE) and citrulline (CIT) increase. We tried to construct a diagnostic model utilizing a combination of amino acids capable of identifying early chronic kidney disease patients. The accuracy, specificity, and sensitivity of the combining predictors were 86.9%, 84.6%, and 90.9%, respectively, which is superior to the reported values for serum creatinine, urea, and cystatin-c. Our data suggest that serum amino acid levels may supply important information for the early detection of chronic kidney disease. We are the first to establish a diagnostic model utilizing serum levels of multiple amino acids for the diagnosis of patients with early-stage chronic kidney disease. © 2017 Wiley Periodicals, Inc.

  11. ZIP8 expression in human proximal tubule cells, human urothelial cells transformed by Cd+2 and As+3 and in specimens of normal human urothelium and urothelial cancer

    PubMed Central

    2012-01-01

    Background ZIP8 functions endogenously as a Zn+2/HCO3- symporter that can also bring cadmium (Cd+2) into the cell. It has also been proposed that ZIP8 participates in Cd-induced testicular necrosis and renal disease. In this study real-time PCR, western analysis, immunostaining and fluorescent localization were used to define the expression of ZIP8 in human kidney, cultured human proximal tubule (HPT) cells, normal and malignant human urothelium and Cd+2 and arsenite (As+3) transformed urothelial cells. Results It was shown that in the renal system both the non-glycosylated and glycosylated form of ZIP8 was expressed in the proximal tubule cells with localization of ZIP8 to the cytoplasm and cell membrane; findings in line with previous studies on ZIP8. The studies in the bladder were the first to show that ZIP8 was expressed in normal urothelium and that ZIP8 could be localized to the paranuclear region. Studies in the UROtsa cell line confirmed a paranuclear localization of ZIP8, however addition of growth medium to the cells increased the expression of the protein in the UROtsa cells. In archival human samples of the normal urothelium, the expression of ZIP8 was variable in intensity whereas in urothelial cancers ZIP8 was expressed in 13 of 14 samples, with one high grade invasive urothelial cancer showing no expression. The expression of ZIP8 was similar in the Cd+2 and As+3 transformed UROtsa cell lines and their tumor transplants. Conclusion This is the first study which shows that ZIP8 is expressed in the normal urothelium and in bladder cancer. In addition the normal UROtsa cell line and its transformed counterparts show similar expression of ZIP8 compared to the normal urothelium and the urothelial cancers suggesting that the UROtsa cell line could serve as a model system to study the expression of ZIP8 in bladder disease. PMID:22550998

  12. Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Garreta, Elena; González, Federico; Montserrat, Núria

    2018-01-01

    Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease. © 2017 S. Karger AG, Basel.

  13. Qualitative and quantitative radiological analysis of non-contrast CT is a strong indicator in patients with acute pyelonephritis.

    PubMed

    El-Merhi, Fadi; Mohamad, May; Haydar, Ali; Naffaa, Lena; Nasr, Rami; Deeb, Ibrahim Al-Sheikh; Hamieh, Nadine; Tayara, Ziad; Saade, Charbel

    2018-04-01

    To evaluate the performance of non-contrast computed tomography (CT) by reporting the difference in attenuation between normal and inflamed renal parenchyma in patients clinically diagnosed with acute pyelonephritis (APN). This is a retrospective study concerned with non-contrast CT evaluation of 74 patients, admitted with a clinical diagnosis of APN and failed to respond to 48h antibiotics treatment. Mean attenuation values in Hounsfield units (HU) were measured in the upper, middle and lower segments of the inflamed and the normal kidney of the same patient. Independent t-test was performed for statistical analysis. Image evaluation included receiver operating characteristic (ROC), visual grading characteristic (VGC) and kappa analyses. The mean attenuation in the upper, middle and lower segments of the inflamed renal cortex was 32%, 25%, and 29% lower than the mean attenuation of the corresponding cortical segments of the contralateral normal kidney, respectively (p<0.01). The mean attenuation in the upper, middle, and lower segments of the inflamed renal medulla was 48%, 21%, and 30%, lower than the mean attenuation of the corresponding medullary segments of the contralateral normal kidney (p<0.02). The mean attenuation between the inflamed and non-inflamed renal cortex and medulla was 29% and 30% lower respectively (p<0.001). The AUCROC (p<0.001) analysis demonstrated significantly higher scores for pathology detection, irrespective of image quality, compared to clinical and laboratory results with an increased inter-reader agreement from poor to substantial. Non-contrast CT showed a significant decrease in the parenchymal density of the kidney affected with APN in comparison to the contralateral normal kidney of the same patient. This can be incorporated in the diagnostic criteria of APN in NCCT in the emergency setting. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Interleukin-1β Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis.

    PubMed

    Lemos, Dario R; McMurdo, Michael; Karaca, Gamze; Wilflingseder, Julia; Leaf, Irina A; Gupta, Navin; Miyoshi, Tomoya; Susa, Koichiro; Johnson, Bryce G; Soliman, Kirolous; Wang, Guanghai; Morizane, Ryuji; Bonventre, Joseph V; Duffield, Jeremy S

    2018-06-01

    Background Kidney injury is characterized by persisting inflammation and fibrosis, yet mechanisms by which inflammatory signals drive fibrogenesis remain poorly defined. Methods RNA sequencing of fibrotic kidneys from patients with CKD identified a metabolic gene signature comprising loss of mitochondrial and oxidative phosphorylation gene expression with a concomitant increase in regulators and enzymes of glycolysis under the control of PGC1 α and MYC transcription factors, respectively. We modeled this metabolic switch in vivo , in experimental murine models of kidney injury, and in vitro in human kidney stromal cells (SCs) and human kidney organoids. Results In mice, MYC and the target genes thereof became activated in resident SCs early after kidney injury, suggesting that acute innate immune signals regulate this transcriptional switch. In vitro , stimulation of purified human kidney SCs and human kidney organoids with IL-1 β recapitulated the molecular events observed in vivo , inducing functional metabolic derangement characterized by increased MYC-dependent glycolysis, the latter proving necessary to drive proliferation and matrix production. MYC interacted directly with sequestosome 1/p62, which is involved in proteasomal degradation, and modulation of p62 expression caused inverse effects on MYC expression. IL-1 β stimulated autophagy flux, causing degradation of p62 and accumulation of MYC. Inhibition of the IL-1R signal transducer kinase IRAK4 in vivo or inhibition of MYC in vivo as well as in human kidney organoids in vitro abrogated fibrosis and reduced tubular injury. Conclusions Our findings define a connection between IL-1 β and metabolic switch in fibrosis initiation and progression and highlight IL-1 β and MYC as potential therapeutic targets in tubulointerstitial diseases. Copyright © 2018 by the American Society of Nephrology.

  15. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease

    PubMed Central

    Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E.; Dai, Xiao-Qing; Nguyen, Bich N.; Attané, Camille; Moullé, Valentine S.; MacDonald, Patrick E.; Ghislain, Julien

    2016-01-01

    Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis. PMID:27525435

  16. MALDI Orbitrap Mass Spectrometry Profiling of Dysregulated Sulfoglycosphingolipids in Renal Cell Carcinoma Tissues

    NASA Astrophysics Data System (ADS)

    Jirásko, Robert; Holčapek, Michal; Khalikova, Maria; Vrána, David; Študent, Vladimír; Prouzová, Zuzana; Melichar, Bohuslav

    2017-08-01

    Matrix-assisted laser desorption/ionization coupled with Orbitrap mass spectrometry (MALDI-Orbitrap-MS) is used for the clinical study of patients with renal cell carcinoma (RCC), as the most common type of kidney cancer. Significant changes in sulfoglycosphingolipid abundances between tumor and autologous normal kidney tissues are observed. First, sulfoglycosphingolipid species in studied RCC samples are identified using high mass accuracy full scan and tandem mass spectra. Subsequently, optimization, method validation, and statistical evaluation of MALDI-MS data for 158 tissues of 80 patients are discussed. More than 120 sulfoglycosphingolipids containing one to five hexosyl units are identified in human RCC samples based on the systematic study of their fragmentation behavior. Many of them are recorded here for the first time. Multivariate data analysis (MDA) methods, i.e., unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-DA), are used for the visualization of differences between normal and tumor samples to reveal the most up- and downregulated lipids in tumor tissues. Obtained results are closely correlated with MALDI mass spectrometry imaging (MSI) and histologic staining. Important steps of the present MALDI-Orbitrap-MS approach are also discussed, such as the selection of best matrix, correct normalization, validation for semiquantitative study, and problems with possible isobaric interferences on closed masses in full scan mass spectra.

  17. [The history of kidney transplantation].

    PubMed

    Hatzinger, M; Stastny, M; Grützmacher, P; Sohn, M

    2016-10-01

    The history of kidney transplantation is a history of many unsuccessful efforts and setbacks, but also the history of perseverance, pioneering spirit, and steadfast courage. The first successful transplantation of a dog kidney was done by the Austrian Emerich Ullmann (1861-1937) in 1902. The kidney was connected to the carotid artery of the dog and the ureter ended freely. The organ produced urine for a couple of days before it died. In 1909, there were efforts to transplant human kidneys from deceased patients to monkeys and in the following year the first xenotransplantation in humans was completed. Different kinds of donors were tried: dogs, monkeys, goats and lambs, all without success. In 1939, the first transplantation from a deceased human donor was done by the Russion Yurii Voronoy, the patient survived for only a couple of days, and the organ never worked. In 1953, the first temporarily successful transplantation of a human kidney was performed by Jean Hamburger in Paris. A 16-year-old boy received the kidney of his mother as living donor transplantation. Then in 1954, a milestone was made with the first long-term successful kidney transplantation by Joseph Murray: the transplantation was done between monozygotic twins; the organ survived for 8 years. For his efforts in kidney transplantation, Murray was honored with the Nobel Prize in medicine in 1990. In 1962, the first kidney transplantation between genetically nonrelated patients was done using immunosuppression and in 1963 the first kidney transplantation in Germany was done by Reinhard Nagel and Wilhelm Brosig in Berlin. The aim of this article is to present the history of kidney transplantation from the beginning until today.

  18. IQGAP1 Interacts with Components of the Slit Diaphragm Complex in Podocytes and Is Involved in Podocyte Migration and Permeability In Vitro

    PubMed Central

    Rigothier, Claire; Auguste, Patrick; Welsh, Gavin I.; Lepreux, Sébastien; Deminière, Colette; Mathieson, Peter W.; Saleem, Moin A.; Ripoche, Jean; Combe, Christian

    2012-01-01

    IQGAP1 is a scaffold protein that interacts with proteins of the cytoskeleton and the intercellular adhesion complex. In podocytes, IQGAP1 is associated with nephrin in the glomerular slit diaphragm (SD) complex, but its role remains ill-defined. In this work, we investigated the interaction of IQGAP1 with the cytoskeleton and SD proteins in podocytes in culture, and its role in podocyte migration and permeability. Expression, localization, and interactions between IQGAP1 and SD or cytoskeletal proteins were determined in cultured human podocytes by Western blot (WB), immunocytolocalization (IC), immunoprecipitation (IP), and In situ Proximity Ligation assay (IsPL). Involvement of IQGAP1 in migration and permeability was also assessed. IQGAP1 expression in normal kidney biopsies was studied by immunohistochemistry. IQGAP1 expression by podocytes increased during their in vitro differentiation. IC, IP, and IsPL experiments showed colocalizations and/or interactions between IQGAP1 and SD proteins (nephrin, MAGI-1, CD2AP, NCK 1/2, podocin), podocalyxin, and cytoskeletal proteins (α-actinin-4). IQGAP1 silencing decreased podocyte migration and increased the permeability of a podocyte layer. Immunohistochemistry on normal human kidney confirmed IQGAP1 expression in podocytes and distal tubular epithelial cells and also showed an expression in glomerular parietal epithelial cells. In summary, our results suggest that IQGAP1, through its interaction with components of SD and cytoskeletal proteins, is involved in podocyte barrier properties. PMID:22662192

  19. Uromodulin: a new biomarker of fetal renal function?

    PubMed

    Botelho, Thais Emanuelle Faria; Pereira, Alamanda Kfoury; Teixeira, Patrícia Gonçalves; Lage, Eura Martins; Osanan, Gabriel Costa; Silva, Ana Cristina Simões E

    2016-12-01

    Obstructive uropathies are main diseases affecting the fetus. Early diagnosis allows to establish the appropriate therapy to minimize the risk of damage to kidney function at birth. Biochemical markers have been used to predict the prognosis of renal function in fetuses. Uromodulin, also known by Tamm-Horsfall protein (THP) is exclusively produced in the kidneys and in normal conditions is the protein excreted in larger amounts in human urine. It plays important roles in kidneys and urinary tract. Also it participates in ion transport processes, interact with various components of the immune system and has a role in defense against urinary tract infections. Moreover, this protein was proved to be a good marker of renal function in adult patients with several renal diseases. To evaluate if uromodulin is produced and eliminated by the kidneys during fetal life by analyzing fetal urine and amniotic fluid and to establish correlation with biochemical parameter of renal function already used in Fetal Medicine Center at the Clinic Hospital of UFMG (CEMEFE/HC). Between 2013 and 2015, were selected 29 fetuses with indication of invasive tests for fetal diagnosis in monitoring at the CEMEFE/HC. The determination of uromodulin was possible and measurable in all samples and showed statistically significant correlation with the osmolarity. There was a tendency of lower levels of Uromodulin values in fetuses with severe renal impairment prenatally. Thus, high levels of this protein in fetal amniotic fluid or fetal urine dosages possibly mean kidney function preserved.

  20. Generalized Connective Tissue Disease in Crtap-/- Mouse

    PubMed Central

    Baldridge, Dustin; Lennington, Jennifer; Weis, MaryAnn; Homan, Erica P.; Jiang, Ming-Ming; Munivez, Elda; Keene, Douglas R.; Hogue, William R.; Pyott, Shawna; Byers, Peter H.; Krakow, Deborah; Cohn, Daniel H.; Eyre, David R.; Lee, Brendan; Morello, Roy

    2010-01-01

    Mutations in CRTAP (coding for cartilage-associated protein), LEPRE1 (coding for prolyl 3-hydroxylase 1 [P3H1]) or PPIB (coding for Cyclophilin B [CYPB]) cause recessive forms of osteogenesis imperfecta and loss or decrease of type I collagen prolyl 3-hydroxylation. A comprehensive analysis of the phenotype of the Crtap-/- mice revealed multiple abnormalities of connective tissue, including in the lungs, kidneys, and skin, consistent with systemic dysregulation of collagen homeostasis within the extracellular matrix. Both Crtap-/- lung and kidney glomeruli showed increased cellular proliferation. Histologically, the lungs showed increased alveolar spacing, while the kidneys showed evidence of segmental glomerulosclerosis, with abnormal collagen deposition. The Crtap-/- skin had decreased mechanical integrity. In addition to the expected loss of proline 986 3-hydroxylation in α1(I) and α1(II) chains, there was also loss of 3Hyp at proline 986 in α2(V) chains. In contrast, at two of the known 3Hyp sites in α1(IV) chains from Crtap-/- kidneys there were normal levels of 3-hydroxylation. On a cellular level, loss of CRTAP in human OI fibroblasts led to a secondary loss of P3H1, and vice versa. These data suggest that both CRTAP and P3H1 are required to maintain a stable complex that 3-hydroxylates canonical proline sites within clade A (types I, II, and V) collagen chains. Loss of this activity leads to a multi-systemic connective tissue disease that affects bone, cartilage, lung, kidney, and skin. PMID:20485499

  1. Simultaneous liver, pancreas-duodenum and kidney transplantation in a patient with hepatitis B cirrhosis, uremia and insulin dependent diabetes mellitus.

    PubMed

    Li, Jiang; Guo, Qing-Jun; Cai, Jin-Zhen; Pan, Cheng; Shen, Zhong-Yang; Jiang, Wen-Tao

    2017-12-07

    Simultaneous liver, pancreas-duodenum, and kidney transplantation has been rarely reported in the literature. Here we present a new and more efficient en bloc technique that combines classic orthotopic liver and pancreas-duodenum transplantation and heterotopic kidney transplantation for a male patient aged 44 years who had hepatitis B related cirrhosis, renal failure, and insulin dependent diabetes mellitus (IDDM). A quadruple immunosuppressive regimen including induction with basiliximab and maintenance therapy with tacrolimus, mycophenolate mofetil, and steroids was used in the early stage post-transplant. Postoperative recovery was uneventful and the patient was discharged on the 15 th postoperative day with normal liver and kidney function. The insulin treatment was completely withdrawn 3 wk after operation, and the blood glucose level remained normal. The case findings support that abdominal organ cluster and kidney transplantation is an effective method for the treatment of end-stage liver disease combined with uremia and IDDM.

  2. [Antioxidant properties of cluster rhenium compounds and their effect on erythropoiesis of rats with guerin carcinoma].

    PubMed

    Voronkova, Y S; Babiy, S O; Ivans'kar, L V; Shtemenko, O V; Shtemenko, N I

    2015-01-01

    Biochemical characteristics of kidneys, pe- ripheral blood and bone marrow of rats in model of tumor growth under introduction of cisplatin and cis-tetrachlorodi-μ-isobutyratodirhenium(III), cis-Re2(i-C3H7COO)2Cl4 (I) have been investigated. It was shown that introduction of I alone and together with cisplatin led to decrease of biochemical markers of oxidation of lipids and proteins in tissue homogenates of the kidneys, change of enzyme activity in the urea and tissue homogenates of the kidneys, by a decrease of filtration function of kidneys. Introduction of nanoliposomal forms of the rhenium cluster compound led to a practically normal morphological picture of bone marrow and increase of the RBC (by 60%) with normalization of hematocrit counts, and decrease of quantities of destructed RBC (3.2 times) in comparison with the tumor-bearing animals. A tentative scheme of influence of cluster rhenium compound on erythropoiesis through regulation of synthesis of erythropoietin in kidneys has been proposed.

  3. Establishment of donor Chimerism Using Allogeneic Bone Marrow with AMP Cell Co-infusion

    DTIC Science & Technology

    2017-09-01

    the ideal solution. Combined mixed allogeneic chimerism induction and kidney transplantation has been shown to induce robust tolerance to the kidney ...induction to kidney allografts in non-human primates and humans despite the transience of donor chimerism. However, evidence indicates that durable mixed...chimerism may be required for tolerance induction to tissues or organs other than kidney . Amnion-derived multipotent progenitor (AMP) cells possess

  4. Lesions in mink (Mustela vison) infected with giant kidney worm (Dioctophyma renale).

    PubMed

    Mace, T F

    1976-01-01

    Adult Dioctophyma renale occupied the enlarged renal pelvis of the right kidney of naturally infected mink. Lesions in the kidney parenchyma consisted of connective tissue proliferation in the interstitial tissue, tubular atrophy and fibrosis, and periglomerular fibrosis. The luminal surface of the renal pelvis wall was formed of numerous papillae covered with transitional epithelium. The nematodes in the lumen were bathed in an albuminous fluid containing red blood cells, epithelial cells and D. renale eggs. The left (uninfected) kidney was 60% larger than the left kidney of normal mink.

  5. Development and characterization of a monoclonal antibody to human embryonal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khazaeli, M.B.; Beierwaltes, W.H.; Pitt, G.S.

    1987-06-01

    A monoclonal anti-testicular carcinoma antibody was obtained via the somatic cell fusion technique by immunization of BALB/c mice with freshly prepared single cell suspension from a patient with testicular embryonal carcinoma with choriocarcinoma components. The hybridoma supernates were screened against the testicular carcinoma cells used in the immunization as well as normal mononuclear white blood cells isolated from the same patient. An antibody (5F9) was selected which bound to fresh tumor cells from two patients with embryonal testicular carcinoma and failed to bind to fresh tumor cells from 24 patients (2 seminoma, 2 melanoma, 3 neck, 2 esophageal, 1 ovarian,more » 3 colon, 1 prostate, 2 breast, 1 liposarcoma, 3 endometrial, 1 kidney, 1 adrenal, 1 larynx and 1 bladder tumors) or cell suspensions prepared from normal liver, lung, spleen, ovary, testes, kidney, red blood cells or white blood cells. The antibody was tested for its binding to several well established cancer cell lines, and was found to bind to the BeWo human choriocarcinoma and two human embryonal carcinoma cell lines. The antibody did not react with 22 other cell lines or with hCG. The antibody was labeled with /sup 131/I and injected into nude mice bearing BeWo tumors and evaluated for tumor localization by performing whole body scans with a gamma camera 5 days later. Six mice injected with the antibody showed positive tumor localization without the need for background subtraction while six mice injected with MOPC-21, a murine myeloma immunoglobulin, demonstrated much less tumor localization. Tissue distribution studies performed after scanning showed specific tumor localization (8:1 tumor: muscle) for the monoclonal antibody and no specific localization for MOPC-21.« less

  6. Pediatric Inflammatory Bowel Diseases: Should We Be Looking for Kidney Abnormalities?

    PubMed

    Lauritzen, Didde; Andreassen, Bente Utoft; Heegaard, Niels Henrik H; Klinge, Lone Gabriels; Walsted, Anne-Mette; Neland, Mette; Nielsen, Rasmus Gaardskær; Wittenhagen, Per

    2018-04-26

    Kidney disease has been reported in adults with inflammatory bowel disease (IBD) and is regarded an extraintestinal manifestation or more rarely a side effect of the medical treatment. In this cross-sectional study we describe the extent of kidney pathology in a cohort of 56 children with IBD. Blood and urine samples were analyzed for markers of kidney disease and ultrasonography was performed to evaluate pole-to-pole kidney length. We found that 25% of the patients had either previously reported kidney disease or ultrasonographic signs of chronic kidney disease. The median kidney size compared with normal children was significantly reduced. In a multivariate linear mixed model, small kidneys significantly correlated with the use of infliximab, whereas the use of enteral nutritional therapy was associated with larger kidneys. Children with IBD are at risk of chronic kidney disease, and the risk seems to be increased with the severity of the disease.

  7. Successful Dual Kidney Transplantation After Hypothermic Oxygenated Perfusion of Discarded Human Kidneys

    PubMed Central

    Ravaioli, Matteo; De Pace, Vanessa; Comai, Giorgia; Busutti, Marco; Gaudio, Massimo Del; Amaduzzi, Annalisa; Cucchetti, Alessandro; Siniscalchi, Antonio; La Manna, Gaetano; D’Errico, Antonietta A.D.; Pinna, Antonio Daniele

    2017-01-01

    Patient: Female, 58 Final Diagnosis: Nephroangiosclerosis Symptoms: Renal failure Medication: — Clinical Procedure: Resuscitation of grafts by hypothermic oxygenated perfusion Specialty: Transplantology Objective: Challenging differential diagnosis Background: The recovery of discarded human kidneys has increased in recent years and impels to use of unconventional organ preservation strategies that improve graft function. We report the first case of human kidneys histologically discarded and transplanted after hypothermic oxygenated perfusion (HOPE). Case Report: Marginal kidneys from a 78-year-old woman with brain death were declined by Italian transplant centers due to biopsy score (right kidney: 6; left kidney: 7). We recovered and preserved both kidneys through HOPE and we revaluated their use for transplantation by means of perfusion parameters. The right kidney was perfused for 1 h 20 min and the left kidney for 2 h 30 min. During organ perfusion, the renal flow increased progressively. We observed an increase of 34% for the left kidney (median flow 52 ml/min) and 50% for the right kidney (median flow 24 ml/min). Both kidneys had low perfusate’s lactate levels. We used perfusion parameters as important determinants of the organ discard. Based on our previous organ perfusion experience, the increase of renal flow and the low level of lactate following 1 h of HOPE lead us to declare both kidneys as appropriate for dual kidney transplantation (DKT). No complications were reported during the transplant and in the post-transplant hospital stay. The recipient had immediate graft function and serum creatinine value of 0.95 mg/dL at 3 months post-transplant. Conclusions: HOPE provides added information in the organ selection process and may improve graft quality of marginal kidneys. PMID:28928357

  8. Sodium urine test

    MedlinePlus

    ... or monitor many types of kidney diseases. Normal Results For adults, normal urine sodium values are generally ... meaning of your specific test result. What Abnormal Results Mean A higher than normal urine sodium level ...

  9. Constraint, consent, and well-being in human kidney sales.

    PubMed

    Hughes, Paul M

    2009-12-01

    This paper canvasses recent arguments in favor of commercial markets in human transplant kidneys, raising objections to those arguments on grounds of the role of injustice, exploitation, and coercion in compromising the autonomy of those most likely to sell a kidney, namely, the least well off members of society.

  10. The impact of mycotoxicoses on human history.

    PubMed

    Peraica, Maja; Rašić, Dubravka

    2012-12-01

    Mycotoxicoses are acute or chronic diseases of humans and animals caused by mycotoxins, toxic compounds produced by moulds. Of about 400 known mycotoxins only a small number are known to cause mycotoxicoses in humans. Organs that are most targeted are those in which mycotoxins are metabolised, that is, the liver and kidneys, but the lesions may affect the neurological, respiratory, digestive, haematological, endocrine, and immune systems as well. The epidemics of mycotoxicoses are often connected with times of famine, when population consumes food that would not be consumed in normal circumstances. Mycotoxicoses have influenced human history, causing demographic changes, migrations, or even influencing the outcomes of wars. Fortunately, epidemics affecting so many persons and with so many fatalities belong to the past. Today they only appear in small communities such as schools and factory canteens. This paper presents epidemics and pandemics of mycotoxicoses that influenced human history.

  11. Microgravity

    NASA Image and Video Library

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  13. Cellular and subcellular localization of uncoupling protein 2 in the human kidney.

    PubMed

    Nigro, Michelangelo; De Sanctis, Claudia; Formisano, Pietro; Stanzione, Rosita; Forte, Maurizio; Capasso, Giovambattista; Gigliotti, Giuseppe; Rubattu, Speranza; Viggiano, Davide

    2018-06-23

    The uncoupling protein-2 (UCP2) is an anion transporter that plays a key role in the control of intracellular oxidative stress. In animal models UCP2 downregulation has several pathological sequelae, particularly affecting the vasculature and the kidney. Specifically, in these models kidney damage is highly favored in the absence of UCP2 in the context of experimental hypertension. Confirmations of these data in humans awaits further information, as no data are yet available concerning the cell-type and subcellular expression in the human kidney. In the present study, we aimed to characterize the UCP2 protein distribution in human kidney biopsies. In humans UCP2 is mainly localized in proximal convoluted tubule cells, with an intracytoplasmic punctate staining. UCP2 positive puncta are often localized at the interface between the endoplasmic reticulum and the mitochondria. Glomerular structures do not express UCP2 at detectable levels. The expression of UCP2 in proximal tubular cells may explain their relative propensity to damage in pathological conditions including the hypertensive disease.

  14. Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression.

    PubMed

    Shen, Hong; Liu, Tongtong; Morse, Bridget L; Zhao, Yue; Zhang, Yueping; Qiu, Xi; Chen, Cliff; Lewin, Anne C; Wang, Xi-Tao; Liu, Guowen; Christopher, Lisa J; Marathe, Punit; Lai, Yurong

    2015-07-01

    The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubular localization of OAT2 in human, monkey, and rat kidney was characterized. The overexpression of OAT2 significantly enhanced the uptake of creatinine in OAT2-HEK cells. Under physiologic conditions (creatinine concentrations of 41.2 and 123.5 µM), the initial rate of OAT2-mediated creatinine transport was approximately 11-, 80-, and 80-fold higher than OCT2, multidrug and toxin extrusion protein (MATE)1, and MATE2K, respectively, resulting in approximately 37-, 1850-, and 80-fold increase of the intrinsic transport clearance when normalized to the transporter protein concentrations. Creatinine intracellular uptake and transcellular transport in HRPTCs were decreased in the presence of 50 µM bromosulfophthalein and 100 µM indomethacin, which inhibited OAT2 more potently than other known creatinine transporters, OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2K (IC50: 1.3 µM vs. > 100 µM and 2.1 µM vs. > 200 µM for bromosulfophthalein and indomethacin, respectively) Immunohistochemistry analysis showed that OAT2 protein was localized to both basolateral and apical membranes of human and cynomolgus monkey renal proximal tubules, but appeared only on the apical membrane of rat proximal tubules. Collectively, the findings revealed the important role of OAT2 in renal secretion and possible reabsorption of creatinine and suggested a molecular basis for potential species difference in the transporter handling of creatinine. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients

    PubMed Central

    L Gupta, Krishan; Sahni, Nancy

    2012-01-01

    Context Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Evidence Acquisitions Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Results Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Conclusions Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients. PMID:24475404

  16. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients.

    PubMed

    L Gupta, Krishan; Sahni, Nancy

    2012-10-01

    Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients.

  17. Successful transplantation of donor organs from a hemlock poisoning victim.

    PubMed

    Foster, Preston F; McFadden, Robert; Trevino, Raul; Galliardt, Scott; Kopczewski, Lea Ann; Gugliuzza, Kristene; Gonzalez, Zulma; Wright, Francis

    2003-09-15

    The poison hemlock plant (Conium maculatum) has been a known poison since early in human history, most notably as the agent used for the execution/suicide of Socrates in ancient Greece. No experience has been reported regarding the suitability of a hemlock victim's organs for transplantation. This report documents successful transplantation of the liver, kidney, and pancreas from a 14-year-old girl who died of anoxic encephalopathy from asphyxia after the accidental ingestion of fresh hemlock while on a nature hike. Predonation laboratory values were not remarkable, and liver and kidney biopsy results were normal. All organs in the three recipients had immediate function, and no recipient had any clinical evidence of transmitted toxin. All recipients are well, with functioning transplants at greater than 6 months after transplantation. Poison hemlock intoxication does not seem to be a contraindication to organ donation.

  18. Human water, sodium, and calcium regulation during space flight and exercise

    NASA Astrophysics Data System (ADS)

    Doty, S. E.; Seagrave, R. C.

    When one is exposed to microgravity, fluid which is normally pooled in the lower extremities is redistributed headward and weight bearing bones begin to demineralize due to reduced mechanical stresses. The kidney, which is the primary regulator of body fluid volume and composition, responds to the fluid shift and bone demineralization by increasing the urinary output of water, sodium, and calcium. This research involves developing a mathematical description of how water and electrolytes are internally redistributed and exchanged with the environment during space flight. This model consequently involves kidney function and the associated endocrine system. The model agrees well with actual data, including that a low sodium diet can prevent bone demineralization. Therefore, assumptions made to develop the model are most likely valid. Additionally, various levels of activity are also considered in the model since exercise may help to eliminate some of the undesired effects of space flight such as muscle atrophy and bone demineralization.

  19. Human water, sodium, and calcium regulation during space flight and exercise

    NASA Astrophysics Data System (ADS)

    Doty, S. E.; Seagrave, R. C.

    2000-05-01

    When one is exposed to microgravity, fluid which is normally pooled in the lower extremities is redistributed headward and weight bearing bones begin to demineralize due to reduced mechanical stresses. The kidney, which is the primary regulator of body fluid volume and composition, responds to the fluid shift and bone demineralization by increasing the urinary output of water, sodium, and calcium. This research involves developing a mathematical description of how water and electrolytes are internally redistributed and exchanged with the environment during space flight. This model consequently involves kidney function and the associated endocrine system. The model agrees well with actual data, including that a low sodium diet can prevent bone demineralization. Therefore, assumptions made to develop the model are most likely valid. Additionally, various levels of activity are also considered in the model since exercise may help to eliminate some of the undesired effects of space flight such as muscle atrophy and bone demineralization.

  20. Anatomy of the collecting system of lower pole of the kidney in patients with a single renal stone: a comparative study with individuals with normal kidneys.

    PubMed

    Zomorrodi, Afshar; Buhluli, Abulfazel; Fathi, Samad

    2010-07-01

    At least 5% of women and 12% of men during their lives will experience renal colic, at least once. Many theories have been suggested for the etiology of renal stones and variations in the anatomy of the collecting system have been suggested to have a role in stone formation. This study was conducted to examine the role of variation of lower pole collecting system in patients with lower pole kidney stone and compared the same in normal persons (kidney donors). Investigation for the anatomy of the lower pole of the kidney (angle between lower infundibulum and pelvis, length and diameter of the infundibulum and number and pattern distribution of calyces) was carried out using intravenous pyelogram (IVP) in 100 cases with urinary stone (study cases) and 400 persons with normal kidneys (control subjects). The study was a retrospective cross-sectional case control study. Results were analyzed by Mann-Whitney and independent sample chi square tests. The mean infundibulum-pelvic angle (IPA) in control subjects and in patients was 112.5 +/- 10.7 and 96.6 +/- 28.8, respectively. There was significant correlation between reduced angle and stone formation (P= < 0.001). The mean infundibulum-uretero-pelvic angle (IUPA) in control subjects and study cases was 53.5 +/- 12.7 and 42.6 +/- 13.4, respectively. There was significant correlation between decreased angle and stone formation (P = or < 0.001). The mean length of infundibulum of lower pole of kidney (IPIL) in controls and study patients was 22.5 +/- 4.1 and 27.5 +/- 7.7, respectively, which was statistically significant (P< 0.001). The mean number of calyces in lower pole of the kidney (LPCN) in controls and study patients was 2.6 +/- 0.6 and 3 +/- 0.9, respectively, which was statistically significant (P = or < 0.002). There was no significant correlation between distribution of calyces and stone formation (P= 0.366). Our study suggests that abnormal renal anatomy was more common in patients with lower pole kidney stone and should be considered a risk factor for forming lower pole kidney stone.

  1. Gender and urinary pH affect melamine-associated kidney stone formation risk

    PubMed Central

    Lu, Xiuli; Wang, Jing; Cao, Xiangyu; Li, Mingxin; Xiao, Chunling; Yasui, Takahiro; Gao, Bing

    2011-01-01

    Objectives: Melamine was known as a new risk for kidney stone due to recent incidences of milk powder contamination in China. Here, we performed a retrospective study to investigate whether age, gender, and urinary pH affect melamine-associated kidney stone risk. Materials and Methods: A retrospective review was performed of 217 children aged less than 3 years old. All children had a history of being fed with Sanlu milk powder contaminated by melamine, and underwent a clinical screening on kidney stone in Shenyang from November 2008 to February 2009. A comparison with the Chi-square was conducted between 83 cases and 125 normal subjects. The difference between children's gender, age, and urinary pH was evaluated. Results: A total of 208 subjects, 136 boys and 72 girls, were included in the study. Significant association was observed between melamine-associated kidney stone risk and gender [odds ratio (OR), 2.03; 95% confidence interval (CI), 1.11-3.74; P=0.02] and urinary pH (OR, 1.78; 95% CI, 1.01-3.11; P=0.04), respectively. Male children were at about twofold increased melamine-associated kidney stone risk compared with female children. Acidic urine showed about 1.78-fold increased melamine-associated kidney stone risk compared with normal urine. Conclusions: Our investigation results showed an association of gender and urinary pH with melamine-associated kidney stone formation risk. PMID:21747595

  2. Preoperative Renal Volume: A Surrogate Measure for Radical Nephrectomy-Induced Chronic Kidney Disease.

    PubMed

    Wu, Fiona Mei Wen; Tay, Melissa Hui Wen; Tai, Bee Choo; Chen, Zhaojin; Tan, Lincoln; Goh, Benjamin Yen Seow; Raman, Lata; Tiong, Ho Yee

    2015-12-01

    Surgically induced chronic kidney disease (CKD) has been found to have less impact on survival as well as function when compared to medical causes for CKD. The aim of this study is to evaluate whether preoperative remaining kidney volume correlates with renal function after nephrectomy, which represents an individual's renal reserve before surgically induced CKD. A retrospective review of 75 consecutive patients (29.3% females) who underwent radical nephrectomy (RN) (2000-2010) was performed. Normal side kidney parenchyma, excluding renal vessels and central sinus fat, was manually outlined in each transverse slice of CT image and multiplied by slice thickness to calculate volume. Estimated glomerular filtration rate (eGFR) was determined using the Modification of Diet in Renal Disease equation. CKD is defined as eGFR < 60 mL/min/1.73 m(2). Mean preoperative normal kidney parenchymal volume (mean age 55 [SD 13] years) is 150.7 (SD 36.4) mL. Over median follow-up of 36 months postsurgery, progression to CKD occurred in 42.6% (n = 32) of patients. On multivariable analysis, preoperative eGFR and preoperative renal volume <144 mL are independent predictors for postoperative CKD. On Kaplan-Meier analysis, median time to reach CKD postnephrectomy is 12.7 (range 0.03-43.66) months for renal volume <144 mL but not achieved if renal volume is >144 mL. Normal kidney parenchymal volume and preoperative eGFR are independent predictive factors for postoperative CKD after RN and may represent renal reserve for both surgically and medically induced CKD, respectively. Preoperative remaining kidney volume may be an adjunct representation of renal reserve postsurgery and predict later renal function decline due to perioperative loss of nephrons.

  3. Kidney Replacement Therapy

    MedlinePlus

    ... week, and lasts 3 to 5 hours each time. Blood travels through the artificial kidney, where waste products are ... eat a more normal diet and have more time for work and travel. Peritoneal dialysis is not for everyone, however. A ...

  4. Microgravity

    NASA Image and Video Library

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  5. Tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  6. Pure Ethiodized Oil-based Transcatheter Ablative Therapy in Normal Rabbit Kidneys and Kidneys Inoculated with VX-2 Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konya, Andras, E-mail: akonya@mdanderson.org; Stephens, L. Clifton; Wright, Kenneth C.

    2011-10-15

    Purpose: To evaluate the efficacy of ablation with selective arterial injection of pure ethiodized oil followed by arterial occlusion with 9:1 ethanol-Ethiodol mixture (EEM) and coil placement in normal rabbit kidneys and kidneys inoculated with VX-2 carcinoma. Materials and Methods: All experiments were conducted with Animal Care and Use Committee approval. In six rabbits (group 1), one kidney was embolized with pure Ethiodol until capillary stasis, followed by injection of 9:1 EEM until arterial stasis and then coil placement into the main renal artery. In 12 other rabbits, one kidney was inoculated with VX-2 tumor. Ethiodol and EEM embolization andmore » coil placement followed 7 days later (group 2, n = 6) or 11-14 days later (group 3, n = 6). Kidneys were evaluated (angiography, computed tomography, macro- and microscopy) 7 days after treatment. Results: Capillary stasis was achieved in groups 1, 2, and 3 with (mean {+-} standard deviation) 0.47 {+-} 0.03, 0.53 {+-} 0.02, and 0.56 {+-} 0.04 ml of pure Ethiodol, followed by 0.47 {+-} 0.05, 0.42 {+-} 0.03, and 0.38 {+-} 0.04 ml of EEM, respectively, which caused complete arterial occlusion in 17 of 18 kidneys. In group 1, all but one kidney showed at least 95% generalized coagulative necrosis. In group 2, all six kidneys exhibited 100% coagulative necrosis, with no viable tumor present. In group 3, 100% coagulative necrosis was present in all kidneys, with a small viable tumor in one. Conclusion: In the rabbit, selective arterial injection of pure Ethiodol can cause complete renal parenchyma and tumor ablation when it is followed by prompt, contiguous, and permanent occlusion of the arterial compartment.« less

  7. Preimplantation Kidney Biopsies of Extended Criteria Donors Have a Heavier Inflammatory Burden Than Kidneys From Standard Criteria Donors

    PubMed Central

    Mazeti-Felicio, Camila M.; Caldas, Heloisa C.; Fernandes-Charpiot, Ida M.M.; Dezotti, Camila Z.; Baptista, Maria A.S.F.; Abbud-Filho, Mario

    2017-01-01

    Background Donors after brain death develop a systemic proinflammatory state that may predispose the kidneys to injury after transplantation. Because it is not known whether this inflammatory environment similarly affects the kidneys from expanded criteria donor (ECD) and standard criteria donors (SCD), we sought to evaluate differences in the gene expression of inflammatory cytokines in preimplantation biopsies (PIBx) from ECD and SCD kidneys. Methods Cytokines gene expression was measured in 80 PIBx (SCD, 52; ECD, 28) and associated with donor variables. Results Normal histology and chronic histological lesions were not different between both types of kidneys. ECD kidneys showed significant increase in the transcripts of MCP-1, RANTES, TGF-β1, and IL-10 when compared with SCD. Kidneys presenting normal histology had similar inflammatory profile except by a higher expression of RANTES observed in ECD (P = 0.04). Interstitial fibrosis and tubular atrophy (interstitial fibrosis and tubular atrophy ≥ 1) were associated with higher expression of TGF-β1, RANTES, and IL-10 in ECD compared with SCD kidneys. Cold ischemia time of 24 hours or longer was significantly associated with upregulation of FOXP3, MCP-1, RANTES, and IL10, whereas longer duration of donor hospitalization significantly increased gene expression of all markers. High FOXP3 expression was also associated with lower level of serum creatinine at 1 year. Donor age was not associated with any of the transcripts studied. Conclusions PIBx of ECD exhibit a higher gene expression of inflammatory cytokines when compared with SCD kidneys. This molecular profile may be a specific ECD kidney response to brain death and may help to predict the posttransplant outcomes of ECD recipients. PMID:28706983

  8. A Study of Dielectric Properties of Proteinuria between 0.2 GHz and 50 GHz

    PubMed Central

    Mun, Peck Shen; Ting, Hua Nong; Ong, Teng Aik; Wong, Chew Ming; Ng, Kwan Hong; Chong, Yip Boon

    2015-01-01

    This paper investigates the dielectric properties of urine in normal subjects and subjects with chronic kidney disease (CKD) at microwave frequency of between 0.2 GHz and 50 GHz. The measurements were conducted using an open-ended coaxial probe at room temperature (25°C), at 30°C and at human body temperature (37°C). There were statistically significant differences in the dielectric properties of the CKD subjects compared to those of the normal subjects. Statistically significant differences in dielectric properties were observed across the temperatures for normal subjects and CKD subjects. Pearson correlation test showed the significant correlation between proteinuria and dielectric properties. The experimental data closely matched the single-pole Debye model. The relaxation dispersion and relaxation time increased with the proteinuria level, while decreasing with the temperature. As for static conductivity, it increased with proteinuria level and temperature. PMID:26066351

  9. Sour Ageusia in Two Individuals Implicates Ion Channels of the ASIC and PKD Families in Human Sour Taste Perception at the Anterior Tongue

    PubMed Central

    Huque, Taufiqul; Cowart, Beverly J.; Dankulich-Nagrudny, Luba; Pribitkin, Edmund A.; Bayley, Douglas L.; Spielman, Andrew I.; Feldman, Roy S.; Mackler, Scott A.; Brand, Joseph G.

    2009-01-01

    Background The perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli. Methods and Findings Lingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs) 1a, 1β, 2a, 2b, and 3; and polycystic kidney disease (PKD) channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-β2, the δ-subunit of epithelial sodium channel (ENaC) and the bitter receptor T2R14, as well as β-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1β, PKD2L1, phospholipase C-β2, and δ-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells. Conclusions These data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals (“natural knockouts”) suggests a cell lineage for sour that is independent of the other taste modalities. PMID:19812697

  10. Comparison of the Gene Expression Profiles from Normal and Fgfrl1 Deficient Mouse Kidneys Reveals Downstream Targets of Fgfrl1 Signaling

    PubMed Central

    Gerber, Simon D.; Amann, Ruth; Wyder, Stefan; Trueb, Beat

    2012-01-01

    Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron. PMID:22432025

  11. Endoplasmic Reticulum Stress in the Diabetic Kidney, the Good, the Bad and the Ugly.

    PubMed

    Cunard, Robyn

    2015-04-20

    Diabetic kidney disease is the leading worldwide cause of end stage kidney disease and a growing public health challenge. The diabetic kidney is exposed to many environmental stressors and each cell type has developed intricate signaling systems designed to restore optimal cellular function. The unfolded protein response (UPR) is a homeostatic pathway that regulates endoplasmic reticulum (ER) membrane structure and secretory function. Studies suggest that the UPR is activated in the diabetic kidney to restore normal ER function and viability. However, when the cell is continuously stressed in an environment that lies outside of its normal physiological range, then the UPR is known as the ER stress response. The UPR reduces protein synthesis, augments the ER folding capacity and downregulates mRNA expression of genes by multiple pathways. Aberrant activation of ER stress can also induce inflammation and cellular apoptosis, and modify signaling of protective processes such as autophagy and mTORC activation. The following review will discuss our current understanding of ER stress in the diabetic kidney and explore novel means of modulating ER stress and its interacting signaling cascades with the overall goal of identifying therapeutic strategies that will improve outcomes in diabetic nephropathy.

  12. A decreased soluble Klotho level with normal eGFR, FGF23, serum phosphate, and FEP in an ADPKD patient with enlarged kidneys due to multiple cysts.

    PubMed

    Kanai, Takahiro; Shiizaki, Kazuhiro; Betsui, Hiroyuki; Aoyagi, Jun; Yamagata, Takanori

    2018-05-16

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder. ADPKD is characterized clinically by the presence of multiple bilateral renal cysts that lead to chronic renal failure. The cysts evolve from renal tubular epithelial cells that express the Klotho gene. Notably, Klotho acts as a co-receptor for fibroblast growth factor 23 (FGF23); in this context, it induces phosphaturia and maintains serum phosphate at a normal level. Many reports have shown that decreases in the soluble Klotho level and increases in the FGF23 level are associated with glomerular filtration rate (GFR) decline, but a recent study observed these changes in patient with normal eGFR. It remains unclear whether the decrease in the Klotho level precedes the increase in FGF23. Here, we present an ADPKD patient with enlarged kidneys due to multiple cysts who had a decreased soluble Klotho level but a normal eGFR and a normal FGF23 level. The patient's serum phosphate level was normal, as was the fractional excretion of phosphate (FEP). This appears to be the first reported case to show a decreased soluble Klotho level plus normal eGFR, FGF23, and FEP. These results suggest that Klotho decreases before FGF23 increases and further suggest that Klotho is not required to maintain normal serum phosphate levels in ADPKD if the FEP and serum phosphate levels are normal.

  13. Predicting Outcome in Patients with Anti-GBM Glomerulonephritis.

    PubMed

    van Daalen, Emma E; Jennette, J Charles; McAdoo, Stephen P; Pusey, Charles D; Alba, Marco A; Poulton, Caroline J; Wolterbeek, Ron; Nguyen, Tri Q; Goldschmeding, Roel; Alchi, Bassam; Griffiths, Meryl; de Zoysa, Janak R; Vincent, Beula; Bruijn, Jan A; Bajema, Ingeborg M

    2018-01-06

    Large studies on long-term kidney outcome in patients with anti-glomerular basement membrane (anti-GBM) GN are lacking. This study aimed to identify clinical and histopathologic parameters that predict kidney outcome in these patients. This retrospective analysis included a total of 123 patients with anti-GBM GN between 1986 and 2015 from six centers worldwide. Their kidney biopsy samples were classified according to the histopathologic classification for ANCA-associated GN. Clinical data such as details of treatment were retrieved from clinical records. The primary outcome parameter was the occurrence of ESRD. Kidney survival was analyzed using the log-rank test and Cox regression analyses. The 5-year kidney survival rate was 34%, with an improved rate observed among patients diagnosed after 2007 ( P =0.01). In patients with anti-GBM GN, histopathologic class and kidney survival were associated ( P <0.001). Only one of 15 patients with a focal class biopsy sample (≥50% normal glomeruli) developed ESRD. Patients with a sclerotic class biopsy sample (≥50% globally sclerotic glomeruli) and patients with 100% cellular crescents did not recover from dialysis dependency at presentation. In multivariable analysis, dialysis dependency at presentation (hazard ratio [HR], 3.17; 95% confidence interval [95% CI], 1.59 to 6.32), percentage of normal glomeruli (HR, 0.97; 95% CI, 0.95 to 0.99), and extent of interstitial infiltrate (HR, 2.02; 95% CI, 1.17 to 3.50) were predictors of ESRD during follow-up. Dialysis dependency, low percentage of normal glomeruli, and large extent of interstitial infiltrate are associated with poor kidney outcome in anti-GBM GN. Kidney outcome has improved during recent years; the success rate doubled after 2007. This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2017_11_21_CJASNPodcast_18_1_v.mp3. Copyright © 2018 by the American Society of Nephrology.

  14. Altered microRNA regulation of short chain fatty acid receptors in the hypertensive kidney is normalized with hydrogen sulfide supplementation.

    PubMed

    Weber, Gregory J; Foster, Jaleyea; Pushpakumar, Sathnur B; Sen, Utpal

    2018-06-15

    Hypertension affects nearly one third of the adult US population and is a significant risk factor for chronic kidney disease (CKD). An expanding body of recent studies indicates that gut microbiome has crucial roles in regulating physiological processes through, among other mechanisms, one mode of short chain fatty acids (SCFA) and their target receptors. In addition, these SCFA receptors are potential targets of regulation by host miRNAs, however, the mechanisms through which this occurs is not clearly defined. Hydrogen sulfide (H 2 S) is an important gasotransmitter involved in multiple physiological processes and is known to alleviate adverse effects of hypertension such as reducing inflammation in the kidney. To determine the role of host microRNAs in regulating short chain fatty acid receptors in the kidney as well as the gut, C57BL/6J wild-type mice were treated with or without Ang-II and H 2 S donor GYY4137 (GYY) for 4 weeks to assess whether GYY would normalize adverse effects observed in hypertensive mice and whether this was in part due to altered gut microbiome composition. We observed several changes of SCFA receptors, including Olfr78, Gpr41/43 and predicted microRNA regulators in the kidney among the different treatments. Increased expression of inflammatory markers Il6 and Rorc2, along with Tgfβ, were found in the hypertensive kidney. The glomerular filtration rate (GFR) was improved in mice treated with Ang-II + GYY compared with Ang-II only, indicating improved kidney function. The Erysipelotrichia class of bacteria, linked with high fat diets, was enriched in hypertensive animals but reduced with GYY supplementation. These data point towards a role for miRNA regulation of SCFA receptors in hypertensive kidney and are normalized by H 2 S supplementation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Evaluation of Acute Kidney Injury and Mortality After Intensive Blood Pressure Control in Patients With Intracerebral Hemorrhage.

    PubMed

    Burgess, L Goodwin; Goyal, Nitin; Jones, G Morgan; Khorchid, Yasser; Kerro, Ali; Chapple, Kristina; Tsivgoulis, Georgios; Alexandrov, Andrei V; Chang, Jason J

    2018-04-13

    We sought to assess the risk of acute kidney injury (AKI) and mortality associated with intensive systolic blood pressure reduction in acute intracerebral hemorrhage. Patients with acute intracerebral hemorrhage had spontaneous cause and symptom onset within 24 hours. We excluded patients with structural causes, coagulopathy, thrombocytopenia, and preexisting end-stage renal disease. We defined AKI using the Acute Kidney Injury Network criteria. Chronic kidney disease status was included in risk stratification and was defined by Kidney Disease Outcomes Quality Initiative staging. Maximum systolic blood pressure reduction was defined over a 12-hour period and dichotomized using receiver operating characteristic curve analysis. Descriptive statistics were done using independent sample t tests, χ 2 tests, and Mann-Whitney U tests, whereas multivariable logistic regression analysis was used to evaluate for predictors for AKI and mortality. A total of 448 patients with intracerebral hemorrhage met inclusion criteria. Maximum systolic blood pressure reduction was dichotomized to 90 mm Hg and found to increase the risk of AKI in patients with normal renal function (odds ratio, 2.1; 95% confidence interval, 1.19-3.62; P =0.010) and chronic kidney disease (odds ratio, 3.91; 95% confidence interval, 1.26-12.15; P =0.019). The risk of AKI was not significantly different in normal renal function versus chronic kidney disease groups when adjusted for demographics, presentation characteristics, and medications associated with AKI. AKI positively predicted mortality for patients with normal renal function (odds ratio, 2.41; 95% confidence interval, 1.11-5.22; P =0.026) but not for patients with chronic kidney disease (odds ratio, 3.13; 95% confidence interval, 0.65-15.01; P =0.154). These results indicate that intensive systolic blood pressure reduction with a threshold >90 mm Hg in patients with acute intracerebral hemorrhage may be an independent predictor for AKI. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. Simple ectopic kidney in three dogs.

    PubMed

    Choi, Jiyoung; Lee, Heechun; Lee, Youngwon; Choi, Hojung

    2012-10-01

    Simple ectopic kidney was diagnosed in three dogs by means of radiography and ultrasonography. A 2-year-old castrated male Schnauzer, a 13-year-old female Schnauzer and a 9-year-old male Jindo were referred with vomiting, hematuria and ocular discharge, respectively. In all three dogs, oval-shaped masses with soft tissue density were observed in the mid to caudal abdomen bilaterally or unilaterally, and kidney silhouettes were not identified at the proper anatomic places on abdominal radiographs. Ultrasonography confirmed the masses were malpositioned kidney. The ectopic kidneys had relatively small size, irregular shape and short ureter but showed normal function on excretory urography.

  17. Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells.

    PubMed

    Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2016-11-01

    Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Proteinuria and Perinatal Lethality in Mice Lacking NEPH1, a Novel Protein with Homology to NEPHRIN

    PubMed Central

    Donoviel, Dorit B.; Freed, Deon D.; Vogel, Hannes; Potter, David G.; Hawkins, Edith; Barrish, James P.; Mathur, Brian N.; Turner, C. Alexander; Geske, Robert; Montgomery, Charles A.; Starbuck, Michael; Brandt, Mary; Gupta, Anupma; Ramirez-Solis, Ramiro; Zambrowicz, Brian P.; Powell, David R.

    2001-01-01

    A high-throughput, retrovirus-mediated mutagenesis method based on gene trapping in embryonic stem cells was used to identify a novel mouse gene. The human ortholog encodes a transmembrane protein containing five extracellular immunoglobulin-like domains that is structurally related to human NEPHRIN, a protein associated with congenital nephrotic syndrome. Northern analysis revealed wide expression in humans and mice, with highest expression in kidney. Based on similarity to NEPHRIN and abundant expression in kidney, this protein was designated NEPH1 and embryonic stem cells containing the retroviral insertion in the Neph1 locus were used to generate mutant mice. Analysis of kidney RNA from Neph1−/− mice showed that the retroviral insertion disrupted expression of Neph1 transcripts. Neph1−/− pups were represented at the expected normal Mendelian ratios at 1 to 3 days of age but at only 10% of the expected frequency at 10 to 12 days after birth, suggesting an early postnatal lethality. The Neph1−/− animals that survived beyond the first week of life were sickly and small but without edema, and all died between 3 and 8 weeks of age. Proteinuria ranging from 300 to 2,000 mg/dl was present in all Neph1−/− mice. Electron microscopy demonstrated NEPH1 expression in glomerular podocytes and revealed effacement of podocyte foot processes in Neph1−/− mice. These findings suggest that NEPH1, like NEPHRIN, may play an important role in maintaining the structure of the filtration barrier that prevents proteins from freely entering the glomerular urinary space. PMID:11416156

  19. Feasibility of Repairing Glomerular Basement Membrane Defects in Alport Syndrome

    PubMed Central

    Lin, Xiaobo; Suh, Jung Hee; Go, Gloriosa

    2014-01-01

    Alport syndrome is a hereditary glomerular disease that leads to kidney failure. It is caused by mutations affecting one of three chains of the collagen α3α4α5(IV) heterotrimer, which forms the major collagen IV network of the glomerular basement membrane (GBM). In the absence of the α3α4α5(IV) network, the α1α1α2(IV) network substitutes, but it is insufficient to maintain normal kidney function. Inhibition of angiotensin-converting enzyme slows progression to kidney failure in patients with Alport syndrome but is not a cure. Restoration of the normal collagen α3α4α5(IV) network in the GBM, by either cell- or gene-based therapy, is an attractive and logical approach toward a cure, but whether or not the abnormal GBM can be repaired once it has formed and is functioning is unknown. Using a mouse model of Alport syndrome and an inducible transgene system, we found that secretion of α3α4α5(IV) heterotrimers by podocytes into a preformed, abnormal, filtering Alport GBM is effective at restoring the missing collagen IV network, slowing kidney disease progression, and extending life span. This proof-of-principle study demonstrates the plasticity of the mature GBM and validates the pursuit of therapeutic approaches aimed at normalizing the GBM to prolong kidney function. PMID:24262794

  20. Feasibility of repairing glomerular basement membrane defects in Alport syndrome.

    PubMed

    Lin, Xiaobo; Suh, Jung Hee; Go, Gloriosa; Miner, Jeffrey H

    2014-04-01

    Alport syndrome is a hereditary glomerular disease that leads to kidney failure. It is caused by mutations affecting one of three chains of the collagen α3α4α5(IV) heterotrimer, which forms the major collagen IV network of the glomerular basement membrane (GBM). In the absence of the α3α4α5(IV) network, the α1α1α2(IV) network substitutes, but it is insufficient to maintain normal kidney function. Inhibition of angiotensin-converting enzyme slows progression to kidney failure in patients with Alport syndrome but is not a cure. Restoration of the normal collagen α3α4α5(IV) network in the GBM, by either cell- or gene-based therapy, is an attractive and logical approach toward a cure, but whether or not the abnormal GBM can be repaired once it has formed and is functioning is unknown. Using a mouse model of Alport syndrome and an inducible transgene system, we found that secretion of α3α4α5(IV) heterotrimers by podocytes into a preformed, abnormal, filtering Alport GBM is effective at restoring the missing collagen IV network, slowing kidney disease progression, and extending life span. This proof-of-principle study demonstrates the plasticity of the mature GBM and validates the pursuit of therapeutic approaches aimed at normalizing the GBM to prolong kidney function.

  1. Nephro-protective action of P. santalinus against alcohol-induced biochemical alterations and oxidative damage in rats.

    PubMed

    Bulle, Saradamma; Reddy, Vaddi Damodara; Hebbani, Ananda Vardhan; Padmavathi, Pannuru; Challa, Chandrasekhar; Puvvada, Pavan Kumar; Repalle, Elisha; Nayakanti, Devanna; Aluganti Narasimhulu, Chandrakala; Nallanchakravarthula, Varadacharyulu

    2016-12-01

    The present study investigated the antioxidant potential of P. santalinus heartwood methanolic extract (PSE) against alcohol-induced nephro-toxicity. The results indicated an increase in the concentration of kidney damage plasma markers, urea and creatinine with a concomitant decrease in the concentration of uric acid in alcohol-administered rats. A significant decrease in plasma electrolytes and mineral levels with increased kidney thiobarbituric acid reactive substances (TBARS) and nitric oxide (NOx) levels was also observed. PSE treatment to alcohol-administered rats effectively prevented the elevation in TBARS and NOx levels. Decreased activity of Na + /K + -ATPase in alcohol administered rats was brought to near normal levels with treatment of PSE. Chronic alcohol consumption affects antioxidant enzymatic activity and reabsorption function of the kidney which is evident from the decreased level of GSH as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST). However, treatment with PSE to alcohol-administered rats significantly enhanced these enzymatic activities and reduced glutathione (GSH) content close to normal level. Alcohol-induced organ damage was evident from morphological changes in the kidney. Nevertheless, administration of PSE effectively restored these morphological changes to normal. The flavonoid and tannoid compounds might have protective activity against alcohol-induced oxidative/nitrosative stress mediated kidney damage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Expression of nestin in embryonic tissues and its effects on clinicopathological characteristics of patients with placenta previa.

    PubMed

    Qiao, Yan-Yan; Chu, Ping

    2018-02-01

    In this study, we examined expression of nestin in the spinal cord, lung, kidney, stomach, colon, and intestine tissues at different stages of embryos in patients with placenta previa. Fetuses of 75 patients with placenta previa were assigned to case group and 80 fetuses from healthy pregnant women with normal placenta who voluntarily terminated pregnancy to control group. Clinical data of pregnant women were collected at the time of admission. Blood from elbow vein was collected to determine expression of serum nestin. Tissues from spinal cord, lung, kidney, stomach, colon, and intestine in 3-7 months fetuses of the two groups were extracted. Expression of nestin in tissues was detected by immunohistochemistry, Western blotting and RT-qPCR. The mRNA expression of nestin in the case group was increased. Nestin expression was correlated with the gestational age, age of foetus, and type of placenta previa in patients with placenta previa. Positive nestin expression was detected in the spinal cord, lung, kidney, stomach, intestine, and colon tissues in normal and placenta previa embryo at Stage I. The positive cell density and nestin expression decreased at Stage II, and further decreased at Stage III. The case group had higher nestin mRNA and protein levels throughout human fetal development. Findings of this study suggested that, nestin, as a specific marker of neural precursor cells, was expressed in various tissues of the embryo in patients with placenta previa and nestin expression was lower with increased maturation of the embryo. © 2017 Wiley Periodicals, Inc.

  3. Anemia in new congenital adult type polycystic kidney mice.

    PubMed

    Koumegawa, J; Nagano, N; Arai, H; Wada, M; Kusaka, M; Takahashi, H

    1991-12-01

    Mechanisms for the development of anemia and the effects of recombinant human erythropoietin (r-HuEPO) on hematological parameters were studied in new congenital adult type polycystic kidney (DBA/2FG-pcy) mice. The majority of DBA/2FG-pcy mice showed progressive anemia and an elevation of blood urea nitrogen, while a minority showed progressive anemia following polycythemia. Kidneys with numerous cysts in the cortex and medulla occupied virtually the entire abdominal cavity, and the combined kidney weight taken as a percentage of body weight reached 13.5% in the DBA/2FG-pcy mouse. The osmotic fragility of DBA/2FG-pcy mice erythrocytes was significantly increased compared with that of normal control mice. In addition, two-fold increases in serum EPO levels, determined by radioimmunoassay, and a decreased number of colony forming unit-erythroid (CFU-E) were observed in the DBA/2FG-pcy mice. The administration of r-HuEPO during anemia significantly increased the red blood cell count, hemoglobin concentration, hematocrit and reticulocyte percentage in a dose-dependent manner. These findings indicate that anemia in the DBA/2FG-pcy mouse is due to increased fragility of erythrocytes, a deficiency in EPO for the degree of anemia and a decreased number or a decreased response of erythroid progenitor cells. We suggest that the DBA/2FG-pcy mouse is a useful spontaneous model of chronic progressive renal failure.

  4. Using optical coherence tomography (OCT) to evaluate the status of human donor kidneys (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Andrews, Peter M.; Konkel, Brandon; Anderson, Erik; Stein, Matthew; Cooper, Matthew; Verbesey, Jennifer E.; Ghasemian, Seyed; Chen, Yu

    2016-02-01

    The main cause of delayed renal function following the transplant of donor kidneys is ischemic induced acute tubular necrosis (ATN). The ability to determine the degree of ATN suffered by donor kidneys prior to their transplant would enable transplant surgeons to use kidneys that might otherwise be discarded and better predict post-transplant renal function. Currently, there are no reliable tests to determine the extent of ATN of donor kidneys prior to their transplant. In ongoing clinical trials, we have been using optical coherence tomography (OCT) to non-invasively image the superficial proximal tubules of human donor kidneys prior to and following transplant, and correlate these observations with post-transplant renal function. Thus far we have studied over 40 living donor kidneys and 10 cadaver donor kidneys, and demonstrated that this imaging can be performed in a sterile and expeditious fashion in the operating room (OR). Because of many variables associated with a diverse population of donors/recipients and transplant operation parameters, more transplant data must be collected prior to drawing definite conclusions. Nevertheless, our observations have thus far mirrored our previously published laboratory results indicating that damage to the kidney proximal tubules as indicated by tubule swelling is a good measure of post-transplant ATN and delayed graft function. We conclude that OCT is a useful procedure for analyzing human donor kidneys.

  5. Hippo signaling in the kidney: the good and the bad.

    PubMed

    Wong, Jenny S; Meliambro, Kristin; Ray, Justina; Campbell, Kirk N

    2016-08-01

    The Hippo signaling pathway is an evolutionarily conserved kinase cascade, playing multiple roles in embryonic development that controls organ size, cell proliferation, and apoptosis. At the center of this network lie the Hippo kinase target and downstream pathway effector Yes-associated protein (YAP) and its paralog TAZ. In its phosphorylated form, cytoplasmic YAP is sequestered in an inactive state. When it is dephosphorylated, YAP, a potent oncogene, is activated and relocates to the nucleus to interact with a number of transcription factors and signaling regulators that promote cell growth, differentiation, and survival. The identification of YAP activation in human cancers has made it an attractive target for chemotherapeutic drug development. Little is known to date about the function of the Hippo pathway in the kidney, but that is rapidly changing. Recent studies have shed light on the role of Hippo-YAP signaling in glomerular and lower urinary tract embryonic development, maintenance of podocyte homeostasis, the integrity of the glomerular filtration barrier, regulation of renal tubular cyst growth, renal epithelial injury in diabetes, and renal fibrogenesis. This review summarizes the current knowledge of the Hippo-YAP signaling axis in the kidney under normal and disease conditions. Copyright © 2016 the American Physiological Society.

  6. Novel Functional Complexity of Polycystin-1 by GPS Cleavage In Vivo: Role in Polycystic Kidney Disease

    PubMed Central

    Kurbegovic, Almira; Kim, Hyunho; Xu, Hangxue; Yu, Shengqiang; Cruanès, Julie; Maser, Robin L.; Boletta, Alessandra; Trudel, Marie

    2014-01-01

    Polycystin-1 (Pc1) cleavage at the G protein-coupled receptor (GPCR) proteolytic site (GPS) is required for normal kidney morphology in humans and mice. We found a complex pattern of endogenous Pc1 forms by GPS cleavage. GPS cleavage generates not only the heterodimeric cleaved full-length Pc1 (Pc1cFL) in which the N-terminal fragment (NTF) remains noncovalently associated with the C-terminal fragment (CTF) but also a novel (Pc1) form (Pc1deN) in which NTF becomes detached from CTF. Uncleaved Pc1 (Pc1U) resides primarily in the endoplasmic reticulum (ER), whereas both Pc1cFL and Pc1deN traffic through the secretory pathway in vivo. GPS cleavage is not a prerequisite, however, for Pc1 trafficking in vivo. Importantly, Pc1deN is predominantly found at the plasma membrane of renal epithelial cells. By functional genetic complementation with five Pkd1 mouse models, we discovered that CTF plays a crucial role in Pc1deN trafficking. Our studies support GPS cleavage as a critical regulatory mechanism of Pc1 biogenesis and trafficking for proper kidney development and homeostasis. PMID:24958103

  7. High glucose augments angiotensinogen in human renal proximal tubular cells through hepatocyte nuclear factor-5

    PubMed Central

    Wang, Juan; Shibayama, Yuki; Kobori, Hiroyuki; Liu, Ya; Kobara, Hideki; Masaki, Tsutomu; Wang, Zhiyu

    2017-01-01

    High glucose has been demonstrated to induce angiotensinogen (AGT) synthesis in the renal proximal tubular cells (RPTCs) of rats, which may further activate the intrarenal renin-angiotensin system (RAS) and contribute to diabetic nephropathy. This study aimed to investigate the effects of high glucose on AGT in the RPTCs of human origin and identify the glucose-responsive transcriptional factor(s) that bind(s) to the DNA sequences of AGT promoter in human RPTCs. Human kidney (HK)-2 cells were treated with normal glucose (5.5 mM) and high glucose (15.0 mM), respectively. Levels of AGT mRNA and AGT secretion of HK-2 cells were measured by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Consecutive 5’-end deletion mutant constructs and different site-directed mutagenesis products of human AGT promoter sequences were respectively transfected into HK-2 cells, followed by AGT promoter activity measurement through dual luciferase assay. High glucose significantly augmented the levels of AGT mRNA and AGT secretion of HK-2 cells, compared with normal glucose treatment. High glucose also significantly augmented AGT promoter activity in HK-2 cells transfected with the constructs of human AGT promoter sequences, compared with normal glucose treatment. Hepatocyte nuclear factor (HNF)-5 was found to be one of the glucose-responsive transcriptional factors of AGT in human RPTCs, since the mutation of its binding sites within AGT promoter sequences abolished the above effects of high glucose on AGT promoter activity as well as levels of AGT mRNA and its secretion. The present study has demonstrated, for the first time, that high glucose augments AGT in human RPTCs through HNF-5, which provides a potential therapeutic target for diabetic nephropathy. PMID:29053707

  8. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  9. Expression of metalloprotease insulin-degrading enzyme insulysin in normal and malignant human tissues.

    PubMed

    Yfanti, Christina; Mengele, Karin; Gkazepis, Apostolos; Weirich, Gregor; Giersig, Cecylia; Kuo, Wen-Liang; Tang, Wei-Jen; Rosner, Marsha; Schmitt, Manfred

    2008-10-01

    Insulin-degrading enzyme (IDE, insulysin, insulinase; EC 3.4.22.11), a thiol metalloendopeptidase, is involved in intracellular degradation of insulin, thereby inhibiting its translocation and accumulation to the nucleus. Recently, protein expression of IDE has been demonstrated in the epithelial ducts of normal breast and breast cancer tissue. Utilizing four different antibodies generated against different epitopes of the IDE molecule, we performed Western blot analysis and immunohistochemical staining on several normal human tissues, on a plethora of tumor cell lines of different tissue origin, and on malignant breast and ovarian tissue. Applying the four IDE-directed antibodies, we demonstrated IDE expression at the protein level, by means of immunoblotting and immunocytochemistry, in each of the tumor cell lines analyzed. Insulin-degrading enzyme protein expression was found in normal tissues of the kidney, liver, lung, brain, breast and skeletal muscle, as well as in breast and ovarian cancer tissues. Immunohistochemical visualization of IDE indicated cytoplasmic localization of IDE in each of the cell lines and tissues assessed. In conclusion, we performed for the first time a wide-ranging survey on IDE protein expression in normal and malignant tissues and cells thus extending our knowledge on the cellular and tissue distribution of IDE, an enzyme which to date has mainly been studied in connection with Alzheimer's disease and diabetes but not in cancer.

  10. Renal glucose metabolism in normal physiological conditions and in diabetes.

    PubMed

    Alsahli, Mazen; Gerich, John E

    2017-11-01

    The kidney plays an important role in glucose homeostasis via gluconeogenesis, glucose utilization, and glucose reabsorption from the renal glomerular filtrate. After an overnight fast, 20-25% of glucose released into the circulation originates from the kidneys through gluconeogenesis. In this post-absorptive state, the kidneys utilize about 10% of all glucose utilized by the body. After glucose ingestion, renal gluconeogenesis increases and accounts for approximately 60% of endogenous glucose release in the postprandial period. Each day, the kidneys filter approximately 180g of glucose and virtually all of this is reabsorbed into the circulation. Hormones (most importantly insulin and catecholamines), substrates, enzymes, and glucose transporters are some of the various factors influencing the kidney's role. Patients with type 2 diabetes have an increased renal glucose uptake and release in the fasting and the post-prandial states. Additionally, glucosuria in these patients does not occur at plasma glucose levels that would normally produce glucosuria in healthy individuals. The major abnormality of renal glucose metabolism in type 1 diabetes appears to be impaired renal glucose release during hypoglycemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Serum Uric Acid, Kidney Function and Acute Ischemic Stroke Outcomes in Elderly Patients: A Single-Cohort, Perspective Study

    PubMed Central

    Falsetti, Lorenzo; Capeci, William; Tarquinio, Nicola; Viticchi, Giovanna; Silvestrini, Mauro; Catozzo, Vania; Fioranelli, Agnese; Buratti, Laura; Pellegrini, Francesco

    2017-01-01

    Chronic kidney disease and hyperuricemia have been associated to an increased risk and a worse prognosis in acute ischemic stroke. Several mechanisms, including platelet dysfunction, coagulation disorders, endothelial dysfunction, inflammation, and an increased risk of atrial fibrillation could be implicated. The role of serum uric acid in this setting is still object of debate. We enrolled all the consecutive patients admitted to our department for acute ischemic stroke. Cox regression analysis was used to evaluate the risk of in-hospital death considering serum uric acid levels and all the comorbidities. In the overall sample, hyperuricemia was independently associated to an increased risk of in-hospital mortality. This effect was stronger in patients with chronic kidney disease while, in the group of patients with normal renal function, the relationship between hyperuricemia and increased stroke mortality was not confirmed. Hyperuricemia could be associated to higher in-hospital mortality for ischemic stroke among elderly patients when affected by kidney disease. Survival does not seem to be affected by hyperuricemia in patients with normal kidney function. PMID:28461885

  12. Kidney fibroblast growth factor 23 does not contribute to elevation of its circulating levels in uremia.

    PubMed

    Mace, Maria L; Gravesen, Eva; Nordholm, Anders; Hofman-Bang, Jacob; Secher, Thomas; Olgaard, Klaus; Lewin, Ewa

    2017-07-01

    Fibroblast growth factor 23 (FGF23) secreted by osteocytes is a circulating factor essential for phosphate homeostasis. High plasma FGF23 levels are associated with cardiovascular complications and mortality. Increases of plasma FGF23 in uremia antedate high levels of phosphate, suggesting a disrupted feedback regulatory loop or an extra-skeletal source of this phosphatonin. Since induction of FGF23 expression in injured organs has been reported we decided to examine the regulation of FGF23 gene and protein expressions in the kidney and whether kidney-derived FGF23 contributes to the high plasma levels of FGF23 in uremia. FGF23 mRNA was not detected in normal kidneys, but was clearly demonstrated in injured kidneys, already after four hours in obstructive nephropathy and at 8 weeks in the remnant kidney of 5/6 nephrectomized rats. No renal extraction was found in uremic rats in contrast to normal rats. Removal of the remnant kidney had no effect on plasma FGF23 levels. Well-known regulators of FGF23 expression in bone, such as parathyroid hormone, calcitriol, and inhibition of the FGF receptor by PD173074, had no impact on kidney expression of FGF23. Thus, the only direct contribution of the injured kidney to circulating FGF23 levels in uremia appears to be reduced renal extraction of bone-derived FGF23. Kidney-derived FGF23 does not generate high plasma FGF23 levels in uremia and is regulated differently than the corresponding regulation of FGF23 gene expression in bone. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5/6 nephrectomized rats: a role for KLF15.

    PubMed

    Gao, Xiang; Huang, Lianghu; Grosjean, Fabrizio; Esposito, Vittoria; Wu, Jianxiang; Fu, Lili; Hu, Huimin; Tan, Jiangming; He, Cijian; Gray, Susan; Jain, Mukesh K; Zheng, Feng; Mei, Changlin

    2011-05-01

    Dietary protein restriction is an important treatment for chronic kidney disease. Herein, we tested the effect of low-protein or low-protein plus ketoacids (KA) diet in a remnant kidney model. Rats with a remnant kidney were randomized to receive normal protein diet (22%), low-protein (6%) diet (LPD), or low-protein (5%) plus KA (1%) diet for 6 months. Protein restriction prevented proteinuria, decreased blood urea nitrogen levels, and renal lesions; however, the LPD retarded growth and decreased serum albumin levels. Supplementation with KA corrected these abnormalities and provided superior renal protection compared with protein restriction alone. The levels of Kruppel-like factor-15 (KLF15), a transcription factor shown to reduce cardiac fibrosis, were decreased in remnant kidneys. Protein restriction, which increased KLF15 levels in the normal kidney, partially recovered the levels of KLF15 in remnant kidney. The expression of KLF15 in mesangial cells was repressed by oxidative stress, transforming growth factor-β, and tumor necrosis factor (TNF)-α. The suppressive effect of TNF-α on KLF15 expression was mediated by TNF receptor-1 and nuclear factor-κB. Overexpression of KLF15 in mesangial and HEK293 cells significantly decreased fibronectin and type IV collagen mRNA levels. Furthermore, KLF15 knockout mice developed glomerulosclerosis following uninephrectomy. Thus, KLF15 may be an antifibrotic factor in the kidney, and its decreased expression may contribute to the progression of kidney disease.

  14. Hepatic extraction and renal production of 3,3'-diiodothyronine and 3',5'-diiodothyronine in man.

    PubMed Central

    Faber, J; Faber, O K; Lund, B; Kirkegaard, C; Wahren, J

    1980-01-01

    The sequential deiodination of thyroxine (T4) gives rise to several iodothyronine analogs including 3,3'-diiodothyronine (3,3'-T2) and 3',5'-diiodothyronine (3',5'-T2). In vitro animal studies suggest that the liver and the kidneys are the main sites of both formation and degradation of 3,3'-T2 and 3',5'-T2. To determine the metabolism of 3,3'-T2 and 3',5'-T2 in human liver and kidneys plasma samples were obtained from (a) a brachial artery and a hepatic vein in 20 normal subjects, and from (b) a femoral artery and a renal vein in 11 normal subjects. Further, the hepatic plasma flow (a) and the renal plasma flow (b) were determined. Both plasma 3,3'-T2 and 3',5'-T2 levels were reduced in the hepatic venous blood as compared to arterial values (1.09 +/- 0.40 vs. 1.75 +/- 0.74 ng/dl (P < 0.02)) (mean +/- 1 SD). This resulted in a hepatic extraction of both, 3,3'-T2 and 3',5'-T2, which averaged 8.2 and 5.2 microgram/d, respectively. Plasma 3,3'-T2 as well as 3'5'-T2 levels were higher in the renal vein as compared to arterial values, 1.49 +/- 0.42 vs. 1.39 +/- 0.45 ng/dl (P < 0.05) and 2.35 +/- 0.83 vs. 2.09 +/- 0.81 ng/dl (P < 0.05), respectively. This positive venoarterial difference implies a net production of 3,3'-T2 and 3',5'-T2 in the kidneys of 1.2 and 3.0 microgram/d, respectively. It is concluded that the liver is an important site of 3,3'-T2 and 3',5'-T2 extraction in normal man. In contrast, the renal production of 3,3'-T2 as well as 3'5'-T2 exceeds the degradation and urinary excretion. PMID:6776146

  15. [99mTc-octreotide receptor scintigraphy in NCI-H446 small cell lung cancer nude mice model].

    PubMed

    Li, Chao; Zuo, Shuyao; Wang, Xufu; Liu, Xinfeng; Wang, Guoming; Wu, Fengyu

    2015-01-01

    For highly aggressive small cell lung cancer (SCLC), early diagnosis is important for its prognosis, but the current inspection methods are more limited, with poor specificity of the traditional imaging methods, and the high cost of PET/CT, difficult to popularization and application. SCLC is kind of neuroendocrine tumors, high expression of somatostatin receptors, which is the cornerstone of its early molecular imaging diagnosis. The aim of this study is to observe the biodistribution and metabolism of 99mTc-octreotide in normal and the human SCLC bearing nude mice. Dynamic and static scintigraphy at 0.5 h, 2 h, 3 h, 4 h were performed in both normal and tumor bearing nude mice after intravenous injection of 99mTc-octreotide. The technique of drawing region of interest (ROI) was used to obtain the averaged pixel counts and the activity-time (A-T) curve of brain, heart, lung, liver, kidney, tumor, respectively. ① The biodistribution study in normal nude mice showed highest uptake in kidney and liver, lower in lung and heart, lowest in brain. Most 99mTc-octreotide was excreted via kidney. ② All tumors were displayed clearly at 3 h postinjection of 99mTc-octreotide. The averaged T/N ratio at 0.5 h, 2 h, 3 h, 4 h postinjection of 99mTc-octreotide was 1.163 ± 0.03, 2.08 ± 0.12, 3.03 ± 0.23, 2.689 ± 0.31, respectively (F=51.69, P<0.000,1). The radioactivity of tumor was lower than liver, and similar with the lung. The curve of tumor showed a radioactivity peak at 2 min-3 min postinjection. 99mTc-octreotide receptor imaging on nude mice bearing SCLC shares high positive rate, especially at 3 h postinjection.

  16. Urea and impairment of the Gut-Kidney axis in Chronic Kidney Disease.

    PubMed

    Di Iorio, Biagio Raffaele; Marzocco, Stefania; Nardone, Luca; Sirico, Marilisa; De Simone, Emanuele; Di Natale, Gabriella; Di Micco, Lucia

    2017-12-05

    Gut microbiota can be considered a real organ coordinating health and wellness of our body. It is made of more than 100 trillions of microorganisms, thus about 3 times higher than the number of human body cells and more than 150 times than human genes containing 1000 different microbe species. It has been described a symbiotic relationship between gut and kidney, confirmed by several observations. This is a bi-directional relation with a mutual influence, even when kidney disease occurs, and consequent alterations of intestinal microbiota and production of uremic toxins, that in turn worsens kidney disease and its progression. Our review analyzes the components of gut-kidney axis and relative clinical consequences. Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.

  17. Cumulative and current exposure to potentially nephrotoxic antiretrovirals and development of chronic kidney disease in HIV-positive individuals with a normal baseline estimated glomerular filtration rate: a prospective international cohort study.

    PubMed

    Mocroft, Amanda; Lundgren, Jens D; Ross, Michael; Fux, Christoph A; Reiss, Peter; Moranne, Olivier; Morlat, Philippe; Monforte, Antonella d'Arminio; Kirk, Ole; Ryom, Lene

    2016-01-01

    Whether or not the association between some antiretrovirals used in HIV infection and chronic kidney disease is cumulative is a controversial topic, especially in patients with initially normal renal function. In this study, we aimed to investigate the association between duration of exposure to antiretrovirals and the development of chronic kidney disease in people with initially normal renal function, as measured by estimated glomerular filtration rate (eGFR). In this prospective international cohort study, HIV-positive adult participants (aged ≥16 years) from the D:A:D study (based in Europe, the USA, and Australia) with first eGFR greater than 90 mL/min per 1·73 m(2) were followed from baseline (first eGFR measurement after Jan 1, 2004) until the occurrence of one of the following: chronic kidney disease; last eGFR measurement; Feb 1, 2014; or final visit plus 6 months (whichever occurred first). Chronic kidney disease was defined as confirmed (>3 months apart) eGFR lower than 60 mL/min per 1·73 m(2). The primary outcome was the occurrence of chronic kidney disease. Poisson regression was used to estimate the incidence rate of chronic kidney disease associated with cumulative exposure to tenofovir disoproxil fumarate, ritonavir-boosted atazanavir, ritonavir-boosted lopinavir, other ritonavir-boosted protease inhibitors, or abacavir. Between Jan 1, 2004, and July 26, 2013, 23,905 eligible individuals from the D:A:D study were included. Participants had a median baseline eGFR of 110 mL/min per 1·73 m(2) (IQR 100-125), a median age of 39 years (33-45), and median CD4 cell count of 441 cells per mm(3) (294-628). During a median follow-up of 7·2 years (IQR 5·1-8·9), 285 (1%) of 23,905 people developed chronic kidney disease (incidence 1·76 per 1000 person-years of follow-up [95% CI 1·56-1·97]). After adjustment, we recorded a significant increase in chronic kidney disease associated with each additional year of exposure to tenofovir disoproxil fumarate (adjusted incidence rate ratio 1·14 [95% CI 1·10-1·19], p<0·0001), ritonavir-boosted atazanavir (1·20 [1·13-1·26], p<0·0001), and ritonavir-boosted lopinavir (1·11 [1·06-1·16], p<0·0001), but not other ritonavir-boosted protease inhibitors or abacavir. In people with normal renal function, the annual incidence of chronic kidney disease increased for up to 6 years of exposure to tenofovir disoproxil fumarate, ritonavir-boosted atazanavir, or ritonavir-boosted lopinavir therapy. Although the absolute number of new cases of chronic kidney disease was modest, treatment with these antiretrovirals might result in an increasing and cumulative risk of chronic kidney disease. Patients on potentially nephrotoxic antiretrovirals or at high risk of chronic kidney disease should be closely monitored. The Highly Active Antiretroviral Therapy Oversight Committee. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. SU-F-T-395: Evaluation of Best Dosimetry Achievable with VMAT and IMRT Treatment Techniques Targeting Borderline Resectable Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpool, K; Schnell, E; Herman, T

    Purpose: To determine from retrospective study the most appropriate technique for targeting small borderline operable pancreatic cancer surrounding blood vessels by evaluating the dosimetry and normal tissue sparing achievable using Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT). Methods: Treatment plans from ten patients who have undergone treatment with a prescribed dose of 4950 cGy, at 275 cGy per fraction, were analyzed. All plans were replanned using Eclipse TPS (Varian Medical Systems, Palo Alto, CA) with complementary VMAT or IMRT techniques to obtain paired data sets for comparison. The coverage to at least 95% of the plannedmore » target volume (PTV) was normalized to receive 100% of the prescription dose. The normal tissue constraints followed the quantitative analysis of normal tissue effects in the clinic (QUANTEC) guidelines and the organs at risks (OARs) were liver, kidneys, spinal cord and bowel. The plan evaluation was based on conformity index (CI), homogeneity index (HI), uniformity index (UI), DVH parameters, and student’s-t statistics (2 tails). Results: The VMAT technique delivered less maximum dose to the right kidney, left kidney, total kidney, liver, spinal cord, and bowel by 9.3%, 5.9%, 6.7%, 3.9%, 15.1%, 3.9%, and 4.3%, respectively. The averaged V15 for the total kidney was 10.21% for IMRT and 7.29% for VMAT. The averaged V20 for the bowel was 19.89% for IMRT and 14.06% for VMAT. On average, the CI for IMRT was 1.20 and 1.16 for VMAT (p = 0.20). The HI was 0.08 for both techniques (p = 0.91) and UI was 1.05 and 1.06 for IMRT and VMAT respectively (p = 0.59). Conclusion: Both techniques achieve adequate PTV coverage. Although VMAT techniques show better normal tissue sparing from excessive dose, no significant differences were observed. Slight discrepancies may rise from different versions of calculation algorithms.« less

  19. Disruption of IFT Complex A Causes Cystic Kidneys without Mitotic Spindle Misorientation

    PubMed Central

    Jonassen, Julie A.; SanAgustin, Jovenal; Baker, Stephen P.

    2012-01-01

    Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre–driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression. PMID:22282595

  20. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  1. The gut-kidney axis in chronic renal failure: A new potential target for therapy.

    PubMed

    Khoury, Tawfik; Tzukert, Keren; Abel, Roy; Abu Rmeileh, Ayman; Levi, Ronen; Ilan, Yaron

    2017-07-01

    Evidence is accumulating to consider the gut microbiome as a central player in the gut-kidney axis. Microbiome products, such as advanced glycation end products, phenols, and indoles, are absorbed into the circulation but are cleared by normal-functioning kidneys. These products then become toxic and contribute to the uremic load and to the progression of chronic kidney failure. In this review, we discuss the gut-kidney interaction under the state of chronic kidney failure as well as the potential mechanisms by which a change in the gut flora (termed gut dysbiosis) in chronic kidney disease (CKD) exacerbates uremia and leads to further progression of CKD and inflammation. Finally, the potential therapeutic interventions to target the gut microbiome in CKD are discussed. © 2016 International Society for Hemodialysis.

  2. Role of AMP-activated protein kinase in kidney tubular transport, metabolism, and disease.

    PubMed

    Rajani, Roshan; Pastor-Soler, Nuria M; Hallows, Kenneth R

    2017-09-01

    AMP-activated protein kinase (AMPK) is a metabolic sensor that regulates cellular energy balance, transport, growth, inflammation, and survival functions. This review explores recent work in defining the effects of AMPK on various renal tubular epithelial ion transport proteins as well as its role in kidney injury and repair in normal and disease states. Recently, several groups have uncovered additional functions of AMPK in the regulation of kidney and transport proteins. These new studies have focused on the role of AMPK in the kidney in the setting of various diseases such as diabetes, which include evaluation of the effects of the hyperglycemic state on podocyte and tubular cell function. Other recent studies have investigated how reduced kidney mass, polycystic kidney disease (PKD), and fibrosis affect AMPK activation status. A general theme of several conditions that lead to chronic kidney disease (CKD) is that AMPK activity is abnormally suppressed relative to that in normal kidneys. Thus, the idea that AMPK activation may be a therapeutic strategy to slow down the progression of CKD has emerged. In addition to drugs such as metformin and 5-aminoimidazole-4-carboxamide ribonucleotide that are classically used as AMPK activators, recent studies have identified the therapeutic potential of other compounds that function at least partly as AMPK activators, such as salicylates, statins, berberine, and resveratrol, in preventing the progression of CKD. AMPK in the kidney plays a unique role at the crossroads of energy metabolism, ion and water transport, inflammation, and stress. Its potential role in modulating recovery from vs. progression of acute and chronic kidney injury has been the topic of recent research findings. The continued study of AMPK in kidney physiology and disease has improved our understanding of these physiological and pathological processes and offers great hope for therapeutic avenues for the increasing population at risk to develop kidney failure.

  3. FGF23 Neutralizing Antibody Ameliorates Hypophosphatemia and Impaired FGF Receptor Signaling in Kidneys of HMWFGF2 Transgenic Mice.

    PubMed

    Du, E; Xiao, L; Hurley, M M

    2017-03-01

    High molecular weight FGF2 transgenic mice (HMWTg) phenocopy the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with phosphate wasting and abnormal fibroblast growth factor (FGF23), fibroblast growth factor receptor (FGFR), Klotho and mitogen activated protein kinases (MAPK) signaling in kidney. In this study, we assessed whether short-term (24 h) in vivo administration of FGF23 neutralizing antibody (FGF23Ab) could rescue hypophosphatemia and impaired FGFR signaling in kidneys of HMWTg male mice. Bone mineral density and bone mineral content in 1-month-old HMWTg mice were significantly reduced compared with Control/VectorTg mice. Serum FGF23 was significantly increased in HMWTg compared with VectorTg. Serum phosphate was significantly reduced in HMWTg and was rescued by FGF23Ab. Serum parathyroid hormone (PTH) was significantly increased in HMWTg but was not reduced by FGF23Ab. 1, 25(OH) 2 D was inappropriately normal in serum of HMWTg and was significantly increased in both Vector and HMWTg by FGF23Ab. Analysis of HMWTg kidneys revealed significantly increased mRNA expression of the FGF23 co-receptor Klotho, transcription factor mRNAs for early growth response-1 transcription factor (Egr-1), and c-fos were all significantly decreased by FGF23Ab. A significant reduction in the phosphate transporter Npt2a mRNA was also observed in HMWTg kidneys, which was increased by FGF23Ab. FGF23Ab reduced p-FGFR1, p-FGFR3, KLOTHO, p-ERK1/2, C-FOS, and increased NPT2A protein in HMWTg kidneys. We conclude that FGF23 blockade rescued hypophosphatemia by regulating FGF23/FGFR downstream signaling in HMWTg kidneys. Furthermore, HMWFGF2 isoforms regulate PTH expression independent of FGF23/FGFR signaling. J. Cell. Physiol. 232: 610-616, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. β-Arrestin-1 deficiency ameliorates renal interstitial fibrosis by blocking Wnt1/β-catenin signaling in mice.

    PubMed

    Xu, Huiyan; Li, Quanxin; Liu, Jiang; Zhu, Jiaqing; Li, Liang; Wang, Ziying; Zhang, Yan; Sun, Yu; Sun, Jinpeng; Wang, Rong; Yi, Fan

    2018-01-01

    Despite substantial progress being made in understanding the mechanisms contributing to the pathogenesis of renal fibrosis, there are only a few therapies available to treat or prevent renal fibrosis in clinical use today. Therefore, identifying the key cellular and molecular mediators involved in the pathogenesis of renal fibrosis will provide new therapeutic strategy for treating patients with chronic kidney disease (CKD). β-Arrestin-1, a member of β-arrestin family, not only is a negative adaptor of G protein-coupled receptors (GPCRs), but also acts as a scaffold protein and regulates a diverse array of cellular functions independent of GPCR activation. In this study, we identified for the first time that β-arrestin-1 was upregulated in the kidney from mice with unilateral ureteral obstruction nephropathy as well as in the paraffin-embedded sections of human kidneys from the patients with diabetic nephropathy, polycystic kidney, or uronephrosis, which normally causes renal fibrosis. Deficiency of β-arrestin-1 in mice significantly alleviated renal fibrosis by the regulation of inflammatory responses, kidney fibroblast activation, and epithelial-mesenchymal transition (EMT) in both in vivo and in vitro studies. Furthermore, we found that among the major isoforms of Wnts, Wnt1 was regulated by β-arrestin-1 and gene silencing of Wnt1 inhibited the activation of β-catenin and suppressed β-arrestin-1-mediated renal fibrosis. Collectively, our results indicate that β-arrestin-1 is one of the critical components of signal transduction pathways in the development of renal fibrosis. Modulation of these pathways may be an innovative therapeutic strategy for treating patients with renal fibrosis. β-Arrestin-1 was upregulated in the kidney from mice with UUO nephropathy. β-Arrestin-1 regulated kidney fibroblast activation and epithelial-mesenchymal transition. β-Arrestin-1 exacerbated renal fibrosis via mediating Wnt1/β-catenin signaling.

  5. Cytokine mediated tissue fibrosis☆

    PubMed Central

    Borthwick, Lee A.; Wynn, Thomas A.; Fisher, Andrew J.

    2013-01-01

    Acute inflammation is a recognised part of normal wound healing. However, when inflammation fails to resolve and a chronic inflammatory response is established this process can become dysregulated resulting in pathological wound repair, accumulation of permanent fibrotic scar tissue at the site of injury and the failure to return the tissue to normal function. Fibrosis can affect any organ including the lung, skin, heart, kidney and liver and it is estimated that 45% of deaths in the western world can now be attributed to diseases where fibrosis plays a major aetiological role. In this review we examine the evidence that cytokines play a vital role in the acute and chronic inflammatory responses that drive fibrosis in injured tissues. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. PMID:23046809

  6. Type 4 renal tubular acidosis in a kidney transplant recipient.

    PubMed

    Kulkarni, Manjunath

    2016-02-01

    We report a case of a 66-year-old diabetic patient who presented with muscle weakness 2 weeks after kidney transplantation. Her immunosuppressive regimen included tacrolimus, mycophenolate mofetil, and steroids. She was found to have hyperkalemia and normal anion gap metabolic acidosis. Tacrolimus levels were in therapeutic range. All other drugs such as beta blockers and trimethoprim - sulfamethoxazole were stopped. She did not respond to routine antikalemic measures. Further evaluation revealed type 4 renal tubular acidosis. Serum potassium levels returned to normal after starting sodium bicarbonate and fludrocortisone therapy. Though hyperkalemia is common in kidney transplant recipients, determining exact cause can guide specific treatment. Copyright © 2016 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  7. Plasma Potassium Determines NCC Abundance in Adult Kidney-Specific γENaC Knockout.

    PubMed

    Boscardin, Emilie; Perrier, Romain; Sergi, Chloé; Maillard, Marc P; Loffing, Johannes; Loffing-Cueni, Dominique; Koesters, Robert; Rossier, Bernard C; Hummler, Edith

    2018-03-01

    The amiloride-sensitive epithelial sodium channel (ENaC) and the thiazide-sensitive sodium chloride cotransporter (NCC) are key regulators of sodium and potassium and colocalize in the late distal convoluted tubule of the kidney. Loss of the α ENaC subunit leads to a perinatal lethal phenotype characterized by sodium loss and hyperkalemia resembling the human syndrome pseudohypoaldosteronism type 1 (PHA-I). In adulthood, inducible nephron-specific deletion of α ENaC in mice mimics the lethal phenotype observed in neonates, and as in humans, this phenotype is prevented by a high sodium (HNa + )/low potassium (LK + ) rescue diet. Rescue reflects activation of NCC, which is suppressed at baseline by elevated plasma potassium concentration. In this study, we investigated the role of the γ ENaC subunit in the PHA-I phenotype. Nephron-specific γ ENaC knockout mice also presented with salt-wasting syndrome and severe hyperkalemia. Unlike mice lacking α ENaC or β ΕΝaC, an HNa + /LK + diet did not normalize plasma potassium (K + ) concentration or increase NCC activation. However, when K + was eliminated from the diet at the time that γ ENaC was deleted, plasma K + concentration and NCC activity remained normal, and progressive weight loss was prevented. Loss of the late distal convoluted tubule, as well as overall reduced β ENaC subunit expression, may be responsible for the more severe hyperkalemia. We conclude that plasma K + concentration becomes the determining and limiting factor in regulating NCC activity, regardless of Na + balance in γ ENaC-deficient mice. Copyright © 2018 by the American Society of Nephrology.

  8. A Review of the Diagnosis and Treatment of Ochratoxin A Inhalational Exposure Associated with Human Illness and Kidney Disease including Focal Segmental Glomerulosclerosis

    PubMed Central

    Hope, Janette H.; Hope, Bradley E.

    2012-01-01

    Ochratoxin A (OTA) exposure via ingestion and inhalation has been described in the literature to cause kidney disease in both animals and humans. This paper reviews Ochratoxin A and its relationship to human health and kidney disease with a focus on a possible association with focal segmental glomerulosclerosis (FSGS) in humans. Prevention and treatment strategies for OTA-induced illness are also discussed, including cholestyramine, a bile-acid-binding resin used as a sequestrant to reduce the enterohepatic recirculation of OTA. PMID:22253638

  9. Molecular evidence of simian virus 40 infections in children

    NASA Technical Reports Server (NTRS)

    Butel, J. S.; Arrington, A. S.; Wong, C.; Lednicky, J. A.; Finegold, M. J.

    1999-01-01

    Recent studies have detected simian virus 40 (SV40) DNA in certain human tumors and normal tissues. The significance of human infections by SV40, which was first discovered as a contaminant of poliovirus vaccines used between 1955 and 1963, remains unknown. The occurrence of SV40 infections in unselected hospitalized children was evaluated. Polymerase chain reaction and DNA sequence analyses were done on archival tissue specimens from patients positive for SV40 neutralizing antibody. SV40 DNA was identified in samples from 4 of 20 children (1 Wilms' tumor, 3 transplanted kidney samples). Sequence variation among SV40 regulatory regions ruled out laboratory contamination of specimens. This study shows the presence of SV40 infections in pediatric patients born after 1982.

  10. Effects of vasopressin on the isolated perfused human collecting tubule.

    PubMed

    Yanagawa, N; Trizna, W; Bar-Khayim, Y; Fine, L G

    1981-05-01

    Cortical collecting tubules (CCT) were dissected from the surviving normal tissue of human kidneys removed at operation for either carcinoma or calculus. These CCT's were perfused in vitro shortly after the nephrectomy was performed. Transtubular potential differences in different tubules varied from +3.2 to -2.0 mV and were reduced towards zero by lowering the temperature or by adding ouabain to the bath. In the absence of vasopressin, tubules were essentially impermeable to water with extremely low net water fluxes even in the presence of a transtubular osmotic gradient. Addition of vasopressin to the bath caused the transtubular osmotic water permeability coefficient to increase to values of 125, 175, and 155 X 10(-4) cm/sec in three tubules thus studied. These results demonstrate close similarities between the human CCT and the more extensively studied rabbit CCT.

  11. Transport and metabolism of sarcosine in hypersarcosinemic and normal phenotypes

    PubMed Central

    Glorieux, Francis H.; Scriver, Charles R.; Delvin, Edgard; Mohyuddin, Fazl

    1971-01-01

    An adolescent male proband with hypersarcosinemia was discovered incidentally in a French-Canadian family; no specific disease was associated with the trait. The hypersarcosinemia is not diminished by dietary folic acid even in pharmacologic doses (30 mg/day). The normal absence of sarcosine dehydrogenase in cultured human skin fibroblasts and in leukocytes was confirmed, thus eliminating these tissues as useful sources for further investigation of mutant sarcosinemic phenotypes and genotypes. The response in plasma of sarcosine and glycine, after sarcosine loading, distinguished the normal subject from the subjects who were presumably homozygous and heterozygous for the hypersarcosinemia allele. Sarcosine clearance from plasma was delayed greatly (t½, 6.1 hr) in the presumed homozygote and slightly (t½, 2.2 hr) in the presumed heterozygote, while plasma glycine remained constant in the former and rose in the latter. Normal subjects clear sarcosine from plasma rapidly (t½, 1.6 hr) while their plasma glycine trend is downward. The phenotypic responses suggest that hypersarcosinemia is an autosomal recessive trait in this pedigree. Renal tubular transport of sarcosine was normal in the proband even though he presumably lacked the sarcosine oxidation which should normally occur in kidney. Sarcosine catabolism is thus not important for its own renal uptake. Sarcosine interacts with proline and glycine during its absorption in vivo. Studies in vitro in rat kidney showed that sarcosine transport is mediated, saturable, and energy dependent. Sarcosine has no apparent transport system of its own; it uses the low Km transport systems for L-proline and glycine to a minor extent and a high Km system shared by these substances for the major uptake at concentrations encountered in hypersarcosinemia. Intracellular sarcosine at high concentration will exchange with glycine on one of these systems, which may explain a paradoxical improvement in renal transport of glycine after sarcosine loading in the hypersarcosinemic proband. PMID:5096515

  12. 78 FR 43218 - Notice of Kidney Interagency Coordinating Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Notice of Kidney Interagency Coordinating Committee Meeting SUMMARY: The Kidney Interagency Coordinating Committee (KICC) will hold a meeting on September 27, 2013, about interagency collaboration to improve outcomes in Chronic Kidney...

  13. High fructose diet feeding accelerates diabetic nephropathy in Spontaneously Diabetic Torii (SDT) rats.

    PubMed

    Toyoda, Kaoru; Suzuki, Yusuke; Muta, Kyotaka; Masuyama, Taku; Kakimoto, Kochi; Kobayashi, Akio; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Diabetic nephropathy (DN) is one of the complications of diabetes and is now the most common cause of end-stage renal disease. Fructose is a simple carbohydrate that is present in fruits and honey and is used as a sweetener because of its sweet taste. Fructose has been reported to have the potential to progress diabetes and DN in humans even though fructose itself does not increase postprandial plasma glucose levels. In this study, we investigated the effects of high fructose intake on the kidney of the Spontaneously Diabetic Torii (SDT) rats which have renal lesions similar to those in DN patients and compared these with the effects in normal SD rats. This study revealed that a 4-week feeding of the high fructose diet increased urinary excretion of kidney injury makers for tubular injury and accelerated mainly renal tubular and interstitial lesions in the SDT rats but not in normal rats. The progression of the nephropathy in the SDT rats was considered to be related to increased internal uric acid and blood glucose levels due to the high fructose intake. In conclusion, high fructose intake exaggerated the renal lesions in the SDT rats probably due to effects on the tubules and interstitium through metabolic implications for uric acid and glucose.

  14. Abnormal Neurocirculatory Control During Exercise in Humans with Chronic Renal Failure

    PubMed Central

    Park, Jeanie; Middlekauff, Holly R.

    2014-01-01

    Abnormal neurocirculatory control during exercise is one important mechanism leading to exercise intolerance in patients with both end-stage renal disease (ESRD) and earlier stages of chronic kidney disease (CKD). This review will provide an overview of mechanisms underlying abnormal neurocirculatory and hemodynamic responses to exercise in patients with kidney disease. Recent studies have shown that ESRD and CKD patients have an exaggerated increase in blood pressure (BP) during both isometric and rhythmic exercise. Subsequent studies examining the role of the exercise pressor reflex in the augmented pressor response revealed that muscle sympathetic nerve activity (MSNA) was not augmented during exercise in these patients, and metaboreflex-mediated increases in MSNA were blunted, while mechanoreflex-mediated increases were preserved under basal conditions. However, normalizing the augmented BP response during exercise via infusion of nitroprusside (NTP), and thereby equalizing baroreflex-mediated suppression of MSNA, an important modulator of the final hemodynamic response to exercise, revealed that CKD patients had an exaggerated increase in MSNA during isometric and rhythmic exercise. In addition, mechanoreflex-mediated control was augmented, and metaboreceptor blunting was no longer apparent in CKD patients with baroreflex normalization. Factors leading to mechanoreceptor sensitization, and other mechanisms underlying the exaggerated exercise pressor response, such as impaired functional sympatholysis, should be investigated in future studies. PMID:25458430

  15. Clinical utility of kallikrein-related peptidases (KLK) in urogenital malignancies.

    PubMed

    Dorn, J; Bayani, J; Yousef, G M; Yang, F; Magdolen, V; Kiechle, M; Diamandis, E P; Schmitt, M

    2013-09-01

    Kallikrein-related peptidases (KLK), which represent a major tissue-associated proteolytic system, stand for a rich source of biomarkers that may allow molecular classification, early diagnosis and prognosis of human malignancies as well as prediction of response or failure to cancer-directed drugs. International research points to an important role of certain KLKs in female and male urogenital tract malignancies, in addition to cancers of the lung, brain, skin, head and neck, and the gastrointestinal tract. Regarding the female/male urogenital tract, remarkably, all of the KLKs are expressed in the normal prostate, testis, and kidney whereas the uterus, the ovary, and the urinary bladder are expressing a limited number of KLKs only. Most of the information regarding KLK expression in tumour-affected organs is available for ovarian cancer; all of the 12 KLKs tested so far were found to be elevated in the malignant state, depicting them as valuable biomarkers to distinguish between the normal and the cancerous phenotype. In contrast, for kidney cancer, a series of KLKs was found to be downregulated, while other KLKs were not expressed. Evidently, depending on the type of cancer or cancer stage, individual KLKs may show characteristics of a Janus-faced behaviour, by either expanding or inhibiting cancer progression and metastasis.

  16. Nephropathy associated with sickle cell anemia: an autologous immune complex nephritis. I. Studies on nature of glomerular-bound antibody and antigen identification in a patient with sickle cell disease and immune deposit glomerulonephritis.

    PubMed

    Strauss, J; Pardo, V; Koss, M N; Griswold, W; McIntosh, R M

    1975-03-01

    The nature of the glomerular-bound antibody and the putative antigen was investigated in one of the patients with sickle cell disease and immune deposit membranoproliferative glomerulonephritis by immunohistologic and glomerular antibody elution. Renal proximal tubular epithelial antigen was localized in association with immunoglobulins G (IgG), M (IgM), Clq fraction of the first component of complement (Clq) and the third component of complement (C3) in a granular pattern along the glomerular basement membrane of the patient's kidney. IgG and IgM were eluted from glomeruli. These immunoglobulins fixed to the proximal tubules of normal human kidney by direct immunofluorescence. This localization was abolished by absorption of the eluted immunoglobulins with renal tubular epithelial (RTE) antigen. The IgG eluted from the glomeruli blocked the fixation of rabbit anti-RTE antigen to normal proximal tubular brush border. These studies suggest that the nephritis in this patient was due to deposition of complexes or RTE antigen and specific antibody. An autologous immune complex nephritis may develop in some patients with sickle cell anemia secondary to RTE antigen released possibly after renal ischemia or some other phenomenon causing renal tubular damage.

  17. Cryptic B cell response to renal transplantation.

    PubMed

    Lynch, R J; Silva, I A; Chen, B J; Punch, J D; Cascalho, M; Platt, J L

    2013-07-01

    Transplantation reliably evokes allo-specific B cell and T cell responses in mice. Yet, human recipients of kidney transplants with normal function usually exhibit little or no antibody specific for the transplant donor during the early weeks and months after transplantation. Indeed, the absence of antidonor antibodies is taken to reflect effective immunosuppressive therapy and to predict a favorable outcome. Whether the absence of donor-specific antibodies reflects absence of a B cell response to the donor, tolerance to the donor or immunity masked by binding of donor-specific antibodies to the graft is not known. To distinguish between these possibilities, we devised a novel ELISPOT, using cultured donor, recipient and third-party fibroblasts as targets. We enumerated donor-specific antibody-secreting cells in the blood of nine renal allograft recipients with normal kidney function before and after transplantation. Although none of the nine subjects had detectable donor-specific antibodies before or after transplantation, all exhibited increases in the frequency of donor-specific antibody-secreting cells eight weeks after transplantation. The responses were directed against the donor HLA-class I antigens. The increase in frequency of donor-specific antibody-secreting cells after renal transplantation indicates that B cells respond specifically to the transplant donor more often than previously thought. © 2013 The Authors. American Journal of Transplantation Published by Wiley Periodicals Inc.

  18. Microsomal and Cytosolic Scaling Factors in Dog and Human Kidney Cortex and Application for In Vitro-In Vivo Extrapolation of Renal Metabolic Clearance

    PubMed Central

    Scotcher, Daniel; Billington, Sarah; Brown, Jay; Jones, Christopher R.; Brown, Colin D. A.; Rostami-Hodjegan, Amin

    2017-01-01

    In vitro-in vivo extrapolation of drug metabolism data obtained in enriched preparations of subcellular fractions rely on robust estimates of physiologically relevant scaling factors for the prediction of clearance in vivo. The purpose of the current study was to measure the microsomal and cytosolic protein per gram of kidney (MPPGK and CPPGK) in dog and human kidney cortex using appropriate protein recovery marker and evaluate functional activity of human cortex microsomes. Cytochrome P450 (CYP) content and glucose-6-phosphatase (G6Pase) activity were used as microsomal protein markers, whereas glutathione-S-transferase activity was a cytosolic marker. Functional activity of human microsomal samples was assessed by measuring mycophenolic acid glucuronidation. MPPGK was 33.9 and 44.0 mg/g in dog kidney cortex, and 41.1 and 63.6 mg/g in dog liver (n = 17), using P450 content and G6Pase activity, respectively. No trends were noted between kidney, liver, and intestinal scalars from the same animals. Species differences were evident, as human MPPGK and CPPGK were 26.2 and 53.3 mg/g in kidney cortex (n = 38), respectively. MPPGK was 2-fold greater than the commonly used in vitro-in vivo extrapolation scalar; this difference was attributed mainly to tissue source (mixed kidney regions versus cortex). Robust human MPPGK and CPPGK scalars were measured for the first time. The work emphasized the importance of regional differences (cortex versus whole kidney–specific MPPGK, tissue weight, and blood flow) and a need to account for these to improve assessment of renal metabolic clearance and its extrapolation to in vivo. PMID:28270564

  19. Effects of a restricted fetal growth environment on human kidney morphology, cell apoptosis and gene expression.

    PubMed

    Wang, Yan-Ping; Chen, Xu; Zhang, Zhi-Kun; Cui, Hong-Yan; Wang, Peng; Wang, Yue

    2015-12-01

    Kidney development is key to the onset of hypertension and cardiovascular diseases in adults, and in the fetal stage will be impaired by a lack of nutrients in utero in animal models. However, few human studies have been performed. Kidney samples from fetuses in a fetal growth restriction (FGR) environment were collected and the morphological characteristics were observed. Potentially molecular mechanisms were explored by analyzing apoptosis and kidney-development related gene expression. The results indicated that no malformations were observed in the kidney samples of the FGR group, but the mean kidney weight and volume were significantly decreased. Moreover, the ratio of apoptotic cells and Bax-positive cells was increased and the ratio of Bcl-2-positive cells was decreased in the FGR group, indicating potential apoptosis induction under an in utero FGR environment. Finally, aberrant expression of renin and angiotensinogen indicated potential kidney functional abnormalities in the FGR group. Our study suggested increased apoptosis and decreased renin and angiotensinogen expression during human kidney development in an FGR environment. The current results will be helpful to further explore the molecular mechanism of FGR and facilitate future studies of hypertension and cardiovascular diseases and the establishment of preventive methods. © The Author(s) 2014.

  20. Purification of Recombinant Ebola Virus Glycoprotein and VP40 from a Human Cell Line

    DTIC Science & Technology

    2017-01-01

    from a human cell line. Plasmids coding for the expression of these proteins were transiently transfected into human embryonic kidney cells 293 and...protein expression. Expi293F cells were derived from the line of human embryonic kidney cells 293 (i.e., HEK293 cells), and they were grown in a

  1. Establishment of Donor Chimerism Using Allogeneic Bone Marrow with AMP Cell Co-infusion

    DTIC Science & Technology

    2016-09-01

    specific immunosuppression. Induction of tolerance to the CTA is the ideal solution. Combined mixed allogeneic chimerism induction and kidney ...transplantation has been shown to induce robust tolerance to the kidney allograft despite transient mixed chimerism in non-human primates and humans...solution. Mixed chimerism induction via hematopoietic cell transplantation (HCT) has been shown to facilitate tolerance induction to kidney allografts

  2. Serum creatinine levels are significantly influenced by renal size in the normal pediatric population.

    PubMed

    Di Zazzo, Giacomo; Stringini, Gilda; Matteucci, Maria Chiara; Muraca, Maurizio; Malena, Saverio; Emma, Francesco

    2011-01-01

    Clinical and experimental data have shown that differences in nephron endowment result in differences in renal mass and predisposition to chronic renal failure, hypertension, and proteinuria. We hypothesized that a significant proportion of the variance in GFR, as estimated by serum creatinine, is attributable to differences in renal size in normal children. A total of 1748 normal renal ultrasounds that were performed in children older than 6 months were reviewed. For each ultrasound, serum creatinine, serum blood urea nitrogen, and systolic and diastolic office BP were recorded. Renal size was evaluated as a function of renal length and thickness. All data were normalized for height, weight, age, and gender. When expressed as SD scores, a significant correlation was found between kidney size and serum creatinine (P < 0.0001) and between kidney size and serum blood urea nitrogen (P < 0.002). When dividing kidney size data per quintiles, a difference of 0.51 SD score in serum creatinine was observed between the lowest and highest quintile. No significant correlation was found with office BP measurements. These data show that, even in the normal pediatric population, differences in renal function are significantly explained by differences in renal mass. Methodologic limitations of this study are likely to underestimate this relationship.

  3. Therapeutic role of Cuminum cyminum on ethanol and thermally oxidized sunflower oil induced toxicity.

    PubMed

    Aruna, K; Rukkumani, R; Varma, P Suresh; Menon, Venugopal P

    2005-05-01

    Ethanol is one of the most widely used and abused drugs, increasing lipid levels in humans and experimental animals. Heating of oil rich in polyunsaturated fatty acids (PUFA) produces various lipid peroxidative end products that can aggravate the pathological changes produced by ethanol. In the present communication, the effect of Cuminum cyminum was investigated on alcohol and thermally oxidized oil induced hyperlipidaemia. The results showed increased activity of aspartate transaminase (AST), alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT) and increased levels of cholesterol, triglycerides and phospholipids in the plasma of rats given alcohol, thermally oxidized oil and alcohol+thermally oxidized oil when compared with the normal control group. The levels of tissue (liver and kidney) cholesterol and triglycerides were increased significantly in rats groups given alcohol, thermally oxidized oil and alcohol+thermally oxidized oil when compared with the normal control rats. The levels were decreased when cumin was given along with alcohol and thermally oxidized oil. The level of phospholipids decreased significantly in the liver and kidney of groups given alcohol, thermally oxidized oil and alcohol+thermally oridized oil when compared with the normal control rats. The level increased when cumin was administered along with alcohol and thermally oxidized oil. The activity of phospholipase A and C increased significantly in the liver of groups given alcohol, thermally oxidized oil and alcohol+thermally oxidized oil when compared with the normal control rats, whereas the activity was decreased with the cumin treatment. The results obtained indicate that cumin can decrease the lipid levels in alcohol and thermally oxidized oil induced hepatotoxicity. Copyright (c) 2005 John Wiley & Sons, Ltd.

  4. IMMUNOLOGIC AND PHYSIOLOGIC OBSERVATIONS IN BABOONS WITH LIFE-SUPPORTING GENETICALLY-ENGINEERED PIG KIDNEY GRAFTS

    PubMed Central

    Iwase, Hayato; Hara, Hidetaka; Ezzelarab, Mohamed; Li, Tao; Zhang, Zhongqiang; Gao, Bingsi; Liu, Hong; Long, Cassandra; Wang, Yi; Cassano, Amy; Klein, Edwin; Phelps, Carol; Ayares, David; Humar, Abhinav; Wijkstrom, Martin; Cooper, David KC

    2017-01-01

    Background Genetically-engineered pigs could provide a source of kidneys for clinical transplantation. The two longest kidney graft survivals reported to date have been 136 days and 310 days, but graft survival >30 days has been unusual until recently. Methods Donor pigs (n=4) were on an α1,3-galactosyltransferase gene-knockout (GTKO)/human complement-regulatory protein (CD46) background (GTKO/CD46). In addition, the pigs were transgenic for at least one human coagulation-regulatory protein. Two baboons received a kidney from a 6-gene pig (Group A) and two from a 3-gene pig (Group B). Immunosuppressive therapy was identical in all 4 cases, and consisted of anti-thymoglobulin (ATG) + anti-CD20mAb (induction) and anti-CD40mAb + rapamycin + corticosteroids (maintenance). Anti-TNF-α and anti-IL-6R mAbs were administered to reduce the inflammatory response. Baboons were followed by clinical/laboratory monitoring of immune/coagulation/inflammatory/physiological parameters. At biopsy or euthanasia, the grafts were examined by microscopy. Results The two Group A baboons remained healthy with normal renal function >7 and >8 months, respectively, but then developed infectious complications. However, no features of a consumptive coagulopathy, e.g., thrombocytopenia, reduction of fibrinogen, or of a protein-losing nephropathy were observed. There was no evidence of an elicited anti-pig antibody response, and histology of biopsies taken at approximately 4, 6, and 7 months and at necropsy showed no significant abnormalities. In contrast, both Group B baboons developed features of a consumptive coagulopathy and required euthanasia on day 12. Conclusions The combination of (i) a graft from a specific 6-gene genetically-modified pig, (ii) an effective immunosuppressive regimen, and (iii) anti-inflammatory therapy prevented immune injury, a protein-losing nephropathy, and coagulation dysfunction for >7 months. Although the number of experiments is very limited, our impression is that expression of human endothelial protein C receptor (+/− CD55) in the graft is important if coagulation dysregulation is to be avoided. PMID:28303661

  5. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts.

    PubMed

    Iwase, Hayato; Hara, Hidetaka; Ezzelarab, Mohamed; Li, Tao; Zhang, Zhongqiang; Gao, Bingsi; Liu, Hong; Long, Cassandra; Wang, Yi; Cassano, Amy; Klein, Edwin; Phelps, Carol; Ayares, David; Humar, Abhinav; Wijkstrom, Martin; Cooper, David K C

    2017-03-01

    Genetically engineered pigs could provide a source of kidneys for clinical transplantation. The two longest kidney graft survivals reported to date have been 136 and 310 days, but graft survival >30 days has been unusual until recently. Donor pigs (n=4) were on an α1,3-galactosyltransferase gene-knockout (GTKO)/human complement regulatory protein (CD46) background (GTKO/CD46). In addition, the pigs were transgenic for at least one human coagulation regulatory protein. Two baboons received a kidney from a six-gene pig (GroupA) and two from a three-gene pig (GroupB). Immunosuppressive therapy was identical in all four cases and consisted of anti-thymoglobulin (ATG)+anti-CD20mAb (induction) and anti-CD40mAb+rapamycin+corticosteroids (maintenance). Anti-TNF-α and anti-IL-6R mAbs were administered to reduce the inflammatory response. Baboons were followed by clinical/laboratory monitoring of immune/coagulation/inflammatory/physiological parameters. At biopsy or euthanasia, the grafts were examined by microscopy. The two GroupA baboons remained healthy with normal renal function >7 and >8 months, respectively, but then developed infectious complications. However, no features of a consumptive coagulopathy, eg, thrombocytopenia and reduction of fibrinogen, or of a protein-losing nephropathy were observed. There was no evidence of an elicited anti-pig antibody response, and histology of biopsies taken at approximately 4, 6, and 7 months and at necropsy showed no significant abnormalities. In contrast, both GroupB baboons developed features of a consumptive coagulopathy and required euthanasia on day 12. The combination of (i) a graft from a specific six-gene genetically modified pig, (ii) an effective immunosuppressive regimen, and (iii) anti-inflammatory therapy prevented immune injury, a protein-losing nephropathy, and coagulation dysfunction for >7 months. Although the number of experiments is very limited, our impression is that expression of human endothelial protein C receptor (±CD55) in the graft is important if coagulation dysregulation is to be avoided. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Cadmium (Cd(2+)) exposure differentially elicits both cell proliferation and cell death related responses in SK-RC-45.

    PubMed

    Sinha, Krishnendu; Pal, Pabitra Bikash; Sil, Parames C

    2014-03-01

    Cadmium (Cd(2+)) is a major nephrotoxic environmental pollutant, affecting mostly proximal convoluted tubule (PCT) cells of the mammalian kidney, while conditionally Cd(2+) could also elicit protective responses with great variety and variability in different systems. The present study was designed to evaluate the molecular mechanism of Cd(2+) toxicity on human PCT derived Renal Cell Carcinoma (RCC), SK-RC-45 and compare its responses with normal human PCT derived cell line, NKE. Exposure of SK-RC-45 cells with different concentrations of CdCl2 (e.g. 0, 10 and 20μM) in serum free medium for 24h generate considerable amount of ROS, accompanied with decreased cell viability and alternations in the cellular and nuclear morphologies, heat shock responses and GCLC mediated protective responses. Also phosphatidylserine externalization, augmentation in the level of caspase-3, PARP, BAD, Apaf1 and cleaved caspase-9 along with decreased expression of Bcl2 and release of cytochrome c confirmed that, Cd(2+) dose dependently induces solely intrinsic pathway of apoptosis in SK-RC-45, independent of JNK. Furthermore, the non-toxic concentration (10μM) of Cd(2+) induced nuclear translocation of Nrf2 and increased expression in the level of HO-1 enzyme suggesting that at the milder concentration, Cd(2+) induces protective signaling pathways. On the other hand, exposure of NKE to different concentrations of CdCl2 (e.g. 0, 10, 20, 30 and 50μM) under the same conditions elevate stronger heat shock and SOD2 mediated protective responses. In contrary to the RCC PCT, the normal PCT derived cell follows JNK dependent and extrinsic pathways of apoptosis. Cumulatively, these results suggest that Cd(2+) exposure dose dependently elicit both cell proliferative and cell death related responses in SK-RC-45 cells and is differentially regulated with respect to normal kidney epithelia derived NKE cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Rebmab200, a humanized monoclonal antibody targeting the sodium phosphate transporter NaPi2b displays strong immune mediated cytotoxicity against cancer: a novel reagent for targeted antibody therapy of cancer.

    PubMed

    Lopes dos Santos, Mariana; Yeda, Fernanda Perez; Tsuruta, Lilian Rumi; Horta, Bruno Brasil; Pimenta, Alécio A; Degaki, Theri Leica; Soares, Ibere C; Tuma, Maria Carolina; Okamoto, Oswaldo Keith; Alves, Venancio A F; Old, Lloyd J; Ritter, Gerd; Moro, Ana Maria

    2013-01-01

    NaPi2b, a sodium-dependent phosphate transporter, is highly expressed in ovarian carcinomas and is recognized by the murine monoclonal antibody MX35. The antibody had shown excellent targeting to ovarian cancer in several early phase clinical trials but being murine the antibody's full therapeutic potential could not be explored. To overcome this impediment we developed a humanized antibody version named Rebmab200, expressed in human PER.C6® cells and cloned by limiting dilution. In order to select a clone with high therapeutic potential clones were characterized using a series of physicochemical assays, flow cytometry, real-time surface plasmon resonance, glycosylation analyses, immunohistochemistry, antibody-dependent cell-mediated cytotoxicity, complement-dependent-cytotoxicity assays and quantitative PCR. Comparative analyses of Rebmab200 and MX35 monoclonal antibodies demonstrated that the two antibodies had similar specificity for NaPi2b by flow cytometry with a panel of 30 cell lines and maintained similar kinetic parameters. Robust and high producer cell clones potentially suitable for use in manufacturing were obtained. Rebmab200 antibodies were assessed by immunohistochemistry using a large panel of tissues including human carcinomas of ovarian, lung, kidney and breast origin. An assessment of its binding towards 33 normal human organs was performed as well. Rebmab200 showed selected strong reactivity with the tested tumor types but little or no reactivity with the normal tissues tested confirming its potential for targeted therapeutics strategies. The remarkable cytotoxicity shown by Rebmab200 in OVCAR-3 cells is a significant addition to the traits of stability and productivity displayed by the top clones of Rebmab200. Antibody-dependent cell-mediated toxicity functionality was confirmed in repeated assays using cancer cell lines derived from ovary, kidney and lung as targets. To explore use of this antibody in clinical trials, GMP production of Rebmab200 has been initiated. As the next step of development, Phase I clinical trials are now planned for translation of Rebmab200 into the clinic.

  8. Rebmab200, a Humanized Monoclonal Antibody Targeting the Sodium Phosphate Transporter NaPi2b Displays Strong Immune Mediated Cytotoxicity against Cancer: A Novel Reagent for Targeted Antibody Therapy of Cancer

    PubMed Central

    dos Santos, Mariana Lopes; Yeda, Fernanda Perez; Tsuruta, Lilian Rumi; Horta, Bruno Brasil; Pimenta, Alécio A.; Degaki, Theri Leica; Soares, Ibere C.; Tuma, Maria Carolina; Okamoto, Oswaldo Keith; Alves, Venancio A. F.; Ritter, Gerd; Moro, Ana Maria

    2013-01-01

    NaPi2b, a sodium-dependent phosphate transporter, is highly expressed in ovarian carcinomas and is recognized by the murine monoclonal antibody MX35. The antibody had shown excellent targeting to ovarian cancer in several early phase clinical trials but being murine the antibody's full therapeutic potential could not be explored. To overcome this impediment we developed a humanized antibody version named Rebmab200, expressed in human PER.C6® cells and cloned by limiting dilution. In order to select a clone with high therapeutic potential clones were characterized using a series of physicochemical assays, flow cytometry, real-time surface plasmon resonance, glycosylation analyses, immunohistochemistry, antibody-dependent cell-mediated cytotoxicity, complement-dependent-cytotoxicity assays and quantitative PCR. Comparative analyses of Rebmab200 and MX35 monoclonal antibodies demonstrated that the two antibodies had similar specificity for NaPi2b by flow cytometry with a panel of 30 cell lines and maintained similar kinetic parameters. Robust and high producer cell clones potentially suitable for use in manufacturing were obtained. Rebmab200 antibodies were assessed by immunohistochemistry using a large panel of tissues including human carcinomas of ovarian, lung, kidney and breast origin. An assessment of its binding towards 33 normal human organs was performed as well. Rebmab200 showed selected strong reactivity with the tested tumor types but little or no reactivity with the normal tissues tested confirming its potential for targeted therapeutics strategies. The remarkable cytotoxicity shown by Rebmab200 in OVCAR-3 cells is a significant addition to the traits of stability and productivity displayed by the top clones of Rebmab200. Antibody-dependent cell-mediated toxicity functionality was confirmed in repeated assays using cancer cell lines derived from ovary, kidney and lung as targets. To explore use of this antibody in clinical trials, GMP production of Rebmab200 has been initiated. As the next step of development, Phase I clinical trials are now planned for translation of Rebmab200 into the clinic. PMID:23936189

  9. Pathogen Specific, IRF3-Dependent Signaling and Innate Resistance to Human Kidney Infection

    PubMed Central

    Fischer, Hans; Lutay, Nataliya; Ragnarsdóttir, Bryndís; Yadav, Manisha; Jönsson, Klas; Urbano, Alexander; Al Hadad, Ahmed; Rämisch, Sebastian; Storm, Petter; Dobrindt, Ulrich; Salvador, Ellaine; Karpman, Diana; Jodal, Ulf; Svanborg, Catharina

    2010-01-01

    The mucosal immune system identifies and fights invading pathogens, while allowing non-pathogenic organisms to persist. Mechanisms of pathogen/non-pathogen discrimination are poorly understood, as is the contribution of human genetic variation in disease susceptibility. We describe here a new, IRF3-dependent signaling pathway that is critical for distinguishing pathogens from normal flora at the mucosal barrier. Following uropathogenic E. coli infection, Irf3−/− mice showed a pathogen-specific increase in acute mortality, bacterial burden, abscess formation and renal damage compared to wild type mice. TLR4 signaling was initiated after ceramide release from glycosphingolipid receptors, through TRAM, CREB, Fos and Jun phosphorylation and p38 MAPK-dependent mechanisms, resulting in nuclear translocation of IRF3 and activation of IRF3/IFNβ-dependent antibacterial effector mechanisms. This TLR4/IRF3 pathway of pathogen discrimination was activated by ceramide and by P-fimbriated E. coli, which use ceramide-anchored glycosphingolipid receptors. Relevance of this pathway for human disease was supported by polymorphic IRF3 promoter sequences, differing between children with severe, symptomatic kidney infection and children who were asymptomatic bacterial carriers. IRF3 promoter activity was reduced by the disease-associated genotype, consistent with the pathology in Irf3−/− mice. Host susceptibility to common infections like UTI may thus be strongly influenced by single gene modifications affecting the innate immune response. PMID:20886096

  10. Mechanisms of kidney repair by human mesenchymal stromal cells after ischemia: a comprehensive view using label-free MS(E).

    PubMed

    da Costa, Milene R; Pizzatti, Luciana; Lindoso, Rafael S; Sant'Anna, Julliana Ferreira; DuRocher, Barbara; Abdelhay, Eliana; Vieyra, Adalberto

    2014-06-01

    Acute kidney injury (AKI) is one of the more frequent and lethal pathological conditions seen in intensive care units. Currently available treatments are not totally effective but stem cell-based therapies are emerging as promising alternatives, especially the use of mesenchymal stromal cells (MSC), although the signaling pathways involved in their beneficial actions are not fully understood. The objective of this study was to identify signaling networks and key proteins involved in the repair of ischemia by MSC. Using an in vitro model of AKI to investigate paracrine interactions and label-free high definition 2D-NanoESI-MS(E) , differentially expressed proteins were identified in a human renal proximal tubule cell lineage (HK-2) exposed to human MSC (hMSC) after an ischemic insult. In silico analysis showed that hMSC stimulated antiapoptotic activity, normal ROS handling, energy production, cytoskeleton organization, protein synthesis, and cell proliferation. The proteomic data were validated by parallel experiments demonstrating reduced apoptosis in HK-2 cells and recovery of intracellular ATP levels. qRT-PCR for proteins implicated in the above processes revealed that hMSC exerted their effects by stimulating translation, not transcription. Western blotting of proteins associated with ROS and energy metabolism confirmed their higher abundance in HK-2 cells exposed to hMSC. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reviews of the environmental effects of pollutants: IV. Cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, A.S.; Huff, J.E.; Braunstein, H.M.

    This report is a comprehensive, multidisciplinary review of the health and environmental effects of cadmium and specific cadmium derivatives. More than 500 references are cited. The cadmium body burden in animals and humans results mainly from the diet. In the United States, the normal intake of cadmium for adult humans is estimated at about 50 ..mu..g per day. Tobacco smoke is a significant additional source of cadmium exposure. The kidneys and liver together contain about 50% of the total cadmium body burden. Acute cadmium poisoning is primarily an occupational problem, generally from inhalation of cadmium fumes or dusts. In themore » general population, incidents of acute poisoning by inhaled or ingested cadmium or its compounds are relatively rare. The kidney is the primary target organ for toxicity from prolonged low-level exposure to cadmium. No causal relationship has been established between cadmium exposure and human cancer, although a possible link between cadmium and prostate cancer has been indicated. Cadmium has been shown to be teratogenic in rats, hamsters, and mice, but no such effects have been proven in humans. Cadmium has been reported to increase the frequency of chromosomal aberrations in cultured Chinese hamster ovary cells and in human peripheral leukocytes. The major concern about environmental cadmium is the potential effects on the general population. There is no substantial evidence of hazard from current levels of cadmium in air, water, or food. However, because cadmium is a cumulative poison and because present intake provides a relatively small safety margin, there are adequate reasons for concern over possible future increases in background levels.« less

  12. First documented case of successful kidney transplantation from a donor with acute renal failure treated with dialysis.

    PubMed

    Bacak-Kocman, Iva; Peric, Mladen; Kastelan, Zeljko; Kes, Petar; Mesar, Ines; Basic-Jukic, Nikolina

    2013-10-01

    There is a widening gap between the needs and possibilities of kidney transplantation. In order to solve the problem of organ shortage, the selection criteria for kidney donors have been less stringent over the last years. Favorable outcome of renal transplantation from deceased donors with acute renal failure requiring dialysis may have an important role in expanding the pool of donors. We present the case of two renal transplantations from a polytraumatized 20-years old donor with acute renal failure requiring dialysis. One recipient established good diuresis from the first post-transplant day and did not require hemodialysis. The second recipient had delayed graft function and was treated with 8 hemodialysis sessions. The patient was discharged with good diuresis and normal serum creatinine. After two years of follow-up, both recipients have normal graft function. According to our experience, kidneys from deceased young donors with acute renal failure requiring dialysis may be transplanted, in order to decrease the number of patients on transplantation waiting lists.

  13. Glomerular disease augments kidney accumulation of synthetic anionic polymers.

    PubMed

    Liu, Gary W; Prossnitz, Alexander N; Eng, Diana G; Cheng, Yilong; Subrahmanyam, Nithya; Pippin, Jeffrey W; Lamm, Robert J; Ngambenjawong, Chayanon; Ghandehari, Hamidreza; Shankland, Stuart J; Pun, Suzie H

    2018-06-02

    Polymeric drug carriers can alter the pharmacokinetics of their drug cargoes, thereby improving drug therapeutic index and reducing side effects. Understanding and controlling polymer properties that drive tissue-specific accumulation is critical in engineering targeted drug delivery systems. For kidney disease applications, targeted drug delivery to renal cells that reside beyond the charge- and size-selective glomerular filtration barrier could have clinical potential. However, there are limited reports on polymer properties that might enhance kidney accumulation. Here, we studied the effects of molecular weight and charge on the in vivo kidney accumulation of polymers in health and disease. We synthesized a panel of well-defined polymers by atom transfer radical polymerization to answer several questions. First, the biodistribution of low molecular weight (23-27 kDa) polymers composed of various ratios of neutral:anionic monomers (1:0, 1:1, 1:4) in normal mice was determined. Then, highly anionic (1:4 monomer ratio) low molecular and high molecular weight (47 kDa) polymers were tested in both normal and experimental focal segmental glomerulosclerosis (FSGS) mice, a model that results in loss of glomerular filtration selectivity. Through these studies, we observed that kidney-specific polymer accumulation increases with anionic monomer content, but not molecular weight; experimental FSGS increases kidney accumulation of anionic polymers; and anionic polymers accumulate predominantly in proximal tubule cells, with some distribution in kidney glomeruli. These findings can be applied to the design of polymeric drug carriers to enhance or mitigate kidney accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Growth Disorders

    MedlinePlus

    ... take the missing hormone as a pill. Other Reasons Why Kids Might Not Grow Normally Hormones play ... but kids might not grow normally for other reasons, including: Chronic diseases. These include heart and kidney ...

  15. Peculiar Expression of CD3-Epsilon in Kidney of Ginbuna Crucian Carp.

    PubMed

    Miyazawa, Ryuichiro; Murata, Norifumi; Matsuura, Yuta; Shibasaki, Yasuhiro; Yabu, Takeshi; Nakanishi, Teruyuki

    2018-01-01

    TCR/CD3 complex is composed of the disulfide-linked TCR-αβ heterodimer that recognizes the antigen as a peptide presented by the MHC, and non-covalently paired CD3γε- and δε-chains together with disulfide-linked ζ-chain homodimers. The CD3 chains play key roles in T cell development and T cell activation. In the present study, we found nor or extremely lower expression of CD3ε in head- and trunk-kidney lymphocytes by flow cytometric analysis, while CD3ε was expressed at the normal level in lymphocytes from thymus, spleen, intestine, gill, and peripheral blood. Furthermore, CD4-1 + and CD8α + T cells from kidney express Zap-70, but not CD3ε, while the T cells from other tissues express both Zap-70 and CD3ε, although expression of CD3ε was low. Quantitative analysis of mRNA expression revealed that the expression level of T cell-related genes including tcrb, cd3 ε, zap-70 , and lck in CD4-1 + and CD8α + T cells was not different between kidney and spleen. Western blot analysis showed that CD3ε band was detected in the cell lysates of spleen but not kidney. To be interested, CD3ε-positive cells greatly increased after 24 h in in vitro culture of kidney leukocytes. Furthermore, expression of CD3ε in both transferred kidney and spleen leukocytes was not detected or very low in kidney, while both leukocytes expressed CD3ε at normal level in spleen when kidney and spleen leukocytes were injected into the isogeneic recipient. Lower expression of CD3ε was also found in kidney T lymphocytes of goldfish and carp. These results indicate that kidney lymphocytes express no or lower level of CD3ε protein in the kidney, although the mRNA of the gene was expressed. Here, we discuss this phenomenon from the point of function of kidney as reservoir for T lymphocytes in teleost, which lacks lymph node and bone marrow.

  16. Ultrasonographic anatomy of the healthy southern tigrina ( Leopardus guttulus) abdomen: comparison with domestic cat references.

    PubMed

    Müller, Thiago R; Marcelino, Raquel S; de Souza, Livia P; Teixeira, Carlos R; Mamprim, Maria J

    2017-02-01

    Objectives The aim of the study was to describe the normal abdominal echoanatomy of the tigrina and to compare it with the abdominal echoanatomy of the domestic cat. Reference intervals for the normal abdominal ultrasonographic anatomy of individual species are important for accurate diagnoses and interpretation of routine health examinations. The hypothesis was that the echoanatomy of the tigrina was similar to that of the domestic cat. Methods Eighteen clinically healthy tigrina were selected for abdominal ultrasound examination, in order to obtain normal parameters of the bladder, spleen, adrenal gland, kidney, gastrointestinal tract, liver and gall bladder, and Doppler parameters of liver and kidney vessels. Results The splenic parenchyma was consistently hyperechoic to the kidneys and liver. The liver, kidneys and spleen had similar echotexture, shape and dimensions when compared with the domestic cat. The gall bladder was lobulated and surrounded by a clearly visualized thin, smooth, regular echogenic wall. The adrenal glands had a bilobulated shape. The urinary bladder had a thin echogenic wall. The Doppler parameters of the portal vein and renal artery were similar to the domestic cat. Conclusions and relevance The results support the hypothesis that the ultrasonographic parameters of the abdominal viscera of the southern tigrina are similar to those of the domestic cat.

  17. Leukemia kidney infiltration can cause secondary polycythemia by activating hypoxia-inducible factor (HIF) pathway.

    PubMed

    Osumi, Tomoo; Awazu, Midori; Fujimura, Eriko; Yamazaki, Fumito; Hashiguchi, Akinori; Shimada, Hiroyuki

    2013-06-01

    Secondary polycythemia with increased production of erythropoietin (EPO) is known to occur in kidney diseases such as hydronephrosis and cystic disease, but the mechanism remains unclear. We report an 18-year-old female with isolated renal relapse of acute lymphoblastic leukemia accompanied by polycythemia. At the relapse, she presented with bilateral nephromegaly, mild renal dysfunction, and erythrocytosis with increased serum EPO levels up to 52.1 mIU/mL (9.1-32.8). Renal biopsy demonstrated diffuse lymphoblastic infiltration. The expression of hypoxia-inducible factor (HIF)-1α, which is undetectable in normal kidney, was observed in the renal tubule epithelium compressed by lymphoblastic cells. These findings suggest that erythrocytosis was caused by renal ischemia due to leukemic infiltration. Polycythemia probably became apparent because of the lack of leukemic involvement of the bone marrow. With chemotherapy, the serum EPO level rapidly decreased to normal range accompanied by the normalization of kidney size and function. Renal leukemic infiltration may enhance EPO production, although not recognized in the majority of cases because of bone marrow involvement. Our case has clarified the mechanism of previously reported polycythemia associated with renal diseases as renal ischemia. Furthermore, we have added renal ischemia resulting from tumor infiltration to the list of causes of secondary polycythemia.

  18. Whole kidney engineering for clinical translation.

    PubMed

    Kim, Ick-Hee; Ko, In Kap; Atala, Anthony; Yoo, James J

    2015-04-01

    Renal transplantation is currently the only definitive treatment for end-stage renal disease; however, this treatment is severely limited by the shortage of implantable kidneys. To address this shortcoming, development of an engineered, transplantable kidney has been proposed. Although current advances in engineering kidneys based on decellularization and recellularization techniques have offered great promises for the generation of functional kidney constructs, most studies have been conducted using rodent kidney constructs and short-term in-vivo evaluation. Toward clinical translations of this technique, several limitations need to be addressed. Human-sized renal scaffolds are desirable for clinical application, and the fabrication is currently feasible using native porcine and discarded human kidneys. Current progress in stem cell biology and cell culture methods have demonstrated feasibility of the use of embryonic stem cells, induced pluripotent stem cells, and primary renal cells as clinically relevant cell sources for the recellularization of renal scaffolds. Finally, approaches to long-term implantation of engineered kidneys are under investigation using antithrombogenic strategies such as functional reendothelialization of acellular kidney matrices. In the field of bioengineering, whole kidneys have taken a number of important initial steps toward clinical translations, but many challenges must be addressed to achieve a successful treatment for the patient with end-stage renal disease.

  19. Family clustering of secondary chronic kidney disease with hypertension or diabetes mellitus. A case-control study.

    PubMed

    de Almeida, Fernando Antonio; Ciambelli, Giuliano Serafino; Bertoco, André Luz; Jurado, Marcelo Mai; Siqueira, Guilherme Vasconcelos; Bernardo, Eder Augusto; Pavan, Maria Valeria; Gianini, Reinaldo José

    2015-02-01

    In Brazil hypertension and type 2 diabetes mellitus are responsible for 60% of cases of end-stage renal disease in renal replacement therapy. In the United States studies have identified family clustering of chronic kidney disease, predominantly in African-Americans. A single Brazilian study observed family clustering among patients with chronic kidney disease when compared with hospitalized patients with normal renal function. This article aims to assess whether there is family clustering of chronic kidney disease in relatives of individuals in renal replacement therapy caused by hypertension and/or diabetes mellitus. A case-control study with 336 patients in renal replacement therapy with diabetes mellitus or hypertension for at least 5 years (cases) and a control matched sample group of individuals with hypertension or diabetes mellitus and normal renal function (n = 389). Individuals in renal replacement therapy (cases) had a ratio of 2.35 (95% CI 1.42-3.89, p < 0.001) versus the control group in having relatives with chronic renal disease, irrespective of race or causative illness. There is family clustering of chronic kidney disease in the sample studied, and this predisposition is irrespective of race and underlying disease (hypertension or diabetes mellitus).

  20. Pakistan's kidney trade: an overview of the 2007 'Transplantation of Human Organs and Human Tissue Ordinance.' To what extent will it curb the trade?

    PubMed

    Raza, Mohsen; Skordis-Worrall, Jolene

    2012-01-01

    Pakistan has the unenviable reputation for being one of the world's leading 'transplant tourism' destinations, largely the buying and selling of kidneys from its impoverished population to rich international patients. After nearly two decades of pressure to formally prohibit the trade, the Government of Pakistan promulgated the 'Transplantation of Human Organs and Human Tissue Ordinance' (THOTO) in 2007. This was then passed by Senate and enshrined in law in March 2010. This paper gives a brief overview of the organ trade within Pakistan and analyses the criteria of THOTO in banning the widespread practise. It then goes on to answer: 'To what extent will THOTO succeed in curbing Pakistan's kidney trade?' This is aided by the use of a comparative case study looking at India's failed organ trade legislation. This paper concludes THOTO has set a strong basis for curbing Pakistan's kidney trade. However, for this to be successfully achieved, it needs to be implemented with strong and sustained political will, strict and efficient enforcement as well as effective monitoring and evaluation. Efforts are needed to tackle both 'supply' and 'demand' factors of Pakistan's kidney trade, with developed countries also having a responsibility to reduce the flow of citizens travelling to Pakistan to purchase a kidney.

  1. Distribution of hydrogen sulfide (H₂S)-producing enzymes and the roles of the H₂S donor sodium hydrosulfide in diabetic nephropathy.

    PubMed

    Yamamoto, Junichiro; Sato, Waichi; Kosugi, Tomoki; Yamamoto, Tokunori; Kimura, Toshihide; Taniguchi, Shigeki; Kojima, Hiroshi; Maruyama, Shoichi; Imai, Enyu; Matsuo, Seiichi; Yuzawa, Yukio; Niki, Ichiro

    2013-02-01

    Hydrogen sulfide (H(2)S) has recently been found to play beneficial roles in ameliorating several diseases, including hypertension, atherosclerosis and cardiac/renal ischemia-reperfusion injuries. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), the main enzymes in the transsulfuration pathway, catalyze H(2)S production in mammalian tissues. However, the distributions and precise roles of these enzymes in the kidney have not yet been identified. The present study examined the localization of both enzymes in the normal kidney and the effect of the H(2)S donor sodium hydrosulfide (NaHS) in the renal peritubular capillary (PTC) under conditions of diabetic nephropathy, using pancreatic β-cell-specific calmodulin-overexpressing transgenic mice as a model of diabetes. In the normal kidney, we detected expression of both CBS and CSE in the brush border and cytoplasm of the proximal tubules, but not in the glomeruli, distal tubules and vascular endothelial cells of renal PTCs. Administration of NaHS increased PTC diameter and blood flow. We further evaluated whether biosynthesis of H(2)S was altered in a spontaneous diabetic model that developed renal lesions similar to human diabetic nephropathy. CSE expression was markedly reduced under diabetic conditions, whereas CBS expression was unaffected. Progressive diabetic nephropathy showed vasoconstriction and a loss of blood flow in PTCs that was ameliorated by NaHS treatment. These findings suggest that CSE expression in the proximal tubules may also regulate tubulointerstitial microcirculation via H(2)S production. H(2)S may represent a target of treatment to prevent progression of ischemic injury in diabetic nephropathy.

  2. A minor role of WNK3 in regulating phosphorylation of renal NKCC2 and NCC co-transporters in vivo.

    PubMed

    Oi, Katsuyuki; Sohara, Eisei; Rai, Tatemitsu; Misawa, Moko; Chiga, Motoko; Alessi, Dario R; Sasaki, Sei; Uchida, Shinichi

    2012-02-15

    Mutations in WNK1 and WNK4 kinase genes have been shown to cause a human hereditary hypertensive disease, pseudohypoaldosteronism type II (PHAII). We previously discovered that WNK kinases phosphorylate and activate OSR1/SPAK kinases that regulate renal SLC12A family transporters such as NKCC2 and NCC, and clarified that the constitutive activation of this cascade causes PHAII. WNK3, another member of the WNK kinase family, was reported to be a strong activator of NCC/NKCC2 when assayed in Xenopus oocytes, suggesting that WNK3 also plays a major role in regulating blood pressure and sodium reabsorption in the kidney. However, it remains to be determined whether WNK3 is in fact involved in the regulation of these transporters in vivo. To clarify this issue, we generated and analyzed WNK3 knockout mice. Surprisingly, phosphorylation and expression of OSR1, SPAK, NKCC2 and NCC did not decrease in knockout mouse kidney under normal and low-salt diets. Similarly, expression of epithelial Na channel and Na/H exchanger 3 were not affected in knockout mice. Na(+) and K(+) excretion in urine in WNK3 knockout mice was not affected under different salt diets. Blood pressure in WNK3 knockout mice was not lower under normal diet. However, lower blood pressure was observed in WNK3 knockout mice fed low-salt diet. WNK4 and WNK1 expression was slightly elevated in the knockout mice under low-salt diet, suggesting compensation for WNK3 knockout by these WNKs. Thus, WNK3 may have some role in the WNK-OSR1/SPAK-NCC/NKCC2 signal cascade in the kidney, but its contribution to total WNK kinase activity may be minimal.

  3. Albuminuria enhances NHE3 and NCC via stimulation of mitochondrial oxidative stress/angiotensin II axis.

    PubMed

    Jia, Zhanjun; Zhuang, Yibo; Hu, Caiyu; Zhang, Xintong; Ding, Guixia; Zhang, Yue; Rohatgi, Rajeev; Hua, Hu; Huang, Songming; He, John Ci-Jiang; Zhang, Aihua

    2016-07-26

    Imbalance of salt and water is a frequent and challenging complication of kidney disease, whose pathogenic mechanisms remain elusive. Employing an albumin overload mouse model, we discovered that albuminuria enhanced the expression of NHE3 and NCC but not other transporters in murine kidney in line with the stimulation of angiotensinogen (AGT)/angiotensin converting enzyme (ACE)/angiotensin (Ang) II cascade. In primary cultures of renal tubular cells, albumin directly stimulated AGT/ACE/Ang II and upregulated NHE3 and NCC expression. Blocking Ang II production with an ACE inhibitor normalized the upregulation of NHE3 and NCC in cells. Interestingly, albumin overload significantly reduced mitochondrial superoxide dismutase (SOD2), and administration of a SOD2 mimic (MnTBAP) normalized the expression of NHE3, NCC, and the components of AGT/ACE pathway affected by albuminuria, indicating a key role of mitochondria-derived oxidative stress in modulating renin-angiotensin system (RAS) and renal sodium transporters. In addition, the functional data showing the reduced urinary excretion of Na and Cl and enhanced response to specific NCC inhibitor further supported the regulatory results of sodium transporters following albumin overload. More importantly, the upregulation of NHE3 and NCC and activation of ACE/Ang II signaling pathway were also observed in albuminuric patient kidneys, suggesting that our animal model accurately replicates the human condition. Taken together, these novel findings demonstrated that albuminuria is of importance in resetting renal salt handling via mitochondrial oxidative stress-initiated stimulation of ACE/Ang II cascade. This may also offer novel, effective therapeutic targets for dealing with salt and water imbalance in proteinuric renal diseases.

  4. Performance in Measurement of Serum Cystatin C by Laboratories Participating in the College of American Pathologists 2014 CYS Survey.

    PubMed

    Eckfeldt, John H; Karger, Amy B; Miller, W Greg; Rynders, Gregory P; Inker, Lesley A

    2015-07-01

    Cystatin C is becoming an increasingly popular biomarker for estimating glomerular filtration rate, and accurate measurements of cystatin C concentrations are necessary for accurate estimates of glomerular filtration rate. To assess the accuracy of cystatin C concentration measurements in laboratories participating in the College of American Pathologists CYS Survey. Two fresh frozen serum pools, the first from apparently healthy donors and the second from patients with chronic kidney disease, were prepared and distributed to laboratories participating in the CYS Survey along with the 2 usual processed human plasma samples. Target values were established for each pool by using 2 immunoassays and ERM DA471/IFCC international reference material. For the normal fresh frozen pool (ERM-DA471/IFCC-traceable target of 0.960 mg/L), the all-method mean (SD, % coefficient of variation [CV]) reported by all of the 123 reporting laboratories was 0.894 mg/L (0.128 mg/L, 14.3%). For the chronic kidney disease pool (ERM-DA471/IFCC-traceable target of 2.37 mg/L), the all-method mean (SD, %CV) was 2.258 mg/L (0.288 mg/L, 12.8%). There were substantial method-specific biases (mean milligram per liter reported for the normal pool was 0.780 for Siemens, 0.870 for Gentian, 0.967 for Roche, 1.061 for Diazyme, and 0.970 for other/not specified reagents; and mean milligram per liter reported for the chronic kidney disease pool was 2.052 for Siemens, 2.312 for Gentian, 2.247 for Roche, 2.909 for Diazyme, and 2.413 for other/not specified reagents). Manufacturers need to improve the accuracy of cystatin C measurement procedures if cystatin C is to achieve its full potential as a biomarker for estimating glomerular filtration rate.

  5. The bovine kidney as an experimental model in urology: external gross anatomy.

    PubMed

    Carvalho, Francismar S; Bagetti Filho, Hélio J S; Henry, Robert W; Pereira-Sampaio, Marco A

    2009-01-01

    The objective of this work was to obtain and record detailed and accurate measurements of the bovine kidney and to compare these new data with findings in humans. Thirty-eight bovine kidneys were used. The total number of lobes, along with the number of lobes located in the cranial polar, caudal polar and hilar regions, were recorded. Several measurements of the kidneys were made and evaluated. The hilar region presents the greatest length (mean of 76.87 mm) of the 3 renal regions of the kidney. The large area of the bovine renal hilus could make access to hilar structures easier than in the human kidney. The coefficient of variation for renal length was small (8.14%), while the coefficient of variation for the lobar number was high (26.82%). The number of renal lobes ranged from 13 to 35, with a mean of 20.62. The hilar region presents the highest number of lobes, while the cranial pole presents the lowest. The number of lobes in the cranial and caudal poles increases with the width of these regions. This is different from the hilar region, in which the lobar number increases with the length of the hilus. These data indicate that the adult bovine kidney can be used as a model for certain urologic procedures, but researchers must be aware that there are some major differences between the adult bovine kidney and the human kidney, as indicated by the data reported in this paper. (c) 2008 S. Karger AG, Basel.

  6. PAX3 is expressed in the stromal compartment of the developing kidney and in Wilms tumors with myogenic phenotype.

    PubMed

    Hueber, Pierre-Alain; Fukuzawa, Ryuji; Elkares, Reyhan; Chu, Leelee; Blumentkrantz, Miriam; He, Shu-Jie; Anaka, Matthew R; Reeve, Anthony E; Eccles, Michael; Jabado, Nada; Iglesias, Diana M; Goodyer, Paul R

    2009-01-01

    Wilms tumor (WT) is the most frequent renal neoplasm of childhood; a myogenic component is observed in 5% to 10% of tumors. We demonstrate for the first time that myogenic WTs are associated with expression of PAX3, a transcription factor known to specify myoblast cell fate during muscle development. In a panel of 20 WTs, PAX3 was identified in 13 of 13 tumor samples with myogenic histopathology but was absent in 7 of 7 tumors lacking a myogenic component. Furthermore, we show that PAX3 is expressed in the metanephric mesenchyme and stromal compartment of developing mouse kidney. Modulation of endogenous PAX3 expression in human embryonic kidney (HEK293) cells influenced cell migration in in vitro assays. Mutations of WT1 were consistently associated with PAX3 expression in WTs, and modulation of WT1 expression in HEK293 cells was inversely correlated with the level of endogenous PAX3 protein. We demonstrate abundant PAX3 and absence of PAX2 expression in a novel cell line (WitP3) isolated from the stromal portion of a WT bearing a homozygous deletion of the WT1 gene. We hypothesize that PAX3 sets stromal cell fate in developing kidney but is normally suppressed by WT1 during the mesenchyme-to-epithelium transition leading to nephrogenesis. Loss of WT1 permits aberrant PAX3 expression in a subset of WTs with myogenic phenotype.

  7. Fluoride potentiates tubulointerstitial nephropathy caused by unilateral ureteral obstruction.

    PubMed

    Kido, Takamasa; Tsunoda, Masashi; Sugaya, Chiemi; Hano, Hiroshi; Yanagisawa, Hiroyuki

    2017-12-01

    The contamination of ground water by fluoride has been reported worldwide. Most fluoride (approximately 70%) is filtered by the kidneys; humans or experimental animals with renal damage therefore may be more affected by fluoride exposure than those with normal kidney function. Tubulointerstitial fibrosis, which involves macrophage-promoted extracellular matrix production and myofibroblast migration, can be induced in rats by unilateral ureteral obstruction (UUO). We examined the effects of fluoride exposure on tubulointerstitial fibrosis in the obstructed kidney of UUO rats. The left ureters of 6-week-old male rats were ligated using silk sutures. Fluoride was then administered for 2 weeks at doses of 0, 75, and 150ppm in the drinking water. Real-time polymerase chain reaction was performed to analyze transforming growth factor beta 1 (TGF-β 1 ) transcription; histological and immunohistochemical staining were used to identify positive areas within the renal cortex and staining-positive cells by image analysis. Significant increases were observed in the obstructed kidneys of UUO rats exposed to 150ppm fluoride (compared to 0ppm) for areas or number of cells that stained with Masson trichrome or with antibodies against collagen type I, alpha-smooth muscle actin (α-SMA, a myofibroblast marker), ED1, ED2, and ED3 (macrophage markers), and TGF-β 1 . Taken together, these observations suggested that fluoride exacerbates tuburointerstitial nephropathy resulting from UUO, and that this effect occurs via activation of the M2 macrophage-TGF-β1-fibroblast/myofibroblast-collagen synthesis pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Osteo-Renal Regulation of Systemic Phosphate Metabolism

    PubMed Central

    Razzaque, Mohammed Shawkat

    2011-01-01

    Summary Impaired kidney function and subsequent skeletal responses play a critical role in disrupting phosphate balance in chronic kidney disease (CKD) patients with mineral and bone disorder (CKD-MBD). In patients with CKD-MBD, the inability of the kidney to maintain normal mineral ion balance affects bone remodeling to induce skeletal fracture and extraskeletal vascular calcification. In physiological conditions, bone-derived fibroblast growth factor 23 (FGF23) acts on the kidney to reduce serum phosphate and 1,25-dihydroxyvitamin D levels. In humans, increased bioactivity of FGF23 leads to increased urinary phosphate excretion, which induces hypophosphatemic diseases (e.g., rickets/osteomalacia). However, reduced FGF23 activity is associated with hyperphosphatemic diseases (e.g., tumoral calcinosis). In patients with CKD, high serum levels of FGF23 fail to reduce serum phosphate levels and lead to numerous complications, including vascular calcification, one of the important determinants of mortality of CKD-MBD patients. Of particular significance, molecular, biochemical and morphological changes in patients with CKD-MBD are mostly due to osteo-renal dysregulation of mineral ion metabolism. Furthermore, hyperphosphatemia can partly contribute to the development of secondary hyperparathyroidism in patients with CKD-MBD. Relatively new pharmacological agents including sevelamer hydrochloride, calcitriol analogs and cinacalcet hydrochloride are used either alone, or in combination, to minimize hyperphosphatemia and hyperparathyroidism associated complications to improve morbidity and mortality of CKD-MBD patients. This article will briefly summarize how osteo-renal miscommunication can induce phosphate toxicity, resulting in extensive tissue injuries. PMID:21438115

  9. Osteo-renal regulation of systemic phosphate metabolism.

    PubMed

    Razzaque, Mohammed Shawkat

    2011-04-01

    Impaired kidney function and subsequent skeletal responses play a critical role in disrupting phosphate balance in chronic kidney disease (CKD) patients with mineral and bone disorder (CKD-MBD). In patients with CKD-MBD, the inability of the kidney to maintain normal mineral ion balance affects bone remodeling to induce skeletal fracture and extraskeletal vascular calcification. In physiological conditions, bone-derived fibroblast growth factor 23 (FGF23) acts on the kidney to reduce serum phosphate and 1,25-dihydroxyvitamin D levels. In humans, increased bioactivity of FGF23 leads to increased urinary phosphate excretion, which induces hypophosphatemic diseases (e.g., rickets/osteomalacia). However, reduced FGF23 activity is associated with hyperphosphatemic diseases (e.g., tumoral calcinosis). In patients with CKD, high serum levels of FGF23 fail to reduce serum phosphate levels and lead to numerous complications, including vascular calcification, one of the important determinants of mortality of CKD-MBD patients. Of particular significance, molecular, biochemical and morphological changes in patients with CKD-MBD are mostly due to osteo-renal dysregulation of mineral ion metabolism. Furthermore, hyperphosphatemia can partly contribute to the development of secondary hyperparathyroidism in patients with CKD-MBD. Relatively new pharmacological agents including sevelamer hydrochloride, calcitriol analogs and cinacalcet hydrochloride are used either alone, or in combination, to minimize hyperphosphatemia and hyperparathyroidism associated complications to improve morbidity and mortality of CKD-MBD patients. This article will briefly summarize how osteo-renal miscommunication can induce phosphate toxicity, resulting in extensive tissue injuries. Copyright © 2011 Wiley Periodicals, Inc.

  10. Enhanced hepatic and kidney cytochrome p-450 activities in nandrolone decanoate treated albino mice.

    PubMed

    Acharjee, B K; Mahanta, R

    2009-04-01

    Anabolic androgenic steroids are the xenobiotic substrates that are metabolized in the body by the protective enzyme systems. Mixed function oxygenase enzymes include a group of enzymes which play an essential role in the metabolism of a broad range of xenobiotics including endogenous and exogenous substrates. Cytochrome P-450, a member of mixed function oxygenase enzymes, plays an important role in oxidative metabolism of drugs and xenobiotics entering human body. Various anabolic steroids are found either to increase or decrease the activity of cytochrome P-450. However, effect of nandrolone decanoate, most commonly abused anabolic steroid, on cytochrome P-450 activity is still fragmentary. In the present study, albino mice were administered intramuscular 2.5 mg of nandrolone decanoate injection at 15 days interval. Cytochrome P-450 activity is determined by following the method of Omura and Sato (1964) in liver and kidney tissues of both normal and experimental groups upto 90 days. Investigation shows a significant (p <0.01) increase of cytochrome P-450 (nmol/mg) activity in liver tissue as compared to that of kidney tissues. A tissue specific and dose specific increase of cytochrome P-450 activity is observed. Mean cytochrome P-450 is found highest in liver tissue on 45(th) day whereas the activity in kidney tissue is noticed on 90(th) day of treatment. From the above observation, nandrolone decanoate can be suggested as a potent inducer of cytochrome P-450 activity like other anabolic steroids.

  11. Gadolinium compounds signaling through TLR4 and TLR7 in normal human macrophages: establishment of a proinflammatory phenotype and implications for the pathogenesis of nephrogenic systemic fibrosis.

    PubMed

    Wermuth, Peter J; Jimenez, Sergio A

    2012-07-01

    Nephrogenic systemic sibrosis is a progressive disorder occurring in some renal insufficiency patients exposed to gadolinium-based contrast agents (GdBCA). Previous studies demonstrated that the GdBCA Omniscan upregulated several innate immunity pathways in normal differentiated human macrophages, induced rapid nuclear localization of the transcription factor NF-κB, and increased the expression and production of numerous profibrotic/proinflammatory cytokines, chemokines, and growth factors. To further examine GdBCA stimulation of the innate immune system, cultured human embryonic kidney 293 cells expressing one of seven different human TLRs or one of two human nucleotide-binding oligomerization domain-like receptors were exposed in vitro for 24 h to various GdBCA. The signaling activity of each compound was evaluated by its ability to activate an NF-κB-inducible reporter gene. Omniscan and gadodiamide induced strong TLR4- and TLR7-mediated reporter gene activation. The other Gd compounds examined failed to induce reporter gene activation. TLR pathway inhibition using chloroquine or an inhibitor of IL-1R-associated kinases 1 and 4 in normal differentiated human macrophages abrogated Omniscan-induced gene expression. Omniscan and gadodiamide signaling via TLRs 4 and 7 resulted in increased production and expression of numerous proinflammatory/profibrotic cytokines, chemokines, and growth factors, including CXCL10, CCL2, CCL8, CXCL12, IL-4, IL-6, TGF-β, and vascular endothelial growth factor. These observations suggest that TLR activation by environmental stimuli may participate in the pathogenesis of nephrogenic systemic fibrosis and of other fibrotic disorders including systemic sclerosis.

  12. Vaccinations in pediatric kidney transplant recipients.

    PubMed

    Fox, Thomas G; Nailescu, Corina

    2018-04-18

    Pediatric kidney transplant (KT) candidates should be fully immunized according to routine childhood schedules using age-appropriate guidelines. Unfortunately, vaccination rates in KT candidates remain suboptimal. With the exception of influenza vaccine, vaccination after transplantation should be delayed 3-6 months to maximize immunogenicity. While most vaccinations in the KT recipient are administered by primary care physicians, there are specific schedule alterations in the cases of influenza, hepatitis B, pneumococcal, and meningococcal vaccinations; consequently, these vaccines are usually administered by transplant physicians. This article will focus on those deviations from the normal vaccine schedule important in the care of pediatric KT recipients. The article will also review human papillomavirus vaccine due to its special importance in cancer prevention. Live vaccines are generally contraindicated in KT recipients. However, we present a brief review of live vaccines in organ transplant recipients, as there is evidence that certain live virus vaccines may be safe and effective in select groups. Lastly, we review vaccination of pediatric KT recipients prior to international travel.

  13. Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria

    PubMed Central

    Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H.; Roberts, Ian S.D.; Sheehan, Susan; Savage, Holly; Haller, Hermann

    2016-01-01

    Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. PMID:27020856

  14. A Telomerase Immortalized Human Proximal Tubule Cell Line with a Truncation Mutation (Q4004X) in Polycystin-1

    PubMed Central

    Herbert, Brittney-Shea; Grimes, Brenda R.; Xu, Wei Min; Werner, Michael; Ward, Christopher; Rossetti, Sandro; Harris, Peter; Bello-Reuss, Elsa; Ward, Heather H.; Miller, Caroline; Gattone, Vincent H.; Phillips, Carrie L.; Wandinger-Ness, Angela; Bacallao, Robert L.

    2013-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is associated with a variety of cellular phenotypes in renal epithelial cells. Cystic epithelia are secretory as opposed to absorptive, have higher proliferation rates in cell culture and have some characteristics of epithelial to mesenchymal transitions [1], [2]. In this communication we describe a telomerase immortalized cell line that expresses proximal tubule markers and is derived from renal cysts of an ADPKD kidney. These cells have a single detectable truncating mutation (Q4004X) in polycystin-1. These cells make normal appearing but shorter cilia and fail to assemble polycystin-1 in the cilia, and less uncleaved polycystin-1 in membrane fractions. This cell line has been maintained in continuous passage for over 35 passages without going into senescence. Nephron segment specific markers suggest a proximal tubule origin for these cells and the cell line will be useful to study mechanistic details of cyst formation in proximal tubule cells. PMID:23383103

  15. Case Report: First Reported Combined Heart-Liver Transplant in a Patient With a Congenital Solitary Kidney.

    PubMed

    Hanna, R M; Kamgar, M; Hasnain, H; Khorsan, R; Nsair, A; Kaldas, F; Baas, A; Bunnapradist, S; Wilson, J M

    2018-04-01

    We report a case of successful combined heart liver transplant in a patient with a congenital solitary kidney. The patient had normal renal function before combined heart-liver transplantation and developed acute kidney injury requiring slow continuous dialysis and subsequent intermittent dialysis for almost 8 weeks post transplantation. Her renal function recovered and she remains off dialysis now 7 months post transplantation. She only currently has mild chronic renal insufficiency. We believe this is the first reported case of successful heart liver transplant in a patient with a congenital solitary kidney. Published by Elsevier Inc.

  16. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury.

    PubMed

    Ceron, Carla S; Baligand, Celine; Joshi, Sunil; Wanga, Shaynah; Cowley, Patrick M; Walker, Joy P; Song, Sang Heon; Mahimkar, Rajeev; Baker, Anthony J; Raffai, Robert L; Wang, Zhen J; Lovett, David H

    2017-06-01

    Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH 2 -terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.

  17. Development of an Immunoassay for the Kidney Specific Protein myo-Inositol Oxygenase, a Potential Biomarker of Acute Kidney Injury

    PubMed Central

    Gaut, Joseph P.; Crimmins, Dan L.; Ohlendorf, Matt F.; Lockwood, Christina M.; Griest, Terry A.; Brada, Nancy A.; Hoshi, Masato; Sato, Bryan; Hotchkiss, Richard S.; Jain, Sanjay; Ladenson, Jack H.

    2014-01-01

    Background Acute kidney injury (AKI) affects 45% of critically ill patients resulting in increased morbidity and mortality. The diagnostic standard, serum creatinine (SCr), is non-specific and may not increase until days after injury. There is significant need for a renal specific AKI biomarker detectable early enough that there would be a potential window for therapeutic intervention. In this study, we sought to identify a renal specific biomarker of AKI. Methods Gene expression data was analyzed from normal mouse tissues to identify kidney specific genes, one of which was Miox. Monoclonal antibodies were generated to recombinant myo-inositol oxygenase (MIOX), and an immunoassay was developed to quantify MIOX in plasma. The immunoassay was tested in animals and retrospectively in patients with and without AKI. Results Kidney tissue specificity of MIOX was supported by Western blot. Immunohistochemistry localized MIOX to the proximal renal tubule. Plasma MIOX, undetectable at baseline, increased 24 hours following AKI in mice. Plasma MIOX was increased in critically ill patients with AKI (12.4 ± 4.3 ng/mL, n=42) compared with patients without AKI (0.5 ± 0.3 ng/mL, n=17) and was highest in patients with oliguric AKI (20.2 ± 7.5 ng/mL, n=23). Plasma MIOX increased 54.3 ± 3.8 hours before the increase in SCr. Conclusions MIOX is a renal specific, proximal tubule protein that is increased in plasma of animals and critically ill patients with AKI. MIOX preceded the elevation in SCr by approximately two days in human patients. Large-scale studies are warranted to further investigate MIOX as an AKI biomarker. PMID:24486646

  18. Both high and low maternal salt intake in pregnancy alter kidney development in the offspring.

    PubMed

    Koleganova, Nadezda; Piecha, Grzegorz; Ritz, Eberhard; Becker, Luis Eduardo; Müller, Annett; Weckbach, Monika; Nyengaard, Jens Randel; Schirmacher, Peter; Gross-Weissmann, Marie-Luise

    2011-08-01

    In humans, low glomerular numbers are related to hypertension, cardiovascular, and renal disease in adult life. The present study was designed 1) to explore whether above- or below-normal dietary salt intake during pregnancy influences nephron number and blood pressure in the offspring and 2) to identify potential mechanisms in kidney development modified by maternal sodium intake. Sprague-Dawley rats were fed low (0.07%)-, intermediate (0.51%)-, or high (3.0%)-sodium diets during pregnancy and lactation. The offspring were weaned at 4 wk and subsequently kept on a 0.51% sodium diet. The kidney structure was assessed at postnatal weeks 1 and 12 and the expression of proteins of interest at term and at week 1. Blood pressure was measured in male offspring by telemetry from postnatal month 2 to postnatal month 9. The numbers of glomeruli at weeks 1 and 12 were significantly lower and, in males, telemetrically measured mean arterial blood pressure after month 5 was higher in offspring of dams on a high- or low- compared with intermediate-sodium diet. A high-salt diet was paralleled by higher concentrations of marinobufagenin in the amniotic fluid and an increase in the expression of both sprouty-1 and glial cell-derived neutrophic factor in the offspring's kidney. The expression of FGF-10 was lower in offspring of dams on a low-sodium diet, and the expression of Pax-2 and FGF-2 was lower in offspring of dams on a high-sodium diet. Both excessively high and excessively low sodium intakes during pregnancy modify protein expression in offspring kidneys and reduce the final number of glomeruli, predisposing the risk of hypertension later in life.

  19. High-resolution mechanical imaging of the kidney.

    PubMed

    Streitberger, Kaspar-Josche; Guo, Jing; Tzschätzsch, Heiko; Hirsch, Sebastian; Fischer, Thomas; Braun, Jürgen; Sack, Ingolf

    2014-02-07

    The objective of this study was to test the feasibility and reproducibility of in vivo high-resolution mechanical imaging of the asymptomatic human kidney. Hereby nine volunteers were examined at three different physiological states of urinary bladder filling (a normal state, urinary urgency, and immediately after urinary relief). Mechanical imaging was performed of the in vivo kidney using three-dimensional multifrequency magnetic resonance elastography combined with multifrequency dual elastovisco inversion. Other than in classical elastography, where the storage and loss shear moduli are evaluated, we analyzed the magnitude |G(⁎)| and the phase angle φ of the complex shear modulus reconstructed by simultaneous inversion of full wave field data corresponding to 7 harmonic drive frequencies from 30 to 60Hz and a resolution of 2.5mm cubic voxel size. Mechanical parameter maps were derived with a spatial resolution superior to that in previous work. The group-averaged values of |G(⁎)| were 2.67±0.52kPa in the renal medulla, 1.64±0.17kPa in the cortex, and 1.17±0.21kPa in the hilus. The phase angle φ (in radians) was 0.89±0.12 in the medulla, 0.83±0.09 in the cortex, and 0.72±0.06 in the hilus. All regional differences were significant (P<0.001), while no significant variation was found in relation to different stages of bladder filling. In summary our study provides first high-resolution maps of viscoelastic parameters of the three anatomical regions of the kidney. |G(⁎)| and φ provide novel information on the viscoelastic properties of the kidney, which is potentially useful for the detection of renal lesions or fibrosis. © 2013 Published by Elsevier Ltd.

  20. Targeted Nanoparticles for Kidney Cancer Therapy

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: W81XWH-10-1-0434 TITLE: Targeted Nanoparticles for Kidney Cancer Therapy PRINCIPAL...Targeted Nanoparticles for Kidney Cancer Therapy 5b. GRANT NUMBER W81XWH-10-1-0434 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...lines following treatment with D5 nanotubes. Tthermoablation will be studied initially. Human kidney cancer cells will be injected into the kidney

  1. Expression of metalloprotease insulin-degrading enzyme (insulysin) in normal and malignant human tissues

    PubMed Central

    Yfanti, Christina; Mengele, Karin; Gkazepis, Apostolos; Weirich, Gregor; Giersig, Cecylia; Kuo, Wen-Liang; Tang, Wei-Jen; Rosner, Marsha; Schmitt, Manfred

    2013-01-01

    Background Insulin-degrading enzyme (IDE, insulysin, insulinase; EC 3.4.22.11), a thiol metalloendopeptidase, is involved in intracellular degradation of insulin, thereby inhibiting its translocation and accumulation to the nucleus. Recently, protein expression of IDE has been demonstrated in the epithelial ducts of normal breast and in breast cancer tissue (Radulescu et al., Int J Oncol 30:73; 2007). Materials and Methods Utilizing four different antibodies generated against different epitopes of the IDE molecule, we performed western blot analysis and immunohistochemical staining on several normal human tissues, on a plethora of tumor cell lines of different tissue origin, and on malignant breast and ovarian tissue. Results Applying the four IDE-directed antibodies, we demonstrate IDE expression at the protein level, both by means of immunoblotting and immunocytochemistry, in all of the tumor cell lines analyzed. Besides, IDE protein expression was found in normal tissues of the kidney, liver, lung, brain, breast and skeletal muscle, as well as in breast and ovarian cancer tissues. Immunohistochemical visualization of IDE indicated cytoplasmic localization of IDE in all of the cell lines and tissues assessed. Conclusions We performed for the first time a wide-ranging survey on IDE protein expression in normal and malignant tissues and cells and thus extend knowledge about cellular and tissue distribution of IDE, an enzyme which so far has mainly been studied in connection with Alzheimer’s disease and diabetes but not in cancer. PMID:18813847

  2. Autofluorescence dynamics during reperfusion following long-term renal ischemia in a rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, R N; Pivetti, C D; Matthews, D L

    2008-02-08

    Optical properties of near-surface kidney tissue were monitored in order to assess response during reperfusion to long (20 minutes) versus prolonged (150 minutes) ischemia in an in vivo rat model. Specifically, autofluorescence images of the exposed surfaces of both the normal and the ischemic kidneys were acquired during both injury and reperfusion alternately under 355 nm and 266 nm excitations. The temporal profile of the emission of the injured kidney during the reperfusion phase under 355 nm excitation was normalized to that under 266 nm as a means to account for changes in tissue optical properties independent of ischemia asmore » well as changes in the illumination/collection geometrical parameters in future clinical implementation of this technique using a hand-held probe. The scattered excitation light signal was also evaluated as a reference signal and found to be inadequate. Characteristic time constants were extracted using fit to a relaxation model and found to have larger mean values following 150 minutes of injury. The mean values were then compared with the outcome of a chronic survival study where the control kidney had been removed. Rat kidneys exhibiting longer time constants were much more likely to fail. This may lead to a method to assess kidney viability and predict its ability to recover in the initial period following transplantation or resuscitation.« less

  3. Skeletal accumulation of fluorescently tagged zoledronate is higher in animals with early stage chronic kidney disease.

    PubMed

    Swallow, E A; Aref, M W; Chen, N; Byiringiro, I; Hammond, M A; McCarthy, B P; Territo, P R; Kamocka, M M; Winfree, S; Dunn, K W; Moe, S M; Allen, M R

    2018-06-11

    This work examines the skeletal accumulation of fluorescently tagged zoledronate in an animal model of chronic kidney disease. The results show higher accumulation in 24-h post-dose animals with lower kidney function due to greater amounts of binding at individual surfaces. Chronic kidney disease (CKD) patients suffer from increased rates of skeletal-related mortality from changes driven by biochemical abnormalities. Bisphosphonates are commonly used in reducing fracture risk in a variety of diseases, yet their use is not recommended in advanced stages of CKD. This study aimed to characterize the accumulation of a single dose of fluorescently tagged zoledronate (FAM-ZOL) in the setting of reduced kidney function. At 25 weeks of age, FAM-ZOL was administered to normal and CKD rats. Twenty-four hours later, multiple bones were collected and assessed using bulk fluorescence imaging, two-photon imaging, and dynamic histomorphometry. CKD animals had significantly higher levels of FAM-ZOL accumulation in the proximal tibia, radius, and ulna, but not in lumbar vertebral body or mandible, based on multiple measurement modalities. Although a majority of trabecular bone surfaces were covered with FAM-ZOL in both normal and CKD animals, the latter had significantly higher levels of fluorescence per unit bone surface in the proximal tibia. These results provide new data regarding how reduced kidney function affects drug accumulation in rat bone.

  4. Urine biomarkers informative of human kidney allograft rejection and tolerance.

    PubMed

    Nissaisorakarn, Voravech; Lee, John Richard; Lubetzky, Michelle; Suthanthiran, Manikkam

    2018-05-01

    We developed urinary cell messenger RNA (mRNA) profiling to monitor in vivo status of human kidney allografts based on our conceptualization that the kidney allograft may function as an in vivo flow cell sorter allowing access of graft infiltrating cells to the glomerular ultrafiltrate and that interrogation of urinary cells is informative of allograft status. For the profiling urinary cells, we developed a two-step preamplification enhanced real-time quantitative PCR (RT-QPCR) assays with a customized amplicon; preamplification compensating for the low RNA yield from urine and the customized amplicon facilitating absolute quantification of mRNA and overcoming the inherent limitations of relative quantification widely used in RT-QPCR assays. Herein, we review our discovery and validation of urinary cell mRNAs as noninvasive biomarkers prognostic and diagnostic of acute cellular rejection (ACR) in kidney allografts. We summarize our results reflecting the utility of urinary cell mRNA profiling for predicting reversal of ACR with anti-rejection therapy; differential diagnosis of kidney allograft dysfunction; and noninvasive diagnosis and prognosis of BK virus nephropathy. Messenger RNA profiles associated with human kidney allograft tolerance are also summarized in this review. Altogether, data supporting the idea that urinary cell mRNA profiles are informative of kidney allograft status and tolerance are reviewed in this report. Copyright © 2018. Published by Elsevier Inc.

  5. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury.

    PubMed

    Nickolas, Thomas L; O'Rourke, Matthew J; Yang, Jun; Sise, Meghan E; Canetta, Pietro A; Barasch, Nicholas; Buchen, Charles; Khan, Faris; Mori, Kiyoshi; Giglio, James; Devarajan, Prasad; Barasch, Jonathan

    2008-06-03

    A single serum creatinine measurement cannot distinguish acute kidney injury from chronic kidney disease or prerenal azotemia. To test the sensitivity and specificity of a single measurement of urinary neutrophil gelatinase-associated lipocalin (NGAL) and other urinary proteins to detect acute kidney injury in a spectrum of patients. Prospective cohort study. Emergency department of Columbia University Medical Center, New York, New York. 635 patients admitted to the hospital with acute kidney injury, prerenal azotemia, chronic kidney disease, or normal kidney function. Diagnosis of acute kidney injury was based on the RIFLE (risk, injury, failure, loss, and end-stage) criteria and assigned by researchers who were blinded to experimental measurements. Urinary NGAL was measured by immunoblot, N-acetyl-beta-d-glucosaminidase (NAG) by enzyme measurement, alpha1-microglobulin and alpha(1)-acid glycoprotein by immunonephelometry, and serum creatinine by Jaffe kinetic reaction. Experimental measurements were not available to treating physicians. Patients with acute kidney injury had a significantly elevated mean urinary NGAL level compared with the other kidney function groups (416 microg/g creatinine [SD, 387]; P = 0.001). At a cutoff value of 130 microg/g creatinine, sensitivity and specificity of NGAL for detecting acute injury were 0.900 (95% CI, 0.73 to 0.98) and 0.995 (CI, 0.990 to 1.00), respectively, and positive and negative likelihood ratios were 181.5 (CI, 58.33 to 564.71) and 0.10 (CI, 0.03 to 0.29); these values were superior to those for NAG, alpha1-microglobulin, alpha1-acid glycoprotein, fractional excretion of sodium, and serum creatinine. In multiple logistic regression, urinary NGAL level was highly predictive of clinical outcomes, including nephrology consultation, dialysis, and admission to the intensive care unit (odds ratio, 24.71 [CI, 7.69 to 79.42]). All patients came from a single center. Few kidney biopsies were performed. A single measurement of urinary NGAL helps to distinguish acute injury from normal function, prerenal azotemia, and chronic kidney disease and predicts poor inpatient outcomes.

  6. Sensitivity and Specificity of a Single Emergency Department Measurement of Urinary Neutrophil Gelatinase–Associated Lipocalin for Diagnosing Acute Kidney Injury

    PubMed Central

    Nickolas, Thomas L.; O’Rourke, Matthew J.; Yang, Jun; Sise, Meghan E.; Canetta, Pietro A.; Barasch, Nicholas; Buchen, Charles; Khan, Faris; Mori, Kiyoshi; Giglio, James; Devarajan, Prasad; Barasch, Jonathan

    2010-01-01

    Background A single serum creatinine measurement cannot distinguish acute kidney injury from chronic kidney disease or prerenal azotemia. Objective To test the sensitivity and specificity of a single measurement of urinary neutrophil gelatinase–associated lipocalin (NGAL) and other urinary proteins to detect acute kidney injury in a spectrum of patients. Design Prospective cohort study. Setting Emergency department of Columbia University Medical Center, New York, New York. Participants 635 patients admitted to the hospital with acute kidney injury, prerenal azotemia, chronic kidney disease, or normal kidney function. Measurements Diagnosis of acute kidney injury was based on the RIFLE (risk, injury, failure, loss, and end-stage) criteria and assigned by researchers who were blinded to experimental measurements. Urinary NGAL was measured by immunoblot, N-acetyl-β-D-glucosaminidase (NAG) by enzyme measurement, α1-microglobulin and α1-acid glycoprotein by immunonephelometry, and serum creatinine by Jaffe kinetic reaction. Experimental measurements were not available to treating physicians. Results Patients with acute kidney injury had a significantly elevated mean urinary NGAL level compared with the other kidney function groups (416 μg/g creatinine [SD, 387]; P = 0.001). At a cutoff value of 130 μg/g creatinine, sensitivity and specificity of NGAL for detecting acute injury were 0.900 (95% CI, 0.73 to 0.98) and 0.995 (CI, 0.990 to 1.00), respectively, and positive and negative likelihood ratios were 181.5 (CI, 58.33 to 564.71) and 0.10 (CI, 0.03 to 0.29); these values were superior to those for NAG, α1-microglobulin, α1-acid glycoprotein, fractional excretion of sodium, and serum creatinine. In multiple logistic regression, urinary NGAL level was highly predictive of clinical outcomes, including nephrology consultation, dialysis, and admission to the intensive care unit (odds ratio, 24.71 [CI, 7.69 to 79.42]). Limitations All patients came from a single center. Few kidney biopsies were performed. Conclusion A single measurement of urinary NGAL helps to distinguish acute injury from normal function, prerenal azotemia, and chronic kidney disease and predicts poor inpatient outcomes. PMID:18519927

  7. Soft 3D-Printed Phantom of the Human Kidney with Collecting System.

    PubMed

    Adams, Fabian; Qiu, Tian; Mark, Andrew; Fritz, Benjamin; Kramer, Lena; Schlager, Daniel; Wetterauer, Ulrich; Miernik, Arkadiusz; Fischer, Peer

    2017-04-01

    Organ models are used for planning and simulation of operations, developing new surgical instruments, and training purposes. There is a substantial demand for in vitro organ phantoms, especially in urological surgery. Animal models and existing simulator systems poorly mimic the detailed morphology and the physical properties of human organs. In this paper, we report a novel fabrication process to make a human kidney phantom with realistic anatomical structures and physical properties. The detailed anatomical structure was directly acquired from high resolution CT data sets of human cadaveric kidneys. The soft phantoms were constructed using a novel technique that combines 3D wax printing and polymer molding. Anatomical details and material properties of the phantoms were validated in detail by CT scan, ultrasound, and endoscopy. CT reconstruction, ultrasound examination, and endoscopy showed that the designed phantom mimics a real kidney's detailed anatomy and correctly corresponds to the targeted human cadaver's upper urinary tract. Soft materials with a tensile modulus of 0.8-1.5 MPa as well as biocompatible hydrogels were used to mimic human kidney tissues. We developed a method of constructing 3D organ models from medical imaging data using a 3D wax printing and molding process. This method is cost-effective means for obtaining a reproducible and robust model suitable for surgical simulation and training purposes.

  8. Cardiac and renal function in patients with type 2 diabetes who have chronic kidney disease: potential effects of bardoxolone methyl.

    PubMed

    McCullough, Peter A; Ali, Sajid

    2012-01-01

    The intracellular and tissue balance of oxidant and antioxidant forces is a potential therapeutic target for a variety of agents in the treatment of complications due to chronic disease including diabetes mellitus and hypertension. There are a myriad of processes controlled at the level of genes, transcription factors, and protein messages that work to control the normal use of oxidative reactions within cells. Loss of control of these processes may lead to reversible dysfunction in many cell lines including the podocyte, renal tubular cells, and cardiac myocytes. Bardoxolone methyl is a novel nuclear regulator factor (Nrf-2) activator which works to tip the balance of effects towards antioxidation and as an observation made serendipitously, improves renal filtration function in humans after approximately 12 weeks of therapy. The improvement in estimated glomerular filtration can be up to 30% in those with stage 3 and 4 chronic kidney disease. However, experimental evidence suggests there may be a consequence of relative hyperfiltration in diseased kidneys as well as potential adverse effects on skeletal and cardiac myocytes. Only large, prospective randomized trials with carefully collected and adjudicated clinical outcomes will inform the research community on the therapeutic risks and benefits of this important new agent.

  9. Cardiac and renal function in patients with type 2 diabetes who have chronic kidney disease: potential effects of bardoxolone methyl

    PubMed Central

    McCullough, Peter A; Ali, Sajid

    2012-01-01

    The intracellular and tissue balance of oxidant and antioxidant forces is a potential therapeutic target for a variety of agents in the treatment of complications due to chronic disease including diabetes mellitus and hypertension. There are a myriad of processes controlled at the level of genes, transcription factors, and protein messages that work to control the normal use of oxidative reactions within cells. Loss of control of these processes may lead to reversible dysfunction in many cell lines including the podocyte, renal tubular cells, and cardiac myocytes. Bardoxolone methyl is a novel nuclear regulator factor (Nrf-2) activator which works to tip the balance of effects towards antioxidation and as an observation made serendipitously, improves renal filtration function in humans after approximately 12 weeks of therapy. The improvement in estimated glomerular filtration can be up to 30% in those with stage 3 and 4 chronic kidney disease. However, experimental evidence suggests there may be a consequence of relative hyperfiltration in diseased kidneys as well as potential adverse effects on skeletal and cardiac myocytes. Only large, prospective randomized trials with carefully collected and adjudicated clinical outcomes will inform the research community on the therapeutic risks and benefits of this important new agent. PMID:22787387

  10. Comparison of transcutaneous contrast-enhanced ultrasound-guided injected hemostatic agents with traditional surgery treatment for liver, spleen and kidney trauma: a retrospective study.

    PubMed

    Wang, Dong; Lv, Faqin; Luo, Yukun; An, Lichun; Li, Junlai; Xie, Xia; Tian, Jiangke; Zhao, Weiyan; Tang, Jie

    2012-10-01

    There is lack of studies on the effectiveness of transcutaneous contrast-enhanced ultrasound-guided injections of hemostatic agents for liver. spleen and kidney trauma. We compared treatment by hemostatic agents to surgical treatment in a retrospective interventional human study. The study enrolled a total of 135 subjects from emergency unit of the Chinese People's Liberation Army General Hospital in Beijing. Within the cohort, 62 patients received contrast enhanced ultrasound-guided injection of hemostatic agents and the rest received surgical treatments. The injury severity score was lower in the hemostatic agent treatment group than surgical treatment group (p<0.05), but Glasgow coma scale scores did not reach statistical significance. The patients in the surgical treatment group had significantly higher hospital fees than those in the hemostatic treatment group (p<0.05), although the length of hospitalization did not significantly differ between two groups. Safety outcome variables pre- and post-treatment remained within normal limits in both groups. Hemostatic agents were more cost-effective than surgery to treat patients with liver, spleen and kidney trauma. However, given the limited sample size, subsequent studies drawing upon larger populations from multiple medical centers are necessary for follow-up.

  11. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells

    NASA Technical Reports Server (NTRS)

    Nauli, Surya M.; Alenghat, Francis J.; Luo, Ying; Williams, Eric; Vassilev, Peter; Li, Xiaogang; Elia, Andrew E H.; Lu, Weining; Brown, Edward M.; Quinn, Stephen J.; hide

    2003-01-01

    Several proteins implicated in the pathogenesis of polycystic kidney disease (PKD) localize to cilia. Furthermore, cilia are malformed in mice with PKD with mutations in TgN737Rpw (encoding polaris). It is not known, however, whether ciliary dysfunction occurs or is relevant to cyst formation in PKD. Here, we show that polycystin-1 (PC1) and polycystin-2 (PC2), proteins respectively encoded by Pkd1 and Pkd2, mouse orthologs of genes mutated in human autosomal dominant PKD, co-distribute in the primary cilia of kidney epithelium. Cells isolated from transgenic mice that lack functional PC1 formed cilia but did not increase Ca(2+) influx in response to physiological fluid flow. Blocking antibodies directed against PC2 similarly abolished the flow response in wild-type cells as did inhibitors of the ryanodine receptor, whereas inhibitors of G-proteins, phospholipase C and InsP(3) receptors had no effect. These data suggest that PC1 and PC2 contribute to fluid-flow sensation by the primary cilium in renal epithelium and that they both function in the same mechanotransduction pathway. Loss or dysfunction of PC1 or PC2 may therefore lead to PKD owing to the inability of cells to sense mechanical cues that normally regulate tissue morphogenesis.

  12. Preclinical Evaluation of Engineered Oncolytic Herpes Simplex Virus for the Treatment of Pediatric Solid Tumors

    PubMed Central

    Megison, Michael L.; Gillory, Lauren A.; Stewart, Jerry E.; Nabers, Hugh C.; Mroczek-Musulman, Elizabeth; Waters, Alicia M.; Coleman, Jennifer M.; Kelly, Virginia; Markert, James M.; Gillespie, G. Yancey; Friedman, Gregory K.; Beierle, Elizabeth A.

    2014-01-01

    Recently, investigators showed that mice with syngeneic murine gliomas that were treated with a neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal cells. Previous studies have shown antitumor effects of other oHSV against a number of adult tumors including hepatocellular carcinoma and renal cell carcinoma. The purpose of the current study was to investigate the oncolytic potential of M002 against difficult to treat pediatric liver and kidney tumors. We showed that the oHSV, M002, infected, replicated, and decreased cell survival in hepatoblastoma, malignant rhabdoid kidney tumor, and renal sarcoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly increased survival and decreased tumor growth. Finally, these studies showed that the primary entry protein for oHSV, CD111 (nectin-1) was present in human hepatoblastoma and malignant rhabdoid kidney tumor specimens. We concluded that M002 effectively targeted these rare aggressive tumor types and that M002 may have potential for use in children with unresponsive or relapsed pediatric solid tumors. PMID:24497984

  13. Human polyomavirus 9 in immunocompromised patients in the University Hospital in Hradec Kralove, Czech Republic.

    PubMed

    Fajfr, Miroslav; Pliskova, Lenka; Kutova, Radka; Matyskova-Kubisova, Michaela; Navratil, Pavel; Radocha, Jakub; Valenta, Zbynek; Dusilova-Sulkova, Sylvie

    2017-12-01

    Human polyomaviruses such as JC polyomavirus and BK polyomavirus have long been well known pathogens of immunocompromised patients. Several new members of this viral family have been described during the last decade. Human polyomavirus 9 seems to be a novel pathogen of transplanted patients according to some studies. The aim of our study was to determine the presence of human polyomavirus 9 in patients after kidney or stem cell transplantation (SCT) at the University Hospital in Hradec Kralove, Czech Republic. Overall 100 patients, 65 after kidney transplantation and 35 after SCT, were included into the study. At least three follow-up samples from each patient were examined for human polyomavirus 9 DNA presentation with the two previously described in-house PCR protocols. Despite the frequent reactivation of human CMV (14.3% in kidney transplantation and 63.3% after SCT) or BK polyomavirus in our patient group, there was no positivity for human polyomavirus 9 either in blood samples or urine samples. One of the possible reasons for this discrepancy versus previous published studies could be a relatively low proportion of patients treated by induction therapy before kidney transplantation in our study cohort. © 2017 Wiley Periodicals, Inc.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H.B.; Blaufox, M.D.

    Rats with one kidney clamped (2K1C), both kidneys clamped (2K2C), unilaterally nephrectomized with remaining kidney clamped (1K1C), and normals, were studied using /sup 99m/Tc mercaptoacetyltriglycine ((/sup 99m/Tc)MAG-3) and /sup 131/I orthoiodohippurate ((/sup 131/I)OIH). Clearances of (/sup 99m/Tc)MAG-3 and (/sup 131/I)OIH were performed after constricted rats became hypertensive. Clearances were repeated after i.v. Captopril. Clearances of (/sup 99m/Tc)MAG-3 and (/sup 131/I)OIH in normals didn't change significantly after Captopril. Clearances of (/sup 99m/Tc)MAG-3 and (/sup 131/I)OIH decreased insignificantly after Captopril in the 2K2C model. in the 2K1C group, normal kidney clearance increased ((/sup 99m/Tc)MAG-3 p less than 0.01 and (/sup 131/I)OIH pmore » less than 0.025) and clamped kidney clearance decreased after inhibition ((/sup 99m/Tc)MAG-3, p less than 0.01, (/sup 131/I)OIH p less than 0.02). Clearances increased in the 1K1C group after Captopril ((/sup 99m/Tc)MAG-3 p less than 0.0025 and (/sup 131/I)OIH, p less than 0.001). The ratio of (/sup 99m/Tc)MAG-3 to (/sup 131/I)OIH before Captopril was 0.81 and 0.84 after Captopril. Changes in renal function after Captopril depend on the model of renovascular hypertension and possibly the dose administered. Technetium-99m MAG-3 clearance parallels (/sup 131/I)orthoiodohippurate in renovascular hypertension.« less

  15. Monitoring Sunitinib-Induced Vascular Effects to Optimize Radiotherapy Combined with Soy Isoflavones in Murine Xenograft Tumor1

    PubMed Central

    Hillman, Gilda Gali; Singh-Gupta, Vinita; Al-Bashir, Areen K; Yunker, Christopher K; Joiner, Michael C; Sarkar, Fazlul H; Abrams, Judith; Haacke, E Mark

    2011-01-01

    Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to monitor vascular changes induced by sunitinib within a murine xenograft kidney tumor, we previously determined a dose that caused only partial destruction of blood vessels leading to “normalization” of tumor vasculature and improved blood flow. In the current study, kidney tumors were treated with this dose of sunitinib to modify the tumor microenvironment and enhance the effect of kidney tumor irradiation. The addition of soy isoflavones to this combined antiangiogenic and radiotherapy approach was investigated based on our studies demonstrating that soy isoflavones can potentiate the radiation effect on the tumors and act as antioxidants to protect normal tissues from treatment-induced toxicity. DCE-MRI was used to monitor vascular changes induced by sunitinib and schedule radiation when the uptake and washout of the contrast agent indicated regularization of blood flow. The combination of sunitinib with tumor irradiation and soy isoflavones significantly inhibited the growth and invasion of established kidney tumors and caused marked aberrations in the morphology of residual tumor cells. DCE-MRI studies demonstrated that the three modalities, sunitinib, radiation, and soy isoflavones, also exerted antiangiogenic effects resulting in increased uptake and clearance of the contrast agent. Interestingly, DCE-MRI and histologic observations of the normal contralateral kidneys suggest that soy could protect the vasculature of normal tissue from the adverse effects of sunitinib. An antiangiogenic approach that only partially destroys inefficient vessels could potentially increase the efficacy and delivery of cytotoxic therapies and radiotherapy for unresectable primary renal cell carcinoma tumors and metastatic disease. PMID:21461174

  16. Vitamin E mitigates cisplatin-induced nephrotoxicity due to reversal of oxidative/nitrosative stress, suppression of inflammation and reduction of total renal platinum accumulation.

    PubMed

    Darwish, Mostafa A; Abo-Youssef, Amira M; Khalaf, Marwa M; Abo-Saif, Ali A; Saleh, Ibrahim G; Abdelghany, Tamer M

    2017-01-01

    Cisplatin (CP) is one of the most effective chemotherapeutic agents. Unfortunately, CP-induced nephrotoxicity hampered its use. This study aims to investigate the effect of vitamin E (Vit E) on CP-induced nephrotoxicity. Male white albino rats were divided to four group's six rats each and received either, 1% tween 80 in normal saline or Vit E (75 mg/kg) per day for 14 consecutive days or a single injection of CP (6 mg/kg) alone or CP (6 mg/kg) together with Vit E (75 mg/kg per day for 14 consecutive days). Five days after the CP injection, rats were euthanized; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CP treatment significantly increased serum levels of creatinine and urea. Moreover, reduced glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities were significantly reduced with concurrent increase in kidney malondialdehyde (MDA) content following CP treatment. Vit E successfully lowered serum levels of urea and creatinine, enhanced creatinine clearance and diuresis, and normalized relative kidney/body weight. Furthermore, Vit E successfully normalized renal MDA and nitrite concentrations, elevated GSH level, and restored CAT and SOD activities in renal tissues. Histopathological examination of rat kidney revealed that Vit E significantly mitigated CP-induced renal damage. Importantly, administration of Vit E reduced kidney total platinum concentration indicating a role of platinum renal accumulation on the ability of Vit E to protect against CP nephrotoxicity. © 2016 Wiley Periodicals, Inc.

  17. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  18. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney.

    PubMed

    Lindström, Nils O; Guo, Jinjin; Kim, Albert D; Tran, Tracy; Guo, Qiuyu; De Sena Brandine, Guilherme; Ransick, Andrew; Parvez, Riana K; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-03-01

    Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2 + nephron progenitor cells (NPCs) and Foxd1 + interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1 , were readily detected within SIX2 + NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2 + NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2 , are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs. Copyright © 2018 by the American Society of Nephrology.

  19. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats

    PubMed Central

    Qinna, Nidal A; Badwan, Adnan A

    2015-01-01

    Streptozotocin (STZ) is currently the most used diabetogenic agent in testing insulin and new antidiabetic drugs in animals. Due to the toxic and disruptive nature of STZ on organs, apart from pancreas, involved in preserving the body’s normal glucose homeostasis, this study aims to reassess the action of STZ in inducing different glucose response states in diabetic rats while testing insulin. Diabetic Sprague-Dawley rats induced with STZ were classified according to their initial blood glucose levels into stages. The effect of randomizing rats in such a manner was investigated for the severity of interrupting normal liver, pancreas, and kidney functions. Pharmacokinetic and pharmacodynamic actions of subcutaneously injected insulin in diabetic and nondiabetic rats were compared. Interruption of glucose homeostasis by STZ was challenged by single and repeated administrations of injected insulin and oral glucose to diabetic rats. In diabetic rats with high glucose (451–750 mg/dL), noticeable changes were seen in the liver and kidney functions compared to rats with lower basal glucose levels. Increased serum levels of recombinant human insulin were clearly indicated by a significant increase in the calculated maximum serum concentration and area under the concentration–time curve. Reversion of serum glucose levels to normal levels pre- and postinsulin and oral glucose administrations to STZ diabetic rats were found to be variable. In conclusion, diabetic animals were more responsive to insulin than nondiabetic animals. STZ was capable of inducing different levels of normal glucose homeostasis disruption in rats. Both pharmacokinetic and pharmacodynamic actions of insulin were altered when different initial blood glucose levels of STZ diabetic rats were selected for testing. Such findings emphasize the importance of selecting predefined and unified glucose levels when using STZ as a diabetogenic agent in experimental protocols evaluating new antidiabetic agents and insulin delivery systems. PMID:26005328

  20. Role of neuropeptide Y in renal sympathetic vasoconstriction: studies in normal and congestive heart failure rats.

    PubMed

    DiBona, G F; Sawin, L L

    2001-08-01

    Sympathetic nerve activity, including that in the kidney, is increased in heart failure with increased plasma concentrations of norepinephrine and the vasoconstrictor cotransmitter neuropeptide Y (NPY). We examined the contribution of NPY to sympathetically mediated alterations in kidney function in normal and heart failure rats. Heart failure rats were created by left coronary ligation and myocardial infarction. In anesthetized normal rats, the NPY Y(1) receptor antagonist, H 409/22, at two doses, had no effect on heart rate, arterial pressure, or renal hemodynamic and excretory function. In conscious severe heart failure rats, high-dose H 409/22 decreased mean arterial pressure by 8 +/- 2 mm Hg but had no effect in normal and mild heart failure rats. During graded frequency renal sympathetic nerve stimulation (0 to 10 Hz), high-dose H 409/22 attenuated the decreases in renal blood flow only at 10 Hz (-36% +/- 5%, P <.05) in normal rats but did so at both 4 (-29% +/- 4%, P <.05) and 10 Hz (-33% +/- 5%, P <.05) in heart failure rats. The glomerular filtration rate, urinary flow rate, and sodium excretion responses to renal sympathetic nerve stimulation were not affected by high-dose H 409/22 in either normal or heart failure rats. NPY does not participate in the regulation of kidney function and arterial pressure in normal conscious or anesthetized rats. When sympathetic nervous system activity is increased, as in heart failure and intense renal sympathetic nerve stimulation, respectively, a small contribution of NPY to maintenance of arterial pressure and to sympathetic renal vasoconstrictor responses may be identified.

  1. Evaluation of normal findings using a detailed and focused technique for transcutaneous abdominal ultrasonography in the horse

    PubMed Central

    2014-01-01

    Background Ultrasonography is an important diagnostic tool in the investigation of abdominal disease in the horse. Several factors may affect the ability to image different structures within the abdomen. The aim of the study was to describe the repeatability of identification of abdominal structures in normal horses using a detailed ultrasonographic examination technique and using a focused, limited preparation technique. Methods A detailed abdominal ultrasound examination was performed in five normal horses, repeated on five occasions (total of 25 examinations). The abdomen was divided into ten different imaging sites, and structures identified in each site were recorded. Five imaging sites were then selected for a single focused ultrasound examination in 20 normal horses. Limited patient preparation was performed. Structures were recorded as ‘identified’ if ultrasonographic features could be distinguished. The location of organs and their frequency of identification were recorded. Data from both phases were analysed to determine repeatability of identification of structures in each examination (irrespective of imaging site), and for each imaging site. Results Caecum, colon, spleen, liver and right kidney were repeatably identified using the detailed technique, and had defined locations. Large colon and right kidney were identified in 100% of examinations with both techniques. Liver, spleen, caecum, duodenum and other small intestine were identified more frequently with the detailed examination. Small intestine was most frequently identified in the ventral abdomen, its identification varied markedly within and between horses, and required repeated examinations in some horses. Left kidney could not be identified in every horse using either technique. Sacculated colon was identified in all ventral sites, and was infrequently identified in dorsal sites. Conclusions Caecum, sacculated large intestine, spleen, liver and right kidney were consistently identified with both techniques. There were some normal variations which should be considered when interpreting ultrasonographic findings in clinical cases: left kidney was not always identified, sacculated colon was occasionally identified in dorsal flank sites. Multiple imaging sites and repeated examinations may be required to identify small intestine. A focused examination identified most key structures, but has some limitations compared to a detailed examination. PMID:25238559

  2. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    PubMed

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  3. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation

    PubMed Central

    Meyer, Mark B.; Benkusky, Nancy A.; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J. Wesley

    2017-01-01

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1. We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. PMID:28808057

  4. Flavonoids in Kidney Health and Disease

    PubMed Central

    Vargas, Félix; Romecín, Paola; García-Guillén, Ana I.; Wangesteen, Rosemary; Vargas-Tendero, Pablo; Paredes, M. Dolores; Atucha, Noemí M.; García-Estañ, Joaquín

    2018-01-01

    This review summarizes the latest advances in knowledge on the effects of flavonoids on renal function in health and disease. Flavonoids have antihypertensive, antidiabetic, and antiinflammatory effects, among other therapeutic activities. Many of them also exert renoprotective actions that may be of interest in diseases such as glomerulonephritis, diabetic nephropathy, and chemically-induced kidney insufficiency. They affect several renal factors that promote diuresis and natriuresis, which may contribute to their well-known antihypertensive effect. Flavonoids prevent or attenuate the renal injury associated with arterial hypertension, both by decreasing blood pressure and by acting directly on the renal parenchyma. These outcomes derive from their interference with multiple signaling pathways known to produce renal injury and are independent of their blood pressure-lowering effects. Oral administration of flavonoids prevents or ameliorates adverse effects on the kidney of elevated fructose consumption, high fat diet, and types I and 2 diabetes. These compounds attenuate the hyperglycemia-disrupted renal endothelial barrier function, urinary microalbumin excretion, and glomerular hyperfiltration that results from a reduction of podocyte injury, a determinant factor for albuminuria in diabetic nephropathy. Several flavonoids have shown renal protective effects against many nephrotoxic agents that frequently cause acute kidney injury (AKI) or chronic kidney disease (CKD), such as LPS, gentamycin, alcohol, nicotine, lead or cadmium. Flavonoids also improve cisplatin- or methotrexate-induced renal damage, demonstrating important actions in chemotherapy, anticancer and renoprotective effects. A beneficial prophylactic effect of flavonoids has been also observed against AKI induced by surgical procedures such as ischemia/reperfusion (I/R) or cardiopulmonary bypass. In several murine models of CKD, impaired kidney function was significantly improved by the administration of flavonoids from different sources, alone or in combination with stem cells. In humans, cocoa flavanols were found to have vasculoprotective effects in patients on hemodialysis. Moreover, flavonoids develop antitumor activity against renal carcinoma cells with no toxic effects on normal cells, suggesting a potential therapeutic role in patients with renal carcinoma. PMID:29740333

  5. Flavonoids in Kidney Health and Disease.

    PubMed

    Vargas, Félix; Romecín, Paola; García-Guillén, Ana I; Wangesteen, Rosemary; Vargas-Tendero, Pablo; Paredes, M Dolores; Atucha, Noemí M; García-Estañ, Joaquín

    2018-01-01

    This review summarizes the latest advances in knowledge on the effects of flavonoids on renal function in health and disease. Flavonoids have antihypertensive, antidiabetic, and antiinflammatory effects, among other therapeutic activities. Many of them also exert renoprotective actions that may be of interest in diseases such as glomerulonephritis, diabetic nephropathy, and chemically-induced kidney insufficiency. They affect several renal factors that promote diuresis and natriuresis, which may contribute to their well-known antihypertensive effect. Flavonoids prevent or attenuate the renal injury associated with arterial hypertension, both by decreasing blood pressure and by acting directly on the renal parenchyma. These outcomes derive from their interference with multiple signaling pathways known to produce renal injury and are independent of their blood pressure-lowering effects. Oral administration of flavonoids prevents or ameliorates adverse effects on the kidney of elevated fructose consumption, high fat diet, and types I and 2 diabetes. These compounds attenuate the hyperglycemia-disrupted renal endothelial barrier function, urinary microalbumin excretion, and glomerular hyperfiltration that results from a reduction of podocyte injury, a determinant factor for albuminuria in diabetic nephropathy. Several flavonoids have shown renal protective effects against many nephrotoxic agents that frequently cause acute kidney injury (AKI) or chronic kidney disease (CKD), such as LPS, gentamycin, alcohol, nicotine, lead or cadmium. Flavonoids also improve cisplatin- or methotrexate-induced renal damage, demonstrating important actions in chemotherapy, anticancer and renoprotective effects. A beneficial prophylactic effect of flavonoids has been also observed against AKI induced by surgical procedures such as ischemia/reperfusion (I/R) or cardiopulmonary bypass. In several murine models of CKD, impaired kidney function was significantly improved by the administration of flavonoids from different sources, alone or in combination with stem cells. In humans, cocoa flavanols were found to have vasculoprotective effects in patients on hemodialysis. Moreover, flavonoids develop antitumor activity against renal carcinoma cells with no toxic effects on normal cells, suggesting a potential therapeutic role in patients with renal carcinoma.

  6. Comparative analysis of cell killing and autosomal mutation in mouse kidney epithelium exposed to 1 GeV protons in vitro or in vivo.

    PubMed

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Grossi, Gianfranco; Dan, Cristian; Grygoryev, Dmytro; Lasarev, Michael; Turker, Mitchell S

    2013-05-01

    Human exposure to high-energy protons occurs in space flight scenarios or, where necessary, during radiotherapy for cancer or benign conditions. However, few studies have assessed the mutagenic effectiveness of high-energy protons, which may contribute to cancer risk. Mutations cause cancer and most cancer-associated mutations occur at autosomal loci. This study addresses the cytotoxic and mutagenic effects of 1 GeV protons in mouse kidney epithelium. Mutant fractions were measured for an endogenous autosomal locus (Aprt) that detects all types of mutagenic events. Results for kidneys irradiated in vivo are compared with the results for kidney cells from the same strain exposed in vitro. The results demonstrate dose-dependent cell killing in vitro and for cells explanted 3-4 months postirradiation in vivo. Incubation in vivo for longer periods (8-9 months) further attenuates proton-induced cell killing. Protons are mutagenic to cells in vitro and for in vivo irradiated kidneys. The dose-response for Aprt mutation is curvilinear after in vitro or in vivo exposure, bending upward at the higher doses. While the absolute mutant fractions are higher in vivo, the fold-increase over background is similar for both in vitro and in situ exposures. Results are also presented for a limited study on the effect of dose fractionation on the induction of Aprt mutations in kidney epithelial cells. Dose-fractionation reduces the fraction of proton-induced Aprt mutants in vitro and in vivo and also results in less cell killing. Taken together, the mutation burden in the epithelium is slightly reduced by dose-fractionation. Autosomal mutations accumulated during clinical exposure to high-energy protons may contribute to the risk of treatment-associated neoplasms, thereby highlighting the need for rigorous treatment planning to reduce the dose to normal tissues. For low dose exposures that occur during most space flight scenarios, the mutagenic effects of protons appear to be modest.

  7. Microgravity

    NASA Image and Video Library

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  9. Progressive Recruitment of Mesenchymal Progenitors Reveals a Time-Dependent Process of Cell Fate Acquisition in Mouse and Human Nephrogenesis.

    PubMed

    Lindström, Nils O; De Sena Brandine, Guilherme; Tran, Tracy; Ransick, Andrew; Suh, Gio; Guo, Jinjin; Kim, Albert D; Parvez, Riana K; Ruffins, Seth W; Rutledge, Elisabeth A; Thornton, Matthew E; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P

    2018-06-04

    Mammalian nephrons arise from a limited nephron progenitor pool through a reiterative inductive process extending over days (mouse) or weeks (human) of kidney development. Here, we present evidence that human nephron patterning reflects a time-dependent process of recruitment of mesenchymal progenitors into an epithelial nephron precursor. Progressive recruitment predicted from high-resolution image analysis and three-dimensional reconstruction of human nephrogenesis was confirmed through direct visualization and cell fate analysis of mouse kidney organ cultures. Single-cell RNA sequencing of the human nephrogenic niche provided molecular insights into these early patterning processes and predicted developmental trajectories adopted by nephron progenitor cells in forming segment-specific domains of the human nephron. The temporal-recruitment model for nephron polarity and patterning suggested by direct analysis of human kidney development provides a framework for integrating signaling pathways driving mammalian nephrogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. En bloc transplantation of horseshoe kidney in Korea

    PubMed Central

    Bang, Jun Bae; Lee, Jae Myeong; Oh, Chang-Kwon; Lee, Kyo Won; Park, Jae Berm; Kim, Sung Joo

    2017-01-01

    Transplantation of the horseshoe kidney can be performed en bloc or split into 2 grafts according to the vascular anomaly and the existence of the urinary collecting system in isthmus. From 2011 to 2014, there were 3 horseshoe kidney transplantations in Korea and transplantations were performed at 2 different centers. The transplantations were carried out successfully for all recipients without complications. All recipients have shown good graft kidney function after transplantation. No severe complication was revealed during follow-up period. We described the surgical technique used in the en bloc method to overcome various vascular anomalies and difficulties in choosing cannulation site and postoperative complications. En bloc transplantation of a horseshoe kidney is a useful strategy for patients with end-stage renal disease, and can provide favorable outcomes compared to the transplantation of a normal kidney. PMID:28289672

  11. Hospitalized hemorrhagic stroke patients with renal insufficiency: clinical characteristics, care patterns, and outcomes.

    PubMed

    Ovbiagele, Bruce; Schwamm, Lee H; Smith, Eric E; Grau-Sepulveda, Maria V; Saver, Jeffrey L; Bhatt, Deepak L; Hernandez, Adrian F; Peterson, Eric D; Fonarow, Gregg C

    2014-10-01

    There is a paucity of information on clinical characteristics, care patterns, and clinical outcomes for hospitalized intracerebral hemorrhage (ICH) patients with chronic kidney disease (CKD). We assessed characteristics, care processes, and in-hospital outcome among ICH patients with CKD in the Get With the Guidelines-Stroke (GWTG-Stroke) program. We analyzed 113,059 ICH patients hospitalized at 1472 US centers participating in the GWTG-Stroke program between January 2009 and December 2012. In-hospital mortality and use of 2 predefined ICH performance measures were examined based on glomerular filtration rate. Renal dysfunction was categorized as a dichotomous (+CKD = estimated glomerular filtration rate <60) or rank ordered variable as CKD (<60), and by clinical stage: (normal [≥90], mild [≥60-<90], moderate [≥30-<60], severe [≥15-<30], and/or kidney failure [<15 or dialysis]). There were 33,219 (29%) ICH patients with CKD. Patients with CKD were more likely to be older, female, and with comorbid conditions such as diabetes. Compared with patients with normal kidney function, those with CKD were slightly less likely to receive deep venous thrombosis (DVT) prophylaxis but similarly received discharge smoking cessation intervention. Inpatient mortality was also higher for those with CKD (adjusted odds ratio [OR], 1.47; 95% confidence interval [CI], 1.42-1.52), mild dysfunction (adjusted OR, 1.12; 95% CI, 1.08-1.16), moderate dysfunction (adjusted OR, 1.46; 95% CI, 1.39-1.53), severe dysfunction (adjusted OR, 1.96; 95% CI, 1.81-2.12), and kidney failure (adjusted OR, 2.22; 95% CI, 2.04-2.43) relative to those with normal renal function. Chronic kidney disease is present in nearly a third of patients hospitalized with ICH and is associated with slightly worse care and substantially higher mortality than those with normal renal function. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Serum Neutrophil Gelatinase-Associated Lipocalin and Urinary Kidney Injury Molecule-1 as Potential Biomarkers of Subclinical Nephrotoxicity After Gadolinium-Based and Iodinated-Based Contrast Media Exposure in Pediatric Patients with Normal Kidney Function

    PubMed Central

    Spasojević-Dimitrijeva, Brankica; Kotur-Stevuljević, Jelena; Đukić, Milan; Paripović, Dušan; Miloševski-Lomić, Gordana; Spasojević-Kalimanovska, Vesna; Pavićević, Polina; Mitrović, Jadranka; Kostić, Mirjana

    2017-01-01

    Background New renal biomarkers such as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) show promise in early diagnosis of contrast media induced acute kidney injury (CI-AKI). The purpose of our study was to compare the subclinical nephrotoxicity (a condition without changes in standard renal biomarkers) of gadolinium-based contrast media (Gd-DTPA, gadopentetate dimeglumine) and iodinated-based contrast media (iopromide) in pediatric patients with normal kidney function. Material/Methods The first group (n=58) of patients included in the study were undergoing angiography with iopromide, and the second group (n=65) were undergoing magnetic resonance (MR) angiography/urography with Gd-DTPA administration. The concentrations of NGAL and KIM-1 were measured four times in the urine (pre-contrast, then at four hours, 24 hours, and 48 hours after contrast administration), and serum NGAL was measured at 0 (baseline), 24 hours, and 48 hours after contrast exposure. Results After 24 hours, serum NGAL increase of ≥25% was noticed in 32.6% of the patients in the iopromide group and in 25.45% of the patients in the gadolinium group, with significantly higher average percent of this increase in first group (62.23% vs. 36.44%, p=0.002). In the Gd-DTPA group, we observed a statistically significant increase in urinary KIM-1 24 hours after the procedure. Normalized urinary KIM-1, 24 hours after contrast exposure, was a better predictive factor for CI-AKI than other biomarkers (AUC 0.757, cut off 214 pg/mg, sensitivity 83.3%, specificity 54.2%, p=0.035). Conclusions In children with normal renal function, exposure to iodinated-based and gadolinium-based media might lead to subclinical nephrotoxicity, which could be detected using serum NGAL and urinary KIM-1. PMID:28874655

  13. Effects of Perfusion on Radiofrequency Ablation in Swine Kidneys1

    PubMed Central

    Chang, Isaac; Mikityansky, Igor; Wray-Cahen, Diane; Pritchard, William F.; Karanian, John W.; Wood, Bradford J.

    2008-01-01

    PURPOSE: To evaluate the effect of vascular occlusion on the size of radiofrequency (RF) ablation lesions and to evaluate embolization as an occlusion method. MATERIALS AND METHODS: The kidneys of six swine were surgically exposed. Fifteen RF ablation lesions were created in nine kidneys by using a 2-cm-tip single-needle ablation probe in varying conditions: Seven lesions were created with normal blood flow and eight were created with blood flow obstructed by means of vascular clamping (n = 5) or renal artery embolization (n = 3). The temperature, applied voltage, current, and impedance were recorded during RF ablation. Tissue-cooling curves acquired for 2 minutes immediately after the ablation were compared by using regression analysis. Lesions were bisected, and their maximum diameters were measured and compared by using analysis of variance. RESULTS: The mean diameter of ablation lesions created when blood flow was obstructed was 60% greater than that of lesions created when blood flow was normal (1.38 cm ± 0.05 [standard error of mean] vs 0.86 cm ± 0.07, P < .001). The two methods of flow obstruction yielded lesions of similar mean sizes: 1.40 cm ± 0.06 with vascular clamping and 1.33 cm ± 0.07 with embolization. The temperature at the probe tip when lesions were ablated with normal blood flow decreased more rapidly than did the temperature when lesions were ablated after flow obstruction (P < .001), but no significant differences in tissue-cooling curves between the two flow obstruction methods were observed. CONCLUSION: Obstruction of renal blood flow before and during RF ablation resulted in larger thermal lesions with potentially less variation in size compared with the lesions created with normal nonobstructed blood flow. Selective arterial embolization of the kidney vessels may be a useful adjunct to RF ablation of kidney tumors. PMID:15128994

  14. Caenorhabditis elegans as a model to study renal development and disease: sexy cilia.

    PubMed

    Barr, Maureen M

    2005-02-01

    The nematode Caenorhabditis elegans has no kidney per se, yet "the worm" has proved to be an excellent model to study renal-related issues, including tubulogenesis of the excretory canal, membrane transport and ion channel function, and human genetic diseases including autosomal dominant polycystic kidney disease (ADPKD). The goal of this review is to explain how C. elegans has provided insight into cilia development, cilia function, and human cystic kidney diseases.

  15. Modeling of transdermal fluorescence measurements from first-in-human clinical trials for renal function determination using fluorescent tracer agent MB-102

    NASA Astrophysics Data System (ADS)

    Shultz, Kimberly M.; Debreczeny, Martin P.; Dorshow, Richard B.; Keating, Jennifer E.; Bechtel, Kate L.

    2017-02-01

    The fluorescent tracer agent 3,6-diamino-2,5-bisN-[(1R)-1-carboxy-2-hydroxyethyl]carbamoylpyrazine, designated MB-102, is cleared from the body solely by the kidneys. A prototype noninvasive fluorescence detection device has been developed for monitoring transdermal fluorescence after bolus intravenous injection of MB-102 in order to measure kidney function. A mathematical model of the detected fluorescence signal was created for evaluation of observed variations in agent kinetics across body locations and for analysis of candidate instrument geometries. The model comprises pharmacokinetics of agent distribution within body compartments, local diffusion of the agent within the skin, Monte Carlo photon transport through tissue, and ray tracing of the instrument optics. Data from eight human subjects with normal renal function and a range of skin colors shows good agreement with simulated data. Body site dependence of equilibration kinetics was explored using the model to find the local vasculature-to-interstitial diffusion time constant, blood volume fraction, and interstitial volume fraction. Finally, candidate instrument geometries were evaluated using the model. While an increase in source-detector separation was found to increase sensitivity to tissue optical properties, it reduced the relative intensity of the background signal with minimal effect on the measured equilibration kinetics.

  16. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip

    PubMed Central

    Musah, Samira; Mammoto, Akiko; Ferrante, Thomas C.; Jeanty, Sauveur S. F.; Hirano-Kobayashi, Mariko; Mammoto, Tadanori; Roberts, Kristen; Chung, Seyoon; Novak, Richard; Ingram, Miles; Fatanat-Didar, Tohid; Koshy, Sandeep; Weaver, James C.; Church, George M.; Ingber, Donald E.

    2017-01-01

    An in vitro model of the human kidney glomerulus — the major site of blood filtration — could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes — the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (> 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers of the mature phenotype (nephrin+, WT1+, podocin+, Pax2−) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue/tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications. PMID:29038743

  17. Technetium-99m mercaptoacetyltriglycine clearance: reference values for infants and children.

    PubMed

    Schofer, O; König, G; Bartels, U; Bockisch, A; Piepenburg, R; Beetz, R; Meyer, G; Hahn, K

    1995-11-01

    Six hundred and thirty-nine clearance studies performed in children aged 7 days to 19 years utilizing technetium-99m mercaptoacetyltriglycine (MAG 3) were retrospectively analysed. Standardized conditions for the investigation included: parenteral hydration (60 ml/hxm2 body surface) in addition to normal oral fluid intake, weight-related dose of 99mTc-MAG 3 (1 MBq/kg body weight, minimum 15 MBq) and calculation of clearance according to Bubeck et al. Of the 513 children, 169 included in this analysis could be classified as "normal" with regard to their renal function. Normal kidney function was judged by the following criteria: normal GFR for age, normal tubular function (absence of proteinuria and glucosuria), normal renal parenchyma (on ultrasonography, MAG 3 scan and intravenous pyelography), absence of significant obstruction and gross reflux (>grade I), no single kidney and no difference in split renal function >20%. Results showed increasing MAG 3 clearance values for infants during the first months of life, reaching the normal range for older children and adults between 7 and 12 months.

  18. The cell biology of polycystic kidney disease

    PubMed Central

    Chapin, Hannah C.

    2010-01-01

    Polycystic kidney disease is a common genetic disorder in which fluid-filled cysts displace normal renal tubules. Here we focus on autosomal dominant polycystic kidney disease, which is attributable to mutations in the PKD1 and PKD2 genes and which is characterized by perturbations of renal epithelial cell growth control, fluid transport, and morphogenesis. The mechanisms that connect the underlying genetic defects to disease pathogenesis are poorly understood, but their exploration is shedding new light on interesting cell biological processes and suggesting novel therapeutic targets. PMID:21079243

  19. Modulating kidney transplant interstitial fibrosis and tubular atrophy: is the RAAS an important target?

    PubMed

    Amer, Hatem; Griffin, Matthew D

    2014-02-01

    In follow-up to a recently published randomized controlled clinical trial, Issa et al. provide evidence that systemic activity and physiological responsiveness of the renin aldosterone angiotensin system (RAAS) are well within normal limits in most kidney recipients during the first 5 years post-transplant. Implications of the results include the need to better understand intra-renal RAAS activity in transplanted kidneys and to identify patients in which the graft-protective effects of RAAS blockade are most relevant.

  20. Renal cell carcinoma in a cat with polycystic kidney disease undergoing renal transplantation.

    PubMed

    Adams, Daniel J; Demchur, Jolie A; Aronson, Lillian R

    2018-01-01

    A 10-year-old spayed female American Shorthair cat underwent renal transplantation due to worsening chronic kidney disease secondary to polycystic kidney disease. During transplantation, the right kidney grossly appeared to be more diseased than the left and was firmly adhered to the surrounding tissues. An intraoperative fine-needle aspirate of the right native kidney revealed inflammatory cells but no evidence of neoplasia. To create space for the allograft, a right nephrectomy was performed. Following nephrectomy, the right native kidney was submitted for biopsy. Biopsy results revealed a renal cell carcinoma. Although the cat initially recovered well from surgery, delayed graft function was a concern in the early postoperative period. Significant azotemia persisted and the cat began to have diarrhea. Erythematous skin lesions developed in the perineal and inguinal regions, which were suspected to be secondary to thromboembolic disease based on histopathology. The cat's clinical status continued to decline with development of signs of sepsis, followed by marked obtundation with uncontrollable seizures. Given the postoperative diagnosis of renal cell carcinoma and the cat's progressively declining clinical status, humane euthanasia was elected. This case is the first to document renal cell carcinoma in a cat with polycystic kidney disease. An association of the two diseases has been reported in the human literature, but such a link has yet to be described in veterinary medicine. Given the association reported in the human literature, a plausible relationship between polycystic kidney disease and renal cell carcinoma in cats merits further investigation.

  1. Kidney Stones as an Underrecognized Clinical Sign in Pediatric Cushing Disease.

    PubMed

    Rahman, Sara H; Papadakis, Georgios Z; Keil, Margaret F; Faucz, Fabio R; Lodish, Maya B; Stratakis, Constantine A

    2016-03-01

    To investigate the prevalence of kidney stones in a population of children with Cushing disease (CD) and to compare it with the prevalence of kidney stones in healthy children. Clinical and biochemical data from 139 pediatric patients with CD (68 females, 71 males) were analyzed retrospectively. Computed tomography scans were reviewed for kidney stones. Among 139 patients, 27 with CD (19.4%) had either radiographic evidence and/or a history of kidney stones. Those with kidney stones had higher urine free cortisol (P = .008) and transsphenoidal surgery at an older age (P = .007). The average urinary calcium/creatinine ratio was elevated in patients with CD (0.22 ± 0.11). The prevalence of kidney stones was higher in children with CD than in normal children (19.42% vs 1.0%; P < .001). Our results illustrate that kidney stones are an underestimated complication of pediatric CD, especially when compared with the prevalence of nephrolithiasis in the general pediatric population. Long-term consequences for kidney function are not known and need to be studied. Published by Elsevier Inc.

  2. Effect of cadmium on the expression levels of interleukin-1α and interleukin-10 cytokines in human lung cells.

    PubMed

    Odewumi, Caroline; Latinwo, Lekan M; Sinclair, Andre; Badisa, Veera L D; Abdullah, Ahkinyala; Badisa, Ramesh B

    2015-11-01

    Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)‑1α and IL‑10 cytokines at various concentrations and incubation durations were assessed in MRC‑9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme‑linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC‑9 lung cells. In the normal MRC‑9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC‑9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity.

  3. Kidney Function in Obesity-Challenges in Indexing and Estimation.

    PubMed

    Chang, Alex R; Zafar, Waleed; Grams, Morgan E

    2018-01-01

    As the prevalence of obesity continues to increase worldwide, an increasing number of people are at risk for kidney disease. Thus, there is a critical need to understand how best to assess kidney function in this population, and several challenges exist. The convention of indexing glomerular filtration rate (GFR) to body surface area (BSA) attempts to normalize exposure to metabolic wastes across populations of differing body size. In obese individuals, this convention results in a significantly lower indexed GFR than unindexed GFR, which has practical implications for drug dosing. Recent data suggest that "unindexing" estimated GFR (multiplying by BSA/1.73 m 2 ) for drug dosing may be acceptable, but pharmocokinetic data to support this practice are lacking. Beyond indexing, biomarkers commonly used for estimating GFR may induce bias. Creatinine is influenced by muscle mass, whereas cystatin C correlates with fat mass, both independent of kidney function. Further research is needed to evaluate the performance of estimating equations and other filtration markers in obesity, and determine whether unindexed GFR might better predict optimal drug dosing and clinical outcomes in patients whose BSA is very different than the conventional normalized value of 1.73 m 2 . Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  4. Renal hemodynamic effects of the HMG-CoA reductase inhibitors in autosomal dominant polycystic kidney disease

    PubMed Central

    Zand, Ladan; Torres, Vicente E.; Larson, Timothy S.; King, Bernard F.; Sethi, Sanjeev; Bergstralh, Eric J.; Angioi, Andrea; Fervenza, Fernando C.

    2016-01-01

    Background To determine the effect of statins on renal hemodynamics in normal volunteers and those with autosomal dominant polycystic kidney disease either with mild or moderate renal dysfunction. Methods Thirty-two study subjects were enrolled in this study: 11 normal volunteers, 11 study subjects with autosomal dominant polycystic kidney disease (ADPKD) and mild kidney disease and 10 study subjects with ADPKD and moderate kidney disease. Subjects in each group received simvastatin 40 mg once daily for a period of 4 weeks. Renal blood flow was measured based on para-amino-hippurate (PAH) clearance and with the use of a magnetic resonance (MR) scanner at the beginning and following 4 weeks of therapy with statins. Results At the end of the study, except for the lipid profile, which was significantly lower in all groups, other laboratory results showed no change. Four weeks of therapy with simvastatin resulted in no change in serum creatinine, 24-h urinary protein, sodium, iothalamate clearance, PAH clearance or renal blood flow as measured by MRI or based on PAH clearance. Conclusions Four weeks of therapy with simvastatin did not change renal blood flow in the study subjects with ADPKD with mild-to-moderate renal dysfunction or in healthy volunteers. Clinical Trial Registration Number NCT02511418. PMID:26614268

  5. Pre-flight report on cultured human embryonic kidney cell handling and cell electrophoresis. Prepared prior to continuous-flow electrophoretic separation experiments aboard space shuttle flight STS-8

    NASA Technical Reports Server (NTRS)

    Todd, P. W.; Sarnoff, B. E.; Li, Z. K.

    1985-01-01

    Studies of the physical properties of continuous-flow zero-G electrophoretic separator (CFES) buffer, the electrokinetic properties of human erythrocytes in the CFES buffer, the electrokinetic properties of human embryonic kidney cells in the CFES buffer, and the viability and yield of human embryonc kidney cells subjected to flight handling procedures are discussed. In general, the procedure for cell handling and electrophoresis of HEK-8514 cells in 1st or 2nd passage on STS-8 is acceptable if executed properly. The CFES buffer has ionic strength that is barely compatible with cell viability and membrane stability, as seen in experiments with human erythrocytes and trypan-blue staining of human kidney cells. Cells suspended in 10% dialysed horse serum for 3 days in the cold appear to be more stable than freshly trypsinized cells. 10% horse serum appears to be superior to 5% horse serum for this purpose. The mean absolute raw mobility of HEK-8514 cells in CFES buffer at 6 degrees, conductivity 0.055 mmho/cm, is 1.1 to 1.4 um-cm/V-sec, with a range of nearly a whole mobility unit.

  6. A best-practice position statement on pregnancy after kidney transplantation: focusing on the unsolved questions. The Kidney and Pregnancy Study Group of the Italian Society of Nephrology.

    PubMed

    Gianfranca, Cabiddu; Donatella, Spotti; Giuseppe, Gernone; Domenico, Santoro; Gabriella, Moroni; Gina, Gregorini; Franca, Giacchino; Rossella, Attini; Monica, Limardo; Linda, Gammaro; Tullia, Todros; Piccoli, Giorgina Barbara

    2018-06-14

    Kidney transplantation (KT) is often considered to be the method best able to restore fertility in a woman with chronic kidney disease (CKD). However, pregnancies in KT are not devoid of risks (in particular prematurity, small for gestational age babies, and the hypertensive disorders of pregnancy). An ideal profile of the potential KT mother includes "normal" or "good" kidney function (usually defined as glomerular filtration rate, GFR ≥ 60 ml/min), scant or no proteinuria (usually defined as below 500 mg/dl), normal or well controlled blood pressure (one drug only and no sign of end-organ damage), no recent acute rejection, good compliance and low-dose immunosuppression, without the use of potentially teratogen drugs (mycophenolic acid and m-Tor inhibitors) and an interval of at least 1-2 years after transplantation. In this setting, there is little if any risk of worsening of the kidney function. Less is known about how to manage "non-ideal" situations, such as a pregnancy a short time after KT, or one in the context of hypertension or a failing kidney. The aim of this position statement by the Kidney and Pregnancy Group of the Italian Society of Nephrology is to review the literature and discuss what is known about the clinical management of CKD after KT, with particular attention to women who start a pregnancy in non-ideal conditions. While the experience in such cases is limited, the risks of worsening the renal function are probably higher in cases with markedly reduced kidney function, and in the presence of proteinuria. Well-controlled hypertension alone seems less relevant for outcomes, even if its effect is probably multiplicative if combined with low GFR and proteinuria. As in other settings of kidney disease, superimposed preeclampsia (PE) is differently defined and this impairs calculating its real incidence. No specific difference between non-teratogen immunosuppressive drugs has been shown, but calcineurin inhibitors have been associated with foetal growth restriction and low birth weight. The clinical choices in cases at high risk for malformations or kidney function impairment (pregnancies under mycophenolic acid or with severe kidney-function impairment) require merging clinical and ethical approaches in which, beside the mother and child dyad, the grafted kidney is a crucial "third element".

  7. Automatic detection of kidney in 3D pediatric ultrasound images using deep neural networks

    NASA Astrophysics Data System (ADS)

    Tabrizi, Pooneh R.; Mansoor, Awais; Biggs, Elijah; Jago, James; Linguraru, Marius George

    2018-02-01

    Ultrasound (US) imaging is the routine and safe diagnostic modality for detecting pediatric urology problems, such as hydronephrosis in the kidney. Hydronephrosis is the swelling of one or both kidneys because of the build-up of urine. Early detection of hydronephrosis can lead to a substantial improvement in kidney health outcomes. Generally, US imaging is a challenging modality for the evaluation of pediatric kidneys with different shape, size, and texture characteristics. The aim of this study is to present an automatic detection method to help kidney analysis in pediatric 3DUS images. The method localizes the kidney based on its minimum volume oriented bounding box) using deep neural networks. Separate deep neural networks are trained to estimate the kidney position, orientation, and scale, making the method computationally efficient by avoiding full parameter training. The performance of the method was evaluated using a dataset of 45 kidneys (18 normal and 27 diseased kidneys diagnosed with hydronephrosis) through the leave-one-out cross validation method. Quantitative results show the proposed detection method could extract the kidney position, orientation, and scale ratio with root mean square values of 1.3 +/- 0.9 mm, 6.34 +/- 4.32 degrees, and 1.73 +/- 0.04, respectively. This method could be helpful in automating kidney segmentation for routine clinical evaluation.

  8. CT volumetry is superior to nuclear renography for prediction of residual kidney function in living donors.

    PubMed

    Barbas, Andrew S; Li, Yanhong; Zair, Murtuza; Van, Julie A; Famure, Olusegun; Dib, Martin J; Laurence, Jerome M; Kim, S Joseph; Ghanekar, Anand

    2016-09-01

    Living kidney donor evaluation commonly includes nuclear renography to assess split kidney function and computed tomography (CT) scan to evaluate anatomy. To streamline donor workup and minimize exposure to radioisotopes, we sought to assess the feasibility of using proportional kidney volume from CT volumetry in lieu of nuclear renography. We examined the correlation between techniques and assessed their ability to predict residual postoperative kidney function following live donor nephrectomy. In a cohort of 224 live kidney donors, we compared proportional kidney volume derived by CT volumetry with split kidney function derived from nuclear renography and found only modest correlation (left kidney R(2) =26.2%, right kidney R(2) =26.7%). In a subset of 88 live kidney donors with serum creatinine measured 6 months postoperatively, we compared observed estimated glomerular filtration rate (eGFR) at 6 months with predicted eGFR from preoperative imaging. Compared to nuclear renography, CT volumetry more closely approximated actual observed postoperative eGFR for Chronic Kidney Disease Epidemiology Collaboration (J-test: P=.02, Cox-Pesaran test: P=.01) and Mayo formulas (J-test: P=.004, Cox-Pesaran test: P<.001). These observations support the use of CT volumetry for estimation of split kidney function in healthy individuals with normal kidney function and morphology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Acute and Chronic Kidney Injury in a Non-Human Primate Model of Partial-Body Irradiation with Bone Marrow Sparing.

    PubMed

    Cohen, Eric P; Hankey, Kim G; Bennett, Alexander W; Farese, Ann M; Parker, George A; MacVittie, Thomas J

    2017-12-01

    The development of medical countermeasures against acute and delayed multi-organ injury requires animal models predictive of the human response to radiation and its treatment. Late chronic injury is a well-known feature of radiation nephropathy, but acute kidney injury has not been reported in an appropriate animal model. We have established a single-fraction partial-body irradiation model with minimal marrow sparing in non-human primates. Subject-based medical management was used including parenteral fluids according to prospective morbidity criteria. We show herein that 10 or 11 Gy exposures caused both acute and chronic kidney injury. Acute and chronic kidney injury appear to be dose-independent between 10 and 11 Gy. Acute kidney injury was identified during the first 50 days postirradiation and appeared to resolve before the occurrence of chronic kidney injury, which was progressively more severe up to 180 days postirradiation, which was the end of the study. These findings show that mitigation of the acute radiation syndrome by medical management will unmask delayed late effects that occur months after partial-body irradiation. They further emphasize that both acute and chronic changes in kidney function must be taken into account in the use and timing of mitigators and medical management for acute radiation syndrome and delayed effects of acute radiation exposure (DEARE).

  10. Kidney Transplantation in a Patient Lacking Cytosolic Phospholipase A2 Proves Renal Origins of Urinary PGI-M and TX-M.

    PubMed

    Mitchell, Jane A; Knowles, Rebecca B; Kirkby, Nicholas S; Reed, Daniel M; Edin, Matthew L; White, William E; Chan, Melissa V; Longhurst, Hilary; Yaqoob, Magdi M; Milne, Ginger L; Zeldin, Darryl C; Warner, Timothy D

    2018-02-16

    The balance between vascular prostacyclin, which is antithrombotic, and platelet thromboxane A 2 , which is prothrombotic, is fundamental to cardiovascular health. Prostacyclin and thromboxane A 2 are formed after the concerted actions of cPLA 2 α (cytosolic phospholipase A 2 ) and COX (cyclooxygenase). Urinary 2,3-dinor-6-keto-PGF 1α (PGI-M) and 11-dehydro-TXB 2 (TX-M) have been taken as biomarkers of prostacyclin and thromboxane A 2 formation within the circulation and used to explain COX biology and patient phenotypes, despite concerns that urinary PGI-M and TX-M originate in the kidney. We report data from a remarkable patient carrying an extremely rare genetic mutation in cPLA 2 α, causing almost complete loss of prostacyclin and thromboxane A 2 , who was transplanted with a normal kidney resulting in an experimental scenario of whole-body cPLA 2 α knockout, kidney-specific knockin. By studying this patient, we can determine definitively the contribution of the kidney to the productions of PGI-M and TX-M and test their validity as markers of prostacyclin and thromboxane A 2 in the circulation. Metabolites were measured using liquid chromatography-tandem mass spectrometry. Endothelial cells were grown from blood progenitors. Before kidney transplantation, the patient's endothelial cells and platelets released negligible levels of prostacyclin (measured as 6-keto-prostaglandin F 1α ) and thromboxane A 2 (measured as TXB 2 ), respectively. Likewise, the urinary levels of PGI-M and TX-M were very low. After transplantation and the establishment of normal renal function, the levels of PGI-M and TX-M in the patient's urine rose to within normal ranges, whereas endothelial production of prostacyclin and platelet production of thromboxane A 2 remained negligible. These data show that PGI-M and TX-M can be derived exclusively from the kidney without contribution from prostacyclin made by endothelial cells or thromboxane A 2 by platelets in the general circulation. Previous work relying on urinary metabolites of prostacyclin and thromboxane A 2 as markers of whole-body endothelial and platelet function now requires reevaluation. © 2018 The Authors.

  11. Mechanisms for an effect of acetylcysteine on renal function after exposure to radio-graphic contrast material: study protocol.

    PubMed

    Sandilands, Euan A; Cameron, Sharon; Paterson, Frances; Donaldson, Sam; Briody, Lesley; Crowe, Jane; Donnelly, Julie; Thompson, Adrian; Johnston, Neil R; Mackenzie, Ivor; Uren, Neal; Goddard, Jane; Webb, David J; Megson, Ian L; Bateman, Nicholas; Eddleston, Michael

    2012-02-03

    Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of acetylcysteine on renal function and identify an appropriate route for future dose response studies and in time randomized controlled trials. Clinical Trials.gov: NCT00558142; EudraCT: 2006-003509-18.

  12. Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism.

    PubMed

    Kaseda, Ryohei; Tsuchida, Yohei; Yang, Hai-Chun; Yancey, Patricia G; Zhong, Jianyong; Tao, Huan; Bian, Aihua; Fogo, Agnes B; Linton, Mac Rae F; Fazio, Sergio; Ikizler, Talat Alp; Kon, Valentina

    2018-01-27

    Our aim was to evaluate lipid trafficking and inflammatory response of macrophages exposed to lipoproteins from subjects with moderate to severe chronic kidney disease (CKD), and to investigate the potential benefits of activating cellular cholesterol transporters via liver X receptor (LXR) agonism. LDL and HDL were isolated by sequential density gradient ultracentrifugation of plasma from patients with stage 3-4 CKD and individuals without kidney disease (HDL CKD and HDL Cont , respectively). Uptake of LDL, cholesterol efflux to HDL, and cellular inflammatory responses were assessed in human THP-1 cells. HDL effects on inflammatory markers (MCP-1, TNF-α, IL-1β), Toll-like receptors-2 (TLR-2) and - 4 (TLR-4), ATP-binding cassette class A transporter (ABCA1), NF-κB, extracellular signal regulated protein kinases 1/2 (ERK1/2) were assessed by RT-PCR and western blot before and after in vitro treatment with an LXR agonist. There was no difference in macrophage uptake of LDL isolated from CKD versus controls. By contrast, HD CKD was significantly less effective than HDL Cont in accepting cholesterol from cholesterol-enriched macrophages (median 20.8% [IQR 16.1-23.7] vs control (26.5% [IQR 19.6-28.5]; p = 0.008). LXR agonist upregulated ABCA1 expression and increased cholesterol efflux to HDL of both normal and CKD subjects, although the latter continued to show lower efflux capacity. HDL CKD increased macrophage cytokine response (TNF-α, MCP-1, IL-1β, and NF-κB) versus HDL Cont . The heightened cytokine response to HDL CKD was further amplified in cells treated with LXR agonist. The LXR-augmentation of inflammation was associated with increased TLR-2 and TLR-4 and ERK1/2. Moderate to severe impairment in kidney function promotes foam cell formation that reflects impairment in cholesterol acceptor function of HDL CKD . Activation of cellular cholesterol transporters by LXR agonism improves but does not normalize efflux to HDL CKD . However, LXR agonism actually increases the pro-inflammatory effects of HDL CKD through activation of TLRs and ERK1/2 pathways.

  13. Serum Factors from Pseudoxanthoma Elasticum Patients Alter Elastic Fiber Formation In Vitro

    PubMed Central

    Le Saux, Olivier; Bunda, Severa; VanWart, Christopher M.; Douet, Vanessa; Got, Laurence; Martin, Ludovic; Hinek, Aleksander

    2017-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable disorder mainly characterized by calcified elastic fibers in cutaneous, ocular, and vascular tissues. PXE is caused by mutations in ABCC6, a gene encoding an ABC transporter predominantly expressed in liver and kidneys. The functional relationship between ABCC6 and elastic fiber calcification is unknown. We speculated that ABCC6 deficiency in PXE patients induces a persistent imbalance in circulating metabolite(s), which may impair the synthetic abilities of normal elastoblasts or specifically alter elastic fiber assembly. Therefore, we compared the deposition of elastic fiber proteins in cultures of fibroblasts derived from PXE and unaffected individuals. PXE fibroblasts cultured with normal human serum expressed and deposited increased amounts of proteins, but structurally normal elastic fibers. Interestingly, normal and PXE fibroblasts as well as normal smooth muscle cells deposited abnormal aggregates of elastic fibers when maintained in the presence of serum from PXE patients. The expression of tropoelastin and other elastic fiber-associated genes was not significantly modulated by the presence of PXE serum. These results indicated that certain metabolites present in PXE sera interfered with the normal assembly of elastic fibers in vitro and suggested that PXE is a primary metabolic disorder with secondary connective tissue manifestations. PMID:16543900

  14. Regenerating the kidney using human pluripotent stem cells and renal progenitors.

    PubMed

    Becherucci, Francesca; Mazzinghi, Benedetta; Allinovi, Marco; Angelotti, Maria Lucia; Romagnani, Paola

    2018-06-25

    Introduction Chronic kidney disease is a major healthcare problem worldwide and its cost is becoming no longer affordable. Indeed, restoring damaged renal structures or building a new kidney represent an ambitious and ideal alternative to renal replacement therapy. Streams of research have explored the possible application of pluripotent SCs (embryonic SCs and induced pluripotent SCs) in different strategies aimed at regenerate functioning nephrons and at understanding the mechanisms of kidney regeneration. Areas covered In this review, we will focus on the main potential applications of human pluripotent SCs to kidney regeneration, including those leading to rebuilding new kidneys or part of them (organoids, scaffolds, biological microdevices) as well as those aimed at understanding the pathophysiological mechanisms of renal disease and regenerative processes (modeling of kidney disease, genome editing). Moreover, we will discuss the role of endogenous renal progenitors cells in order to understand and promote kidney regeneration, as an attractive alternative to pluripotent SCs. Expert opinion Opportunities and pitfalls of all these strategies will be underlined, finally leading to the conclusion that a deeper knowledge of the biology of pluripotent SCs is mandatory, in order to allow us to hypothesize their clinical application.

  15. Formula Feeding Is Independently Associated With Acute Kidney Injury in Very Low Birth Weight Infants.

    PubMed

    Ginovart, Gemma; Gich, Ignasi; Verd, Sergio

    2016-11-01

    Successful strategies to prevent neonatal acute kidney injury are lacking. Nevertheless, it is well known that in breastfed babies the excretory needs of the kidney are low because the intake of most nutrients is just above the nutritional requirement. This study aimed to determine whether feeding type predicts acute kidney injury in the very low birth weight infant. One hundred and eighty-six infants were enrolled in this pre-post cohort study (114 infants were included in the only human milk-fed group and 72 in the formula-fed group). Routine biological markers of acute kidney injury were collected in both groups from birth to discharge. Compared with formula feeding, human milk feeding was associated with almost 80% lower odds of acute kidney injury (odds ratio [OR] = 0.2; 95% confidence interval [CI], 0.05-0.77). After confounding variables had been controlled for, formula feeding was independently associated with acute kidney injury in very low birth weight infants. The study showed that, at our institution, acute kidney injury in the neonatal period is frequently associated with the avoidable procedure of formula feeding. Further prospective multicenter studies are needed to determine the generality of this association.

  16. Nicotine Enhances High-Fat Diet-Induced Oxidative Stress in the Kidney.

    PubMed

    Arany, Istvan; Hall, Samuel; Reed, Dustin K; Reed, Caitlyn T; Dixit, Mehul

    2016-07-01

    Life expectancy of an obese smoker is 13 years less than a normal weight smoker, which could be linked to the increased renal risk imposed by smoking. Both smoking-through nicotine (NIC)-and obesity-by free fatty acid overload-provoke oxidative stress in the kidney, which ultimately results in development of chronic kidney injury. Their combined renal risk, however, is virtually unknown. We tested the hypothesis that chronic NIC exposure worsens renal oxidative stress in mice on high-fat diet (HFD) by altering the balance between expression of pro-oxidant and antioxidant genes. Nine-week-old male C57Bl/6J mice consumed normal diet (ND) or HFD and received either NIC (200 μg/ml) or vehicle (2% saccharine) in their drinking water. Body weight, plasma clinical parameters, renal lipid deposition, markers of renal oxidative stress and injury, as well as renal expression of the pro-oxidant p66shc and the antioxidant MnSOD were determined after 12 weeks. NIC significantly augmented levels of circulating free fatty acid, as well as lipid deposition, oxidative stress and sublethal injury in the kidneys of mice on HFD. In addition, NIC exposure suppressed HFD-mediated induction of MnSOD while increased expression of p66shc in the kidney. Tobacco smoking or the increasingly popular E-cigarettes-via NIC exposure-could worsen obesity-associated lipotoxicity in the kidney. Hence, our findings could help to develop strategies that mitigate adverse effects of NIC on the obese kidney. Life expectancy of an obese smoker is 13 years less than a normal weight smoker, which could be linked to the increased renal risk imposed by smoking. NIC-the main component of tobacco smoke, E-cigarettes and replacement therapies-links smoking to renal injury via oxidative stress, which could superimpose renal oxidative stress caused by obesity. Our results substantiate this scenario using a mouse model of diet induced obesity and NIC exposure and imply the augmented long-term renal risk in obese smokers. Also, our study may help to develop strategies that mitigate adverse effects of NIC on the obese kidney. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Individualized therapy to prevent bone mineral density loss after kidney and kidney-pancreas transplantation.

    PubMed

    Mainra, Rahul; Elder, Grahame J

    2010-01-01

    Most patients who undergo kidney or kidney-pancreas transplantation have renal osteodystrophy, and immediately after transplantation bone mineral density (BMD) commonly falls. Together, these abnormalities predispose to an increased fracture incidence. Bisphosphonate or calcitriol therapy can preserve BMD after transplantation, but although bisphosphonates may be more effective, they pose potential risks for adynamic bone. A total of 153 kidney (61%) and kidney-pancreas (39%) transplant recipients were allocated to bisphosphonate (62%) or calcitriol (38%) therapy using an algorithm that incorporated BMD, prevalent vertebral fracture, biomarkers of bone turnover, and risk factor assessment. Patients received cholecalciferol and calcium as appropriate and were followed for 12 mo. Patients who were treated with bisphosphonates had lower BMD at the lumbar spine and femoral neck and longer time on dialysis. Age and gender were similar between the groups. At 12 mo, bisphosphonate-treated patients had significant BMD increases at the lumber spine and femoral neck and a negative trend at the wrist. Patients who were allocated to calcitriol, who were assessed to have lower baseline fracture risk, had no significant change in BMD at any site. At 1 yr, mean levels of bone turnover marker and intact parathyroid hormone normalized in both groups. Incident fracture rates did not differ significantly. With targeted treatment, BMD levels were stable or improved and bone turnover markers normalized. This algorithm provides a guide to targeting therapy after transplantation that avoids BMD loss and may reduce suppression of bone turnover.

  18. Small renal size in newborns with spina bifida: possible causes.

    PubMed

    Montaldo, Paolo; Montaldo, Luisa; Iossa, Azzurra Concetta; Cennamo, Marina; Caredda, Elisabetta; Del Gado, Roberto

    2014-02-01

    Previous studies reported that children with neural tube defects, but without any history of intrinsic renal diseases, have small kidneys when compared with age-matched standard renal growth. The aim of this study was to investigate the possible causes of small renal size in children with spina bifida by comparing growth hormone deficiency, physical limitations and hyperhomocysteinemia. The sample included 187 newborns with spina bifida. Renal sizes in the patients were assessed by using maximum measurement of renal length and the measurements were compared by using the Sutherland monogram. According to the results, the sample was divided into two groups--a group of 120 patients with small kidneys (under the third percentile) and a control group of 67 newborns with normal kidney size. Plasma total homocysteine was investigated in mothers and in their children. Serum insulin-like growth factor-1 (IGF-1) levels were measured. Serum IGF-1 levels were normal in both groups. Children and mothers with homocysteine levels >10 μmol/l were more than twice as likely to have small kidneys and to give to birth children with small kidneys, respectively, compared with newborns and mothers with homocysteine levels <10 μmol/l. An inverse correlation was also found between the homocysteine levels of mothers and kidney sizes of children (r = - 0.6109 P ≤ 0.01). It is highly important for mothers with hyperhomocysteinemia to be educated about benefits of folate supplementation in order to reduce the risk of small renal size and lower renal function in children.

  19. Combined heart-kidney transplantation after total artificial heart insertion.

    PubMed

    Ruzza, A; Czer, L S C; Ihnken, K A; Sasevich, M; Trento, A; Ramzy, D; Esmailian, F; Moriguchi, J; Kobashigawa, J; Arabia, F

    2015-01-01

    We present the first single-center report of 2 consecutive cases of combined heart and kidney transplantation after insertion of a total artificial heart (TAH). Both patients had advanced heart failure and developed dialysis-dependent renal failure after implantation of the TAH. The 2 patients underwent successful heart and kidney transplantation, with restoration of normal heart and kidney function. On the basis of this limited experience, we consider TAH a safe and feasible option for bridging carefully selected patients with heart and kidney failure to combined heart and kidney transplantation. Recent FDA approval of the Freedom driver may allow outpatient management at substantial cost savings. The TAH, by virtue of its capability of providing pulsatile flow at 6 to 10 L/min, may be the mechanical circulatory support device most likely to recover patients with marginal renal function and advanced heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Gene transfer into the kidney: current status and limitations.

    PubMed

    Moullier, P; Salvetti, A; Champion-Arnaud, P; Ronco, P M

    1997-01-01

    Gene therapy is obviously a controversial issue and a wave of suspicion has dampened the initial enthusiasm raised by this new therapeutic approach. It has now become fashionable to downplay the potential for gene therapy in most fields including kidney-related diseases. In our opinion, this is an unfair and unrealistic view of the future. In fact, gene therapy of well-selected kidney diseases will certainly become feasible, but a large data base on vectors and transfer methods both in the normal kidney and in disease models has first to be collected. Any significant progress in the biology of the vectors, in the cellular interactions of the newly introduced DNA, and in the regulation and persistency of the transgene should be rapidly translated to the kidney in relevant experimental models. Herein, we present the use and current limitations of gene transfer to the kidney and the potential therapeutic perspectives.

  1. Chronic treatment with recombinant human erythropoietin exerts renoprotective effects beyond hematopoiesis in streptozotocin-induced diabetic rat.

    PubMed

    Toba, Hiroe; Sawai, Naoki; Morishita, Masayuki; Murata, Shoko; Yoshida, Mamiko; Nakashima, Kohei; Morita, Yosuke; Kobara, Miyuki; Nakata, Tetsuo

    2009-06-10

    Recombinant human erythropoietin (rHuEPO), which has been used clinically for the management of renal anemia, is reported to exert pleiotropic beneficial properties against acute ischemic/reperfusion injury in various tissues. To investigate the hypothesis that chronic treatment with rHuEPO might ameliorate diabetic nephropathy beyond hematopoiesis, rHuEPO (150 U/kg, subcutaneously) was administered three times per week to the streptozotocin-induced diabetic rats for 4 weeks. Streptozotocin (65 mg/kg, intravenously) significantly increased urinary protein excretion and collagen deposition in glomerular and tubulointerstitial areas in the kidney, which were attenuated by rHuEPO. rHuEPO normalized the levels of creatinine clearance, serum creatinine, and blood urea nitrogen of diabetic rats. RT-PCR analysis revealed that the expressions of mRNA for transforming growth factor-beta, osteopontin and adhesion molecules were enhanced in the diabetic rat kidney and that the overexpression of these molecules was suppressed by rHuEPO. rHuEPO exerted antioxidant properties by inhibiting renal activation and overexpression of NADPH oxidase. We found the activation of the Akt signaling pathway by the increased expression of phosphorylated Akt and GSK-3beta and a reduction of TUNEL-positive apoptotic cell death in renal tissue from rHuEPO-treated diabetic group. We also demonstrated that rHuEPO restored the endothelial nitric oxide synthase (eNOS) content in the diabetic rat kidney. On the other hand, treatment with rHuEPO did not affect blood glucose level, blood pressure, or hematocrit in diabetic rats. These results suggest that chronic treatment with rHuEPO attenuated renal injury beyond hematopoiesis and regulated apoptosis and eNOS expression, which might be due to the activation of Akt pathway.

  2. Nephrotoxicity of Epigenetic Inhibitors Used for the Treatment of Cancer

    PubMed Central

    Scholpa, N.E.; Kolli, R.T.; Moore, M.; Arnold, R.D.; Glenn, T.C.; Cummings, B.S.

    2016-01-01

    This study determined the anti-neoplastic activity and nephrotoxicity of epigenetic inhibitors in vitro. The therapeutic efficacy of epigenetic inhibitors was determined in human prostate cancer cells (PC-3 and LNCaP) using the DNA methyltransferase inhibitor 5-azacytidine (5-Aza) and the histone deacetylase inhibitor trichostatin A (TSA). Cells were also treated with carbamazepine (CBZ), an anti-convulsant with histone deacetylase inhibitor-like properties. 5-Aza, TSA or CBZ alone did not decrease MTT staining in PC-3 or LNCaP cells after 48 hr. In contrast, docetaxel, a frontline chemotherapeutic induced concentration-dependent decreases in MTT staining. Pretreatment with 5-Aza or TSA increased docetaxel-induced cytotoxicity in LNCaP cells, but not PC-3 cells. TSA pretreatment also increased cisplatin-induced toxicity in LNCaP cells. Carfilzomib (CFZ), a protease inhibitor approved for the treatment of multiple myeloma had minimal effect on LNCaP cell viability, but reduced MTT staining 50% in PC-3 cells compared to control, and pretreatment with 5-Aza further enhanced toxicity. Treatment of normal rat kidney (NRK) and human embryonic kidney 293 (HEK293) cells with the same concentrations of epigenetic inhibitors used in prostate cancer cells significantly decreased MTT staining in all cell lines after 48 hr. Interestingly, we found that the toxicity of epigenetic inhibitors to kidney cells was dependent on both the compound and the stage of cell growth. The effect of 5-Aza and TSA on DNA methyltransferase and histone deacetylase activity, respectively, was confirmed by assessing the methylation and acetylation of the CDK inhibitor p21. Collectively, these data show that combinatorial treatment with epigenetic inhibitors alters the efficacy of chemotherapeutics in cancer cells in a compound- and cell-specific manner; however, this treatment also has the potential to induce nephrotoxic cell injury. PMID:27543423

  3. Autoantibodies against cytochrome P450s in sera of children treated with immunosuppressive drugs

    PubMed Central

    LYTTON, S D; BERG, U; NEMETH, A; INGELMAN-SUNDBERG, M

    2002-01-01

    Treatment with the immunosuppressive drugs cyclosporin and tacrolimus, the mainstays of anti-graft rejection and autoimmune disease therapy, is limited by their hepato-and nephrotoxicity. The metabolic conversion of these compounds to more easily excretable products is catalysed mainly by hepatic cytochrome P4503A4 (CYP3A4) but also involves extrahepatic CYP3A5 and other P450 forms. We set out to study whether or not exposure to cyclosporin and FK506 in children undergoing organ transplantation leads to formation of autoantibodies against P450s. Immunoblotting analysis revealed anti-CYP reactivity in 16% of children on CyA for anti-graft rejection or treatment of nephrosis (n = 67), 31% of kidney transplant patients switched from CyA to FK506 (n = 16), and 21% of kidney and or liver transplant patients on FK506 (n = 14). In contrast, the frequency of reactive immunoblots was only 8·5% among the normal paediatric controls (n = 25) and 7% among adult kidney transplant patients on CyA or FK506 (n = 30). The CYP2C9+ sera were able to immunoprecipitate in vitro translated CYP2C9 and the immunoblot reactivity showed striking correlation to peaks in the age at onset of drug exposure. Sera were isoform selective as evidenced from Western blotting using human liver microsomes and heterologously expressed human P450s. These findings suggest that anti-cytochrome P450 autoantibodies, identified on the basis of their specific binding in immunoblots, are significantly increased among children on immunosuppressive drugs and in some cases are associated with drug toxicity and organ rejection. PMID:11876753

  4. Autoantibodies against cytochrome P450s in sera of children treated with immunosuppressive drugs.

    PubMed

    Lytton, S D; Berg, U; Nemeth, A; Ingelman-Sundberg, M

    2002-02-01

    Treatment with the immunosuppressive drugs cyclosporin and tacrolimus, the mainstays of anti-graft rejection and autoimmune disease therapy, is limited by their hepato- and nephrotoxicity. The metabolic conversion of these compounds to more easily excretable products is catalysed mainly by hepatic cytochrome P4503A4 (CYP3A4) but also involves extrahepatic CYP3A5 and other P450 forms. We set out to study whether or not exposure to cyclosporin and FK506 in children undergoing organ transplantation leads to formation of autoantibodies against P450s. Immunoblotting analysis revealed anti-CYP reactivity in 16% of children on CyA for anti-graft rejection or treatment of nephrosis (n = 67), 31% of kidney transplant patients switched from CyA to FK506 (n = 16), and 21% of kidney and or liver transplant patients on FK506 (n = 14). In contrast, the frequency of reactive immunoblots was only 8.5% among the normal paediatric controls (n = 25) and 7% among adult kidney transplant patients on CyA or FK506 (n = 30). The CYP2C9+ sera were able to immunoprecipitate in vitro translated CYP2C9 and the immunoblot reactivity showed striking correlation to peaks in the age at onset of drug exposure. Sera were isoform selective as evidenced from Western blotting using human liver microsomes and heterologously expressed human P450s. These findings suggest that anti-cytochrome P450 autoantibodies, identified on the basis of their specific binding in immunoblots, are significantly increased among children on immunosuppressive drugs and in some cases are associated with drug toxicity and organ rejection.

  5. Increased urine semaphorin-3A is associated with renal damage in hypertensive patients with chronic kidney disease: a nested case-control study.

    PubMed

    Viazzi, Francesca; Ramesh, Ganesan; Jayakumar, Calpurnia; Leoncini, Giovanna; Garneri, Debora; Pontremoli, Roberto

    2015-06-01

    Semaphorins are guidance proteins implicated in several processes such as angiogenesis, organogenesis, cell migration, and cytokine release. Experimental studies showed that semaphorin-3a (SEMA3A) administration induces transient massive proteinuria, podocyte foot process effacement and endothelial cell damage in healthy animals. While SEMA3A signaling has been demonstrated to be mechanistically involved in experimental diabetic glomerulopathy and in acute kidney injury, to date its role in human chronic kidney disease (CKD) has not been investigated. To test the hypothesis that SEMA3A may play a role in human CKD, we performed a cross-sectional, nested, case-control study on 151 matched hypertensive patients with and without CKD. SEMA3A was quantified in the urine (USEMA) by ELISA. Glomerular filtration rate was estimated (eGFR) by the CKD-EPI formula and albuminuria was measured as albumin-to-creatinine ratio (ACR). USEMA levels were positively correlated with urine ACR (p = 0.001) and serum creatinine (p < 0.001). USEMA was higher in patients with both components of renal damage as compared to those with only one and those with normal renal function (p < 0.007 and <0.001, respectively). The presence of increased USEMA levels (i.e. top quartile) entailed a fourfold higher risk of combined renal damage (p < 0.001) and an almost twofold higher risk of macroalbuminuria (p = 0.005) or of reduced eGFR, even adjusting for confounding factors (p = 0.002). USEMA is independently associated with CKD in both diabetic and non diabetic hypertensive patients. Further studies may help clarify the mechanisms underlying this association and possibly the pathogenic changes leading to the development of CKD.

  6. Elevated Cell Wall Chitin in Candida albicans Confers Echinocandin Resistance In Vivo

    PubMed Central

    Lee, Keunsook K.; MacCallum, Donna M.; Jacobsen, Mette D.; Walker, Louise A.; Odds, Frank C.

    2012-01-01

    Candida albicans cells with increased cell wall chitin have reduced echinocandin susceptibility in vitro. The aim of this study was to investigate whether C. albicans cells with elevated chitin levels have reduced echinocandin susceptibility in vivo. BALB/c mice were infected with C. albicans cells with normal chitin levels and compared to mice infected with high-chitin cells. Caspofungin therapy was initiated at 24 h postinfection. Mice infected with chitin-normal cells were successfully treated with caspofungin, as indicated by reduced kidney fungal burdens, reduced weight loss, and decreased C. albicans density in kidney lesions. In contrast, mice infected with high-chitin C. albicans cells were less susceptible to caspofungin, as they had higher kidney fungal burdens and greater weight loss during early infection. Cells recovered from mouse kidneys at 24 h postinfection with high-chitin cells had 1.6-fold higher chitin levels than cells from mice infected with chitin-normal cells and maintained a significantly reduced susceptibility to caspofungin when tested in vitro. At 48 h postinfection, caspofungin treatment induced a further increase in chitin content of C. albicans cells harvested from kidneys compared to saline treatment. Some of the recovered clones had acquired, at a low frequency, a point mutation in FKS1 resulting in a S645Y amino acid substitution, a mutation known to confer echinocandin resistance. This occurred even in cells that had not been exposed to caspofungin. Our results suggest that the efficacy of caspofungin against C. albicans was reduced in vivo due to either elevation of chitin levels in the cell wall or acquisition of FKS1 point mutations. PMID:21986821

  7. Impact of parenchymal loss on renal function after laparoscopic partial nephrectomy under warm ischemia.

    PubMed

    Bagheri, Fariborz; Pusztai, Csaba; Farkas, László; Kallidonis, Panagiotis; Buzogány, István; Szabó, Zsuzsanna; Lantos, János; Imre, Marianna; Farkas, Nelli; Szántó, Árpád

    2016-12-01

    To elucidate the impact of renal parenchymal loss and the ischemic reperfusion injury (RI) on the renal function after laparoscopic partial nephrectomy (LPN) under warm ischemia (WI). Thirty-five patients with a single polar renal mass ≤4 cm and normal contralateral kidney underwent LPN. Transperitoneal LPN with WI using en bloc hilar occlusion was performed. The total differential renal function (T-DRF) using 99m Tc-dimercaptosuccinic acid was evaluated preoperatively and postoperatively over a period of 1 year. A special region of interest (ROI) was selected on the non-tumorous pole of the involved kidney, and was compared with the same ROI in the contralateral kidney. The latter comparison was defined as partial differential renal function (P-DRF). Any postoperative decline in the P-DRF of the operated kidney was attributed to the RI. Subtraction of the P-DRF decline from the T-DRF decline was attributed to the parenchymal loss caused by the resection of the tumor and suturing of the normal parenchyma. The mean WI time was 22 min, and the mean weight of resected specimen was 18 g. The mean postoperative eGFR declined to 87 ml/min/1.73 m 2 from its baseline mean value of 97 ml/min/1.73 m 2 (p value = 0.075). Mean postoperative T-DRF and P-DRF of the operated kidney declined by 7 and 3 %, respectively. After LPN of small renal mass, decline in renal function is primarily attributed to parenchymal loss caused by tumor resection and suturing of the normal parenchyma rather than the RI.

  8. Neonatal diabetes mellitus, congenital hypothyroidism, hepatic fibrosis, polycystic kidneys, and congenital glaucoma: a new autosomal recessive syndrome?

    PubMed

    Taha, Doris; Barbar, Maha; Kanaan, Hassan; Williamson Balfe, John

    2003-10-15

    We report on two sibs (of 4) with a syndrome of minor facial anomalies, proportionate IUGR, neonatal non-autoimmune diabetes mellitus (NDM), severe congenital hypothyroidism (CH), cholestasis, congenital glaucoma, and polycystic kidneys. Liver disease progressed to hepatic fibrosis. The renal disease was characterized by large kidneys and multiple small cysts with deficient corticomedullary junction differentiation and normal kidney function. The phenotype observed in the two sibs was identical. Although a combination of liver, kidney, and pancreatic involvement has been described in Ivemark syndrome (hepato-renal-pancreatic syndrome), the coexistence of NDM, CH, and glaucoma in both sibs suggests the possibility that this combination of manifestations describes a new autosomal recessive syndrome. Mutation analysis for several candidate genes is warranted. Copyright 2003 Wiley-Liss, Inc.

  9. A Case Report of Successful Kidney Donation After Brain Death Following Nicotine Intoxication.

    PubMed

    Räsänen, M; Helanterä, I; Kalliomäki, J; Savikko, J; Parry, M; Lempinen, M

    Nicotine intoxication is a rare cause of death and can lead to brain death after respiratory arrest and hypoxic-ischemic encephalopathy. To our knowledge, no previous reports regarding organ donation after nicotine intoxication have been described. We present a successful case of kidney donation after brain death caused by subcutaneous nicotine overdose from liquid nicotine from an e-cigarette cartridge in an attempted suicide. Both kidneys were transplanted successfully with immediate graft function, and both recipients were discharged at postoperative day 9 with normal plasma creatinine levels. Graft function has remained excellent in follow-up. This case suggests that kidneys from a donor with fatal nicotine intoxication may be successfully used for kidney transplantation in the absence of other contraindications for donation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Matrix metalloproteinases in kidney homeostasis and diseases

    PubMed Central

    Tan, Roderick J.

    2012-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that have been increasingly linked to both normal physiology and abnormal pathology in the kidney. Collectively able to degrade all components of the extracellular matrix, MMPs were originally thought to antagonize the development of fibrotic diseases solely through digestion of excessive matrix. However, increasing evidence has shown that MMPs play a wide variety of roles in regulating inflammation, epithelial-mesenchymal transition, cell proliferation, angiogenesis, and apoptosis. We now have robust evidence for MMP dysregulation in a multitude of renal diseases including acute kidney injury, diabetic nephropathy, glomerulonephritis, inherited kidney disease, and chronic allograft nephropathy. The goal of this review is to summarize current findings regarding the role of MMPs in kidney diseases as well as the mechanisms of action of this family of proteases. PMID:22492945

  11. Morphology of human embryonic kidney cells in culture after space flight

    NASA Technical Reports Server (NTRS)

    Todd, P.; Kunze, M. E.; Williams, K.; Morrison, D. R.; Lewis, M. L.; Barlow, G. H.

    1985-01-01

    The ability of human embyronic kidney cells to differentiate into small epithelioid, large epithelioid, domed, and fenestrated morphological cell types following space flight is examined. Kidney cells exposed to 1 day at 1 g, then 1 day in orbit, and a 12 minute passage through the electrophoretic separator are compared with control cultures. The data reveal that 70 percent of small epithelioid, 16 percent of large epithelioid, 9 percent of dome-forming, and 5 percent of fenestrated cells formed in the space exposed cells; the distributions correlate well with control data. The formation of domed cells from cells cultured from low electrophoretic mobility fractions and small epithelioid cells from high mobility fractions is unaffected by space flight conditions. It is concluded that storage under microgravity conditions does not influence the morphological differentiation of human embryonic kidney cells in low-passage culture.

  12. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease.

    PubMed

    Yang, Tao; Richards, Elaine M; Pepine, Carl J; Raizada, Mohan K

    2018-07-01

    Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.

  13. AMP-Activated Protein Kinase as a Reprogramming Strategy for Hypertension and Kidney Disease of Developmental Origin.

    PubMed

    Tain, You-Lin; Hsu, Chien-Ning

    2018-06-12

    Suboptimal early-life conditions affect the developing kidney, resulting in long-term programming effects, namely renal programming. Adverse renal programming increases the risk for developing hypertension and kidney disease in adulthood. Conversely, reprogramming is a strategy aimed at reversing the programming processes in early life. AMP-activated protein kinase (AMPK) plays a key role in normal renal physiology and the pathogenesis of hypertension and kidney disease. This review discusses the regulation of AMPK in the kidney and provides hypothetical mechanisms linking AMPK to renal programming. This will be followed by studies targeting AMPK activators like metformin, resveratrol, thiazolidinediones, and polyphenols as reprogramming strategies to prevent hypertension and kidney disease. Further studies that broaden our understanding of AMPK isoform- and tissue-specific effects on renal programming are needed to ultimately develop reprogramming strategies. Despite the fact that animal models have provided interesting results with regard to reprogramming strategies targeting AMPK signaling to protect against hypertension and kidney disease with developmental origins, these results await further clinical translation.

  14. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoyou; Dong, Changgui; Jiang, Zhengyao

    Kidney transplantation is the major therapeutic option for end-stage kidney diseases. However, acute rejection could cause allograft loss in some of these patients. Emerging evidence supports that microRNA (miRNA) dysregulation is implicated in acute allograft rejection. In this study, we used next-generation sequencing to profile miRNA expression in normal and acutely rejected kidney allografts. Among 75 identified dysregulated miRNAs, miR-10b was the most significantly downregulated miRNAs in rejected allografts. Transfecting miR-10b inhibitor into human renal glomerular endothelial cells recapitulated key features of acute allograft rejection, including endothelial cell apoptosis, release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor α, interferon-γ, andmore » chemokine (C–C motif) ligand 2) and chemotaxis of macrophages whereas transfection of miR-10b mimics had opposite effects. Downregulation of miR-10b directly derepressed the expression of BCL2L11 (an apoptosis inducer) as revealed by luciferase reporter assay. Taken together, miR-10b downregulation mediates many aspects of disease pathogenicity of acute kidney allograft rejection. Restoring miR-10b expression in glomerular endothelial cells could be a novel therapeutic approach to reduce acute renal allograft loss. - Highlights: • miR-10b was the most downregulated microRNAs in acutely rejected renal allografts. • miR-10b downregulation triggered glomerular endothelial cell apoptosis. • miR-10b downregulation induced release of pro-inflammatory cytokines. • miR-10b downregulation derepressed its pro-apoptotic target BCL2L11.« less

  15. Establishment of immortal swine kidney epithelial cells.

    PubMed

    Kwak, Sungwook; Jung, Ji-Eun; Jin, Xun; Kim, Sun-Myung; Kim, Tae-Kyung; Lee, Joong-Seob; Lee, Soo-Yeon; Pian, Xumin; You, Seungkwon; Kim, Hyunggee; Choi, Yun-Jaie

    2006-01-01

    Using normal swine kidney epithelial (SKE) cells that were shown to be senescent at passages 12 to 14, we have established one lifespan-extended cell line and two lifespan-extended cell lines by exogenous introduction of the human catalytic subunit of telomerase (hTERT) and simian virus 40 large T-antigen (SV40LT), all of which maintain epithelial morphology and express cytokeratin, a marker of epithelial cells. SV40LT- and hTERT-transduced immortal cell lines appeared to be smaller and exhibited more uniform morphology relative to primary and spontaneously immortalized SKE cells. We determined the in vitro lifespan of primary SKE cells using a standard 3T6 protocol. There were two steps of the proliferation barrier at 12 and 20, in which a majority of primary SKE cells appeared enlarged, flattened, vacuolated, and ss-galactosidase-positive, all phenotypical characteristics of senescent cells. Lifespan-extended SKE cells were eventually established from most of the cellular foci, which is indicative of spontaneous cellular conversion at passage 23. Beyond passage 25, the rate of population doubling of the established cells gradually increased. At passage 30, immortal cell lines grew faster than primary counterpart cells in 10% FBS-DMEM culture conditions, and only SV40LT-transduced immortal cells grew faster than primary and other SKE immortal cells in 0.5% FBS-DMEM. These lifespan-extended SKE cell lines failed to grow in an anchorage-independent manner in soft-agar dishes. Hence, three immortalized swine kidney epithelial cells that are not transformed would be valuable biological tools for virus propagation and basic kidney epithelial cell research.

  16. Kidney-on-a-Chip: a New Technology for Predicting Drug Efficacy, Interactions, and Drug-induced Nephrotoxicity.

    PubMed

    Lee, Jeonghwan; Kim, Sejoong

    2018-03-08

    The kidneys play a pivotal role in most drug-removal processes and are important when evaluating drug safety. Kidney dysfunction resulting from various drugs is an important issue in clinical practice and during the drug development process. Traditional in vivo animal experiments are limited with respect to evaluating drug efficacy and nephrotoxicity due to discrepancies in drug pharmacokinetics and pharmacodynamics between humans and animals, and static cell culture experiments cannot fully reflect the actual microphysiological environment in humans. A kidney-on-a-chip is a microfluidic device that allows the culture of living renal cells in 3-dimensional channels and mimics the human microphysiological environment, thus simulating the actual drug filtering, absorption, and secretion process.. In this review, we discuss recent developments in microfluidic culturing technique and describe current and future kidney-on-a-chip applications. We focus on pharmacological interactions and drug-induced nephrotoxicity, and additionally discuss the development of multi-organ chips and their possible applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Microgravity

    NASA Image and Video Library

    2001-06-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. Brain metastasis detection by resonant Raman optical biopsy method

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2014-03-01

    Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.

  19. Abdominal Obesity, Race and Chronic Kidney Disease in Young Adults: Results from NHANES 1999-2010

    PubMed Central

    Sarathy, Harini; Henriquez, Gabriela; Abramowitz, Matthew K.; Kramer, Holly; Rosas, Sylvia E.; Johns, Tanya; Kumar, Juhi; Skversky, Amy; Kaskel, Frederick; Melamed, Michal L.

    2016-01-01

    Objective Kidney dysfunction in obesity may be independent of and may precede the development of hypertension and/or diabetes mellitus. We aimed to examine if abdominal obesity is associated with early markers of CKD in a young healthy population and whether these associations differ by race and/or ethnicity. Methods We analyzed data from the NHANES 1999–2010 for 6918 young adults ages 20–40 years. Abdominal obesity was defined by gender criteria of waist circumference. CKD markers included estimated glomerular filtration rate and albuminuria ≥30 mg/g. Race stratified analyses were done overall and in subgroups with normal blood pressures, normoglycemia and normal insulin sensitivity. Awareness of CKD was assessed in participants with albuminuria. Results Abdominal obesity was present in over one-third of all young adults and was more prevalent among non-Hispanic blacks (45.4%) versus Mexican-Americans (40.6%) or non-Hispanic whites (37.4%) (P-value = 0.004). Mexican-American young adults with abdominal obesity had a higher odds of albuminuria even among those with normal blood pressure, normal glucose, and normal insulin sensitivity [adjusted odds ratio 4.5; 95% confidence interval (1.6–12.2), p = 0.004]. Less than 5% of young adults with albuminuria of all races and ethnicities had been told they had kidney disease. Conclusion Abdominal obesity in young adults, especially in Mexican-Americans, is independently associated with albuminuria even with normal blood pressures, normoglycemia and normal insulin levels. Greater awareness of CKD is needed to protect this young population from long-standing exposure to abdominal obesity and early progressive renal disease. PMID:27224643

  20. Cell death during the postnatal morphogenesis of the normal rabbit kidney and in experimental renal polycystosis.

    PubMed Central

    García-Porrero, J A; Ojeda, J L; Hurlé, J M

    1978-01-01

    We have studied, by means of optic and electron microscopy, the normal and abnormal cell death that takes place during the postnatal morphogenesis of rabbit kidney, and in the experimental renal polycystosis produced by methylprednisolone acetate. In the normal kidney intertubular cell death can be observed during the first 20 days of the postnatal development. However, cell death in the normal metanephric blastema is a very rare event. In the polycystic kidney numerous dead cells can be seen between the third and forty eighth days after injection. The topography and morphology of the dead cells depend on the stage in the evolution of the disease. In the 'stage of renal immaturity', dying and dead cells are present in the nephrogenic tissue, in the dilating collecting tubules and in the intertubular spaces. In this stage the cellular pathology is essentially nuclear. In the stage of tubular cysts, the dead cells are mostly located in the walls of cysts, with some dead cells, but mostly cellular debris in their lumina. At this stage the cellular pathology is basically cytoplasmic. The dead cells are eventually digested by what appear to be phagocytes of tubular epithelial origin. It is suggested that cell death is an important factor in the evolution of the lesions of renal polycystosis induced by corticosteroids, and probably in the initiation of the pathological process as well. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:670065

  1. The Utility of the Remnant Kidney Volume/Body Surface Area Ratio and Tumor Diameter as Predictors of Postoperative Degree of Renal Functional Decline in Patients With Renal Cell Carcinoma Treated by Radical Nephrectomy.

    PubMed

    Sejima, Takehiro; Yamaguchi, Noriya; Iwamoto, Hideto; Masago, Toshihiko; Morizane, Shuichi; Ono, Koji; Koumi, Tsutomu; Honda, Masashi; Takenaka, Atsushi

    2015-08-01

    To characterize the preoperative factors affecting renal cell carcinoma patients as predictive of post-radical nephrectomy (RN) mild (M-decline) or severe (S-decline) renal functional decline and to elucidate the histopathologic features of the resected normal kidney cortex, as well as the occurrence of cardiovascular disease (CVD) in both M-decline and S-decline patients. M-decline and S-decline were categorized as a percentage of postoperative estimated glomerular filtration rate decline of <20 and of >40, respectively. The preoperative factors analyzed were patient demographics, comorbidities, and radiographic findings, including remnant kidney status and tumor size. The factors based on postoperative information analyzed were tumor and normal cortex pathology and CVD events. In 175 patient cohort, 21 and 32 cases were categorized as M-decline and S-decline, respectively. Absence of comorbidities, larger remnant kidney volume (RKV)/body surface area (BSA) ratio, and larger tumor diameter were significantly predictive of M-decline, whereas smaller tumor diameter was significantly predictive of S-decline. The global glomerulosclerosis extent in nephrectomized normal cortex of S-decline cases was significantly higher than in other types of cases. No CVD event was observed in M-decline cases. This is the first report to identify the RKV/BSA ratio as a promising predictor of post-RN degree of renal functional decline. Post-RN prevention of life-threatening outcomes according to preoperative and postoperative information, including the degree of post-RN renal functional decline and histopathology of the nephrectomized normal cortex, should be considerable in future urological tasks. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Infundibulopelvic stenosis in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucaya, J.; Enriquez, G.; Delgado, R.

    1984-03-01

    Of 11,500 children who underwent excretory urography during a 17-year period, three were found to have the rare renal malformation infundibulopelvic stenosis, characterized by caliceal dilatation, infundibular stenosis, and hypoplasia or stenosis of the renal pelvis. The contralateral kidney was absent in two cases and normal in the other. Voiding cystourethrograms were normal in all three. Renal sonography showed a variable degree of caliceal dilatation without associated pelvic dilatation. The diagnosis was confirmed by retrograde ureteropyelography in one case. Two patients were followed for 12 and 18 months, respectively; both remained asymptomatic with normal renal function, and sequential sonographic examinationsmore » of their kidneys have shown no significant changes. The third patient died of an unrelated condition. Infundibulopelvic stenosis has highly characteristic radiographic features, and prognosis is good for most affected patients.« less

  3. Indoxyl Sulfate Induces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells.

    PubMed

    Ellis, Robert J; Small, David M; Ng, Keng Lim; Vesey, David A; Vitetta, Luis; Francis, Ross S; Gobe, Glenda C; Morais, Christudas

    2018-06-01

    Indoxyl sulfate (IS) is a protein-bound uremic toxin that accumulates in patients with declining kidney function. Although generally thought of as a consequence of declining kidney function, emerging evidence demonstrates direct cytotoxic role of IS on endothelial cells and cardiomyocytes, largely through the expression of pro-inflammatory and pro-fibrotic factors. The direct toxicity of IS on human kidney proximal tubular epithelial cells (PTECs) remains a matter of debate. The current study explored the effect of IS on primary cultures of human PTECs and HK-2, an immortalized human PTEC line. Pathologically relevant concentrations of IS induced apoptosis and increased the expression of the proapoptotic molecule Bax in both cell types. IS impaired mitochondrial metabolic activity and induced cellular hypertrophy. Furthermore, statistically significant upregulation of pro-fibrotic (transforming growth factor-β, fibronectin) and pro-inflammatory molecules (interleukin-6, interleukin-8, and tumor necrosis factor-α) in response to IS was observed. Albumin had no influence on the toxicity of IS. The results of this study suggest that IS directly induced a pro-inflammatory and pro-fibrotic phenotype in proximal tubular cells. In light of the associated apoptosis, hypertrophy, and metabolic dysfunction, this study demonstrates that IS may play a role in the progression of chronic kidney disease.

  4. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duangtum, Natapol; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700; Junking, Mutita

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{supmore » -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.« less

  5. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, such as the culture section shown here, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. The two white circles within the tumor are part of a plastic lattice that helped the cells associate. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. Fhit-deficient normal and cancer cells are mitomycin C and UVC resistant

    PubMed Central

    Ottey, M; Han, S-Y; Druck, T; Barnoski, B L; McCorkell, K A; Croce, C M; Raventos-Suarez, C; Fairchild, C R; Wang, Y; Huebner, K

    2004-01-01

    To identify functions of the fragile tumour suppressor gene, FHIT, matched pairs of Fhit-negative and -positive human cancer cell clones, and normal cell lines established from Fhit −/− and +/+ mice, were stressed and examined for differences in cell cycle kinetics and survival. A larger fraction of Fhit-negative human cancer cells and murine kidney cells survived treatment with mitomycin C or UVC light compared to matched Fhit-positive cells; ∼10-fold more colonies of Fhit-deficient cells survived high UVC doses in clonigenic assays. The human cancer cells were synchronised in G1, released into S and treated with UVC or mitomycin C. At 18 h post mitomycin C treatment ∼6-fold more Fhit-positive than -negative cells had died, and 18 h post UVC treatment 3.5-fold more Fhit-positive cells were dead. Similar results were obtained for the murine −/− cells. After low UVC doses, the rate of DNA synthesis in −/− cells decreased more rapidly and steeply than in +/+ cells, although the Atr–Chk1 pathway appeared intact in both cell types. UVC surviving Fhit −/− cells appear transformed and exhibit >5-fold increased mutation frequency. This increased mutation burden could explain the susceptibility of Fhit-deficient cells in vivo to malignant transformation. PMID:15494723

  7. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats.

    PubMed

    Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong

    2017-01-01

    Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. 3 H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3 H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier.

  8. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats

    PubMed Central

    Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong

    2017-01-01

    Background and purpose Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. Experimental approach 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). Results In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. Conclusion/Implications The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier. PMID:28144140

  9. Characterization of human kidney stones using micro-PIXE and RBS: a comparative study between two different populations.

    PubMed

    Pineda-Vargas, C A; Eisa, M E M; Rodgers, A L

    2009-03-01

    The micro-PIXE and RBS techniques are used to investigate the matrix as well as the trace elemental composition of calcium-rich human tissues on a microscopic scale. This paper deals with the spatial distribution of trace metals in hard human tissues such as kidney stone concretions, undertaken at the nuclear microprobe (NMP) facility. Relevant information about ion beam techniques used for material characterization will be discussed. Mapping correlation between different trace metals to extract information related to micro-regions composition will be illustrated with an application using proton energies of 1.5 and 3.0 MeV and applied to a comparative study for human kidney stone concretions nucleation region analysis from two different population groups (Sudan and South Africa).

  10. Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure.

    PubMed

    Mesnage, Robin; Arno, Matthew; Costanzo, Manuela; Malatesta, Manuela; Séralini, Gilles-Eric; Antoniou, Michael N

    2015-08-25

    Glyphosate-based herbicides (GBH) are the major pesticides used worldwide. Converging evidence suggests that GBH, such as Roundup, pose a particular health risk to liver and kidneys although low environmentally relevant doses have not been examined. To address this issue, a 2-year study in rats administering 0.1 ppb Roundup (50 ng/L glyphosate equivalent) via drinking water (giving a daily intake of 4 ng/kg bw/day of glyphosate) was conducted. A marked increased incidence of anatomorphological and blood/urine biochemical changes was indicative of liver and kidney structure and functional pathology. In order to confirm these findings we have conducted a transcriptome microarray analysis of the liver and kidneys from these same animals. The expression of 4224 and 4447 transcript clusters (a group of probes corresponding to a known or putative gene) were found to be altered respectively in liver and kidney (p < 0.01, q < 0.08). Changes in gene expression varied from -3.5 to 3.7 fold in liver and from -4.3 to 5.3 in kidneys. Among the 1319 transcript clusters whose expression was altered in both tissues, ontological enrichment in 3 functional categories among 868 genes were found. First, genes involved in mRNA splicing and small nucleolar RNA were mostly upregulated, suggesting disruption of normal spliceosome activity. Electron microscopic analysis of hepatocytes confirmed nucleolar structural disruption. Second, genes controlling chromatin structure (especially histone-lysine N-methyltransferases) were mostly upregulated. Third, genes related to respiratory chain complex I and the tricarboxylic acid cycle were mostly downregulated. Pathway analysis suggests a modulation of the mTOR and phosphatidylinositol signalling pathways. Gene disturbances associated with the chronic administration of ultra-low dose Roundup reflect a liver and kidney lipotoxic condition and increased cellular growth that may be linked with regeneration in response to toxic effects causing damage to tissues. Observed alterations in gene expression were consistent with fibrosis, necrosis, phospholipidosis, mitochondrial membrane dysfunction and ischemia, which correlate with and thus confirm observations of pathology made at an anatomical, histological and biochemical level. Our results suggest that chronic exposure to a GBH in an established laboratory animal toxicity model system at an ultra-low, environmental dose can result in liver and kidney damage with potential significant health implications for animal and human populations.

  11. Stem-Cell-Based Tumorigenesis in Adult Drosophila.

    PubMed

    Hou, S X; Singh, S R

    2017-01-01

    Recent studies suggest that a small subset of cells within a tumor, the so-called cancer stem cells (CSCs), are responsible for tumor propagation, relapse, and the eventual death of most cancer patients. CSCs may derive from a few tumor-initiating cells, which are either transformed normal stem cells or reprogrammed differentiated cells after acquiring initial cancer-causing mutations. CSCs and normal stem cells share some properties, but CSCs differ from normal stem cells in their tumorigenic ability. Notably, CSCs are usually resistant to chemo- and radiation therapies. Despite the apparent roles of CSCs in human cancers, the biology underlying their behaviors remains poorly understood. Over the past few years, studies in Drosophila have significantly contributed to this new frontier of cancer research. Here, we first review how stem-cell tumors are initiated and propagated in Drosophila, through niche appropriation in the posterior midgut and through stem-cell competition for niche occupancy in the testis. We then discuss the differences between normal and tumorigenic stem cells, revealed by studying Ras V12 -transformed stem-cell tumors in the Drosophila kidney. Finally, we review the biology behind therapy resistance, which has been elucidated through studies of stem-cell resistance and sensitivity to death inducers using female germline stem cells and intestinal stem cells of the posterior midgut. We expect that screens using adult Drosophila neoplastic stem-cell tumor models will be valuable for identifying novel and effective compounds for treating human cancers. © 2017 Elsevier Inc. All rights reserved.

  12. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia.

    PubMed

    Mouallif, Mustapha; Albert, Adelin; Zeddou, Mustapha; Ennaji, My Mustapha; Delvenne, Philippe; Guenin, Samuel

    2014-08-01

    Undifferentiated cell Transcription Factor 1 (UTF1) is a chromatin-bound protein involved in stem cell differentiation. It was initially reported to be restricted to stem cells or germinal tissues. However, recent work suggests that UTF1 is also expressed in somatic cells and that its expression may increase during carcinogenesis. To further clarify the expression profile of UTF1, we evaluated UTF1 expression levels immunohistochemically in eight normal human epithelia (from breast, prostate, endometrium, bladder, colon, oesophagus, lung and kidney) and their corresponding tumours as well as in several epithelial cell lines. We showed UTF1 staining in normal and tumour epithelial tissues, but with varying intensities according to the tissue location. In vitro analyses also revealed that UTF1 is expressed in somatic epithelial cell lines even in the absence of Oct4A and Sox2, its two main known regulators. The comparison of UTF1 levels in normal and tumoral tissues revealed significant overexpression in endometrial and prostatic adenocarcinomas, whereas lower intensity of the staining was observed in renal and colic tumours, suggesting a potential tissue-specific function of UTF1. Altogether, these results highlight a potential dual role for UTF1, acting either as an oncogene or as a tumour suppressor depending on the tissue. These findings also question its role as a specific marker for stem cells. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  13. [Calcium and magnesium concentrations in "Healthy" and lithiasic human kidney (author's transl)].

    PubMed

    Terhorst, B; Stoeppler, M

    1976-07-01

    Calcium and magnesium levels in the cortex, medulla, and papilla of human kidney from 32 so-called healthy patients and from eleven patients with calcium-oxalate lithiasis were determined by atom-absorption spectralphotometry. A positive calcium gradient with the highest calcium concentration in the papilla was found in all kidneys. Compared to the control group, that calcium concentration in the lithiasic kidneys was reduced by 50% in the papilla, but in the cortex and medulla, the levels were the same. A relative depletion of calcium in the papilla in hypercalciuria goes against the theory that the papilla is the main center of development of calcium-containing stones. The magnesium concentration was practically the same in cortex, medulla, and papilla, and no significant difference was found between lithiasic and healthy kidneys. These findings underline the central role of calcium in the genesis of calcium-containing stones.

  14. Successful Posttransplant Treatment of Hepatitis C With Ledipasvir-Sofosbuvir in HIV+ Kidney Transplant Recipients.

    PubMed

    Sawinski, Deirdre; Lee, Dong H; Doyle, Alden M; Blumberg, Emily A

    2017-05-01

    Ledipasvir-sofosbuvir is effective at eradicating hepatitis C virus (HCV) infection in the general population and in HCV-monoinfected kidney transplant recipients, but there are no data to guide its use in human immunodeficiency virus/HCV coinfected kidney transplant patients. We treated 6 human immunodeficiency virus/HCV coinfected kidney transplant recipients with ledipasvir-sofosbuvir at our 2 centers. All were infected with genotype 1 and 66% had received kidneys from HCV+ donors. All patients cleared the virus while on therapy and 100% have achieved a sustained virologic response at 12 weeks after completion of ledipasvir-sofosbuvir. Tacrolimus dosing required adjustment during and after ledipasvir-sofosbuvir therapy but antiretroviral regimens did not. Ledipasvir-sofosbuvir was well tolerated. Although all patients in our series were treated posttransplant, the ideal timing of HCV therapy in this population is unknown, and the impact of HCV clearance on posttransplant outcomes is yet to be determined.

  15. Regulation of carcinoma cell invasion by protein C inhibitor whose expression is decreased in renal cell carcinoma.

    PubMed

    Wakita, Toshiaki; Hayashi, Tatsuya; Nishioka, Junji; Tamaru, Hiroshi; Akita, Nobuyuki; Asanuma, Kunihiro; Kamada, Haruhiko; Gabazza, Esteban C; Ido, Masaru; Kawamura, Juichi; Suzuki, Koji

    2004-02-10

    Protein C inhibitor (PCI), a member of the serine protease inhibitor family, is produced in various human tissues, including the liver, kidney and testis. In addition to inhibiting the anticoagulant protein C pathway, PCI also inhibits urinary plasminogen activator (uPA), which is a well-known mediator of tumor cell invasion. In the present study, to clarify the biologic significance of PCI in the kidney, we compared the expression of PCI between human renal cell carcinoma (RCC) tissue and nontumor kidney tissue. The PCI antigen level in RCC tissue was found to be significantly lower than in nontumor kidney tissue, and expression of PCI mRNA was detected in normal renal proximal tubular epithelial cells (RPTEC), but not in RCC or in an RCC cell line (Caki-1 cells). No differences were detected between the nucleotide sequence of the major cis-elements in the promoter region of the PCI gene from nontumor kidney and RCC tissues, RPTEC and Caki-1 cells, an RPTEC-derived RCC cell line. The in vitro invasiveness of Caki-1 cells transfected with a PCI expression vector was significantly decreased compared to mock-transfected Caki-1 cells, and it was blocked in the presence of anti-PCI antibody. Since PCI itself did not affect the proliferation rate of Caki-1 cells or cell expression of uPA in vitro, the effect of uPA, PCI, heat-inactivated PCI and plasminogen activator inhibitor (PAI)-1 on the invasive potential of cultured RCC cells was evaluated. The in vitro invasiveness of Caki-1 cells, which express uPA, was significantly enhanced by the addition of uPA, and it was inhibited by anti-uPA antibody, PCI and PAI-1, but not by heat-inactivated PCI. In addition, uPA activity was significantly decreased and uPA-PCI complex level was significantly increased in the culture medium of PCI expression vector-transfected Caki-1 cells as compared to mock-transfected Caki-1 cells. These findings strongly suggest that PCI regulates the invasive potential of RCC cells by inhibiting uPA secreted by these cells. The results of our study suggest that PCI might be a potential therapeutic agent for inhibiting renal tumor invasion. Copyright 2003 Wiley-Liss, Inc.

  16. [The French clinician's guide to the Kidney disease: Improving global outcomes (KDIGO) for chronic kidney disease-mineral and bone disorders (CKD-MBD)].

    PubMed

    Jean, G; Chazot, C

    2010-06-01

    The new recommendations of "Kidney disease: improving global outcomes" for the definition and classification of chronic kidney disease and mineral and bone disorders were released in August 2009. We report the most important of these recommendations and a brief comment from a clinician's point of view. The main points to be noted with regard to the new recommendations are as follows: serum calcium should be in the normal range; phosphorus concentration should be lowered toward the normal range and serum parathyroid hormone (PTH) levels should be two to nine times the upper limit of the normal range; bone remodelling can be assessed using alkaline phosphatase; the use of calcium-phosphorus (Ca x P) product as an index is not recommended anymore; at any stage of CKD, vitamin D deficiency and insufficiency must be corrected; vascular calcification should be detected in a simple way using lateral abdominal radiography and echocardiography; a bone biopsy should be performed before therapy with bisphosphonates; the prescription of dialysate calcium should be individualized within the range of 1.25-1.5 mmol/l; the phosphate binder (calcium- or non-calcium-based) and the other treatments for secondary hyperparathyroidism should be individualized based on a global strategy. A majority of these recommendations are not based on evidence and their feasibility and relevance need to be assessed. Copyright 2010 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  17. Genome Sequence of Oxalobacter formigenes Strain HC-1

    PubMed Central

    Allison, Milton J.; Yu, Fahong; Farmerie, William

    2017-01-01

    ABSTRACT The lack of Oxalobacter formigenes colonization of the human gut has been correlated with the formation of calcium oxalate kidney stones and also with the number of recurrent kidney stone episodes. Here, we present the genome sequence of HC-1, a human strain isolated from an individual residing in Iowa, USA. PMID:28684568

  18. 76 FR 11501 - National Institute of Diabetes and Digestive and Kidney Diseases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Diabetes and Digestive and Kidney Diseases Special Emphasis...

  19. Silymarin protects against renal injury through normalization of lipid metabolism and mitochondrial biogenesis in high fat-fed mice.

    PubMed

    Bin Feng; Meng, Ran; Bin Huang; Bi, Yan; Shen, Shanmei; Zhu, Dalong

    2017-09-01

    Obesity is associated with an increased risk of chronic kidney diseases and the conventional treatment with renin-angiotensin-aldosterone system (RAAS) inhibitors is not enough to prevent renal injury and prolong the progression of disease. Recently, silymarin has shown protective effects on renal tissue injury, but the underlying mechanisms remain elusive. The goal of this study was to investigate the potential capacity of silymarin to prevent renal injury during obesity induced by high fat diet (HFD) in mice. In vivo, male C57BL/6 mice received HFD (60% of total calories) for 12 weeks, randomized and treated orally with vehicle saline or silymarin (30mg/kg body weight/d) for 4 weeks. In vitro, human proximal tubular epithelial cells (HK2) were exposed to 300μM palmitic acid (PA) for 36h followed by silymarin administration at different concentrations. The administration of silymarin significantly ameliorated HFD induced glucose metabolic disorders, oxidative stress and pathological alterations in the kidney. Silymarin significantly mitigated renal lipid accumulation, fatty acid β-oxidation and mitochondrial biogenesis in HFD mice and PA treated HK2 cells. Furthermore, silymarin partly restored mitochondrial membrane potential of HK2 cells after PA exposure. In conclusion, silymarin can improve oxidative stress and preserve mitochondrial dysfunction in the kidney, potentially via preventing accumulation of renal lipids and fatty acid β-oxidation. Copyright © 2017. Published by Elsevier Inc.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAfee, J.G.; Krauss, D.J.; Subramanian, G.

    The 3-hour biodistribution of /sup 99m/Tc complexes of five diphosphonates (HMDP, NMMDP, DMAD, DPD, and APD), imidodiphosphonate (IDP), and pyrophosphate (PYP) was compared in rats with segmental renal infarction induced by a 1-hour occlusion of a renal artery branch. /sup 95m/Tc labeled MDP was a reference substance in all animals. Three agents (APD, HMDP and IDP) had a higher infarct/normal kidney concentration ratio than MDP, the latter two by virtue of a lower content in normal kidney. HMDP, DPD, and IDP had very high liver concentrations. DPD showed relatively high concentrations in soft tissues and blood. The blood and kidneymore » levels of PYP were higher than those of MDP but the infarct/normal kidney ratios were similar. None of the agents had a higher uptake in bone than MDP: four had a significantly lower uptake. The increased concentration of /sup 99m/Tc MDP in the infarcts was readily seen in camera images one day after renal artery occlusion, but not at three or seven days. Increased diphosphonate uptake was accompanied by an influx of calcium in both cortex and medulla. The accumulation of diphosphonate in areas of infarction was not modified by infusions of verapamil or Captopril.« less

  1. Rhabdomyolysis-Associated Acute Kidney Injury With Normal Creatine Phosphokinase.

    PubMed

    Kamal, Faisal; Snook, Lindsay; Saikumar, Jagannath H

    2018-01-01

    Rhabdomyolysis is a syndrome characterized by the breakdown of skeletal muscle and leakage of intracellular myocyte contents, such as creatine phosphokinase (CPK) and myoglobin, into the interstitial space and plasma resulting in acute kidney injury (AKI). Elevated CPK of at least 5 times the upper limit of normal is an important diagnostic marker of Rhabdomyolysis. We present a case of rhabdomyolysis with severe AKI with a normal CPK at presentation. A 32-year-old man presented with acute respiratory failure and AKI after an overdose of recreational drugs. Urinalysis at presentation showed trace amounts of blood, identified as rare red blood cells under microscopy. CPK was 156 U/L at presentation. Workup for glomerulonephritis and vasculitis was negative. He was initiated on renal replacement therapy, and a kidney biopsy showed severe acute tubular injury with positive myoglobin casts. Supportive management and renal replacement therapy was provided, and renal function spontaneously improved after a few weeks. This is an uncommon clinical presentation of severe rhabdomyolysis complicated by AKI. This suggests that CPK alone may not be a sensitive marker for rhabdomyolysis-induced AKI in some cases. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  2. Effect of alterations in glomerular charge on deposition of cationic and anionic antibodies to fixed glomerular antigens in the rat.

    PubMed

    Adler, S; Baker, P; Pritzl, P; Couser, W G

    1985-07-01

    Reduction of the negative charge of the glomerular capillary wall alters its charge- and size-selective properties. To investigate the effect of alteration in glomerular charge properties on antibody localization, we prepared cationic and anionic fractions of antibodies to subepithelial and glomerular basement membrane (GBM) antigens, and compared their deposition in normal rats and rats treated with protamine sulfate or aminonucleoside of puromycin to reduce capillary wall charge. IgG antibodies were eluted from kidneys of rats with active Heymann's nephritis (AICN), passive Heymann's nephritis (PHN), or anti-GBM nephritis (NTN), separated into cationic and anionic fractions, and radiolabeled with iodine 125 or iodine 131. Relative antibody content of each fraction was determined by incubation with an excess of glomerular antigen. Varying amounts of cationic and anionic IgG eluted from kidneys of rats with AICN or PHN were injected into 24 normal or protamine sulfate-treated rats. Glomerular binding of all antibodies was highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 4 hours was 1.08 +/- 0.07 for AICN eluate and 0.37 +/- 0.04 for PHN eluate. The ratios were not significantly different in animals pretreated with protamine sulfate (1.15 +/- 0.06 and 0.44 +/- 0.06, respectively; P greater than 0.05). Varying amounts of cationic and anionic IgG eluted from kidneys of rats with NTN were injected into 10 normal rats and four rats treated with aminonucleoside of puromycin. Glomerular binding of antibody was again highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 1 hour was 1.03 +/- 0.06, and was not significantly altered in rats treated with aminonucleoside of puromycin (1.05 +/- 0.03, P greater than 0.5). Proteinuria in PHN rats was also unaffected by treatment with protamine sulfate for 5 days (controls: 68 +/- 21 mg/day; protamine sulfate-treated: 65 +/- 14 mg/day; n = 25, P greater than 0.08). These results demonstrate that treatment to reduce glomerular polyanion does not significantly alter the ratio of cationic to anionic antibodies to fixed glomerular antigens that deposit in the glomerulus, or reduce proteinuria caused by deposition of antibody to a fixed subepithelial antigen.

  3. Ureteric entrapment in sacroiliac joint causing hydroureter and ipsilateral kidney hypertrophy.

    PubMed

    Otsuru, Yurie; Kondo, Chuichi; Hara, Shohei; Takahashi, Hideo; Matsuno, Kenjiro

    2018-06-01

    A unilateral megaureter was found in an elderly female cadaver during routine dissection. The left proximal ureter, which was thick and convolute, descended and entered into the pelvic cavity, where the distal ureter was attached to the posterior pelvic wall at the inlet level. Removal of connective tissue surrounding the attached region revealed ureteric entrapment in the sacroiliac joint. The ipsilateral kidney, from which the megaureter originated, showed no pelvicalyceal dilatation. In contrast, the left kidney was enlarged, weighing 24% more than the right kidney. Differences in the upper urinary system between the obstructed and normal sides were examined in terms of gross anatomy, measurements, and histology. Although ureteric obstruction frequently causes hydroureter and hydronephrosis, the present case is very rare as the incomplete obstruction may have stimulated ipsilateral kidney growth, instead of contralateral compensatory augmentation.

  4. Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo.

    PubMed

    Edison, Erica E; Brosnan, Margaret E; Meyer, Christian; Brosnan, John T

    2007-12-01

    A fraction of the body's creatine and creatine phosphate spontaneously degrades to creatinine, which is excreted by the kidneys. In humans, this amounts to approximately 1-2 g/day and demands a comparable rate of de novo creatine synthesis. This is a two-step process in which l-arginine:glycine amidinotransferase (AGAT) catalyzes the conversion of glycine and arginine to ornithine and guanidinoacetate (GAA); guanidinoacetate methyltransferase (GAMT) then catalyzes the S-adenosylmethionine-dependent methylation of GAA to creatine. AGAT is found in the kidney and GAMT in the liver, which implies an interorgan movement of GAA from the kidney to the liver. We studied the renal production of this metabolite in both rats and humans. In control rats, [GAA] was 5.9 microM in arterial plasma and 10.9 microM in renal venous plasma for a renal arteriovenous (A-V) difference of -5.0 microM. In the rat, infusion of arginine or citrulline markedly increased renal GAA production but infusion of glycine did not. Rats fed 0.4% creatine in their diet had decreased renal AGAT activity and mRNA, an arterial plasma [GAA] of 1.5 microM, and a decreased renal A-V difference for GAA of -0.9 microM. In humans, [GAA] was 2.4 microM in arterial plasma, with a renal A-V difference of -1.1 microM. These studies show, for the first time, that GAA is produced by both rat and human kidneys in vivo.

  5. Vitamin D in the Pathophysiology of Hypertension, Kidney Disease, and Diabetes: Examining the Relationship Between Vitamin D and the Renin-Angiotensin System in Human Diseases

    PubMed Central

    Vaidya, Anand; Williams, Jonathan S.

    2011-01-01

    Objective Vitamin D has been implicated in the pathophysiology of extra-skeletal conditions such as hypertension, kidney disease, and diabetes, via its ability to negatively regulate the renin-angiotensin system (RAS). This article reviews the evidence supporting a link between vitamin D and the RAS in these conditions, with specific emphasis on translational observations and their limitations. Methods Literature review of animal and human studies evaluating the role of vitamin D in hypertension, kidney disease, and diabetes. Results Excess activity of the RAS has been implicated in the pathogenesis of hypertension, chronic kidney disease, decreased insulin secretion, and insulin resistance. Animal studies provide strong support for 1,25(OH)2D mediated down-regulation of renin expression and RAS activity via its interaction with the vitamin D receptor. Furthermore, the activity of vitamin D metabolites in animals is associated with reductions in blood pressure, proteinuria and renal injury, and with improved β–cell function. Many observational, and a few interventional, studies in humans have supported these findings; however, there is a lack of well designed prospective human interventional studies to definitively assess clinical outcomes. Conclusion Animal studies implicate vitamin D receptor agonist therapy to lower RAS activity as a potential method to reduce the risk of hypertension, kidney disease, and diabetes. There is a need for more well designed prospective interventional studies to validate this hypothesis in human clinical outcomes. PMID:22075270

  6. [A case report of simultaneous liver, pancreas-duodenum, and kidney transplantation in a patient with post-hepatitic cirrhosis combined with uremia and insulin-dependent diabetes related to chronic pancreatitis].

    PubMed

    Wang, He; Dou, Ke-feng; Yang, Xiao-jian; Qin, Wei-jun; Zhang, Geng; Yu, Lei; Kang, Fu-xia; Chen, Shao-yang; Xiong, Li-ze; Song, Zhen-shun; Liu, Zheng-cai

    2006-09-12

    To study the effect of triple organ transplantation (liver, kidney, and pancreas) in patient of end-stage liver disease with renal failure and diabetes, and to explore the optimal surgical procedure. Simultaneous piggyback orthotopic heterotopic liver, pancreas-duodenum, and kidney transplantation was performed on a 43-year-old male patient with exocrine pancreatic insufficiency and insulin-dependent diabetes related to chronic pancreatitis (CP) who developed hepatic and renal failure. The pancreatic exocrine secretions were drained enterically to the jejunum. Prednisone, tacrolimus, mycophenolate mofetil, and ATG were used as immunosuppression therapy. Good liver and pancreas allograft function recovery was achieved within 7 days after the operation. And the recovery of renal allograft function was delayed. The renal allograft was removed because of break-down of renal blood flow 16 days after the transplantation. A new renal transplantation was performed at the same position. The second kidney graft recovered its normal function 3 days later. Up to the writing of this paper no acute rejection of organs and such complications as pancreatitis, thrombosis, and localized infection occurred. The patient became insulin independent with normal liver and renal function. Simultaneous piggyback orthotopic heterotopic liver, pancreas-duodenum, and kidney transplantation can be a good method for the patients with exocrine pancreatic insufficiency and insulin-dependent diabetes combined with hepatic and renal failure.

  7. Functional involvement of the organic cation transporter 2 (rOct2) in the renal uptake of organic cations in rats.

    PubMed

    Umehara, K-I; Iwatsubo, T; Noguchi, K; Kamimura, H

    2008-01-01

    This study examined the contribution made by organic cation transporters (hOCT/rOct) to the saturable component of the renal uptake of 1-methyl-4-phenylpyridinium, tetraethylammonium (TEA), cimetidine and metformin into rOct2-expressing HEK293 cells and rat kidney slices. All the test compounds accumulated in the rat kidney slices in a carrier-mediated manner. The Michaelis- Menten constant (K(m)) values for saturable uptake of TEA, cimetidine and metformin into rat kidney slices were relatively comparable with those for the rOct2-expressing HEK293 cells. In addition, the relative uptake activity values of TEA, cimetidine and metformin in rat kidney slices were similar to those in rOct2-expressing HEK293 cells. This suggests that the saturable components involved in the renal uptake of TEA, cimetidine and metformin are mediated mainly by rOct2. The saturable uptake profile of cationic compounds into rat kidney can be evaluated in both cDNA-expressing cells and rat kidney slices, as well as the transporter expression pattern. This approach can also be used to estimate the saturable uptake mechanism of cationic compounds into the human kidney when human kidney slices and hOCT2-expressing cells are used.

  8. Diagnostic and Therapeutic Approach for Acute Paraquat Intoxication

    PubMed Central

    Hong, Jung-Rak; Jang, Si-Hyong

    2014-01-01

    Paraquat (PQ) has known negative human health effects, but continues to be commonly used worldwide as a herbicide. Our clinical data shows that the main prognostic factor is the time required to achieve a negative urine dithionite test. Patient survival is a 100% when the area affected by ground glass opacity is <20% of the total lung volume on high-resolution computed tomography imaging 7 days post-PQ ingestion. The incidence of acute kidney injury is approximately 50%. The average serum creatinine level reaches its peak around 5 days post-ingestion, and usually normalizes within 3 weeks. We obtain two connecting lines from the highest PQ level for the survivors and the lowest PQ level among the non-survivors at a given time. Patients with a PQ level between these two lines are considered treatable. The following treatment modalities are recommended to preserve kidney function: 1) extracorporeal elimination, 2) intravenous antioxidant administration, 3) diuresis with a fluid, and 4) cytotoxic drugs. In conclusion, this review provides a general overview on the diagnostic procedure and treatment modality of acute PQ intoxication, while focusing on our clinical experience. PMID:25408572

  9. Loss of Kynurenine 3-Mono-oxygenase Causes Proteinuria.

    PubMed

    Korstanje, Ron; Deutsch, Konstantin; Bolanos-Palmieri, Patricia; Hanke, Nils; Schroder, Patricia; Staggs, Lynne; Bräsen, Jan H; Roberts, Ian S D; Sheehan, Susan; Savage, Holly; Haller, Hermann; Schiffer, Mario

    2016-11-01

    Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail. We compared KMO abundance in the glomeruli of mice and humans under normal and diabetic conditions, observing a decrease in glomerular KMO expression with diabetes. Knockdown of kmo expression in zebrafish and genetic deletion of Kmo in mice each led to a proteinuria phenotype. We observed pronounced podocyte foot process effacement on long stretches of the filtration barrier in the zebrafish knockdown model and mild podocyte foot process effacement in the mouse model, whereas all other structures within the kidney remained unremarkable. These data establish the candidacy of KMO as a causal factor for changes in the kidney leading to proteinuria and indicate a functional role for KMO and metabolites of the tryptophan pathway in podocytes. Copyright © 2016 by the American Society of Nephrology.

  10. Renal Vascular Structure and Rarefaction

    PubMed Central

    Chade, Alejandro R.

    2014-01-01

    An intact microcirculation is vital for diffusion of oxygen and nutrients and for removal of toxins of every organ and system in the human body. The functional and/or anatomical loss of microvessels is known as rarefaction, which can compromise the normal organ function and have been suggested as a possible starting point of several diseases. The purpose of this overview is to discuss the potential underlying mechanisms leading to renal microvascular rarefaction, and the potential consequences on renal function and on the progression of renal damage. Although the kidney is a special organ that receives much more blood than its metabolic needs, experimental and clinical evidence indicates that renal microvascular rarefaction is associated to prevalent cardiovascular diseases such as diabetes, hypertension, and atherosclerosis, either as cause or consequence. On the other hand, emerging experimental evidence using progenitor cells or angiogenic cytokines supports the feasibility of therapeutic interventions capable of modifying the progressive nature of microvascular rarefaction in the kidney. This overview will also attempt to discuss the potential renoprotective mechanisms of the therapeutic targeting of the renal microcirculation. PMID:23720331

  11. In vivo regulation of the heme oxygenase-1 gene in humanized transgenic mice

    PubMed Central

    Kim, Junghyun; Zarjou, Abolfazl; Traylor, Amie M.; Bolisetty, Subhashini; Jaimes, Edgar A.; Hull, Travis D.; George, James F.; Mikhail, Fady M.; Agarwal, Anupam

    2012-01-01

    Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation producing equimolar amounts of carbon monoxide, iron, and biliverdin. Induction of HO-1 is a beneficial response to tissue injury in diverse animal models of diseases including acute kidney injury. In vitro analysis has shown that the human HO-1 gene is transcriptionally regulated by changes in chromatin conformation but whether such control occurs in vivo is not known. To enable such analysis, we generated transgenic mice, harboring an 87-kb bacterial artificial chromosome expressing human HO-1 mRNA and protein and bred these mice with HO-1 knockout mice to generate humanized BAC transgenic mice. This successfully rescued the phenotype of the knockout mice including reduced birth rates, tissue iron overload, splenomegaly, anemia, leukocytosis, dendritic cell abnormalities and survival after acute kidney injury induced by rhabdomyolysis or cisplatin nephrotoxicity. Transcription factors such as USF1/2, JunB, Sp1, and CTCF were found to associate with regulatory regions of the human HO-1 gene in the kidney following rhabdomyolysis. Chromosome Conformation Capture and ChIP-loop assays confirmed this in the formation of chromatin looping in vivo. Thus, these bacterial artificial chromosome humanized HO-1 mice are a valuable model to study the human HO-1 gene providing insight to the in vivo architecture of the gene in acute kidney injury and other diseases. PMID:22495295

  12. Extension of a PBPK model for ethylene glycol and glycolic acid to include the competitive formation and clearance of metabolites associated with kidney toxicity in rats and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corley, R.A., E-mail: rick.corley@pnl.gov; Saghir, S.A.; Bartels, M.J.

    2011-02-01

    A previously developed PBPK model for ethylene glycol and glycolic acid was extended to include glyoxylic acid, oxalic acid, and the precipitation of calcium oxalate that is associated with kidney toxicity in rats and humans. The development and evaluation of the PBPK model was based upon previously published pharmacokinetic studies coupled with measured blood and tissue partition coefficients and rates of in vitro metabolism of glyoxylic acid to oxalic acid, glycine and other metabolites using primary hepatocytes isolated from male Wistar rats and humans. Precipitation of oxalic acid with calcium in the kidneys was assumed to occur only at concentrationsmore » exceeding the thermodynamic solubility product for calcium oxalate. This solubility product can be affected by local concentrations of calcium and other ions that are expressed in the model using an ion activity product estimated from toxicity studies such that calcium oxalate precipitation would be minimal at dietary exposures below the NOAEL for kidney toxicity in the sensitive male Wistar rat. The resulting integrated PBPK predicts that bolus oral or dietary exposures to ethylene glycol would result in typically 1.4-1.6-fold higher peak oxalate levels and 1.6-2-fold higher AUC's for calcium oxalate in kidneys of humans as compared with comparably exposed male Wistar rats over a dose range of 1-1000 mg/kg. The converse (male Wistar rats predicted to have greater oxalate levels in the kidneys than humans) was found for inhalation exposures although no accumulation of calcium oxalate is predicted to occur until exposures are well in excess of the theoretical saturated vapor concentration of 200 mg/m{sup 3}. While the current model is capable of such cross-species, dose, and route-of-exposure comparisons, it also highlights several areas of potential research that will improve confidence in such predictions, especially at low doses relevant for most human exposures.« less

  13. Resveratrol influences platinum pharmacokinetics: A novel mechanism in protection against cisplatin-induced nephrotoxicity.

    PubMed

    Darwish, Mostafa A; Abo-Youssef, Amira M; Khalaf, Marwa M; Abo-Saif, Ali A; Saleh, Ibrahim G; Abdelghany, Tamer M

    2018-06-15

    Cisplatin (CP) is a widely used drug in treatment of solid tumors. However, the use of CP was hampered by its serious side effects especially nephrotoxicity. This study aims to investigate the effect of resveratrol (RES) on CP-induced nephrotoxicity, particularly, the effect of RES on CP pharmacokinetics (PKs). Male white albino rats were divided to four group's six rats each. The first group received (1%) tween 80 in normal saline and served as control. The second group received RES (30 mg kg -1 ) per day for 14 consecutive day's i.p. The third and fourth groups were given a single i.p. injection of CP (6 mg kg -1 ) with or without pre-treatment of RES (30 mg kg -1 per day for 14 consecutive days), respectively. Following administration of CP, plasma, urine and kidney platinum concentration were monitored to study PKs of CP. Five days after the CP injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CP treatment significantly deteriorated kidney functions with subsequent alteration in redox balance of the kidney. On the other hand, RES successfully ameliorated CP-induced kidney injury and recovered normal kidney tissue redox status. Importantly, while RES pre-treatment did not significantly alter the plasma CP level, it dramatically decreased the urine concentration of CP and lowered its accumulation into the kidneys. Moreover, it increased CP plasma half-life (t 1/2 ) with subsequent decrease in its elimination rate constant, indicating an important role of PKs modulation in RES protection against CP-induced renal damage. Taken together, RES may protect the kidney tissue from the deleterious effects of CP through constringe of CP renal accumulation and enhancement of CP-induced oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    PubMed

    Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  15. Tissue-Specific Expression of Transgenic Secreted ACE in Vasculature Can Restore Normal Kidney Functions, but Not Blood Pressure, of Ace-/- Mice

    PubMed Central

    Chattopadhyay, Saurabh; Kessler, Sean P.; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C.

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE. PMID:24475296

  16. Gap junctions favor normal rat kidney epithelial cell adaptation to chronic hypertonicity.

    PubMed

    Desforges, Bénédicte; Savarin, Philippe; Bounedjah, Ouissame; Delga, Stéphanie; Hamon, Loïc; Curmi, Patrick A; Pastré, David

    2011-09-01

    Upon hypertonic stress most often resulting from high salinity, cells need to balance their osmotic pressure by accumulating neutral osmolytes called compatible osmolytes like betaine, myo-inositol, and taurine. However, the massive uptake of compatible osmolytes is a slow process compared with other defense mechanisms related to oxidative or heat stress. This is especially critical for cycling cells as they have to double their volume while keeping a hospitable intracellular environment for the molecular machineries. Here we propose that clustered cells can accelerate the supply of compatible osmolytes to cycling cells via the transit, mediated by gap junctions, of compatible osmolytes from arrested to cycling cells. Both experimental results in epithelial normal rat kidney cells and theoretical estimations show that gap junctions indeed play a key role in cell adaptation to chronic hypertonicity. These results can provide basis for a better understanding of the functions of gap junctions in osmoregulation not only for the kidney but also for many other epithelia. In addition to this, we suggest that cancer cells that do not communicate via gap junctions poorly cope with hypertonic environments thus explaining the rare occurrence of cancer coming from the kidney medulla.

  17. Postrenal acute kidney injury in a patient with unilateral ureteral obstruction caused by urolithiasis: A case report.

    PubMed

    Kazama, Itsuro; Nakajima, Toshiyuki

    2017-10-01

    In patients with bilateral ureteral obstruction, the serum creatinine levels are often elevated, sometimes causing postrenal acute kidney injury (AKI). In contrast, those with unilateral ureteral obstruction present normal serum creatinine levels, as long as their contralateral kidneys are preserved intact. However, the unilateral obstruction of the ureter could affect the renal function, as it humorally influences the renal hemodynamics. A 66-year-old man with a past medical history of hypertension and diabetes mellitus came to our outpatient clinic because of right abdominal dullness. Unilateral ureteral obstruction caused by a radio-opaque calculus in the right upper ureter and a secondary renal dysfunction. As oral hydration and the use of calcium antagonists failed to allow the spontaneous stone passage, extracorporeal shock wave lithotripsy (ESWL) was performed. Immediately after the passage of the stone, the number of red blood cells in the urine was dramatically decreased and the serum creatinine level almost returned to the normal range with the significant increase in glomerular filtration rate. Unilateral ureteral obstruction by the calculus, which caused reflex vascular constriction and ureteral spasm in the contralateral kidney, was thought to be responsible for the deteriorating renal function.

  18. Four decades of kidney transplantation in Cuba.

    PubMed

    Alfonzo, Jorge P

    2013-01-01

    This article describes the background, beginnings, development, evolution and outcomes of kidney transplantation in Cuba. Nephrology as a medical specialty in Cuba began in 1962 and was formalized in 1966. Conditions were created to implement renal replacement therapy (including transplants), bring nephrology care to the entire country and train human resources who would assume this responsibility, making Cuba one of the first countries with a comprehensive program for renal patient care. After three unsuccessful cadaveric-donor kidney transplantations in 1968-69, the ensuing history of kidney transplantation can be summarized in the following three stages. 1970-1975: In January 1970, cadaveric-donor kidney transplantation began at the Nephrology Institute. That year, 17 kidney transplantations were performed; four of these patients lived with functional kidneys for 15-25 years; 10-year graft survival was 23.5% (Kaplan-Meier survival curve); HLA typing began in 1974. By December 1975, 170 grafts had been done in three hospitals. 1976-1985: Seven transplantation centers performed 893 grafts during this period. HLA-DR typing was introduced in 1976 and the National Histocompatibility Laboratory Network was founded in 1978. The first related living-donor kidney transplantation was done in 1979. 1986-2011: The National Kidney Transplantation Coordinating Center and the National Kidney Transplantation Program were created in 1986; the first combined kidney-pancreas transplantation was performed the same year. In 1990, cyclosporine and the Cuban monoclonal antibody IOR-T3 were introduced for immunosuppression to prevent rejection, as were other Cuban products (hepatitis B vaccine and recombinant human erythropoietin) for transplant patients. By December 2011, the cumulative number of transplants was 4636 (384 from related living donors). With over 40 years of experience, kidney transplantation is now well established in Cuba; it is free and universally accessible, on the basis of need and appropriateness.

  19. Human apolipoprotein B transgenic SHR/NDmcr-cp rats show exacerbated kidney dysfunction

    PubMed Central

    ASAHINA, Makoto; SHIMIZU, Fumi; OHTA, Masayuki; TAKEYAMA, Michiyasu; TOZAWA, Ryuichi

    2015-01-01

    Nephropathy frequently co-occurs with metabolic syndrome in humans. Metabolic syndrome is a cluster of metabolic diseases including obesity, diabetes, hypertension, and dyslipidemia, and some previous studies revealed that dyslipidemia contributes to the progression of kidney dysfunction. To establish a new nephropathy model with metabolic syndrome, we produced human apolipoprotein B (apoB) transgenic (Tg.) SHR/NDmcr-cp (SHR-cp/cp) rats, in which dyslipidemia is exacerbated more than in an established metabolic syndrome model, SHR-cp/cp rats. Human apoB Tg. SHR-cp/cp rats showed obesity, hyperinsulinemia, hypertension, and severe hyperlipidemia. They also exhibited exacerbated early-onset proteinuria, accompanied by increased kidney injury and increased oxidative and inflammatory markers. Histological analyses revealed the characteristic features of human apoB Tg. SHR-cp/cp rats including prominent glomerulosclerosis with lipid accumulation. Our newly established human apoB Tg. SHR-cp/cp rat could be a useful model for the nephropathy in metabolic syndrome and for understanding the interaction between dyslipidemia and renal dysfunction in metabolic syndrome. PMID:25912321

  20. Human apolipoprotein B transgenic SHR/NDmcr-cp rats show exacerbated kidney dysfunction.

    PubMed

    Asahina, Makoto; Shimizu, Fumi; Ohta, Masayuki; Takeyama, Michiyasu; Tozawa, Ryuichi

    2015-01-01

    Nephropathy frequently co-occurs with metabolic syndrome in humans. Metabolic syndrome is a cluster of metabolic diseases including obesity, diabetes, hypertension, and dyslipidemia, and some previous studies revealed that dyslipidemia contributes to the progression of kidney dysfunction. To establish a new nephropathy model with metabolic syndrome, we produced human apolipoprotein B (apoB) transgenic (Tg.) SHR/NDmcr-cp (SHR-cp/cp) rats, in which dyslipidemia is exacerbated more than in an established metabolic syndrome model, SHR-cp/cp rats. Human apoB Tg. SHR-cp/cp rats showed obesity, hyperinsulinemia, hypertension, and severe hyperlipidemia. They also exhibited exacerbated early-onset proteinuria, accompanied by increased kidney injury and increased oxidative and inflammatory markers. Histological analyses revealed the characteristic features of human apoB Tg. SHR-cp/cp rats including prominent glomerulosclerosis with lipid accumulation. Our newly established human apoB Tg. SHR-cp/cp rat could be a useful model for the nephropathy in metabolic syndrome and for understanding the interaction between dyslipidemia and renal dysfunction in metabolic syndrome.

  1. Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells

    PubMed Central

    Benedetti, Valentina; Novelli, Rubina; Abbate, Mauro; Rizzo, Paola; Conti, Sara; Tomasoni, Susanna; Corna, Daniela; Pozzobon, Michela; Cavallotti, Daniela; Yokoo, Takashi; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe

    2016-01-01

    Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research. PMID:26516208

  2. Renal function changes after percutaneous nephrolithotomy in patients with renal calculi with a solitary kidney compared to bilateral kidneys.

    PubMed

    Shi, Xiaolei; Peng, Yonghan; Li, Ling; Li, Xiao; Wang, Qi; Zhang, Wei; Dong, Hao; Shen, Rong; Lu, Chaoyue; Liu, Min; Gao, Xiaofeng; Sun, Yinghao

    2018-05-26

    To evaluate renal function changes and risk factors for acute kidney injury (AKI) after percutaneous nephrolithotomy (PCNL) in patients with renal calculi with a solitary kidney (SK) or normal bilateral kidneys (BKs). Between 2012 and 2016, 859 patients undergoing PCNL were retrospectively reviewed at Changhai Hospital. In all, 53 patients with a SK were paired with 53 patients with normal BKs via a propensity score-matched analysis. Data for the following variables were collected: age, sex, body mass index, stone size, distribution, operation time, perioperative outcomes, and complications. The complications were graded according to the modified Clavien-Dindo system. Univariable and multivariable logistic regression models were constructed to evaluate risk factors for predicting AKI. The SK and BKs groups were comparable in terms of age, sex ratio, stone size, stone location distribution, comorbidities, and American Society of Anesthesiologists Physical Status classification. The initial and final stone-free rates were comparable between the SK and BKs groups (initial: 52.83% vs 58.49%, P = 0.696; final: 84.91% vs 92.45%, P = 0.359). There was no difference between the two groups for complications, according to the Clavien-Dindo grades. The estimated glomerular filtration rate (eGFR) increased dramatically after the stone burden was immediately relieved, and during the 6-month follow-up eGFR was lower in the SK group compared with the BKs group. We found a modest improvement in renal function immediately after PCNL in the BKs group, and renal function gain was delayed in the SK group. Through logistic regression analysis, we discovered that a SK, preoperative creatinine and diabetes were independent risk factors for predicting AKI after PCNL. Considering the overall complication rates, PCNL is generally a safe procedure for treating renal calculi amongst patients with a SK or normal BKs. Follow-up renal function analysis showed a modest improvement in patients of both groups. Compared to patients with normal BKs, patients with a SK were more likely to develop AKI after PCNL. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  3. Kidney biomimicry--a rediscovered scientific field that could provide hope to patients with kidney disease.

    PubMed

    Stenvinkel, Peter; Johnson, Richard J

    2013-11-01

    Most studies on kidney disease have relied on classic experimental studies in mice and rats or clinical studies in humans. From such studies much understanding of the physiology and pathophysiology of kidney disease has been obtained. However, breakthroughs in the prevention and treatment of kidney diseases have been relatively few, and new approaches to fight kidney disease are needed. Here we discuss kidney biomimicry as a new approach to understand kidney disease. Examples are given of how various animals have developed ways to prevent or respond to kidney failure, how to protect themselves from hypoxia or oxidative stress and from the scourge of hyperglycemia. We suggest that investigation of evolutionary biology and comparative physiology might provide new insights for the prevention and treatment of kidney disease. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  4. Male infertility associated with adult dominant polycystic kidney disease: a case series.

    PubMed

    Shefi, Shai; Levron, Jacob; Nadu, Andrei; Raviv, Gil

    2009-09-01

    Although described earlier, the association of male infertility with adult dominant polycystic kidney disease (ADPKD) is quite rare and unfamiliar to some of the multidisciplinary team members caring for affected men. Infertile men diagnosed to have ADPKD were evaluated by clinical characteristics including testis volume, as well as serum hormone levels, semen analysis, and transrectal ultrasonography (TRUS) because of low volume ejaculate. Semen analysis revealed low-normal volume, normal pH, and azoospermia/virtual azoospermia. Serum hormones were within the normal range. Transrectal ultrasonography demonstrated cystic dilatation of the seminal vesicles in all three men. Patients should be referred for andrological evaluation of a presentation similar to obstructive azoospermia. Their potential to achieve paternity by surgical sperm retrieval combined with assisted reproductive technology is another example of cooperation between andrologists and gynecologists.

  5. HeLa Nucleic Acid Contamination in The Cancer Genome Atlas Leads to the Misidentification of Human Papillomavirus 18

    PubMed Central

    Cantalupo, Paul G.; Katz, Joshua P.

    2015-01-01

    ABSTRACT We searched The Cancer Genome Atlas (TCGA) database for viruses by comparing non-human reads present in transcriptome sequencing (RNA-Seq) and whole-exome sequencing (WXS) data to viral sequence databases. Human papillomavirus 18 (HPV18) is an etiologic agent of cervical cancer, and as expected, we found robust expression of HPV18 genes in cervical cancer samples. In agreement with previous studies, we also found HPV18 transcripts in non-cervical cancer samples, including those from the colon, rectum, and normal kidney. However, in each of these cases, HPV18 gene expression was low, and single-nucleotide variants and positions of genomic alignments matched the integrated portion of HPV18 present in HeLa cells. Chimeric reads that match a known virus-cell junction of HPV18 integrated in HeLa cells were also present in some samples. We hypothesize that HPV18 sequences in these non-cervical samples are due to nucleic acid contamination from HeLa cells. This finding highlights the problems that contamination presents in computational virus detection pipelines. IMPORTANCE Viruses associated with cancer can be detected by searching tumor sequence databases. Several studies involving searches of the TCGA database have reported the presence of HPV18, a known cause of cervical cancer, in a small number of additional cancers, including those of the rectum, kidney, and colon. We have determined that the sequences related to HPV18 in non-cervical samples are due to nucleic acid contamination from HeLa cells. To our knowledge, this is the first report of the misidentification of viruses in next-generation sequencing data of tumors due to contamination with a cancer cell line. These results raise awareness of the difficulty of accurately identifying viruses in human sequence databases. PMID:25631090

  6. Hypertension in kidney transplantation is associated with an early renal nerve sprouting

    PubMed Central

    Rovella, Valentina; Borri, Filippo; Anemona, Lucia; Giannini, Elena; Giacobbi, Erica; Saggini, Andrea; Palmieri, Giampiero; Anselmo, Alessandro; Bove, Pierluigi; Melino, Gerry; Valentina, Guardini; Tesauro, Manfredi; Gabriele, D’Urso; Di Daniele, Nicola

    2017-01-01

    Abstract Background. Normalization of arterial pressure occurs in just a few patients with hypertensive chronic kidney disease undergoing kidney transplantation. Hypertension in kidney transplant recipients may be related to multiple factors. We aimed to assess whether hypertension in kidney-transplanted patients may be linked to reinnervation of renal arteries of the transplanted kidney. Methods. We investigated renal arteries innervation from native and transplanted kidneys in three patients 5 months, 2 years and 11 years after transplantation, respectively. Four transplanted kidneys from non-hypertensive patients on immunosuppressive treatment without evidence of hypertensive arteriolar damage were used as controls. Results. Evidence of nerve sprouting was observed as early as 5 months following transplantation, probably originated from ganglions of recipient patient located near the arterial anastomosis and was associated with mild hypertensive arteriolar damage. Regeneration of periadventitial nerves was already complete 2 years after transplantation. Nerve density tended to reach values observed in native kidney arteries and was associated with hypertension-related arteriolar lesions in transplanted kidneys. Control kidneys, albeit on an immunosuppressive regimen, presented only a modest regeneration of sympathetic nerves. Conclusions. Our results suggest that the considerable increase in sympathetic nerves, as found in patients with severe arterial damage, may be correlated to hypertension rather than to immunosuppressive therapy, thus providing a morphological basis for hypertension recurrence despite renal denervation. PMID:28498963

  7. Morphine induces albuminuria by compromising podocyte integrity.

    PubMed

    Lan, Xiqian; Rai, Partab; Chandel, Nirupama; Cheng, Kang; Lederman, Rivka; Saleem, Moin A; Mathieson, Peter W; Husain, Mohammad; Crosson, John T; Gupta, Kalpna; Malhotra, Ashwani; Singhal, Pravin C

    2013-01-01

    Morphine has been reported to accelerate the progression of chronic kidney disease. However, whether morphine affects slit diaphragm (SD), the major constituent of glomerular filtration barrier, is still unclear. In the present study, we examined the effect of morphine on glomerular filtration barrier in general and podocyte integrity in particular. Mice were administered either normal saline or morphine for 72 h, then urine samples were collected and kidneys were subsequently isolated for immunohistochemical studies and Western blot. For in vitro studies, human podocytes were treated with morphine and then probed for the molecular markers of slit diaphragm. Morphine-receiving mice displayed a significant increase in albuminuria and showed effacement of podocyte foot processes. In both in vivo and in vitro studies, the expression of synaptopodin, a molecular marker for podocyte integrity, and the slit diaphragm constituting molecules (SDCM), such as nephrin, podocin, and CD2-associated protein (CD2AP), were decreased in morphine-treated podocytes. In vitro studies indicated that morphine modulated podocyte expression of SDCM through opiate mu (MOR) and kappa (KOR) receptors. Since morphine also enhanced podocyte oxidative stress, the latter seems to contribute to decreased SDCM expression. In addition, AKT, p38, and JNK pathways were involved in morphine-induced down regulation of SDCM in human podocytes. These findings demonstrate that morphine has the potential to alter the glomerular filtration barrier by compromising the integrity of podocytes.

  8. Ultrasonic propulsion of kidney stones: preliminary results of human feasibility study.

    PubMed

    Bailey, Michael; Cunitz, Bryan; Dunmire, Barbrina; Paun, Marla; Lee, Franklin; Ross, Susan; Lingeman, James; Coburn, Michael; Wessells, Hunter; Sorensen, Mathew; Harper, Jonathan

    2014-09-03

    One in 11 Americans has experienced kidney stones, with a 50% average recurrence rate within 5-10 years. Ultrasonic propulsion (UP) offers a potential method to expel small stones or residual fragments before they become a recurrent problem. Reported here are preliminary findings from the first investigational use of UP in humans. The device uses a Verasonics ultrasound engine and Philips HDI C5-2 probe to generate real-time B-mode imaging and targeted "push" pulses on demand. There are three arms of the study: de novo stones, post-lithotripsy fragments, and the preoperative setting. A pain questionnaire is completed prior to and following the study. Movement is classified based on extent. Patients are followed for 90 days. Ten subjects have been treated to date: three de novo , five post-lithotripsy, and two preoperative. None of the subjects reported pain associated with the treatment or a treatment related adverse event, beyond the normal discomfort of passing a stone. At least one stone was moved in all subjects. Three of five post-lithotripsy subjects passed a single or multiple stones within 1-2 weeks following treatment; one subject passed two (1-2 mm) fragments before leaving clinic. In the pre-operative studies we successfully moved 7 - 8 mm stones. In four subjects, UP revealed multiple stone fragments where the clinical image and initial ultrasound examination indicated a single large stone.

  9. Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes.

    PubMed

    Fu, Yulong; Zhu, Jun-Yi; Zhang, Fujian; Richman, Adam; Zhao, Zhanzheng; Han, Zhe

    2017-06-01

    The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.

  10. Failure-to-Thrive Syndrome Associated with Tumor Formation by Madin–Darby Canine Kidney Cells in Newborn Nude Mice

    PubMed Central

    Brinster, Lauren R; Omeir, Romelda L; Foseh, Gideon S; Macauley, Juliete N; Snoy, Philip J; Beren, Joel J; Teferedegne, Belete; Peden, Keith; Lewis, Andrew M

    2013-01-01

    Tumors that formed in newborn nude mice that were inoculated with 107 Madin–Darby canine kidney (MDCK) cells were associated with a failure-to-thrive (FTT) syndrome consisting of growth retardation, lethargy, weakness, and dehydration. Scoliosis developed in 41% of affected pups. Pups were symptomatic by week 2; severely affected pups became moribund and required euthanasia within 3 to 4 wk. Mice with FTT were classified into categories of mild, moderate, and severe disease by comparing their weight with that of age-matched normal nude mice. The MDCK-induced tumors were adenocarcinomas that invaded adjacent muscle, connective tissue, and bone; 6 of the 26 pups examined had lung metastases. The induction of FTT did not correlate with cell-line aggressiveness as estimated by histopathology or the efficiency of tumor formation (tumor-forming dose 50% endpoint range = 102.8 to 107.5); however, tumor invasion of the paravertebral muscles likely contributed to the scoliosis noted. In contrast to the effect of MDCK cells, tumor formation observed in newborn mice inoculated with highly tumorigenic, human-tumor–derived cell lines was not associated with FTT development. We suggest that tumor formation and FTT are characteristics of these MDCK cell inocula and that FTT represents a new syndrome that may be similar to the cachexia that develops in humans with cancer or other diseases. PMID:24209967

  11. Evidence of SV40 infections in hospitalized children

    NASA Technical Reports Server (NTRS)

    Butel, J. S.; Jafar, S.; Wong, C.; Arrington, A. S.; Opekun, A. R.; Finegold, M. J.; Adam, E.

    1999-01-01

    Simian virus 40 (SV40) is known to have contaminated poliovirus vaccines used between 1955 and 1963. Accumulating reports have described the presence of SV40 DNA in human tumors and normal tissues, although the significance of human infections by SV40 is unknown. We investigated whether unselected hospitalized children had evidence of SV40 infections and whether any clinical correlations were apparent. Serum samples were examined for SV40 neutralizing antibody using a specific plaque reduction test; of 337 samples tested, 20 (5.9%) had antibody to SV40. Seropositivity increased with age and was significantly associated with kidney transplants (6 of 15 [40%] positive, P < .001). Many of the antibody-positive patients had impaired immune systems. Molecular assays (polymerase chain reaction and DNA sequence analysis) on archival tissue specimens confirmed the presence of SV40 DNA in 4 of the antibody-positive patients. This study, using 2 independent assays, shows the presence of SV40 infections in children born after 1980. We conclude that SV40 causes natural infections in humans.

  12. 78 FR 64509 - National Institute of Diabetes and Digestive and Kidney Diseases; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Diabetes and Digestive and Kidney Diseases Special Emphasis...

  13. 78 FR 64519 - National Institute of Diabetes and Digestive and Kidney Diseases; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Diabetes and Digestive and Kidney Diseases Special Emphasis...

  14. 78 FR 36203 - National Institute of Diabetes and Digestive and Kidney Diseases; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Institute of Diabetes and Digestive and Kidney Diseases Special Emphasis...

  15. Strong human leukocyte antigen matching effect in nonsensitized kidney recipients with high pretransplant soluble CD30.

    PubMed

    Süsal, Caner; Pelzl, Steffen; Opelz, Gerhard

    2003-10-27

    The influence of human leukocyte antigen (HLA) matching on graft survival is greater in patients with preformed lymphocytotoxic antibodies than in nonsensitized patients. Pretransplant serum soluble CD30 (sCD30) affects graft outcome independently of presensitization status. The impact of HLA compatibility on kidney transplant survival was analyzed in 3980 nonsensitized first cadaveric kidney recipients in relation to the pretransplant serum sCD30 content. Although HLA compatibility influenced graft outcome only marginally in nonsensitized recipients with low sCD30 (at 3 years: P=0.0095; at 5 years: P=0.1033), a strong HLA matching effect was observed in nonsensitized recipients with high sCD30 (at 3 years: P<0.0001; at 5 years: P=0.0001). Nonsensitized patients with high pretransplant sCD30 benefit from an HLA well-matched kidney. Patients should be tested for sCD30 while on the waiting list for a kidney transplant, and HLA well-matched kidneys should be allocated to patients with high sCD30.

  16. Cerebellar degeneration-related proteins 2 and 2-like are present in ovarian cancer in patients with and without Yo antibodies.

    PubMed

    Raspotnig, Margrethe; Haugen, Mette; Thorsteinsdottir, Maria; Stefansson, Ingunn; Salvesen, Helga B; Storstein, Anette; Vedeler, Christian A

    2017-11-01

    Cerebellar degeneration-related protein 2 (CDR2) has been presumed to be the main antigen for the onconeural antibody Yo, which is strongly associated with ovarian cancer and paraneoplastic cerebellar degeneration (PCD). Recent data show that Yo antibodies also target the CDR2-like protein (CDR2L). We, therefore, examined the expression of CDR2 and CDR2L in ovarian cancer tissue from patients with and without Yo antibodies and from various other cancerous and normal human tissues. Ovarian cancer tissue and serum samples from 16 patients were included in the study (four with anti-Yo and PCD, two with anti-Yo without PCD, five with only CDR2L antibodies, and five without onconeural antibodies). Clinical data were available for all patients. The human tissues were examined by western blot and immunohistochemistry using rabbit CDR2 and CDR2L antibodies. Ovarian cancers from all 16 patients expressed CDR2 and CDR2L proteins. Both proteins were also present in normal and cancer tissue from mammary tissue, kidney, ovary, prostate, and testis. CDR2L is present in ovarian cancers from patients with and without Yo antibodies as was shown previously for CDR2. In addition, both CDR2 and CDR2L proteins are more widely expressed than previously thought, both in normal and cancerous tissues.

  17. Kidney cell electrophoresis in space flight: Rationale, methods, results and flow cytometry applications

    NASA Technical Reports Server (NTRS)

    Todd, P.; Morrison, Dennis R.; Barlow, Grant H.; Lewis, Marian L.; Lanham, J. W.; Cleveland, C.; Williams, K.; Kunze, M. E.; Goolsby, C. L.

    1988-01-01

    Cultures of human embryonic kidney cells consistently contain an electrophoretically separable subpopulation of cells that produce high levels of urokinase and have an electrophoretic mobility about 85 percent as high as that of the most mobile human embryonic kidney cells. This subpopulation is rich in large epithelioid cells that have relatively little internal structure. When resolution and throughput are adequate, free fluid electrophoresis can be used to isolate a broad band of low mobility cells which also produces high levels of plasminogen activators (PAs). In the course of performing this, it was discovered that all electrophoretic subpopulations of cultured human embryonic kidney cells produce some PAs and that separate subpopulations produce high quantities of different types of PA's. This information and the development of sensitive assays for this project have provided new insights into cell secretion mechanisms related to fibrinolysis. These advances would probably not have been made without the NASA program to explore fundamental questions of free fluid electrophoresis in space.

  18. The role of sympathetic nervous system in the progression of chronic kidney disease in the era of catheter based sympathetic renal denervation.

    PubMed

    Petras, Dimitrios; Koutroutsos, Konstantinos; Kordalis, Athanasios; Tsioufis, Costas; Stefanadis, Christodoulos

    2013-08-01

    The kidney has been shown to be critically involved as both trigger and target of sympathetic nervous system overactivity in both experimental and clinical studies. Renal injury and ischemia, activation of renin angiotensin system and dysfunction of nitric oxide system have been implicated in adrenergic activation from kidney. Conversely, several lines of evidence suggest that sympathetic overactivity, through functional and morphological alterations in renal physiology and structure, may contribute to kidney injury and chronic kidney disease progression. Pharmacologic modulation of sympathetic nervous system activity has been found to have a blood pressure independent renoprotective effect. The inadequate normalization of sympathoexcitation by pharmacologic treatment asks for novel treatment options. Catheter based renal denervation targets selectively both efferent and afferent renal nerves and functionally denervates the kidney providing blood pressure reduction in clinical trials and renoprotection in experimental models by ameliorating the effects of excessive renal sympathetic drive. This review will focus on the role of sympathetic overactivity in the pathogenesis of kidney injury and CKD progression and will speculate on the effect of renal denervation to these conditions.

  19. First successful combined heart and kidney transplant in Iran: a case report.

    PubMed

    Ahmadi, Zargham-Hossein; Mirhosseini, Seyed Mohsen; Fakhri, Mohammad; Mozaffary, Amirhossein; Lotfaliany, Mojtaba; Nejatollahi, Seyed Mohammad Reza; Marashi, Seyed-Ali; Behzadnia, Neda; Sharif-Kashani, Babak

    2013-08-01

    Combined heart and kidney transplant has become an accepted therapy for patients with coexisting heart and kidney failure. This method, compared with single-organ transplant, has a better outcome. Here, we report the first successful combined heart and kidney transplant in Iran. The patient was a 36-year-old man with end-stage renal disease owing to IgA nephropathy, admitted to Masih Daneshvari Hospital in Tehran, Iran for progressive dyspnea and chest pain. In-patient evaluations revealed cardiomyopathy leading to end-stage heart failure. Owing to concurrent heart and kidney end-stage diseases, combined cardiorenal transplant was done. Eight months after his transplant, routine follow-ups have not shown any signs of acute rejection. He is now New York Heart Association functional class I. Both cardiac and renal functions are within normal ranges. Good outcome during follow-up for this case justifies simultaneous heart plus kidney transplants as an alternate treatment for patients with advanced disease of both organs.

  20. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model

    PubMed Central

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A.; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O.

    2017-01-01

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma. PMID:28620146

  1. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model.

    PubMed

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O

    2017-07-04

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma.

  2. Genetic diagnosis of polycystic kidney disease, Alport syndrome, and thalassemia minor in a large Chinese family.

    PubMed

    Miao, Yun; Xiong, Jun; Zhang, Xuelian; Huang, Huajie; Yu, Lixin; Chen, Jianfan; Deng, Wenfeng; Xu, Huiling; Liu, Rumin; Xiang, Chenglin; Xu, Xiangmin; Xiong, Fu

    2017-10-01

    Polycystic kidney disease (PKD) and Alport syndrome (AS) are serious inherited disorders associated with renal disease, and thalassemia is a hereditary blood disease with a high prevalence in south China. Here, we report an exceptional PKD coincidence of thalassemia minor and AS (diagnosed genetically) in a large Chinese family. Whole genome next-generation sequencing (NGS) was performed on the proband, and all family members underwent clinical evaluation. Sanger sequencing was used to validate the mutations distinguished by NGS. The pathogenic potential of the variants were evaluated by Polymorphism Phenotyping v2 (PolyPhen-2), Sorting Intolerant From Tolerant (SIFT) algorithm, and MutationTaster. Immunohistochemical, Western blot, immunofluorescent, and TdT-mediated dUTP nick-end labeling (TUNEL) analyses were performed to investigate polycystin 1 (PC1) expression, and cell proliferation and apoptosis in kidney tissues from the proband and normal control. A novel frameshift polycystic kidney disease 1 ( PKD1 ) mutation (c.3903delC, p.A1302Pfs) was identified to be responsible for renal disease in this family. PC1 expression, and cell proliferation and apoptosis were significantly increased in the kidney tissues of the proband. Moreover, a deletion of approximately 19.3 kb of DNA with α-globin genes ( _ _SEA ) was associated with thalassemia minor in the family. In addition, a collagen type IV α 5 chain ( COL4A5 ) variant (c.2858G>T, rs78972735), annotated as a pathogenic mutation in dbSNP and human gene mutation database (HGMD), was found in four family members with no clinical traits of AS. A novel pathogenic PKD1 mutation (c.3903delC) and ( _ _SEA ) thalassemia deletion were found to be responsible for the clinical symptoms in this family. The reported pathogenic COL4a5 variant (c.2858G>T, rs78972735) was not pathogenic alone. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Anatomical study of renal arterial vasculature and its potential impact on partial nephrectomy.

    PubMed

    Macchi, Veronica; Crestani, Alessandro; Porzionato, Andrea; Sfriso, Maria Martina; Morra, Aldo; Rossanese, Marta; Novara, Giacomo; De Caro, Raffaele; Ficarra, Vincenzo

    2017-07-01

    To validate Graves' classification of the intrarenal arteries and to verify the absence of collateral arterial blood supply between different renal segments, in order to maximize peri-operative and functional outcomes of partial nephrectomy. The study was performed on 15 normal kidneys sampled from eight unembalmed cadavers. Kidneys with the surrounding perirenal fat tissue were removed en bloc with the abdominal segment of the aorta. The renal artery was injected with acrylic and radiopaque resins, with the specimen suspended in water. CT examination of the injected kidneys was performed to analyse the branches located deeply. After imaging acquisition, the specimens were treated with sodium hydroxide for removal of the parenchyma to obtain vascular casts. Ten casts (66.6%) showed the classic subdivision of the main artery into single posterior and anterior branches. With regard to the distribution of the segmental or second-order arteries, only two casts (13%) showed a pattern similar to that described by Graves, characterized by four segmental (second-order) branches coming from the anterior renal artery (apical, superior, middle and inferior). In the remaining 13 kidneys (87%) a different arterial vascular network was detected. In 10 casts (80%) a single renal segment was vascularized by two or more different branches coming from an artery leading to another segment (multiple vascularization). Multiple vascularization was observed in three (20%) apical segments, five (33%) superior segments, six (40%) middle segments, seven (47%) inferior segments and two (13%) posterior segments. This study shows that in the human kidneys the arterial vasculature is frequently different from that described by Graves. Moreover, in a significant percentage of cases, a single renal segment receives two or more branches that originate from an artery leading to another segment. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  4. Engraftment of PBMC from SLE and APS Donors into BALB-Rag2−/−IL2Rgc−/− Mice: a Promising Model for Studying Human Disease

    PubMed Central

    Andrade, Danieli; Redecha, Patricia B.; Vukelic, Milena; Qing, Xiaoping; Perino, Giorgio; Salmon, Jane E.; Koo, Gloria C.

    2011-01-01

    Purpose To construct a humanized SLE mouse that resembles the human disease to define pathophysiology and targeted for treatments. Methods We infused peripheral blood mononuclear cells (PBMC) from SLE patients into BALB-Rag2−/−IL2Rgc−/−mice (DKO), which lack T, B and NK cells. PBMC from 5 SLE patients and 4 normal donors (ND) at 3–5×106/mouse were infused IV/IP to non-irradiated 4–5 weeks old mice. We evaluated the engraftment of human CD45+cells and monitored the plasma human IgG, anti-dsDNA, anti-cardiolipin (aCL) antibodies, proteinuria, and kidney histology. Results We found 100% successful engraftment of 40 DKO mice infused with human PBMC. In both SLE-DKO and ND-DKO mice, 50–80% human CD45+ cells were observed in PBMC fraction 4–6 weeks post engraftment, with 70–90% CD3+ cells. There were fewer CD3+4+cells (5.5±2.1%) and more CD3+8+cells (79.4±3.6%) in the SLE-DKO mice, as in the SLE patients. CD19+B cells and CD11c+Monocytic cells were found in the spleen, lung, liver and bone marrow. There was no significant difference in plasma human IgG levels and anti-dsDNA antibodies between SLE-DKO and ND-DKO mice. Levels of aCL antibody were significantly higher in all SLE-DKO mice infused with PBMC from a SLE patient with high titers of aCL antibodies. SLE-DKO mice had proteinuria, human IgG deposits in the kidneys and shorter life span. In SLE- DKO mice engrafted from the aCL-positive patient, we found micro-thrombi and infiltration of CD3+, CD8+ and CD19+ cells in the glomeruli, recapitulating APS in these mice. Conclusion A novel humanized SLE-DKO mouse is established, exhibiting many characteristics of immunologic and clinical features of SLE. PMID:21560114

  5. Choline pathways during normal and stimulated renal growth in rats.

    PubMed Central

    Bean, G H; Lowenstein, L M

    1978-01-01

    Cellular membrane synthesis occurs during normal and stimulated renal growth. Choline in the kidney is utilized as a precursor for membrane synthesis via the choline kinase reaction. We investigated choline phosphorylation during normal and stimulated renal growth. Rapidly growing neonatal rat kidneys contained relatively high levels of choline kinase activity (61 pmol phosphorylcholine/min per mg protein). Choline kinase activity and phosphorylcholine production then fell gradually over the 1st mo of life; by 1 mo phosphorylcholine production was 34 pmol phosphorylcholine/min per mg protein. Choline kinase activity increased by 27% (P less than 0.001) in 28-day-old rats when renal growth was stimulated by contralateral nephrectomy; the increase occurred within 2 h after surgery. Thus, changes in the activity of this important enzyme in the initiation of membrane synthesis is associated both with normal renal development and with adaptation to nephron loss. The findings further suggest that the cell membrane may be involved in the initiation of compensatory renal growth. PMID:659614

  6. Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney.

    PubMed

    Ellery, Stacey J; Ireland, Zoe; Kett, Michelle M; Snow, Rod; Walker, David W; Dickinson, Hayley

    2013-02-01

    Acute kidney injury (AKI) is a major complication for infants following an asphyxic insult at birth. We aimed to determine if kidney structure and function were affected in an animal model of birth asphyxia and if maternal dietary creatine supplementation could provide an energy reserve to the fetal kidney, maintaining cellular respiration during asphyxia and preventing AKI. Pregnant spiny mice were maintained on normal chow or chow supplemented with creatine from day 20 gestation. On day 38 (term ~39 d), pups were delivered by cesarean section (c-section) or subjected to intrauterine asphyxia. Twenty-four hours after insult, kidneys were collected for histological or molecular analysis. Urine and plasma were also collected for biochemical analysis. AKI was evident at 24 h after birth asphyxia, with a higher incidence of shrunken glomeruli (P < 0.02), disturbance to tubular arrangement, tubular dilatation, a twofold increase (P < 0.02) in expression of Ngal (early marker of kidney injury), and decreased expression of the podocyte differentiation marker nephrin. Maternal creatine supplementation prevented the glomerular and tubular abnormalities observed in the kidney at 24 h and the increased expression of Ngal. Maternal creatine supplementation may prove useful in ameliorating kidney injury associated with birth asphyxia.

  7. Adipocytes play an etiological role in the podocytopathy of high-fat diet-fed rats.

    PubMed

    Chen, Jinn-Yang; Jian, Deng-Yuan; Lien, Chih-Chan; Lin, Yu-Ting; Ting, Ching-Heng; Chen, Luen-Kui; Hsu, Ting-Chia; Huang, Hsuan-Min; Wu, Yu-Ting; Kuan, Tse-Ting; Chao, Yu-Wen; Wu, Liang-Yi; Huang, Seng-Wong; Juan, Chi-Chang

    2016-11-01

    Obesity is a risk factor that promotes progressive kidney disease. Studies have shown that an adipocytokine imbalance contributes to impaired renal function in humans and animals, but the underlying interplay between adipocytokines and renal injury remains to be elucidated. We aimed to investigate the mechanisms linking obesity to chronic kidney disease. We assessed renal function in high-fat (HF) diet-fed and normal diet-fed rats, and the effects of preadipocyte- and adipocyte-conditioned medium on cultured podocytes. HF diet-fed and normal diet-fed Sprague Dawley rats were used to analyze the changes in plasma BUN, creatinine, urine protein and renal histology. Additionally, podocytes were incubated with preadipocyte- or adipocyte-conditioned medium to investigate the effects on podocyte morphology and protein expression. In the HF diet group, 24 h urinary protein excretion (357.5 ± 64.2 mg/day vs 115.9 ± 12.4 mg/day, P < 0.05) and the urine protein/creatinine ratio were significantly higher (1.76 ± 0.22 vs 1.09 ± 0.15, P < 0.05), increased kidney weight (3.54 ± 0.04 g vs 3.38 ± 0.04 g, P < 0.05) and the glomerular volume and podocyte effacement increased by electron microscopy. Increased renal expression of desmin and decreased renal expression of CD2AP and nephrin were also seen in the HF diet group (P < 0.05). Furthermore, we found that adipocyte-conditioned medium-treated podocytes showed increased desmin expression and decreased CD2AP and nephrin expression compared with that in preadipocyte-conditioned medium-treated controls (P < 0.05). These findings show that adipocyte-derived factor(s) can modulate renal function. Adipocyte-derived factors play an important role in obesity-related podocytopathy. © 2016 Society for Endocrinology.

  8. Suramin-restricted blood volume in the placenta of normal and diabetic rats is normalized by vitamin E treatment.

    PubMed

    Nash, P; Eriksson, U J

    2007-01-01

    Previously maternal and fetal alterations resembling human pre-eclampsia were induced in pregnant rats by injections of the angiogenesis inhibitor Suramin. These alterations were aggravated by maternal diabetes and partly rectified by vitamin E supplementation. In the present study we evaluated the morphology of placentae and kidneys in this model. Non-diabetic and streptozotocin-induced diabetic pregnant rats of two rat strains (U and H) were treated with Suramin or saline, and given standard or vitamin E-enriched food. On gestational day 20 one placenta and the left kidney of the mother were collected for morphological and stereological analysis. In the placental trophospongium Suramin treatment caused cysts, which were further enhanced by maternal diabetes. Vitamin E treatment had no effect on the vacuolization. In the placental labyrinth of the non-diabetic rats Suramin treatment restricted maternal placental blood volume and increased the interface between maternal and fetal circulation. These changes were reversed by vitamin E treatment. Diabetes increased slightly the interface between the circulations in both rat strains. Suramin treatment decreased the interface, and vitamin E further decreased the interface in the diabetic U rats, whereas neither treatment affected the maternal-fetal interface in the diabetic H rats. The kidneys of Suramin-treated and diabetic rats were heavier compared to controls. Suramin treatment and maternal diabetes damaged renal glomeruli to a similar extent. Vitamin E treatment diminished the Suramin- and diabetes-induced glomerular damage in U rats, but not in H rats. The average cell count per glomerulus was decreased by Suramin in the U rats. Vitamin E treatment did not affect cell number per glomerulus in any group. We conclude that Suramin-injected pregnant rats constitute a valid animal model for placental dysfunction and pre-eclampsia, also from the histological perspective. The present work supports the notion that one important effect of untreated maternal diabetes may be impaired placentation, leading to oxidative stress, morphological damage, and compromised placental function.

  9. Simultaneous Expression from Both the Sense and Antisense Strand of the Erythropoietin Receptor Gene Mitigates Acute Lung Injury

    DTIC Science & Technology

    2017-09-01

    Toronto) which immunoprecipitates EpoR but works poorly in immunoblots and not at in immunohistochemistry (Hu et al., Kidney Int. 2013 Sep;84(3):468-81...DAPI EpoR/GFP/DAPIGFP/DAPI C.. Ba/F32EpoR2Flag2GFP.cells 9 Figure 4. Screening the new MAbs to human RopE. Human embryonic kidney -293 (HEK-293) cells...ontogeny of EpoR and RopE expression Figure 7. Concordant RopE and EpoR expression was observed in the lung (left) and the kidney (right) that increase

  10. Not the Usual Viral Suspects: Parvovirus B19, West Nile Virus, and Human T-Cell Lymphotrophic Virus Infections After Kidney Transplantation.

    PubMed

    Razonable, Raymund R

    2016-09-01

    Kidney transplant recipients are at increased risk of developing clinical disease due to uncommon opportunistic viral pathogens. Refractory anemia is classically associated with parvovirus B19 infection. West Nile virus has the propensity to cause fever and neurologic symptoms, while spastic paresis and lymphoma can be triggered by human T cell lymphotrophic virus. In this review article, the epidemiology, clinical manifestations, diagnosis and treatment of less common viruses are discussed in the setting of kidney transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Diagnosis of hyperthyroidism in cats with mild chronic kidney disease.

    PubMed

    Wakeling, J; Moore, K; Elliott, J; Syme, H

    2008-06-01

    In cats with concurrent hyperthyroidism and non-thyroidal illnesses such as chronic kidney disease, total thyroxine concentrations are often within the laboratory reference range (19 to 55 nmol/l). The objective of the study was to determine total thyroxine, free thyroxine and/or thyroid-stimulating hormone concentrations in cats with mild chronic kidney disease. Total thyroxine, free thyroxine and thyroid-stimulating hormone were measured in three groups. The hyperthyroidism-chronic kidney disease group (n=16) had chronic kidney disease and clinical signs compatible with hyperthyroidism but a plasma total thyroxine concentration within the reference range. These cats were subsequently confirmed to be hyperthyroid at a later date. The chronic kidney disease-only group (n=20) had chronic kidney disease but no signs of hyperthyroidism. The normal group (n=20) comprised clinically healthy senior (>8 years) cats. In 4 of 20 euthyroid chronic kidney disease cats, free thyroxine concentrations were borderline or high (> or =40 pmol/l). In the hyperthyroidism-chronic kidney disease group, free thyroxine was high in 15 of 16 cats, while thyroid-stimulating hormone was low in 16 of 16 cats. Most hyperthyroidism-chronic kidney disease cats (14 of 16) had total thyroxine greater than 30 nmol/l, whereas all the chronic kidney disease-only cats had total thyroxine less than 30 nmol/l. The combined measurement of free thyroxine with total thyroxine or thyroid-stimulating hormone may be of merit in the diagnosis of hyperthyroidism in cats with chronic kidney disease.

  12. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders

    PubMed Central

    Ronconi, Elisa; Angelotti, Maria Lucia; Peired, Anna; Mazzinghi, Benedetta; Becherucci, Francesca; Conti, Sara; Sansavini, Giulia; Sisti, Alessandro; Ravaglia, Fiammetta; Lombardi, Duccio; Provenzano, Aldesia; Manonelles, Anna; Cruzado, Josep M.; Giglio, Sabrina; Roperto, Rosa Maria; Materassi, Marco; Lasagni, Laura

    2015-01-01

    The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders. PMID:25568173

  13. The Relationship between Maternal Nutrition during Pregnancy and Offspring Kidney Structure and Function in Humans: A Systematic Review

    PubMed Central

    Lee, Yu Qi; Collins, Clare E.; Gordon, Adrienne; Rae, Kym M.; Pringle, Kirsty G.

    2018-01-01

    The intrauterine environment is critical for fetal growth and organ development. Evidence from animal models indicates that the developing kidney is vulnerable to suboptimal maternal nutrition and changes in health status. However, evidence from human studies are yet to be synthesised. Therefore, the aim of the current study was to systematically review current research on the relationship between maternal nutrition during pregnancy and offspring kidney structure and function in humans. A search of five databases identified 9501 articles, of which three experimental and seven observational studies met the inclusion criteria. Nutrients reviewed to date included vitamin A (n = 3), folate and vitamin B12 (n = 2), iron (n = 1), vitamin D (n = 1), total energy (n = 2) and protein (n = 1). Seven studies were assessed as being of “positive” and three of “neutral” quality. A variety of populations were studied, with limited studies investigating maternal nutrition during pregnancy, while measurements of offspring kidney outcomes were diverse across studies. There was a lack of consistency in the timing of follow-up for offspring kidney structure and/or function assessments, thus limiting comparability between studies. Deficiencies in maternal folate, vitamin A, and total energy during pregnancy were associated with detrimental impacts on kidney structure and function, measured by kidney volume, proteinuria, eGFRcystC and mean creatinine clearance in the offspring. Additional experimental and longitudinal prospective studies are warranted to confirm this relationship, especially in Indigenous populations where the risk of renal disease is greater. PMID:29466283

  14. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation.

    PubMed

    Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake; Nishinakamura, Ryuichi

    2016-06-01

    Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator-like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm-like structures. Microarray analysis of sorted iPS cell-derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell-derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell-derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. Copyright © 2016 by the American Society of Nephrology.

  15. Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation

    PubMed Central

    Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake

    2016-01-01

    Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro. These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm–like structures. Microarray analysis of sorted iPS cell–derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo. Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell–derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell–derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. PMID:26586691

  16. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation.

    PubMed

    Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley

    2017-10-20

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D 3 to its hormonal form, 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1 , are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH) 2 D 3 -mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH) 2 D 3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH) 2 D 3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Anatomic and Radiologic Study of Renal Avascular Plane (Brödel's Line) and Its Potential Relevance on Percutaneous and Surgical Approaches to the Kidney.

    PubMed

    Macchi, Veronica; Picardi, Edgardo; Inferrera, Antonino; Porzionato, Andrea; Crestani, Alessandro; Novara, Giacomo; De Caro, Raffaele; Ficarra, Vincenzo

    2018-02-01

    The aim of the present anatomic and radiologic study was to evaluate the location, extension, and characteristics of the Brödel's plane and eventually define its different patterns. We evaluated 15 human normal kidneys sampled from unembalmed cadavers without clinical history or anatomical evidence of renal diseases. Kidneys with the surrounding perirenal fat tissue were removed en bloc with the abdominal segment of the aorta. The renal artery was injected with acrylic and radiopaque resins. A CT examination of the injected kidneys was performed. After the imaging acquisition, the specimens were treated with sodium hydroxide for removal of the parenchyma to obtain the vascular casts. All the CT images were elaborated using dedicated three-dimensional (3D) software with the aim to improve the possibility to identify the Brödel's plane. The avascular plane was identified directly on the vascular casts and confirmed on the corresponding 3D images. The avascular plane was located in all cases medially to the lateral convex border of the kidneys. The recorded mean distance was 2.04 cm (range 1.8-2.4 cm). Three patterns of distribution of the Brödel's line were identified. In five (33.3%) cases the avascular plane was extended from the apical to the inferior segment of the kidneys (type 1); in six (40%) from the superior to the inferior segment (type 2); and in four (26.7%) from the apical to the middle segment (type 3). Fourth and fifth order vessels crossing the Brödel's line were detected in all the analyzed cases. The renal avascular plane showed a different extension allowing us to cluster three different patterns. Preoperative identification of the Brödel's line patterns could help surgeons to minimize hemorrhagic complications during percutaneous and surgical procedures requiring an incision of the renal parenchyma such as traditional or robot-assisted nephrolithotomy or partial nephrectomy for endophytic renal tumors. Radiologic studies validated that the described patterns in the clinical practice are strongly needed.

  18. RAAS-mediated Redox effects in Chronic Kidney Disease

    PubMed Central

    Nistala, Ravi; Wei, Yongzhong; Sowers, James R; Whaley-Connell, Adam

    2009-01-01

    The renin-angiotensin-aldosterone-system (RAAS) is central to the pathogenesis of hypertension, cardiovascular and kidney disease. Emerging evidence support various pathways through which a local renal RAAS can affect kidney function, hypertension, and cardiovascular disease. A prominent mechanism appears to be loss of redox homeostasis and formation of excessive free radicals. Free radicals such as reactive oxygen species (ROS) are necessary in normal physiologic processes including development of nephrons, erythropoeisis and tubular sodium transport. However, loss of redox homeostasis contributes to pro-inflammatory and pro-fibrotic pathways in the kidney that in turn lead to reduced vascular compliance, podocyte pathology and proteinuria. Both blockade of the RAAS and oxidative stress produces salutary effects on hypertension and glomerular filtration barrier injury. Thus, the focus of current research is on understanding the pathophysiology of chronic kidney disease in the context of an elevated RAAS and unbalanced redox mechanisms. PMID:19218092

  19. Kidney injury in a dog following bee sting-associated anaphylaxis

    PubMed Central

    Buckley, Gareth James; Corrie, Christopher; Bandt, Carsten; Schaer, Michael

    2017-01-01

    This report describes a case of honeybee envenomation in a dog that developed anaphylaxis after being stung by approximately 10 bees. The dog subsequently developed acute kidney injury. The dog had a previous mild increase in blood urea nitrogen with normal creatinine, possibly indicating an insidious chronic renal degenerative process that went into acute decompensation at the time of bee envenomation. PMID:28246414

  20. The kidneys in the Bible: what happened?

    PubMed

    Eknoyan, Garabed

    2005-12-01

    The kidneys, always used in the plural (kelayot), are mentioned more than 30 times in the Bible. In the Pentateuch, the kidneys are cited 11 times in the detailed instructions given for the sacrificial offering of animals at the altar. Whereas those instructions were for purification ceremonies at the Temple, sacrificial offerings were made subsequently in seeking divine intervention for the relief of medical problems. In the books of the Bible that follow the Pentateuch, mostly in Jeremiah and Psalms, the human kidneys are cited figuratively as the site of temperament, emotions, prudence, vigor, and wisdom. In five instances, they are mentioned as the organs examined by God to judge an individual. They are cited either before or after but always in conjunction with the heart as mirrors of the psyche of the person examined. There is also reference to the kidneys as the site of divine punishment for misdemeanors, committed or perceived, particularly in the book of Job, whose suffering and ailments are legendary. In the first vernacular versions of the Bible in English, the translators elected to use the term "reins" instead of kidneys in differentiating the metaphoric uses of human kidneys from that of their mention as anatomic organs of sacrificial animals burned at the altar. This initial effort at linguistic purity or gentility has progressed further in recent versions of the Bible, in which the reins are now replaced by the soul or the mind. The erosion may have begun in the centuries that followed the writing of the Bible, when recognition of the kidneys as excretory organs deprived them of the ancient aura of mysterious organs hidden deep in the body but accessible to the look of God. At approximately the same time, Greek analytical philosophy argued that the brain, which is never mentioned in the Bible, was the most divine and sacred part of the body. This argument gained ground in the past century, when the functions of the brain were elucidated, and ultimately established in the 1960s, when salvaging the kidneys for transplantation necessitated a change in the definition of death as irreversible brain function. It is ironic that advances in understanding kidney function and in nephrology that made kidney transplantation feasible may have contributed, albeit indirectly, to the gradual elimination of the metaphoric mention of human kidneys in the Bible.

  1. Mechanisms for an effect of acetylcysteine on renal function after exposure to radio-graphic contrast material: study protocol

    PubMed Central

    2012-01-01

    Background Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. Methods/Design We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Discussion Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of acetylcysteine on renal function and identify an appropriate route for future dose response studies and in time randomized controlled trials. Trial registration Clinical Trials.gov: NCT00558142; EudraCT: 2006-003509-18. PMID:22305183

  2. Balanced steady state free precession for arterial spin labeling MRI: Initial experience for blood flow mapping in human brain, retina, and kidney.

    PubMed

    Park, Sung-Hong; Wang, Danny J J; Duong, Timothy Q

    2013-09-01

    We implemented pseudo-continuous ASL (pCASL) with 2D and 3D balanced steady state free precession (bSSFP) readout for mapping blood flow in the human brain, retina, and kidney, free of distortion and signal dropout, which are typically observed in the most commonly used echo-planar imaging acquisition. High resolution functional brain imaging in the human visual cortex was feasible with 3D bSSFP pCASL. Blood flow of the human retina could be imaged with pCASL and bSSFP in conjunction with a phase cycling approach to suppress the banding artifacts associated with bSSFP. Furthermore, bSSFP based pCASL enabled us to map renal blood flow within a single breath hold. Control and test-retest experiments suggested that the measured blood flow values in retina and kidney were reliable. Because there is no specific imaging tool for mapping human retina blood flow and the standard contrast agent technique for mapping renal blood flow can cause problems for patients with kidney dysfunction, bSSFP based pCASL may provide a useful tool for the diagnosis of retinal and renal diseases and can complement existing imaging techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. [Fabry nephropathy in a female with superposed IgA glomerulonephritis].

    PubMed

    Pisani, A; Sessa, A; Sabbatini, M; Andreucci, M V; Fusco, C; Balletta, M; Cianciaruso, B

    2005-01-01

    In Anderson-Fabry disease (AFd), the kidney is affected in all hemizygous males and in some heterozygous females. Female carriers can present subtle renal abnormalities due to glycosphingolipid (GSL) accumulation within renal cells. Renal biopsy is rarely performed in female Fabry patients because clinical renal manifestations are usually lacking. However, female carriers can accumulate GSL in their renal cells despite the absence of clinically evident kidney disease. We performed a kidney biopsy in a 52-year-old female patient, a Fabry disease carrier. The patient showed normal glomerular filtration rate, persistent microhematuria and proteinuria (about 1.7 g/24 hr), cornea "verticillata", and evident left ventricular hypertrophy. The molecular study documented a missense mutation R227Q in exon 5 of the alpha-galactosidase A gene. Optical microscopy showed electron-dense mesangial deposits due IgA glomerulonephritis, as confirmed by immunofluorescence. We decided to start therapy with angiotensin-converting enzyme inhibitors (ACE-I). After 8 months of treatment, the patient demonstrated proteinuria of 0.9 g/24 hr. To decide when to start treatment using enzyme replacement therapy (ERT) with human recombinant GAL A (Fabrazyme), we decided to perform an electron microscopy study of the renal biopsy. The renal ultrastructural findings were typical GSL inclusions in all kinds of glomerular cells, in tubular epithelial cells and in endothelial cells of interstitial capillaries, confirming the hypothesis of Fabry nephropathy. Consequently, Fabrazyme was given at a standard dose of 1 mg/kg every 2 weeks. After 24 months of combined treatment (ACE-I-Fabrazyme), proteinuria decreased to 0.2 g/24 hr. The importance of performing the ultrastructural examination of the kidney biopsy is stressed, especially in heterozygous Fabry patients to evaluate the need to treat them with ERT and to evaluate the degree of renal involvement.

  4. Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin.

    PubMed

    Vegt, Erik; Wetzels, Jack F M; Russel, Frans G M; Masereeuw, Rosalinde; Boerman, Otto C; van Eerd, Juliette E; Corstens, Frans H M; Oyen, Wim J G

    2006-03-01

    Peptide receptor-mediated radiotherapy of neuroendocrine and other somatostatin receptor-positive tumors with radiolabeled somatostatin analogs has been applied in several experimental settings. The kidneys are the organs responsible for dose-limiting toxicity attributable to the retention of radiolabeled octreotide in the renal cortex, leading to a relatively high radiation dose that may result in irreversible loss of kidney function. The administration of basic amino acids reduces renal uptake but does have significant side effects. We observed that gelatin-based plasma expanders induced tubular low-molecular-weight proteinuria in healthy volunteers, suggesting that components in these solutions can interfere with the tubular reabsorption of proteins and peptides. Here, we studied the effects of infusion of low doses of the plasma expander succinylated gelatin (GELO) on the renal uptake of 111In-labeled octreotide (111In-OCT). Five healthy volunteers were given 111In-OCT, first in combination with normal saline and 2 wk later in combination with GELO. Scintigraphic images of the kidneys as well as blood and urine samples were analyzed. To exclude a nonspecific hemodynamic effect of the plasma expander, the procedure was repeated with 5 other volunteers who received the carbohydrate-based plasma expander hydroxyethyl starch (HES). Low doses of GELO were able to effectively reduce the kidney retention of 111In-OCT. The renal radiation dose was significantly reduced by 45% +/- 10% (mean +/- SD) (P = 0.006), whereas HES showed no significant effect (0% +/- 12%). The infusion of GELO did not cause any side effects. GELO effectively reduces the renal uptake of 111In-OCT. In contrast to currently used mixtures of amino acids, GELO does not cause any side effects.

  5. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis

    PubMed Central

    Fornoni, Alessia; Sageshima, Junichiro; Wei, Changli; Merscher-Gomez, Sandra; Robier, Aguillon-Prada; Jauregui, Alexandra N.; Li, Jing; Mattiazzi, Adela; Ciancio, Gaetano; Chen, Linda; Zilleruelo, Gaston; Abitbol, Carolyn; Chandar, Jayanthi; Seeherunvong, Wacheree; Ricordi, Camillo; Ikehata, Masami; Rastaldi, Maria Pia; Reiser, Jochen; Burke, George W.

    2013-01-01

    Focal segmental glomerulosclerosis (FSGS) is a prevalent glomerular disease characterized by proteinuria, progression to end stage renal disease and recurrence of proteinuria after kidney transplantation in approximately one third of patients. It has been suggested that rituximab might treat recurrent FSGS through an unknown mechanism. Rituximab recognizes CD20 on B-lymphocytes but might also bind sphingomyelin-phosphodiesterase-acid-like-3b (SMPDL-3b) and regulates acid-sphyngomyelinase (ASMase) activity. We hypothesized that rituximab prevents recurrent FSGS and preserves podocyte SMPDL-3b expression. We studied 41 patients at high risk for recurrent FSGS, 27 of whom were treated with rituximab at time of kidney transplant. Incidence of nephrotic-range proteinuria and change in estimated glomerular filtration rate (ΔeGFR) were analyzed. SMPDL-3b immunostaining was performed in post-reperfusion kidney biopsies. SMPDL-3b protein, ASMase activity, and cytoskeleton remodeling were studied in cultured normal human podocytes that had been exposed to patient sera with or without rituximab. Rituximab treatment was associated with lower incidence of post-transplant proteinuria and decreased ΔeGFR. The number of SMPDL-3b+ podocytes in post-reperfusion biopsies was reduced in patients who developed recurrent FSGS. Rituximab partially prevented SMPDL-3b and ASMase downregulation that was observed in podocytes treated with the sera of patients with recurrent FSGS. Either SMPDL-3b overexpression or treatment with rituximab prevented disruption of the actin cytoskeleton and podocyte apoptosis induced by patient sera. This effect was diminished in cultured podocytes where the gene encoding SMPDL-3b was silenced. Our study suggests that treatment of high-risk patients with rituximab at time of kidney transplant might prevent recurrent FSGS by modulating podocyte function in an SMPDL-3b–dependent manner. PMID:21632984

  6. Exploring metabolic dysfunction in chronic kidney disease

    PubMed Central

    2012-01-01

    Impaired kidney function and chronic kidney disease (CKD) leading to kidney failure and end-stage renal disease (ESRD) is a serious medical condition associated with increased morbidity, mortality, and in particular cardiovascular disease (CVD) risk. CKD is associated with multiple physiological and metabolic disturbances, including hypertension, dyslipidemia and the anorexia-cachexia syndrome which are linked to poor outcomes. Specific hormonal, inflammatory, and nutritional-metabolic factors may play key roles in CKD development and pathogenesis. These include raised proinflammatory cytokines, such as interleukin-1 and −6, tumor necrosis factor, altered hepatic acute phase proteins, including reduced albumin, increased C-reactive protein, and perturbations in normal anabolic hormone responses with reduced growth hormone-insulin-like growth factor-1 axis activity. Others include hyperactivation of the renin-angiotensin aldosterone system (RAAS), with angiotensin II and aldosterone implicated in hypertension and the promotion of insulin resistance, and subsequent pharmacological blockade shown to improve blood pressure, metabolic control and offer reno-protective effects. Abnormal adipocytokine levels including leptin and adiponectin may further promote the insulin resistant, and proinflammatory state in CKD. Ghrelin may be also implicated and controversial studies suggest activities may be reduced in human CKD, and may provide a rationale for administration of acyl-ghrelin. Poor vitamin D status has also been associated with patient outcome and CVD risk and may indicate a role for supplementation. Glucocorticoid activities traditionally known for their involvement in the pathogenesis of a number of disease states are increased and may be implicated in CKD-associated hypertension, insulin resistance, diabetes risk and cachexia, both directly and indirectly through effects on other systems including activation of the mineralcorticoid receptor. Insight into the multiple factors altered in CKD may provide useful information on disease pathogenesis, clinical assessment and treatment rationale such as potential pharmacological, nutritional and exercise therapies. PMID:22537670

  7. [Evaluation of immune status of kidney transplant recipients by combined HLA-G5 and sCD30].

    PubMed

    JIN, Zhan-kui; TIAN, Pu-xun; XUE, Wu-jun; DING, Xiao-ming; PAN, Xiao-ming; DING, Chen-guang; JIA, Li-ning; GE, Guan-qun; HAO, Jun-jun

    2010-09-28

    to study the relationship between the expression of serum human leucocyte antigen-G5 (HLA-G5)/soluble CD30 (sCD30) and the function of renal graft in kidney transplant recipients and investigate the immune status of recipients with combined HLA-G5 and sCD30. from January 2002 to November 2008, a total of 66 kidney transplant recipients in our centre were selected as subjects and divided into three groups: stable function of renal graft (n = 38), acute rejection (n = 15) and chronic rejection (n = 13). The expressions of serum HLA-G5 and sCD30 were detected. There were two different immune conditions with acute/chronic allograft rejection and normal renal graft in kidney transplant recipients as evaluated by combined HLA-G5 and sCD30. The sensitivity, specificity and critical value of the method were analyzed by the curve of receiver operating characteristic. the levels of HLA-G5 and sCD30 were significantly correlated with serum creatinine (r = -0.493, 0.691, both P < 0.01). Within the first year post-transplantation, the sensitivity was 78.6% and the specificity 85.7% when HLA-G5 critical value 82 microg/L and sCD30 critical value 12.2 microg/L. After one year post-transplantation: the sensitivity was 92.3% and the specificity 84.6% when HLA-G5 critical value 141 microg/L and sCD30 critical value 10.3 microg/L. the immune state of recipients are evaluated by combine HLA-G5 and sCD30 which may be a simple and valid method.

  8. Incidence of Acute Kidney Injury in Patients Coinfected with HIV and Hepatitis C Virus Receiving Tenofovir Disoproxil Fumarate and Ledipasvir/Sofosbuvir in a Real-World, Urban, Ryan White Clinic.

    PubMed

    Michal, Jessica L; Rab, Saira; Patel, Manish; Kyle, Alison W; Miller, Lesley S; Easley, Kirk A; Kalapila, Aley G

    2018-06-19

    Ledipasvir/sofosbuvir (LDV/SOF), an antiviral treatment for hepatitis C virus (HCV), and tenofovir disoproxil fumarate (TDF), an antiretroviral for treating human immunodeficiency virus (HIV), may be coadministered in patients coinfected with these viruses. A drug interaction between LDV and TDF could increase TDF-associated nephrotoxicity rates; however, there is minimal clinical evidence describing acute kidney injury (AKI) rates in this population. This study was conducted at a Ryan White-funded facility in Atlanta, Georgia, that cares for over 5,000 patients with AIDS. This retrospective cohort used chart review to assess occurrence of and risk factors for AKI in HIV/HCV-coinfected patients receiving LDV/SOF and antiretroviral therapy (ART). AKI rates were compared between TDF-containing and non-TDF-containing ART groups according to Kidney Disease Improving Global Outcomes (KDIGO) criteria. Additional evaluated risk factors for AKI included chronic kidney disease and use of boosted protease inhibitor-based ART. In the 117 included patients, the overall incidence of AKI was 27.3%. AKI occurred more frequently in the non-TDF group (13/86, 15.1% vs. 19/31, 61.3%, p < .001). All AKI was KDIGO stage 1. From multivariable logistic regression, the only independent predictor of AKI was treatment with non-TDF relative to TDF (adjusted odds ratio 6.51, 95% confidence interval 2.34-18.10, p < .001). In this real-world cohort of HIV/HCV-coinfected patients, KDIGO-defined AKI was common, but occurred less frequently in patients receiving TDF-based ART. Our study suggests that patients with normal baseline renal function can be safely treated with TDF and LDV/SOF without significant nephrotoxicity if renal function is closely monitored.

  9. Incidence and mortality of kidney cancer and its relationship with HDI (Human Development Index) in the world in 2012.

    PubMed

    Mohammadian, Maryam; Pakzad, Reza; Towhidi, Farhad; Makhsosi, Behnam Reza; Ahmadi, Abbas; Salehiniya, Hamid

    2017-01-01

    Kidney cancer is among the cancers that have the highest growth rate in all age and racial groups in the world and is as the most deadly type of urinary tract cancer. Since awareness about this cancer incidence status and mortality is essential for better planning, this study aimed to investigate the incidence and mortality rate of kidney cancer and its relationship with the development index in the world in 2012. This study was an ecological study conducted based on GLOBOCAN project of the World Health Organization (WHO) for the countries in the world. The correlation between Standardized Incidence Rates (SIRs) and Standardized Mortality Rates (SMRs) of kidney cancer with HDI and its components was assessed using SPSS18. In total, 337,860 incidence cases (213,924 were men and 123,936 women) and 143,406 deaths (90,802 cases in men and 52,604 in women) of kidney cancer were recorded in 2012. A positive correlation of 0.731 was seen between SIR of kidney cancer and HDI (p≤0.001). Also, a negative correlation of 0.627 was seen between SMR of kidney cancer and HDI (p≤0.001). The incidence and mortality rate of kidney cancer is higher in developed countries. A significant positive correlation has been seen between the standardized incidence and mortality rate of kidney cancer with the Human Development Index and its components. We need more studies to examine variation in incidence and mortality of kidney cancer and its related factors in the world.

  10. Vasopressin regulates renal calcium excretion in humans

    PubMed Central

    Hanouna, Guillaume; Haymann, Jean-Philippe; Baud, Laurent; Letavernier, Emmanuel

    2015-01-01

    Antidiuretic hormone or arginine vasopressin (AVP) increases water reabsorption in the collecting ducts of the kidney. Three decades ago, experimental models have shown that AVP may increase calcium reabsorption in rat kidney. The objective of this study was to assess whether AVP modulates renal calcium excretion in humans. We analyzed calcium, potassium, and sodium fractional excretion in eight patients affected by insipidus diabetes (nephrogenic or central) under acute vasopressin receptor agonist action and in 10 patients undergoing oral water load test affected or not by inappropriate antidiuretic hormone secretion (SIADH). Synthetic V2 receptor agonist (dDAVP) reduced significantly calcium fractional excretion from 1.71% to 0.58% (P < 0.05) in patients with central diabetes insipidus. In patients with nephrogenic diabetes insipidus (resistant to AVP), calcium fractional excretion did not change significantly after injection (0.48–0.68%, P = NS). In normal subjects undergoing oral water load test, calcium fractional excretion increased significantly from 1.02% to 2.54% (P < 0.05). Patients affected by SIADH had a high calcium fractional excretion at baseline that remained stable during test from 3.30% to 3.33% (P = NS), possibly resulting from a reduced calcium absorption in renal proximal tubule. In both groups, there was a significant correlation between urine output and calcium renal excretion. In humans, dDAVP decreases calcium fractional excretion in the short term. Conversely, water intake, which lowers AVP concentration, increases calcium fractional excretion. The correlation between urine output and calcium excretion suggests that AVP-related antidiuresis increases calcium reabsorption in collecting ducts. PMID:26620256

  11. Study of Nephrotoxic Potential of Acetaminophen in Birds

    PubMed Central

    Jayakumar, K.; Mohan, K.; Swamy, H. D. Narayana; Shridhar, N. B.; Bayer, M. D.

    2010-01-01

    The present study was designed to evaluate the effect of acetaminophen on kidneys of birds by comparison with diclofenac that is used as positive control. The birds of Group I served as negative control and received normal saline, whereas Group II birds received diclofenac injection (2.5 mg/kg IM) and Group III birds received acetaminophen injection (10 mg/kg IM) for a period of seven days daily. The birds treated with diclofenac showed severe clinical signs of toxicity accompanied with high mortality and significant increase (P<0.001) in serum creatinine and uric acid concentration. The creatinine and uric acid concentrations were consistent with gross and histopathological findings. The negative control and acetaminophen-treated groups showed no adverse clinical signs, serum creatinine and uric acid concentrations were normal, and no gross or histopathological changes in kidneys were observed. Thus, it was concluded that acetaminophen can be used for treatment in birds without any adverse effect on kidneys. PMID:21170252

  12. Metabolomics Reveals Signature of Mitochondrial Dysfunction in Diabetic Kidney Disease

    PubMed Central

    Karl, Bethany; Mathew, Anna V.; Gangoiti, Jon A.; Wassel, Christina L.; Saito, Rintaro; Pu, Minya; Sharma, Shoba; You, Young-Hyun; Wang, Lin; Diamond-Stanic, Maggie; Lindenmeyer, Maja T.; Forsblom, Carol; Wu, Wei; Ix, Joachim H.; Ideker, Trey; Kopp, Jeffrey B.; Nigam, Sanjay K.; Cohen, Clemens D.; Groop, Per-Henrik; Barshop, Bruce A.; Natarajan, Loki; Nyhan, William L.; Naviaux, Robert K.

    2013-01-01

    Diabetic kidney disease is the leading cause of ESRD, but few biomarkers of diabetic kidney disease are available. This study used gas chromatography-mass spectrometry to quantify 94 urine metabolites in screening and validation cohorts of patients with diabetes mellitus (DM) and CKD(DM+CKD), in patients with DM without CKD (DM–CKD), and in healthy controls. Compared with levels in healthy controls, 13 metabolites were significantly reduced in the DM+CKD cohorts (P≤0.001), and 12 of the 13 remained significant when compared with the DM–CKD cohort. Many of the differentially expressed metabolites were water-soluble organic anions. Notably, organic anion transporter-1 (OAT1) knockout mice expressed a similar pattern of reduced levels of urinary organic acids, and human kidney tissue from patients with diabetic nephropathy demonstrated lower gene expression of OAT1 and OAT3. Analysis of bioinformatics data indicated that 12 of the 13 differentially expressed metabolites are linked to mitochondrial metabolism and suggested global suppression of mitochondrial activity in diabetic kidney disease. Supporting this analysis, human diabetic kidney sections expressed less mitochondrial protein, urine exosomes from patients with diabetes and CKD had less mitochondrial DNA, and kidney tissues from patients with diabetic kidney disease had lower gene expression of PGC1α (a master regulator of mitochondrial biogenesis). We conclude that urine metabolomics is a reliable source for biomarkers of diabetic complications, and our data suggest that renal organic ion transport and mitochondrial function are dysregulated in diabetic kidney disease. PMID:23949796

  13. Laser Capture Microdissection and Multiplex-Tandem PCR Analysis of Proximal Tubular Epithelial Cell Signaling in Human Kidney Disease

    PubMed Central

    Wilkinson, Ray; Wang, Xiangju; Kassianos, Andrew J.; Zuryn, Steven; Roper, Kathrein E.; Osborne, Andrew; Sampangi, Sandeep; Francis, Leo; Raghunath, Vishwas; Healy, Helen

    2014-01-01

    Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue. PMID:24475278

  14. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Kidney Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Uehara, Takeki; Shymonyak, Svitlana; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, inter-species and -individual differences, and the mode of action for kidney carcinogenicity. We hypothesized that TCE metabolite levels in the kidney are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In sub-acute study, we observed inter-strain differences in TCE metabolite levels in the kidney. In addition, we found that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In sub-chronic study, peroxisome proliferator-marker gene induction and kidney toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ, but not C57BL/6J mice. Overall, we show that TCE metabolite levels in the kidney are associated with kidney-specific toxicity and that these effects are strain-dependent. PMID:25424545

  15. High Rate of Induction of Human Autologous Cytotoxic T Lymphocytes against Renal Carcinoma Cells Cultured with an Interleukin Cocktail

    PubMed Central

    Liu, Shu Qin; Kawai, Koji; Shiraiwa, Hiroshi; Hayashi, Hitoshi; Akaza, Hideyuki; Hashizaki, Kazuko; Shiba, Reiko; Saijo, Kaoru

    1998-01-01

    A high rate of induction (9 of 10 cases) of human autologous cytotoxic T lymphocytes (CTL) was achieved in vitro from peripheral blood mononuclear cells of renal carcinoma patients by applying an interleukin (IL)‐cocktail consisting of IL‐1, ‐2, ‐4, and ‐6. The CTL specifically lysed their own target carcinoma cells within 24 h but did not kill neighboring autologous normal kidney cells or allogeneic renal cancer cell lines. In the case of TUHR4TKB, for which autologous CTL were not induced, no expression of MHC class‐I molecules was observed on the surface of these carcinoma cells, although they were sensitive to autologous natural killer cells. The results imply that adoptive immunotherapy for metastasized renal carcinoma will be feasible with autologous CTL in combination with natural killer cells. PMID:9914789

  16. [Technology of analysis of epigenetic and structural changes of epithelial tumors genome with NotI-microarrays by the example of human chromosome].

    PubMed

    Pavlova, T V; Kashuba, V I; Muravenko, O V; Yenamandra, S P; Ivanova, T A; Zabarovskaia, V I; Rakhmanaliev, E R; Petrenko, L A; Pronina, I V; Loginov, V I; Iurkevich, O Iu; Kiselev, L L; Zelenin, A V; Zabarovskiĭ, E R

    2009-01-01

    New comparative genome hybridization technology on NotI-microarrays is presented (Karolinska Institute International Patent WO02/086163). The method is based on comparative genome hybridization of NotI-probes from tumor and normal genomic DNA with the principle of new DNA NotI-microarrays. Using this method 181 NotI linking loci from human chromosome 3 were analyzed in 200 malignant tumor samples from different organs: kidney, lung, breast, ovary, cervical, prostate. Most frequently (more than in 30%) aberrations--deletions, methylation,--were identified in NotI-sites located in MINT24, BHLHB2, RPL15, RARbeta1, ITGA9, RBSP3, VHL, ZIC4 genes, that suggests they probably are involved in cancer development. Methylation of these genomic loci was confirmed by methylation-specific PCR and bisulfite sequencing. The results demonstrate perspective of using this method to solve some oncogenomic problems.

  17. Activity of selected aromatic amino acids in biological systems.

    PubMed

    Krzyściak, Wirginia

    2011-01-01

    Besides the structural function in proteins, aromatic amino acids are precursors of many important biological compounds essential for normal functioning of the human organism. Many of these compounds may be used as markers for identification of specific pathological states. Comprehensive knowledge about the metabolism of aromatic amino acids and mechanisms of action of their metabolites made it possible to develop effective treatments for many disorders. However, it should not be forgotten that in some pathological conditions, these compounds could not only be involved in the pathogenesis of many disease entities but could also be used as an important tool in prediction of many diseases. This paper contains a review of published literature on aromatic amino acids in the context of physiological processes of the human body and chosen social disorders, such as cancers; psychiatric disorders: depression, anxiety states, schizophrenia, bipolar affective disorders; neurodegenerative, and cardiovascular diseases; chronic kidney insufficiency or diabetes.

  18. Why Your Mother Was Right: How Potassium Intake Reduces Blood Pressure.

    PubMed

    Ellison, David H; Terker, Andrew S

    2015-01-01

    Low potassium intake, common in western diets, increases blood pressure and enhances salt-sensitivity. Most humans in "Westernized" countries also consume excess salt. In studies using mice, we found that a high-salt, low-potassium diet activates the thiazide-sensitive Na-Cl cotransporter in the kidney. This effect led to sodium retention and increased blood pressure, and was dependent on plasma potassium. We postulated that this effect was mediated by changes in intracellular chloride caused by changes in membrane voltage. We developed a model in cultured cells permitting us to confirm this hypothesis. We then confirmed, using urinary exosomes, that dietary changes in normal humans, affect the thiazide-sensitive Na-Cl cotransporter in the same way. These data show that dietary potassium deficiency increases blood pressure largely by stimulating salt reabsorption along the distal nephron. They suggest that global efforts should focus on increasing potassium intake, which will attenuate the effects of high-salt diets.

  19. Influence of silver content on rifampicin adsorptivity for magnetite/Ag/rifampicin nanoparticles

    NASA Astrophysics Data System (ADS)

    Ivashchenko, Olena; Coy, Emerson; Peplinska, Barbara; Jarek, Marcin; Lewandowski, Mikołaj; Załęski, Karol; Warowicka, Alicja; Wozniak, Anna; Babutina, Tatiana; Jurga-Stopa, Justyna; Dolinsek, Janez; Jurga, Stefan

    2017-02-01

    Magnetite nanoparticles (NPs) decorated with silver (magnetite/Ag) are intensively investigated due to their application in the biomedical field. We demonstrate that the increase of silver content on the surface of nanoparticles improves the adsorptivity of antibiotic rifampicin as well as antibacterial properties. The use of ginger extract allowed to improve the silver nucleation on the magnetite surface that resulted in an increase of silver content. Physicochemical and functional characterization of magnetite/Ag NPs was performed. Our results show that 5%-10% of silver content in magnetite/Ag NPs is already sufficient for antimicrobial properties against Streptococcus salivarius and Staphylococcus aureus. The rifampicin molecules on the magnetite/Ag NPs surface made the spectrum of antimicrobial activity wider. Cytotoxicity evaluation of the magnetite/Ag/rifampicin NPs showed no harmful action towards normal human fibroblasts, whereas the effect on human embryonic kidney cell viability was time and dose dependent.

  20. Ultrasonographic abdominal anatomy of healthy captive caracals (Caracal caracal).

    PubMed

    Makungu, Modesta; du Plessis, Wencke M; Barrows, Michelle; Koeppel, Katja N; Groenewald, Hermanus B

    2012-09-01

    Abdominal ultrasonography was performed in six adult captive caracals (Caracal caracal) to describe the normal abdominal ultrasonographic anatomy. Consistently, the splenic parenchyma was hyperechoic to the liver and kidneys. The relative echogenicity of the right kidney's cortex was inconsistent to the liver. The gall bladder was prominent in five animals and surrounded by a clearly visualized thin, smooth, regular echogenic wall. The wall thickness of the duodenum measured significantly greater compared with that of the jejunum and colon. The duodenum had a significantly thicker mucosal layer compared with that of the stomach. Such knowledge of the normal abdominal ultrasonographic anatomy of individual species is important for accurate diagnosis and interpretation of routine health examinations.

  1. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: Impact of normalization strategies.

    PubMed

    Gagnebin, Yoric; Tonoli, David; Lescuyer, Pierre; Ponte, Belen; de Seigneux, Sophie; Martin, Pierre-Yves; Schappler, Julie; Boccard, Julien; Rudaz, Serge

    2017-02-22

    Among the various biological matrices used in metabolomics, urine is a biofluid of major interest because of its non-invasive collection and its availability in large quantities. However, significant sources of variability in urine metabolomics based on UHPLC-MS are related to the analytical drift and variation of the sample concentration, thus requiring normalization. A sequential normalization strategy was developed to remove these detrimental effects, including: (i) pre-acquisition sample normalization by individual dilution factors to narrow the concentration range and to standardize the analytical conditions, (ii) post-acquisition data normalization by quality control-based robust LOESS signal correction (QC-RLSC) to correct for potential analytical drift, and (iii) post-acquisition data normalization by MS total useful signal (MSTUS) or probabilistic quotient normalization (PQN) to prevent the impact of concentration variability. This generic strategy was performed with urine samples from healthy individuals and was further implemented in the context of a clinical study to detect alterations in urine metabolomic profiles due to kidney failure. In the case of kidney failure, the relation between creatinine/osmolality and the sample concentration is modified, and relying only on these measurements for normalization could be highly detrimental. The sequential normalization strategy was demonstrated to significantly improve patient stratification by decreasing the unwanted variability and thus enhancing data quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model

    PubMed Central

    Wang, Xuexiang; Johnson, Ashley C.; Williams, Jan M.; White, Tiffani; Chade, Alejandro R.; Zhang, Jie; Liu, Ruisheng; Roman, Richard J.; Lee, Jonathan W.; Kyle, Patrick B.; Solberg-Woods, Leah

    2015-01-01

    Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%–75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney. PMID:25349207

  3. Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model.

    PubMed

    Wang, Xuexiang; Johnson, Ashley C; Williams, Jan M; White, Tiffani; Chade, Alejandro R; Zhang, Jie; Liu, Ruisheng; Roman, Richard J; Lee, Jonathan W; Kyle, Patrick B; Solberg-Woods, Leah; Garrett, Michael R

    2015-07-01

    Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%-75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney. Copyright © 2015 by the American Society of Nephrology.

  4. Mutations in GREB1L Cause Bilateral Kidney Agenesis in Humans and Mice.

    PubMed

    De Tomasi, Lara; David, Pierre; Humbert, Camille; Silbermann, Flora; Arrondel, Christelle; Tores, Frédéric; Fouquet, Stéphane; Desgrange, Audrey; Niel, Olivier; Bole-Feysot, Christine; Nitschké, Patrick; Roume, Joëlle; Cordier, Marie-Pierre; Pietrement, Christine; Isidor, Bertrand; Khau Van Kien, Philippe; Gonzales, Marie; Saint-Frison, Marie-Hélène; Martinovic, Jelena; Novo, Robert; Piard, Juliette; Cabrol, Christelle; Verma, Ishwar C; Puri, Ratna; Journel, Hubert; Aziza, Jacqueline; Gavard, Laurent; Said-Menthon, Marie-Hélène; Heidet, Laurence; Saunier, Sophie; Jeanpierre, Cécile

    2017-11-02

    Congenital anomalies of the kidney and urinary tract (CAKUT) constitute a major cause of chronic kidney disease in children and 20% of prenatally detected anomalies. CAKUT encompass a spectrum of developmental kidney defects, including renal agenesis, hypoplasia, and cystic and non-cystic dysplasia. More than 50 genes have been reported as mutated in CAKUT-affected case subjects. However, the pathophysiological mechanisms leading to bilateral kidney agenesis (BKA) remain largely elusive. Whole-exome or targeted exome sequencing of 183 unrelated familial and/or severe CAKUT-affected case subjects, including 54 fetuses with BKA, led to the identification of 16 heterozygous variants in GREB1L (growth regulation by estrogen in breast cancer 1-like), a gene reported as a target of retinoic acid signaling. Four loss-of-function and 12 damaging missense variants, 14 being absent from GnomAD, were identified. Twelve of them were present in familial or simplex BKA-affected case subjects. Female BKA-affected fetuses also displayed uterus agenesis. We demonstrated a significant association between GREB1L variants and BKA. By in situ hybridization, we showed expression of Greb1l in the nephrogenic zone in developing mouse kidney. We generated a Greb1l knock-out mouse model by CRISPR-Cas9. Analysis at E13.5 revealed lack of kidneys and genital tract anomalies in male and female Greb1l -/- embryos and a slight decrease in ureteric bud branching in Greb1l +/- embryos. We showed that Greb1l invalidation in mIMCD3 cells affected tubulomorphogenesis in 3D-collagen culture, a phenotype rescued by expression of the wild-type human protein. This demonstrates that GREB1L plays a major role in early metanephros and genital development in mice and humans. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Urinary biomarkers predict advanced acute kidney injury after cardiovascular surgery.

    PubMed

    Wang, Jian-Jhong; Chi, Nai-Hsin; Huang, Tao-Min; Connolly, Rory; Chen, Liang Wen; Chueh, Shih-Chieh Jeff; Kan, Wei-Chih; Lai, Chih-Cheng; Wu, Vin-Cent; Fang, Ji-Tseng; Chu, Tzong-Shinn; Wu, Kwan-Dun

    2018-04-26

    Acute kidney injury (AKI) after cardiovascular surgery is a serious complication. Little is known about the ability of novel biomarkers in combination with clinical risk scores for prediction of advanced AKI. In this prospectively conducted multicenter study, urine samples were collected from 149 adults at 0, 3, 6, 12 and 24 h after cardiovascular surgery. We measured urinary hemojuvelin (uHJV), kidney injury molecule-1 (uKIM-1), neutrophil gelatinase-associated lipocalin (uNGAL), α-glutathione S-transferase (uα-GST) and π-glutathione S-transferase (uπ-GST). The primary outcome was advanced AKI, under the definition of Kidney Disease: Improving Global Outcomes (KDIGO) stage 2, 3 and composite outcomes were KDIGO stage 2, 3 or 90-day mortality after hospital discharge. Patients with advanced AKI had significantly higher levels of uHJV and uKIM-1 at 3, 6 and 12 h after surgery. When normalized by urinary creatinine level, uKIM-1 in combination with uHJV at 3 h post-surgery had a high predictive ability for advanced AKI and composite outcome (AUC = 0.898 and 0.905, respectively). The combination of this biomarker panel (normalized uKIM-1, uHJV at 3 h post-operation) and Liano's score was superior in predicting advanced AKI (AUC = 0.931, category-free net reclassification improvement of 1.149, and p <  0.001). When added to Liano's score, normalized uHJV and uKIM-1 levels at 3 h after cardiovascular surgery enhanced the identification of patients at higher risk of progression to advanced AKI and composite outcomes.

  6. Impact of Momordica charantia extract on kidney function and structure in mice.

    PubMed

    Mardani, Saeed; Nasri, Hamid; Hajian, Shabnam; Ahmadi, Ali; Kazemi, Reyhane; Rafieian-Kopaei, Mahmoud

    2014-01-01

    Bitter Melon (BM) is known for its hypoglycemic effect and is commonly used in populations. This study examined the effects and safety of bitter melon fruit in laboratory mice. In this experimental study 70 male mice (25-30 gr) were randomly divided into 7 groups. The mice were injected intraperitoneally with single doses of 0, 100, 500, 1000, 2000 and 4000 mg/kg and multiple doses 500 mg/kg daily for 7 days. The mice were then observed for 72 hours before sacrificing. Immediately kidneys were taken out for histological examinations. Tubular cell vacuolization and flattening as well as hyaline casts, debris and dilatation of tubular lumen were the morphologic lesions which were assessed with scores from 0 to 4, while zero score addressed normal renal tissue. Serum samples were assayed for kidney function (creatinine; Cr and Blood Urea Nitrogen; BUN). Blood and bitter melon antioxidant activities were measured, too. Data were analyzed with Stata software (Stata Corp. 2011. Stata Statistical Software: Release 12. College Station, TX: Stata Corp LP)using ANOVA and Bonferroni tests. All single dose groups showed normal behavior after the dosing and no statistical changes were observed in blood parameters (p>0.05). Histological examinations revealed normal organ structures, however, the group treated for 7 days showed statistically a significant change in BUN (p=0.002) and a borderline significance in Cr (p=0.051). Administration of up to 4000 mg/kg did not have any effect on the mice kidney function and histology, however chronic administration were nephrotoxic. More studies with different dosage regimens are suggested.

  7. Growing kidney tissue from stem cells: how far from ‘party trick’ to medical application?

    PubMed Central

    Little, Melissa H

    2016-01-01

    The successful generation of kidney-like structures from human pluripotent stem cells, although slower to come than other tissue types, brings the hope of new therapies. While the demand for alternative treatments for kidney failure is acute, huge challenges remain to move these exciting but preliminary results towards clinical use. PMID:27257757

  8. CMV induces HERV-K and HERV-W expression in kidney transplant recipients.

    PubMed

    Bergallo, Massimiliano; Galliano, Ilaria; Montanari, Paola; Gambarino, Stefano; Mareschi, Katia; Ferro, Francesca; Fagioli, Franca; Tovo, Pier-Angelo; Ravanini, Paolo

    2015-07-01

    Human endogenous retrovirus (HERVs) constitute approximately 8% of the human genome. Induction of HERV transcription is possible under certain circumstances, and may have a possible role in some pathological conditions. The aim of this study was to evaluate HERV-K and -W pol gene expression in kidney transplant recipients and to investigate the possible relationship between HERVs gene expression and CMV infection in these patients. Thirty-three samples of kidney transplant patients and twenty healthy blood donors were used to analyze, HERV-K and -W pol gene RNA expression by relative quantitative relative Real-Time PCR. We demonstrated that HERVs pol gene expression levels were higher in kidney transplant recipients than in healthy subjects. Moreover, HERV-K and -W pol gene expression was significantly higher in the group of kidney transplant recipients with high CMV viral load than in the groups with no or moderate CMV viral load. Our data suggest that CMV may facilitate in vivo HERV activation. Published by Elsevier B.V.

  9. Efficacy of oral hydration in the prevention of contrast-induced acute kidney injury in patients undergoing coronary angiography or intervention.

    PubMed

    Akyuz, Sukru; Karaca, Mehmet; Kemaloglu Oz, Tugba; Altay, Servet; Gungor, Baris; Yaylak, Baris; Yazici, Selcuk; Ozden, Kivilcim; Karakus, Gultekin; Cam, Nese

    2014-01-01

    Efficacy of intravenous (IV) volume expansion in preventing contrast-induced acute kidney injury (CI-AKI) is well known. However, the role of oral hydration has not been well established. The aim of this work was to evaluate the efficacy of oral hydration in preventing CI-AKI. We prospectively randomized 225 patients undergoing coronary angiography and/or percutaneous coronary intervention in either oral hydration or IV hydration groups. Patients who have at least one of the high-risk factors for developing CI-AKI (advanced age, type 2 diabetes mellitus, anemia, hyperuricemia, a history of cardiac failure or systolic dysfunction) were included in the study. All patients had normal renal function or stage 1-2 chronic kidney disease. Patients in the oral hydration group were encouraged to drink unrestricted amounts of fluids freely whereas isotonic saline infusion was performed by the standard protocol in the IV hydration group. CI-AKI occurred in 8/116 patients (6.9%) in the oral hydration group and 8/109 patients (7.3%) in the IV hydration group (p = 0.89). There was also no statistically significant difference between the two groups when different CI-AKI definitions were taken into account. Oral hydration is as effective as IV hydration in preventing CI-AKI in patients with normal kidney function or stage 1-2 chronic kidney disease, and who also have at least one of the other high-risk factors for developing CI-AKI. © 2014 S. Karger AG, Basel.

  10. Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules

    PubMed Central

    Armour, Eric A.; Carson, Robert P.

    2012-01-01

    Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia. PMID:22674026

  11. Cyclosporine-induced changes in drug metabolizing enzymes in hyperlipemic rabbit kidneys could explain its toxicity.

    PubMed

    Elbarbry, Fawzy; Ragheb, Ahmed; Attia, Ahmed; Chibbar, Rajni; Marfleet, Travis; Shoker, Ahmed

    2010-11-01

    This study investigates the mechanism of cyclosporine A (CsA)-mediated nephrotoxicity by examining the hypothesis that CsA toxicity is mediated through its effect on the kidney drug metabolizing enzymes in a hyperlipemic rabbit model. Twenty-four female New Zealand white rabbits divided into four groups. Group 1 received regular diet. Group 2 received 1% cholesterol diet. Group 3 received CsA (25 mg/kg, orally once daily) and group 4 received 1% cholesterol diet and CsA (25 mg/kg, orally once daily). Cytochrome P450 2E1 (CYP2E1) activity in kidney microsomes was assessed by measuring p-nitrophenol hydroxylase activity. Generation of reactive oxygen species (ROS) was assessed by measuring malondialdehyde (MDA) and the protein carbonyl. Effect of CsA and hyperlipidemia on the antioxidant proteins were also assessed using standard techniques. CsA but not the high-cholesterol diet induced significant elevation in MDA, protein carbonyl and CYP2E1 activities in the kidney. The addition of cholesterol to CsA normalized ROS markers without affecting the CsA-enhanced CYP2E1 activity. Alone, CsA caused characteristic tubular injury, whereas the addition of high-cholesterol diet to CsA nearly abolished the tubular damage. CsA-enhanced rabbit kidney ROS and CYP2E1 activities. Hyperlipidemia attenuates CsA tubular injury, most probably due to normalization of renal ROS, but not CYP2E1 activity.

  12. Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules.

    PubMed

    Armour, Eric A; Carson, Robert P; Ess, Kevin C

    2012-08-15

    Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia.

  13. Elevated plasma TGF-beta1 in renal diseases: cause or consequence?

    PubMed

    Junker, U; Haufe, C C; Nuske, K; Rebstock, K; Steiner, T; Wunderlich, H; Junker, K; Reinhold, D

    2000-07-01

    We previously reported elevated levels of TGF-beta1 in patients with renal carcinoma. Certain aspects led us to ask whether they might be caused by chronic damage to the kidney(s). Here we report on an extended set of patients with various renal diseases, lung cancer, humoral immunodeficiency and controls. For latent TGF-beta1 in plasma, we find that the control, immunodeficiency, lung cancer and kidney transplant groups do not differ significantly (means, 7.0-8.8 ng/ml). Also, acute short-term renal stress (extracorporal lithotrypsy) does not lead to an increase of TGF-beta1. However, the pyelonephritis patients present with levels of 19.0 ng/ml, chronic extracorporal dialysis patients with 15.5 ng/ml, and renal cell carcinoma patients with 22.8 ng/ml. For active TGF-beta1 these findings are exactly recovered. For serum levels, only the renal carcinoma group presents with significantly elevated levels of TGF-beta1. Kidney transplantation seems to normalize TGF-beta1 levels, while in the kidney cancer patients surgery has an effect only in part of the group. We conclude that elevated plasma TGF-beta1 levels are common in at least two chronic renal disease conditions, and that it normalizes with restoration of renal function. It is tempting to speculate that chronic elevation of TGF-beta1 in these patients may be critically involved in these conditions predisposing to renal cancer. Copyright 2000 Academic Press.

  14. Heparin-based hydrogels induce human renal tubulogenesis in vitro.

    PubMed

    Weber, Heather M; Tsurkan, Mikhail V; Magno, Valentina; Freudenberg, Uwe; Werner, Carsten

    2017-07-15

    Dialysis or kidney transplantation is the only therapeutic option for end stage renal disease. Accordingly, there is a large unmet clinical need for new causative therapeutic treatments. Obtaining robust models that mimic the complex nature of the human kidney is a critical step in the development of new therapeutic strategies. Here we establish a synthetic in vitro human renal tubulogenesis model based on a tunable glycosaminoglycan-hydrogel platform. In this system, renal tubulogenesis can be modulated by the adjustment of hydrogel mechanics and degradability, growth factor signaling, and the presence of insoluble adhesion cues, potentially providing new insights for regenerative therapy. Different hydrogel properties were systematically investigated for their ability to regulate renal tubulogenesis. Hydrogels based on heparin and matrix metalloproteinase cleavable peptide linker units were found to induce the morphogenesis of single human proximal tubule epithelial cells into physiologically sized tubule structures. The generated tubules display polarization markers, extracellular matrix components, and organic anion transport functions of the in vivo renal proximal tubule and respond to nephrotoxins comparable to the human clinical response. The established hydrogel-based human renal tubulogenesis model is thus considered highly valuable for renal regenerative medicine and personalized nephrotoxicity studies. The only cure for end stage kidney disease is kidney transplantation. Hence, there is a huge need for reliable human kidney models to study renal regeneration and establish alternative treatments. Here we show the development and application of an in vitro human renal tubulogenesis model using heparin-based hydrogels. To the best of our knowledge, this is the first system where human renal tubulogenesis can be monitored from single cells to physiologically sized tubule structures in a tunable hydrogel system. To validate the efficacy of our model as a drug toxicity platform, a chemotherapy drug was incubated with the model, resulting in a drug response similar to human clinical pathology. The established model could have wide applications in the field of nephrotoxicity and renal regenerative medicine and offer a reliable alternative to animal models. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. RADIOGRAPHIC AND ULTRASONOGRAPHIC ABDOMINAL ANATOMY IN CAPTIVE RING-TAILED LEMURS (LEMUR CATTA).

    PubMed

    Makungu, Modesta; du Plessis, Wencke M; Barrows, Michelle; Groenewald, Hermanus B; Koeppel, Katja N

    2016-06-01

    The ring-tailed lemur (Lemur catta) is primarily distributed in south and southwestern Madagascar. It is classified as an endangered species by the International Union for Conservation of Nature. Various abdominal diseases, such as hepatic lipidosis, intestinal ulcers, cystitis, urinary tract obstruction, and neoplasia (e.g., colonic adenocarcinoma and cholangiocarcinoma), have been reported in this species. The aim of this study was to describe the normal radiographic and ultrasonographic abdominal anatomy in captive ring-tailed lemurs to provide guidance for clinical use. Radiography of the abdomen and ultrasonography of the liver, spleen, kidneys, and urinary bladder were performed in 13 and 9 healthy captive ring-tailed lemurs, respectively, during their annual health examinations. Normal radiographic and ultrasonographic reference ranges for abdominal organs were established and ratios were calculated. The majority (12/13) of animals had seven lumbar vertebrae. The sacrum had mainly (12/13) three segments. Abdominal serosal detail was excellent in all animals, and hypaxial muscles were conspicuous in the majority (11/13) of animals. The spleen was frequently (12/13) seen on the ventrodorsal (VD) view and rarely (3/13) on the right lateral (RL) view. The liver was less prominent and well contained within the ribcage. The pylorus was mostly (11/13) located to the right of the midline. The right and left kidneys were visible on the RL and VD views, with the right kidney positioned more cranial and dorsal to the left kidney. On ultrasonography, the kidneys appeared ovoid on transverse and longitudinal views. The medulla was hypoechoic to the renal cortex. The renal cortex was frequently (8/9) isoechoic and rarely (1/9) hyperechoic to the splenic parenchyma. The liver parenchyma was hypoechoic (5/5) to the renal cortex. Knowledge of the normal radiographic and ultrasonographic abdominal anatomy of ring-tailed lemurs may be useful in the diagnosis of diseases and in routine health examinations.

  16. Effects of an Antimutagenic 1,4-Dihydropyridine AV-153 on Expression of Nitric Oxide Synthases and DNA Repair-related Enzymes and Genes in Kidneys of Rats with a Streptozotocin Model of Diabetes Mellitus.

    PubMed

    Ošiņa, Kristīne; Rostoka, Evita; Isajevs, Sergejs; Sokolovska, Jelizaveta; Sjakste, Tatjana; Sjakste, Nikolajs

    2016-11-01

    Development of complications of diabetes mellitus (DM), including diabetic nephropathy, is a complex multi-stage process, dependent on many factors including the modification of nitric oxide (NO) production and an impaired DNA repair. The goal of this work was to study in vivo effects of 1,4-dihydropyridine AV-153, known as antimutagen and DNA binder, on the expression of several genes and proteins involved in NO metabolism and DNA repair in the kidneys of rats with a streptozotocin (STZ)-induced model of DM. Transcription intensity was monitored by means of real-time RT-PCR and the expression of proteins by immunohistochemistry. Development of DM significantly induced PARP1 protein expression, while AV-153 (0.5 mg/kg) administration decreased it. AV-153 increased the expression of Parp1 gene in the kidneys of both intact and diabetic animals. Expression of H2afx mRNA and γH2AX histone protein, a marker of DNA breakage, was not changed in diabetic animals, but AV-153 up-regulated the expression of the gene without any impact on the protein expression. Development of DM was followed by a significant increase in iNOS enzyme expression, while AV-153 down-regulated the enzyme expression up to normal levels. iNos gene expression was also found to be increased in diabetic animals, but unlike the protein, the expression of mRNA was found to be enhanced by AV-153 administration. Expression of both eNOS protein and eNos gene in the kidneys was down-regulated, and the administration of AV-153 normalized the expression level. The effects of the compound in the kidneys of diabetic animals appear to be beneficial, as a trend for the normalization of expression of NO synthases is observed. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  17. Ipsilateral kidney sparing in treatment of pancreatic malignancies using volumetric-modulated arc therapy avoidance sectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Raymond W., E-mail: rwc3b@alumni.virginia.edu; Podgorsak, Matthew B.

    Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on themore » location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm{sup 3}) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.« less

  18. The pathologic physiology of chronic Bright's disease. An exposition of the "intact nephron hypothesis".

    PubMed

    Bricker, N S; Morrin, P A; Kime, S W

    1997-09-01

    Clinical and experimental data relating to the functional capacity of the surviving nephrons of the chronically diseased kidney for the most part support the thesis that these nephrons retain their essential functional integrity regardless of the nature of the underlying form of chronic Bright's disease. There are instances in which specific alterations of function correlate with pathologic involvement of a particular site of the nephron but these appear to represent the exceptions, and in general the more advanced the disease becomes, the less evident are the differentiating features. Studies on dogs with unilateral renal disease indicate that the functional capacity of the nephrons of the diseased kidney parallels that of the nephrons of the contralateral normal kidney. These data tend to exclude widespread intrinsic damage to the functioning nephrons by the underlying pathologic processes. From these observations, as well as from certain supporting clinical and experimental observations, it is suggested that the majority of surviving nephrons in the patient with bilateral renal disease similarly are functionally intact. Concepts of the pathologic physiology of the kidney, based on the "intact nephron hypothesis", are presented. Within the framework of this hypothesis it is concluded that (1) the diseased kidney consists of a diminished number of nephrons, most of which retain essentially normal functional abilities; (2) certain of the apparent abnormalities in function in bilateral renal disease may relate to adaptive changes imposed by the decreased nephron population and the attendant derangements in body fluids rather than to structural distortion of nephrons; (3) the over-all flexibility of the diseased kidney decreases as the number of constituent nephrons decreases; but (4) there is an orderly and predictable pattern of excretion for all substances.

  19. The aldo-keto reductase AKR1B7 coexpresses with renin without influencing renin production and secretion.

    PubMed

    Machura, Katharina; Iankilevitch, Elina; Neubauer, Björn; Theuring, Franz; Kurtz, Armin

    2013-03-01

    On the basis of evidence that within the adult kidney, the aldo-keto reductase AKR1B7 (aldo-keto reductase family 1, member 7, also known as mouse vas deferens protein, MVDP) is selectively expressed in renin-producing cells, we aimed to define a possible role of AKR1B7 for the regulation and function of renin cells in the kidney. We could confirm colocalization and corecruitment of renin and of AKR1B7 in wild-type kidneys. Renin cells in AKR1B7-deficient kidneys showed normal morphology, numbers, and intrarenal distribution. Plasma renin concentration (PRC) and renin mRNA levels of AKR1B7-deficient mice were normal at standard chow and were lowered by a high-salt diet directly comparable to wild-type mice. Treatment with a low-salt diet in combination with an angiotensin-converting enzyme inhibitor strongly increased PRC and renin mRNA in a similar fashion both in AKR1B7-deficient and wild-type mice. Under this condition, we also observed a strong retrograde recruitment of renin-expressing cell along the preglomerular vessels, however, without a difference between AKR1B7-deficient and wild-type mice. The isolated perfused mouse kidney model was used to study the acute regulation of renin secretion by ANG II and by perfusion pressure. Regarding these parameters, no differences were observed between AKR1B7-deficient and wild-type kidneys. In summary, our data suggest that AKR1B7 is not of major relevance for the regulation of renin production and secretion in spite of its striking coregulation with renin expression.

  20. Proteome profiling in the aorta and kidney of type 1 diabetic rats

    PubMed Central

    Zhu, Rui; Jaffa, Miran A.; Zhao, Jingfu; Mirzaei, Parvin; Ahmed, Adnan; Kobeissy, Firas; Ziyadeh, Fuad N.; Mechref, Yehia

    2017-01-01

    Diabetes is associated with a number of metabolic and cardiovascular risk factors that contribute to a high rate of microvascular and macrovascular complications. The risk factors and mechanisms that contribute to the development of micro- and macrovascular disease in diabetes are not fully explained. In this study, we employed mass spectrometric analysis using tandem LC-MS/MS to generate a proteomic profile of protein abundance and post-translational modifications (PTM) in the aorta and kidney of diabetic rats. In addition, systems biology analyses were employed to identify key protein markers that can provide insights into molecular pathways and processes that are differentially regulated in the aorta and kidney of type 1 diabetic rats. Our results indicated that 188 (111 downregulated and 77 upregulated) proteins were significantly identified in the aorta of diabetic rats compared to normal controls. A total of 223 (109 downregulated and 114 upregulated) proteins were significantly identified in the kidney of diabetic rats compared to normal controls. When the protein profiles from the kidney and aorta of diabetic and control rats were analyzed by principal component analysis, a distinct separation of the groups was observed. In addition, diabetes resulted in a significant increase in PTM (oxidation, phosphorylation, and acetylation) of proteins in the kidney and aorta and this effect was partially reversed by insulin treatment. Ingenuity pathway analysis performed on the list of differentially expressed proteins depicted mitochondrial dysfunction, oxidative phosphorylation and acute phase response signaling to be among the altered canonical pathways by diabetes in both tissues. The findings of the present study provide a global proteomics view of markers that highlight the mechanisms and putative processes that modulate renal and vascular injury in diabetes. PMID:29121074

Top