Sample records for normal human organs

  1. Different molecular organization of two carotenoids, lutein and zeaxanthin, in human colon epithelial cells and colon adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Grudzinski, Wojciech; Piet, Mateusz; Luchowski, Rafal; Reszczynska, Emilia; Welc, Renata; Paduch, Roman; Gruszecki, Wieslaw I.

    2018-01-01

    Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.

  2. Human organ-on-a-chip BioMEMS devices for testing new diagnostic and therapeutic strategies

    NASA Astrophysics Data System (ADS)

    Leary, James F.; Key, Jaehong; Vidi, Pierre-Alexandre; Cooper, Christy L.; Kole, Ayeeshik; Reece, Lisa M.; Lelièvre, Sophie A.

    2013-03-01

    MEMS human "organs-on-a-chip" can be used to create model human organ systems for developing new diagnostic and therapeutic strategies. They represent a promising new strategy for rapid testing of new diagnostic and therapeutic approaches without the need for involving risks to human subjects. We are developing multicomponent, superparamagnetic and fluorescent nanoparticles as X-ray and MRI contrast agents for noninvasive multimodal imaging and for antibody- or peptide-targeted drug delivery to tumor and precancerous cells inside these artificial organ MEMS devices. Magnetic fields can be used to move the nanoparticles "upstream" to find their target cells in an organs-on-achip model of human ductal breast cancer. Theoretically, unbound nanoparticles can then be removed by reversing the magnetic field to give a greatly enhanced image of tumor cells within these artificial organ structures. Using branched PDMS microchannels and 3D tissue engineering of normal and malignant human breast cancer cells inside those MEMS channels, we can mimic the early stages of human ductal breast cancer with the goal to improve the sensitivity and resolution of mammography and MRI of very small tumors and test new strategies for treatments. Nanomedical systems can easily be imaged by multicolor confocal microscopy inside the artificial organs to test targeting and therapeutic responses including the differential viability of normal and tumor cells during treatments. Currently we are using 2-dimensional MEMS structures, but these studies can be extended to more complex 3D structures using new 3D printing technologies.

  3. Assessing the Toxicities of Regulated and Unregulated Disinfection By-products in Normal Human Colon Cells.

    EPA Science Inventory

    The presence of over six hundred disinfection by-products (DBPs) and less than half of the total organic halides present in finished water has created a need for short-term in vitro assays to address toxicities that might be associated with human exposure. . We are using a normal...

  4. A Compendium of Canine Normal Tissue Gene Expression

    PubMed Central

    Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand

    2011-01-01

    Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323

  5. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    PubMed Central

    Chanson, Lea; Brownfield, Douglas; Garbe, James C.; Kuhn, Irene; Stampfer, Martha R.; Bissell, Mina J.; LaBarge, Mark A.

    2011-01-01

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells. PMID:21300877

  6. Human Colors-The Rainbow Garden of Pathology: What Gives Normal and Pathologic Tissues Their Color?

    PubMed

    Piña-Oviedo, Sergio; Ortiz-Hidalgo, Carlos; Ayala, Alberto G

    2017-03-01

    - Colors are important to all living organisms because they are crucial for camouflage and protection, metabolism, sexual behavior, and communication. Human organs obviously have color, but the underlying biologic processes that dictate the specific colors of organs and tissues are not completely understood. A literature search on the determinants of color in human organs yielded scant information. - To address 2 specific questions: (1) why do human organs have color, and (2) what gives normal and pathologic tissues their distinctive colors? - Endogenous colors are the result of complex biochemical reactions that produce biologic pigments: red-brown cytochromes and porphyrins (blood, liver, spleen, kidneys, striated muscle), brown-black melanins (skin, appendages, brain nuclei), dark-brown lipochromes (aging organs), and colors that result from tissue structure (tendons, aponeurosis, muscles). Yellow-orange carotenes that deposit in lipid-rich tissues are only produced by plants and are acquired from the diet. However, there is lack of information about the cause of color in other organs, such as the gray and white matter, neuroendocrine organs, and white tissues (epithelia, soft tissues). Neoplastic tissues usually retain the color of their nonneoplastic counterpart. - Most available information on the function of pigments comes from studies in plants, microorganisms, cephalopods, and vertebrates, not humans. Biologic pigments have antioxidant and cytoprotective properties and should be considered as potential future therapies for disease and cancer. We discuss the bioproducts that may be responsible for organ coloration and invite pathologists and pathology residents to look at a "routine grossing day" with a different perspective.

  7. Changes in Ultrastructure and Cytoskeletal Aspects of Human Normal and Osteoarthritic Chondrocytes Exposed to Interleukin-1β and Cyclical Hydrostatic Pressure.

    PubMed

    Pascarelli, Nicola Antonio; Collodel, Giulia; Moretti, Elena; Cheleschi, Sara; Fioravanti, Antonella

    2015-10-30

    The aim of this study was to examine the ultrastructure and cytoskeletal organization in human normal and Osteoarhritic (OA) chondrocytes, exposed to interleukin-1β (IL-1β) and cyclic hydrostatic pressure (HP). Morphological examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed differences between normal and OA chondrocytes at the nuclear and cytoplasmic level. IL-1β (5 ng/mL) induced a decrease of the number of mitochondria and Golgi bodies and a significant increase on the percentage of cells rich in vacuolization and in marginated chromatin. Cyclical HP (1-5 MPa, 0.25 Hz, for 3 h) did not change the morphology of normal chondrocytes, but had a beneficial effect on OA chondrocytes increasing the number of organelles. Normal and OA cells subjected to IL-1β and HP recovered cytoplasmic ultrastructure. Immunofluorescence (IF) examination of normal chondrocytes showed an actin signal polarized on the apical sides of the cytoplasm, tubulin and vimentin uniformly distributed throughout cytoplasm and vinculin revealed a punctuated pattern under the plasma membrane. In OA chondrocytes, these proteins partially lost their organization. Stimulation with IL-1β caused, in both type of cells, modification in the cytoskeletal organization; HP counteracted the negative effects of IL-1β. Our results showed structural differences at nuclear, cytoplasmic and cytoskeletal level between normal and OA chondrocytes. IL-1β induced ultrastructural and cytoskeletal modifications, counteracted by a cyclical low HP.

  8. Changes in Ultrastructure and Cytoskeletal Aspects of Human Normal and Osteoarthritic Chondrocytes Exposed to Interleukin-1β and Cyclical Hydrostatic Pressure

    PubMed Central

    Pascarelli, Nicola Antonio; Collodel, Giulia; Moretti, Elena; Cheleschi, Sara; Fioravanti, Antonella

    2015-01-01

    The aim of this study was to examine the ultrastructure and cytoskeletal organization in human normal and Osteoarhritic (OA) chondrocytes, exposed to interleukin-1β (IL-1β) and cyclic hydrostatic pressure (HP). Morphological examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed differences between normal and OA chondrocytes at the nuclear and cytoplasmic level. IL-1β (5 ng/mL) induced a decrease of the number of mitochondria and Golgi bodies and a significant increase on the percentage of cells rich in vacuolization and in marginated chromatin. Cyclical HP (1–5 MPa, 0.25 Hz, for 3 h) did not change the morphology of normal chondrocytes, but had a beneficial effect on OA chondrocytes increasing the number of organelles. Normal and OA cells subjected to IL-1β and HP recovered cytoplasmic ultrastructure. Immunofluorescence (IF) examination of normal chondrocytes showed an actin signal polarized on the apical sides of the cytoplasm, tubulin and vimentin uniformly distributed throughout cytoplasm and vinculin revealed a punctuated pattern under the plasma membrane. In OA chondrocytes, these proteins partially lost their organization. Stimulation with IL-1β caused, in both type of cells, modification in the cytoskeletal organization; HP counteracted the negative effects of IL-1β. Our results showed structural differences at nuclear, cytoplasmic and cytoskeletal level between normal and OA chondrocytes. IL-1β induced ultrastructural and cytoskeletal modifications, counteracted by a cyclical low HP. PMID:26528971

  9. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics.

    PubMed

    Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P

    2014-01-01

    There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to human evolution, physiology and disease.

  10. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    PubMed

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  11. Non-normal dynamics and positive feedback between motion and sensation boosts run-and-tumble navigation.

    NASA Astrophysics Data System (ADS)

    Long, Junjiajia; Zucker, Steven W.; Emonet, Thierry

    The capability to navigate environmental gradients is of critical importance for survival. Countless organisms (microbes, human cells, worms, larvae, and insects) as well as human-made robots use a run-and-tumble strategy to do so. The classical drawback of this approach is that runs in the wrong direction are wasteful. We show analytically that organisms can overcome this fundamental limitation by exploiting the non-normal dynamics and intrinsic nonlinearities inherent to the positive feedback between motion and sensation. Most importantly, this nonlinear amplification is asymmetric, elongating runs in favorable directions and abbreviating others. The result is a ``ratchet-like'' gradient climbing behavior with drift speeds that can approach half the maximum run speed of the organism. By extending the theoretical study of run-and-tumble navigation into the non-mean-field, nonlinear, and non-normal domains, our results provide a new level of understanding about this basic strategy. We thank Yale HPC, NIGMS 1R01GM106189, and the Allen Distinguished Investigator Program through The Paul G. Allen Frontiers Group for support.

  12. 9 CFR 311.23 - Tapeworm cysts (cysticercus bovis) in cattle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... exposed during normal dressing operations, they are found in at least two of the sites exposed by (i) an..., esophagus, tongue, and musculature exposed during normal dressing operations, may be passed for human food...

  13. Application of Novel Method to Measure Endogenous VOCs in Exhaled Breath Condensate Before and After Exposure to Diesel Exhaust

    EPA Science Inventory

    Polar volatile organic compounds (PVOCs) such as aldehydes, ketones, and alcohols are byproducts of normal human metabolism and are present in exhaled breath and blood. Environmental exposures, individual activities, and disease states can perturb normal metabolic processes and ...

  14. 40 CFR 132.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lipid) of a substance's lipid-normalized concentration in tissue of an aquatic organism to its organic... develop neoplasms, in animals or humans. The classification of carcinogens is discussed in section II.A of... Species Act. Existing Great Lakes discharger is any building, structure, facility, or installation from...

  15. 40 CFR 132.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lipid) of a substance's lipid-normalized concentration in tissue of an aquatic organism to its organic... develop neoplasms, in animals or humans. The classification of carcinogens is discussed in section II.A of... Species Act. Existing Great Lakes discharger is any building, structure, facility, or installation from...

  16. Evo-Devo insights from pathological networks: exploring craniosynostosis as a developmental mechanism for modularity and complexity in the human skull.

    PubMed

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2015-07-20

    Bone fusion has occurred repeatedly during skull evolution in all tetrapod lineages, leading to a reduction in the number of bones and an increase in their morphological complexity. The ontogeny of the human skull includes also bone fusions as part of its normal developmental process. However, several disruptions might cause premature closure of cranial sutures (craniosynostosis), reducing the number of bones and producing new skull growth patterns that causes shape changes. Here, we compare skull network models of a normal newborn with different craniosynostosis conditions, the normal adult stage, and phylogenetically reconstructed forms of a primitive tetrapod, a synapsid, and a placental mammal. Changes in morphological complexity of newborn-to-synostosed skulls are two to three times less than in newborn-to-adult; and even smaller when we compare them to the increases among the reconstructed ancestors in the evolutionary transitions. In addition, normal, synostosed, and adult human skulls show the same connectivity modules: facial and cranial. Differences arise in the internal structure of these modules. In the adult skull the facial module has an internal hierarchical organization, whereas the cranial module has a regular network organization. However, all newborn forms, normal and synostosed, do not reach such kind of internal organization. We conclude that the subtle changes in skull complexity at the developmental scale can change the modular substructure of the newborn skull to more integrated modules in the adult skull, but is not enough to generate radical changes as it occurs at a macroevolutionary scale. The timing of closure of craniofacial sutures, together with the conserved patterns of morphological modularity, highlights a potential relation between the premature fusion of bones and the evolution of the shape of the skull in hominids.

  17. Antibody-Dependent Enhancement of Dengue Virus Growth in Human Monocytes as a Risk Factor for Dengue Hemorrhagic Fever

    DTIC Science & Technology

    1989-01-01

    One serum exhibited a de - 1’-917 cells, no DEN-2 infection was observed gree of infection above the mean of normal se- in cell cultures in the absence...ORGANIZATION RERORT NUMBER(S) 5 MONTORNN __ ___ ____ ___ ____ i 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL la NAME OF MONITORING ORGANIZATION...schoolchildren in Bangkok were tested for their ability to enhance dengue 2 (DEN-2) virus growth in human monocytes in vitro . Two groups of dengue-immune

  18. Extracting diagnostic stromal organization features based on intrinsic two-photon excited fluorescence and second-harmonic generation signals

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Xie, Shusen; Hong, Zhibin; Jiang, Xingshan

    2009-03-01

    Intrinsic two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals are shown to differentiate between normal and neoplastic human esophageal stroma. It was found that TPEF and SHG signals from normal and neoplastic stroma exhibit different organization features, providing quantitative information about the biomorphology and biochemistry of tissue. By comparing normal with neoplastic stroma, there were significant differences in collagen-related changes, elastin-related changes, and alteration in proportions of matrix molecules, giving insight into the stromal changes associated with cancer progression and providing substantial potential to be applied in vivo to the clinical diagnosis of epithelial precancers and cancers.

  19. Added sugars and risk factors for obesity, diabetes and heart disease.

    PubMed

    Rippe, J M; Angelopoulos, T J

    2016-03-01

    The effects of added sugars on various chronic conditions are highly controversial. Some investigators have argued that added sugars increase the risk of obesity, diabetes and cardiovascular disease. However, few randomized controlled trials are available to support these assertions. The literature is further complicated by animal studies, as well as studies which compare pure fructose to pure glucose (neither of which is consumed to any appreciable degree in the human diet) and studies where large doses of added sugars beyond normal levels of human consumption have been administered. Various scientific and public health organizations have offered disparate recommendations for upper limits of added sugar. In this article, we will review recent randomized controlled trials and prospective cohort studies. We conclude that the normal added sugars in the human diet (for example, sucrose, high-fructose corn syrup and isoglucose) when consumed within the normal range of normal human consumption or substituted isoenergetically for other carbohydrates, do not appear to cause a unique risk of obesity, diabetes or cardiovascular disease.

  20. Kindler syndrome protein Kindlin-1 is mainly expressed in adult tissues originating from ectoderm/endoderm.

    PubMed

    Zhan, Jun; Yang, Mei; Zhang, Jing; Guo, YongQing; Liu, Wei; Zhang, HongQuan

    2015-05-01

    Mutations of integrin-interacting protein Kindlin-1 cause Kindler syndrome and deregulation of Kindlin-1 is implicated in human cancers. The Kindlin-1-related diseases are confined in limited tissue types. However, Kindlin-1 tissue distribution and the dogma that governs Kindlin-1 expression in normal human body are elusive. This study examined Kindlin-1 expression in normal human adult organs, human and mouse embryonic organs by immunohistochemical analyses. We identified a general principle that the level of Kindlin-1 expression in tissues is tightly correlated with the corresponding germ layers from which these tissues originate. We compared the expression of Kindlin-1 with Kindlin-2 and found that Kindlin-1 is highly expressed in epithelial tissues derived from ectoderm and endoderm, whereas Kindlin-2 is mainly expressed in mesoderm-derived tissues. Likewise, Kindlin-1 was also found highly expressed in endoderm/ectoderm-derived tissues in human and mouse embryos. Our findings indicate that Kindlin-1 may play an importance role in the development of endoderm/ectoderm related tissues.

  1. Human Wound Infection with Mannheimia glucosida following Lamb Bite

    PubMed Central

    Omaleki, Lida; Turni, Conny; Barber, Stuart Richard; Francis, Michelle J.; Graham, Maryza

    2015-01-01

    Mannheimia spp. are veterinary pathogens that can cause mastitis and pneumonia in domestic cattle and sheep. While Mannheimia glucosida can be found as normal flora in oral and respiratory mucosa in sheep, there have been no reported cases of human infection with this organism. PMID:26202121

  2. X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease.

    PubMed

    Chia, L S; Thompson, J E; Moscarello, M A

    1984-09-05

    Wide-angle X-ray diffraction studies revealed that the lipid phase transition temperature of myelin from brain tissue of humans with Alzheimer's disease was about 12 degrees C lower than that of normal age-matched controls, indicating differences in the physical organization of the myelin lipid bilayer. Elevated levels of malondialdehyde and conjugated diene were found in brain tissue from humans with Alzheimer's disease, indicating an increased amount of lipid peroxidation over the controls. An increase in myelin disorder and in lipid peroxidation can both be correlated with aging in human brain, but the changes in myelin from humans with Alzheimer's disease are more pronounced than in normal aging. These changes might represent severe or accelerated aging.

  3. SU-F-J-174: A Series of Computational Human Phantoms in DICOM-RT Format for Normal Tissue Dose Reconstruction in Epidemiological Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyakuryal, A; Moroz, B; Lee, C

    2016-06-15

    Purpose: Epidemiological studies of second cancer risk in radiotherapy patients often require individualized dose estimates of normal tissues. Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D radiological images or not even available. Generic patient CT images are often used in commercial radiotherapy treatment planning system (TPS) to reconstruct normal tissue doses. The objective of the current work was to develop a series of reference size computational human phantoms in DICOM-RT format for direct use in dose reconstruction in TPS. Methods: Contours of 93 organs and tissues were extracted from a series of pediatricmore » and adult hybrid computational human phantoms (newborn, 1-, 5-, 10-, 15-year-old, and adult males and females) using Rhinoceros software. A MATLAB script was created to convert the contours into the DICOM-RT structure format. The simulated CT images with the resolution of 1×1×3 mm3 were also generated from the binary phantom format and coupled with the DICOM-structure files. Accurate volumes of the organs were drawn in the format using precise delineation of the contours in converted format. Due to complex geometry of organs, higher resolution (1×1×1 mm3) was found to be more efficient in the conversion of newborn and 1-year-old phantoms. Results: Contour sets were efficiently converted into DICOM-RT structures in relatively short time (about 30 minutes for each phantom). A good agreement was observed in the volumes between the original phantoms and the converted contours for large organs (NRMSD<1.0%) and small organs (NRMSD<7.7%). Conclusion: A comprehensive series of computational human phantoms in DICOM-RT format was created to support epidemiological studies of second cancer risks in radiotherapy patients. We confirmed the DICOM-RT phantoms were successfully imported into the TPS programs of major vendors.« less

  4. Expression and localization of endocrine gland-derived vascular endothelial growth factor (EG-VEGF) in human pancreas and pancreatic adenocarcinoma.

    PubMed

    Morales, Angélica; Vilchis, Felipe; Chávez, Bertha; Chan, Carlos; Robles-Díaz, Guillermo; Díaz-Sánchez, Vicente

    2007-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) was recently identified as the first tissue-specific angiogenic molecule. EG-VEGF (the gene product of PROK-1) appears to be expressed exclusively in steroid-producing organs such as the ovary, testis, adrenals and placenta. Since the human pancreatic cells retain steroidogenic activity, in the present study we ascertained whether this angiogenic factor is expressed in normal pancreas and pancreatic adenocarcinoma. Tissue samples from normal males (n=5), normal females (n=5) and from surgically resected adenocarcinomas (n=2) were processed for RT-PCR and immunohistochemical studies. Results from semi-quantitative analysis by RT-PCR suggest a distinct expression level for EG-VEGF in the different tissue samples. The relative amount of EG-VEGF mRNA in pancreas was more abundant in female adenocarcinoma (0.89) followed by male adenocarcinoma (0.71), than normal female (0.64) and normal male (0.38). The expression of mRNA for EG-VEGF in normal tissue was significantly higher in females than in males. All samples examined showed specific immunostaining for EG-VEGF. In male preparations, the positive labeling was localized predominantly within the pancreatic islets while in female preparations the main staining was detected towards the exocrine portion. Specific immunolabeling was also observed in endothelial cells of pancreatic blood vessels. Our data provide evidence that the human pancreas expresses the EG-VEGF, a highly specific mitogen which regulates proliferation and differentiation of the vascular endothelium. The significance of this finding could be interpreted as either, EG-VEGF is not exclusive of endocrine organs, or the pancreas should be considered as a functional steroidogenic tissue. The extent of the expression of EG-VEGF appears to have a dimorphic pattern in normal and tumoral pancreatic tissue.

  5. [What was found in deformities of leprosy patients from the view-point of orthopedics?].

    PubMed

    Obara, Akiko

    2003-08-01

    No more deformities which are the cause of social stigma by early detection and chemotherapy! Let patients learn how to avoid getting deformed to keep normal ADL & QOL. Fight against the nerve damage and stop the progressive deformities by organizing the team approach. Instead of intense efforts of taking care by well organized team work, deformities are resulted inevitably in some cases. Let their deformities be out of the way of their keeping normal community lives without any prejudice, respecting their human rights and dignity.

  6. CK13 in craniopharyngioma versus related odontogenic neoplasms and human enamel organ.

    PubMed

    el-Sissy, N A; Rashad, N A

    1999-05-01

    The monoclonal antibody NCL-CK13 was studied in specimens of craniopharyngioma, ameloblastoma and calcifying odontogenic cyst neoplasms and the mandible and maxillae of normal human fetuses. There was a decrease in NCL-CK13 as the dental lamina developed, with a complete loss in the enamel organ. The neoplastic epithelia of the neoplasms revealed a clear phenotypic and immunohistochemical reactive relationship to the stratified embroyonic mucosa, away from the enamel organ. This suggests that these neoplasms might have their histogenesis from early stage epithelium, the oral part of the dental lamina or its remnants.

  7. Environmental Stress and Human Migration in a Low-lying Developing Nation: A Comparison of Co-evolving Natural and Human Landscapes in the Physically and Culturally Diverse Context of Bangladesh

    DTIC Science & Technology

    2013-09-30

    preclude the deposition of sediment and organic matter that normally sustains the elevation and fertility of the landscape. In May 2012 we conducted a fast...Bangladesh. How do groups self- organize to be successful in the face of changing environment, and social and economic pressures? What are the strategies and...ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Vanderbilt

  8. Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter.

    PubMed

    Velali, Ekaterini; Papachristou, Eleni; Pantazaki, Anastasia; Choli-Papadopoulou, Theodora; Argyrou, Nikoleta; Tsourouktsoglou, Theodora; Lialiaris, Stergios; Constantinidis, Alexandros; Lykidis, Dimitrios; Lialiaris, Thedore S; Besis, Athanasios; Voutsa, Dimitra; Samara, Constantini

    2016-11-01

    Three organic fractions of different polarity, including a non polar organic fraction (NPOF), a moderately polar organic fraction (MPOF), and a polar organic fraction (POF) were obtained from size-segregated (<0.49, 0.49-0.97, 0.97-3 and >3 μm) urban particulate matter (PM) samples, and tested for cytotoxicity and genotoxicity using a battery of in vitro assays. The cytotoxicity induced by the organic PM fractions was measured by the mitochondrial dehydrogenase (MTT) cell viability assay applied on MRC-5 human lung epithelial cells. DNA damages were evaluated through the comet assay, determination of the poly(ADP-Ribose) polymerase (PARP) activity, and the oxidative DNA adduct 8-hydroxy-deoxyguanosine (8-OHdG) formation, while pro-inflammatory effects were assessed by determination of the tumor necrosis factor-alpha (TNF-α) mediator release. In addition, the Sister Chromatid Exchange (SCE) inducibility of the solvent-extractable organic matter was measured on human peripheral lymphocyte. Variations of responses were assessed in relation to the polarity (hence the expected composition) of the organic PM fractions, particle size, locality, and season. Organic PM fractions were found to induce rather comparable Cytotoxicity and genotoxicity of PM appeared to be rather independent from the polarity of the extractable organic PM matter (EOM) with POF often being relatively more toxic than NPOF or MPOF. All assays indicated stronger mass-normalized bioactivity for fine than coarse particles peaking in the 0.97-3 and/or the 0.49-0.97 μm size ranges. Nevertheless, the air volume-normalized bioactivity in all assays was highest for the <0.49 μm size range highlighting the important human health risk posed by the inhalation of these quasi-ultrafine particles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro.

    PubMed

    de Cabo, Rafael; Liu, Lijuan; Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M

    2015-03-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes.

  10. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro

    PubMed Central

    Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M.

    2015-01-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes. (185 words). PMID:25855056

  11. Evaluation of [18F]Mefway biodistribution and dosimetry based on whole-body PET imaging of mice.

    PubMed

    Constantinescu, Cristian C; Sevrioukov, Evgueni; Garcia, Adriana; Pan, Min-Liang; Mukherjee, Jogeshwar

    2013-04-01

    [(18)F]Mefway is a novel radiotracer specific to the serotonin 5-HT1A receptor class. In preparation for using this tracer in humans, we have performed whole-body PET studies in mice to evaluate the biodistribution and dosimetry of [(18)F]Mefway. Six mice (three females and three males) received IV injections of [(18)F]Mefway and were scanned for 2 h in an Inveon-dedicated PET scanner. Each animal also received a high-resolution CT scan using an Inveon CT. The CT images were used to draw volume of interest on the following organs: the brain, large intestine, stomach, heart, kidneys, liver, lungs, pancreas, bone, spleen, testes, thymus, gallbladder, uterus, and urinary bladder. All organ time-activity curves without decay correction were normalized to the injected activity. The area under the normalized curves was then used to compute the residence times in each organ. Data were analyzed using PMOD and Matlab software. The absorbed doses in mouse organs were computed using the RAdiation Dose Assessment Resource animal models for dose assessment. The residence times in mouse organs were converted to human values using scale factors based on differences between organ and body weights. OLINDA/EXM 1.1 software was used to compute the absorbed human doses in multiple organs for both female and male phantoms. The highest mouse residence times were found in the liver, urinary bladder, and kidneys. The largest doses in mice were found in the urinary bladder (critical organ), kidney, and liver for both females and males, indicating primary elimination via urinary system. The projected human effective doses were 1.21E - 02 mSv/MBq for the adult female model and 1.13E - 02 mSv/MBq for the adult male model. The estimated human biodistribution of [(18)F]Mefway was similar to that of [(11)C]WAY 100,635, a 5-HT1A tracer for which dosimetry has been evaluated in humans. The elimination of radiotracer was primarily via the kidney and urinary bladder with the urinary bladder being the critical organ. Whole-body mouse imaging can be used as a preclinical tool to provide initial estimates of the absorbed doses of [(18)F]Mefway in humans.

  12. NORMAL FLORA OF THE NOSE, THROAT, AND LOWER INTESTINE OF DOGS

    PubMed Central

    Clapper, W. E.; Meade, G. H.

    1963-01-01

    Clapper, W. E. (The Lovelace Foundation for Medical Education and Research, Albuquerque, N.M.) and G. H. Meade. Normal flora of the nose, throat, and lower intestine of dogs. J. Bacteriol. 85:643–648. 1963.—An attempt was made to isolate and identify the complete normal flora of the rectum, nose, and throat of beagles. For primary isolation, 12 different kinds of media were used. Incubation of blood agar plates and slants anaerobically, and of thioglycolate broth aerobically, allowed the growth of obligate anaerobes. From the rectal specimens, 20 species of bacteria and 10 species of fungi were isolated and identified. The organisms were similar to those found in the human intestine. Escherichia coli, Streptococcus mitis, enterococci, S. lactis, Bacillus species, and coliforms other than E. coli were most frequently encountered. The frequency of occurrence was approximately the same at both samplings in more commonly cultured bacteria. Pathogenic E. coli were isolated from nearly one-third of the first specimens. These were the only human pathogens observed. In the throat cultures, 29 species of bacteria and 2 species of yeasts were identified, and 27 species of bacteria were identified from the nasal cultures. S. mitis, Neisseria, and coagulase-negative Staphylococcus were most often isolated. The flora was similar to that found in human nose and throat cultures, except that more Haemophilus and pneumococcus and fewer coliforms are generally found in human throats. Organisms resembling human pathogens were group A streptococci and coagulase-positive staphylococci. These were isolated infrequently. It appears that this kind of examination would reveal any significant changes in normal flora that might be related to the health of the animal. PMID:14042944

  13. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran.

    PubMed

    Naimabadi, Abolfazl; Ghadiri, Ata; Idani, Esmaeil; Babaei, Ali Akbar; Alavi, Nadali; Shirmardi, Mohammad; Khodadadi, Ali; Marzouni, Mohammad Bagherian; Ankali, Kambiz Ahmadi; Rouhizadeh, Ahmad; Goudarzi, Gholamreza

    2016-04-01

    Reports on the effects of PM10 from dust storm on lung cells are limited. The main purpose of this study was to investigate the chemical composition and in vitro toxicological impacts of PM10 suspensions, its water-soluble fraction, and the solvent-extractable organics extracted from Middle Eastern Dust storms on the human lung epithelial cell (A549). Samples of dust storms and normal days (PM10 < 200 μg m(-3)) were collected from December 2012 until June 2013 in Ahvaz, the capital of Khuzestan Province in Iran. The chemical composition and cytotoxicity were analyzed by ICP- OES and Lactase Dehydrogenase (LDH) reduction assay, respectively. The results showed that PM10 suspensions, their water-soluble fraction and solvent-extractable organics from both dust storm and normal days caused a decrease in the cell viability and an increase in LDH in supernatant in a dose-response manner. Although samples of normal days showed higher cytotoxicity than those of dust storm at the highest treated dosage, T Test showed no significant difference in cytotoxicity between normal days and dust event days (P value > 0.05). These results led to the conclusions that dust storm PM10 as well as normal day PM10 could lead to cytotoxicity, and the organic compounds (PAHs) and the insoluble particle-core might be the main contributors to cytotoxicity. Our results showed that cytotoxicity and the risk of PM10 to human lung may be more severe during dust storm than normal days due to inhalation of a higher mass concentration of airborne particles. Further research on PM dangerous fractions and the most responsible components to make cytotoxicity in exposed cells is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mouse Models for Investigating the Developmental Bases of Human Birth Defects

    PubMed Central

    MOON, ANNE M.

    2006-01-01

    Clinicians and basic scientists share an interest in discovering how genetic or environmental factors interact to perturb normal development and cause birth defects and human disease. Given the complexity of such interactions, it is not surprising that 4% of human infants are born with a congenital malformation, and cardiovascular defects occur in nearly 1%. Our research is based on the fundamental hypothesis that an understanding of normal and abnormal development will permit us to generate effective strategies for both prevention and treatment of human birth defects. Animal models are invaluable in these efforts because they allow one to interrogate the genetic, molecular and cellular events that distinguish normal from abnormal development. Several features of the mouse make it a particularly powerful experimental model: it is a mammalian system with similar embryology, anatomy and physiology to humans; genes, proteins and regulatory programs are largely conserved between human and mouse; and finally, gene targeting in murine embryonic stem cells has made the mouse genome amenable to sophisticated genetic manipulation currently unavailable in any other model organism. PMID:16641221

  15. Modulation of Wolframin Expression in Human Placenta during Pregnancy: Comparison among Physiological and Pathological States

    PubMed Central

    Perna, Angelica; Iannaccone, Alessandro; Cobellis, Luigi; De Luca, Antonio

    2014-01-01

    The WFS1 gene, encoding a transmembrane glycoprotein of the endoplasmic reticulum called wolframin, is mutated in Wolfram syndrome, an autosomal recessive disorder defined by the association of diabetes mellitus, optic atrophy, and further organ abnormalities. Disruption of the WFS1 gene in mice causes progressive β-cell loss in the pancreas and impaired stimulus-secretion coupling in insulin secretion. However, little is known about the physiological functions of this protein. We investigated the immunohistochemical expression of wolframin in human placenta throughout pregnancy in normal women and diabetic pregnant women. In normal placenta, there was a modulation of wolframin throughout pregnancy with a strong level of expression during the first trimester and a moderate level in the third trimester of gestation. In diabetic women, wolframin expression was strongly reduced in the third trimester of gestation. The pattern of expression of wolframin in normal placenta suggests that this protein may be required to sustain normal rates of cytotrophoblast cell proliferation during the first trimester of gestation. The decrease in wolframin expression in diabetic placenta suggests that this protein may participate in maintaining the physiologic glucose homeostasis in this organ. PMID:24588001

  16. Engineering epithelial-stromal interactions in vitro for toxicology assessment.

    PubMed

    Belair, David G; Abbott, Barbara D

    2017-05-01

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. Published by Elsevier B.V.

  17. Engineering epithelial-stromal interactions in vitro for toxicology assessment

    PubMed Central

    Belair, David G.; Abbott, Barbara D.

    2018-01-01

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. PMID:28285100

  18. Prolactin--a novel neuroendocrine regulator of human keratin expression in situ.

    PubMed

    Ramot, Yuval; Bíró, Tamás; Tiede, Stephan; Tóth, Balázs I; Langan, Ewan A; Sugawara, Koji; Foitzik, Kerstin; Ingber, Arieh; Goffin, Vincent; Langbein, Lutz; Paus, Ralf

    2010-06-01

    The controls of human keratin expression in situ remain to be fully elucidated. Here, we have investigated the effects of the neurohormone prolactin (PRL) on keratin expression in a physiologically and clinically relevant test system: organ-cultured normal human hair follicles (HFs). Not only do HFs express a wide range of keratins, but they are also a source and target of PRL. Microarray analysis revealed that PRL differentially regulated a defined subset of keratins and keratin-associated proteins. Quantitative immunohistomorphometry and quantitative PCR confirmed that PRL up-regulated expression of keratins K5 and K14 and the epithelial stem cell-associated keratins K15 and K19 in organ-cultured HFs and/or isolated HF keratinocytes. PRL also up-regulated K15 promoter activity and K15 protein expression in situ, whereas it inhibited K6 and K31 expression. These regulatory effects were reversed by a pure competitive PRL receptor antagonist. Antagonist alone also modulated keratin expression, suggesting that "tonic stimulation" by endogenous PRL is required for normal expression levels of selected keratins. Therefore, our study identifies PRL as a major, clinically relevant, novel neuroendocrine regulator of both human keratin expression and human epithelial stem cell biology in situ.

  19. Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content.

    PubMed

    Showalter, Brent L; Beckstein, Jesse C; Martin, John T; Beattie, Elizabeth E; Espinoza Orías, Alejandro A; Schaer, Thomas P; Vresilovic, Edward J; Elliott, Dawn M

    2012-07-01

    Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc. To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.

  20. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanson, L.; Brownfield, D.; Garbe, J. C.

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal humanmore » mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.« less

  1. Genetics Home Reference: deafness and myopia syndrome

    MedlinePlus

    ... This Page Aruga J, Yokota N, Mikoshiba K. Human SLITRK family genes: genomic organization and expression profiling in normal brain ... AH. SLITRK6 mutations cause myopia and deafness in humans and mice. J Clin Invest. 2013 May;123(5):2094-102. doi: 10.1172/JCI65853. Epub ... are genome editing and CRISPR-Cas9? What is precision medicine? What ...

  2. Smooth muscle membrane organization in the normal and dysfunctional human urinary bladder: a structural analysis.

    PubMed

    Burkhard, Fiona C; Monastyrskaya, Katia; Studer, Urs E; Draeger, Annette

    2005-01-01

    The decline in contractile properties is a characteristic feature of the dysfunctional bladder as a result of infravesical outlet obstruction. During clinical progression of the disease, smooth muscle cells undergo structural modifications. Since adaptations to constant changes in length require a high degree of structural organization within the sarcolemma, we have investigated the expression of several proteins, which are involved in smooth muscle membrane organization, in specimens derived from normal and dysfunctional organs. Specimen from patients with urodynamically normal/equivocal (n = 4), obstructed (n = 2), and acontractile (n = 2) bladders were analyzed relative to their structural features and sarcolemmal protein profile. Smooth muscle cells within the normal urinary bladder display a distinct sarcolemmal domain structure, characterized by firm actin-attachment sites, alternating with flexible "hinge" regions. In obstructed bladders, foci of cells displaying degenerative sarcolemmal changes alternate with areas of hypertrophic cells in which the membrane appears unaffected. In acontractile organs, the overall membrane structure remains intact, however annexin 6, a protein belonging to a family of Ca2+-dependent, "membrane-organizers," is downregulated. Degenerative changes in smooth muscle cells, which are chronically working against high resistance, are preferentially located within the actin-attachment sites. In acontractile bladders, the downregulation of annexin 6 might have a bearing on the fine-tuning of the plasma membrane during contraction/relaxation cycles. Copyright 2005 Wiley-Liss, Inc.

  3. Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin

    NASA Astrophysics Data System (ADS)

    Leroy, Marie; Lefèvre, Thierry; Pouliot, Roxane; Auger, Michèle; Laroche, Gaétan

    2015-06-01

    Psoriasis is a chronic dermatosis that affects around 3% of the world's population. The etiology of this autoimmune pathology is not completely understood. The barrier function of psoriatic skin is known to be strongly altered, but the structural modifications at the origin of this dysfunction are not clear. To develop strategies to reduce symptoms of psoriasis or adequate substitutes for modeling, a deep understanding of the organization of psoriatic skin at a molecular level is required. Infrared and Raman microspectroscopies have been used to obtain direct molecular-level information on psoriatic and healthy human skin biopsies. From the intensities and positions of specific vibrational bands, the lipid and protein distribution and the lipid order have been mapped in the different layers of the skin. Results showed a similar distribution of lipids and collagen for normal and psoriatic human skin. However, psoriatic skin is characterized by heterogeneity in lipid/protein composition at the micrometer scale, a reduction in the definition of skin layer boundaries and a decrease in lipid chain order in the stratum corneum as compared to normal skin. A global decrease of the structural organization is exhibited in psoriatic skin that is compatible with an alteration of its barrier properties.

  4. Rich-club organization of the newborn human brain

    PubMed Central

    Ball, Gareth; Aljabar, Paul; Zebari, Sally; Tusor, Nora; Arichi, Tomoki; Merchant, Nazakat; Robinson, Emma C.; Ogundipe, Enitan; Rueckert, Daniel; Edwards, A. David; Counsell, Serena J.

    2014-01-01

    Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a “rich club”—a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is not known when this structure emerges during human development. In this longitudinal study we chart the emergence of structural organization in mid to late gestation. We demonstrate that a rich club of interconnected cortical hubs is already present by 30 wk gestation. Subsequently, until the time of normal birth, the principal development is a proliferation of connections between core hubs and the rest of the brain. We also consider the impact of environmental factors on early network development, and compare term-born neonates to preterm infants at term-equivalent age. Though rich-club organization remains intact following premature birth, we reveal significant disruptions in both in cortical–subcortical connectivity and short-distance corticocortical connections. Rich club organization is present well before the normal time of birth and may provide the fundamental structural architecture for the subsequent emergence of complex neurological functions. Premature exposure to the extrauterine environment is associated with altered network architecture and reduced network capacity, which may in part account for the high prevalence of cognitive problems in preterm infants. PMID:24799693

  5. Human Organ Culture: Updating the Approach to Bridge the Gap from In Vitro to In Vivo in Inflammation, Cancer, and Stem Cell Biology.

    PubMed

    Al-Lamki, Rafia S; Bradley, John R; Pober, Jordan S

    2017-01-01

    Human studies, critical for developing new diagnostics and therapeutics, are limited by ethical and logistical issues, and preclinical animal studies are often poor predictors of human responses. Standard human cell cultures can address some of these concerns but the absence of the normal tissue microenvironment can alter cellular responses. Three-dimensional cultures that position cells on synthetic matrices, or organoid or organ-on-a-chip cultures, in which different cell spontaneously organize contacts with other cells and natural matrix only partly overcome this limitation. Here, we review how human organ cultures (HOCs) can more faithfully preserve in vivo tissue architecture and can better represent disease-associated changes. We will specifically describe how HOCs can be combined with both traditional and more modern morphological techniques to reveal how anatomic location can alter cellular responses at a molecular level and permit comparisons among different cells and different cell types within the same tissue. Examples are provided involving use of HOCs to study inflammation, cancer, and stem cell biology.

  6. Human Organ Culture: Updating the Approach to Bridge the Gap from In Vitro to In Vivo in Inflammation, Cancer, and Stem Cell Biology

    PubMed Central

    Al-Lamki, Rafia S.; Bradley, John R.; Pober, Jordan S.

    2017-01-01

    Human studies, critical for developing new diagnostics and therapeutics, are limited by ethical and logistical issues, and preclinical animal studies are often poor predictors of human responses. Standard human cell cultures can address some of these concerns but the absence of the normal tissue microenvironment can alter cellular responses. Three-dimensional cultures that position cells on synthetic matrices, or organoid or organ-on-a-chip cultures, in which different cell spontaneously organize contacts with other cells and natural matrix only partly overcome this limitation. Here, we review how human organ cultures (HOCs) can more faithfully preserve in vivo tissue architecture and can better represent disease-associated changes. We will specifically describe how HOCs can be combined with both traditional and more modern morphological techniques to reveal how anatomic location can alter cellular responses at a molecular level and permit comparisons among different cells and different cell types within the same tissue. Examples are provided involving use of HOCs to study inflammation, cancer, and stem cell biology. PMID:28955710

  7. Estrogens and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, J.A.; Newbold, R.R.

    1987-11-01

    The normal development of the genital organs of mammals, including humans, is under hormonal control. A role for the female sex hormone estrogen in this process is still unclear. However, exposure of experimental animals or humans to the potent exogenous estrogen, diethylstilbestrol (DES), results in persistent differentiation effects. Since many chemicals in the environment are weakly estrogenic, the possibility of hormonally altered differentiation must be considered.

  8. NORMAL FLORA OF THE NOSE, THROAT, AND LOWER INTESTINE OF DOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clapper, W.E.; Meade, G.H.

    1963-03-01

    An attempt was made to isolate and identify the complete normal flora of the rectum, nose, and throat of beagles. From the rectal specimens, 20 species of bacteria and 10 species of fungi were isolated and identified, The organisms were similar to those found in the human intestine. Escherichia coli, Streptococcus mitis, enterococci, S. lactis, Bacillus species, and coliforms other than E. coli were most frequently encountered. (auth)

  9. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    NASA Astrophysics Data System (ADS)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  10. A Unique Procedure to Identify Cell Surface Markers Through a Spherical Self-Organizing Map Applied to DNA Microarray Analysis.

    PubMed

    Sugii, Yuh; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Kumon, Kazuki; Mizutani, Akifumi; Seno, Akimasa; Tokutaka, Heizo; Kudoh, Takayuki; Seno, Masaharu

    2016-01-01

    To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer.

  11. Aging and immunosenescence in invertebrates

    USDA-ARS?s Scientific Manuscript database

    Most contemporary research into aging is driven by interest in the human aging process and in interventions that attenuate the normal and pathophysiological effects of aging, or senescence. Operationally, senescence is the progressive, inevitable breakdown of the organism. Among the changes associat...

  12. [Research progress on free radicals in human body].

    PubMed

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  13. Genetic basis of human left-right asymmetry disorders.

    PubMed

    Deng, Hao; Xia, Hong; Deng, Sheng

    2015-01-27

    Humans and other vertebrates exhibit left-right (LR) asymmetric arrangement of the internal organs, and failure to establish normal LR asymmetry leads to internal laterality disorders, including situs inversus and heterotaxy. Situs inversus is complete mirror-imaged arrangement of the internal organs along LR axis, whereas heterotaxy is abnormal arrangement of the internal thoraco-abdominal organs across LR axis of the body, most of which are associated with complex cardiovascular malformations. Both disorders are genetically heterogeneous with reduced penetrance, presumably because of monogenic, polygenic or multifactorial causes. Research in genetics of LR asymmetry disorders has been extremely prolific over the past 17 years, and a series of loci and disease genes involved in situs inversus and heterotaxy have been described. The review highlights the classification, chromosomal abnormalities, pathogenic genes and the possible mechanism of human LR asymmetry disorders.

  14. Changes in radiation dose with variations in human anatomy: larger and smaller normal-stature adults.

    PubMed

    Marine, Patrick M; Stabin, Michael G; Fernald, Michael J; Brill, Aaron B

    2010-05-01

    A systematic evaluation has been performed to study how specific absorbed fractions (SAFs) vary with changes in adult body size, for persons of different size but normal body stature. A review of the literature was performed to evaluate how individual organ sizes vary with changes in total body weight of normal-stature individuals. On the basis of this literature review, changes were made to our easily deformable reference adult male and female total-body models. Monte Carlo simulations of radiation transport were performed; SAFs for photons were generated for 10th, 25th, 75th, and 90th percentile adults; and comparisons were made to the reference (50th) percentile SAF values. Differences in SAFs for organs irradiating themselves were between 0.5% and 1.0%/kg difference in body weight, from 15% to 30% overall, for organs within the trunk. Differences in SAFs for organs outside the trunk were not greater than the uncertainties in the data and will not be important enough to change calculated doses. For organs irradiating other organs within the trunk, differences were significant, between 0.3% and 1.1%/kg, or about 8%-33% overall. The differences are interesting and can be used to estimate how different patients' dosimetry might vary from values reported in standard dose tables.

  15. THE INFECTIVITY OF CRYPTOSPORIDIUM PARVUM IN HEALTHY VOLUNTEERS

    EPA Science Inventory

    Background. Small numbers of Cryptosporidium parvum oocysts can contaminate even treated drinking water, and ingestion of oocysts can cause diarrheal disease in normal as well as immunocompromised hosts. Since the number of organisms necessary to cause infection in humans is unkn...

  16. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: A combined PET, fMRI and DTI study

    PubMed Central

    Simonyan, Kristina; Herscovitch, Peter; Horwitz, Barry

    2013-01-01

    Considerable progress has been recently made in understanding the brain mechanisms underlying speech and language control. However, the neurochemical underpinnings of normal speech production remain largely unknown. We investigated the extent of striatal endogenous dopamine release and its influences on the organization of functional striatal speech networks during production of meaningful English sentences using a combination of positron emission tomography (PET) with the dopamine D2/D3 receptor radioligand [11C]raclopride and functional MRI (fMRI). In addition, we used diffusion tensor tractography (DTI) to examine the extent of dopaminergic modulatory influences on striatal structural network organization. We found that, during sentence production, endogenous dopamine was released in the ventromedial portion of the dorsal striatum, in its both associative and sensorimotor functional divisions. In the associative striatum, speech-induced dopamine release established a significant relationship with neural activity and influenced the left-hemispheric lateralization of striatal functional networks. In contrast, there were no significant effects of endogenous dopamine release on the lateralization of striatal structural networks. Our data provide the first evidence for endogenous dopamine release in the dorsal striatum during normal speaking and point to the possible mechanisms behind the modulatory influences of dopamine on the organization of functional brain circuits controlling normal human speech. PMID:23277111

  17. Differential expression of steroidogenic factors 1 and 2, cytochrome p450scc, and steroidogenic acute regulatory protein in human pancreas.

    PubMed

    Morales, Angélica; Vilchis, Felipe; Chávez, Bertha; Morimoto, Sumiko; Chan, Carlos; Robles-Díaz, Guillermo; Díaz-Sánchez, Vicente

    2008-08-01

    The aim of this study was to investigate the expression of the 4 gene transcripts, steroidogenic factors 1 (SF-1) and 2 (SF-2), steroidogenic acute regulatory (StAR), and cytochrome P450 11A1, involved in the synthesis of steroid hormones in normal human pancreas. Total RNA was extracted from normal male (n = 5) and female (n = 5) samples, obtained from the organ donor program. The expression levels of SF-1, SF-2, StAR protein, and P450scc were assessed by reverse transcription-polymerase chain reaction and complemented with immunohistochemistry analysis. Polymerase chain reaction products amplification for all genes was present in both male and female samples, although differential expression was observed. The signals detected were much more evident in male than in female messenger RNA isolates for SF-1, SF-2, and StAR protein. The expression for P450scc was more intense in female samples. A similar pattern was observed in the immunohistochemical studies. Normal human pancreas expresses 4 gene transcripts involved in steroid synthesis similarly to steroidogenic organs. A distinctive characteristic is the sexually dimorphic expression of these factors. These data provide further evidence to support that the pancreas is a truly steroidogenic tissue, highlighting the presence of sex- and location-related differences in the expression of steroidogenic factors.

  18. Automated Selection of Regions of Interest for Intensity-based FRET Analysis of Transferrin Endocytic Trafficking in Normal vs. Cancer Cells

    PubMed Central

    Talati, Ronak; Vanderpoel, Andrew; Eladdadi, Amina; Anderson, Kate; Abe, Ken; Barroso, Margarida

    2013-01-01

    The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells. PMID:23994873

  19. CD10/neutral endopeptidase 24.11 in developing human fetal lung. Patterns of expression and modulation of peptide-mediated proliferation.

    PubMed

    Sunday, M E; Hua, J; Torday, J S; Reyes, B; Shipp, M A

    1992-12-01

    The cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP) functions in multiple organ systems to downregulate responses to peptide hormones. Recently, CD10/NEP was found to hydrolyze bombesin-like peptides (BLP), which are mitogens for normal bronchial epithelial cells and small cell lung carcinomas. Growth of BLP-responsive small cell lung carcinomas was potentiated by CD10/NEP inhibition, implicating CD10/NEP in regulation of BLP-mediated tumor growth. BLP are also likely to participate in normal lung development because high BLP levels are found in fetal lung, and bombesin induces proliferation and maturation of human fetal lung in organ cultures and murine fetal lung in utero. To explore potential roles for CD10/NEP in regulating peptide-mediated human fetal lung development, we have characterized temporal and cellular patterns of CD10/NEP expression and effects of CD10/NEP inhibition in organ cultures. Peak CD10/NEP transcript levels are identified at 11-13 wk gestation by Northern blots and localized to epithelial cells and mesenchyme of developing airways by in situ hybridization. CD10/NEP immunostaining is most intense in undifferentiated airway epithelium. In human fetal lung organ cultures, inhibition of CD10/NEP with either phosphoramidon or SCH32615 increases thymidine incorporation by 166-182% (P < 0.025). The specific BLP receptor antagonist, [Leu13-psi(CH2NH)Leu14]bombesin abolishes these effects on fetal lung growth, suggesting that CD10/NEP modulates BLP-mediated proliferation. CD10/NEP expression in the growing front of airway epithelium and the effects of CD10/NEP inhibitors in lung explants implicate the enzyme in the regulation of peptide-mediated fetal lung growth.

  20. Characteristics of mineral nutrition of plants in the bio-technical life support system with human wastes included in mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Ushakova, Sofya; Kalacheva, Galina; Tikhomirov, Alexander

    2016-09-01

    The study addresses the effectiveness of using ion exchange substrates (IES) to optimize mineral nutrition of plants grown in the nutrient solutions containing oxidized human wastes for application in bio-technical life support systems. The study shows that the addition of IES to the root-inhabited substrate is favorable for the growth of wheat vegetative organs but causes a decrease in the grain yield. By contrast, the addition of IES to the nutrient solution does not influence the growth of vegetative organs but favors normal development of wheat reproductive organs. Thus, to choose the proper method of adjusting the solution with IES, one should take into account specific parameters of plant growth and development and the possibility of multiple recycling of IES based on the liquid products of mineralization of human wastes.

  1. Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides

    PubMed Central

    Kang, Hee Kyoung; Choi, Moon-Chang; Seo, Chang Ho; Park, Yoonkyung

    2018-01-01

    Various organisms exist in the oceanic environment. These marine organisms provide an abundant source of potential medicines. Many marine peptides possess anticancer properties, some of which have been evaluated for treatment of human cancer in clinical trials. Marine anticancer peptides kill cancer cells through different mechanisms, such as apoptosis, disruption of the tubulin-microtubule balance, and inhibition of angiogenesis. Traditional chemotherapeutic agents have side effects and depress immune responses. Thus, the research and development of novel anticancer peptides with low toxicity to normal human cells and mechanisms of action capable of avoiding multi-drug resistance may provide a new method for anticancer treatment. This review provides useful information on the potential of marine anticancer peptides for human therapy. PMID:29558431

  2. Bioimpedance harmonic analysis as a tool to simultaneously assess circulation and nervous control.

    PubMed

    Mudraya, I S; Revenko, S V; Nesterov, A V; Gavrilov, I Yu; Kirpatovsky, V I

    2011-07-01

    Multicycle harmonic (Fourier) analysis of bioimpedance was employed to simultaneously assess circulation and neural activity in visceral (rat urinary bladder) and somatic (human finger) organs. The informative value of the first cardiac harmonic of the bladder impedance as an index of bladder circulation is demonstrated. The individual reactions of normal and obstructive bladders in response to infusion cystometry were recorded. The potency of multicycle harmonic analysis of bioimpedance to assess sympathetic and parasympathetic neural control in urinary bladder is discussed. In the human finger, bioimpedance harmonic analysis revealed three periodic components at the rate of the heart beat, respiration and Mayer wave (0.1 Hz), which were observed under normal conditions and during blood flow arrest in the hand. The revealed spectrum peaks were explained by the changes in systemic blood pressure and in regional vascular tone resulting from neural vasomotor control. During normal respiration and circulation, two side cardiac peaks were revealed in a bioimpedance amplitude spectrum, whose amplitude reflected the depth of amplitude respiratory modulation of the cardiac output. During normal breathing, the peaks corresponding to the second and third cardiac harmonics were split, reflecting frequency respiratory modulation of the heart rate. Multicycle harmonic analysis of bioimpedance is a novel potent tool to examine the interaction between the respiratory and cardiovascular system and to simultaneously assess regional circulation and neural influences in visceral and somatic organs.

  3. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    Numerous natural and man-made agents are continuously released into the environment due to human activity. Many of these agents cause irreversible damage to the normal biological functions leading to morbidity and mortality in the exposed organisms. The possibility of deliberat...

  4. How the Alchemy Makes Inquiry, Evidence, and Exclusion.

    ERIC Educational Resources Information Center

    Popkewitz, Thomas S.

    2002-01-01

    Modern teaching and teacher education "magically" transform sciences, social sciences, and humanities. The alchemy of school subjects provides a way to think about frames of reference organizing inquiry and constitutes evidence in teacher education, also obscuring the normalizing and dividing practices of teaching (including…

  5. Identification of Distinct Layers Within the Stratified Squamous Epithelium of the Adult Human True Vocal Fold

    PubMed Central

    Dowdall, Jayme R.; Sadow, Peter M.; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C.; Franco, Ramon A.; Rajagopal, Jayaraj

    2016-01-01

    Objectives/Hypothesis A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Study Design Qualitative study with adult human larynges. Methods Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). Results We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. Conclusion We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. Level of Evidence N/A. PMID:25988619

  6. Identification of distinct layers within the stratified squamous epithelium of the adult human true vocal fold.

    PubMed

    Dowdall, Jayme R; Sadow, Peter M; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C; Franco, Ramon A; Rajagopal, Jayaraj

    2015-09-01

    A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Qualitative study with adult human larynges. Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  7. The cell biology of aging.

    PubMed

    Hayflick, L

    1979-07-01

    Cultured normal human and animal cells are predestinued to undergo irreversible functional decrements that mimick age changes in the whole organism. When normal human embryonic fibroblasts are cultured in vitro, 50 +/- 10 population doublings occur. This maximum potential is diminished in cells derived from older donors and appears to be inversely proportional to their age. The 50 population doubling limit can account for all cells produced during a lifetime. The limitation on doubling potential of cultured normal cells is also expressed in vivo when serial transplants are made. There may be a direct correlation between the mean maximum life spans of several species and the population doubling potential of their cultured cells. A plethora of functional decrements occur in cultured normal cells as they approach their maximum division capability. Many of these decrements are similar to those occurring in intact animals as they age. We have concluded that these functional decrements expressed in vitro, rather than cessation of cell division, are the essential contributors to age changes in intact animals. Thus, the study of events leading to functional losses in cultured normal cells may provide useful insights into the biology of aging.

  8. Preparation of Human Primary Colon Tissue-Derived Organoid Using Air Liquid Interface Culture.

    PubMed

    Usui, Tatsuya; Sakurai, Masashi; Umata, Koji; Yamawaki, Hideyuki; Ohama, Takashi; Sato, Koichi

    2018-02-21

    In vitro analysis of intestinal epithelium has been hindered by a lack of suitable culture systems useful for gastrointestinal research. To overcome the problem, an air liquid interface (ALI) method using a collagen gel was established to culture three-dimensional primary cells containing both primary epithelial and mesenchymal components from mouse gastrointestinal tissues. ALI organoids accurately recapitulate organ structures, multilineage differentiation, and physiology. Since ALI organoids from human tissues have not been produced, we modified the previous protocol for mouse ALI organoid culture to establish the culture system of ALI organoids from normal and tumor colorectal tissues of human patients. The current unit presents a protocol for preparation of the ALI organoid culture from normal and tumor colorectal tissues of human patients. ALI organoid culture from human tissues might be useful for examining not only resistance to chemotherapy in a tumor microenvironment but also toxic effects on organoids. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  9. TISSUES 2.0: an integrative web resource on mammalian tissue expression

    PubMed Central

    Palasca, Oana; Santos, Alberto; Stolte, Christian; Gorodkin, Jan; Jensen, Lars Juhl

    2018-01-01

    Abstract Physiological and molecular similarities between organisms make it possible to translate findings from simpler experimental systems—model organisms—into more complex ones, such as human. This translation facilitates the understanding of biological processes under normal or disease conditions. Researchers aiming to identify the similarities and differences between organisms at the molecular level need resources collecting multi-organism tissue expression data. We have developed a database of gene–tissue associations in human, mouse, rat and pig by integrating multiple sources of evidence: transcriptomics covering all four species and proteomics (human only), manually curated and mined from the scientific literature. Through a scoring scheme, these associations are made comparable across all sources of evidence and across organisms. Furthermore, the scoring produces a confidence score assigned to each of the associations. The TISSUES database (version 2.0) is publicly accessible through a user-friendly web interface and as part of the STRING app for Cytoscape. In addition, we analyzed the agreement between datasets, across and within organisms, and identified that the agreement is mainly affected by the quality of the datasets rather than by the technologies used or organisms compared. Database URL: http://tissues.jensenlab.org/ PMID:29617745

  10. Age-related changes in brain structural covariance networks.

    PubMed

    Li, Xinwei; Pu, Fang; Fan, Yubo; Niu, Haijun; Li, Shuyu; Li, Deyu

    2013-01-01

    Previous neuroimaging studies have suggested that cerebral changes over normal aging are not simply characterized by regional alterations, but rather by the reorganization of cortical connectivity patterns. The investigation of structural covariance networks (SCNs) using voxel-based morphometry is an advanced approach to examining the pattern of covariance in gray matter (GM) volumes among different regions of the human cortex. To date, how the organization of critical SCNs change during normal aging remains largely unknown. In this study, we used an SCN mapping approach to investigate eight large-scale networks in 240 healthy participants aged 18-89 years. These participants were subdivided into young (18-23 years), middle aged (30-58 years), and older (61-89 years) subjects. Eight seed regions were chosen from widely reported functional intrinsic connectivity networks. The voxels showing significant positive associations with these seed regions were used to describe the topological organization of an SCN. All of these networks exhibited non-linear patterns in their spatial extent that were associated with normal aging. These networks, except the primary motor network, had a distributed topology in young participants, a sharply localized topology in middle aged participants, and were relatively stable in older participants. The structural covariance derived using the primary motor cortex was limited to the ipsilateral motor regions in the young and older participants, but included contralateral homologous regions in the middle aged participants. In addition, there were significant between-group differences in the structural networks associated with language-related speech and semantics processing, executive control, and the default-mode network (DMN). Taken together, the results of this study demonstrate age-related changes in the topological organization of SCNs, and provide insights into normal aging of the human brain.

  11. The role of muscarinic receptor subtypes on carbachol-induced contraction of normal human detrusor and overactive detrusor associated with benign prostatic hyperplasia.

    PubMed

    Yamanishi, Tomonori; Kaga, Kanya; Fuse, Miki; Shibata, Chiharu; Kamai, Takao; Uchiyama, Tomoyuki

    2015-06-01

    The aim of this study was to compare the effect of antimuscarinic antagonists on carbachol-induced contraction of normal human bladder and detrusor overactivity associated with benign prostatic hyperplasia (DO/BPH). Samples of human bladder muscle were obtained from patients undergoing total cystectomy for bladder cancer (normal bladder), and those undergoing retropubic prostatectomy for BPH. All of the patients with DO/BPH had detrusor overactivity according to urodynamic studies. Detrusor muscle strips were mounted in 10-ml organ baths containing Krebs solution, and concentration-response curves for carbachol were obtained in the presence of antimuscarinic antagonists (4-DAMP, methoctramine, pirenzepine, tolterodine, solifenacin, trospium, propiverine, oxybutynin, and imidafenacin) or vehicle. All antagonists competitively antagonized concentration-response curves to carbachol with high affinities in normal bladder. The rank order of mean pA2 values was as follows: trospium (10.1) > 4-DAMP (9.87), imidafenacin (9.3) > solifenacin (8.8) > tolterodine (8.6) > oxybutynin (8.3) > propiverine (7.7) > pirenzepine (7.4) > methoctramine (6.6). The effects of these antimuscarinic antagonists did not change when tested with DO/BPH bladder, suggesting that each antimuscarinic antagonist has a similar effect in this condition. Schild plots showed a slope corresponding to unity, except for propiverine with DO/BPH detrusor. In conclusion, M3-receptors mainly mediate contractions in human bladder strips with normal state and DO/BPH. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  12. Assessment of 10B concentration in boron neutron capture therapy: potential of image-guided therapy using 18FBPA PET.

    PubMed

    Shimosegawa, Eku; Isohashi, Kayako; Naka, Sadahiro; Horitsugi, Genki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT) for cancer, the accurate estimation of 10 B tissue concentrations, especially in neighboring normal organs, is important to avoid adverse effects. The 10 B concentration in normal organs after loading with 10 B, however, has not been established in humans. In this study, we performed 4-borono-2-[ 18 F]-fluoro-phenylalanine ( 18 FBPA) PET in healthy volunteers and estimated the chronological changes in the 10 B concentrations of normal organs. In 6 healthy volunteers, whole-body 18 FBPA PET scans were repeated 7 times during 1 h, and the mean 18 FBPA distributions of 13 organs were measured. Based on the 18 FBPA PET data, we then estimated the changes in the 10 B concentrations of the organs when the injection of a therapeutic dose of 10 BPA-fructose complex ( 10 BPA-fr; 30 g, 500 mg/kg body weight) was assumed. The maximum mean 18 FBPA concentrations were reached at 2-6 min after injection in all the organs except the brain and urinary bladder. The mean 18 FBPA concentration in normal brain plateaued at 24 min after injection. When the injection of a therapeutic dose of 10 BPA-fr was assumed, the estimated mean 10 B concentration in the kidney increased to 126.1 ± 24.2 ppm at 3 min after injection and then rapidly decreased to 30.9 ± 7.4 ppm at 53 min. The estimated mean 10 B concentration in the bladder gradually increased and reached 383.6 ± 214.7 ppm at 51 min. The mean 10 B concentration in the brain was estimated to be 7.6 ± 1.5 ppm at 57 min. 18 FBPA PET has a potential to estimate 10 B concentration of normal organs before neutron irradiation of BNCT when several assumptions are validated in the future studies.

  13. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    PubMed

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  14. MICROBES IN DRINKING WATER: RECENT EPIDEMIOLOGIC RESEARCH TO ASSESS WATERBORNE RISKS

    EPA Science Inventory

    Microbial caused diarrhea continues to be a major cause of death in many countries. The transmission of these organisms to humans is often mediated by drinking water. These enteric illnesses occur in epidemic form (the occurrence of disease in excess of normal expectancy) an...

  15. Identifying Carcinogenic Potentials of Drinking Water Disinfection Byproducts using Normal Human Colonocyte Cultures

    EPA Science Inventory

    Epidemiological studies have linked the consumption of disinfected surface waters to an increased risk of colorectal cancer. Approximately 600 byproducts (DBPs) have been identified for the major disinfectants currently in use and represent less than half of the total organic car...

  16. (WASHINGTON, DC) A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    Numerous natural and man-made agents are continuously released into the environment due to human activity. Many of these agents cause irreversible damage to the normal biological functions leading to morbidity and mortality in the exposed organisms. The possibility of deliberat...

  17. Globalization and the trade in human body parts.

    PubMed

    Harrison, T

    1999-02-01

    Since the early 1980s, the number and variety of organ transplantations has increased enormously worldwide. Accompanying this increase has been the emergence of a market for human body parts. This paper argues that, while the trade in human body parts is conditioned by technological advances, it must be understood in the broader context of globalization, specifically the extension and intensification of a capitalist mode of exchange. In this regard, it is argued that the trade in human body parts mirrors the "normal" system of unequal exchanges that mark other forms of trade between the developed and undeveloped regions of the world.

  18. Triple paternal contribution to a normal/complete molar chimeric singleton placenta.

    PubMed

    Ariel, I; Goldman-Wohl, D; Yagel, S; Gazit, E; Loewenthal, R

    2017-05-01

    A comprehensive study of unusual cases of placental pathology may provide insight into mechanisms of normal human fertilization and early embryonic development by examining the exception to the rule. A gravida three para two 39-year-old woman was monitored by ultrasound from 16 weeks of gestation for cystic placenta. A female newborn was born at 36 weeks gestation. Pathologic examination of the partially cystic placenta revealed a singleton placenta comprised of 2/3 normal placenta and 1/3 complete hydatidiform mole, largely degenerated. Immunostaining for p57 was negative in stromal cells of the molar villi. Chromogenic in-situ hybridization revealed diploidy in both normal and molar parts. A total of 16 microsatellites were studied by short tandem repeat analysis, 11 of which were informative. The analysis revealed bipaternal molar tissue of dispermic origin. The paternal monospermic contribution to the normal part was different from that in the molar part, thus resulting in tripaternal contribution to the conceptus. A chimera is a single organism composed of two or more different populations of genetically distinct cells that originated from different zygotes (tetragametic) whereas mosaic is a mixture of two cell lines in one organism originating from one zygote. The possible mechanisms leading to the formation of chimeric/mosaic placenta in our case (one of the components being complete hydatidiform mole), including twinning, fusion at an early embryonic stage and diploidization of triploids, are discussed. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Computer-Assisted Concept Analysis of "HCR"'s First 25 Years.

    ERIC Educational Resources Information Center

    Stephen, Timothy

    1999-01-01

    Normalizes titles of 634 "Human Communication Research" articles using linguistic reduction, elimination of common words, and terms with indiscriminate meaning, and tokenization of phrases and compound concepts. Finds that concepts were grouped into five large clusters: media, family, conflict, and learning; culture, social organization, and self;…

  20. [The biological action of chromium in relation to its valency].

    PubMed

    Vishniakov, S I; Levantovskiĭ, S A; Ryzhkova, G F

    1992-01-01

    The biological action of chromium in the human or animal organism depends on valency: normal physiological activity is displayed at the expense of CrIII, but toxic activity is more characteristic of CrVI. In the digestive tract and pulmonary tissue CrVI may restore in CrIII.

  1. Aging and Gene Expression in the Primate Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, Hunter B.; Khaitovich, Philipp; Plotkin, Joshua B.

    2005-02-18

    It is well established that gene expression levels in many organisms change during the aging process, and the advent of DNA microarrays has allowed genome-wide patterns of transcriptional changes associated with aging to be studied in both model organisms and various human tissues. Understanding the effects of aging on gene expression in the human brain is of particular interest, because of its relation to both normal and pathological neurodegeneration. Here we show that human cerebral cortex, human cerebellum, and chimpanzee cortex each undergo different patterns of age-related gene expression alterations. In humans, many more genes undergo consistent expression changes inmore » the cortex than in the cerebellum; in chimpanzees, many genes change expression with age in cortex, but the pattern of changes in expression bears almost no resemblance to that of human cortex. These results demonstrate the diversity of aging patterns present within the human brain, as well as how rapidly genome-wide patterns of aging can evolve between species; they may also have implications for the oxidative free radical theory of aging, and help to improve our understanding of human neurodegenerative diseases.« less

  2. Mouse Model of Human Hereditary Pancreatitis

    DTIC Science & Technology

    2016-09-01

    NUMBER Miklos Sahin-Toth 5e. TASK NUMBER E -Mail: miklos@bu.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...PERFORMING ORGANIZATION REPORT NUMBER Trustees of Boston University 85 E Newton St M-921 Boston MA 02118-2340 9. SPONSORING / MONITORING AGENCY NAME(S) AND...Histologically (H& E staining) the pancreas of 2-week old mice looks normal while at 3 weeks of age acini show a more disorganized architecture with acinar

  3. Challenges of primate embryonic stem cell research.

    PubMed

    Bavister, Barry D; Wolf, Don P; Brenner, Carol A

    2005-01-01

    Embryonic stem (ES) cells hold great promise for treating degenerative diseases, including diabetes, Parkinson's, Alzheimer's, neural degeneration, and cardiomyopathies. This research is controversial to some because producing ES cells requires destroying embryos, which generally means human embryos. However, some of the surplus human embryos available from in vitro fertilization (IVF) clinics may have a high rate of genetic errors and therefore would be unsuitable for ES cell research. Although gross chromosome errors can readily be detected in ES cells, other anomalies such as mitochondrial DNA defects may have gone unrecognized. An insurmountable problem is that there are no human ES cells derived from in vivo-produced embryos to provide normal comparative data. In contrast, some monkey ES cell lines have been produced using in vivo-generated, normal embryos obtained from fertile animals; these can represent a "gold standard" for primate ES cells. In this review, we argue a need for strong research programs using rhesus monkey ES cells, conducted in parallel with studies on human ES and adult stem cells, to derive the maximum information about the biology of normal stem cells and to produce technical protocols for their directed differentiation into safe and functional replacement cells, tissues, and organs. In contrast, ES cell research using only human cell lines is likely to be incomplete, which could hinder research progress, and delay or diminish the effective application of ES cell technology to the treatment of human diseases.

  4. Prostacyclins have no direct inotropic effect on isolated atrial strips from the normal and pressure-overloaded human right heart.

    PubMed

    Holmboe, Sarah; Andersen, Asger; Jensen, Rebekka V; Kimose, Hans Henrik; Ilkjær, Lars B; Shen, Lei; Clapp, Lucie H; Nielsen-Kudsk, Jens Erik

    2017-01-01

    Prostacyclins are vasodilatory agents used in the treatment of pulmonary arterial hypertension. The direct effects of prostacyclins on right heart function are still not clarified. The aim of this study was to investigate the possible direct inotropic properties of clinical available prostacyclin mimetics in the normal and the pressure-overloaded human right atrium. Trabeculae from the right atrium were collected during surgery from chronic thromboembolic pulmonary hypertension (CTEPH) patients with pressure-overloaded right hearts, undergoing pulmonary thromboendarterectomy (n = 10) and from patients with normal right hearts operated by valve replacement or coronary bypass surgery (n = 9). The trabeculae were placed in an organ bath, continuously paced at 1 Hz. They were subjected to increasing concentrations of iloprost, treprostinil, epoprostenol, or MRE-269, followed by isoprenaline to elicit a reference inotropic response. The force of contraction was measured continuously. The expression of prostanoid receptors was explored through quantitative polymerase chain reaction (qPCR). Iloprost, treprostinil, epoprostenol, or MRE-269 did not alter force of contraction in any of the trabeculae. Isoprenaline showed a direct inotropic response in both trabeculae from the pressure-overloaded right atrium and from the normal right atrium. Control experiments on ventricular trabeculae from the pig failed to show an inotropic response to the prostacyclin mimetics. qPCR demonstrated varying expression of the different prostanoid receptors in the human atrium. In conclusion, prostacyclin mimetics did not increase the force of contraction of human atrial trabeculae from the normal or the pressure-overloaded right heart. These data suggest that prostacyclin mimetics have no direct inotropic effects in the human right atrium.

  5. Immunohistochemical evidence of ubiquitous distribution of the metalloendoprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cell lines.

    PubMed

    Weirich, Gregor; Mengele, Karin; Yfanti, Christina; Gkazepis, Apostolos; Hellmann, Daniela; Welk, Anita; Giersig, Cecylia; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Schmitt, Manfred

    2008-11-01

    Immunohistochemical evidence of ubiquitous distribution of the metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, and spleen) and on a cell microarray of 31 tumor cell lines of different origin, as well as trophoblast cells and normal blood lymphocytes and granulocytes. IDE protein was expressed in all the tissues assessed and all the tumor cell lines except for Raji and HL-60. Trophoblast cells and granulocytes, but not normal lymphocytes, were also IDE-positive.

  6. Immunohistochemical evidence for ubiquitous distribution of metalloendoprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cell lines

    PubMed Central

    Weirich, Gregor; Mengele, Karin; Yfanti, Christina; Gkazepis, Apostolos; Hellmann, Daniela; Welk, Anita; Giersig, Cecylia; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Schmitt, Manfred

    2013-01-01

    Immunohistochemical evidence for ubiquitous distribution of metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, spleen) and on a cell microarray encompassing 31 tumor cell lines of different origin plus trophoblast cells, and normal blood lymphocytes and granulocytes. IDE protein is expressed by all of the tissues assessed and in all of the tumor cell lines except Raji and HL-60; trophoblast cells and granulocytes but not normal lymphocytes are also IDE-positive. PMID:18783335

  7. Occurrence and distribution of contaminants in bottom sediment and water of the Barron River Canal, Big Cypress National Preserve, Florida

    USGS Publications Warehouse

    Miller, Ronald L.; McPherson, Benjamin F.

    2001-01-01

    Trace elements and organic contaminants in bottom-sediment samples collected from 10 sites on the Barron River Canal and from one site on the Turner River in October 1998 had patterns of distribution that indicated different sources. At some sites on the Barron River Canal, lead, copper, and zinc, normalized to aluminum, exceeded limits normally considered as background and may be enriched by human activities. Polynuclear aromatic hydrocarbons and p-cresol, normalized against organic carbon, had patterns of distribution that indicated local sources of input from a road or vehicular traffic or from an old creosote wood treatment facility. Phthalate esters and the traces elements arsenic, cadmium, and zinc were more widely distributed with the highest normalized concentrations occurring at the Turner River background site, probably due to the high percentage of fine sediment (74% less than 63 micrometers) and high organic carbon concentration (42%) at that site and the binding effect of organic carbon on trace elements and trace organic compounds. Low concentrations of pesticides or pesticide degradation products were detected in bottom sediment (DDD and DDE, each less than 3.5 µg/kg) and water (9 pesticides, each less than 0.06 µ/L), primarily in the northern reach of the Barron River Canal where agriculture is a likely source. Although a few contaminants approached criteria that would indicate adverse effects on aquatic life, none exceeded the criteria, but the potential synergistic effects of mixtures of contaminants found at most sites are not included in the criteria.

  8. Plastinated fetus: 3D CT scan (VRT) evaluation.

    PubMed

    Tiwari, Shilpi; Nandlal, B; Shama Sundar, N M

    2012-01-01

    The intent of this study was to evaluate the effect of plastination on the morphology and structure of stored organs, to find out how much accuracy a plastinated specimen has, and to look into the changes that occurred because of plastination. A human fetus of gestational age 24 weeks was plastinated, and 3D CT scan evaluation of the fetus was done. The results showed normal, well-defined, clearly identifiable organs, with no alteration in morphology and structure of organs. In our opinion, plastinated specimens are better way of visualization of morphology and structure of stored organs, which is a useful tool for teaching as well as for research purposes.

  9. Somatic Mosaicism: Implications for Disease and Transmission Genetics

    PubMed Central

    Campbell, Ian M.; Shaw, Chad A.; Stankiewicz, Pawel; Lupski, James R.

    2015-01-01

    Nearly all of the genetic material among cells within an organism is identical. However, single nucleotide variants (SNVs), indels, copy number variants (CNVs), and other structural variants (SVs) continually accumulate as cells divide during development. This process results in an organism composed of countless cells, each with its own unique personal genome. Thus, every human is undoubtedly mosaic. Mosaic mutations can go unnoticed, underlie genetic disease or normal human variation, and may be transmitted to the next generation as constitutional variants. Here, we review the influence of the developmental timing of mutations, the mechanisms by which they arise, methods for detecting mosaic variants, and the risk of passing these mutations on to the next generation. PMID:25910407

  10. Activins and activin antagonists in the human ovary and ovarian cancer.

    PubMed

    Reader, Karen L; Gold, Elspeth

    2015-11-05

    Activins are members of the transforming growth factor β superfamily that play an important role in controlling cell proliferation and differentiation in many organs including the ovary. It is essential that activin signalling be tightly regulated as imbalances can lead to uncontrolled cell proliferation and cancer. This review describes the expression and function of the activins and their known antagonists in both normal and cancerous human ovaries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Recent advances in the cell biology of aging.

    PubMed

    Hayflick, L

    1980-01-01

    Cultured normal human and animal cells are predestined to undergo irreversible functional decrements that mimic age changes in the whole organism. When normal human embryonic fibroblasts are cultured in vitro, 50 +/- 10 population doublings occur. This maximum potential is diminished in cells derived from older donors and appears to be inversely proportional to their age. The 50 population doubling limit can account for all cells produced during a lifetime. The limitation on doubling potential of cultured normal cells is also expressed in vivo when serial transplants are made. There may be a direct correlation between the mean maximum life spans of several species and the population doubling potential of their cultured cells. A plethora of functional decrements occurs in cultured normal cells as they approach their maximum division capability. Many of these decrements are similar to those occurring in intact animals as they age. We have concluded that these functional decrements expressed in vitro, rather than cessation of cell division, are the essential contributors to age changes in intact animals. Thus, the study of events leading to functional losses in cultured normal cells may provide useful insights into the biology of aging.

  12. A Head and Neck Simulator for Radiology and Radiotherapy

    NASA Astrophysics Data System (ADS)

    Thompson, Larissa; Campos, Tarcísio P. R.

    2013-06-01

    Phantoms are suitable tools to simulate body tissues and organs in radiology and radiation therapy. This study presents the development of a physical head and neck phantom and its radiological response for simulating brain pathology. The following features on the phantom are addressed and compared to human data: mass density, chemical composition, anatomical shape, computerized tomography images and Hounsfield Units. Mass attenuation and kerma coefficients of the synthetic phantom and normal tissues, as well as their deviations, were also investigated. Radiological experiments were performed, including brain tumors and subarachnoid hemorrhage simulations. Computerized tomography images of such pathologies in phantom and human were obtained. The anthropometric dimensions of the phantom present anatomical conformation similar to a human head and neck. Elemental weight percentages of the equivalent tissues match the human ones. Hounsfield Unit values of the main developed structures are presented, approaching human data. Kerma and mass attenuation coefficients spectra from human and phantom are presented, demonstrating smaller deviations in the radiological X-ray spectral domain. In conclusion, the phantom presented suitable normal and pathological radiological responses relative to those observed in humans. It may improve radiological protocols and education in medical imaging.

  13. [Generation of functional organs from pluripotent stem cells].

    PubMed

    Miyamoto, Tatsuyuki; Nakauchi, Hiromitsu

    2015-10-01

    Hematopoietic stem cells (HSCs) have played a major role in stem cell biology, providing many conceptual ideas and models. Among them is the concept of the "niche", a special bone-marrow microenvironment that by exchanging cues regulates stem-cell fate. The HSC niche also plays an important role in HSC transplantation. Successful engraftment of donor HSCs depends on myeloablative pretreatment to empty the niche. The concept of the stem-cell niche has now been extended to the generation of organs. We postulated that an empty "organ niche" exists in a developing animal when development of an organ is genetically disabled. This organ niche should be developmentally compensated by blastocyst complementation using wild-type primary stem cells (PSCs). We proved the principle of organogenesis from xenogeneic PSCs in an embryo unable to form a specific organ, demonstrating the generation of functionally normal rat pancreas by injecting rat PSCs into pancreatogenesis-disabled mouse embryos. This principle has held in pigs. When pancreatogenesis-disabled pig embryos underwent complementation with blastomeres from wild-type pig embryos to produce chimeric pigs, the chimeras had normal pancreata and survived to adulthood. Demonstration of the generation of a functional organ from PSCs in pigs is a very important step toward generation of human cells, tissues, and organs from individual patients' own PSCs in large animals.

  14. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  15. Role of cholesterol and lipid organization in disease

    NASA Astrophysics Data System (ADS)

    Maxfield, Frederick R.; Tabas, Ira

    2005-12-01

    Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann-Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.

  16. DEVELOPMENT OF NORMAL HUMAN COLON CELL CULTURES TO IDENTIFY UNREGULATED DISINFECTION BY-PRODUCTS (DBPS) WITH CARCINOGENIC POTENTIAL.

    EPA Science Inventory

    Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of colorectal cancer. Approximately 600 DBPs, less than half of the total organic carbon in drinking water have been identified. We are developing an in vitro system to i...

  17. Development of Normal Human Colon Cell Cultures to Identify Unregulated Disiinfection By-products (DBPs) with a Carcinogenic Potential - GEMS.

    EPA Science Inventory

    Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of colorectal cancer. Approximately 600 DBPs, less that half of the total organic carbon in drinking water, have been identified of which 50 unregulated DBPs have received the ...

  18. Effect of Endocrine Disruptor Pesticides: A Review

    PubMed Central

    Mnif, Wissem; Hassine, Aziza Ibn Hadj; Bouaziz, Aicha; Bartegi, Aghleb; Thomas, Olivier; Roig, Benoit

    2011-01-01

    Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health. PMID:21776230

  19. Aggregatibacter actinomycetemcomitans lipopolysaccharide affects human gingival fibroblast cytoskeletal organization.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Marmolejo, Luis Arturo; Román-Alvárez, Patricia; Barajas-Torres, Carolina

    2008-04-01

    The cytoskeleton is a dynamic structure that plays a key role in maintaining cell morphology and function. This study investigates the effect of bacterial wall lipopolysaccharide (LPS), a strong inflammatory agent, on the dynamics and organization of actin, tubulin, vimentin, and vinculin proteins in human gingival fibroblasts (HGF). A time-dependent study showed a noticeable change in actin architecture after 1.5 h of incubation with LPS (1 microg/ml) with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 24 h. When 0.01-10 microg/ml of LPS was added to human gingival fibroblast cultures, cells acquired a round, flat shape and gradually developed cytoplasmic ruffling. Lipopolysaccharides extracted from Aggregatibacter actinomycetemcomitans periodontopathogenic bacteria promoted alterations in F-actin stress fibres of human gingival cells. Normally, human gingival cells have F-actin fibres that are organized in linear distribution throughout the cells, extending along the cell's length. LPS-treated cells exhibited changes in cytoskeletal protein organization, and F-actin was reorganized by the formation of bundles underneath and parallel to the cell membrane. We also found the reorganization of the vimentin network into vimentin bundling after 1.5 h of treatment. HGF cells exhibited diffuse and granular gamma-tubulin stain. There was no change in LPS-treated HGF. However, vinculin plaques distributed in the cell body diminished after LPS treatment. We conclude that the dynamic and structured organization of cytoskeletal filaments and actin assembly in human gingival fibroblasts is altered by LPS treatment and is accompanied by a decrease in F-actin pools.

  20. TOPICAL REVIEW: FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.

    2005-12-01

    This review gives an overview of focal plane array (FPA)-based infrared (IR) thermography as a powerful research method in the field of physiology and medicine. Comparison of the gained results with the data previously obtained by other authors with other research tools is given. Outer thermoregulatory manifestations displayed by the human organism subjected to whole-body heating (sauna bath) and physical loads (exercise bicycling) are quantitatively analysed. Some details of human body emotional sweating (psycho-physiological effect) are reported. Particular attention is paid to studying active sweat glands as individual objects. All experimental data were obtained with the help of a high-sensitivity (0.03 °C) fast 128 × 128 InAs IR detector-based thermal imaging system operating in the short-wave spectral region (2.5 to 3 µm) and perfectly suiting medical purposes. It is shown that IR thermography makes it possible to overcome limitations inherent to contact measuring means that were traditionally used before in thermal studies. It is also shown that heterogeneous thermograms displayed by organisms with disturbed inner equilibrium can be quantitatively analysed in terms of statistical parameters of related surface-temperature histograms, such as the mean temperature and the standard deviation of temperature (SDT). The increase and the decrease in SDT turned out to be typical of prolonged physical load and subsequent relaxation, and of external whole-body heating, respectively. Explanation of this result based on a hypothesis advanced within the context of the doctrine of human-organism evolution is given. Skin-temperature distribution function accompanying the relaxed organism in normality was found to closely resemble normal-distribution function. Symmetry break down and variation of the shape of this characteristic may serve as an indicator of homeostasis shift and can be used as a quantitative criterion for the latter. A new phenomenon, stable punctate hidrosis, is discovered and described. The term sweatology is introduced to refer to the discussed specific research area in biomedical science.

  1. FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans.

    PubMed

    Vainer, Boris G

    2005-12-07

    This review gives an overview of focal plane array (FPA)-based infrared (IR) thermography as a powerful research method in the field of physiology and medicine. Comparison of the gained results with the data previously obtained by other authors with other research tools is given. Outer thermoregulatory manifestations displayed by the human organism subjected to whole-body heating (sauna bath) and physical loads (exercise bicycling) are quantitatively analysed. Some details of human body emotional sweating (psycho-physiological effect) are reported. Particular attention is paid to studying active sweat glands as individual objects. All experimental data were obtained with the help of a high-sensitivity (0.03 degrees C) fast 128 x 128 InAs IR detector-based thermal imaging system operating in the short-wave spectral region (2.5 to 3 microm) and perfectly suiting medical purposes. It is shown that IR thermography makes it possible to overcome limitations inherent to contact measuring means that were traditionally used before in thermal studies. It is also shown that heterogeneous thermograms displayed by organisms with disturbed inner equilibrium can be quantitatively analysed in terms of statistical parameters of related surface-temperature histograms, such as the mean temperature and the standard deviation of temperature (SDT). The increase and the decrease in SDT turned out to be typical of prolonged physical load and subsequent relaxation, and of external whole-body heating, respectively. Explanation of this result based on a hypothesis advanced within the context of the doctrine of human-organism evolution is given. Skin-temperature distribution function accompanying the relaxed organism in normality was found to closely resemble normal-distribution function. Symmetry break down and variation of the shape of this characteristic may serve as an indicator of homeostasis shift and can be used as a quantitative criterion for the latter. A new phenomenon, stable punctate hidrosis, is discovered and described. The term sweatology is introduced to refer to the discussed specific research area in biomedical science.

  2. Normalization of a chromosomal contact map.

    PubMed

    Cournac, Axel; Marie-Nelly, Hervé; Marbouty, Martial; Koszul, Romain; Mozziconacci, Julien

    2012-08-30

    Chromatin organization has been increasingly studied in relation with its important influence on DNA-related metabolic processes such as replication or regulation of gene expression. Since its original design ten years ago, capture of chromosome conformation (3C) has become an essential tool to investigate the overall conformation of chromosomes. It relies on the capture of long-range trans and cis interactions of chromosomal segments whose relative proportions in the final bank reflect their frequencies of interactions, hence their spatial proximity in a population of cells. The recent coupling of 3C with deep sequencing approaches now allows the generation of high resolution genome-wide chromosomal contact maps. Different protocols have been used to generate such maps in various organisms. This includes mammals, drosophila and yeast. The massive amount of raw data generated by the genomic 3C has to be carefully processed to alleviate the various biases and byproducts generated by the experiments. Our study aims at proposing a simple normalization procedure to minimize the influence of these unwanted but inevitable events on the final results. Careful analysis of the raw data generated previously for budding yeast S. cerevisiae led to the identification of three main biases affecting the final datasets, including a previously unknown bias resulting from the circularization of DNA molecules. We then developed a simple normalization procedure to process the data and allow the generation of a normalized, highly contrasted, chromosomal contact map for S. cerevisiae. The same method was then extended to the first human genome contact map. Using the normalized data, we revisited the preferential interactions originally described between subsets of discrete chromosomal features. Notably, the detection of preferential interactions between tRNA in yeast and CTCF, PolII binding sites in human can vary with the normalization procedure used. We quantitatively reanalyzed the genomic 3C data obtained for S. cerevisiae, identified some of the biases inherent to the technique and proposed a simple normalization procedure to analyse them. Such an approach can be easily generalized for genomic 3C experiments in other organisms. More experiments and analysis will be necessary to reach optimal resolution and accuracies of the maps generated through these approaches. Working with cell population presenting highest levels of homogeneity will prove useful in this regards.

  3. Betaine chemistry, roles, and potential use in liver disease.

    PubMed

    Day, Christopher R; Kempson, Stephen A

    2016-06-01

    Betaine is the trimethyl derivative of glycine and is normally present in human plasma due to dietary intake and endogenous synthesis in liver and kidney. Betaine is utilized in the kidney primarily as an osmoprotectant, whereas in the liver its primary role is in metabolism as a methyl group donor. In both organs, a specific betaine transporter mediates cellular uptake of betaine from plasma. The abundance of both betaine and the betaine transporter in liver greatly exceeds that of other organs. The remarkable contributions of betaine to normal human and animal health are summarized together with a discussion of the mechanisms and potential beneficial effects of dietary betaine supplements on liver disease. A significant amount of data from animal models of liver disease indicates that administration of betaine can halt and even reverse progression of the disruption of liver function. Betaine is well-tolerated, inexpensive, effective over a wide range of doses, and is already used in livestock feeding practices. The accumulated data indicate that carefully controlled additional investigations in humans are merited. The focus should be on the long-term use of betaine in large patient populations with liver diseases characterized by development of fatty liver, especially non-alcoholic fatty liver disease and alcoholic liver disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    PubMed Central

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, M.; McLeod, R.; Young, Q.

    Pneumocystis pneumonia presented in a homosexual with fever, a normal chest radiograph, and pulmonary gallium uptake. Bronchial washings yielded Mycobaterium tuberculosis, but despite antituberculosis therapy he remained febrile, and gallium uptake in the lung increased. Subsequently, silver stain of transbronchial lung biopsy obtained 2 months earlier at the time that tuberculosis was diagnosed showed many Pneumocystis cysts in alveolar spaces. In contrast to Pneumocystis cysts in infected lung tissue from other humans, our patient's Pneumocystis cysts reacted more avidly with antiserum to rat Pneumocystis than with antiserum to human pneumocystis, raising the possibility that organisms that infect humans may havemore » varied surface antigenic properties.« less

  6. Human genetic variation and the gut microbiome in disease.

    PubMed

    Hall, Andrew Brantley; Tolonen, Andrew C; Xavier, Ramnik J

    2017-11-01

    Taxonomic and functional changes to the composition of the gut microbiome have been implicated in multiple human diseases. Recent microbiome genome-wide association studies reveal that variants in many human genes involved in immunity and gut architecture are associated with an altered composition of the gut microbiome. Although many factors can affect the microbial organisms residing in the gut, a number of recent findings support the hypothesis that certain host genetic variants predispose an individual towards microbiome dysbiosis. This condition, in which the normal microbiome population structure is disturbed, is a key feature in disorders of metabolism and immunity.

  7. Three-Dimensional Coculture Of Human Small-Intestine Cells

    NASA Technical Reports Server (NTRS)

    Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy

    1994-01-01

    Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).

  8. In Vivo Stable Transduction of Humanized Liver Tissue in Chimeric Mice via High-Capacity Adenovirus–Lentivirus Hybrid Vector

    PubMed Central

    Kataoka, Miho; Tateno, Chise; Yoshizato, Katsutoshi; Kawasaki, Yoshiko; Kimura, Takahiro; Faure-Kumar, Emmanuelle; Palmer, Donna J.; Ng, Philip; Okamura, Haruki; Kasahara, Noriyuki

    2010-01-01

    Abstract We developed hybrid vectors employing high-capacity adenovirus as a first-stage carrier encoding all the components required for in situ production of a second-stage lentivirus, thereby achieving stable transgene expression in secondary target cells. Such vectors have never previously been tested in normal tissues, because of the scarcity of suitable in vivo systems permissive for second-stage lentivirus assembly. Here we employed a novel murine model in which endogenous liver tissue is extensively reconstituted with engrafted human hepatocytes, and successfully achieved stable transduction by the second-stage lentivirus produced in situ from first-stage adenovirus. This represents the first demonstration of the functionality of adenoviral-lentiviral hybrid vectors in a normal parenchymal organ in vivo. PMID:19725756

  9. Small-world human brain networks: Perspectives and challenges.

    PubMed

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Induction of chromosome aberrations in cultured human lymphocytes treated with sand dust storm fine particles (PM2.5).

    PubMed

    Wei, Aili; Meng, Ziqiang

    2006-09-30

    The clastogenic activity of airborne air fine particulate matter (PM2.5, particulates with an aerodynamic diameter < or =2.5 microm) has already been demonstrated. However little is known about the health risks associated with sand dust storm PM2.5 and its extract. In order to investigate the clastogenic activity of sand dust storm PM2.5 (include its organic and inorganic extract) on human lymphocytes, the normal PM2.5 and sand dust storm PM2.5 samples were collected in Wuwei city (Gansu Province) and Baotou city (Inner Mongolia), China. The chromosomal aberration (CA) test was employed and the cells were treated with 0, 33, 100, 300 microg ml(-1) sand dust storm or normal ambient air PM2.5 suspension (physiological saline as solvent control), or inorganic extract (0, 75, 150, 300 microg ml(-1), physiological saline as solvent control) or organic extract (0, 20, 40, 80 microg ml(-1), DMSO as solvent control) at the beginning of the cell culture. The results indicated that sand dust storm PM2.5 and its extract as well as normal samples can induce increase in CA frequency. With the increase of treatment concentrations the CA frequency increased and the mitotic index (MI) values declined in a dose-response manner. In the same concentrates, the CA frequency of normal ambient air PM2.5 and its extract were significant higher than those of sand dust storm PM2.5 (P<0.05 or 0.01) except the treatment of Wuwei sample at higher doses (100, 300 microg ml(-1)), the treatment of inorganic extract of PM2.5 at the highest dose (300 microg ml(-1)) and the treatment of organic extract of PM2.5 at the higher dose (40 and 80 microg ml(-1)) either in Baotou or in Wuwei (P>0.05). The toxicity of sand dust storm PM2.5 and its extract at high dose is very potent. CA frequency of normal PM2.5 (include its organic extract) from Baotou were higher than those of Wuwei especially in low and middle dose (P<0.05), but the treatment results of sand dust storm PM2.5 (include its all extract) was not significant different between the cities (P>0.05).

  11. Evolutionary developmental pathology and anthropology: A new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine.

    PubMed

    Diogo, Rui; Smith, Christopher M; Ziermann, Janine M

    2015-11-01

    We introduce a new subfield of the recently created field of Evolutionary-Developmental-Anthropology (Evo-Devo-Anth): Evolutionary-Developmental-Pathology-and-Anthropology (Evo-Devo-P'Anth). This subfield combines experimental and developmental studies of nonhuman model organisms, biological anthropology, chordate comparative anatomy and evolution, and the study of normal and pathological human development. Instead of focusing on other organisms to try to better understand human development, evolution, anatomy, and pathology, it places humans as the central case study, i.e., as truly model organism themselves. We summarize the results of our recent Evo-Devo-P'Anth studies and discuss long-standing questions in each of the broader biological fields combined in this subfield, paying special attention to the links between: (1) Human anomalies and variations, nonpentadactyly, homeotic transformations, and "nearest neighbor" vs. "find and seek" muscle-skeleton associations in limb+facial muscles vs. other head muscles; (2) Developmental constraints, the notion of "phylotypic stage," internalism vs. externalism, and the "logic of monsters" vs. "lack of homeostasis" views about human birth defects; (3) Human evolution, reversions, atavisms, paedomorphosis, and peromorphosis; (4) Scala naturae, Haeckelian recapitulation, von Baer's laws, and parallelism between phylogeny and development, here formally defined as "Phylo-Devo parallelism"; and (5) Patau, Edwards, and Down syndrome (trisomies 13, 18, 21), atavisms, apoptosis, heart malformations, and medical implications. © 2015 Wiley Periodicals, Inc.

  12. A Soil Service Index: Potential Soil Services to Society under Scenarios of Human Land Use and Population Growth

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Ahlström, A.; Loisel, J.; Harden, J. W.

    2017-12-01

    Soils provide numerous and indispensable services to ecological systems and human societies. As human populations and human land use changes, the capacity of soils to maintain these services may also change. To investigate this we provide the first global scale study based on the soil service index (SSI; see presentations by Harden et al. and Loisel et al. in this session for more details). In this index multiple soil services are numerically or quantitatively assessed, normalized to a unit-less scale for purposes of intercomparability. Soil services assessed under the SSI include organic matter and/or organic carbon storage; plant productivity; CO2 or GHG exchange with the atmosphere; water storage capacity; and nutrient storage and/or availability. The SSI may be applied at any scale. Here we present a first global application of the SSI and provide broad-scale analyses of soil service spatial distributions. We assess how the SSI will change under projected changes in human societies populations and human land use (following representative concentration pathway scenarios). Present and future potential utilization and vulnerability of soil resources are analyzed in the context of human population distributions and its projected changes. The SSI is designed to be broadly useful across scientific, governance and resource management organizations. To exemplify this, the parameterization of this is global soil service estimate is based on only open source input data.

  13. Regulation of the oncodevelopmental expression of type 1 chain ABH and Lewis(b) blood group antigens in human colon by alpha-2-L-fucosylation.

    PubMed Central

    Orntoft, T F; Greenwell, P; Clausen, H; Watkins, W M

    1991-01-01

    Blood group antigen expression in the distal human colon is related to the development of the organ and is modified by malignant transformation. To elucidate the biochemical basis for these changes, we have (a) analysed the activity of glycosyltransferases coded for by the H, Se, Le, X, and A genes, in tissue biopsy specimens from normal and malignant proximal and distal human colon; (b) characterised the glycosphingolipids expressed in the various regions of normal and malignant colon by immunostaining of high performance thin layer chromatography plates; and (c) located the antigens on tissue sections from the same subjects by immunohistochemistry. In both secretors and non-secretors we found a significantly higher activity of alpha-2-L-fucosyltransferases in carcinomatous rectal tissue than in tissue from normal subjects, whereas the other transferase activities studied showed no significant differences. The acceptor substrate specificity suggested that both the Se and the H gene dependent alpha-2-L-fucosyltransferases are increased in carcinomas. In non-malignant tissue the only enzyme which showed appreciably higher activity in caecum than in rectum was alpha-2-L-fucosyltransferase. Immunochemistry and immunohistochemistry showed alpha-2-L-fucosylated structures in normal caecum from secretors and in tumour tissue from both secretors and non-secretors. We conclude that the alpha-2-L-fucosyltransferases control the expression of ABH, and Lewis(b) structures in normal and malignant colon. Images Figure 4 PMID:1826491

  14. Engineering stromal-epithelial interactions in vitro for ...

    EPA Pesticide Factsheets

    Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo tissue recombination, and in vitro co-cultures. Although these approaches have elucidated signaling mechanisms underlying morphogenetic processes and adult mammalian epithelial tissue function, they are limited by the availability of human tissue, low throughput, and human developmental or physiological relevance. Objectives: Bioengineering strategies to promote EMIs using human epithelial and mesenchymal cells have enabled the development of human in vitro models of adult epidermal and glandular tissues. In this review, we describe recent bioengineered models of human epithelial tissue and organs that can instruct the design of organotypic models of human developmental processes.Methods: We reviewed current bioengineering literature and here describe how bioengineered EMIs have enabled the development of human in vitro epithelial tissue models.Discussion: Engineered models to promote EMIs have recapitulated the architecture, phenotype, and function of adult human epithelial tissue, and similar engineering principles could be used to develop models of developmental morphogenesis. We describe how bioengineering strategies including bioprinting and spheroid culture could be implemented to

  15. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.

    1992-01-01

    A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

  16. Plasma Shh levels reduced in pancreatic cancer patients

    PubMed Central

    El-Zaatari, Mohamad; Daignault, Stephanie; Tessier, Art; Kelsey, Gail; Travnikar, Lisa A.; Cantu, Esperanza F.; Lee, Jamie; Plonka, Caitlyn M.; Simeone, Diane M.; Anderson, Michelle A.; Merchant, Juanita L.

    2012-01-01

    Objectives Normally, sonic hedgehog (Shh) is expressed in the pancreas during fetal development and transiently after tissue injury. Although pancreatic cancers express Shh, it is not known if the protein is secreted into the blood and whether its plasma levels change with pancreatic transformation. The goal of this study was to develop an ELISA to detect human Shh in blood, and determine the levels in subjects with and without pancreatic cancer. Methods A human Shh ELISA assay was developed, and plasma Shh levels were measured in blood samples from normal volunteers and subjects with pancreatitis or pancreatic cancer. The biological activity of plasma Shh was tested using NIH-3T3 cells. Results The average levels of Shh in human blood were lower in pancreatitis and pancreatic cancer patients than in normal individuals. Hematopoietic cells did not express Shh suggesting that Shh is secreted into the bloodstream. Plasma fractions enriched for Shh did not induce Gli-1 mRNA suggesting that the protein was not biologically active. Conclusions Shh is secreted from tissues and organs into the circulation but its activity is blocked by plasma proteins. Reduced plasma levels were found in pancreatic cancer patients, but alone were not sufficient to predict pancreatic cancer. PMID:22513293

  17. PROLIFERATION AS A KEY EVENT IN DEVELOPMENTAL TOXICITY: "CHEMICAL SCREENING IN HUMAN NEURAL STEM CELLS USING HIGH CONTENT IMAGING

    EPA Science Inventory

    New toxicity testing approaches will rely on in vitro assays to assess chemical effects at the cellular and molecular level. Cell proliferation is imperative to normal development, and chemical disruption of this process can be detrimental to the organism. As part of an effort to...

  18. Cardiovascular and respiratory physiopathological aspects of hypokinesia

    NASA Technical Reports Server (NTRS)

    Dagianti, A.

    1980-01-01

    The many effects of hypokinesia on the human organism are described. The differences in normally mobile subjects and hypokinetic subjects as relates to heart rate, average humeral pressure, cardiac capacity, cardia index, systolic range, and large cycle resistances are discussed. It is concluded that further studies must be carried out in seven specific areas of cariocirculatory damage due to hypokinesia.

  19. [Molecular-genetic basis of regulation of the synthesis of individual types of hemoglobin].

    PubMed

    Starodub, N F

    1980-01-01

    The data on the control of ontogenetic hemoglobin type synthesis were analyzed in normal and pathological human and animal organisms. The assumption is made that such control depends on the level of erythroid cell differentiation and erythropoetic factors activity. The latters act as a trigger in switching of qualitative hemoglobin production.

  20. Measuring the Effectiveness of Visual Analytics and Data Fusion Techniques on Situation Awareness in Cyber-Security

    ERIC Educational Resources Information Center

    Giacobe, Nicklaus A.

    2013-01-01

    Cyber-security involves the monitoring a complex network of inter-related computers to prevent, identify and remediate from undesired actions. This work is performed in organizations by human analysts. These analysts monitor cyber-security sensors to develop and maintain situation awareness (SA) of both normal and abnormal activities that occur on…

  1. RNAi-mediated control of aflatoxins in peanut: Method to analyze mycotoxin production and transgene expression in the peanut/Aspergillus pathosystem

    USDA-ARS?s Scientific Manuscript database

    The Food and Agriculture Organization of the United Nations estimates that 25% of the food crops in the world are contaminated with aflatoxins. That represents 100 million tons of food being destroyed or diverted to non-human consumption each year. Aflatoxins are powerful carcinogens normally accu...

  2. Synthetic biology meets tissue engineering

    PubMed Central

    Davies, Jamie A.; Cachat, Elise

    2016-01-01

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the ‘embryological cycle’ of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  3. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  4. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas.

    PubMed

    Said, Hamid M

    2013-11-01

    This review focuses on recent advances in our understanding of the mechanisms and regulation of water-soluble vitamin (WSV) transport in the large intestine and pancreas, two important organs of the digestive system that have only recently received their fair share of attention. WSV, a group of structurally unrelated compounds, are essential for normal cell function and development and, thus, for overall health and survival of the organism. Humans cannot synthesize WSV endogenously; rather, WSV are obtained from exogenous sources via intestinal absorption. The intestine is exposed to two sources of WSV: a dietary source and a bacterial source (i.e., WSV generated by the large intestinal microbiota). Contribution of the latter source to human nutrition/health has been a subject of debate and doubt, mostly based on the absence of specialized systems for efficient uptake of WSV in the large intestine. However, recent studies utilizing a variety of human and animal colon preparations clearly demonstrate that such systems do exist in the large intestine. This has provided strong support for the idea that the microbiota-generated WSV are of nutritional value to the host, and especially to the nutritional needs of the local colonocytes and their health. In the pancreas, WSV are essential for normal metabolic activities of all its cell types and for its exocrine and endocrine functions. Significant progress has also been made in understanding the mechanisms involved in the uptake of WSV and the effect of chronic alcohol exposure on the uptake processes.

  5. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas

    PubMed Central

    2013-01-01

    This review focuses on recent advances in our understanding of the mechanisms and regulation of water-soluble vitamin (WSV) transport in the large intestine and pancreas, two important organs of the digestive system that have only recently received their fair share of attention. WSV, a group of structurally unrelated compounds, are essential for normal cell function and development and, thus, for overall health and survival of the organism. Humans cannot synthesize WSV endogenously; rather, WSV are obtained from exogenous sources via intestinal absorption. The intestine is exposed to two sources of WSV: a dietary source and a bacterial source (i.e., WSV generated by the large intestinal microbiota). Contribution of the latter source to human nutrition/health has been a subject of debate and doubt, mostly based on the absence of specialized systems for efficient uptake of WSV in the large intestine. However, recent studies utilizing a variety of human and animal colon preparations clearly demonstrate that such systems do exist in the large intestine. This has provided strong support for the idea that the microbiota-generated WSV are of nutritional value to the host, and especially to the nutritional needs of the local colonocytes and their health. In the pancreas, WSV are essential for normal metabolic activities of all its cell types and for its exocrine and endocrine functions. Significant progress has also been made in understanding the mechanisms involved in the uptake of WSV and the effect of chronic alcohol exposure on the uptake processes. PMID:23989008

  6. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences

    PubMed Central

    Zhu, Xiao-Hong; Lu, Ming; Lee, Byeong-Yeul; Ugurbil, Kamil; Chen, Wei

    2015-01-01

    NAD is an essential metabolite that exists in NAD+ or NADH form in all living cells. Despite its critical roles in regulating mitochondrial energy production through the NAD+/NADH redox state and modulating cellular signaling processes through the activity of the NAD+-dependent enzymes, the method for quantifying intracellular NAD contents and redox state is limited to a few in vitro or ex vivo assays, which are not suitable for studying a living brain or organ. Here, we present a magnetic resonance (MR) -based in vivo NAD assay that uses the high-field MR scanner and is capable of noninvasively assessing NAD+ and NADH contents and the NAD+/NADH redox state in intact human brain. The results of this study provide the first insight, to our knowledge, into the cellular NAD concentrations and redox state in the brains of healthy volunteers. Furthermore, an age-dependent increase of intracellular NADH and age-dependent reductions in NAD+, total NAD contents, and NAD+/NADH redox potential of the healthy human brain were revealed in this study. The overall findings not only provide direct evidence of declined mitochondrial functions and altered NAD homeostasis that accompany the normal aging process but also, elucidate the merits and potentials of this new NAD assay for noninvasively studying the intracellular NAD metabolism and redox state in normal and diseased human brain or other organs in situ. PMID:25730862

  7. Role of Demographic Dynamics and Conflict in the Population-Area Relationship for Human Languages

    PubMed Central

    Manrubia, Susanna C.; Axelsen, Jacob B.; Zanette, Damián H.

    2012-01-01

    Many patterns displayed by the distribution of human linguistic groups are similar to the ecological organization described for biological species. It remains a challenge to identify simple and meaningful processes that describe these patterns. The population size distribution of human linguistic groups, for example, is well fitted by a log-normal distribution that may arise from stochastic demographic processes. As we show in this contribution, the distribution of the area size of home ranges of those groups also agrees with a log-normal function. Further, size and area are significantly correlated: the number of speakers and the area spanned by linguistic groups follow the allometric relation , with an exponent varying accross different world regions. The empirical evidence presented leads to the hypothesis that the distributions of and , and their mutual dependence, rely on demographic dynamics and on the result of conflicts over territory due to group growth. To substantiate this point, we introduce a two-variable stochastic multiplicative model whose analytical solution recovers the empirical observations. Applied to different world regions, the model reveals that the retreat in home range is sublinear with respect to the decrease in population size, and that the population-area exponent grows with the typical strength of conflicts. While the shape of the population size and area distributions, and their allometric relation, seem unavoidable outcomes of demography and inter-group contact, the precise value of could give insight on the cultural organization of those human groups in the last thousand years. PMID:22815726

  8. Mouse mammary tumor virus chromatin in human breast cancer cells is constitutively hypersensitive and exhibits steroid hormone-independent loading of transcription factors in vivo.

    PubMed Central

    Mymryk, J S; Berard, D; Hager, G L; Archer, T K

    1995-01-01

    We have stably introduced a reporter gene under the control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) into human T47D breast cancer cells to study the action of the progesterone receptor (PR) on transcription from a chromatin template. Unexpectedly, the chromatin organization of the MMTV LTR in these human breast cancer cells differed markedly from what we have observed previously. The region adjacent to the transcription start site (-221 to -75) was found to be constitutively hypersensitive to restriction enzyme cleavage in the absence of hormone. This region is normally encompassed within the second nucleosome of a phased array of six nucleosomes that is assembled when the MMTV LTR is stably maintained in mouse cells. Characteristically, in these rodent cells, the identical DNA sequences show increased restriction enzyme cleavage only in the presence of glucocorticoid. The increased access of restriction enzymes observed in the human PR+ cells was not observed in adjacent nucleosomes and was unaffected by treatment with the progesterone antagonist RU486. In addition, exonuclease III-dependent stops corresponding to the binding sites for nuclear factor 1 and the PR were observed before and after hormone treatment. These results indicate that MMTV chromatin replicated in these cells is organized into a constitutively open architecture and that this open chromatin state is accompanied by hormone-independent loading of a transcription factor complex that is normally excluded from uninduced chromatin. PMID:7799933

  9. Mouse mammary tumor virus chromatin in human breast cancer cells is constitutively hypersensitive and exhibits steroid hormone-independent loading of transcription factors in vivo.

    PubMed

    Mymryk, J S; Berard, D; Hager, G L; Archer, T K

    1995-01-01

    We have stably introduced a reporter gene under the control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) into human T47D breast cancer cells to study the action of the progesterone receptor (PR) on transcription from a chromatin template. Unexpectedly, the chromatin organization of the MMTV LTR in these human breast cancer cells differed markedly from what we have observed previously. The region adjacent to the transcription start site (-221 to -75) was found to be constitutively hypersensitive to restriction enzyme cleavage in the absence of hormone. This region is normally encompassed within the second nucleosome of a phased array of six nucleosomes that is assembled when the MMTV LTR is stably maintained in mouse cells. Characteristically, in these rodent cells, the identical DNA sequences show increased restriction enzyme cleavage only in the presence of glucocorticoid. The increased access of restriction enzymes observed in the human PR+ cells was not observed in adjacent nucleosomes and was unaffected by treatment with the progesterone antagonist RU486. In addition, exonuclease III-dependent stops corresponding to the binding sites for nuclear factor 1 and the PR were observed before and after hormone treatment. These results indicate that MMTV chromatin replicated in these cells is organized into a constitutively open architecture and that this open chromatin state is accompanied by hormone-independent loading of a transcription factor complex that is normally excluded from uninduced chromatin.

  10. CD4 Count in HIV- Brain-Dead Donors: Insight into Donor Risk Assessment for HIV+ Donors.

    PubMed

    Serrano, Oscar Kenneth; Kerwin, Scott; Payne, William D; Pruett, Timothy L

    2017-04-01

    The Human Immunodeficiency Virus (HIV) Organ Policy Equity Act allows for transplantation of organs from HIV-infected individuals (HIV+), provided it is performed under a research protocol. The safety assessment of an organ for transplantation is an essential element of the donation process. The risk for HIV-associated opportunistic infections increases as circulating CD4+ lymphocytes decrease to less than 200 cells/μL; however, the numbers of circulating CD4+ cells in the HIV-negative (HIV-) brain-dead donor (BDD) is not known. Circulating T-lymphocyte subset profiles in conventional HIV- BDD were measured in 20 BDD in a clinical laboratory. The mean age of the BDD cohort was 48.7 years, 95% were white and 45% were women. The average body mass index was 29.2 kg/m. Cerebrovascular accident (40%) was the most prevalent cause of death. Sixteen (80%) subjects had a CD4 count ≤441 cells/μL (lower limit of normal) and 11 (55%) had a CD4 count less than 200 cells/μL; 11 (55%) subjects had a CD8 count ≤125 cells/μL (lower limit of normal). CD4/CD8 ratio was below normal in 3 patients (normal, 1.4-2.6). No recipient had a recognized donor-associated adverse event. Absolute numbers of CD4 and CD8 T-lymphocytes are commonly reduced after brain death in HIV- individuals. Thus, CD4 absolute numbers are an inconsistent metric for assessing organ donor risk, irrespective of HIV status.

  11. Organization of the human gene for nucleobindin (NUC) and its chromosomal assignment to 19q13.2-q13.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki

    1996-06-01

    Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequencesmore » in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.« less

  12. Antecedents of cell aging research.

    PubMed

    Hayflick, L

    1989-01-01

    Our observation that normal human and animal cells have a limited capacity to divide and function in vitro overturned a dogma held since the turn of the century. The dogma held that cultured normal cells are immortal and gerontologists interpreted this to mean that aging, therefore, could not be the result of intracellular events. We concluded that longevity and aging do result from intracellular events, and, in the subsequent 30 years, the validity of our finding has been widely confirmed. Other major findings have been made: (a) The number of population doublings and functional events that a cultured normal cell can undergo is inversely proportional to donor age and, probably, directly proportional to species longevity; (b) the limit on cell division and function also occurs in vivo when normal cells are transplanted seriatim; (c) as cell doublings or functional events reach their limit, changes occur in hundreds of variables from the molecular to the whole cell. Most importantly, many of these changes are identical to those seen in intact humans and animals as they age; (d) WI-38, the first widely distributed normal human cell strain has retained its memory of population doubling level during 27 years of cryogenic storage. This is the longest time that any normal human cell has ever been preserved. Evidence that longevity is determined by genetic events is overwhelming but evidence that age changes are the result of gene expression is not. Normal age changes must be distinguished from disease. Because few feral animals ever become old, natural selection could not have favored the development of a genetically programmed aging process. In the 2 or 3 million years of human existence, too few old humans existed to have provided a selective advantage favoring the development of a genetic program that would determine age changes. The selective advantage of maintaining physiological vigor for as long as possible in order to insure maximum reproductive success may be the essential indirect determinant of longevity. Natural selection has provided sexually mature animals with extraordinary reserve capacities in virtually all organs. After sexual maturation, animals continue to function by utilizing the reserve capacity that evolved to insure that they would attain reproductive success. The magnitude of reserve capacity is the essential element in determining postdevelopmental longevity. Thus "Why do we age?" may be the wrong question. The right question may be "Why do we live as long as we do?"

  13. Bowel perforation detection using metabolic fluorescent chlorophylls

    NASA Astrophysics Data System (ADS)

    Han, Jung Hyun; Jo, Young Goun; Kim, Jung Chul; Choi, Sujeong; Kang, Hoonsoo; Kim, Yong-Chul; Hwang, In-Wook

    2016-03-01

    Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.

  14. Water quality indicators: bacteria, coliphages, enteric viruses.

    PubMed

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  15. Dicentric chromosomes: unique models to study centromere function and inactivation.

    PubMed

    Stimpson, Kaitlin M; Matheny, Justyne E; Sullivan, Beth A

    2012-07-01

    Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell division. The molecular basis for centromere inactivation is not well understood, although studies in model organisms and in humans suggest that genomic and epigenetic mechanisms can be involved. Furthermore, constitutional dicentric chromosomes ascertained in patients presumably represent the most stable chromosomes, so the spectrum of dicentric fates, if it exists, is not entirely clear. Studies of engineered or induced dicentrics in budding yeast and plants have provided significant insight into the fate of dicentric chromosomes. And, more recently, studies have shown that dicentrics in humans can also undergo multiple fates after formation. Here, we discuss current experimental evidence from various organisms that has deepened our understanding of dicentric behavior and the intriguingly complex process of centromere inactivation.

  16. Dicentric chromosomes: unique models to study centromere function and inactivation

    PubMed Central

    Stimpson, Kaitlin M.; Matheny, Justyne E.

    2013-01-01

    Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell division. The molecular basis for centromere inactivation is not well under-stood, although studies in model organisms and in humans suggest that genomic and epigenetic mechanisms can be involved. Furthermore, constitutional dicentric chromosomes ascertained in patients presumably represent the most stable chromosomes, so the spectrum of dicentric fates, if it exists, is not entirely clear. Studies of engineered or induced dicentrics in budding yeast and plants have provided significant insight into the fate of dicentric chromosomes. And, more recently, studies have shown that dicentrics in humans can also undergo multiple fates after formation. Here, we discuss current experimental evidence from various organisms that has deepened our understanding of dicentric behavior and the intriguingly complex process of centromere inactivation. PMID:22801777

  17. Porcine Knock-in Fibroblasts Expressing hDAF on α-1,3-Galactosyltransferase (GGTA1) Gene Locus.

    PubMed

    Kim, Ji Woo; Kim, Hye-Min; Lee, Sang Mi; Kang, Man-Jong

    2012-10-01

    The Galactose-α1,3-galactose (α1,3Gal) epitope is responsible for hyperacute rejection in pig-to-human xenotransplantation. Human decay-accelerating factor (hDAF) is a cell surface regulatory protein that serves as a complement inhibitor to protect self cells from complement attack. The generation of α1,3-galactosyltransferase (GGTA1) knock-out pigs expressing DAF is a necessary step for their use as organ donors for humans. In this study, we established GGTA1 knock-out cell lines expressing DAF from pig ear fibroblasts for somatic cell nuclear transfer. hDAF expression was detected in hDAF knock-in heterozygous cells, but not in normal pig cells. Expression of the GGTA1 gene was lower in the knock-in heterozygous cell line compared to the normal pig cell. Knock-in heterozygous cells afforded more effective protection against cytotoxicity with human serum than with GGTA1 knock-out heterozygous and control cells. These cell lines may be used in the production of GGTA1 knock-out and DAF expression pigs for xenotransplantation.

  18. Characterization of Epithelial Progenitors in Normal Human Palatine Tonsils and Their HPV16 E6/E7-Induced Perturbation

    PubMed Central

    Kang, Sung Yoon Catherine; Kannan, Nagarajan; Zhang, Lewei; Martinez, Victor; Rosin, Miriam P.; Eaves, Connie J.

    2015-01-01

    Summary Human palatine tonsils are oropharyngeal lymphoid tissues containing multiple invaginations (crypts) in which the continuity of the outer surface epithelium is disrupted and the isolated epithelial cells intermingle with other cell types. We now show that primitive epithelial cells detectable in vitro in 2D colony assays and in a 3D culture system are CD44+NGFR+ and present in both surface and crypt regions. Transcriptome analysis indicated a high similarity between CD44+NGFR+ cells in both regions, although those isolated from the crypt contained a higher proportion of the most primitive (holo)clonogenic cells. Lentiviral transduction of CD44+NGFR+ cells from both regions with human papillomavirus 16-encoded E6/E7 prolonged their growth in 2D cultures and caused aberrant differentiation in 3D cultures. Our findings therefore reveal a shared, site-independent, hierarchical organization, differentiation potential, and transcriptional profile of normal human tonsillar epithelial progenitor cells. They also introduce a new model for investigating the mechanisms of their transformation. PMID:26527383

  19. Visual Image Sensor Organ Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.

    2014-01-01

    This innovation is a system that augments human vision through a technique called "Sensing Super-position" using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks. Three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. Because the human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns, the translation of images into sounds reduces the risk of accidentally filtering out important clues. The VISOR device was developed to augment the current state-of-the-art head-mounted (helmet) display systems. It provides the ability to sense beyond the human visible light range, to increase human sensing resolution, to use wider angle visual perception, and to improve the ability to sense distances. It also allows compensation for movement by the human or changes in the scene being viewed.

  20. The expression of β3-adrenoceptors and their function in the human prostate.

    PubMed

    Suzuki, Takahisa; Otsuka, Atsushi; Matsumoto, Rikiya; Furuse, Hiroshi; Ozono, Seiichiro

    2016-02-01

    Little is known about β3-adrenoceptor (AR) expression and function in human prostate. We examined the expression and distribution of β-AR subtypes in normal prostate and benign prostatic hyperplasia (BPH) tissues, and investigated which selective β-AR subtype agonist was most involved in the relaxation of isolated human prostate strips. Messenger RNA (mRNA) expression for β1-, β2-, and β3 -ARs was investigated using reverse transcriptase-polymerase chain reactions (RT-PCR). Quantitative analysis of mRNA expression of β-AR subtypes between normal prostate and BPH tissues was performed using quantitative RT-PCR (qPCR). Distributions were examined by immunohistochemistry (IHC). Strips of human normal prostate or BPH were suspended in organ baths and exposed to isoproterenol, dobutamine, procaterol, and TRK-380 to investigate their relaxant effects on KCl-induced contractions, and their inhibitory effects on electrical field stimulation (EFS)-induced contractions. We confirmed the presence of mRNA for β1-, β2-, and β3-ARs both in normal prostate and in BPH tissues. For β3-AR, mRNA expression in BPH tissues was significantly higher than in normal prostate tissues, but there was no significant difference in β1- and β2-AR expression between normal and BPH tissues. IHC revealed differences in staining intensity between smooth muscle cells and glandular cells, with different proportions for different β-AR subtypes. Staining of β3-AR was particularly intense in smooth muscle cells as opposed to glandular cells. Isoproterenol and TRK-380 significantly decreased the tone of KCl-induced contractions of the normal prostate strips. The rank order of relaxant effects was isoproterenol > TRK-380 > procaterol > dobutamine. All selective β-AR agonists significantly decreased the amplitude of EFS-induced contractions of the normal prostate strips. The rank order of inhibitory effects was isoproterenol > dobutamine >TRK-380 > procaterol. In BPH strips, all selective β-AR agonists showed no significant relaxant or inhibitory effects on KCl- or EFS-induced contractions. β3 -AR is abundant in human prostate smooth muscle, whose relaxation is mediated by β1- and β3-AR stimulation. β3-AR agonists may have clinical use in the treatment of male non-BPH patients or neurogenic bladder patients with voiding dysfunction. © 2015 Wiley Periodicals, Inc.

  1. Quantification of Chitinase mRNA Levels in Human and Mouse Tissues by Real-Time PCR: Species-Specific Expression of Acidic Mammalian Chitinase in Stomach Tissues

    PubMed Central

    Ohno, Misa; Togashi, Yuto; Tsuda, Kyoko; Okawa, Kazuaki; Kamaya, Minori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka

    2013-01-01

    Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific. PMID:23826286

  2. Differential effects of selenite and selenate on human melanocytes, keratinocytes, and melanoma cells.

    PubMed

    Bandura, Laura; Drukala, Justyna; Wolnicka-Glubisz, Agnieszka; Björnstedt, Mikael; Korohoda, Wlodzimierz

    2005-04-01

    Among the substances that attracted the attention of oncologists in recent years are selenium-containing compounds, both inorganic and organic. Several epidemiological studies have shown an inverse correlation between selenium intake and cancer incidence. In the experiments reported here, we compared the effects of 2 inorganic selenium-containing salts that differed in the level of selenium oxidation, selenite IV and selenate VI. We tested the effects of these 2 compounds on cell survival and growth, cell cycle processing, cell morphology, cytoskeleton, and lipid peroxidation in 3 human skin cell types: normal keratinocytes, melanocytes, and human melanoma cell line HTB140. The different effects of selenite and selenate on the viability, growth, and morphology of normal cells and tumor cells are reported and provide a base for future research and treatment of some neoplastic diseases. The attention is paid to cell apoptosis induced by selenite and not by selenate, and the effects of tested substances on thioredoxin reductase system are postulated.

  3. Embryology and anatomy of the vulva: the female orgasm and women's sexual health.

    PubMed

    Puppo, Vincenzo

    2011-01-01

    Sexual health is vital to overall well-being. Orgasm is a normal psycho-physiological function of human beings and every woman has the right to feel sexual pleasure. The anatomy of the vulva and of the female erectile organs (trigger of orgasm) is described in human anatomy textbooks. Female sexual physiology was first described in Dickinson's textbook in 1949 and subsequently by Masters and Johnson in 1966. During women's sexual response, changes occur in the congestive structures that are essential to the understanding of women's sexual response and specifically of their orgasm. Female and male external genital organs arise from the same embryologic structures, i.e. phallus, urogenital folds, urogenital sinus and labioscrotal swellings. The vulva is formed by the labia majora and vestibule, with its erectile apparatus: clitoris (glans, body, crura), labia minora, vestibular bulbs and corpus spongiosum. Grafenberg, in 1950, discovered no "G-spot" and did not report an orgasm of the intraurethral glands. The hypothetical area named "G-spot" should not be defined with Grafenberg's name. The female orgasm should be a normal phase of the sexual response cycle, which is possible to achieve by all healthy women with effective sexual stimulation. Knowledge of the embryology, anatomy and physiology of the female erectile organs are important in the field of women's sexual health. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Il-10 deficient mice express IFN-γ mRNA and clear Leptospira interrogans from their kidneys more rapidly than normal C57BL/6 mice.

    PubMed

    Devlin, Amy A; Halvorsen, Priya J; Miller, Jennifer C; Laster, Scott M

    2017-05-01

    Leptospira interrogans (L. interrogans), the causative agent of leptospirosis, is a widespread zoonotic spirochete that lives a dual lifestyle. L. interrogans infects mice, rats, and wildlife in a persistent and asymptomatic fashion, while also causing productive and acute infections in other mammals such as humans and hamsters. Infections in humans can be fatal, accompanied by a cytokine storm and shock-like symptoms. Production of IL-10 has been noted in both rodent and human infections which has led a number of investigators to hypothesize that IL-10 plays a role in the pathogenesis of this disease. To test this hypothesis we have compared bacteremia and the cytokine response of normal and IL-10 deficient C57Bl/6 mice following ip infection with L. interrogans. In normal mice bacterial 16s mRNA was detected in both lung and kidney tissues within a day after infection. Levels of 16s mRNA then dropped in both organs with complete elimination from the lung by day 3 but persistence in the kidney for 7days after infection. In contrast, in IL-10 deficient mice, the organism was eliminated more rapidly from the kidney. We found that infection of both control and IL-10 deficient mice produced similar levels of a number of pro-inflammatory cytokine mRNAs. On the other hand, IFN-γ mRNA was only induced in IL-10 deficient mice. These results support the hypothesis that L. interrogans ability to induce IL-10, which in turn prevents production of IFN-γ and inhibits T cell immunity, may contribute to the persistent growth of this microorganism in the murine kidney. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation

    PubMed Central

    Dame, Michael K.; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca2+ supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca2+ concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca2+ or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa. PMID:21104039

  6. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    PubMed

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  7. Serum podocalyxin is significantly increased in early-onset preeclampsia and may represent a novel marker of maternal endothelial cell dysfunction.

    PubMed

    Chen, Qi; Wang, Yao; Li, Ying; Zhao, Min; Nie, Guiying

    2017-11-01

    Podocalyxin is a glomerular podocyte protein and increased in urine of preeclampsia. However, podocalyxin is also expressed in endothelial cells of other organs. Here we investigated whether podocalyxin is detectable in pregnant serum and whether the levels are altered in preeclampsia. Podocalyxin was determined by ELISA in sera collected from normal pregnancy across gestation (n = 44) and from preeclamptic pregnancies at diagnosis (n = 34) with gestation-age-matched controls (n = 68). Immunohistochemistry examined podocalyxin in placentas and in 32 human tissues on a tissue array. Human umbilical vein endothelial cells (HUVECs) were treated with interleukin (IL)-6 and podocalyxin was analysed by ELISA and western blotting. Podocalyxin was detected in serum of normal pregnancy, with levels increasing progressively with advancing gestation. Podocalyxin serum levels were significantly elevated in preeclampsia, especially the early-onset subtype. Within the placenta, blood vessels but not trophoblasts expressed podocalyxin, and preeclampsia didn't differ from controls. Endothelial cells in all 32 human organs examined, as well as HUVECs, expressed podocalyxin. Its levels increased in the conditioned media but decreased in the lysates when HUVECs were treated with IL-6. Podocalyxin likely derived from maternal endothelial cells is present in pregnant serum and significantly increased in early-onset preeclampsia. Podocalyxin release was stimulated by IL-6 in HUVECs.

  8. Genic insights from integrated human proteomics in GeneCards.

    PubMed

    Fishilevich, Simon; Zimmerman, Shahar; Kohn, Asher; Iny Stein, Tsippi; Olender, Tsviya; Kolker, Eugene; Safran, Marilyn; Lancet, Doron

    2016-01-01

    GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several GeneCards sections and help promote and organize the genome-wide structural and functional knowledge of the human proteome. Database URL:http://www.genecards.org/. © The Author(s) 2016. Published by Oxford University Press.

  9. Cooperative Health Occupation Education (Course Outline), Body Structure and Function I: 8009.08.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    GRADES OR AGES: Twelfth grade. SUBJECT MATTER: The human body processes in normal and in certain abnormal conditions. ORGANIZATION AND PHYSICAL APPEARANCE: The document contains a preface, a list of goals, a list of specific block objectives, a bibliography, a course outline for each of the six blocks, and a quinmester posttest. The six blocks are…

  10. The dark side of light at night: physiological, epidemiological, and ecological consequences.

    PubMed

    Navara, Kristen J; Nelson, Randy J

    2007-10-01

    Organisms must adapt to the temporal characteristics of their surroundings to successfully survive and reproduce. Variation in the daily light cycle, for example, acts through endocrine and neurobiological mechanisms to control several downstream physiological and behavioral processes. Interruptions in normal circadian light cycles and the resulting disruption of normal melatonin rhythms cause widespread disruptive effects involving multiple body systems, the results of which can have serious medical consequences for individuals, as well as large-scale ecological implications for populations. With the invention of electrical lights about a century ago, the temporal organization of the environment has been drastically altered for many species, including humans. In addition to the incidental exposure to light at night through light pollution, humans also engage in increasing amounts of shift-work, resulting in repeated and often long-term circadian disruption. The increasing prevalence of exposure to light at night has significant social, ecological, behavioral, and health consequences that are only now becoming apparent. This review addresses the complicated web of potential behavioral and physiological consequences resulting from exposure to light at night, as well as the large-scale medical and ecological implications that may result.

  11. Full-Thickness Skin Wound Healing Using Human Placenta-Derived Extracellular Matrix Containing Bioactive Molecules

    PubMed Central

    Choi, Ji Suk; Kim, Jae Dong; Yoon, Hyun Soo

    2013-01-01

    The human placenta, a complex organ, which facilitates exchange between the fetus and the mother, contains abundant extracellular matrix (ECM) components and well-preserved endogenous growth factors. In this study, we designed a new dermal substitute from human placentas for full-thickness wound healing. Highly porous, decellularized ECM sheets were fabricated from human placentas via homogenization, centrifugation, chemical and enzymatic treatments, molding, and freeze-drying. The physical structure and biological composition of human placenta-derived ECM sheets dramatically supported the regeneration of full-thickness wound in vivo. At the early stage, the ECM sheet efficiently absorbed wound exudates and tightly attached to the wound surface. Four weeks after implantation, the wound was completely closed, epidermic cells were well arranged and the bilayer structure of the epidermis and dermis was restored. Moreover, hair follicles and microvessels were newly formed in the ECM sheet-implanted wounds. Overall, the ECM sheet produced a dermal substitute with similar cellular organization to that of normal skin. These results suggest that human placenta-derived ECM sheets provide a microenvironment favorable to the growth and differentiation of cells, and positive modulate the healing of full-thickness wounds. PMID:22891853

  12. Brain Entropy Mapping Using fMRI

    PubMed Central

    Wang, Ze; Li, Yin; Childress, Anna Rose; Detre, John A.

    2014-01-01

    Entropy is an important trait for life as well as the human brain. Characterizing brain entropy (BEN) may provide an informative tool to assess brain states and brain functions. Yet little is known about the distribution and regional organization of BEN in normal brain. The purpose of this study was to examine the whole brain entropy patterns using a large cohort of normal subjects. A series of experiments were first performed to validate an approximate entropy measure regarding its sensitivity, specificity, and reliability using synthetic data and fMRI data. Resting state fMRI data from a large cohort of normal subjects (n = 1049) from multi-sites were then used to derive a 3-dimensional BEN map, showing a sharp low-high entropy contrast between the neocortex and the rest of brain. The spatial heterogeneity of resting BEN was further studied using a data-driven clustering method, and the entire brain was found to be organized into 7 hierarchical regional BEN networks that are consistent with known structural and functional brain parcellations. These findings suggest BEN mapping as a physiologically and functionally meaningful measure for studying brain functions. PMID:24657999

  13. Animal models to study microRNA function

    PubMed Central

    Pal, Arpita S.; Kasinski, Andrea L.

    2018-01-01

    The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research towards identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely towards uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster and D. rerio do not develop cancers, but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating pre-clinical efficacy of microRNA-based cancer therapeutics. PMID:28882225

  14. Microphysiological modeling of the reproductive tract: a fertile endeavor.

    PubMed

    Eddie, Sharon L; Kim, J Julie; Woodruff, Teresa K; Burdette, Joanna E

    2014-09-01

    Preclinical toxicity testing in animal models is a cornerstone of the drug development process, yet it is often unable to predict adverse effects and tolerability issues in human subjects. Species-specific responses to investigational drugs have led researchers to utilize human tissues and cells to better estimate human toxicity. Unfortunately, human cell-derived models are imperfect because toxicity is assessed in isolation, removed from the normal physiologic microenvironment. Microphysiological modeling often referred to as 'organ-on-a-chip' or 'human-on-a-chip' places human tissue into a microfluidic system that mimics the complexity of human in vivo physiology, thereby allowing for toxicity testing on several cell types, tissues, and organs within a more biologically relevant environment. Here we describe important concepts when developing a repro-on-a-chip model. The development of female and male reproductive microfluidic systems is critical to sex-based in vitro toxicity and drug testing. This review addresses the biological and physiological aspects of the male and female reproductive systems in vivo and what should be considered when designing a microphysiological human-on-a-chip model. Additionally, interactions between the reproductive tract and other systems are explored, focusing on the impact of factors and hormones produced by the reproductive tract and disease pathophysiology. © 2014 by the Society for Experimental Biology and Medicine.

  15. Pretargeting vs. direct targeting of human betalox5 islet cells subcutaneously implanted in mice using an anti-human islet cell antibody.

    PubMed

    Liu, Guozheng; Dou, Shuping; Akalin, Ali; Rusckowski, Mary; Streeter, Philip R; Shultz, Leonard D; Greiner, Dale L

    2012-07-01

    We previously demonstrated MORF/cMORF pretargeting of human islets and betalox 5 cells (a human beta cell line) transplanted subcutaneously in mice with the anti-human islet antibody, HPi1. We now compare pretargeting with direct targeting in the beta cell transplant model to evaluate the degree to which target/non-target (T/NT) ratios may be improved by pretargeting. Specific binding of an anti-human islet antibody HPi1 to the beta cells transplanted subcutaneously in mice was examined against a negative control antibody. We then compared pretargeting by MORF-HPi1 plus 111In-labeled cMORF to direct targeting by 111In-labeled HPi1. HPi1 binding to betalox5 human cells in the transplant was shown by immunofluorescence. Normal organ 111In backgrounds by pretargeting were always lower, although target accumulations were similar. More importantly, the transplant to pancreas and liver ratios was, respectively, 26 and 10 by pretargeting as compared to 9 and 0.6 by direct targeting. Pretargeting greatly improves the T/NT ratios, and based on the estimated endocrine to exocrine ratio within a pancreas, pretargeting may be approaching the sensitivity required for successful imaging of human islets within this organ. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Breath Tests in Respiratory and Critical Care Medicine: From Research to Practice in Current Perspectives

    PubMed Central

    Cheepsattayakorn, Attapon; Cheepsattayakorn, Ruangrong

    2013-01-01

    Today, exhaled nitric oxide has been studied the most, and most researches have now focusd on asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes, the majority of breath volatile organic compounds, have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are improved in the future. PMID:24151617

  17. The hippocampus and memory for orderly stimulus relations

    PubMed Central

    Dusek, Jeffery A.; Eichenbaum, Howard

    1997-01-01

    Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans. PMID:9192700

  18. Dysregulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms

    PubMed Central

    Bleyl, Steven B.; Saijoh, Yukio; Bax, Noortje A.M.; Gittenberger-de Groot, Adriana C.; Wisse, Lambertus J.; Chapman, Susan C.; Hunter, Jennifer; Shiratori, Hidetaka; Hamada, Hiroshi; Yamada, Shigehito; Shiota, Kohei; Klewer, Scott E.; Leppert, Mark F.; Schoenwolf, Gary C.

    2010-01-01

    Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect inherited via complex genetic and/or environmental factors. We report detailed mapping in extended TAPVR kindreds and mutation analysis in TAPVR patients that implicate the PDGFRA gene in the development of TAPVR. Gene expression studies in mouse and chick embryos for both the Pdgfra receptor and its ligand Pdgf-a show temporal and spatial patterns consistent with a role in pulmonary vein (PV) development. We used an in ovo function blocking assay in chick and a conditional knockout approach in mouse to knock down Pdgfra expression in the developing venous pole during the period of PV formation. We observed that loss of PDGFRA function in both organisms causes TAPVR with low penetrance (∼7%) reminiscent of that observed in our human TAPVR kindreds. Intermediate inflow tract anomalies occurred in a higher percentage of embryos (∼30%), suggesting that TAPVR occurs at one end of a spectrum of defects. We show that the anomalous pulmonary venous connection seen in chick and mouse is highly similar to TAPVR discovered in an abnormal early stage embryo from the Kyoto human embryo collection. Whereas the embryology of the normal venous pole and PV is becoming understood, little is known about the embryogenesis or molecular pathogenesis of TAPVR. These models of TAPVR provide important insight into the pathogenesis of PV defects. Taken together, these data from human genetics and animal models support a role for PDGF-signaling in normal PV development, and in the pathogenesis of TAPVR. PMID:20071345

  19. Does aflatoxin exposure in the United Kingdom constitute a cancer risk?

    PubMed Central

    Harrison, J C; Carvajal, M; Garner, R C

    1993-01-01

    Although the aflatoxins were discovered more than 30 years ago, there is still considerable controversy surrounding their human health effects. Most countries have introduced legislation to control the level of aflatoxins in food, but it is not known if these permitted levels still pose a significant cancer risk. Furthermore, it is unlikely that all the sources of human aflatoxin exposure have been discovered, nor if the liver is the only, or indeed, major target organ for aflatoxin-induced cancer in man. In our laboratory we have used both immunological and HPLC methods to examine human DNA from a variety of tissues and organs to identify and quantify aflatoxin DNA-adducts. We have already detected aflatoxin B1 (AFB1)-DNA adducts in formalin-fixed tissue from an acute poisoning incident in Southeast Asia. Here we have examined human colon and rectum DNA from normal and tumorous tissue obtained from cancer patients and colon, liver, pancreas, breast, and cervix DNA from autopsy specimens. AFB1-DNA adducts were detected in all tissue types examined and ranged from 0-60 adducts/10(6) nucleotides. Where sample size allowed, the adduct levels were confirmed by HPLC analysis. Tumor tissues tended to have higher adduct levels than normal tissue from the same individual, and levels generally increased with patient age. In samples analyzed by HPLC, the adducts present had the chromatographic properties of [8,9-dihydro-8-(N5-formyl)-2',5',6'-triamino-4'-oxo-(N5-pyramidyl) -9- hydroxy-aflatoxin B1, the ring-opened form of the AFB1-guanine adduct.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8319666

  20. Immunohistological analysis of neurturin and its receptors in human cochlea.

    PubMed

    Liu, Wei; Rask-Andersen, Helge

    2014-04-01

    Difficulties in obtaining properly preserved human cochlea have been a major obstacle to in vitro study of this deeply located and hard bone-fortressed hearing organ. Our study aimed at investigating GDNF family ligands (GFLs) and their receptors in the human cochleae that were surgically obtained during a transcochlear approach dealing with life-threatening, intra-cranial meningiomas. The specimens were properly fixed with 4% paraformaldehyde in the operating room. By using immunohistochemical techniques, distribution of GDNF, Neurturin (NTN, one member of GFLs), as well as cRet, GFRα-1 and GFRα-2 receptors in the human cochleae was investigated. Five cochleae from five adult patients were processed for the study. The patients had normal hearing threshold before operation. cRet receptor immunoreactivity was seen in the spiral ganglion neurons, mainly inside the cell bodies but rarely in the nerve fibers and not in the organ of Corti. Immunolabeling for GFRα-1 and GFRα-2 receptors was identified mainly in the cell bodies of the spiral neurons than in the nerve fibers. In the organ of Corti, GFRα-1 immunostaining could be demonstrated in the Deiters' cells, Hensen cells, inner pillar cells, and weakly in the inner hair cells but not in the outer hair cells; no structures in the organ of Corti were labeled with GFRα-2 receptor antibody. NTN immunostaining was found in the supporting cells of organ of Corti, including Deiters' cells, Hensen cells as well as Claudius' cells. In the spiral ganglia, NTN immunostaining was seen in both the cell bodies and the nerve fibers of neurons. GDNF immunoreactivity was not revealed in human cochlea. Surgically obtained human cochleae were properly fixed and underwent immunohistochemical investigation of neurotrophic elements. NTN and its receptors discovered in current study can be responsible for the unique neuronal survival properties in human spiral ganglion (hSG); a prerequisite for the function of cochlear implants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of shilajit on the heart of Daphnia: A preliminary study.

    PubMed

    Gaikwad, N S; Panat, A V; Deshpande, M S; Ramya, K; Khalid, P U; Augustine, P

    2012-01-01

    Shilajit is a mineral-rich complex organic compound used in the traditional system of Ayurvedic medicine for treating hypertension and improving the cardiac function with many herbomineral preparations. However, very little experimental evidence is available about its effect on the cardiac function. We used Daphnia as a model organism for observing the effect of shilajit on its heart due to its myogenic properties and its response to number of cardioactive drugs that are known to affect human heart function. Genome of Daphnia shows the strongest homology with the human genome. These characteristics of Daphnia make it an ideal organism for biomedical research. Our results suggest that this complex organic compound lowers the heart beats as its concentration increases from 1.0 to 100 ppm. The beats come to near normal condition at 1000 ppm. Above 1000 ppm, the beats are very fast and impossible to count. These results indicate a negative chronotropic effect on the Daphnia heart at low concentrations and a positive chronotropic effect to arrhythmia and finally failure at increasing higher concentrations of shilajit.

  2. Effect of shilajit on the heart of Daphnia: A preliminary study

    PubMed Central

    Gaikwad, N. S.; Panat, A. V.; Deshpande, M. S.; Ramya, K.; Khalid, P. U.; Augustine, P.

    2012-01-01

    Shilajit is a mineral-rich complex organic compound used in the traditional system of Ayurvedic medicine for treating hypertension and improving the cardiac function with many herbomineral preparations. However, very little experimental evidence is available about its effect on the cardiac function. We used Daphnia as a model organism for observing the effect of shilajit on its heart due to its myogenic properties and its response to number of cardioactive drugs that are known to affect human heart function. Genome of Daphnia shows the strongest homology with the human genome. These characteristics of Daphnia make it an ideal organism for biomedical research. Our results suggest that this complex organic compound lowers the heart beats as its concentration increases from 1.0 to 100 ppm. The beats come to near normal condition at 1000 ppm. Above 1000 ppm, the beats are very fast and impossible to count. These results indicate a negative chronotropic effect on the Daphnia heart at low concentrations and a positive chronotropic effect to arrhythmia and finally failure at increasing higher concentrations of shilajit. PMID:22529672

  3. Organ biodistribution of Germanium-68 in rat in the presence and absence of [68Ga]Ga-DOTA-TOC for the extrapolation to the human organ and whole-body radiation dosimetry

    PubMed Central

    Velikyan, Irina; Antoni, Gunnar; Sörensen, Jens; Estrada, Sergio

    2013-01-01

    Positron Emission Tomography (PET) and in particular gallium-68 (68Ga) applications are growing exponentially worldwide contributing to the expansion of nuclear medicine and personalized management of patients. The significance of 68Ga utility is reflected in the implementation of European Pharmacopoeia monographs. However, there is one crucial point in the monographs that might limit the use of the generators and consequently expansion of 68Ga applications and that is the limit of 0.001% of Germanium-68 (68Ge(IV)) radioactivity content in a radiopharmaceutical. We have investigated the organ distribution of 68Ge(IV) in rat and estimated human dosimetry parameters in order to provide experimental evidence for the determination and justification of the 68Ge(IV) limit. Male and female rats were injected in the tail vein with formulated [68Ge]GeCl4 in the absence or presence of [68Ga]Ga-DOTA-TOC. The tissue radioactivity distribution data was extrapolated for the estimation of human organ equivalent doses and total effective dose using Organ Level Internal Dose Assessment Code software (OLINDA/EXM). 68Ge(IV) was evenly distributed among the rat organs and fast renal excretion prevailed. Human organ equivalent dose and total effective dose estimates indicated that the kidneys were the dose-limiting organs (185±54 μSv/MBq for female and 171±38 μSv/MBq for male) and the total effective dose was 15.5±0.1 and 10.7±1.2 μSv/MBq, respectively for female and male. The results of this dosimetry study conclude that the 68Ge(IV) limit currently recommended by monographs could be increased considerably (>100 times) without exposing the patient to harm given the small absorbed doses to normal organs and fast excretion. PMID:23526484

  4. O6-methylguanine-DNA methyltransferase activity in human buccal mucosal tissue and cell cultures. Complex mixtures related to habitual use of tobacco and betel quid inhibit the activity in vitro.

    PubMed

    Liu, Y; Egyhazi, S; Hansson, J; Bhide, S V; Kulkarni, P S; Grafström, R C

    1997-10-01

    Extracts prepared from tissue specimens of normal, non-tumourous human buccal mucosa, and cultured buccal epithelial cells and fibroblasts, exhibited O6-methylguanine-DNA methyltransferase (MGMT) activity by catalysing the repair of the premutagenic O6-methylguanine lesion in isolated DNA with rates of 0.2 to 0.3 pmol/mg protein. An SV40 T antigen-immortalized buccal epithelial cell line termed SVpgC2a and a buccal squamous carcinoma line termed SqCC/Y1, both of which lack normal tumour suppressor gene p53 function, exhibited about 50 and 10% of the MGMT activity of normal cells, respectively. The normal, experimentally transformed and tumourous buccal cell types showed MGMT mRNA levels which correlated with their respective levels of MGMT activity. Exposure of buccal cell cultures to various organic or water-based extracts of products related to the use of tobacco and betel quid, decreased both cell survival (measured by reduction of tetrazolium dye) and MGMT activity (measured subsequently to the exposures in cellular extracts). Organic extracts of bidi smoke condensate and betel leaf showed higher potency than those of tobacco and snuff. An aqueous snuff extract also decreased both parameters, whereas an aqueous areca nut extract was without effect. The well-established sulph-hydryl-reactive agent Hg2+, a corrosion product of dental amalgam, served as a positive control and decreased MGMT activity following treatment of cells within a range of 1-10 microM. Taken together, significant MGMT activities were demonstrated in buccal tissue specimens and in the major buccal mucosal cell types in vitro. Lower than normal MGMT activity in two transformed buccal epithelial cell lines correlated with decreased MGMT mRNA and lack of functional p53. Finally, in vitro experiments suggested the potential inhibition of buccal mucosal MGMT activity by complex mixtures present in the saliva of tobacco and betel nut chewers.

  5. Role of the normal gut microbiota.

    PubMed

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  6. Compression stiffening of brain and its effect on mechanosensing by glioma cells

    NASA Astrophysics Data System (ADS)

    Pogoda, Katarzyna; Chin, LiKang; Georges, Penelope C.; Byfield, FitzRoy J.; Bucki, Robert; Kim, Richard; Weaver, Michael; Wells, Rebecca G.; Marcinkiewicz, Cezary; Janmey, Paul A.

    2014-07-01

    Many cell types, including neurons, astrocytes and other cells of the central nervous system, respond to changes in the extracellular matrix or substrate viscoelasticity, and increased tissue stiffness is a hallmark of several disease states, including fibrosis and some types of cancers. Whether the malignant tissue in brain, an organ that lacks the protein-based filamentous extracellular matrix of other organs, exhibits the same macroscopic stiffening characteristic of breast, colon, pancreatic and other tumors is not known. In this study we show that glioma cells, like normal astrocytes, respond strongly in vitro to substrate stiffness in the range of 100 to 2000 Pa, but that macroscopic (mm to cm) tissue samples isolated from human glioma tumors have elastic moduli in the order of 200 Pa that are indistinguishable from those of normal brain. However, both normal brain and glioma tissues increase their shear elastic moduli under modest uniaxial compression, and glioma tissue stiffens more strongly under compression than normal brain. These findings suggest that local tissue stiffness has the potential to alter glial cell function, and that stiffness changes in brain tumors might arise not from increased deposition or crosslinking of the collagen-rich extracellular matrix, but from pressure gradients that form within the tumors in vivo.

  7. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  8. Microgravity

    NASA Image and Video Library

    1996-06-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  9. Microgravity

    NASA Image and Video Library

    1988-07-14

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  10. Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  11. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  12. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  13. Are there attacking points in the eicosanoid cascade for chemotherapeutic options in benign meningiomas?

    PubMed

    Pfister, Christina; Ritz, Rainer; Pfrommer, Heike; Bornemann, Antje; Tatagiba, Marcos S; Roser, Florian

    2007-01-01

    The current treatment for recurrent or malignant meningiomas with adjuvant therapies has not been satisfactory, and there is an intense interest in evaluating new molecular markers to act as therapeutic targets. Enzymes of the arachidonic acid (AA) cascade such as cyclooxygenase (COX)-2 or 5-lipoxygenase (5-LO) are upregulated in a number of epithelial tumors, but to date there are hardly any data about the expression of these markers in meningiomas. To find possible targets for chemotherapeutic intervention, the authors evaluated the expression of AA derivatives at different molecular levels in meningiomas. One hundred and twenty-four meningioma surgical specimens and normal human cortical tissue samples were immunohistochemically and cytochemically stained for COX-2, COX-1, 5-LO, and prostaglandin E receptor 4 (PTGER4). In addition, Western blot and polymerase chain reaction (PCR) analyses were performed to detect the presence of eicosanoids in vivo and in vitro. Sixty (63%) of 95 benign meningiomas, 21 (88%) of 24 atypical meningiomas, all five malignant meningiomas, and all normal human cortex samples displayed high COX-2 immunoreactivity. All cultured specimens and IOMM-Lee cells stained positive for COX-2, COX-1, 5-LO, and PTGER4. The PCR analysis demonstrated no changes in eicosanoid expression among meningiomas of different World Health Organization grades and in normal human cortical and dura mater tissue. Eicosanoid derivatives COX-1, COX-2, 5-LO, and PTGER4 enzymes show a high universal expression in meningiomas but are not upregulated in normal human cortex and dura tissue. This finding of the ubiquitous presence of these enzymes in meningiomas offers an excellent baseline for testing upcoming chemotherapeutic treatments.

  14. An optimal state estimation model of sensory integration in human postural balance

    NASA Astrophysics Data System (ADS)

    Kuo, Arthur D.

    2005-09-01

    We propose a model for human postural balance, combining state feedback control with optimal state estimation. State estimation uses an internal model of body and sensor dynamics to process sensor information and determine body orientation. Three sensory modalities are modeled: joint proprioception, vestibular organs in the inner ear, and vision. These are mated with a two degree-of-freedom model of body dynamics in the sagittal plane. Linear quadratic optimal control is used to design state feedback and estimation gains. Nine free parameters define the control objective and the signal-to-noise ratios of the sensors. The model predicts statistical properties of human sway in terms of covariance of ankle and hip motion. These predictions are compared with normal human responses to alterations in sensory conditions. With a single parameter set, the model successfully reproduces the general nature of postural motion as a function of sensory environment. Parameter variations reveal that the model is highly robust under normal sensory conditions, but not when two or more sensors are inaccurate. This behavior is similar to that of normal human subjects. We propose that age-related sensory changes may be modeled with decreased signal-to-noise ratios, and compare the model's behavior with degraded sensors against experimental measurements from older adults. We also examine removal of the model's vestibular sense, which leads to instability similar to that observed in bilateral vestibular loss subjects. The model may be useful for predicting which sensors are most critical for balance, and how much they can deteriorate before posture becomes unstable.

  15. Patient-specific dose estimation for pediatric chest CT

    PubMed Central

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-01-01

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9–18.2kg) were created based on the patients’ actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120kVp, 70 or 75mA, 0.4s gantry rotation period, pitch of 1.375, 20mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7–5.3mSv∕100mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4–12.6mGy∕100mAs and 11.2–13.3mGy∕100mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%–18%) and for partially or indirectly exposed organs (11%–77%). Normalized effective dose correlated weakly with body weight (correlation coefficient:r=−0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=−0.99, heart: r=−0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for any other patient in the same size/protocol group who undergoes the chest scan. In summary, this work reported the first assessment of dose variations across pediatric CT patients in the same size/protocol group due to the variability of patient anatomy and body habitus and provided a previously unavailable method for patient-specific organ dose estimation, which will help in assessing patient risk and optimizing dose reduction strategies, including the development of scan protocols. PMID:19175138

  16. Patient-specific dose estimation for pediatric chest CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiang; Samei, Ehsan; Segars, W. Paul

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structuresmore » were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for any other patient in the same size/protocol group who undergoes the chest scan. In summary, this work reported the first assessment of dose variations across pediatric CT patients in the same size/protocol group due to the variability of patient anatomy and body habitus and provided a previously unavailable method for patient-specific organ dose estimation, which will help in assessing patient risk and optimizing dose reduction strategies, including the development of scan protocols.« less

  17. Selective differential human blood bilayer media for isolation of Gardnerella (Haemophilus) vaginalis.

    PubMed Central

    Totten, P A; Amsel, R; Hale, J; Piot, P; Holmes, K K

    1982-01-01

    New selective and differential human blood bilayer agar media with Tween 80 (HBT medium) or without Tween 80 (HB medium), developed for the isolation of Gardnerella (Haemophilus) vaginalis, permitted significantly higher G. vaginalis isolation rates than have been obtained for other media used for this purpose. HB medium consists of a basal layer of Columbia agar base containing colistin and naladixic acid with added amphotericin B and an overlayer of the same composition plus 5% human blood. HBT agar also contains Proteose Peptone No. 3 (Difco Laboratories) and Tween 80 in the basal layer and the overlayer. Both Tween 80 and the bilayer composition enhanced G. vaginalis production of human blood hemolysis, permitting detection of this organism even in the presence of heavy growth of other vaginal flora. The use of HB or HBT medium thus permitted the demonstration that G. vaginalis was present in vaginal fluid from a large percentage (up to 68%) of normal women. However, the concentration of G. vaginalis was found by semiquantitative analysis to be significantly higher in vaginal fluid from women with nonspecific vaginitis than in fluid from normal women. Images PMID:6764766

  18. Silencing the Snail-dependent RNA splice regulator ESRP1 drives malignant transformation of human pulmonary epithelial cells. | Office of Cancer Genomics

    Cancer.gov

    Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated including in non-small cell lung cancer (NSCLC). Here we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo.

  19. Modulation of apelin and APJ receptor in normal and preeclampsia-complicated placentas.

    PubMed

    Cobellis, L; De Falco, M; Mastrogiacomo, A; Giraldi, D; Dattilo, D; Scaffa, C; Colacurci, N; De Luca, A

    2007-01-01

    Apelin is an endogenous ligand of the human orphan receptor APJ. This peptide is produced through processing from the C-terminal portion in the pre-pro-protein consisting of 77 amino acid residues and exists in multiple molecular forms. Although the main physiological functions of apelin have not yet been clarified, it is known that apelin is involved in the regulation of blood pressure, blood flow and central control of body fluid homeostasis in different organs. Since human placenta is a tissue where vasculogenesis, blood pressure and flow are dramatically important to allow a normal embryonic and fetal growth and development, the aim of the present study was to investigate the immunohistochemical distribution of apelin and APJ in normal placentas throughout pregnancy and in preeclampsia-complicated placentas. Specifically, we observed that in normal placentas the expression levels of apelin decreased from the first to the third trimester of gestation in both cytotrophoblast and syncytiotrophoblast cells and in the stroma of placental villi, in contrast with increased expression levels of APJ in the cytoplasm of cytotrophoblast cells and in the cytoplasm of endothelial cells of normal placenta samples. In contrast, in preeclampsia-complicated pregnancies, we observed a very strong increase of expression levels of both apelin and APJ receptor in all the placental compartments, cytotrophoblast, syncytiotrophoblast and stroma with a particular increase in endothelial cells inside preeclamptic placental villi. Our data seem to indicate an important role of apelin and APJ in the regulation of fetal development through a correct regulation of human placenta formation during pregnancy. Moreover, the strong expression levels of apelin and APJ in preeclamptic placentas, suggest their possible involvement in the onset of this pathology.

  20. Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking.

    PubMed

    Gervasio, Sabata; Voigt, Michael; Kersting, Uwe G; Farina, Dario; Sinkjær, Thomas; Mrachacz-Kersting, Natalie

    2017-01-01

    A constant coordination between the left and right leg is required to maintain stability during human locomotion, especially in a variable environment. The neural mechanisms underlying this interlimb coordination are not yet known. In animals, interneurons located within the spinal cord allow direct communication between the two sides without the need for the involvement of higher centers. These may also exist in humans since sensory feedback elicited by tibial nerve stimulation on one side (ipsilateral) can affect the muscles activation in the opposite side (contralateral), provoking short-latency crossed responses (SLCRs). The current study investigated whether contralateral afferent feedback contributes to the mechanism controlling the SLCR in human gastrocnemius muscle. Surface electromyogram, kinematic and kinetic data were recorded from subjects during normal walking and hybrid walking (with the legs moving in opposite directions). An inverse dynamics model was applied to estimate the gastrocnemius muscle proprioceptors' firing rate. During normal walking, a significant correlation was observed between the magnitude of SLCRs and the estimated muscle spindle secondary afferent activity (P = 0.04). Moreover, estimated spindle secondary afferent and Golgi tendon organ activity were significantly different (P ≤ 0.01) when opposite responses have been observed, that is during normal (facilitation) and hybrid walking (inhibition) conditions. Contralateral sensory feedback, specifically spindle secondary afferents, likely plays a significant role in generating the SLCR. This observation has important implications for our understanding of what future research should be focusing on to optimize locomotor recovery in patient populations.

  1. Mechanism of Human Tooth Eruption: Review Article Including a New Theory for Future Studies on the Eruption Process

    PubMed Central

    Kjær, Inger

    2014-01-01

    Human eruption is a unique developmental process in the organism. The aetiology or the mechanism behind eruption has never been fully understood and the scientific literature in the field is extremely sparse. Human and animal tissues provide different possibilities for eruption analyses, briefly discussed in the introduction. Human studies, mainly clinical and radiological, have focused on normal eruption and gender differences. Why a tooth begins eruption and what enables it to move eruptively and later to end these eruptive movements is not known. Pathological eruption courses contribute to insight into the aetiology behind eruption. A new theory on the eruption mechanism is presented. Accordingly, the mechanism of eruption depends on the correlation between space in the eruption course, created by the crown follicle, eruption pressure triggered by innervation in the apical root membrane, and the ability of the periodontal ligament to adapt to eruptive movements. Animal studies and studies on normal and pathological eruption in humans can support and explain different aspects in the new theory. The eruption mechanism still needs elucidation and the paper recommends that future research on eruption keeps this new theory in mind. Understanding the aetiology of the eruption process is necessary for treating deviant eruption courses. PMID:24688798

  2. Complementary DNA characterization and chromosomal localization of a human gene related to the poliovirus receptor-encoding gene.

    PubMed

    Lopez, M; Eberlé, F; Mattei, M G; Gabert, J; Birg, F; Bardin, F; Maroc, C; Dubreuil, P

    1995-04-03

    The human poliovirus (PV) receptor (PVR) is a member of the immunoglobulin (Ig) superfamily with unknown cellular function. We have isolated a human PVR-related (PRR) cDNA. The deduced amino acid (aa) sequence of PRR showed, in the extracellular region, 51.7 and 54.3% similarity with human PVR and with the murine PVR homolog, respectively. The cDNA coding sequence is 1.6-kb long and encodes a deduced 57-kDa protein; this protein has a structural organization analogous to that of PVR, that is, one V- and two C-set Ig domains, with a conserved number of aa. Northern blot analysis indicated that a major 5.9-kb transcript is present in all normal human tissues tested. In situ hybridization showed that the PRR gene is located at bands q23-q24 of human chromosome 11.

  3. The role of syncytins in human reproduction and reproductive organ cancers.

    PubMed

    Soygur, Bikem; Sati, Leyla

    2016-11-01

    Human life begins with sperm and oocyte fusion. After fertilization, various fusion events occur during human embryogenesis and morphogenesis. For example, the fusion of trophoblastic cells constitutes a key process for normal placental development. Fusion in the placenta is facilitated by syncytin 1 and syncytin 2. These syncytins arose from retroviral sequences that entered the primate genome 25 million and more than 40 million years ago respectively. About 8% of the human genome consists of similar human endogenous retroviral (HERVs) sequences. Many are inactive because of mutations or deletions. However, the role of the few that remain transcriptionally active has not been fully elucidated. Syncytin proteins maintain cell-cell fusogenic activity based on ENV: gene-mediated viral cell entry. In this review, we summarize how syncytins and their receptors are involved in fusion events during human reproduction. The significance of syncytins in tumorigenesis is also discussed. © 2016 Society for Reproduction and Fertility.

  4. The production of glial cell line-derived neurotrophic factor by human sertoli cells is substantially reduced in sertoli cell-only testes.

    PubMed

    Singh, D; Paduch, D A; Schlegel, P N; Orwig, K E; Mielnik, A; Bolyakov, A; Wright, W W

    2017-05-01

    Do human Sertoli cells in testes that exhibit the Sertoli cell-only (SCO) phenotype produce substantially less glial cell line-derived neurotrophic factor (GDNF) than Sertoli cells in normal testes? In human SCO testes, both the amounts of GDNF mRNA per testis and the concentration of GDNF protein per Sertoli cell are markedly reduced as compared to normal testes. In vivo, GDNF is required to sustain the numbers and function of mouse spermatogonial stem cells (SSCs) and their immediate progeny, transit-amplifying progenitor spermatogonia. GDNF is expressed in the human testis, and the ligand-binding domain of the GDNF receptor, GFRA1, has been detected on human SSCs. The numbers and/or function of these stem cells are markedly reduced in some infertile men, resulting in the SCO histological phenotype. We determined the numbers of human spermatogonia per mm2 of seminiferous tubule surface that express GFRA1 and/or UCHL1, another marker of human SSCs. We measured GFRA1 mRNA expression in order to document the reduced numbers and/or function of SSCs in SCO testes. We quantified GDNF mRNA in testes of humans and mice, a species with GDNF-dependent SSCs. We also compared GDNF mRNA expression in human testes with normal spermatogenesis to that in testes exhibiting the SCO phenotype. As controls, we also measured transcripts encoding two other Sertoli cell products, kit ligand (KITL) and clusterin (CLU). Finally, we compared the amounts of GDNF per Sertoli cell in normal and SCO testes. Normal human testes were obtained from beating heart organ donors. Biopsies of testes from men who were infertile due to maturation arrest or the SCO phenotype were obtained as part of standard care during micro-testicular surgical sperm extraction. Cells expressing GFRA1, UCHL1 or both on whole mounts of normal human seminiferous tubules were identified by immunohistochemistry and confocal microscopy and their numbers were determined by image analysis. Human GDNF mRNA and GFRA1 mRNA were quantified by use of digital PCR and Taqman primers. Transcripts encoding mouse GDNF and human KITL, CLU and 18 S rRNA, used for normalization of data, were quantified by use of real-time PCR and Taqman primers. Finally, we used two independent methods, flow cytometric analysis of single cells and ELISA assays of homogenates of whole testis biopsies, to compare amounts of GDNF per Sertoli cell in normal and SCO testes. Normal human testes contain a large population of SSCs that express GFRA1, the ligand-binding domain of the GDNF receptor. In human SCO testes, GFRA1 mRNA was detected but at markedly reduced levels. Expression of GDNF mRNA and the amount of GDNF protein per Sertoli cell were also significantly reduced in SCO testes. These results were observed in multiple, independent samples, and the reduced amount of GDNF in Sertoli cells of SCO testes was demonstrated using two different analytical approaches. N/A. There currently are no approved protocols for the in vivo manipulation of human testis GDNF concentrations. Thus, while our data suggest that insufficient GDNF may be the proximal cause of some cases of human male infertility, our results are correlative in nature. We propose that insufficient GDNF expression may contribute to the infertility of some men with an SCO testicular phenotype. If their testes contain some SSCs, an approach that increases their testicular GDNF concentrations might expand stem cell numbers and possibly sperm production. This research was funded by the Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Centers for Translational Research in Reproduction and Infertility Program (NCTRI) Grant 1R01HD074542-04, as well as grants R01 HD076412-02 and P01 HD075795-02 and the U.S.-Israel Binational Science Foundation. Support for this research was also provided by NIH P50 HD076210, the Robert Dow Foundation, the Frederick & Theresa Dow Wallace Fund of the New York Community Trust and the Brady Urological Foundation. There are no competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  5. Volatile metabolomic signature of human breast cancer cell lines

    PubMed Central

    Silva, Catarina L.; Perestrelo, Rosa; Silva, Pedro; Tomás, Helena; Câmara, José S.

    2017-01-01

    Breast cancer (BC) remains the most prevalent oncologic pathology in women, causing huge psychological, economic and social impacts on our society. Currently, the available diagnostic tools have limited sensitivity and specificity. Metabolome analysis has emerged as a powerful tool for obtaining information about the biological processes that occur in organisms, and is a useful platform for discovering new biomarkers or make disease diagnosis using different biofluids. Volatile organic compounds (VOCs) from the headspace of cultured BC cells and normal human mammary epithelial cells, were collected by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography combined with mass spectrometry (GC–MS), thus defining a volatile metabolomic signature. 2-Pentanone, 2-heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were detected only in cultured BC cell lines. Multivariate statistical methods were used to verify the volatomic differences between BC cell lines and normal cells in order to find a set of specific VOCs that could be associated with BC, providing comprehensive insight into VOCs as potential cancer biomarkers. The establishment of the volatile fingerprint of BC cell lines presents a powerful approach to find endogenous VOCs that could be used to improve the BC diagnostic tools and explore the associated metabolomic pathways. PMID:28256598

  6. Modeling man: the monkey colony at the Carnegie Institution of Washington's Department of Embryology, 1925-1971.

    PubMed

    Wilson, Emily K

    2012-01-01

    Though better recognized for its immediate endeavors in human embryo research, the Carnegie Department of Embryology also employed a breeding colony of rhesus macaques for the purposes of studying human reproduction. This essay follows the course of the first enterprise in maintaining a primate colony for laboratory research and the overlapping scientific, social, and political circumstances that tolerated and cultivated the colony's continued operation from 1925 until 1971. Despite a new-found priority for reproductive sciences in the United States, by the early 1920s an unfertilized human ovum had not yet been seen and even the timing of ovulation remained unresolved. Progress would require an organized research approach that could extend beyond the limitations of working with scant and inherently restrictive human subjects or with common lab mammals like mice. In response, the Department of Embryology, under the Carnegie Institution of Washington (CIW), instituted a novel methodology using a particular primate species as a surrogate in studying normal human reproductive physiology. Over more than 40 years the monkey colony followed an unpremeditated trajectory that would contribute fundamentally to discoveries in human reproduction, early embryo development, reliable birth control methods, and to the establishment of the rhesus macaque as a common model organism.

  7. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.B.; Aydogan, B.

    In the development of new radiopharmaceuticals, animal studies are typically performed to get a first approximation of the expected radiation dose in humans. This study evaluates the performance of some commonly used data extrapolation techniques to predict residence times in humans using data collected from animals. Residence times were calculated using animal and human data, and distributions of ratios of the animal results to human results were constructed for each extrapolation method. Four methods using animal data to predict human residence times were examined: (1) using no extrapolation, (2) using relative organ mass extrapolation, (3) using physiological time extrapolation, andmore » (4) using a combination of the mass and time methods. The residence time ratios were found to be log normally distributed for the nonextrapolated and extrapolated data sets. The use of relative organ mass extrapolation yielded no statistically significant change in the geometric mean or variance of the residence time ratios as compared to using no extrapolation. Physiologic time extrapolation yielded a statistically significant improvement (p < 0.01, paired t test) in the geometric mean of the residence time ratio from 0.5 to 0.8. Combining mass and time methods did not significantly improve the results of using time extrapolation alone. 63 refs., 4 figs., 3 tabs.« less

  8. Comparison of primary human fibroblasts and keratinocytes with immortalized cell lines regarding their sensitivity to sodium dodecyl sulfate in a neutral red uptake cytotoxicity assay.

    PubMed

    Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan

    2009-01-01

    Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells.

  9. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant human tissue, revealing a role for GPER in estrogen-induced breast physiology and pathology. PMID:24718936

  10. Auditory input modulates sleep: an intra-cochlear-implanted human model.

    PubMed

    Velluti, Ricardo A; Pedemonte, Marisa; Suárez, Hámlet; Bentancor, Claudia; Rodríguez-Servetti, Zulma

    2010-12-01

    To properly demonstrate the effect of auditory input on sleep of intra-cochlear-implanted patients, the following approach was developed. Four implanted deaf patients were recorded during four nights: two nights with the implant OFF, with no auditory input, and two nights with the implant ON, that is, with normal auditory input, being only the common night sounds present, without any additional auditory stimuli delivered. The sleep patterns of another five deaf people were used as controls, exhibiting normal sleep organization. Moreover, the four experimental patients with intra-cochlear devices and the implant OFF also showed normal sleep patterns. On comparison of the night recordings with the implant ON and OFF, a new sleep organization was observed for the recordings with the implant ON, suggesting that brain plasticity may produce changes in the sleep stage percentages while maintaining the ultradian rhythm. During sleep with the implant ON, the analysis of the electroencephalographic delta, theta and alpha bands in the frequency domain, using the Fast Fourier Transform, revealed a diversity of changes in the power originated in the contralateral cortical temporal region. Different power shifts were observed, perhaps related to the exact position of the implant inside the cochlea and the scalp electrode location. In conclusion, this pilot study shows that the auditory input in humans can introduce changes in central nervous system activity leading to shifts in sleep characteristics, as previously demonstrated in guinea pigs. We are postulating that an intra-cochlear-implanted deaf patient may have a better recovery if the implant is maintained ON during the night, that is, during sleep. © 2010 European Sleep Research Society.

  11. Self-Organizing Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down Syndrome.

    PubMed

    Higuera, Clara; Gardiner, Katheleen J; Cios, Krzysztof J

    2015-01-01

    Down syndrome (DS) is a chromosomal abnormality (trisomy of human chromosome 21) associated with intellectual disability and affecting approximately one in 1000 live births worldwide. The overexpression of genes encoded by the extra copy of a normal chromosome in DS is believed to be sufficient to perturb normal pathways and normal responses to stimulation, causing learning and memory deficits. In this work, we have designed a strategy based on the unsupervised clustering method, Self Organizing Maps (SOM), to identify biologically important differences in protein levels in mice exposed to context fear conditioning (CFC). We analyzed expression levels of 77 proteins obtained from normal genotype control mice and from their trisomic littermates (Ts65Dn) both with and without treatment with the drug memantine. Control mice learn successfully while the trisomic mice fail, unless they are first treated with the drug, which rescues their learning ability. The SOM approach identified reduced subsets of proteins predicted to make the most critical contributions to normal learning, to failed learning and rescued learning, and provides a visual representation of the data that allows the user to extract patterns that may underlie novel biological responses to the different kinds of learning and the response to memantine. Results suggest that the application of SOM to new experimental data sets of complex protein profiles can be used to identify common critical protein responses, which in turn may aid in identifying potentially more effective drug targets.

  12. Self-Organizing Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down Syndrome

    PubMed Central

    Higuera, Clara; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2015-01-01

    Down syndrome (DS) is a chromosomal abnormality (trisomy of human chromosome 21) associated with intellectual disability and affecting approximately one in 1000 live births worldwide. The overexpression of genes encoded by the extra copy of a normal chromosome in DS is believed to be sufficient to perturb normal pathways and normal responses to stimulation, causing learning and memory deficits. In this work, we have designed a strategy based on the unsupervised clustering method, Self Organizing Maps (SOM), to identify biologically important differences in protein levels in mice exposed to context fear conditioning (CFC). We analyzed expression levels of 77 proteins obtained from normal genotype control mice and from their trisomic littermates (Ts65Dn) both with and without treatment with the drug memantine. Control mice learn successfully while the trisomic mice fail, unless they are first treated with the drug, which rescues their learning ability. The SOM approach identified reduced subsets of proteins predicted to make the most critical contributions to normal learning, to failed learning and rescued learning, and provides a visual representation of the data that allows the user to extract patterns that may underlie novel biological responses to the different kinds of learning and the response to memantine. Results suggest that the application of SOM to new experimental data sets of complex protein profiles can be used to identify common critical protein responses, which in turn may aid in identifying potentially more effective drug targets. PMID:26111164

  13. Reduced chromosome aberration complexity in normal human bronchial epithelial cells exposed to low-LET γ-rays and high-LET α-particles

    PubMed Central

    2013-01-01

    Purpose: Cells of the lung are at risk from exposure to low and moderate doses of ionizing radiation from a range of environmental and medical sources. To help assess human health risks from such exposures, a better understanding of the frequency and types of chromosome aberration initially-induced in human lung cell types is required to link initial DNA damage and rearrangements with transmission potential and, to assess how this varies with radiation quality. Materials and methods: We exposed normal human bronchial lung epithelial (NHBE) cells in vitro to 0.5 and 1 Gy low-linear energy transfer (LET) γ-rays and a low fluence of high-LET α-particles and assayed for chromosome aberrations in premature chromosome condensation (PCC) spreads by 24-color multiplex-fluorescence in situ hybridization (M-FISH). Results: Both simple and complex aberrations were induced in a LET and dose-dependent manner; however, the frequency and complexity observed were reduced in comparison to that previously reported in spherical cell types after exposure to comparable doses or fluence of radiation. Approximately 1–2% of all exposed cells were categorized as being capable of transmitting radiation-induced chromosomal damage to future NHBE cell generations, irrespective of dose. Conclusion: One possible mechanistic explanation for this reduced complexity is the differing geometric organization of chromosome territories within ellipsoid nuclei compared to spherical nuclei. This study highlights the need to better understand the role of nuclear organization in the formation of exchange aberrations and, the influence three-dimensional (3D) tissue architecture may have on this in vivo. PMID:23679558

  14. Deficiency of Huntingtin Has Pleiotropic Effects in the Social Amoeba Dictyostelium discoideum

    PubMed Central

    Myre, Michael A.; Lumsden, Amanda L.; Thompson, Morgan N.; Wasco, Wilma; MacDonald, Marcy E.; Gusella, James F.

    2011-01-01

    Huntingtin is a large HEAT repeat protein first identified in humans, where a polyglutamine tract expansion near the amino terminus causes a gain-of-function mechanism that leads to selective neuronal loss in Huntington's disease (HD). Genetic evidence in humans and knock-in mouse models suggests that this gain-of-function involves an increase or deregulation of some aspect of huntingtin's normal function(s), which remains poorly understood. As huntingtin shows evolutionary conservation, a powerful approach to discovering its normal biochemical role(s) is to study the effects caused by its deficiency in a model organism with a short life-cycle that comprises both cellular and multicellular developmental stages. To facilitate studies aimed at detailed knowledge of huntingtin's normal function(s), we generated a null mutant of hd, the HD ortholog in Dictyostelium discoideum. Dictyostelium cells lacking endogenous huntingtin were viable but during development did not exhibit the typical polarized morphology of Dictyostelium cells, streamed poorly to form aggregates by accretion rather than chemotaxis, showed disorganized F-actin staining, exhibited extreme sensitivity to hypoosmotic stress, and failed to form EDTA-resistant cell–cell contacts. Surprisingly, chemotactic streaming could be rescued in the presence of the bivalent cations Ca2+ or Mg2+ but not pulses of cAMP. Although hd − cells completed development, it was delayed and proceeded asynchronously, producing small fruiting bodies with round, defective spores that germinated spontaneously within a glassy sorus. When developed as chimeras with wild-type cells, hd − cells failed to populate the pre-spore region of the slug. In Dictyostelium, huntingtin deficiency is compatible with survival of the organism but renders cells sensitive to low osmolarity, which produces pleiotropic cell autonomous defects that affect cAMP signaling and as a consequence development. Thus, Dictyostelium provides a novel haploid organism model for genetic, cell biological, and biochemical studies to delineate the functions of the HD protein. PMID:21552328

  15. Differences in Relative Levels of 88 microRNAs in Various Regions of the Normal Adult Human Brain.

    PubMed

    Filatova, Elena V; Alieva, Anelya; Shadrina, Maria I; Slominsky, Petr A

    2017-08-16

    Since the discovery of microRNAs (miRNAs) in the 1990s, our knowledge about their biology has grown considerably. The increasing number of studies addressing the role of miRNAs in development and in various diseases emphasizes the need for a comprehensive catalogue of accurate sequence, expression and conservation information regarding the large number of miRNAs proposed recently in all organs and tissues. The objective of this study was to provide data on the levels of miRNA expression in 15 tissues of the normal human brain. We conducted an analysis of the relative levels of 88 of the most abundantly expressed and best characterized miRNA derived postmortem from well-characterized samples of various regions of the brains from five normal individuals. The cluster analysis revealed some differences in the relative levels of these miRNAs among the brain regions studied. Such diversity can be explained by different functioning of these brain regions. We hope that the data from the current study are a resource that will be useful to our colleagues in this exciting field, as more hypotheses will be generated and tested with regard to small noncoding RNA in the human brain in healthy and disease states. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Fracture healing: mechanisms and interventions

    PubMed Central

    Einhorn, Thomas A.; Gerstenfeld, Louis C.

    2015-01-01

    Fractures are the most common large-organ, traumatic injuries to humans. The repair of bone fractures is a postnatal regenerative process that recapitulates many of the ontological events of embryonic skeletal development. Although fracture repair usually restores the damaged skeletal organ to its pre-injury cellular composition, structure and biomechanical function, about 10% of fractures will not heal normally. This article reviews the developmental progression of fracture healing at the tissue, cellular and molecular levels. Innate and adaptive immune processes are discussed as a component of the injury response, as are environmental factors, such as the extent of injury to the bone and surrounding tissue, fixation and the contribution of vascular tissues. We also present strategies for fracture treatment that have been tested in animal models and in clinical trials or case series. The biophysical and biological basis of the molecular actions of various therapeutic approaches, including recombinant human bone morphogenetic proteins and parathyroid hormone therapy, are also discussed. PMID:25266456

  17. Probing the Effects of Stress Mediators on the Human Hair Follicle

    PubMed Central

    Peters, Eva M.J.; Liotiri, Sofia; Bodó, Enikő; Hagen, Evelin; Bíró, Tamás; Arck, Petra C.; Paus, Ralf

    2007-01-01

    Stress alters murine hair growth, depending on substance P-mediated neurogenic inflammation and nerve growth factor (NGF), a key modulator of hair growth termination (catagen induction). Whether this is of any relevance in human hair follicles (HFs) is completely unclear. Therefore, we have investigated the effects of substance P, the central cutaneous prototypic stress-associated neuropeptide, on normal, growing human scalp HFs in organ culture. We show that these prominently expressed substance P receptor (NK1) at the gene and protein level. Organ-cultured HFs responded to substance P by premature catagen development, down-regulation of NK1, and up-regulation of neutral endopeptidase (degrades substance P). This was accompanied by mast cell degranulation in the HF connective tissue sheath, indicating neurogenic inflammation. Substance P down-regulated immunoreactivity for the growth-promoting NGF receptor (TrkA), whereas it up-regulated NGF and its apoptosis- and catagen-promoting receptor (p75NTR). In addition, MHC class I and β2-microglobulin immunoreactivity were up-regulated and detected ectopically, indicating collapse of the HF immune privilege. In conclusion, we present a simplistic, but instructive, organ culture assay to demonstrate sensitivity of the human HF to key skin stress mediators. The data obtained therewith allow one to sketch the first evidence-based biological explanation for how stress may trigger or aggravate telogen effluvium and alopecia areata. PMID:18055548

  18. Hard X-ray Microscopic Images of the Human Hair

    NASA Astrophysics Data System (ADS)

    Goo, Jawoong; Jeon, Soo Young; Oh, Tak Heon; Hong, Seung Phil; Yon, Hwa Shik; Lee, Won-Soo

    2007-01-01

    The better visualization of the human organs or internal structure is challenging to the physicist and physicians. It can lead to more understanding of the morphology, pathophysiology and the diagnosis. Conventionally used methods to investigate cells or architectures, show limited value due to sample processing procedures and lower resolution. In this respect, Zernike type phase contrast hard x-ray microscopy using 6.95keV photon energy has advantages. We investigated hair fibers of the normal healthy persons. Coherence based phase contrast images revealed three distinct structures of hair, medulla, cortex, and cuticular layer. Some different detailed characters of each sample were noted. And further details would be shown and these results would be utilized as basic data of morphologic study of human hair.

  19. The intramolecular position of docosahexaenoic acid in the triacylglycerol sources used for pediatric nutrition has a minimal effect on its metabolic use.

    PubMed

    Sala-Vila, Aleix; Castellote, Ana I; López-Sabater, M Carmen

    2008-03-01

    Docosahexaenoic acid (DHA) plays an important role in normal development of the brain and retina in the human. In utero, DHA is incorporated in the fetus, and its accretion continues throughout early postnatal life. Although human breast milk contains this fatty acid, several organizations recommend supplementing infant formulas with DHA for infants and premature infants. Traditionally, certain types of fish oil have been used for fortifying some infant formulas, but with the decline in world fisheries, the search for alternative sources of DHA continues. Among the viable ingredient sources of DHA is oil derived from single-cell organisms (marine microorganisms); however, these oil sources display different positional specificity of DHA in the glycerol lipids compared with that found in human breast milk lipids. In the latter, the DHA is mainly esterified in the central position of the glycerol backbone. Because of these differences in human milk and oils derived from single-cell organisms, recent research in biotechnology has focused on developing new structured triacylglycerols with an intramolecular structure resembling that found in human milk lipids. This research is justified by the potential differences in metabolism of DHA based on the hypothetical bioavailability and benefits in DHA found in human milk lipids. Presented herein is a review of the published research on the metabolism of DHA from different triacylglycerol sources including in vitro studies and animal studies. Despite small differences observed in digestion, the current data reveal a minimal effect on the parameters of development studied for the intramolecular position in which DHA is esterified.

  20. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis.

    PubMed

    Visvader, Jane E

    2009-11-15

    The epithelium of the mammary gland exists in a highly dynamic state, undergoing dramatic morphogenetic changes during puberty, pregnancy, lactation, and regression. The recent identification of stem and progenitor populations in mouse and human mammary tissue has provided evidence that the mammary epithelium is organized in a hierarchical manner. Characterization of these normal epithelial subtypes is an important step toward understanding which cells are predisposed to oncogenesis. This review summarizes progress in the field toward defining constituent cells and key molecular regulators of the mammary epithelial hierarchy. Potential relationships between normal epithelial populations and breast tumor subtypes are discussed, with implications for understanding the cellular etiology underpinning breast tumor heterogeneity.

  1. Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes.

    PubMed

    Schwartz, R S; Tanaka, Y; Fidler, I J; Chiu, D T; Lubin, B; Schroit, A J

    1985-06-01

    The precise mechanism by which sickle erythrocytes (RBC) are removed from the circulation is controversial, although it is possible that enhanced recognition of these cells by circulating mononuclear phagocytes could contribute to this process. We investigated this possibility by interacting sickle cells with cultured human peripheral blood monocytes. Our results show that both irreversibly sickled cells (ISC) and deoxygenated reversibly sickled cells (RSC) had a higher avidity for adherence to monocytes than did oxygenated sickle and normal RBC. ISC were the most adherent cell type. Adherence of RSC to monocytes was found to be reversible; reoxygenation of deoxygenated RSC resulted in a significant decrease in RSC--monocyte adherence. Concomitant with alterations in sickle RBC adherence were alterations in the organization and bilayer distribution of membrane phospholipids in these cells. Specifically, enhanced adherence was associated with increased exposure of RBC membrane outer leaflet phosphatidylserine (PS) and phosphatidylethanolamine, whereas lack of adherence was associated with normal patterns of membrane phospholipid distribution. To investigate the possibility of whether the exposure of PS in the outer membrane leaflet of these cells might be responsible for their recognition by monocytes, the membranes of normal RBC were enriched with the fluorescent PS analogue 1-acyl-2[(N-4-nitro-benzo-2-oxa-1,3-diazole)aminocaproyl]-phosphatidy lse rine (NBD-PS) via transfer of the exogenous lipid from a population of donor phospholipid vesicles (liposomes). RBC enriched with NBD-PS exhibited enhanced adherence to monocytes, whereas adherence of RBC enriched with similar amounts of NBD-phosphatidylcholine (NBD-PC) was not increased. Furthermore, preincubation of monocytes with PS liposomes resulted in a approximately 60% inhibition of ISC adherence to monocytes, whereas no inhibition occurred when monocytes were preincubated with PC liposomes. These findings strongly suggest that erythrocyte surface PS may be a ligand recognized by receptors on human peripheral blood monocytes and that abnormal exposure of PS in the outer leaflet of the RBC membrane, as found in sickle RBC, might serve to trigger their recognition by circulating monocytes. Our results further suggest that abnormalities in the organization of erythrocyte membrane phospholipids may have significant pathophysiologic implications, possibly including shortened cell survival.

  2. Distribution of collagens type V and VI in the normal human alveolar mucosa: an immunoelectronmicroscopic study using ultrathin frozen sections.

    PubMed

    Rabanus, J P; Gelderblom, H R; Schuppan, D; Becker, J

    1991-05-01

    The ultrastructural localization of collagens type V and VI in normal human gingival mucosa was investigated by immunoelectron microscopy. Twenty biopsies were fixed in dimethylsuberimidate and shock-frozen in slush nitrogen. Collagen type V was mainly located to meshworks of uniform nonstriated microfibrils of 12 to 20 nm width, which preferentially appeared in larger spaces between cross-striated major collagen fibrils. Occasionally single microfibrils of collagen type V fanned out from the ends of major collagen fibrils, which may indicate a role as a core fibril. Collagen type V was not found in the subepithelial basement membrane and the immediately adjacent stroma. Collagen type VI was detected in a loose reticular network of unbanded microfilaments that were morphologically distinguishable by knoblike protrusions every 100-110 nm. These microfilaments were found in the vicinity, but not as an intrinsic component, of the subepithelial basement membrane. Single filaments of collagen type VI filaments appeared to form bridges between neighboring cross-striated major collagen fibrils, suggesting an interconnecting role for this collagen type. The method presented appears to be excellently suited to study the normal and pathological supramolecular organization of the oral extracellular matrix.

  3. A preliminary study of differentially expressed genes in expanded skin and normal skin: implications for adult skin regeneration.

    PubMed

    Yang, Mei; Liang, Yimin; Sheng, Lingling; Shen, Guoxiong; Liu, Kai; Gu, Bin; Meng, Fanjun; Li, Qingfeng

    2011-03-01

    In adults, severely damaged skin heals by scar formation and cannot regenerate to the original skin structure. However, tissue expansion is an exception, as normal skin regenerates under the mechanical stretch resulting from tissue expansion. This technique has been used clinically for defect repair and organ reconstruction for decades. However, the phenomenon of adult skin regeneration during tissue expansion has caused little attention, and the mechanism of skin regeneration during tissue expansion has not been fully understood. In this study, microarray analysis was performed on expanded human skin and normal human skin. Significant difference was observed in 77 genes, which suggest a network of several integrated cascades, including cytokines, extracellular, cytoskeletal, transmembrane molecular systems, ion or ion channels, protein kinases and transcriptional systems, is involved in the skin regeneration during expansion. Among these, the significant expression of some regeneration related genes, such as HOXA5, HOXB2 and AP1, was the first report in tissue expansion. Data in this study suggest a list of candidate genes, which may help to elucidate the fundamental mechanism of skin regeneration during tissue expansion and which may have implications for postnatal skin regeneration and therapeutic interventions in wound healing.

  4. Decellularized Human Kidney Cortex Hydrogels Enhance Kidney Microvascular Endothelial Cell Maturation and Quiescence.

    PubMed

    Nagao, Ryan J; Xu, Jin; Luo, Ping; Xue, Jun; Wang, Yi; Kotha, Surya; Zeng, Wen; Fu, Xiaoyun; Himmelfarb, Jonathan; Zheng, Ying

    2016-10-01

    The kidney peritubular microvasculature is highly susceptible to injury from drugs and toxins, often resulting in acute kidney injury and progressive chronic kidney disease. Little is known about the process of injury and regeneration of human kidney microvasculature, resulting from the lack of appropriate kidney microvascular models that can incorporate the proper cells, extracellular matrices (ECMs), and architectures needed to understand the response and contribution of individual vascular components in these processes. In this study, we present methods to recreate the human kidney ECM (kECM) microenvironment by fabricating kECM hydrogels derived from decellularized human kidney cortex. The majority of native matrix proteins, such as collagen-IV, laminin, and heparan sulfate proteoglycan, and their isoforms were preserved in similar proportions as found in normal kidneys. Human kidney peritubular microvascular endothelial cells (HKMECs) became more quiescent when cultured on this kECM gel compared with culture on collagen-I-assessed using phenotypic, genotypic, and functional assays; whereas human umbilical vein endothelial cells became stimulated on kECM gels. We demonstrate for the first time that human kidney cortex can form a hydrogel suitable for use in flow-directed microphysiological systems. Our findings strongly suggest that selecting the proper ECM is a critical consideration in the development of vascularized organs on a chip and carries important implications for tissue engineering of all vascularized organs.

  5. Effect of cadmium on the expression levels of interleukin-1α and interleukin-10 cytokines in human lung cells.

    PubMed

    Odewumi, Caroline; Latinwo, Lekan M; Sinclair, Andre; Badisa, Veera L D; Abdullah, Ahkinyala; Badisa, Ramesh B

    2015-11-01

    Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)‑1α and IL‑10 cytokines at various concentrations and incubation durations were assessed in MRC‑9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme‑linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC‑9 lung cells. In the normal MRC‑9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC‑9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity.

  6. The impact of mycotoxicoses on human history.

    PubMed

    Peraica, Maja; Rašić, Dubravka

    2012-12-01

    Mycotoxicoses are acute or chronic diseases of humans and animals caused by mycotoxins, toxic compounds produced by moulds. Of about 400 known mycotoxins only a small number are known to cause mycotoxicoses in humans. Organs that are most targeted are those in which mycotoxins are metabolised, that is, the liver and kidneys, but the lesions may affect the neurological, respiratory, digestive, haematological, endocrine, and immune systems as well. The epidemics of mycotoxicoses are often connected with times of famine, when population consumes food that would not be consumed in normal circumstances. Mycotoxicoses have influenced human history, causing demographic changes, migrations, or even influencing the outcomes of wars. Fortunately, epidemics affecting so many persons and with so many fatalities belong to the past. Today they only appear in small communities such as schools and factory canteens. This paper presents epidemics and pandemics of mycotoxicoses that influenced human history.

  7. Endoreplication and polyploidy: insights into development and disease

    PubMed Central

    Fox, Donald T.; Duronio, Robert J.

    2013-01-01

    Polyploid cells have genomes that contain multiples of the typical diploid chromosome number and are found in many different organisms. Studies in a variety of animal and plant developmental systems have revealed evolutionarily conserved mechanisms that control the generation of polyploidy and have recently begun to provide clues to its physiological function. These studies demonstrate that cellular polyploidy plays important roles during normal development and also contributes to human disease, particularly cancer. PMID:23222436

  8. Molecular and physiological manifestations and measurement of aging in humans.

    PubMed

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. T-tubule disease: Relationship between t-tubule organization and regional contractile performance in human dilated cardiomyopathy.

    PubMed

    Crossman, David J; Young, Alistair A; Ruygrok, Peter N; Nason, Guy P; Baddelely, David; Soeller, Christian; Cannell, Mark B

    2015-07-01

    Evidence from animal models suggest that t-tubule changes may play an important role in the contractile deficit associated with heart failure. However samples are usually taken at random with no regard as to regional variability present in failing hearts which leads to uncertainty in the relationship between contractile performance and possible t-tubule derangement. Regional contraction in human hearts was measured by tagged cine MRI and model fitting. At transplant, failing hearts were biopsy sampled in identified regions and immunocytochemistry was used to label t-tubules and sarcomeric z-lines. Computer image analysis was used to assess 5 different unbiased measures of t-tubule structure/organization. In regions of failing hearts that showed good contractile performance, t-tubule organization was similar to that seen in normal hearts, with worsening structure correlating with the loss of regional contractile performance. Statistical analysis showed that t-tubule direction was most highly correlated with local contractile performance, followed by the amplitude of the sarcomeric peak in the Fourier transform of the t-tubule image. Other area based measures were less well correlated. We conclude that regional contractile performance in failing human hearts is strongly correlated with the local t-tubule organization. Cluster tree analysis with a functional definition of failing contraction strength allowed a pathological definition of 't-tubule disease'. The regional variability in contractile performance and cellular structure is a confounding issue for analysis of samples taken from failing human hearts, although this may be overcome with regional analysis by using tagged cMRI and biopsy mapping. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Lactate Clearance and Normalization and Prolonged Organ Dysfunction in Pediatric Sepsis.

    PubMed

    Scott, Halden F; Brou, Lina; Deakyne, Sara J; Fairclough, Diane L; Kempe, Allison; Bajaj, Lalit

    2016-03-01

    To evaluate whether lactate clearance and normalization during emergency care of pediatric sepsis is associated with lower rates of persistent organ dysfunction. This was a prospective cohort study of 77 children <18 years of age in the emergency department with infection and acute organ dysfunction per consensus definitions. In consented patients, lactate was measured 2 and/or 4 hours after an initial lactate; persistent organ dysfunction was assessed through laboratory and physician evaluation at 48 hours. A decrease of ≥ 10% from initial to final level was considered lactate clearance; a final level < 2 mmol/L was considered lactate normalization. Relative risk (RR) with 95% CIs, adjusted in a log-binomial model, was used to evaluate associations between lactate clearance/normalization and organ dysfunction. Lactate normalized in 62 (81%) patients and cleared in 70 (91%). The primary outcome, persistent 48-hour organ dysfunction, was present in 32 (42%). Lactate normalization was associated with decreased risk of persistent organ dysfunction (RR 0.46, 0.29-0.73; adjusted RR 0.47, 0.29-0.78); lactate clearance was not (RR 0.70, 0.35-1.41; adjusted RR 0.75, 0.38-1.50). The association between lactate normalization and decreased risk of persistent organ dysfunction was retained in the subgroups with initial lactate ≥ 2 mmol/L and hypotension. In children with sepsis and organ dysfunction, lactate normalization within 4 hours was associated with decreased persistent organ dysfunction. Serial lactate level measurement may provide a useful prognostic tool during the first hours of resuscitation in pediatric sepsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Msx homeobox gene family and craniofacial development.

    PubMed

    Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping

    2003-12-01

    Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.

  12. Hydrogel scaffolds promote neural gene expression and structural reorganization in human astrocyte cultures.

    PubMed

    Knight, V Bleu; Serrano, Elba E

    2017-01-01

    Biomaterial scaffolds have the potential to enhance neuronal development and regeneration. Understanding the genetic responses of astrocytes and neurons to biomaterials could facilitate the development of synthetic environments that enable the specification of neural tissue organization with engineered scaffolds. In this study, we used high throughput transcriptomic and imaging methods to determine the impact of a hydrogel, PuraMatrix™, on human glial cells in vitro . Parallel studies were undertaken with cells grown in a monolayer environment on tissue culture polystyrene. When the Normal Human Astrocyte (NHA) cell line is grown in a hydrogel matrix environment, the glial cells adopt a structural organization that resembles that of neuronal-glial cocultures, where neurons form clusters that are distinct from the surrounding glia. Statistical analysis of next generation RNA sequencing data uncovered a set of genes that are differentially expressed in the monolayer and matrix hydrogel environments. Functional analysis demonstrated that hydrogel-upregulated genes can be grouped into three broad categories: neuronal differentiation and/or neural plasticity, response to neural insult, and sensory perception. Our results demonstrate that hydrogel biomaterials have the potential to transform human glial cell identity, and may have applications in the repair of damaged brain tissue.

  13. Partitioning of Inorganic Elements Consumed by Humans Between the Various Fractions of Human Wastes: A Review and Analysis of Existing Literature

    NASA Technical Reports Server (NTRS)

    Wignarajah, K.; Fisher, John W.; Pisharody, Suresh A.

    2003-01-01

    The nutritional requirements of humans and astronauts are well defined and show consistency, but the same cannot be said of human wastes. Nutrients taken up by humans can be considered to fall into two major categories - organic and inorganic fractions. Carbon, hydrogen, oxygen, nitrogen and sulfur are elements that are associated with the organic fraction. These elements are taken up in large amounts by humans and when metabolized released in wastes often in gaseous forms or as water. On the other hand, a large number of the elements are simply exchanged and can be accounted for in the liquid and solid wastes of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g P, S and Cl), 17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult human, these elements should not normally accumulate in humans, but will be excreted in the different human wastes. Knowledge of the partitioning of these elements between the different human waste fractions is fundamental to understanding (a) how these elements can be recovered for reuse in space habitats, and (b) to developing the processors for waste management. The current literature is exhaustive but sometimes also conflicting. We have used the existing knowledge of nutrition and waste from medical literature and NASA documentation to develop a consensus to typify and chemically characterize the various human wastes. The partitioning of these elements has been developed into a functional model.

  14. Systemic effects of AGEs in ER stress induction in vivo.

    PubMed

    Adamopoulos, Christos; Mihailidou, Chrysovalantou; Grivaki, Christofora; Papavassiliou, Kostas A; Kiaris, Hippokratis; Piperi, Christina; Papavassiliou, Athanasios G

    2016-08-01

    Emerging evidence indicates that accumulation of advanced glycation end products (AGEs) in human tissues may contribute to cell injury, inflammation and apoptosis through induction of endoplasmic reticulum (ER) stress. Human metabolism relies on ER homeostasis for the coordinated response of all metabolic organs by controlling the synthesis and catabolism of various nutrients. In vitro studies have demonstrated AGE-induced enhancement of unfolded protein response (UPR) in different cell types including endothelial, neuronal, pancreatic cells and podocytes, suggesting this crosstalk as an underlying pathological mechanism that contributes to metabolic diseases. In this minireview, we describe in vivo studies undertaken by our group and others that demonstrate the diverse systemic effects of AGEs in ER stress induction in major metabolic tissues such as brain, kidney, liver and pancreas of normal mice. Administration of high-AGEs content diet to normal mice for the period of 4 weeks upergulates the mRNA and protein levels of ER chaperone Bip (GRP78) indicative of UPR initiation in all major metabolic organs and induces activation of the pivotal transcription factor XBP1 that regulates glucose and lipid metabolism. Furthermore, animals with genetic ablation of UPR-activated transcription factor C/EBP homologous protein CHOP allocated in high-AGEs diet, exhibited relative resistance to UPR induction (BiP levels) and XBP1 activation in major metabolic organs. Since CHOP presents a critical mediator that links accumulation and aggregation of unfolded proteins with induction of oxidative stress and ER stress-related apoptosis, it is revealed as an important molecular target for the management of metabolic diseases.

  15. Three-Dimensional Culture of Human Breast Epithelial Cells: The How and the Why

    PubMed Central

    Vidi, Pierre-Alexandre; Bissell, Mina J.; Lelièvre, Sophie A.

    2013-01-01

    Organs are made of the organized assembly of different cell types that contribute to the architecture necessary for functional differentiation. In those with exocrine function, such as the breast, cell–cell and cell–extracellular matrix (ECM) interactions establish mechanistic constraints and a complex biochemical signaling network essential for differentiation and homeostasis of the glandular epithelium. Such knowledge has been elegantly acquired for the mammary gland by placing epithelial cells under three-dimensional (3D) culture conditions. Three-dimensional cell culture aims at recapitulating normal and pathological tissue architectures, hence providing physiologically relevant models to study normal development and disease. The specific architecture of the breast epithelium consists of glandular structures (acini) connected to a branched ductal system. A single layer of basoapically polarized luminal cells delineates ductal or acinar lumena at the apical pole. Luminal cells make contact with myoepithelial cells and, in certain areas at the basal pole, also with basement membrane (BM) components. In this chapter, we describe how this exquisite organization as well as stages of disorganization pertaining to cancer progression can be reproduced in 3D cultures. Advantages and limitations of different culture settings are discussed. Technical designs for induction of phenotypic modulations, biochemical analyses, and state-of-the-art imaging are presented. We also explain how signaling is regulated differently in 3D cultures compared to traditional two-dimensional (2D) cultures. We believe that using 3D cultures is an indispensable method to unravel the intricacies of human mammary functions and would best serve the fight against breast cancer. PMID:23097109

  16. Jules Bernard Luys in Charcot's penumbra.

    PubMed

    Parent, Martin; Parent, André

    2011-01-01

    Jules Bernard Luys (1828-1897) is a relatively unknown figure in 19th century French neuropsychiatry. Although greatly influenced by Jean-Martin Charcot (1825-1893), Luys worked in the shadow of the 'master of La Salpêtrière' for about a quarter of a century. When he arrived at this institution in 1862, he used microscopy and photomicrography to identify pathological lesions underlying locomotor ataxia and progressive muscular atrophy. He later made substantial contributions to our knowledge of normal human brain anatomy, including the elucidation of thalamic organization and the discovery of the subthalamic nucleus. Luys's name has long been attached to the latter structure (corps de Luys), which is at the center of our current thinking about the functional organization of basal ganglia and the physiopathology of Parkinson's disease. As head of the Maison de santé d'Ivry, Luys developed a highly original view of the functional organization of the normal human brain, while improving our understanding of the neuropathological and clinical aspects of mental illnesses. In 1886, Luys left La Salpêtrière and became chief physician at La Charité hospital. Following Charcot, whom he considered as the father of scientific hypnotism, Luys devoted the last part of his career to hysteria and hypnosis. However, Luys ventured too deeply into the minefield of hysteria. He initiated experiments as unconventional as the distant action of medication, and became one of the most highly caricatured examples of the fascination that hysteria exerted upon neurologists as well as laypersons at the end of the 19th century. Copyright © 2011 S. Karger AG, Basel.

  17. Neuro- and sensoriphysiological Adaptations to Microgravity using Fish as Model System

    NASA Astrophysics Data System (ADS)

    Anken, R.

    The phylogenetic development of all organisms took place under constant gravity conditions, against which they achieved specific countermeasures for compensation and adaptation. On this background, it is still an open question to which extent altered gravity such as hyper- or microgravity (centrifuge/spaceflight) affects the normal individual development, either on the systemic level of the whole organism or on the level of individual organs or even single cells. The present review provides information on this topic, focusing on the effects of altered gravity on developing fish as model systems even for higher vertebrates including humans, with special emphasis on the effect of altered gravity on behaviour and particularly on the developing brain and vestibular system. Overall, the results speak in favour of the following concept: Short-term altered gravity (˜ 1 day) can induce transient sensorimotor disorders (kinetoses) due to malfunctions of the inner ear, originating from asymmetric otoliths. The regain of normal postural control is likely due to a reweighing of sensory inputs. During long-term altered gravity (several days and more), complex adptations on the level of the central and peripheral vestibular system occur. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  18. Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice.

    PubMed

    Kido, Tatsuo; Sun, Zhaoyu; Lau, Yun-Fai Chris

    2017-06-23

    Sexual dimorphisms are prevalent in development, physiology and diseases in humans. Currently, the contributions of the genes on the male-specific region of the Y chromosome (MSY) in these processes are uncertain. Using a transgene activation system, the human sex-determining gene hSRY is activated in the single-cell embryos of the mouse. Pups with hSRY activated (hSRY ON ) are born of similar sizes as those of non-activated controls. However, they retard significantly in postnatal growth and development and all die of multi-organ failure before two weeks of age. Pathological and molecular analyses indicate that hSRY ON pups lack innate suckling activities, and develop fatty liver disease, arrested alveologenesis in the lung, impaired neurogenesis in the brain and occasional myocardial fibrosis and minimized thymus development. Transcriptome analysis shows that, in addition to those unique to the respective organs, various cell growth and survival pathways and functions are differentially affected in the transgenic mice. These observations suggest that ectopic activation of a Y-located SRY gene could exert male-specific effects in development and physiology of multiple organs, thereby contributing to sexual dimorphisms in normal biological functions and disease processes in affected individuals.

  19. Genetic regulation of pituitary gland development in human and mouse.

    PubMed

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C A F; Dattani, Mehul T

    2009-12-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.

  20. Enamel Defects Reflect Perinatal Exposure to Bisphenol A

    PubMed Central

    Jedeon, Katia; De la Dure-Molla, Muriel; Brookes, Steven J.; Loiodice, Sophia; Marciano, Clémence; Kirkham, Jennifer; Canivenc-Lavier, Marie-Chantal; Boudalia, Sofiane; Bergès, Raymond; Harada, Hidemitsu; Berdal, Ariane; Babajko, Sylvie

    2014-01-01

    Endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), are environmental ubiquitous pollutants and associated with a growing health concern. Anecdotally, molar incisor hypomineralization (MIH) is increasing concurrently with EDC-related conditions, which has led us to investigate the effect of BPA on amelogenesis. Rats were exposed daily to BPA from conception until day 30 or 100. At day 30, BPA-affected enamel exhibited hypomineralization similar to human MIH. Scanning electron microscopy and elemental analysis revealed an abnormal accumulation of organic material in erupted enamel. BPA-affected enamel had an abnormal accumulation of exogenous albumin in the maturation stage. Quantitative real-timePCR, Western blotting, and luciferase reporter assays revealed increased expression of enamelin but decreased expression of kallikrein 4 (protease essential for removing enamel proteins) via transcriptional regulation. Data suggest that BPA exerts its effects on amelogenesis by disrupting normal protein removal from the enamel matrix. Interestingly, in 100-day-old rats, erupting incisor enamel was normal, suggesting amelogenesis is only sensitive to MIH-causing agents during a specific time window during development (as reported for human MIH). The present work documents the first experimental model that replicates MIH and presents BPA as a potential causative agent of MIH. Because human enamel defects are irreversible, MIH may provide an easily accessible marker for reporting early EDC exposure in humans. PMID:23764278

  1. Genetic Regulation of Pituitary Gland Development in Human and Mouse

    PubMed Central

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C. A. F.; Dattani, Mehul T.

    2009-01-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans. PMID:19837867

  2. Immune Function and Reactivation of Latent Viruses

    NASA Technical Reports Server (NTRS)

    Butel, Janet S.

    1999-01-01

    A major concern associated with long-duration space flight is the possibility of infectious diseases posing an unacceptable medical risk to crew members. One major hypothesis addressed in this project is that space flight will cause alterations in the immune system that will allow latent viruses that are endogenous in the human population to reactivate and shed to higher levels than normal, which may affect the health of crew members. The second major hypothesis being examined is that the effects of space flight will alter the mucosal immune system, the first line of defense against many microbial infections, including herpesviruses, polyomaviruses, and gastroenteritis viruses, rendering crew members more susceptible to virus infections across the mucosa. We are focusing the virus studies on the human herpesviruses and polyomaviruses, important pathogens known to establish latent infections in most of the human population. Both primary infection and reactivation from latent infection with these groups of viruses (especially certain herpesviruses) can cause a variety of illnesses that result in morbidity and, occasionally, mortality. Both herpesviruses and polyomaviruses have been associated with human cancer, as well. Effective vaccines exist for only one of the eight known human herpesviruses and available antivirals are of limited use. Whereas normal individuals display minimal consequences from latent viral infections, events which alter immune function (such as immunosuppressive therapy following solid organ transplantation) are known to increase the risk of complications as a result of viral reactivations.

  3. Humoral responses in human organ transplantation

    PubMed Central

    Waller, Marion; Pierce, J. C.; Moncure, C. W.; Hume, D. M.

    1972-01-01

    The plasmas of fifteen patients undergoing organ transplantation were serially tested for a variety of humoral antibodies. The antibodies studied were those which usually reflect covert immunologic events, i.e. the antiglobulins (rheumatoid factors and serum agglutinators), heterophile antibodies and typical and atypical isoantibodies. Although the isoantibodies and the heterophile antibodies were not significantly stimulated by organ transplantation, the administration of ALG (horse antilymphocyte globulin) invariably led to the presence of antihorse globulin antibodies. Three patients were Rh negative and received organs from Rh-positive donors. However, only one of the patients responded with anti-Rh antibodies, but these antibodies exceeded in titre the anti-Rh antibodies usually observed following intentional immunization of normal volunteers. The most startling observation was the significant increase in titres of the serum agglutinators in eight of the patients. These observations suggest that the antigen–antibody complexes associated with chronic rejection may stimulate the production of the serum agglutinators. PMID:4625156

  4. Left-right asymmetry and cardiac looping: implications for cardiac development and congenital heart disease.

    PubMed

    Kathiriya, I S; Srivastava, D

    2000-01-01

    Proper morphogenesis and positioning of internal organs requires delivery and interpretation of precise signals along the anterior-posterior, dorsal-ventral, and left-right axes. An elegant signaling cascade determines left- versus right-sided identity in visceral organs in a concordant fashion, resulting in a predictable left-right (LR) organ asymmetry in all vertebrates. The complex morphogenesis of the heart and its connections to the vasculature are particularly dependent upon coordinated LR signaling pathways. Disorganization of LR signals can result in myriad congenital heart defects that are a consequence of abnormal looping and remodeling of the primitive heart tube into a multi-chambered organ. A framework for understanding how LR asymmetric signals contribute to normal organogenesis has emerged and begins to explain the basis of many human diseases of LR asymmetry. Here we review the impact of LR signaling pathways on cardiac development and congenital heart disease.

  5. Successful transplantation of donor organs from a hemlock poisoning victim.

    PubMed

    Foster, Preston F; McFadden, Robert; Trevino, Raul; Galliardt, Scott; Kopczewski, Lea Ann; Gugliuzza, Kristene; Gonzalez, Zulma; Wright, Francis

    2003-09-15

    The poison hemlock plant (Conium maculatum) has been a known poison since early in human history, most notably as the agent used for the execution/suicide of Socrates in ancient Greece. No experience has been reported regarding the suitability of a hemlock victim's organs for transplantation. This report documents successful transplantation of the liver, kidney, and pancreas from a 14-year-old girl who died of anoxic encephalopathy from asphyxia after the accidental ingestion of fresh hemlock while on a nature hike. Predonation laboratory values were not remarkable, and liver and kidney biopsy results were normal. All organs in the three recipients had immediate function, and no recipient had any clinical evidence of transmitted toxin. All recipients are well, with functioning transplants at greater than 6 months after transplantation. Poison hemlock intoxication does not seem to be a contraindication to organ donation.

  6. Fuzzy object modeling

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.

    2011-03-01

    To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.

  7. Ecological and evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Runge, M.C.; Sherman, P.W.

    2002-01-01

    Organisms often rely on environmental cues to make behavioral and life-history decisions. However, in environments that have been altered suddenly by humans, formerly reliable cues might no longer be associated with adaptive outcomes. In such cases, organisms can become 'trapped' by their evolutionary responses to the cues and experience reduced survival or reproduction. Ecological traps occur when organisms make poor habitat choices based on cues that correlated formerly with habitat quality. Ecological traps are part of a broader phenomenon, evolutionary traps, involving a dissociation between cues that organisms use to make any behavioral or life-history decision and outcomes normally associated with that decision. A trap can lead to extinction if a population falls below a critical size threshold before adaptation to the novel environment occurs. Conservation and management protocols must be designed in light of, rather than in spite of, the behavioral mechanisms and evolutionary history of populations and species to avoid 'trapping' them.

  8. SU-E-T-801: Verification of Dose Information Passed Through 3D-Printed Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, S; Yoon, M; Kim, D

    2015-06-15

    Purpose: When quality assurance (QA) of patient treatment beam is performed, homogeneous water equivalent phantom which has different structure from patient’s internal structure is normally used. In these days, it is possible to make structures which have same shapes of human organs with commercialization of 3D-printer. As a Result, structures with same shape of human organs made by 3D-printer could be used to test qualification of treatment beam with greater accuracy than homogeneous water phantom. In this study, we estimated the dose response of 3D-printer materials to test the probability as a humanoid phantom or new generation of compensator tool.more » Methods: The rectangular products with variety densities (50%, 75% and 100%) were made to verify their characteristics. The products for experiment group and solid water phantom and air for control group with 125 cubic centimeters were put on solid water phantom with enough thickness. CT image of two products were acquired to know their HU values and to know about their radiologic characteristics. 6MV beams with 500MU were exposed for each experiment. Doses were measured behind the 3D-printed products. These measured doses were compared to the results taken by TPS. Results: Absorbed dose penetrated from empty air is normalized to 100%. Doses measured from 6MV photon beams penetrated from 50%, 75% and 100% products were 99%, 96% and 84%, respectively. HU values of 50%, 75% and 100% products are about −910, −860 and −10. Conclusion: 3D-printer can produce structures which have similar characteristics with human organ. These results would be used to make similar phantoms with patient information. This work was supported by the Nuclear Safety Research Program (Grant No. 1305033 and 1403019) of the Korea Radiation Safety Foundation and the Nuclear Safety and Security Commission and Radiation Technology Development Program (2013M2A2A4027117) of the Republic of Korea.« less

  9. Estimated background doses of [67Ga]-DTPA-USPIO in normal Balb/c mice as a potential therapeutic agent for liver and spleen cancers.

    PubMed

    Shanehsazzadeh, Saeed; Oghabian, Mohammad A; Lahooti, Afsaneh; Abdollahi, Mohammad; Abolghasem Haeri, Seyed; Amanlou, Massoud; Daha, Fariba J; Allen, Barry J

    2013-09-01

    The aim of this study was to evaluate the biodistribution of dextran-coated iron oxide nanoparticles labeled with gallium-67 (Ga) in various organs by intravenous injection in Balb/c mice. Ultrasmall superparamagnetic iron oxide (USPIO) was successively labeled with Ga-chloride after chelation with freshly prepared cyclic DTPA-dianhydride. The labeling efficiency of USPIOs labeled with Ga is above 98%. Sixty-five mice were killed at 13 different time points. The percentage of injected dose per gram of each organ was measured by direct counting for 19 harvested organs of the mice. The medical internal radiation dose formula was applied to extrapolate data from mouse to human and to predict the absorbed radiation dose for various organs in the human body. The biodistribution of Ga-USPIO in Balb/c mice showed that 75% of the injected dose accumulated in the spleen and liver 15 min after injection. These nanoparticles remained in the liver for more than 7 days after injection, whereas their clearance was very fast from other organs. Extrapolating these data to the intravenous injection of Ga-USPIO in humans gave an estimated absorbed dose of 36.38 mSv/MBq for the total body, and the highest effective absorbed dose was seen in the liver (32.9 mSv/MBq). High uptakes of USPIO nanoparticles in the liver and spleen and their fast clearance from other tissues suggest that these nanoparticles labeled with a β-emitter radioisotope could be suitable as treatment agents for spleen and liver malignancies only if the organ tolerance dose is not exceeded.

  10. Pu-239 organ specific dosimetric model applied to non-human biota

    NASA Astrophysics Data System (ADS)

    Kaspar, Matthew Jason

    There are few locations throughout the world, like the Maralinga nuclear test site located in south western Australia, where sufficient plutonium contaminate concentration levels exist that they can be utilized for studies of the long-term radionuclide accumulation in non-human biota. The information obtained will be useful for the potential human users of the site while also keeping with international efforts to better understand doses to non-human biota. In particular, this study focuses primarily on a rabbit sample set collected from the population located within the site. Our approach is intended to employ the same dose and dose rate methods selected by the International Commission on Radiological Protection and adapted by the scientific community for similar research questions. These models rely on a series of simplifying assumptions on biota and their geometry; in particular; organisms are treated as spherical and ellipsoidal representations displaying the animal mass and volume. These simplifications assume homogeneity of all animal tissues. In collaborative efforts between Colorado State University and the Australian Nuclear Science and Technology Organisation (ANSTO), we are expanding current knowledge on radionuclide accumulation in specific organs causing organ-specific dose rates, such as Pu-239 accumulating in bone, liver, and lungs. Organ-specific dose models have been developed for humans; however, little has been developed for the dose assessment to biota, in particular rabbits. This study will determine if it is scientifically valid to use standard software, in particular ERICA Tool, as a means to determine organ-specific dosimetry due to Pu-239 accumulation in organs. ERICA Tool is normally applied to whole organisms as a means to determine radiological risk to whole ecosystems. We will focus on the aquatic model within ERICA Tool, as animal organs, like aquatic organisms, can be assumed to lie within an infinite uniform medium. This model would scientifically be valid for radionuclides emitting short-range radiation, as with Pu-239, where the energy is deposited locally. Two MCNPX models have been created and evaluated against ERICA Tool's aquatic model. One MCNPX model replicates ERICA Tool's intrinsic assumptions while the other uses a more realistic animal model adopted by ICRP Publication 108 and ERICA Tool for the organs "infinite" surrounding universe. In addition, the role of model geometry will be analyzed by focusing on four geometry sets for the same organ, including a spherical geometry. ERICA Tool will be compared to MCNPX results within and between each organ geometry set. In addition, the organ absorbed dose rate will be calculated for six rabbits located on the Maralinga nuclear test site as a preliminary test for further investigation. Data in all cases will be compared using percent differences and Student's t-test with respect to ERICA Tool's results and the overall average organ mean absorbed dose rate.

  11. Detection of micronuclei formation and nuclear anomalies in regenerative nodules of human cirrhotic livers and relationship to hepatocellular carcinoma.

    PubMed

    de Almeida, Terezinha M B; Leitão, Regina C; Andrade, Joyce D; Beçak, Willy; Carrilho, Flair J; Sonohara, Shigueko

    2004-04-01

    Human cirrhosis is considered an important factor in hepatocarcinogenesis. The lack of substantial genetics and cytogenetics data in human cirrhosis led us to investigate spontaneous micronuclei formation, as an indicator of chromosomal damage. The analysis was performed in hepatocytes of regenerative, macroregenerative, and tumoral nodules from 30 cases of cirrhosis (paraffin-embedded archival material), retrospectively selected: cryptogenic, hepatitis C virus, and hepatitis C virus associated with hepatocellular carcinoma (HCC). Thirteen control liver samples of healthy organ donors were included. Micronucleated hepatocytes were analyzed with Feulgen-fast-green dyeing techniques. The spontaneous frequency of micronucleated hepatocytes in both regenerative and macroregenerative nodules of all cirrhotic patients was significantly higher than for the normal control group. There was no significant difference in frequency of micronucleated hepatocytes in regenerative nodules compared with macroregenerative nodules for all cases analyzed, whereas a significantly higher frequency of micronucleated hepatocytes was detected in tumoral nodules, compared with cirrhotic regenerative nodules and normal parenchyma. A higher frequency of the nuclear anomalies termed broken-eggs was observed in hepatitis C virus-related samples. Chromatinic losses and genotoxicity already existed in the cirrhotic regenerative nodules, which might predispose to development of HCC.

  12. Toward Developmental Connectomics of the Human Brain

    PubMed Central

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental dyslexia). Collectively, we showed that delineation of the brain network from a connectomics perspective offers a unique and refreshing view of both normal development and neuropsychiatric disorders. PMID:27064378

  13. Invasive Saccharomyces cerevisiae infection: a friend turning foe?

    PubMed

    Pillai, Unnikrishnan; Devasahayam, Joe; Kurup, Aparna Narayana; Lacasse, Alexandre

    2014-11-01

    We report a very rare case of acute pyelonephritis in a 51-year-old female with a history of chronic kidney disease (CKD) and diabetes caused by a normally benign and a well-known human commensal organism, Saccharomyces cerevisiae that is very often prescribed as a probiotic in modern medical practice. The causal role of S. cerevisiae was confirmed by its isolation in blood, urine, stool as well as vaginal swabs thus proving its virulent nature in suitable situations.

  14. Physiology and toxicity of fluoride.

    PubMed

    Dhar, Vineet; Bhatnagar, Maheep

    2009-01-01

    Fluoride has been described as an essential element needed for normal development and growth of animals and extremely useful for human beings. Fluoride is abundant in the environment and the main source of fluoride to humans is drinking water. It has been proved to be beneficial in recommended doses, and at the same time its toxicity at higher levels has also been well established. Fluoride gets accumulated in hard tissues of the body and has been know to play an important role in mineralization of bone and teeth. At high levels it has been known to cause dental and skeletal fluorosis. There are suggested effects of very high levels of fluoride on various body organs and genetic material. The purpose of this paper is to review the various aspects of fluoride and its importance in human life.

  15. EEG topography and tomography (LORETA) in the classification and evaluation of the pharmacodynamics of psychotropic drugs.

    PubMed

    Saletu, Bernd; Anderer, Peter; Saletu-Zyhlarz, Gerda M

    2006-04-01

    By multi-lead computer-assisted quantitative analyses of human scalp-recorded electroencephalogram (QEEG) in combination with certain statistical procedures (quantitative pharmaco-EEG) and mapping techniques (pharmaco-EEG mapping or topography), it is possible to classify psychotropic substances and objectively evaluate their bioavailability at the target organ, the human brain. Specifically, one may determine at an early stage of drug development whether a drug is effective on the central nervous system (CNS) compared with placebo, what its clinical efficacy will be like, at which dosage it acts, when it acts and the equipotent dosages of different galenic formulations. Pharmaco-EEG maps of neuroleptics, antidepressants, tranquilizers, hypnotics, psychostimulants and nootropics/cognition-enhancing drugs will be described. Methodological problems, as well as the relationships between acute and chronic drug effects, alterations in normal subjects and patients, CNS effects and therapeutic efficacy will be discussed. Imaging of drug effects on the regional brain electrical activity of healthy subjects by means of EEG tomography such as low-resolution electromagnetic tomography (LORETA) has been used for identifying brain areas predominantly involved in psychopharmacological action. This will be shown for the representative drugs of the four main psychopharmacological classes, such as 3 mg haloperidol for neuroleptics, 20 mg citalopram for antidepressants, 2 mg lorazepam for tranquilizers and 20 mg methylphenidate for psychostimulants. LORETA demonstrates that these psychopharmacological classes affect brain structures differently. By considering these differences between psychotropic drugs and placebo in normal subjects, as well as between mental disorder patients and normal controls, it may be possible to choose the optimum drug for a specific patient according to a key-lock principle, since the drug should normalize the deviant brain function. Thus, pharmaco-EEG topography and tomography are valuable methods in human neuropsychopharmacology, clinical psychiatry and neurology.

  16. A consideration of the nature of work and the consequences for the human-oriented design of production and products.

    PubMed

    Bubb, Heiner

    2006-07-01

    In this article, it is shown that human work can be understood as a process of creating order, and that order can be seen as a form of information. Since information can be considered as negative entropy, work is associated with energy consumption. Therefore, it is important to investigate the nature of human necessities in more detail in order to meet the desire for comfort through the efficient application of energy. Temporary increases of information cause accelerated increases in entropy. This explains the appearance of living organisms, and the historic development of increasingly complex technology. Through technical progress, repetitive human work is being replaced by automation, so that primarily creative work remains. Now the question arises of how much creative work a human can manage. In addition, one goal of automation should be the reduction of human errors, but in doing so, an optimal balance should be found between supporting the operator both during normal procedures and during unforeseen circumstances.

  17. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    PubMed

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.

  18. Locus-specific gene repositioning in prostate cancer

    PubMed Central

    Leshner, Marc; Devine, Michelle; Roloff, Gregory W.; True, Lawrence D.; Misteli, Tom; Meaburn, Karen J.

    2016-01-01

    Genes occupy preferred spatial positions within interphase cell nuclei. However, positioning patterns are not an innate feature of a locus, and genes can alter their localization in response to physiological and pathological changes. Here we screen the radial positioning patterns of 40 genes in normal, hyperplasic, and malignant human prostate tissues. We find that the overall spatial organization of the genome in prostate tissue is largely conserved among individuals. We identify three genes whose nuclear positions are robustly altered in neoplastic prostate tissues. FLI1 and MMP9 position differently in prostate cancer than in normal tissue and prostate hyperplasia, whereas MMP2 is repositioned in both prostate cancer and hyperplasia. Our data point to locus-specific reorganization of the genome during prostate disease. PMID:26564800

  19. Differential Response of Human Nasal and Bronchial Epithelial Cells upon Exposure to Size-fractionated Dairy Dust

    PubMed Central

    Hawley, Brie; Schaeffer, Joshua; Poole, Jill A.; Dooley, Gregory P.; Reynolds, Stephen; Volckens, John

    2015-01-01

    Exposure to organic dusts is associated with increased respiratory morbidity and mortality in agricultural workers. Organic dusts in dairy farm environments are complex, polydisperse mixtures of toxic and immunogenic compounds. Previous toxicological studies focused primarily on exposures to the respirable size fraction, however, organic dusts in dairy farm environments are known to contain larger particles. Given the size distribution of dusts from dairy farm environments, the nasal and bronchial epithelia represent targets of agricultural dust exposures. In this study, well-differentiated normal human bronchial epithelial cells and human nasal epithelial cells were exposed to two different size fractions (PM10 and PM>10) of dairy parlor dust using a novel aerosol-to-cell exposure system. Levels of pro-inflammatory transcripts (IL-8, IL-6, and TNF-α) were measured two hr after exposure. Lactate dehydrogenase (LDH) release was also measured as an indicator of cytotoxicity. Cell exposure to dust was measured in each size fraction as a function of mass, endotoxin, and muramic acid levels. To our knowledge, this is the first study to evaluate the effects of distinct size fractions of agricultural dust on human airway epithelial cells. Our results suggest that both PM10 and PM>10 size fractions elicit a pro-inflammatory response in airway epithelial cells and that the entire inhalable size fraction needs to be considered when assessing potential risks from exposure to agricultural dusts. Further, data suggest that human bronchial cells respond differently to these dusts than human nasal cells and, therefore, the two cell types need to be considered separately in airway cell models of agricultural dust toxicity. PMID:25965193

  20. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water

    PubMed Central

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  1. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    PubMed

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.

  2. Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.

    1999-01-01

    The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.

  3. The study and application of four kinds of organic ion-selective microsensors

    NASA Astrophysics Data System (ADS)

    Yu, Bi; Zheng, Xiao; Feng, Chu; Hong, Wen-Bing; Liu, Jun-Tao; Wang, Ru-Jiang

    1991-09-01

    Four kinds of organic ion-selective microelectrodes (two barrels, tip diameter 0.1-0.5 micron) have been developed for the measurement of acetylcholine, histamine, serotonin, and bile acid. Physiological and pathological models on the cellular or sub-cellular level have been established for the purpose of basic and clinical pharmacological research, treatment or diagnosis of certain diseases. The acetylcholine sensitive microelectrode has been applied to the study of acetylcholine activity in single erythrocytes of normal human subjects and patients suffering from manic depressive disorders. The bile acid selective microelectrode has been used for the direct measurement of intracellular bile acid activities both in colorectal cancer and colorectal mucosa in living condition.

  4. Link between DNA damage and centriole disengagement/reduplication in untransformed human cells.

    PubMed

    Douthwright, Stephen; Sluder, Greenfield

    2014-10-01

    The radiation and radiomimetic drugs used to treat human tumors damage DNA in both cancer cells and normal proliferating cells. Centrosome amplification after DNA damage is well established for transformed cell types but is sparsely reported and not fully understood in untransformed cells. We characterize centriole behavior after DNA damage in synchronized untransformed human cells. One hour treatment of S phase cells with the radiomimetic drug, Doxorubicin, prolongs G2 by at least 72 h, though 14% of the cells eventually go through mitosis in that time. By 72 h after DNA damage we observe a 52% incidence of centriole disengagement plus a 10% incidence of extra centrioles. We find that either APC/C or Plk activities can disengage centrioles after DNA damage, though they normally work in concert. All disengaged centrioles are associated with γ-tubulin and maturation markers and thus, should in principle be capable of reduplicating and organizing spindle poles. The low incidence of reduplication of disengaged centrioles during G2 is due to the p53-dependent expression of p21 and the consequent loss of Cdk2 activity. We find that 26% of the cells going through mitosis after DNA damage contain disengaged or extra centrioles. This could produce genomic instability through transient or persistent spindle multipolarity. Thus, for cancer patients the use of DNA damaging therapies raises the chances of genomic instability and evolution of transformed characteristics in proliferating normal cell populations. © 2014 Wiley Periodicals, Inc.

  5. Human amnion epithelial cells expressing HLA-G as novel cell-based treatment for liver disease.

    PubMed

    Strom, Stephen C; Gramignoli, Roberto

    2016-09-01

    Despite routine liver transplantation and supporting medical therapies, thousands of patients currently wait for an organ and there is an unmet need for more refined and widely available regenerative strategies to treat liver diseases. Cell transplants attempt to maximize the potential for repair and/or regeneration in liver and other organs. Over 40years of laboratory pre-clinical research and 25years of clinical procedures have shown that certain liver diseases can be treated by the infusion of isolated cells (hepatocyte transplant). However, like organ transplants, hepatocyte transplant suffers from a paucity of tissues useful for cell production. Alternative sources have been investigated, yet with limited success. The tumorigenic potential of pluripotent stem cells together with their primitive level of hepatic differentiation, have limited the use of stem cell populations. Stem cell sources from human placenta, and the amnion tissue in particular are receiving renewed interest in the field of regenerative medicine. Unlike pluripotent stem cells, human amnion epithelial (AE) cells are easily available without ethical or religious concerns; they do not express telomerase and are not immortal or tumorigenic when transplanted. In addition, AE cells have been reported to express genes normally expressed in mature liver, when transplanted into the liver. Moreover, because of the possibility of an immune-privileged status related to their expression of HLA-G, it might be possible to transplant human AE cells without immunosuppression of the recipient. Copyright © 2016. Published by Elsevier Inc.

  6. ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization.

    PubMed

    Sang, Jian; Wang, Zhennan; Li, Man; Cao, Jiabao; Niu, Guangyi; Xia, Lin; Zou, Dong; Wang, Fan; Xu, Xingjian; Han, Xiaojiao; Fan, Jinqi; Yang, Ye; Zuo, Wanzhu; Zhang, Yang; Zhao, Wenming; Bao, Yiming; Xiao, Jingfa; Hu, Songnian; Hao, Lili; Zhang, Zhang

    2018-01-04

    Real-time quantitative PCR (RT-qPCR) has become a widely used method for accurate expression profiling of targeted mRNA and ncRNA. Selection of appropriate internal control genes for RT-qPCR normalization is an elementary prerequisite for reliable expression measurement. Here, we present ICG (http://icg.big.ac.cn), a wiki-driven knowledgebase for community curation of experimentally validated internal control genes as well as their associated experimental conditions. Unlike extant related databases that focus on qPCR primers in model organisms (mainly human and mouse), ICG features harnessing collective intelligence in community integration of internal control genes for a variety of species. Specifically, it integrates a comprehensive collection of more than 750 internal control genes for 73 animals, 115 plants, 12 fungi and 9 bacteria, and incorporates detailed information on recommended application scenarios corresponding to specific experimental conditions, which, collectively, are of great help for researchers to adopt appropriate internal control genes for their own experiments. Taken together, ICG serves as a publicly editable and open-content encyclopaedia of internal control genes and accordingly bears broad utility for reliable RT-qPCR normalization and gene expression characterization in both model and non-model organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Evaluation of Pasteurella multocida serotype B:2 resistance to immune serum and complement system

    PubMed Central

    Ataei Kachooei, Saeed; Ranjbar, Mohammad Mehdi; Ataei Kachooei, Saba

    2017-01-01

    Members of gram-negative bacteria family Pasteurellaceae, include a large number of important economically human and veterinary pathogens. Organisms belonging to the family can colonize in mucosal surfaces of the respiratory, alimentary, genital tracts and cause diseases in various mammals, birds, and reptiles. Hemorrhagic septicemia is an acute disease of cattle and buffaloes in tropical countries caused by Pasteurella multocida serotype B:2. In the present study, the possible bactericidal activity of immune calf sera in the presence and absence of complement system was investigated. The results showed that P. multocida B:2 is highly resistant to positive serum, containing high levels of IgG and IgM obtained from calves after vaccination, and complement activity in normal fresh calf serum. This organism also grew rapidly in the normal fresh calf serum and the mixture of positive serum as well as normal fresh calf serum. As a control test an E. coli strain was subjected to the same experiment and found completely sensitive to the bactericidal activity of complement in calf and guinea pig fresh sera. Results were indicative of the presence of inhibitory mechanism(s) in P. multocida B:2 against bactericidal activity of immune calf serum and complement system. PMID:29085604

  8. Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations.

    PubMed

    Affifi, Ramsey

    2017-01-01

    This paper describes some likely semiotic consequences of genetic engineering on what Gregory Bateson has called "the mental ecology" (1979) of future humans, consequences that are less often raised in discussions surrounding the safety of GMOs (genetically modified organisms). The effects are as follows: an increased 1) habituation to the presence of GMOs in the environment, 2) normalization of empirically false assumptions grounding genetic reductionism, 3) acceptance that humans are capable and entitled to decide what constitutes an evolutionary improvement for a species, 4) perception that the main source of creativity and problem solving in the biosphere is anthropogenic. Though there are some tensions between them, these effects tend to produce self-validating webs of ideas, actions, and environments, which may reinforce destructive habits of thought. Humans are unlikely to safely develop genetic technologies without confronting these escalating processes directly. Intervening in this mental ecology presents distinct challenges for educators, as will be discussed.

  9. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Potential for Safe Clinical Use in Treatment of Ocular Surface Failure.

    PubMed

    Massie, Isobel; Dale, Sarah B; Daniels, Julie T

    2015-06-01

    Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE- RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP.

  10. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Potential for Safe Clinical Use in Treatment of Ocular Surface Failure

    PubMed Central

    Dale, Sarah B.; Daniels, Julie T.

    2015-01-01

    Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE− RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP. PMID:25380529

  11. Sonographic Assessment of the Normal Dimensions of Liver, Spleen, and Kidney in Healthy Children at Tertiary Care Hospital.

    PubMed

    Thapa, N B; Shah, S; Pradhan, A; Rijal, K; Pradhan, A; Basnet, S

    2015-01-01

    Background Ultrasonography is one of the most common imaging modality to measure dimensions of visceral organs in children. However, the normal limit of size of visceral organs according to age and body habitus has not been specified in the standard textbooks. This might result in under detection of organomegaly in pediatrics population. Objective The objective of this study was to determine the normal range of dimensions for the liver, spleen, and kidney in healthy children. Method This is prospective cross-sectional, hospital-based study done at Tertiary-care teaching hospital. Participants included 272 pediatric subjects (152 male and 120 female) with normal physical or sonographic findings who were examined because of problems unrelated to the measured organs. The subjects were one month to 15 year (180 months) old. All measured organs were sonographically normal. Relationships of the dimensions of these organs with sex, age, body weight and height were investigated. Limits of normal dimensions of these organs were defined. Result Normal length of liver, kidneys and spleen were obtained sonographically for 272 children (152 male [55.9%] and 120 female [44.1%]) in the age group from 1 months to 15 (180 months) years. The mean age was 45.78 months (SD, 44.73). The measured dimensions of all these organs showed highest correlation with height and age so the descriptive analysis of the organ dimensions (mean, minimum, and maximum values, SD and 5th and 95th percentiles) were expressed in 10 age groups along with height range of the included children. The mean length of right kidney was shorter than the left kidney length, and the difference was statistically significant (p = 0.001). Conclusion This study provides practical and comprehensive guide to the normal visceral organ dimension in pediatric population. The normal range limit of the liver, spleen, and kidney determined in this study could be used as a reference in daily practice in local radiology clinics.

  12. Sherlock Holmes and the proteome--a detective story.

    PubMed

    Righetti, Pier Giorgio; Boschetti, Egisto

    2007-02-01

    The performance of a hexapeptide ligand library in capturing the 'hidden proteome' is illustrated and evaluated. This library, insolubilized on an organic polymer and available under the trade name 'Equalizer Bead Technology', acts by capturing all components of a given proteome, by concentrating rare and very rare proteins, and simultaneously diluting the abundant ones. This results in a proteome of 'normalized' relative abundances, amenable to analysis by MS and any other analytical tool. Examples are given of analysis of human urine and serum, as well as cell and tissue lysates, such as Escherichia coli and Saccharomyces cerevisiae extracts. Another important application is impurity tracking and polishing of recombinant DNA products, especially biopharmaceuticals meant for human consumption.

  13. Upregulation of 14-3-3 eta in chronic liver fluke infection is a potential diagnostic marker of cholangiocarcinoma.

    PubMed

    Haonon, Ornuma; Rucksaken, Rucksak; Pinlaor, Porntip; Pairojkul, Chawalit; Chamgramol, Yaovalux; Intuyod, Kitti; Onsurathum, Sudarat; Khuntikeo, Narong; Pinlaor, Somchai

    2016-03-01

    To discover protein markers in chronic/advanced opisthorchiasis for the early detection of Opisthorchis viverrini (OV)-associated cholangiocarcinoma (CCA). Liver tissues derived from normal hamsters and those with chronic/advanced opisthorchiasis (n = 5 per group) were subjected to 2DE and LC-MS/MS. Candidate protein expression was confirmed in hamster models and human CCA tissue microarray (TMA) using immunohistochemistry and Western blot. Proteomics analysis detected 14-3-3 eta only in infected hamsters, not in uninfected controls. Immunohistochemistry and Western blot analysis confirmed low expression of 14-3-3 eta in normal hamster livers and demonstrated increased expression through time in infected livers. This protein was also observed in parasite organs, especially during the chronic phase of opisthorchiasis. Moreover, increased expression of 14-3-3 eta, relative to normal hamster livers, was observed during the early stage of CCA induced by OV infection and administration of N-nitrosodimethylamine. Immunohistochemical analysis of human TMA revealed that 14-3-3 eta was highly expressed in CCA (84.23%, 187/222 cases) but was not found in hepatocellular carcinoma or healthy liver tissues. 14-3-3 eta protein has potential as a screening and early diagnostic marker for CCA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandenberg, P.; Khillan, J.S.; Prockop, D.J.

    A minigene version of the human gene for type II procollagen (COL2AI) was prepared that lacked a large central region containing 12 of the 52 exons and therefore 291 of the 1523 codons of the gene. The construct was modeled after sporadic in-frame deletions of collagen genes that cause synthesis of shortened pro{alpha} chains that associate with normal pro{alpha} chains and thereby cause degradation of the shortened and normal pro{alpha} chains through a process called procollagen suicide. The gene construct was used to prepare five lines of transgenic mice expressing the minigene. A large proportion of the mice expressing themore » minigene developed a phenotype of a chondrodysplasia with dwarfism, short and thick limbs, a short snout, a cranial bulge, a cleft palate, and delayed mineralization of bone. A number of mice died shortly after birth. Microscopic examination of cartilage revealed decreased density and organization of collagen fibrils. In cultured chondrocytes from the transgenic mice, the minigene was expressed as shortened pro{alpha}1(II) chains that were disulfide-linked to normal mouse pro{alpha}1(II) chains. Therefore, the phenotype is probably explained by depletion of the endogenous mouse type II procollagen through the phenomenon of procollagen suicide.« less

  15. Does the Loss of Stromal Caveolin-1 Remodel the Tumor Microenvironment by Activating Src-Mediated PEAK1 and PI3K Pathways

    DTIC Science & Technology

    2017-11-01

    and PI3K Pathways? PRINCIPAL INVESTIGATOR: MARIANA REIS SOBREIRO PhD CONTRACTING ORGANIZATION: Cedars-Sinai Medical Center Los Angeles, CA 90048...BEVERLY BLVD LOS ANGELES CA 90048-1804 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical...oncosomes ( LO ). LO internalization induces reprogramming of human normal prostate fibroblasts, as reflected by high levels of α-SMA, IL6, and MMP9. In

  16. Maneuvering in the Complex Path from Genotype to Phenotype

    NASA Astrophysics Data System (ADS)

    Strohman, Richard

    2002-04-01

    Human disease phenotypes are controlled not only by genes but by lawful self-organizing networks that display system-wide dynamics. These networks range from metabolic pathways to signaling pathways that regulate hormone action. When perturbed, networks alter their output of matter and energy which, depending on the environmental context, can produce either a pathological or a normal phenotype. Study of the dynamics of these networks by approaches such as metabolic control analysis may provide new insights into the pathogenesis and treatment of complex diseases.

  17. [Factor structure of regional CBF and CMRglu values as a tool for the study of default mode of the brain].

    PubMed

    Kataev, G V; Korotkov, A D; Kireev, M V; Medvedev, S V

    2013-01-01

    In the present article it was shown that the functional connectivity of brain structures, revealed by factor analysis of resting PET CBF and rCMRglu data, is an adequate tool to study the default mode of the human brain. The identification of neuroanatomic systems of default mode (default mode network) during routine clinical PET investigations is important for further studying the functional organization of the normal brain and its reorganizations in pathological conditions.

  18. Regulating billions of blood platelets: glycans and beyond

    PubMed Central

    Grozovsky, Renata; Giannini, Silvia; Falet, Hervé

    2015-01-01

    The human body produces and removes 1011 platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets. PMID:26330242

  19. Nonlinear and Stochastic Dynamics in the Heart

    PubMed Central

    Qu, Zhilin; Hu, Gang; Garfinkel, Alan; Weiss, James N.

    2014-01-01

    In a normal human life span, the heart beats about 2 to 3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems. PMID:25267872

  20. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex

    NASA Technical Reports Server (NTRS)

    Watt, D. G.; Money, K. E.; Tomi, L. M.

    1986-01-01

    Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, "falls" were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot be ruled out.

  1. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission. III - Effects of prolonged weightlessness on a human otolith-spinal reflex

    NASA Technical Reports Server (NTRS)

    Watt, D. G. D.; Money, K. E.; Tomi, L. M.

    1986-01-01

    Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, 'falls' were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot by ruled out.

  2. Evidence for a functional role of epigenetically regulated midcluster HOXB genes in the development of Barrett esophagus

    PubMed Central

    di Pietro, Massimiliano; Lao-Sirieix, Pierre; Boyle, Shelagh; Cassidy, Andy; Castillo, Dani; Saadi, Amel; Eskeland, Ragnhild; Fitzgerald, Rebecca C.

    2012-01-01

    Barrett esophagus (BE) is a human metaplastic condition that is the only known precursor to esophageal adenocarcinoma. BE is characterized by a posterior intestinal-like phenotype in an anterior organ and therefore it is reminiscent of homeotic transformations, which can occur in transgenic animal models during embryonic development as a consequence of mutations in HOX genes. In humans, acquired deregulation of HOX genes during adulthood has been linked to carcinogenesis; however, little is known about their role in the pathogenesis of premalignant conditions. We hypothesized that HOX genes may be implicated in the development of BE. We demonstrated that three midcluster HOXB genes (HOXB5, HOXB6, and HOXB7) are overexpressed in BE, compared with the anatomically adjacent normal esophagus and gastric cardia. The midcluster HOXB gene signature in BE is identical to that seen in normal colonic epithelium. Ectopic expression of these three genes in normal squamous esophageal cells in vitro induces markers of intestinal differentiation, such as KRT20, MUC2, and VILLIN. In BE-associated adenocarcinoma, the activation midcluster HOXB gene is associated with loss of H3K27me3 and gain of AcH3, compared with normal esophagus. These changes in histone posttranslational modifications correlate with specific chromatin decompaction at the HOXB locus. We suggest that epigenetically regulated alterations of HOX gene expression can trigger changes in the transcriptional program of adult esophageal cells, with implications for the early stages of carcinogenesis. PMID:22603795

  3. ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells

    PubMed Central

    Morozko, Eva L.; Nishio, Ayako; Ingham, Neil J.; Chandra, Rashmi; Fitzgerald, Tracy; Martelletti, Elisa; Borck, Guntram; Wilson, Elizabeth; Riordan, Gavin P.; Wangemann, Philine; Forge, Andrew; Steel, Karen P.; Liddle, Rodger A.; Friedman, Thomas B.; Belyantseva, Inna A.

    2015-01-01

    In the mammalian inner ear, bicellular and tricellular tight junctions (tTJs) seal the paracellular space between epithelial cells. Tricellulin and immunoglobulin-like (Ig-like) domain containing receptor 1 (ILDR1, also referred to as angulin-2) localize to tTJs of the sensory and non-sensory epithelia in the organ of Corti and vestibular end organs. Recessive mutations of TRIC (DFNB49) encoding tricellulin and ILDR1 (DFNB42) cause human nonsyndromic deafness. However, the pathophysiology of DFNB42 deafness remains unknown. ILDR1 was recently reported to be a lipoprotein receptor mediating the secretion of the fat-stimulated cholecystokinin (CCK) hormone in the small intestine, while ILDR1 in EpH4 mouse mammary epithelial cells in vitro was shown to recruit tricellulin to tTJs. Here we show that two different mouse Ildr1 mutant alleles have early-onset severe deafness associated with a rapid degeneration of cochlear hair cells (HCs) but have a normal endocochlear potential. ILDR1 is not required for recruitment of tricellulin to tTJs in the cochlea in vivo; however, tricellulin becomes mislocalized in the inner ear sensory epithelia of ILDR1 null mice after the first postnatal week. As revealed by freeze-fracture electron microscopy, ILDR1 contributes to the ultrastructure of inner ear tTJs. Taken together, our data provide insight into the pathophysiology of human DFNB42 deafness and demonstrate that ILDR1 is crucial for normal hearing by maintaining the structural and functional integrity of tTJs, which are critical for the survival of auditory neurosensory HCs. PMID:25217574

  4. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage.

    PubMed

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-11-25

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  5. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    PubMed Central

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-01-01

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841

  6. Tactile device utilizing a single magnetorheological sponge: experimental investigation

    NASA Astrophysics Data System (ADS)

    Kim, Soomin; Kim, Pyunghwa; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok

    2015-04-01

    In the field of medicine, several new areas have been currently introduced such as robot-assisted surgery. However, the major drawback of these systems is that there is no tactile communication between doctors and surgical sites. When the tactile system is brought up, telemedicine including telerobotic surgery can be enhanced much more than now. In this study, a new tactile device is designed using a single magnetorhological (MR) sponge cell to realize the sensation of human organs. MR fluids and an open celled polyurethane foam are used to propose the MR sponge cell. The viscous and elastic sensational behaviors of human organs are realized by the MR sponge cell. Before developing the tactile device, tactile sensation according to touch of human fingers are quantified in advance. The finger is then treated as a reduced beam bundle model (BBM) in which the fingertip is comprised of an elastic beam virtually. Under the reduced BBM, when people want to sense an object, the fingertip is investigated by pushing and sliding. Accordingly, while several magnitudes of magnetic fields are applied to the tactile device, normal and tangential reaction forces and bending moment are measured by 6-axis force/torque sensor instead of the fingertip. These measured data are used to compare with soft tissues. It is demonstrated that the proposed MR sponge cell can realize any part of the organ based on the obtained data.

  7. AV119, a natural sugar from avocado gratissima, modulates the LPS-induced proinflammatory response in human keratinocytes.

    PubMed

    Donnarumma, Giovanna; Paoletti, Iole; Buommino, Elisabetta; Fusco, Alessandra; Baudouin, Caroline; Msika, Philippe; Tufano, Maria Antonietta; Baroni, Adone

    2011-12-01

    Keratinocytes play an active role in innate immune responses by secreting a variety of cytokines and chemokines. The release of critical proinflammatory cytokines, which are necessary to activate the immune response, is induced by the stimulation of Toll-like receptors (TLRs) by molecules present on pathogenic micro-organisms such as lipopolysaccharide (LPS). AV119, a patented blend of avocado sugars, induced the aggregation of Malassezia furfur, a dimorphic, lipid-dependent yeast that is part of the normal human cutaneous commensal flora and inhibited its penetration into the keratinocytes. In the present study, the anti-inflammatory effects of AV119 were investigated in LPS-induced inflammation of human keratinocytes. In particular, we analysed the modulation of the LPS-induced expression of proinflammatory cytokines and heat shock protein 70 (HSP70) by AV119 and the involvement of TLR-4. Our data show that AV119 is able to modulate significantly the proinflammatory response in human keratinocytes, blocking the NF-kB activation in human keratinocytes.

  8. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Ruwiedel, Karsten; Hübenthal, Ulrike; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Abel, Josef; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing. © 2012 John Wiley & Sons A/S.

  9. Liver Immunology

    PubMed Central

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  10. [Exploration of the Essence of "Endogenous Turbidity" in Chinese Medicine].

    PubMed

    Fan, Xin-rong; Tang, Nong; Ji, Yun-xi; Zhang, Yao-zhong; Jiang, Li; Huang, Gui-hua; Xie, Sheng; Li, Liu-mei; Song, Chun-hui; Ling, Jiang-hong

    2015-08-01

    The essence of endogenous turbidity in Chinese medicine (CM) is different from cream, fat, phlegm, retention, damp, toxicity, and stasis. Along with the development of modern scientific technologies and biology, researches on the essence of endogenous turbidity should keep pace with the time. Its material bases should be defined and new connotation endowed at the microscopic level. The essence of turbidity lies in abnormal functions of zang-fu organs. Sugar, fat, protein, and other nutrient substances cannot be properly decomposed, but into semi-finished products or intermediate metabolites. They are inactive and cannot participate in normal material syntheses and decomposition. They cannot be transformed to energy metabolism, but also cannot be synthesized as executive functioning of active proteins. If they cannot be degraded by autophagy-lysosome or ubiquitin-prosome into glucose, fatty acids, amino acids, and other basic nutrients to be used again, they will accumulate inside the human body and become endogenous turbidity. Therefore, endogenous turbidity is different from final metabolites such as urea, carbon dioxide, etc., which can transform vital qi. How to improve the function of zang-fu organs, enhance its degradation by autophagy-lysosome or ubiquitin-prosome is of great significance in normal operating of zang-fu organs and preventing the emergence and progress of related diseases.

  11. Thermodynamic perspectives on genetic instructions, the laws of biology, diseased states and human population control

    PubMed Central

    Saier, M. H.

    2014-01-01

    This article examines in a broad perspective entropy and some examples of its relationship to evolution, genetic instructions and how we view diseases. Many knowledge gaps abound, hence our understanding is still fragmented and incomplete. Living organisms are programmed by functional genetic instructions (FGI), through cellular communication pathways, to grow and reproduce by maintaining a variety of hemistable, ordered structures (low entropy). Living organisms are far from equilibrium with their surrounding environmental systems, which tends towards increasing disorder (increasing entropy). Organisms must free themselves from high entropy (high disorder) to maintain their cellular structures for a period of time sufficient enough to allow reproduction and the resultant offspring to reach reproductive ages. This time interval varies for different species. Bacteria, for example need no sexual parents; dividing cells are nearly identical to the previous generation of cells, and can begin a new cell cycle without delay under appropriate conditions. By contrast, human infants require years of care before they can reproduce. Living organisms maintain order in spite of their changing surrounding environment, that decreases order according to the second law of thermodynamics. These events actually work together since living organisms create ordered biological structures by increasing local entropy. From a disease perspective, viruses and other disease agents interrupt the normal functioning of cells. The pressure for survival may result in mechanisms that allow organisms to resist attacks by viruses, other pathogens, destructive chemicals and physical agents such as radiation. However, when the attack is successful, the organism can be damaged until the cell, tissue, organ or entire organism is no longer functional and entropy increases. PMID:21262480

  12. Effect of human cell malignancy on activity of DNA polymerase iota.

    PubMed

    Kazakov, A A; Grishina, E E; Tarantul, V Z; Gening, L V

    2010-07-01

    An increased level of mutagenesis, partially caused by imbalanced activities of error prone DNA polymerases, is a key symptom of cell malignancy. To clarify the possible role of incorrect DNA polymerase iota (Pol iota) function in increased frequency of mutations in mammalian cells, the activity of this enzyme in extracts of cells of different mouse organs and human eye (melanoma) and eyelid (basal-cell skin carcinoma) tumor cells was studied. Both Mg2+, considered as the main activator of the enzyme reaction of in vivo DNA replication, and Mn2+, that activates homogeneous Pol iota preparations in experiments in vitro more efficiently compared to all other bivalent cations, were used as cofactors of the DNA polymerase reaction in these experiments. In the presence of Mg2+, the enzyme was active only in cell extracts of mouse testicles and brain, whereas in the presence of Mn2+ the activity of Pol iota was found in all studied normal mouse organs. It was found that in cell extracts of both types of malignant tumors (basal-cell carcinoma and melanoma) Pol iota activity was observed in the presence of either Mn2+ or Mg2+. Manganese ions activated Pol iota in both cases, though to a different extent. In the presence of Mn2+ the Pol iota activity in the basal-cell carcinoma exceeded 2.5-fold that in control cells (benign tumors from the same eyelid region). In extracts of melanoma cells in the presence of either cation, the level of the enzyme activity was approximately equal to that in extracts of cells of surrounding tumor-free tissues as well as in eyes removed after traumas. The distinctive feature of tissue malignancy (in basal-cell carcinoma and in melanoma) was the change in DNA synthesis revealed as Mn2+-activated continuation of DNA synthesis after incorrect incorporation of dG opposite dT in the template by Pol iota. Among cell extracts of different normal mouse organs, only those of testicles exhibited a similar feature. This similarity can be explained by cell division blocking that occurs in all normal cells except in testicles and in malignant cells.

  13. In-depth proteomic profiling of left ventricular tissues in human end-stage dilated cardiomyopathy.

    PubMed

    Liu, Shanshan; Xia, Yan; Liu, Xiaohui; Wang, Yi; Chen, Zhangwei; Xie, Juanjuan; Qian, Juying; Shen, Huali; Yang, Pengyuan

    2017-07-18

    Dilated cardiomyopathy (DCM) is caused by reduced left ventricular (LV) myocardial function, which is one of the most common causes of heart failure (HF). We performed iTRAQ-coupled 2D-LC-MS/MS to profile the cardiac proteome of LV tissues from healthy controls and patients with end-stage DCM. We identified 4263 proteins, of which 125 were differentially expressed in DCM tissues compared to LV controls. The majority of these were membrane proteins related to cellular junctions and neuronal metabolism. In addition, these proteins were involved in membrane organization, mitochondrial organization, translation, protein transport, and cell death process. Four key proteins involved in the cell death process were also detected by western blotting, indicated that cell death was activated in DCM tissues. Furthermore, S100A1 and eEF2 were enriched in the "cellular assembly and organization" and "cell cycle" networks, respectively. We verified decreases in these two proteins in end-stage DCM LV samples through multiple reaction monitoring (MRM). These observations demonstrate that our understanding of the mechanisms underlying DCM can be deepened through comparison of the proteomes of normal LV tissues with that from end-stage DCM in humans.

  14. Possible psycho-physiological consequences of human long-term space missions

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Kachanova, T. L.; Kalashnikova, I. V.

    Experiments carried out on the Earth s surface during different years and under contrast periods of solar activity have shown that the functional state of biosystems including the human organisms are controlled by global and local geocosmical agents Our finding have a close relation to space research because they demonstrate the reactions of biosystems on variations of global and local geocosmical agents and the mechanisms of modulations of biosystems state by geocosmical agents We revealed the role of variations of the geomagnetic field for the stimulation of immune systems functional state of peripheral blood human brain growth of microflora skin covers and pathogenic microorganisms The study of the psycho-physiological state of the human organism has demonstrated that an increase of the neutron intensity near the Earth s surface is associated with anxiety decrease of normal and increase of paradox reactions of examinees The analysis of the human brain functional state in dependent on the geomagnetic variation structure dose under exposure to the variations of geomagnetic field in a certain amplitude-frequency range and also the intensity of the nucleon component of secondary cosmic rays showed that the stable and unstable states of the human brain are determined by geomagnetic field variations and the intensity of the nucleon component The stable state of the brain manifested under the periodic oscillations of the geomagnetic field in a certain amplitude-frequency range The low level of geomagnetic activity associated with an

  15. Cytokine mediated tissue fibrosis☆

    PubMed Central

    Borthwick, Lee A.; Wynn, Thomas A.; Fisher, Andrew J.

    2013-01-01

    Acute inflammation is a recognised part of normal wound healing. However, when inflammation fails to resolve and a chronic inflammatory response is established this process can become dysregulated resulting in pathological wound repair, accumulation of permanent fibrotic scar tissue at the site of injury and the failure to return the tissue to normal function. Fibrosis can affect any organ including the lung, skin, heart, kidney and liver and it is estimated that 45% of deaths in the western world can now be attributed to diseases where fibrosis plays a major aetiological role. In this review we examine the evidence that cytokines play a vital role in the acute and chronic inflammatory responses that drive fibrosis in injured tissues. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. PMID:23046809

  16. Resting state brain networks in the prairie vole.

    PubMed

    Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael

    2018-01-19

    Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.

  17. Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system.

    PubMed Central

    Watson, K L; Konrad, K D; Woods, D F; Bryant, P J

    1992-01-01

    The tumor suppressor gene lethal(1)aberrant immune response 8 (air8) of Drosophila melanogaster encodes a homolog of the human S6 ribosomal protein. P element insertions that prevent expression of this gene cause overgrowth of the lymph glands (the hematopoietic organs), abnormal blood cell differentiation, and melanotic tumor formation. They also cause delayed development, inhibit growth of most of the larval organs, and lead to larval lethality. Mitotic recombination experiments indicate that the normal S6 gene is required for clone survival in the germ line and imaginal discs. The S6 gene produces a 1.1-kilobase transcript that is abundant throughout development in wild-type animals and in revertants derived from the insertional mutants but is barely detectable in the mutant larvae. cDNAs corresponding to this transcript show a 248-amino acid open reading frame with 75.4% identity and 94.8% similarity to both human and rat S6 ribosomal protein sequences. The results reveal a regulatory function of this ribosomal protein in the hematopoietic system of Drosophila that may be related to its developmentally regulated phosphorylation. Images PMID:1454811

  18. Normalization of Complete Genome Characteristics: Application to Evolution from Primitive Organisms to Homo sapiens.

    PubMed

    Sorimachi, Kenji; Okayasu, Teiji; Ohhira, Shuji

    2015-04-01

    Normalized nucleotide and amino acid contents of complete genome sequences can be visualized as radar charts. The shapes of these charts depict the characteristics of an organism's genome. The normalized values calculated from the genome sequence theoretically exclude experimental errors. Further, because normalization is independent of both target size and kind, this procedure is applicable not only to single genes but also to whole genomes, which consist of a huge number of different genes. In this review, we discuss the applications of the normalization of the nucleotide and predicted amino acid contents of complete genomes to the investigation of genome structure and to evolutionary research from primitive organisms to Homo sapiens. Some of the results could never have been obtained from the analysis of individual nucleotide or amino acid sequences but were revealed only after the normalization of nucleotide and amino acid contents was applied to genome research. The discovery that genome structure was homogeneous was obtained only after normalization methods were applied to the nucleotide or predicted amino acid contents of genome sequences. Normalization procedures are also applicable to evolutionary research. Thus, normalization of the contents of whole genomes is a useful procedure that can help to characterize organisms.

  19. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    PubMed Central

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C.; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual’s survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts—their topological patterns relative to each other—using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures. PMID:26452269

  20. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy.

    PubMed

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures.

  1. Normal anatomy and histology of the adult zebrafish.

    PubMed

    Menke, Aswin L; Spitsbergen, Jan M; Wolterbeek, Andre P M; Woutersen, Ruud A

    2011-08-01

    The zebrafish has been shown to be an excellent vertebrate model for studying the roles of specific genes and signaling pathways. The sequencing of its genome and the relative ease with which gene modifications can be performed have led to the creation of numerous human disease models that can be used for testing the potential and the toxicity of new pharmaceutical compounds. Many pharmaceutical companies already use the zebrafish for prescreening purposes. So far, the focus has been on ecotoxicity and the effects on embryonic development, but there is a trend to expand the use of the zebrafish with acute, subchronic, and chronic toxicity studies that are currently still carried out with the more conventional test animals such as rodents. However, before we can fully realize the potential of the zebrafish as an animal model for understanding human development, disease, and toxicology, we must first greatly advance our knowledge of normal zebrafish physiology, anatomy, and histology. To further this knowledge, we describe, in the present article, location and histology of the major zebrafish organ systems with a brief description of their function.

  2. Perinatal exposure to a noncoplanar polychlorinated biphenyl alters tonotopy, receptive fields, and plasticity in rat primary auditory cortex

    PubMed Central

    Kenet, T.; Froemke, R. C.; Schreiner, C. E.; Pessah, I. N.; Merzenich, M. M.

    2007-01-01

    Noncoplanar polychlorinated biphenyls (PCBs) are widely dispersed in human environment and tissues. Here, an exemplar noncoplanar PCB was fed to rat dams during gestation and throughout three subsequent nursing weeks. Although the hearing sensitivity and brainstem auditory responses of pups were normal, exposure resulted in the abnormal development of the primary auditory cortex (A1). A1 was irregularly shaped and marked by internal nonresponsive zones, its topographic organization was grossly abnormal or reversed in about half of the exposed pups, the balance of neuronal inhibition to excitation for A1 neurons was disturbed, and the critical period plasticity that underlies normal postnatal auditory system development was significantly altered. These findings demonstrate that developmental exposure to this class of environmental contaminant alters cortical development. It is proposed that exposure to noncoplanar PCBs may contribute to common developmental disorders, especially in populations with heritable imbalances in neurotransmitter systems that regulate the ratio of inhibition and excitation in the brain. We conclude that the health implications associated with exposure to noncoplanar PCBs in human populations merit a more careful examination. PMID:17460041

  3. Real-Time Confocal Imaging Of The Living Eye

    NASA Astrophysics Data System (ADS)

    Jester, James V.; Cavanagh, H. Dwight; Essepian, John; Shields, William J.; Lemp, Michael A.

    1989-12-01

    In 1986, we adapted the Tandem Scanning Reflected Light Microscope of Petran and Hadraysky to permit non-invasive, confocal imaging of the living eye in real-time. We were first to obtain stable, confocal optical sections in vivo, from human and animal eyes. Using confocal imaging systems we have now studied living, normal volunteers, rabbits, cats and primates sequentially, non-invasively, and in real-time. The continued development of real-time confocal imaging systems will unlock the door to a new field of cell biology involving for the first time the study of dynamic cellular processes in living organ systems. Towards this end we have concentrated our initial studies on three areas (1) evaluation of confocal microscope systems for real-time image acquisition, (2) studies of the living normal cornea (epithelium, stroma, endothelium) in human and other species; and (3) sequential wound-healing responses in the cornea in single animals to lamellar-keratectomy injury (cellular migration, inflammation, scarring). We believe that this instrument represents an important, new paradigm for research in cell biology and pathology and that it will fundamentally alter all experimental and clinical approaches in future years.

  4. Single olfactory organ associated with prosencephalic malformation and cyclopia in a Xenopus laevis tadpole.

    PubMed

    Magrassi, L; Graziadei, P P

    1987-06-02

    A cyclops Xenopus laevis tadpole with a single olfactory organ is described. At a stage comparable to 48, the telencephalon was severely atrophic and only the region where the olfactory fibres terminated appeared to have the cytoarchitecture of the olfactory bulb. In this animal the central nervous system (CNS) appeared normally developed only posterior to the preoptic area. The hypothesis of a diencephalic origin of the region where the olfactory fibres terminated is discussed in the light of our previous results of olfactory placode transplantation. By analogy between this case and other malformations (cyclopia, holoprosencephaly) in higher vertebrates and humans, the need is emphasized for a more precise anatomical description of the olfactory input in related malformations.

  5. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, such as the culture section shown here, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. The two white circles within the tumor are part of a plastic lattice that helped the cells associate. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer.

    PubMed

    Zammit, C; Coope, R; Gomm, J J; Shousha, S; Johnston, C L; Coombes, R C

    2002-04-08

    Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.

  7. A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair.

    PubMed

    Changoor, A; Tran-Khanh, N; Méthot, S; Garon, M; Hurtig, M B; Shive, M S; Buschmann, M D

    2011-01-01

    Collagen organization, a feature that is critical for cartilage load bearing and durability, is not adequately assessed in cartilage repair tissue by present histological scoring systems. Our objectives were to develop a new polarized light microscopy (PLM) score for collagen organization and to test its reliability. This PLM score uses an ordinal scale of 0-5 to rate the extent that collagen network organization resembles that of young adult hyaline articular cartilage (score of 5) vs a totally disorganized tissue (score of 0). Inter-reader reliability was assessed using Intraclass Correlation Coefficients (ICC) for Agreement, calculated from scores of three trained readers who independently evaluated blinded sections obtained from normal (n=4), degraded (n=2) and repair (n=22) human cartilage biopsies. The PLM score succeeded in distinguishing normal, degraded and repair cartilages, where the latter displayed greater complexity in collagen structure. Excellent inter-reader reproducibility was found with ICCs for Agreement of 0.90 [ICC(2,1)] (lower boundary of the 95% confidence interval is 0.83) and 0.96 [ICC(2,3)] (lower boundary of the 95% confidence interval is 0.94), indicating the reliability of a single reader's scores and the mean of all three readers' scores, respectively. This PLM method offers a novel means for systematically evaluating collagen organization in repair cartilage. We propose that it be used to supplement current gold standard histological scoring systems for a more complete assessment of repair tissue quality. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Human skin cell fractions fail to self-organize within a gellan gum/hyaluronic acid matrix but positively influence early wound healing.

    PubMed

    Cerqueira, Mariana T; da Silva, Lucília P; Santos, Tírcia C; Pirraco, Rogério P; Correlo, Vitor M; Marques, Alexandra P; Reis, Rui L

    2014-05-01

    Split-thickness autografts still are the current gold standard to treat skin, upon severe injuries. Nonetheless, autografts are dependent on donor site availability and often associated to poor quality neoskin. The generation of dermal-epidermal substitutes by tissue engineering is seen as a promising strategy to overcome this problematic. However, solutions that can be safely and conveniently transplanted in one single surgical intervention are still very challenging as their production normally requires long culture time, and graft survival is many times compromised by delayed vascularization upon transplantation. This work intended to propose a strategy that circumvents the prolonged and laborious preparation period of skin substitutes and allows skin cells self-organization toward improved healing. Human dermal/epidermal cell fractions were entrapped directly from isolation within a gellan gum/hyaluronic acid (GG-HA) spongy-like hydrogel formed from an off-the-shelf dried polymeric network. Upon transplantation into full-thickness mice wounds, the proposed constructs accelerated the wound closure rate and re-epithelialization, as well as tissue neovascularization. A synergistic effect of the GG-HA matrix and the transplanted cells over those processes was demonstrated at early time points. Despite the human-derived and chimeric blood vessels found, the proposed matrix did not succeed in prolonging cells residence time and in sustaining the self-organization of transplanted human cells possibly due to primitive degradation. Despite this, the herein proposed approach open the opportunity to tackle wound healing at early stages contributing to re-epithelialization and neovascularization.

  9. Human Skin Cell Fractions Fail to Self-Organize Within a Gellan Gum/Hyaluronic Acid Matrix but Positively Influence Early Wound Healing

    PubMed Central

    Cerqueira, Mariana T.; da Silva, Lucília P.; Santos, Tírcia C.; Pirraco, Rogério P.; Correlo, Vitor M.; Reis, Rui L.

    2014-01-01

    Split-thickness autografts still are the current gold standard to treat skin, upon severe injuries. Nonetheless, autografts are dependent on donor site availability and often associated to poor quality neoskin. The generation of dermal–epidermal substitutes by tissue engineering is seen as a promising strategy to overcome this problematic. However, solutions that can be safely and conveniently transplanted in one single surgical intervention are still very challenging as their production normally requires long culture time, and graft survival is many times compromised by delayed vascularization upon transplantation. This work intended to propose a strategy that circumvents the prolonged and laborious preparation period of skin substitutes and allows skin cells self-organization toward improved healing. Human dermal/epidermal cell fractions were entrapped directly from isolation within a gellan gum/hyaluronic acid (GG-HA) spongy-like hydrogel formed from an off-the-shelf dried polymeric network. Upon transplantation into full-thickness mice wounds, the proposed constructs accelerated the wound closure rate and re-epithelialization, as well as tissue neovascularization. A synergistic effect of the GG-HA matrix and the transplanted cells over those processes was demonstrated at early time points. Despite the human-derived and chimeric blood vessels found, the proposed matrix did not succeed in prolonging cells residence time and in sustaining the self-organization of transplanted human cells possibly due to primitive degradation. Despite this, the herein proposed approach open the opportunity to tackle wound healing at early stages contributing to re-epithelialization and neovascularization. PMID:24299468

  10. Mps1/TTK: a novel target and biomarker for cancer.

    PubMed

    Xie, Yuan; Wang, Anqiang; Lin, Jianzhen; Wu, Liangcai; Zhang, Haohai; Yang, Xiaobo; Wan, Xueshuai; Miao, Ruoyu; Sang, Xinting; Zhao, Haitao

    2017-02-01

    Monopolar spindle1 (Mps1, also known as TTK) is the core component of the spindle assembly checkpoint, which functions to ensure proper distribution of chromosomes to daughter cells. Mps1 is hardly detectable in normal organs except the testis and placenta. However, high levels of Mps1 are found in many types of human malignancies, including glioblastoma, thyroid carcinoma, breast cancer, and other cancers. Several Mps1 inhibitors can inhibit the proliferation of cancer cells and exhibit demonstrable survival benefits. Mps1 can be utilized as a new immunogenic epitope, which is able to induce potent cytotoxic T lymphocyte activity against cancer cells while sparing normal cells. Some clinical trials have validated its safety, immunogenicity and clinical response. Thus, Mps1 may be a novel target for cancer therapy. Mps1 is differentially expressed between normal and malignant tissues, indicating its potential as a molecular biomarker for diagnosis. Meanwhile, the discovery that it clearly correlates with recurrence and survival time suggests it may serve as an independent prognostic biomarker as well.

  11. Hippo vs. Crab: tissue-specific functions of the mammalian Hippo pathway.

    PubMed

    Nishio, Miki; Maehama, Tomohiko; Goto, Hiroki; Nakatani, Keisuke; Kato, Wakako; Omori, Hirofumi; Miyachi, Yosuke; Togashi, Hideru; Shimono, Yohei; Suzuki, Akira

    2017-01-01

    The Hippo signaling pathway is a vital suppressor of tumorigenesis that is often inactivated in human cancers. In normal cells, the Hippo pathway is triggered by external forces such as cell crowding, or changes to the extracellular matrix or cell polarity. Once activated, Hippo signaling down-regulates transcription supported by the paralogous cofactors YAP1 and TAZ. The Hippo pathway's functions in normal and cancer biology have been dissected by studies of mutant mice with null or conditional tissue-specific mutations of Hippo signaling elements. In this review, we attempt to systematically summarize results that have been gleaned from detailed in vivo characterizations of these mutants. Our goal is to describe the physiological roles of Hippo signaling in several normal organ systems, as well as to emphasize how disruption of the Hippo pathway, and particularly hyperactivation of YAP1/TAZ, can be oncogenic. © 2017 The Authors Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  12. Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis

    PubMed Central

    Merriman, Joseph A.; Nemeth, Kimberly A.; Schlievert, Patrick M.

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  13. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    PubMed

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Porosity and Health: Perspective of Traditional Persian Medicine

    PubMed Central

    Tafazoli, Vahid; Nimrouzi, Majid; Daneshfard, Babak

    2016-01-01

    Background: The authors of this manuscript aimed to show the importance of porosity and condensation in health according to traditional Persian medicine (TPM) with consideration of new evidence in conventional medicine. Methods: Cardinal traditional medical and pharmacological texts were searched for the traditional terms of takhalkhol (porosity) and takassof (condensity) focused on preventive methods. The findings were classified and compared with new medical findings. Results: According to traditional Persian medicine, porosity and condensity are the two crucial items that contribute to human health. Somatotype is a taxonomy based on embryonic development, which may be considered in parallel with porosity and condensation. However, these terms are not completely the same. There are many causes for acquired porosity comprising hot weather, too much intercourse, rage, starvation, and heavy exercises. In general, porosity increases the risk of diseases as it makes the body organs vulnerable to external hot and cold weather. On the other hand, the porose organs are more susceptible to accumulation of morbid matters because the cellular wastes cannot be evacuated in the normal way. There are some common points between traditional and conventional medicine in the context of porosity and condensity. The relation between diet and somatotype is an example. Conclusion: Condensity and porosity are the two basic items cited in the TPM resources and contribute to health maintenance and disease prevention of body organs. Creating a balance between these two states in different body organs, strongly contributes to disease prevention, treatment and diminishing chronic diseases period. Choosing proper modality including diet, drug therapy, and manual therapy depends on the amount porosity and stiffness of the considered organ and the preferred porosity of the affected organ keeping in a normal healthy state. PMID:27840513

  15. Role of Chemotherapeutic Agents in the Management of Cystic Echinococcosis

    PubMed Central

    Nazligul, Yasar; Kucukazman, Metin; Akbulut, Sami

    2015-01-01

    Hydatid disease is caused by infection with the metacestode stage of Echinococcus tapeworms of the family Taeniidae. The primary carriers are dogs and wolves, and humans are accidental hosts that do not contribute to the normal life cycle of this organism. The liver is the most commonly involved organ in the body by cystic echinococcosis (CE) secondary to infection with Echinococcus granulosus. Management options for CE should depend on the World Health Organization (WHO) diagnostic classification. Small (<5 cm) WHO stage CE1 and CE3a cysts may be primarily treated with benzimidazoles; the first-choice drug is albendazole. In some situations the combination of albendazole and praziquantel may be preferred. Chemotherapy with a benzimidazole or albendazole plus praziquantel is also used as adjunctive treatment to surgery and percutaneous treatment. Drug treatments have been the indispensable therapeutic modalities for cystic echinococcosis. PMID:25594649

  16. [Distant mental influence on living organisms].

    PubMed

    Bonilla, Ernesto

    2013-12-01

    This article reviews studies of distant mental influence on living organisms, including mental suggestions of sleeping and awakening, mental influence at long distances, mental interactions with remote biological systems, mental effects on physiological activity and the sense of being stared at. Significant effects of distant mental influence have been shown in several randomized controlled trials in humans, animals, plants, bacteria and cells in the laboratory. Although distant mental influence on living organisms appears to contradict our ordinary sense of reality and the laws defined by conventional science, several hypotheses have been proposed to explain the observed effects; they include skeptical, signal transfer, field, multidimensional space/time and quantum mechanics hypotheses. In conclusion, as the progress of physics continues to expand our comprehension of reality, a rational explanation for distant mind-matter interaction will emerge and, as history has shown repeatedly, the supernatural events will evolve into paranormal and then, into normal ones, as the scientific frontiers expand.

  17. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth?

    PubMed Central

    Devesa, Jesús; Almengló, Cristina; Devesa, Pablo

    2016-01-01

    In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown. PMID:27773998

  18. Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience

    PubMed Central

    Binda, Paola; Benson, Noah C.; Bridge, Holly; Watkins, Kate E.

    2015-01-01

    Early visual areas have neuronal receptive fields that form a sampling mosaic of visual space, resulting in a series of retinotopic maps in which the same region of space is represented in multiple visual areas. It is not clear to what extent the development and maintenance of this retinotopic organization in humans depend on retinal waves and/or visual experience. We examined the corticocortical receptive field organization of resting-state BOLD data in normally sighted, early blind, and anophthalmic (in which both eyes fail to develop) individuals and found that resting-state correlations between V1 and V2/V3 were retinotopically organized for all subject groups. These results show that the gross retinotopic pattern of resting-state connectivity across V1-V3 requires neither retinal waves nor visual experience to develop and persist into adulthood. SIGNIFICANCE STATEMENT Evidence from resting-state BOLD data suggests that the connections between early visual areas develop and are maintained even in the absence of retinal waves and visual experience. PMID:26354906

  19. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain's ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable and provides imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles. SR using imperceptible stochastic electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS) applied to normal subjects has shown to improve the degree of association between the weak input periodic signals introduced via venous blood pressure receptors and the heart-rate responses. Also, application of SVS over 24 hours improves the long-term heart-rate dynamics and motor responsiveness as indicated by daytime trunk activity measurements in patients with multi-system atrophy, Parkinson s disease, or both, including patients who were unresponsive to standard therapy for Parkinson s disease. Recent studies conducted at the NASA JSC Neurosciences Laboratories showed that imperceptible SVS, when applied to normal young healthy subjects, leads to significantly improved balance performance during postural disturbances on unstable compliant surfaces. These studies have shown the benefit of SR noise characteristic optimization with imperceptible SVS in the frequency range of 0-30 Hz, and amplitudes of stimulation have ranged from 100 to 400 microamperes.

  20. Mammary cancer in humans and mice: a tutorial for comparative pathology. The CD-ROM.

    PubMed

    Cardiff, R D; Wagner, U; Hennighausen, L

    2000-04-01

    This article introduces a CD-ROM containing whole-mount and histological images of normal growth and development of both the mouse mammary gland and the human breast. It also covers nonneoplastic lesions and neoplasias in both species including a catalog of lesions in genetically engineered mice. Instructions, with examples, on techniques such as whole-mount preparation, immunohistochemistry, in situ hybridization, and common histological stains are provided. The images are based on full-scale 1996 x 1640 pixel images at 300 pixels/ inch and are annotated. Every genetically engineered model has one or more accompanying citations. Tables are provided for orientation and organization. The CD includes zoom capabilities, a search engine, and a help mode.

  1. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth

    PubMed Central

    Kimball, Todd; Rasmussen, Tara L.; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R.; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O.; Vondriska, Thomas M.

    2016-01-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. PMID:27663768

  2. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth.

    PubMed

    Franklin, Sarah; Kimball, Todd; Rasmussen, Tara L; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O; Vondriska, Thomas M

    2016-11-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. Copyright © 2016 the American Physiological Society.

  3. NEMO: Extraction and normalization of organization names from PubMed affiliations.

    PubMed

    Jonnalagadda, Siddhartha Reddy; Topham, Philip

    2010-10-04

    Today, there are more than 18 million articles related to biomedical research indexed in MEDLINE, and information derived from them could be used effectively to save the great amount of time and resources spent by government agencies in understanding the scientific landscape, including key opinion leaders and centers of excellence. Associating biomedical articles with organization names could significantly benefit the pharmaceutical marketing industry, health care funding agencies and public health officials and be useful for other scientists in normalizing author names, automatically creating citations, indexing articles and identifying potential resources or collaborators. Large amount of extracted information helps in disambiguating organization names using machine-learning algorithms. We propose NEMO, a system for extracting organization names in the affiliation and normalizing them to a canonical organization name. Our parsing process involves multi-layered rule matching with multiple dictionaries. The system achieves more than 98% f-score in extracting organization names. Our process of normalization that involves clustering based on local sequence alignment metrics and local learning based on finding connected components. A high precision was also observed in normalization. NEMO is the missing link in associating each biomedical paper and its authors to an organization name in its canonical form and the Geopolitical location of the organization. This research could potentially help in analyzing large social networks of organizations for landscaping a particular topic, improving performance of author disambiguation, adding weak links in the co-author network of authors, augmenting NLM's MARS system for correcting errors in OCR output of affiliation field, and automatically indexing the PubMed citations with the normalized organization name and country. Our system is available as a graphical user interface available for download along with this paper.

  4. Psychological effects of technological/human-caused environmental disasters: examination of the Navajo and uranium.

    PubMed

    Markstrom, Carol A; Charley, Perry H

    2003-01-01

    Disasters can be defined as catastrophic events that challenge the normal range of human coping ability. The technological/human-caused disaster, a classification of interest in this article, is attributable to human error or misjudgment. Lower socioeconomic status and race intersect in the heightened risk for technological/human-caused disasters among people of color. The experience of the Navajo with the uranium industry is argued to specifically be this type of a disaster with associated long-standing psychological impacts. The history of the Navajo with uranium mining and milling is reviewed with a discussion of the arduous efforts for compensation. The psychological impacts of this long-standing disaster among the Navajo are organized around major themes of: (a) human losses and bereavement, (b) environmental losses and contamination, (c) feelings of betrayal by government and mining and milling companies, (d) fears about current and future effects, (e) prolonged duration of psychological effects, (f) anxiety and depression, and (g) complicating factors of poverty and racism. The paper concludes with suggestions for culturally-appropriate education and intervention.

  5. Keratoconus corneal architecture after riboflavin/ultraviolet A cross-linking: Ultrastructural studies

    PubMed Central

    Almubrad, Turki; Paladini, Iacopo; Mencucci, Rita

    2013-01-01

    Purpose Study to investigate the effects of collagen cross-linking on the ultrastructural organization of the corneal stroma in the human keratoconus cornea (KC). Methods Three normal, three keratoconus (KC1, KC2, KC3), and three cross-linked keratoconus (CXL1, CXL2, CXL3) corneas were analyzed. The KC corneas were treated with a riboflavin-ultraviolet A (UVA) treatment (CXL) method described by Wollensak et al. Penetrating keratoplasty (PKP) was performed 6 months after treatment. All samples were processed for electron microscopy. Results The riboflavin-UVA-treated CXL corneal stroma showed interlacing lamellae in the anterior stroma followed by well-organized parallel running lamellae. The lamellae contained uniformly distributed collagen fibrils (CFs) decorated with normal proteoglycans (PGs). The CF diameter and interfibrillar spacing in the CXL cornea were significantly increased compared to those in the KC cornea. The PG area in the CXL corneas were significantly smaller than the PGs in the KC cornea. The epithelium and Bowman’s layer were also normal. On rare occasions, a thick basement membrane and collagenous pannus were also observed. Conclusions Corneal cross-linking leads to modifications of the cornea stroma. The KC corneal structure showed a modification in the CF diameter, interfibrillar spacing, and PG area. This resulted in a more uniform distribution of collagen fibrils, a key feature for corneal transparency. PMID:23878503

  6. Preparation and characterization of a novel Al(18)F-NOTA-BZA conjugate for melanin-targeted imaging of malignant melanoma.

    PubMed

    Chang, Chih-Chao; Chang, Chih-Hsien; Lo, Yi-Hsuan; Lin, Ming-Hsien; Shen, Chih-Chieh; Liu, Ren-Shyan; Wang, Hsin-Ell; Chen, Chuan-Lin

    2016-08-15

    Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. Previous studies have demonstrated the specific binding ability of benzamide moiety to melanin. In this study, we developed a novel (18)F-labeled NOTA-benzamide conjugate, Al(18)F-NOTA-BZA, which can be synthesized in 30min with a radiochemical yield of 20-35% and a radiochemical purity of >95%. Al(18)F-NOTA-BZA is highly hydrophilic (logP=-1.96) and shows good in vitro stability. Intravenous administration of Al(18)F-NOTA-BZA in two melanoma-bearing mouse models revealed highly specific uptake in B16F0 melanotic melanoma (6.67±0.91 and 1.50±0.26%ID/g at 15 and 120min p.i., respectively), but not in A375 amelanotic melanoma (0.87±0.21 and 0.24±0.09%ID/g at 15 and 120min p.i., respectively). The clearance from most normal tissues was fast. A microPET scan of Al(18)F-NOTA-BZA-injected mice also displayed high-contrast tumor images as compared with normal organs. Owing to the favorable in vivo distribution of Al(18)F-NOTA-BZA after intravenous administration, the estimated absorption dose was low in all normal organs and tissues. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and thelow projected human dosimetry supported that Al(18)F-NOTA-BZA is a very promising melanin-specific PET probe for melanin-positive melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Demonstration of Iodide Transport Defect but Normal Iodide Organification in Nonfunctioning Nodules of Human Thyroid Glands

    PubMed Central

    Field, James B.; Larsen, P. Reed; Yamashita, Kamejiro; Mashiter, Keith; Dekker, Andrew

    1973-01-01

    Benign and malignant nodules in human thyroid glands, which did not concentrate iodide in vivo, were also unable to accumulate iodide in vitro. The mean thyroid-to-medium ratio (T/M) in seven benign nodules was 0.8±0.2 compared with 7±2 in adjacent normal thyroid tissue. In four malignant thyroid nodules, the mean T/M was 0.5±0.1 compared with 11±4 in adjacent normal thyroid. Despite the inability of such nodules to concentrate iodide, iodide organification was present but was only one-half to one-third as active as in surrounding normal thyroid. Thyroid-stimulating hormone (TSH) increased iodide organification equally in both benign nodules and normal thyroid although it had no effect in three of the four malignant lesions. The reduction in organification is probably related to the absence of iodide transport, since incubation of normal thyroid slices with perchlorate caused similar diminution in iodide incorporation but no change in the response to TSH. Monoiodotyrosine (MIT) and di-iodotyrosine (DIT) accounted for most of the organic iodide in both the nodules and normal tissue. The MIT/DIT ratio was similar in normal and nodule tissue. The normal tissue contained much more inorganic iodide than the nodules, consistent with the absence of the iodide trap in the latter tissue. The thyroxine content of normal thyroid was 149±17 μg/g wet wt and 18±4 μg/g wet wt in the nodules. The transport defect in the nodules was not associated with any reduction in total, Na+-K+- or Mg++-activated ATPase activities or the concentration of ATP. Basal adenylate cyclase was higher in nodules than normal tissue. Although there was no difference between benign and malignant nodules, the response of adenylate cyclase to TSH was greater in the benign lesions. These studies demonstrate that nonfunctioning thyroid nodules, both benign and malignant, have a specific defect in iodide transport that accounts for their failure to accumulate radioactive iodide in vivo. In benign nodules, iodide organification was increased by TSH while no such effect was found in three of four malignant lesions, suggesting additional biochemical defects in thyroid carcinomas. PMID:4353998

  8. Meningitis due to Moraxella nonliquefaciens in a paediatric patient: a case report and review of the literature

    PubMed Central

    Szymczak, Wendy; Munjal, Iona

    2017-01-01

    Introduction. Moraxella nonliquefaciens is an unusual organism to be isolated from cerebral spinal fluid (CSF) and there exists only one case report of M. nonliquefaciens meningitis from a neonate. Moraxella species normally exist as part of the human upper respiratory tract flora and rarely cause invasive human disease. There are only a handful of case reports implicating the organism as a cause of endocarditis, bacteraemia, septic arthritis and endophthalmitis. Identification to the species level based on routine laboratory techniques has been challenging, with final identification often made through 16S rRNA sequencing. With the use of a newer diagnostic tool, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS, we were able to rapidly identify the organism and initiate appropriate treatment. Case presentation. We present a rare care of M. nonliquefaciens meningitis in a paediatric patient with an underlying cranial anatomical defect due to Crouzon syndrome. She had been admitted to hospital 3 months previously with Streptococcus pneumoniae meningitis and mastoiditis, and returned to the emergency department with meningismus. CSF culture grew M. nonliquefaciens. She was treated with ceftriaxone with rapid improvement and eventually was taken for endoscopic surgical repair of a right encephalocele defect. Conclusion. The use of MALDI-TOF MS allowed for the rapid identification of the organism. The patient recovered with appropriate antimicrobial therapy and eventual surgical correction. An underlying anatomical defect should be considered in all patients who present with meningitis due to this unusual organism. PMID:28348808

  9. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    PubMed

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer.

  10. Identification of "tumor-associated" nucleolar antigens in human urothelial cancer.

    PubMed

    Yu, D; Pietro, T; Jurco, S; Scardino, P T

    1987-09-01

    Nucleoli isolated from HeLa S3 cells were used to produce rabbit antisera capable of binding nucleoli of transitional cell carcinomas (TCCa) of the bladder. Cross-reactivity of the rabbit antiserum with normal nucleoli was reduced by absorption with fetal calf serum, normal human serum, and human placental nucleoli. This antinucleolar antiserum exhibited strong reactivity in immunoperoxidase assays performed on specimens of human bladder cancer. In frozen tissue sections of 24 patients with TCCa and eight individuals without tumor, nucleolar staining was observed in all malignant specimens, but was not observed in seven of the normal specimens. Cytologic examination of bladder washing specimens from 47 normal individuals showed absence of nucleolar staining in 43 (91%) of 47 normal specimens while 12 (86%) of 14 specimens from patients with TCCa were positive. These results suggest that there are antigens associated with the nucleoli of HeLa cells and transitional cell carcinomas which are generally absent (or in low concentration) in normal human urothelial cells, and that antisera to these antigens may be useful in the cytologic diagnosis of human transitional cell carcinoma.

  11. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.

    PubMed

    Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K

    2018-02-01

    The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils and thus subsequently exploited this property in vitro to improve the architecture of engineered RAFT tissue equivalents of the corneal stroma. Existing techniques are extremely lengthy and carry significant risk and cost for GMP manufacture. This rapid and tunable technique takes just 8 h of culture and is therefore ideal for clinical manufacture, creating biomimetic tissue equivalents with both cellular and ECM organization. Thus, cellular self-alignment can be a useful bioengineering tool for the development of organized tissue equivalents in a variety of applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs

    PubMed Central

    Matsunari, Hitomi; Nagashima, Hiroshi; Watanabe, Masahito; Umeyama, Kazuhiro; Nakano, Kazuaki; Nagaya, Masaki; Kobayashi, Toshihiro; Yamaguchi, Tomoyuki; Sumazaki, Ryo; Herzenberg, Leonard A.; Nakauchi, Hiromitsu

    2013-01-01

    In the field of regenerative medicine, one of the ultimate goals is to generate functioning organs from pluripotent cells, such as ES cells or induced pluripotent stem cells (PSCs). We have recently generated functional pancreas and kidney from PSCs in pancreatogenesis- or nephrogenesis-disabled mice, providing proof of principle for organogenesis from PSCs in an embryo unable to form a specific organ. Key when applying the principles of in vivo generation to human organs is compensation for an empty developmental niche in large nonrodent mammals. Here, we show that the blastocyst complementation system can be applied in the pig using somatic cell cloning technology. Transgenic approaches permitted generation of porcine somatic cell cloned embryos with an apancreatic phenotype. Complementation of these embryos with allogenic blastomeres then created functioning pancreata in the vacant niches. These results clearly indicate that a missing organ can be generated from exogenous cells when functionally normal pluripotent cells chimerize a cloned dysorganogenetic embryo. The feasibility of blastocyst complementation using cloned porcine embryos allows experimentation toward the in vivo generation of functional organs from xenogenic PSCs in large animals. PMID:23431169

  13. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs.

    PubMed

    Matsunari, Hitomi; Nagashima, Hiroshi; Watanabe, Masahito; Umeyama, Kazuhiro; Nakano, Kazuaki; Nagaya, Masaki; Kobayashi, Toshihiro; Yamaguchi, Tomoyuki; Sumazaki, Ryo; Herzenberg, Leonard A; Nakauchi, Hiromitsu

    2013-03-19

    In the field of regenerative medicine, one of the ultimate goals is to generate functioning organs from pluripotent cells, such as ES cells or induced pluripotent stem cells (PSCs). We have recently generated functional pancreas and kidney from PSCs in pancreatogenesis- or nephrogenesis-disabled mice, providing proof of principle for organogenesis from PSCs in an embryo unable to form a specific organ. Key when applying the principles of in vivo generation to human organs is compensation for an empty developmental niche in large nonrodent mammals. Here, we show that the blastocyst complementation system can be applied in the pig using somatic cell cloning technology. Transgenic approaches permitted generation of porcine somatic cell cloned embryos with an apancreatic phenotype. Complementation of these embryos with allogenic blastomeres then created functioning pancreata in the vacant niches. These results clearly indicate that a missing organ can be generated from exogenous cells when functionally normal pluripotent cells chimerize a cloned dysorganogenetic embryo. The feasibility of blastocyst complementation using cloned porcine embryos allows experimentation toward the in vivo generation of functional organs from xenogenic PSCs in large animals.

  14. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases.

    PubMed

    Pender, Michael P

    2003-11-01

    I hypothesize that human chronic autoimmune diseases are based on infection of autoreactive B lymphocytes by Epstein-Barr virus (EBV), in the following proposed scenario. During primary infection, autoreactive B cells are infected by EBV, proliferate and become latently infected memory B cells, which are resistant to the apoptosis that occurs during normal B-cell homeostasis because they express virus-encoded anti-apoptotic molecules. Genetic susceptibility to the effects of B-cell infection by EBV leads to an increased number of latently infected autoreactive memory B cells, which lodge in organs where their target antigen is expressed, and act there as antigen-presenting cells. When CD4(+) T cells that recognize antigens within the target organ are activated in lymphoid organs by cross-reactivity with infectious agents, they migrate to the target organ but fail to undergo activation-induced apoptosis because they receive a co-stimulatory survival signal from the infected B cells. The autoreactive T cells proliferate and produce cytokines, which recruit other inflammatory cells, with resultant target organ damage and chronic autoimmune disease.

  15. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells

    NASA Astrophysics Data System (ADS)

    Rijken, P. J.; de Groot, R. P.; Kruijer, W.; de Laat, S. W.; Verkleij, A. J.; Boonstra, J.

    Epidermal growth factor (EGF) activates a well characterized signal transduction cascade in human A431 epidermoid carcinoma cells. The influence of gravity on EGF-induced EGF-receptor clustering and early gene expression as well as on actin polymerization and actin organization have been investigated. Different signalling pathways induced by the agents TPA, forskolin and A23187 that activate gene expression were tested for sensitivity to gravity. EGF-induced c-fos and c-jun expression were decreased in microgravity. However, constitutive β-2 microglobulin expression remained unaltered. Under simulated weightlessness conditions EGF- and TPA-induced c-fos expression was decreased, while forskolin- and A23187-induced c-fos expression was independent of the gravity conditions. These results suggest that gravity affects specific signalling pathways. Preliminary results indicate that EGF-induced EGF-receptor clustering remained unaltered irrespective of the gravity conditions. Furthermore, the relative filamentous actin content of steady state A431 cells was enhanced under microgravity conditions and actin filament organization was altered. Under simulated weightlessness actin filament organization in steady state cells as well as in EGF-treated cells was altered as compared to the 1 G reference experiment. Interestingly the microtubule and keratin organization in untreated cells showed no difference with the normal gravity samples. This indicates that gravity may affect specific components of the signal transduction circuitry.

  16. Lag threads organize the brain’s intrinsic activity

    PubMed Central

    Mitra, Anish; Snyder, Abraham Z.; Blazey, Tyler; Raichle, Marcus E.

    2015-01-01

    It has been widely reported that intrinsic brain activity, in a variety of animals including humans, is spatiotemporally structured. Specifically, propagated slow activity has been repeatedly demonstrated in animals. In human resting-state fMRI, spontaneous activity has been understood predominantly in terms of zero-lag temporal synchrony within widely distributed functional systems (resting-state networks). Here, we use resting-state fMRI from 1,376 normal, young adults to demonstrate that multiple, highly reproducible, temporal sequences of propagated activity, which we term “lag threads,” are present in the brain. Moreover, this propagated activity is largely unidirectional within conventionally understood resting-state networks. Modeling experiments show that resting-state networks naturally emerge as a consequence of shared patterns of propagation. An implication of these results is that common physiologic mechanisms may underlie spontaneous activity as imaged with fMRI in humans and slowly propagated activity as studied in animals. PMID:25825720

  17. Report of two paediatric cases of central line infections caused by species of the genus Kocuria

    PubMed Central

    Hamula, Camille L.; Dingle, Tanis C.

    2016-01-01

    Introduction: Species of the genus Kocuria are Gram-positive cocci of the family Micrococcacceae that are ubiquitous in the environment and part of the normal skin and oral flora in humans. A paucity of cases have been reported of Kocuria as human pathogens and there are currently no evidence-based guidelines for managing these uncommon infections. Case presentation: We present two paediatric cases of central line infections with species of the genus Kocuria that required line removal despite antimicrobial therapy. Conclusion: Species of the genus Kocuria are uncommon human pathogens that have rarely been reported to cause opportunistic infections in both adult and paediatric populations. The cases presented here add to the growing body of literature documenting the pathogenicity of these organisms and the possible need for line removal to achieve clinical cure in central line-associated bacteraemia caused by species of the genus Kocuria. PMID:28348760

  18. Human structural variation: mechanisms of chromosome rearrangements

    PubMed Central

    Weckselblatt, Brooke; Rudd, M. Katharine

    2015-01-01

    Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074

  19. Muscle Coordination and Locomotion in Humans.

    PubMed

    Sylos-Labini, Francesca; Zago, Myrka; Guertin, Pierre A; Lacquaniti, Francesco; Ivanenko, Yury P

    2017-01-01

    Locomotion is a semi-automatic daily task. Several studies show that muscle activity is fairly stereotyped during normal walking. Nevertheless, each human leg contains over 50 muscles and locomotion requires flexibility in order to adapt to different conditions as, for instance, different speeds, gaits, turning, obstacle avoidance, altered gravity levels, etc. Therefore, locomotor control has to deal with a certain level of flexibility and non-linearity. In this review, we describe and discuss different findings dealing with both simplicity and variability of the muscular control, as well as with its maturation during development. Despite complexity and redundancy, muscle activity patterns and spatiotemporal maps of spinal motoneuron output during human locomotion show both stereotypical features as well as functional re-organization. Flexibility and different solutions to adjust motor patterns should be considered when considering new rehabilitation strategies to treat disorders involving deficits in gait. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    PubMed

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize vessels by interfering anterior gradient 2-mediated angiogenesis in metastatic colorectal cancer.

  1. Intraoperative cervix location and apical support stiffness in women with and without pelvic organ prolapse.

    PubMed

    Swenson, Carolyn W; Smith, Tovia M; Luo, Jiajia; Kolenic, Giselle E; Ashton-Miller, James A; DeLancey, John O

    2017-02-01

    It is unknown how initial cervix location and cervical support resistance to traction, which we term "apical support stiffness," compare in women with different patterns of pelvic organ support. Defining a normal range of apical support stiffness is important to better understand the pathophysiology of apical support loss. The aims of our study were to determine whether: (1) women with normal apical support on clinic Pelvic Organ Prolapse Quantification, but with vaginal wall prolapse (cystocele and/or rectocele), have the same intraoperative cervix location and apical support stiffness as women with normal pelvic support; and (2) all women with apical prolapse have abnormal intraoperative cervix location and apical support stiffness. A third objective was to identify clinical and biomechanical factors independently associated with clinic Pelvic Organ Prolapse Quantification point C. We conducted an observational study of women with a full spectrum of pelvic organ support scheduled to undergo gynecologic surgery. All women underwent a preoperative clinic examination, including Pelvic Organ Prolapse Quantification. Cervix starting location and the resistance (stiffness) of its supports to being moved steadily in the direction of a traction force that increased from 0-18 N was measured intraoperatively using a computer-controlled servoactuator device. Women were divided into 3 groups for analysis according to their pelvic support as classified using the clinic Pelvic Organ Prolapse Quantification: (1) "normal/normal" was women with normal apical (C < -5 cm) and vaginal (Ba and Bp < 0 cm) support; (2) normal/prolapse had normal apical support (C < -5 cm) but prolapse of the anterior or posterior vaginal walls (Ba and/or Bp ≥ 0 cm); and (3) prolapse/prolapse had both apical and vaginal wall prolapse (C > -5 cm and Ba and/or Bp ≥ 0 cm). Demographics, intraoperative cervix locations, and apical support stiffness values were then compared. Normal range of cervix location during clinic examination and operative testing was defined by the total range of values observed in the normal/normal group. The proportion of women in each group with cervix locations within and outside the normal range was determined. Linear regression was performed to identify variables independently associated with clinic Pelvic Organ Prolapse Quantification point C. In all, 52 women were included: 14 in the normal/normal group, 11 in the normal/prolapse group, and 27 in the prolapse/prolapse group. At 1 N of traction force in the operating room, 50% of women in the normal/prolapse group had cervix locations outside the normal range while 10% had apical support stiffness outside the normal range. Of women in the prolapse/prolapse group, 81% had cervix locations outside the normal range and 8% had apical support stiffness outside the normal range. Similar results for cervix locations were observed at 18 N of traction force; however the proportion of women with apical support stiffness outside the normal range increased to 50% in the normal/prolapse group and 59% in the prolapse/prolapse group. The prolapse/prolapse group had statistically lower apical support stiffness compared to the normal/normal group with increased traction from 1-18 N (0.47 ± 0.18 N/mm vs 0.63 ± 0.20 N/mm, P = .006), but all other comparisons were nonsignificant. After controlling for age, parity, body mass index, and apical support stiffness, cervix location at 1 N traction force remained an independent predictor of clinic Pelvic Organ Prolapse Quantification point C, but only in the prolapse/prolapse group. Approximately 50% of women with cystocele and/or rectocele but normal apical support in the clinic had cervix locations outside the normal range under intraoperative traction, while 19% of women with uterine prolapse had normal apical support. Identifying women whose apical support falls outside a defined normal range may be a more accurate way to identify those who truly need a hysterectomy and/or an apical support procedure and to spare those who do not. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Pasteurella multocida meningitis in an adult: case report.

    PubMed

    Armstrong, G R; Sen, R A; Wilkinson, J

    2000-03-01

    Pasteurella multocida is known to form part of the normal flora in the nasopharynx or gastrointestinal tract in many domestic and wild animals. Most human P multocida infections are soft tissue infections caused by dog or cat bites. Less commonly this bacterium is associated with infections affecting other organ systems of man. A case of fatal P multocida meningitis discovered at the necropsy of a 52 year old man is described. P multocida is an unusual causative agent of meningitis which tends to affect those at the extremes of age.

  3. [The enhancement of human thermal resistance by the single use of bemitil and fenibut].

    PubMed

    Makarov, V I; Tiurenkov, I N; Klauchek, S V; Nalivaĭko, I Iu; Antipova, A Iu

    1997-01-01

    The authors studied the effect of single intake of bymetil (0.5 g) and phenibut (0.25 g) on the thermal state, gas-energy exchange, blood oxygenation, working capacity, and the subjective status of man in intensive physical exertion in isolating means of individual protection. The drugs under study increased thermal resistance, promoted normal supply of the organism with oxygen, and provided the maintenance of man's high working capacity under conditions which lead to his overheating. The best protective effects was produced in this case with phenibut.

  4. P-cadherin regulates human hair growth and cycling via canonical Wnt signaling and transforming growth factor-β2.

    PubMed

    Samuelov, Liat; Sprecher, Eli; Tsuruta, Daisuke; Bíró, Tamás; Kloepper, Jennifer E; Paus, Ralf

    2012-10-01

    P-cadherin is a key component of epithelial adherens junctions, and it is prominently expressed in the hair follicle (HF) matrix. Loss-of-function mutations in CDH3, which encodes P-cadherin, result in hypotrichosis with juvenile macular dystrophy (HJMD), an autosomal recessive disorder featuring sparse and short hair. Here, we attempted to recapitulate some aspects of HJMD in vitro by transfecting normal, organ-cultured human scalp HFs with lipofectamine and CDH3-specific or scrambled control siRNAs. As in HJMD patients, P-cadherin silencing inhibited hair shaft growth, prematurely induced HF regression (catagen), and inhibited hair matrix keratinocyte proliferation. In situ, membrane β-catenin expression and transcription of the β-catenin target gene, axin2, were significantly reduced, whereas glycogen synthase kinase 3 β (GSK3β) and phospho-β-catenin immunoreactivity were increased. These effects were partially reversed by inhibiting GSK3β. P-cadherin silencing reduced the expression of the anagen-promoting growth factor, IGF-1, whereas that of transforming growth factor β 2 (TGFβ2; catagen promoter) was enhanced. Neutralizing TGFβ antagonized the catagen-promoting effects of P-cadherin silencing. In summary, we introduce human HFs as an attractive preclinical model for studying the functions of P-cadherin in human epithelial biology and pathology. This model demonstrates that cadherins can be successfully knocked down in an intact human organ in vitro, and shows that P-cadherin is needed for anagen maintenance by regulating canonical Wnt signaling and suppressing TGFβ2.

  5. Phenomenon of formation of giant fat-containing cells in human bone marrow cultures induced by human serum factor: normal and leukemic patterns.

    PubMed

    Svet-Moldavskaya, I A; Zinzar, S N; Svet-Moldavsky, G J; Arlin, Z; Vergara, C; Koziner, B; Clarkson, B D; Holland, J F

    1983-08-01

    Normal human sera induce the formation of fat-containing cells (FCC) in human bone marrow cultures. A nearly complete monolayer of FCC is formed after 7-14 days of cultivation with 20% human sera in the medium. FCC-inducing activity (FCCIA) is nondialyzable through 14,900-dalton cutoff membrane and is stable at 56 degrees C for 30 min. Abundant FCCIA was found in 83% of normal human sera but in only 20% of sera from untreated patients with different hemopoietic disorders and in 32% of treated leukemic patients. It is suggested that FCCIA may be involved in regulation of the bone marrow microenvironment an that it varies in normal individuals and in patients with different diseases.

  6. [A new information technology for system diagnosis of functional activity of human organs].

    PubMed

    Avshalumov, A Sh; Sudakov, K V; Filaretov, G F

    2006-01-01

    The goal of this work was to consider a new diagnostic technology based on analysis of objective information parameters of functional activity and interaction of normal and pathologically changed human organs. The technology is based on the use of very low power millimeter (EHF) radiation emitted by human body and other biological objects in the process of vital activity. The importance of consideration of the information aspect of vital activity from the standpoint of the theory of functional systems suggested by P. K. Anokhin is emphasized. The suggested information technology is theoretically substantiated. The capabilities of the suggested technology for diagnosis, as well as the difficulties of its practical implementation caused by very low power of electromagnetic fields generated by human body, are discussed. It is noted that only use of modern radiophysical equipment together with new software based on specially developed algorithms made it possible to construct a medical EHF diagnostic system for effective implementation of the suggested technology. The system structure, functions of its components, the examination procedure, and the form of representation of diagnostic information are described together with the specific features of applied software based on the principle of maximal objectivity of analysis and interpretation of the results of diagnosis on the basis of artificial intelligence algorithms. The diagnostic capabilities of the system are illustrated by several examples.

  7. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.

  8. Sleep and Development in Genetically Tractable Model Organisms

    PubMed Central

    Kayser, Matthew S.; Biron, David

    2016-01-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. PMID:27183564

  9. A selective medium for the isolation of Microbacterium species in oral cavities.

    PubMed

    Tsuzukibashi, Osamu; Uchibori, Satoshi; Kobayashi, Taira; Saito, Masanori; Umezawa, Koji; Ohta, Mitsuhiro; Shinozaki-Kuwahara, Noriko

    2015-09-01

    The genus Microbacterium has been isolated from the environment, dairy goods, and human clinical specimens. Although, in our previous studies, some Microbacterium species were infrequently detected in oral samples collected from humans, there is currently no report that these organisms, which are capable of causing serious systemic infections, were isolated from the human oral cavity. The aim of the present study was to develop a selective medium to isolate the representative Microbacterium species most frequently detected in human clinical specimens, and reveal the distribution of individual Microbacterium species in the oral cavity. The growth recoveries of representative Microbacterium species on the selective medium, designated as MSM, were sufficient. Moreover, the growth of other representative oral bacteria was markedly inhibited on the selective medium. The proportion of Microbacterium species in the saliva samples of 60 subjects, 20 of whom were removable denture wearers, was then examined. The proportion of these organisms was also examined in environmental samples obtained by swabbing 20 washstands. PCR primers were designed for representative Microbacterium species. The genus Microbacterium was detected in 45% of the saliva and denture plaque samples collected from the twenty removable denture wearers, but was absent in the saliva of the forty non-denture wearers. On the other hand, these organisms were detected in all environmental samples. The genus Microbacterium accounted for 0.00003%, 0.0001%, and 12.6% of the total cultivable bacteria number on the BHI medium in the saliva and denture plaque samples of removable denture wearers and in the environmental samples, respectively. The most predominant Microbacterium species in all positive samples was Microbacterium oxydans. These results indicated that the genus Microbacterium was not a part of the normal flora in the human oral cavity, except for subjects wearing dentures that were contaminated by the environment, and the selective medium, designated as MSM, was useful for isolating Microbacterium species, which are frequently encountered in human clinical specimens, from the various samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model

    PubMed Central

    Hu, Yanping; Turner, Michael J; Shields, Jacqueline; Gale, Matthew S; Hutto, Elizabeth; Roberts, Bruce L; Siders, William M; Kaplan, Johanne M

    2009-01-01

    Alemtuzumab is a humanized monoclonal antibody against CD52, an antigen found on the surface of normal and malignant lymphocytes. It is approved for the treatment of B-cell chronic lymphocytic leukaemia and is undergoing Phase III clinical trials for the treatment of multiple sclerosis. The exact mechanism by which alemtuzumab mediates its biological effects in vivo is not clearly defined and mechanism of action studies have been hampered by the lack of cross-reactivity between human and mouse CD52. To address this issue, a transgenic mouse expressing human CD52 (hCD52) was created. Transgenic mice did not display any phenotypic abnormalities and were able to mount normal immune responses. The tissue distribution of hCD52 and the level of expression by various immune cell populations were comparable to those seen in humans. Treatment with alemtuzumab replicated the transient increase in serum cytokines and depletion of peripheral blood lymphocytes observed in humans. Lymphocyte depletion was not as profound in lymphoid organs, providing a possible explanation for the relatively low incidence of infection in alemtuzumab-treated patients. Interestingly, both lymphocyte depletion and cytokine induction by alemtuzumab were largely independent of complement and appeared to be mediated by neutrophils and natural killer cells because removal of these populations with antibodies to Gr-1 or asialo-GM-1, respectively, strongly inhibited the activity of alemtuzumab whereas removal of complement by treatment with cobra venom factor had no impact. The hCD52 transgenic mouse appears to be a useful model and has provided evidence for the previously uncharacterized involvement of neutrophils in the activity of alemtuzumab. PMID:19740383

  11. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals

    PubMed Central

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-01-01

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans. PMID:27094903

  12. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    PubMed

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  13. Growth hormone-releasing hormone resistance in pseudohypoparathyroidism type ia: new evidence for imprinting of the Gs alpha gene.

    PubMed

    Mantovani, Giovanna; Maghnie, Mohamad; Weber, Giovanna; De Menis, Ernesto; Brunelli, Valeria; Cappa, Marco; Loli, Paola; Beck-Peccoz, Paolo; Spada, Anna

    2003-09-01

    Heterozygous inactivating mutations in the Gs alpha gene cause Albright's hereditary osteodystrophy. Consistent with the observation that only maternally inherited mutations lead to resistance to hormone action [pseudohypoparathyroidism type Ia (PHP Ia)], recent studies provided evidence for a predominant maternal origin of Gs alpha transcripts in endocrine organs, such as thyroid, gonad, and pituitary. The aim of this study was to investigate the presence of pituitary resistance to hypothalamic hormones acting via Gs alpha-coupled receptors in patients with PHP Ia. Six of nine patients showed an impaired GH responsiveness to GHRH plus arginine, consistent with a complete GH deficiency (GH peak from 2.6-8.6 microg/liter, normal > 16.5), and partial (GH peak 13.9 and 13.6 microg/liter) and normal responses were found in two and one patient, respectively. Accordingly, IGF-I levels were below and in the low-normal range in seven and two patients. All patients had a normal cortisol response to 1 microg ACTH test, suggesting a normal corticotroph function that was confirmed by a normal ACTH and cortisol response to CRH test in three patients. In conclusion, we report that in addition to PTH and TSH resistance, patients with PHP Ia display variable degrees of GHRH resistance, consistent with Gs alpha imprinting in human pituitary.

  14. Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing.

    PubMed

    Baird, Brandon J; Dickey, Jennifer S; Nakamura, Asako J; Redon, Christophe E; Parekh, Palak; Griko, Yuri V; Aziz, Khaled; Georgakilas, Alexandros G; Bonner, William M; Martin, Olga A

    2011-06-03

    Hibernation is an established strategy used by some homeothermic organisms to survive cold environments. In true hibernation, the core body temperature of an animal may drop to below 0°C and metabolic activity almost cease. The phenomenon of hibernation in humans is receiving renewed interest since several cases of victims exhibiting core body temperatures as low as 13.7°C have been revived with minimal lasting deficits. In addition, local cooling during radiotherapy has resulted in normal tissue protection. The experiments described in this paper were prompted by the results of a very limited pilot study, which showed a suppressed DNA repair response of mouse lymphocytes collected from animals subjected to 7-Gy total body irradiation under hypothermic (13°C) conditions, compared to normothermic controls. Here we report that human BJ-hTERT cells exhibited a pronounced radioprotective effect on clonogenic survival when cooled to 13°C during and 12h after irradiation. Mild hypothermia at 20 and 30°C also resulted in some radioprotection. The neutral comet assay revealed an apparent lack on double strand break (DSB) rejoining at 13°C. Extension of the mouse lymphocyte study to ex vivo-irradiated human lymphocytes confirmed lower levels of induced phosphorylated H2AX (γ-H2AX) and persistence of the lesions at hypothermia compared to the normal temperature. Parallel studies of radiation-induced oxidatively clustered DNA lesions (OCDLs) revealed partial repair at 13°C compared to the rapid repair at 37°C. For both γ-H2AX foci and OCDLs, the return of lymphocytes to 37°C resulted in the resumption of normal repair kinetics. These results, as well as observations made by others and reviewed in this study, have implications for understanding the radiobiology and protective mechanisms underlying hypothermia and potential opportunities for exploitation in terms of protecting normal tissues against radiation. 2011. Published by Elsevier B.V.

  15. Evaluation of regulatory variation and theoretical health risk for pesticide maximum residue limits in food.

    PubMed

    Li, Zijian

    2018-08-01

    To evaluate whether pesticide maximum residue limits (MRLs) can protect public health, a deterministic dietary risk assessment of maximum pesticide legal exposure was conducted to convert global MRLs to theoretical maximum dose intake (TMDI) values by estimating the average food intake rate and human body weight for each country. A total of 114 nations (58% of the total nations in the world) and two international organizations, including the European Union (EU) and Codex (WHO) have regulated at least one of the most currently used pesticides in at least one of the most consumed agricultural commodities. In this study, 14 of the most commonly used pesticides and 12 of the most commonly consumed agricultural commodities were identified and selected for analysis. A health risk analysis indicated that nearly 30% of the computed pesticide TMDI values were greater than the acceptable daily intake (ADI) values; however, many nations lack common pesticide MRLs in many commonly consumed foods and other human exposure pathways, such as soil, water, and air were not considered. Normality tests of the TMDI values set indicated that all distributions had a right skewness due to large TMDI clusters at the low end of the distribution, which were caused by some strict pesticide MRLs regulated by the EU (normally a default MRL of 0.01 mg/kg when essential data are missing). The Box-Cox transformation and optimal lambda (λ) were applied to these TMDI distributions, and normality tests of the transformed data set indicated that the power transformed TMDI values of at least eight pesticides presented a normal distribution. It was concluded that unifying strict pesticide MRLs by nations worldwide could significantly skew the distribution of TMDI values to the right, lower the legal exposure to pesticide, and effectively control human health risks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Phosphodiesterase 4B plays a role in benzophenone-3-induced phototoxicity in normal human keratinocytes.

    PubMed

    Kim, Hyoung-June; Lee, Eunyoung; Lee, Moonyoung; Ahn, Sungjin; Kim, Jungmin; Liu, Jingjing; Jin, Sun Hee; Ha, Jaehyoun; Bae, Il Hong; Lee, Tae Ryong; Noh, Minsoo

    2018-01-01

    Benzophenone-3 (BP-3), which is extensively used in organic sunscreen, has phototoxic potential in human skin. Phosphodiesterase 4B (PDE4B) has a well-established role in inflammatory responses in immune cells. Currently, it is unknown if PDE4B is associated with BP-3-induced phototoxicity in normal human keratinocytes (NHKs). We found that BP-3 significantly increased PDE4B expression in ultraviolet B (UVB)-irradiated NHKs. Notably, BP-8, a sunscreen agent that shares the 2-hydroxy-4-methoxyphenyl methanone moiety with BP-3, also upregulated PDE4B expression in NHKs. Upon UVB irradiation, BP-3 upregulated the expression of pro-inflammatory factors, such as prostaglandin endoperoxide synthase 2, tumor necrosis factor α, interleukin 8, and S100A7, and downregulated the level of cornified envelope associated proteins, which are important in the development of the epidermal permeability barrier. The additive effects of UVB-activated BP-3 on the expression of both pro-inflammatory mediators and cornified envelope associated proteins were antagonized by treatment with the PDE4 inhibitor rolipram. The BP-3 and UVB co-stimulation-induced PDE4B upregulation and its association with the upregulation of pro-inflammatory mediators and the downregulation of epidermal differentiation markers were confirmed in a reconstituted three dimensional human epidermis model. Therefore, PDE4B has a role in the mechanism of BP-3-induced phototoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Specific Accumulation of Tumor-Derived Adhesion Factor in Tumor Blood Vessels and in Capillary Tube-Like Structures of Cultured Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Akaogi, Kotaro; Okabe, Yukie; Sato, Junji; Nagashima, Yoji; Yasumitsu, Hidetaro; Sugahara, Kazuyuki; Miyazaki, Kaoru

    1996-08-01

    Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.

  18. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas.

    PubMed

    Nielsen, Michael Friberg Bruun; Mortensen, Michael Bau; Detlefsen, Sönke

    2017-10-01

    Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI. Cytoglobin, on the other hand, is a sensitive marker for qPSCs but is expressed in FBs as well.

  19. The neuropeptide galanin is a novel inhibitor of human hair growth.

    PubMed

    Holub, B S; Kloepper, J E; Tóth, B I; Bíro, T; Kofler, B; Paus, R

    2012-07-01

    Galanin is a trophic factor of the central and peripheral nervous system that shows widespread distribution in human skin. However, the exact localization and the role of galanin in the hair follicle (HF) remain to be clarified. To characterize galanin expression in human scalp HFs and to examine the effects of galanin on normal human scalp HF growth in organ culture. Immunohistochemistry was performed on cryosections of human female scalp skin. Anagen HFs were microdissected and cultured up to 9 days and treated with 100 nmol L(-1) galanin. Staining for Ki-67, TUNEL and Masson-Fontana were used to analyse proliferation, apoptosis and hair cycle staging of the HFs. Functional effects of galanin were tested in serum-free HF organ culture. Galanin-like immunoreactivity was detected in the outer root sheath (ORS) and inner root sheath. Additionally, galanin mRNA was detected in ORS keratinocytes and all HF samples tested. Galanin receptor transcripts (GalR2, GalR3) were also detected in selected samples. Galanin reduced proliferation of hair matrix keratinocytes in situ compared with vehicle-treated controls, shortened the hair growth phase (anagen) in vitro and reduced hair shaft elongation. This was accompanied by the premature development of a catagen-like morphology of galanin-treated HFs. We present the first evidence that human HFs are both a source and a functionally relevant target of galanin. Due to its hair growth-inhibitory properties in vitro, galanin application deserves further exploration as a potential new treatment strategy for unwanted hair growth (hirsutism, hypertrichosis). © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  20. Assessing cadmium exposure risks of vegetables with plant uptake factor and soil property.

    PubMed

    Yang, Yang; Chang, Andrew C; Wang, Meie; Chen, Weiping; Peng, Chi

    2018-07-01

    Plant uptake factors (PUFs) are of great importance in human cadmium (Cd) exposure risk assessment while it has been often treated in a generic way. We collected 1077 pairs of vegetable-soil samples from production fields to characterize Cd PUFs and demonstrated their utility in assessing Cd exposure risks to consumers of locally grown vegetables. The Cd PUFs varied with plant species and pH and organic matter content of soils. Once normalized PUFs against soil parameters, the PUFs distributions were log-normal in nature. In this manner, the PUFs were represented by definable probability distributions instead of a deterministic figure. The Cd exposure risks were then assessed using the normalized PUF based on the Monte Carlo simulation algorithm. Factors affecting the extent of Cd exposures were isolated through sensitivity analyses. Normalized PUF would illustrate the outcomes for uncontaminated and slightly contaminated soils. Among the vegetables, lettuce was potentially hazardous for residents due to its high Cd accumulation but low Zn concentration. To protect 95% of the lettuce production from causing excessive Cd exposure risks, pH of soils needed to be 5.9 and above. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Mathematical modeling of solid cancer growth with angiogenesis

    PubMed Central

    2012-01-01

    Background Cancer arises when within a single cell multiple malfunctions of control systems occur, which are, broadly, the system that promote cell growth and the system that protect against erratic growth. Additional systems within the cell must be corrupted so that a cancer cell, to form a mass of any real size, produces substances that promote the growth of new blood vessels. Multiple mutations are required before a normal cell can become a cancer cell by corruption of multiple growth-promoting systems. Methods We develop a simple mathematical model to describe the solid cancer growth dynamics inducing angiogenesis in the absence of cancer controlling mechanisms. Results The initial conditions supplied to the dynamical system consist of a perturbation in form of pulse: The origin of cancer cells from normal cells of an organ of human body. Thresholds of interacting parameters were obtained from the steady states analysis. The existence of two equilibrium points determine the strong dependency of dynamical trajectories on the initial conditions. The thresholds can be used to control cancer. Conclusions Cancer can be settled in an organ if the following combination matches: better fitness of cancer cells, decrease in the efficiency of the repairing systems, increase in the capacity of sprouting from existing vascularization, and higher capacity of mounting up new vascularization. However, we show that cancer is rarely induced in organs (or tissues) displaying an efficient (numerically and functionally) reparative or regenerative mechanism. PMID:22300422

  2. A history of homosexuality and organized psychoanalysis.

    PubMed

    Drescher, Jack

    2008-01-01

    Today the Academy of Psychoanalysis and Dynamic Psychiatry welcomes its gay and lesbian members. Yet at the time of its 1956 founding, organized psychoanalytic attitudes toward homosexuality could be reasonably characterized as hostile. First there was a transition from Freud's early views of homosexuality as immature to later neofreudian theories that pathologized same-sex attractions and behavior. Following the 1973 decision of the American Psychiatric Association to remove homosexuality from the DSM, homosexuality is now more commonly regarded as a normal variant of human sexuality. The history of psychoanalytic attitudes toward homosexuality reinforces the impression that psychoanalytic theories cannot be divorced from the political, cultural, and personal contexts in which they are formulated. This history also shows that analysts can take positions that either facilitate or obstruct tolerance and acceptance.

  3. A COMPARATIVE STUDY OF DYSENTERY AND DYSENTERY-LIKE ORGANISMS

    PubMed Central

    Torrey, John C.

    1905-01-01

    The group of dysentery organisms is a large and. varied one. It may be divided, as is well known, into two main sub-groups, the "Shiga-Kruse" and the "mannit-fermenters," which are of equal importance and entirely distinct. If we take decided differences in agglutination, as determined by absorptions, as a criterion of specificity, the latter group includes at least four distinct species with a number of sub-varieties and transition forms. Two of the above species are found among organisms which split either dextrose, mannit, and saccharose or in addition maltose. The other two species are represented by the bacillus "Y" of Hiss and Russell and the "Flexner-Manila" bacillus. If we adopt Ford's proposal, that a new species should be made for each culture showing a constant cultural or agglutinative difference, the number would increase considerably. At the best, however, classification of bacteria is at present very artificial. Although so many types appear among the " mannit-fermenters," there is no reason why they should not all be included in the dysentery group of bacilli, provided the reaction in litmus milk be typical. This cultural test, as Duval has emphasized, is the most constant one which we have at present, but it should extend over several weeks in order to exclude lactose fermenters. In contradistinction to the heterogeneity of the "mannit-fermenters," the homogeneity of the "Shiga-Kruse" type stands in marked contrast. Every culture of the latter which. was tested (about twenty in all) reacted in all media and agglutinated with all the various sera exactly alike. One is tempted to explain this diversity of the "mannit-fermenters" by accepting the suggestion of Flexner, that they may be occasional, if not constant, inhabitants of the normal intestine. Certainly Duval has isolated the "mannit-fermenters" from the mildest cases of diarrhœa, to say nothing of the two apparently normal infants from which he also obtained them. Furthermore, the agglutinins for the mannit group in normal blood might be accounted for on this hypothesis, as well as the many differences in fermentation and agglutination. For, as has been well said by Smith and Reagh, one " should keep in mind the various adaptations in the intestine—it may be to the food remains in the large intestine, to the mucus on the surface of the epithelium, to the contents of the tubules and the larger flask-shaped glands, and further, with this progressive adaptation are associated modifications of biological characters which most likely involve agglutinative capacities as well." The fact that dysentery bacilli have not been isolated frequently from the normal intestine might be explained by their habitat being possibly within the mucus tubules and their number few under normal condition, for it is well known that they are most frequently found in association with mucus. When abnormal conditions, however, arise and the production of mucus increases, these organisms would possibly multiply in number pari passu and find themselves in a favorable position to attack any slight injury which might occur in the wall of the intestine. The "Shiga-Kruse," or Group I, type, on the other hand, seems to present the characters of a true parasite. Only an insignificant amount of agglutinin is present for it in normal human blood and that of laboratory animals, according to most authorities; it agglutinates alike in various immune sera; it has a very marked toxicity for laboratory animals; it has never been isolated from the normal human intestine, although an organism in some respects like it has been described by Ford as being an inhabitant of the normal intestine; it produces no indol; it splits only the monosaccharids, through which it falls in line with the conclusion of Smith and Reagh, that the less a bacillus acts on sugars the more pronounced is its parasitic character. Whether or not it ever invades the blood in numbers is a question yet to be decided. PMID:19867005

  4. A global analysis of the complex landscape of isoforms and regulatory networks of p63 in human cells and tissues.

    PubMed

    Sethi, Isha; Romano, Rose-Anne; Gluck, Christian; Smalley, Kirsten; Vojtesek, Borivoj; Buck, Michael J; Sinha, Satrajit

    2015-08-07

    The transcription factor p63 belongs to the p53/p63/p73 family and plays key functional roles during normal epithelial development and differentiation and in pathological states such as squamous cell carcinomas. The human TP63 gene, located on chromosome 3q28 is driven by two promoters that generate the full-length transactivating (TA) and N-terminal truncated (ΔN) isoforms. Furthermore alternative splicing at the C-terminus gives rise to additional α, β, γ and likely several other minor variants. Teasing out the expression and biological function of each p63 variant has been both the focus of, and a cause for contention in the p63 field. Here we have taken advantage of a burgeoning RNA-Seq based genomic data-sets to examine the global expression profiles of p63 isoforms across commonly utilized human cell-lines and major tissues and organs. Consistent with earlier studies, we find ΔNp63 transcripts, primarily that of the ΔNp63α isoforms, to be expressed in most cells of epithelial origin such as those of skin and oral tissues, mammary glands and squamous cell carcinomas. In contrast, TAp63 is not expressed in the majority of normal cell-types and tissues; rather it is selectively expressed at moderate to high levels in a subset of Burkitt's and diffuse large B-cell lymphoma cell lines. We verify this differential expression pattern of p63 isoforms by Western blot analysis, using newly developed ΔN and TA specific antibodies. Furthermore using unsupervised clustering of human cell lines, tissues and organs, we show that ΔNp63 and TAp63 driven transcriptional networks involve very distinct sets of molecular players, which may underlie their different biological functions. In this study we report comprehensive and global expression profiles of p63 isoforms and their relationship to p53/p73 and other potential transcriptional co-regulators. We curate publicly available data generated in part by consortiums such as ENCODE, FANTOM and Human Protein Atlas to delineate the vastly different transcriptomic landscapes of ΔNp63 and TAp63. Our studies help not only in dispelling prevailing myths and controversies on p63 expression in commonly used human cell lines but also augur new isoform- and cell type-specific activities of p63.

  5. Higher Leptin but Not Human Milk Macronutrient Concentration Distinguishes Normal-Weight from Obese Mothers at 1-Month Postpartum.

    PubMed

    De Luca, Arnaud; Frasquet-Darrieux, Marine; Gaud, Marie-Agnès; Christin, Patricia; Boquien, Clair-Yves; Millet, Christine; Herviou, Manon; Darmaun, Dominique; Robins, Richard J; Ingrand, Pierre; Hankard, Régis

    2016-01-01

    Exclusively breastfed infants born to obese mothers have previously been shown to gain less weight by 1-month postpartum than infants of normal-weight mothers. Our hypothesis is that human milk composition and volume may differ between obese and normal-weight mothers. To compare human milk leptin, macronutrient concentration, and volume in obese and normal-weight mothers. Mother and infant characteristics were studied as secondary aims. This cross-sectional observational study compared 50 obese mothers matched for age, parity, ethnic origin, and educational level with 50 normal-weight mothers. Leptin, macronutrient human milk concentration, and milk volume were determined at 1 month in exclusively breastfed infants. Mother characteristics and infant growth were recorded. Human milk leptin concentration was higher in obese mothers than normal-weight mothers (4.8±2.7 vs. 2.5±1.5 ng.mL-1, p<0.001). No difference was observed between obese and normal-weight mothers in protein, lipid, carbohydrate content, and volume, nor in infant weight gain. Leptin concentration was higher in the milk of obese mothers than that of normal-weight mothers, but macronutrient concentration was not. It remains to be established whether the higher leptin content impacts on infant growth beyond the 1-month of the study period.

  6. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc.

    PubMed

    Partanen, Johanna I; Nieminen, Anni I; Klefstrom, Juha

    2009-03-01

    Machiavelli wrote, in his famous political treatise Il Principe, about disrupting organization by planting seeds of dissension or by eliminating necessary support elements. Tumor cells do exactly that by disrupting the organized architecture of epithelial cell layers during progression from contained benign tumor to full-blown invasive cancer. However, it is still unclear whether tumor cells primarily break free by activating oncogenes powerful enough to cause chaos or by eliminating tumor suppressor genes guarding the order of the epithelial organization. Studies in Drosophila have exposed genes that encode key regulators of the epithelial apicobasal polarity and which, upon inactivation, cause disorganization of the epithelial layers and promote unscheduled cell proliferation. These polarity regulator/tumor suppressor proteins, which include products of neoplastic tumor suppressor genes (nTSGs), are carefully positioned in polarized epithelial cells to maintain the order of epithelial structures and to impose a restraint on cell proliferation. In this review, we have explored the presence and prevalence of somatic mutations in the human counterparts of Drosophila polarity regulator/tumor suppressor genes across the human cancers. The screen points out LKB1, which is a causal genetic lesion in Peutz-Jeghers cancer syndrome, a gene mutated in certain sporadic cancers and a human homologue of the fly polarity gene par-4. We review the evidence linking Lkb1 protein to polarity regulation in the scope of our recent results suggesting a coupled role for Lkb1 as an architect of organized acinar structures and a suppressor of oncogenic c-Myc. We finally present models to explain how Lkb1-dependent formation of epithelial architecture is coupled to suppression of normal and oncogene-induced proliferation.

  7. Sex and menopausal status influence human dietary requirements for the nutrient choline.

    PubMed

    Fischer, Leslie M; daCosta, Kerry Ann; Kwock, Lester; Stewart, Paul W; Lu, Tsui-Shan; Stabler, Sally P; Allen, Robert H; Zeisel, Steven H

    2007-05-01

    Although humans require dietary choline for methyl donation, membrane function, and neurotransmission, choline can also be derived from the de novo synthesis of phosphatidylcholine, which is up-regulated by estrogen. A recommended Adequate Intake (AI) exists for choline; however, an Estimated Average Requirement has not been set because of a lack of sufficient human data. The objective of the study was to evaluate the dietary requirements for choline in healthy men and women and to investigate the clinical sequelae of choline deficiency. Fifty-seven adult subjects (26 men, 16 premenopausal women, 15 postmenopausal women) were fed a diet containing 550 mg choline x 70 kg(-1) x d(-1) for 10 d followed by <50 mg choline x 70 kg(-1) x d(-1) with or without a folic acid supplement (400 microg/d per randomization) for up to 42 d. Subjects who developed organ dysfunction during this diet had normal organ function restored after incremental amounts of choline were added back to the diet. Blood and urine were monitored for signs of toxicity and metabolite concentrations, and liver fat was assessed by using magnetic resonance imaging. When deprived of dietary choline, 77% of men and 80% of postmenopausal women developed fatty liver or muscle damage, whereas only 44% of premenopausal women developed such signs of organ dysfunction. Moreover, 6 men developed these signs while consuming 550 mg choline x 70 kg(-1) x d(-1), the AI for choline. Folic acid supplementation did not alter the subjects' response. Subject characteristics (eg, menopausal status) modulated the dietary requirement for choline, and a daily intake at the current AI was not sufficient to prevent organ dysfunction in 19 of the subjects.

  8. Sex and menopausal status influence human dietary requirements for the nutrient choline2

    PubMed Central

    Fischer, Leslie M; daCosta, Kerry Ann; Kwock, Lester; Stewart, Paul W; Lu, Tsui-Shan; Stabler, Sally P; Allen, Robert H; Zeisel, Steven H

    2008-01-01

    Background Although humans require dietary choline for methyl donation, membrane function, and neurotransmission, choline can also be derived from the de novo synthesis of phosphatidylcholine, which is up-regulated by estrogen. A recommended Adequate Intake (AI) exists for choline; however, an Estimated Average Requirement has not been set because of a lack of sufficient human data. Objective The objective of the study was to evaluate the dietary requirements for choline in healthy men and women and to investigate the clinical sequelae of choline deficiency. Design Fifty-seven adult subjects (26 men, 16 premenopausal women, 15 postmenopausal women) were fed a diet containing 550 mg choline · 70 kg−1 · d−1 for 10 d followed by <50 mg choline · 70 kg−1 · d−1 with or without a folic acid supplement (400 μg/d per randomization) for up to 42 d. Subjects who developed organ dysfunction during this diet had normal organ function restored after incremental amounts of choline were added back to the diet. Blood and urine were monitored for signs of toxicity and metabolite concentrations, and liver fat was assessed by using magnetic resonance imaging. Results When deprived of dietary choline, 77% of men and 80% of postmenopausal women developed fatty liver or muscle damage, whereas only 44% of premenopausal women developed such signs of organ dysfunction. Moreover, 6 men developed these signs while consuming 550 mg choline · 70 kg−1 · d−1, the AI for choline. Folic acid supplementation did not alter the subjects’ response. Conclusion Subject characteristics (eg, menopausal status) modulated the dietary requirement for choline, and a daily intake at the current AI was not sufficient to prevent organ dysfunction in 19 of the subjects. PMID:17490963

  9. Dysbiotic infection in the stomach.

    PubMed

    Iizasa, Hisashi; Ishihara, Shyunji; Richardo, Timmy; Kanehiro, Yuichi; Yoshiyama, Hironori

    2015-10-28

    Microbiota in human alimentary tract plays important roles for homeostatic maintenance of the body. Compositional difference of gut microbiota is tightly associated with susceptibility of many diseases, including inflammatory diseases, obesity, diabetes mellitus, cancer, and atherosclerosis. "Dysbiosis" refers to a state of imbalance among the colonies of microorganisms within the body, which brings abnormal increase of specific minor components and decrease in the normally dominant species. Since stomach secrets strong acid for its digestive role, this organ has long been thought a sterile organ. However, the discovery of Helicobacter pylori (H. pylori) has changed the concept. This bacterium has proven to cause gastritis, peptic ulcer, and gastric cancer. However, recent cross-sectional studies revealed that H. pylori carriers had a decreased risk of developing immunological diseases, such as asthma. H. pylori coinfection also suppresses inflammatory bowel diseases. This review describes human gastric microbiota by discussing its mutual interaction and pathogenic enrollment. Gastric "dysbiosis" may affect host inflammatory response and play important role for gastric pathogenesis. We will topically discuss enrollment of dysbiosis for genesis of gastric cancer as well as for disruption of immunological homeostasis affecting oncogenic resistance.

  10. Zebrafish antipredatory responses: A future for translational research?

    PubMed Central

    Gerlai, Robert

    2011-01-01

    Human neuropsychiatric conditions associated with abnormally exaggerated or misdirected fear (anxiety disorders and phobias) still represent a large unmet medical need because the biological mechanisms underlying these diseases are not well understood. Animal models have been proposed to facilitate this research. Here I review the literature with a focus on zebrafish, an upcoming laboratory organism in behavioral brain research. I argue that abnormal human fear responses are likely the result of the malfunction of neurobiological mechanisms (brain areas, circuits and/or molecular mechanisms) that originally evolved to support avoidance of predators or other harm in nature. I also argue that the understanding of the normal as well as pathological functioning of such mechanisms may be best achieved if one utilizes naturalistic experimental approaches. In case of laboratory model organisms, this may entail presenting stimuli associated with predators and measuring species-specific antipredatory responses. Although zebrafish is a relatively new subject of such inquiry, I review the recently rapidly increasing number of zebrafish studies in this area, and conclude that zebrafish is a promising research tool for the analysis of the neurobiology and genetics of vertebrate fear responses. PMID:19836422

  11. Towards molecular medicine: a case for a biological periodic table.

    PubMed

    Gawad, Charles

    2005-01-01

    The recently amplified pace of development in the technologies to study both normal and aberrant cellular physiology has allowed for a transition from the traditional reductionist approaches to global interrogations of human biology. This transformation has created the anticipation that we will soon more effectively treat or contain most types of diseases through a 'systems-based' approach to understanding and correcting the underlying etiology of these processes. However, to accomplish these goals, we must first have a more comprehensive understanding of all the elements involved in human cellular physiology, as well as why and how they interact. With the vast number of biological components that have and are being discovered, creating methods with modern computational techniques to better organize biological elements is the next requisite step in this process. This article aims to articulate the importance of the organization of chemical elements into a periodic table had on the conversion of chemistry into a quantitative, translatable science, as well as how we can apply the lessons learned in that transition to the current transformation taking place in biology.

  12. Dental home: Patient centered dentistry

    PubMed Central

    Girish Babu, K. L.; Doddamani, G. M.

    2012-01-01

    Early childhood dental caries occurs in all racial and socioeconomic groups; however, it tends to be more prevalent in children in families belonging to the low-income group, where it is seen in epidemic proportions. Dental caries results from an overgrowth of specific organisms that are a part of normally occurring human flora. Human dental flora is site specific, and an infant is not colonized until the eruption of the primary dentition at approximately 6 to 30 months of age. The most likely source of inoculation of an infant's dental flora is the mother, or another intimate care provider, shared utensils, etc. Decreasing the level of cariogenic organisms in the mother's dental flora at the time of colonization can significantly impact the child's redisposition to caries. To prevent caries in children, high-risk individuals must be identified at an early age (preferably high-risk mothers during prenatal care), and aggressive strategies should be adopted, including anticipatory guidance, behavior modifications (oral hygiene and feeding practices), and establishment of a dental home by 1 year of age for children deemed at risk. PMID:24478960

  13. REGENERATIVE MEDICINE AS APPLIED TO GENERAL SURGERY

    PubMed Central

    Orlando, Giuseppe; Wood, Kathryn J; De Coppi, Paolo; Baptista, Pedro M; Binder, Kyle W; Bitar, Khalil N; Breuer, Christopher; Burnett, Luke; Christ, George; Farney, Alan; Figliuzzi, Marina; Holmes, James H; Koch, Kenneth; Macchiarini, Paolo; Sani, Sayed-Hadi Mirmalek; Opara, Emmanuel; Remuzzi, Andrea; Rogers, Jeffrey; Saul, Justin M; Seliktar, Dror; Shapira-Schweitzer, Keren; Smith, Tom; Solomon, Daniel; Van Dyke, Mark; Yoo, James J; Zhang, Yuanyuan; Atala, Anthony; Stratta, Robert J; Soker, Shay

    2012-01-01

    The present review illustrates the state of the art of regenerative medicine (RM) as applied to surgical diseases and demonstrates that this field has the potential to address some of the unmet needs in surgery. RM is a multidisciplinary field whose purpose is to regenerate in vivo or ex vivo human cells, tissues or organs in order to restore or establish normal function through exploitation of the potential to regenerate, which is intrinsic to human cells, tissues and organs. RM uses cells and/or specially designed biomaterials to reach its goals and RM-based therapies are already in use in several clinical trials in most fields of surgery. The main challenges for investigators are threefold: Creation of an appropriate microenvironment ex vivo that is able to sustain cell physiology and function in order to generate the desired cells or body parts; identification and appropriate manipulation of cells that have the potential to generate parenchymal, stromal and vascular components on demand, both in vivo and ex vivo; and production of smart materials that are able to drive cell fate. PMID:22330032

  14. Molecular imaging of the dopaminergic system and its association with human cognitive function.

    PubMed

    Cropley, Vanessa L; Fujita, Masahiro; Innis, Robert B; Nathan, Pradeep J

    2006-05-15

    Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) has recently been used to examine dopamine (DA) function and its relationship with cognition in human subjects. This article will review PET and SPECT studies that have explored the relationship between cognitive processes and components of the DA system (pre-, intra-, and postsynaptic) in healthy and patient populations such as Parkinson's disease (PD), schizophrenia, Huntington's disease, and aging. It is demonstrated that DA activity modulates a range of frontal executive-type cognitive processes such as working memory, attentional functioning, and sequential organization, and alterations of DA within the fronto-striato-thalamic circuits might contribute to the cognitive impairments observed in PD, schizophrenia, and normal aging. Although associations between DA and cognitive measures need to be considered within the context of fronto-striato-thalamic circuitry, it is suggested that striatal (especially caudate) DA activity, particularly via D2 receptors, might be important for response inhibition, temporal organization of material, and motor performance, whereas cortical DA transmission via D1 receptors might be important for maintaining and representing on-going behavior.

  15. The future of human cerebral cartography: a novel approach

    PubMed Central

    Frackowiak, Richard; Markram, Henry

    2015-01-01

    Cerebral cartography can be understood in a limited, static, neuroanatomical sense. Temporal information from electrical recordings contributes information on regional interactions adding a functional dimension. Selective tagging and imaging of molecules adds biochemical contributions. Cartographic detail can also be correlated with normal or abnormal psychological or behavioural data. Modern cerebral cartography is assimilating all these elements. Cartographers continue to collect ever more precise data in the hope that general principles of organization will emerge. However, even detailed cartographic data cannot generate knowledge without a multi-scale framework making it possible to relate individual observations and discoveries. We propose that, in the next quarter century, advances in cartography will result in progressively more accurate drafts of a data-led, multi-scale model of human brain structure and function. These blueprints will result from analysis of large volumes of neuroscientific and clinical data, by a process of reconstruction, modelling and simulation. This strategy will capitalize on remarkable recent developments in informatics and computer science and on the existence of much existing, addressable data and prior, though fragmented, knowledge. The models will instantiate principles that govern how the brain is organized at different levels and how different spatio-temporal scales relate to each other in an organ-centred context. PMID:25823868

  16. A synthetic PPAR-γ agonist triterpenoid ameliorates experimental fibrosis: PPAR-γ-independent suppression of fibrotic responses.

    PubMed

    Wei, Jun; Zhu, Hongyan; Komura, Kazuhiro; Lord, Gabriel; Tomcik, Michal; Wang, Wenxia; Doniparthi, Sruthi; Tamaki, Zenshiro; Hinchcliff, Monique; Distler, Joerg H W; Varga, John

    2014-02-01

    Persistent fibroblast activation initiated by transforming growth factor β (TGF-β) is a fundamental event in the pathogenesis of systemic sclerosis, and its pharmacological inhibition represents a potential therapeutic strategy. The nuclear receptor, peroxisome proliferator-activated receptor γ (PPAR-γ), exerts potent fibrotic activity. The synthetic oleanane triterpenoid, 2-cyano-3,12-dioxo-olean-1,9-dien-28-oic acid (CDDO), is a PPAR-γ agonist with potential effects on TGF-β signalling and dermal fibrosis. To examine the modulation of fibrogenesis by CDDO in explanted fibroblasts, skin organ cultures and murine models of scleroderma. The effects of CDDO on experimental fibrosis induced by bleomycin injection or by overexpression of constitutively active type I TGF-β receptor (TgfbR1ca) were evaluated. Modulation of fibrotic gene expression was examined in human skin organ cultures. To delineate the mechanisms underlying the antifibrotic effects of CDDO, explanted skin fibroblasts cultured in two-dimensional monolayers or in three-dimensional full-thickness human skin equivalents were studied. CDDO significantly ameliorated dermal fibrosis in two complementary mouse models of scleroderma, as well as in human skin organ cultures and in three-dimensional human skin equivalents. In two-dimensional monolayer cultures of explanted normal fibroblasts, CDDO abrogated fibrogenic responses induced by TGF-β. These CDDO effects occurred via disruption of Smad-dependent transcription and were associated with inhibition of Akt activation. In scleroderma fibroblasts, CDDO attenuated the elevated synthesis of collagen. Remarkably, the in vitro antifibrotic effects of CDDO were independent of PPAR-γ. The PPAR-γ agonist triterpenoid CDDO attenuates fibrogenesis by antagonistically targeting canonical TGF-β/Smad and Akt signalling in a PPAR-γ-independent manner. These findings identify this synthetic triterpenoid as a potential new therapy for the control of fibrosis.

  17. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells.

    PubMed

    Kennedy, Christopher H; Catallo, W James; Wilson, Vincent L; Mitchell, James B

    2009-10-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polycyclic aromatic hydrocarbons in particulates ranging in size from <1 microm to 1 mm. An organic extract of BDS is both cytotoxic and genotoxic to normal human bronchial epithelial (NHBE) cells. Based on the oxidizing potential of BDS, we hypothesized that an organic extract of this particulate matter would (1) cause enzyme inactivation due to protein amino acid oxidation and (2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and the expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (alpha-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized biomolecules may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both alpha-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage.

  18. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells

    PubMed Central

    Kennedy, Christopher H.; Catallo, W. James; Wilson, Vincent L.; Mitchell, James B.

    2012-01-01

    1,3-Butadiene, an important petrochemical, is commonly burned off when excess amounts need to be destroyed. This combustion process produces butadiene soot (BDS), which is composed of a complex mixture of polyaromatic hydrocarbons in particulates ranging in size from <1μm to 1 mm. An organic extract of BDS is both cytotoxic and genotoxic to normal human bronchial epithelial (NHBE) cells. Based on the oxidizing potential of BDS, we hypothesized that an organic extract of this particulate matter would: 1) cause enzyme inactivation due to protein amino acid oxidation; and 2) induce oxidative DNA damage in NHBE cells. Thus, our aims were to determine the effect of butadiene soot ethanol extract (BSEE) on both enzyme activity and expression of proteins involved in the repair of oxidative DNA damage. Catalase was found to be sensitive to BDS as catalase activity was potently diminished in the presence of BSEE. Using Western analysis, both the alpha isoform of human 8-oxoguanine DNA glycosylase (α-hOGG1) and human apurinic/apyrimidinic endonuclease (APE-1) were shown to be significantly overexpressed as compared to untreated controls after exposure of NHBE cells to BSEE. Our results indicate that BSEE is capable of effectively inactivating the antioxidant enzyme catalase, presumably via oxidation of protein amino acids. The presence of oxidized proteins may partially explain the extranuclear fluorescence that is detected when NHBE cells are treated with an organic extract of BDS. Overexpression of both α-hOGG1 and APE-1 proteins following treatment of NHBE cells with BSEE suggests that this mixture causes oxidative DNA damage. PMID:18685817

  19. Expression of Pleiotrophin in the Prostate is Androgen Regulated and it Functions as an Autocrine Regulator of Mesenchyme and Cancer Associated Fibroblasts and as a Paracrine Regulator of Epithelia

    PubMed Central

    Orr, Brigid; Vanpoucke, Griet; Grace, O Cathal; Smith, Lee; Anderson, Richard A; Riddick, Antony CP; Franco, Omar E; Hayward, Simon W; Thomson, Axel A

    2011-01-01

    BACKGROUND Androgens and paracrine signaling from mesenchyme/stroma regulate development and disease of the prostate, and gene profiling studies of inductive prostate mesenchyme have identified candidate molecules such as pleiotrophin (Ptn). METHODS Ptn transcripts and protein were localized by in situ and immunohistochemistry and Ptn mRNA was quantitated by Northern blot and qRT-PCR. Ptn function was examined by addition of hPTN protein to rat ventral prostate organ cultures, primary human fetal prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. RESULTS During development, Ptn transcripts and protein were expressed in ventral mesenchymal pad (VMP) and prostatic mesenchyme. Ptn was localized to mesenchyme surrounding ductal epithelial tips undergoing branching morphogenesis, and was located on the surface of epithelia. hPTN protein stimulated branching morphogenesis and stromal and epithelial proliferation, when added to rat VP cultures, and also stimulated growth of fetal human prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. PTN mRNA was enriched in patient-matched normal prostate fibroblasts versus prostate cancer associated fibroblasts. PTN also showed male enriched expression in fetal human male urethra versus female, and between wt male and ARKO male mice. Transcripts for PTN were upregulated by testosterone in fetal human prostate fibroblasts and organ cultures of female rat VMP. Ptn protein was increased by testosterone in organ cultures of female rat VMP and in rat male urethra compared to female. CONCLUSIONS Our data suggest that in the prostate Ptn functions as a regulator of both mesenchymal and epithelial proliferation, and that androgens regulate Ptn levels. Prostate 71:305–317, 2011. © 2010 Wiley-Liss, Inc. PMID:20812209

  20. Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.

    PubMed

    Fryer, J P; Oetting, W S; Brott, M J; King, R A

    2001-11-01

    We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.

  1. Production of heterozygous alpha 1,3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39.

    PubMed

    Choi, Kimyung; Shim, Joohyun; Ko, Nayoung; Eom, Heejong; Kim, Jiho; Lee, Jeong-Woong; Jin, Dong-Il; Kim, Hyunil

    2017-04-01

    Production of transgenic pigs for use as xenotransplant donors is a solution to the severe shortage of human organs for transplantation. The first barrier to successful xenotransplantation is hyperacute rejection, a rapid, massive humoral immune response directed against the pig carbohydrate GGTA1 epitope. Platelet activation, adherence, and clumping, all major features of thrombotic microangiopathy, are inevitable results of immune-mediated transplant rejection. Human CD39 rapidly hydrolyzes ATP and ADP to AMP; AMP is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, an anti-thrombotic and cardiovascular protective mediator. In this study, we developed a vector-based strategy for ablation of GGTA1 function and concurrent expression of human CD39 (hCD39). An hCD39 expression cassette was constructed to target exon 4 of GGTA1. We established heterozygous GGTA1 knock-out cell lines expressing hCD39 from pig ear fibroblasts for somatic cell nuclear transfer (SCNT). We also described production of heterozygous GGTA1 knock-out piglets expressing hCD39 and analyzed expression and function of the transgene. Human CD39 was expressed in heart, kidney and aorta. Human CD39 knock-in heterozygous ear fibroblast from transgenic cloned pigs, but not in non-transgenic pig's cells. Expression of GGTA1 gene was lower in the knock-in heterozygous ear fibroblast from transgenic pigs compared to the non-transgenic pig's cell. The peripheral blood mononuclear cells (PBMC) from the transgenic pigs were more resistant to lysis by pooled complement-preserved normal human serum than that from wild type (WT) pig. Accordingly, GGTA1 mutated piglets expressing hCD39 will provide a new organ source for xenotransplantation research.

  2. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    PubMed Central

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  3. Practical alternatives to chronic caloric restriction for optimizing vascular function with ageing

    PubMed Central

    Seals, Douglas R.

    2016-01-01

    Abstract Calorie restriction (CR) in the absence of malnutrition exerts a multitude of physiological benefits with ageing in model organisms and in humans including improvements in vascular function. Despite the well‐known benefits of chronic CR, long‐term energy restriction is not likely to be a feasible healthy lifestyle strategy in humans due to poor sustained adherence, and presents additional concerns if applied to normal weight older adults. This review summarizes what is known about the effects of CR on vascular function with ageing including the underlying molecular ‘energy‐ and nutrient‐sensing’ mechanisms, and discusses the limited but encouraging evidence for alternative pharmacological and lifestyle interventions that may improve vascular function with ageing by mimicking the beneficial effects of long‐term CR. PMID:27641062

  4. Mental stress and hypertension, an evolutionary framework: some historical perspectives of the 1960 World Health Organization Prague Hypertension Meeting.

    PubMed

    Kuchel, Otto

    2003-03-01

    Emotional stress acutely and repetitively causing blood pressure increase or aggravating existing hypertension is usually not reflected by norepinephrine and epinephrine increase but by a sudden rise of dopamine, the third "defensive" catecholamine coping with the damaging neuropsychological and cardiovascular actions of the first two. This double-edged sympathetic response to emotional stress evolves during human lifespan and long-term evolution of hypertension. In the course of philogenesis it carries a potential mismatch between the normal physiology of the human dopaminergic system and current environmental (emotional particularly) conditions in industrialized countries. This offers a rational support to a mental stress-cardiovascular diseases relationship proposed 40 years ago in a WHO report which followed a memorable 1960 Prague Hypertension Meeting.

  5. Presence and distribution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02

    USGS Publications Warehouse

    Lee, Kathy E.; Barber, Larry B.; Furlong, Edward T.; Cahill, Jeffery D.; Kolpin, Dana W.; Meyer, Michael T.; Zaugg, Steven D.

    2004-01-01

    Results of this study indicate ubiquitous distribution of measured OWCs in the environment that originate from numerous sources and pathways. During this reconnaissance of OWCs in Minnesota it was not possible to determine the specific sources of OWCs to surface, ground, or drinking waters. The data indicate WWTP effluent is a major pathway of OWCs to surface waters and that landfill leachate at selected facilities is a potential source of OWCs to WWTPs. Aquatic organism or human exposure to some OWCs is likely based on OWC distribution. Few aquatic or human health standards or criteria exist for the OWCs analyzed, and the risks to humans or aquatic wildlife are not known. Some OWCs detected in this study are endocrine disrupters and have been found to disrupt or influence endocrine function in fish. Thirteen endocrine disrupters, 3-tert-butyl-4-hydoxyanisole (BHA), 4- cumylphenol, 4-normal-octylphenol, 4-tert-octylphenol, acetyl-hexamethyl-tetrahydro-naphthalene (AHTN), benzo[α]pyrene, beta-sitosterol, bisphenol-A, diazinon, nonylphenol diethoxylate (NP2EO), octyphenol diethoxylate (OP2EO), octylphenol monoethoxylate (OP1EO), and total para-nonylphenol (NP) were detected. Results of reconnaissance studies may help regulators who set water-quality standards begin to prioritize which OWCs to focus upon for given categories of water use.

  6. Human salmonellosis: estimation of dose-illness from outbreak data.

    PubMed

    Bollaerts, Kaatje; Aerts, Marc; Faes, Christel; Grijspeerdt, Koen; Dewulf, Jeroen; Mintiens, Koen

    2008-04-01

    The quantification of the relationship between the amount of microbial organisms ingested and a specific outcome such as infection, illness, or mortality is a key aspect of quantitative risk assessment. A main problem in determining such dose-response models is the availability of appropriate data. Human feeding trials have been criticized because only young healthy volunteers are selected to participate and low doses, as often occurring in real life, are typically not considered. Epidemiological outbreak data are considered to be more valuable, but are more subject to data uncertainty. In this article, we model the dose-illness relationship based on data of 20 Salmonella outbreaks, as discussed by the World Health Organization. In particular, we model the dose-illness relationship using generalized linear mixed models and fractional polynomials of dose. The fractional polynomial models are modified to satisfy the properties of different types of dose-illness models as proposed by Teunis et al. Within these models, differences in host susceptibility (susceptible versus normal population) are modeled as fixed effects whereas differences in serovar type and food matrix are modeled as random effects. In addition, two bootstrap procedures are presented. A first procedure accounts for stochastic variability whereas a second procedure accounts for both stochastic variability and data uncertainty. The analyses indicate that the susceptible population has a higher probability of illness at low dose levels when the combination pathogen-food matrix is extremely virulent and at high dose levels when the combination is less virulent. Furthermore, the analyses suggest that immunity exists in the normal population but not in the susceptible population.

  7. Sugars, obesity, and cardiovascular disease: results from recent randomized control trials.

    PubMed

    Rippe, James M; Angelopoulos, Theodore J

    2016-11-01

    The relationship between sugar consumption and various health-related sequelas is controversial. Some investigators have argued that excessive sugar consumption is associated with increased risk of obesity, coronary heart disease, diabetes (T2D), metabolic syndrome, non-alcoholic fatty liver disease, and stimulation of reward pathways in the brain potentially causing excessive caloric consumption. These concerns have influenced organizations such as the World Health Organization, the Scientific Advisory Committee on Nutrition in England not to exceed 5 % of total energy and the Dietary Guidelines for Americans Advisory Committee 2015 to recommend upper limits of sugar consumption not to exceed 10 % of calories. Data from many randomized control trials (RCTs) do not support linkages between sugar consumption at normal levels within the human diet and various adverse metabolic and health-related effects. Fructose and glucose are typically consumed together in roughly equal proportions from high-fructose corn syrup (also known as isoglucose in Europe) or sucrose. The purpose of this review is to present data from recent RCTs and findings from recent systematic reviews and meta-analyses related to sugar consumption and its putative health effects. This review evaluates findings from recent randomized controlled trials, systematic reviews and meta-analyses into the relationship of sugar consumption and a range of health-related issues including energy-regulating hormones, obesity, cardiovascular disease, diabetes, and accumulation of liver fat and neurologic responses. Data from these sources do not support linkages between sugar consumption at normal levels within the human diet and various adverse metabolic and health-related effects.

  8. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  9. Cystic fibrosis transmembrane conductance regulator protein (CFTR) expression in the developing human brain: comparative immunohistochemical study between patients with normal and mutated CFTR.

    PubMed

    Marcorelles, Pascale; Friocourt, Gaëlle; Uguen, Arnaud; Ledé, Françoise; Férec, Claude; Laquerrière, Annie

    2014-11-01

    Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein has recently been shown to be expressed in the human adult central nervous system (CNS). As CFTR expression has also been documented during embryonic development in several organs, such as the respiratory tract, the intestine and the male reproductive system, suggesting a possible role during development we decided to investigate the expression of CFTR in the human developing CNS. In addition, as some, although rare, neurological symptoms have been reported in patients with CF, we compared the expression of normal and mutated CFTR at several fetal stages. Immunohistochemistry was performed on brain and spinal cord samples of foetuses between 13 and 40 weeks of gestation and compared with five patients with cystic fibrosis (CF) of similar ages. We showed in this study that CFTR is only expressed in neurons and has an early and widespread distribution during development. Although we did not observe any cerebral abnormality in patients with CF, we observed a slight delay in the maturation of several brain structures. We also observed different expression and localization of CFTR depending on the brain structure or the cell maturation stage. Our findings, along with a literature review on the neurological phenotypes of patients with CF, suggest that this gene may play previously unsuspected roles in neuronal maturation or function. © The Author(s) 2014.

  10. Extrahepatic arteries of the human liver - anatomical variants and surgical relevancies.

    PubMed

    Németh, Károly; Deshpande, Rahul; Máthé, Zoltán; Szuák, András; Kiss, Mátyás; Korom, Csaba; Nemeskéri, Ágnes; Kóbori, László

    2015-10-01

    The purpose of our study was to investigate the anatomical variations of the extrahepatic arterial structures of the liver with particular attention to rare variations and their potential impact on liver surgery. A total of 50 human abdominal organ complexes were used to prepare corrosion casts. A multicomponent resin mixture was injected into the abdominal aorta. The portal vein was injected with a different colored resin in 16 cases. Digestion of soft tissues was achieved using cc. KOH solution at 60-65 °C. Extrahepatic arterial variations were classified according to Michels. All specimens underwent 3D volumetric CT reconstruction. Normal anatomy was seen in 42% of cases, and variants were seen in the other 58%. No Michels type VI or X variations were present; however, in 18% of cases the extrahepatic arterial anatomy did not fit into Michels' classification. We report four new extrahepatic arterial variations. In contrast to the available data, normal anatomy was found much less frequently, whereas the prevalence of unclassified arterial variations was higher. We detected four previously unknown variations. Our data may contribute to the reduction of complications during surgical and radiological interventions in the upper abdomen. © 2015 Steunstichting ESOT.

  11. Cytotoxicity, Genotoxicity, and Phytotoxicity of Tannery Effluent Discharged into Palar River Basin, Tamil Nadu, India

    PubMed Central

    Roy, Suki; Nagarchi, Lubbnaz; Das, Ishita; Mangalam Achuthananthan, Jayasri; Krishnamurthy, Suthindhiran

    2015-01-01

    Ambur, a town located on the banks of Palar River, is considered one of the most polluted areas in India and occupied by hundreds of tanneries and leather product units. The present study was designed to evaluate the toxic effect of discharged tannery effluent (TE) on model agricultural crops, ecofriendly microorganisms, and human blood cells. The phytotoxic effects of TE tested on Allium cepa and Lemna minor revealed inhibition of root growth and significant reduction in number of fronds, protein, and chlorophyll content. Moreover, TE induced chlorosis and tissue necrosis in Nostoc muscorum at low concentration (10%). TE has also negative impact on ecofriendly microorganisms, Bacillus thuringiensis, Rhizobium etli, and Aspergillus terreus which play an important role in the nutrition of plant growth. The genotoxicity of TE was investigated in human leukocytes which showed interference with normal mitotic division with subsequent cell lysis. It also intervened with the normal replication process and induced micronucleus formation in the healthy leukocyte. 5% concentration of TE has been revealed to be toxic to erythrocytes. From this study TE found in the Palar River of Ambur has adverse effects on all the three levels of organisms in ecosystem even at lower concentrations. PMID:26839546

  12. Toxicity of marine pollutants on the ascidian oocyte physiology: an electrophysiological approach.

    PubMed

    Gallo, Alessandra

    2018-02-01

    In marine animals with external fertilization, gametes are released into seawater where fertilization and embryo development occur. Consequently, pollutants introduced into the marine environment by human activities may affect gametes and embryos. These xenobiotics can alter cell physiology with consequent reduction of fertilization success. Here the adverse effects on the reproductive processes of the marine invertebrate Ciona intestinalis (ascidian) of different xenobiotics: lead, zinc, an organic tin compound and a phenylurea herbicide were evaluated. By using the electrophysiological technique of whole-cell voltage clamping, the effects of these compounds on the mature oocyte plasma membrane electrical properties and the electrical events of fertilization were tested by calculating the concentration that induced 50% normal larval formation (EC50). The results demonstrated that sodium currents in mature oocytes were reduced in a concentration-dependent manner by all tested xenobiotics, with the lowest EC50 value for lead. In contrast, fertilization current frequencies were differently affected by zinc and organic tin compound. Toxicity tests on gametes demonstrated that sperm fertilizing capability and fertilization oocyte competence were not altered by xenobiotics, whereas fertilization was inhibited in zinc solution and underwent a reduction in organic tin compound solution (EC50 value of 1.7 µM). Furthermore, fertilized oocytes resulted in a low percentage of normal larvae with an EC50 value of 0.90 µM. This study shows that reproductive processes of ascidians are highly sensitive to xenobiotics suggesting that they may be considered a reliable biomarker and that ascidians are suitable model organisms to assess marine environmental quality.

  13. Morphology and morphometry of fetal liver at 16-26 weeks of gestation by magnetic resonance imaging: Comparison with embryonic liver at Carnegie stage 23.

    PubMed

    Hamabe, Yui; Hirose, Ayumi; Yamada, Shigehito; Uwabe, Chigako; Okada, Tomohisa; Togashi, Kaori; Kose, Katsumi; Takakuwa, Tetsuya

    2013-06-01

    Normal liver growth was described morphologically and morphometrically using magnetic resonance imaging (MRI) data of human fetuses, and compared with embryonic liver to establish a normal reference chart for clinical use. MRI images from 21 fetuses at 16-26 weeks of gestation and eight embryos at Carnegie stage (CS)23 were investigated in the present study. Using the image data, the morphology of the liver as well as its adjacent organs was extracted and reconstructed three-dimensionally. Morphometry of fetal liver growth was performed using simple regression analysis. The fundamental morphology was similar in all cases of the fetal livers examined. The liver tended to grow along the transversal axis. The four lobes were clearly recognizable in the fetal liver but not in the embryonic liver. The length of the liver along the three axes, liver volume and four lobes correlated with the bodyweight (BW). The morphogenesis of the fetal liver on the dorsal and caudal sides was affected by the growth of the abdominal organs, such as the stomach, duodenum and spleen, and retroperitoneal organs, such as the right adrenal gland and right kidney. The main blood vessels such as inferior vena cava, portal vein and umbilical vein made a groove on the surface of the liver. Morphology of the fetal liver was different from that of the embryonic liver at CS23. The present data will be useful for evaluating the development of the fetal liver and the adjacent organs that affect its morphology. © 2012 The Japan Society of Hepatology.

  14. 18α-Glycyrrhetinic Acid Proteasome Activator Decelerates Aging and Alzheimer's Disease Progression in Caenorhabditis elegans and Neuronal Cultures.

    PubMed

    Papaevgeniou, Nikoletta; Sakellari, Marianthi; Jha, Sweta; Tavernarakis, Nektarios; Holmberg, Carina I; Gonos, Efstathios S; Chondrogianni, Niki

    2016-12-01

    Proteasomes are constituents of the cellular proteolytic networks that maintain protein homeostasis through regulated proteolysis of normal and abnormal (in any way) proteins. Genetically mediated proteasome activation in multicellular organisms has been shown to promote longevity and to exert protein antiaggregation activity. In this study, we investigate whether compound-mediated proteasome activation is feasible in a multicellular organism and we dissect the effects of such approach in aging and Alzheimer's disease (AD) progression. Feeding of wild-type Caenorhabditis elegans with 18α-glycyrrhetinic acid (18α-GA; a previously shown proteasome activator in cell culture) results in enhanced levels of proteasome activities that lead to a skinhead-1- and proteasome activation-dependent life span extension. The elevated proteasome function confers lower paralysis rates in various AD nematode models accompanied by decreased Aβ deposits, thus ultimately decelerating the progression of AD phenotype. More importantly, similar positive results are also delivered when human and murine cells of nervous origin are subjected to 18α-GA treatment. This is the first report of the use of 18α-GA, a diet-derived compound as prolongevity and antiaggregation factor in the context of a multicellular organism. Our results suggest that proteasome activation with downstream positive outcomes on aging and AD, an aggregation-related disease, is feasible in a nongenetic manipulation manner in a multicellular organism. Moreover, they unveil the need for identification of antiaging and antiamyloidogenic compounds among the nutrients found in our normal diet. Antioxid. Redox Signal. 25, 855-869.

  15. Defibrillation depends on conductivity fluctuations and the degree of disorganization in reentry patterns.

    PubMed

    Plank, Gernot; Leon, L Joshua; Kimber, Shane; Vigmond, Edward J

    2005-02-01

    Defibrillation depends on conductivity and disorganization. Cardiac fibrillation is the deterioration of the heart's normally well-organized activity into one or more meandering spiral waves, which subsequently break up into many meandering wave fronts. Delivery of an electric shock (defibrillation) is the only effective way of restoring the normal rhythm. This study focuses on examining whether higher degrees of disorganization requires higher shock strengths to defibrillate and whether microscopic conductivity fluctuations favor shock success. We developed a three-dimensional computer bidomain model of a block of cardiac tissue with straight fibers immersed in a conductive bath. The membrane behavior was described by the Courtemanche human atrial action potential model incorporating electroporation and an acetylcholine- (ACh) dependent potassium current. Intracellular conductivities were varied stochastically around nominal values with variations of up to 50%. A single rotor reentry was initiated and, by adjusting the spatial ACh variation, the level of organization could be controlled. The single rotor could be stabilized or spiral wave breakup could be provoked leading to fibrillatory-like activity. For each level of organization, multiple shock timings and strengths were applied to compute the probability of shock success as a function of shock strength. Our results suggest that the level of the small-scale conductivity fluctuations is a very important factor in defibrillation. A higher variation significantly lowers the required shock strength. Further, we demonstrated that success also heavily depends on the level of organization of the fibrillatory episode. In general, higher levels of disorganization require higher shock strengths to defibrillate.

  16. The bioartificial thyroid: a biotechnological perspective in endocrine organ engineering for transplantation replacement.

    PubMed

    Toni, Roberto; Casa, Claudia Della; Spaletta, Giulia; Marchetti, Giacomo; Mazzoni, Perseo; Bodria, Monica; Ravera, Simone; Dallatana, Davide; Castorina, Sergio; Riccioli, Vincenzo; Castorina, Emilio Giovanni; Antoci, Salvatore; Campanile, Enrico; Raise, Gabriella; Scalise, Gabriella; Rossi, Raffaella; Rossio, Raffaella; Ugolotti, Giorgio; Ugolottio, Giorgio; Martorella, Andrew; Roti, Elio; Rot, Elio; Sgallari, Fiorella; Pinchera, Aldo

    2007-01-01

    A new concept for ex situ endocrine organ bioengineering is presented, focused on the realization of a human bioartificial thyroid gland. It is based on the theoretical assumption and experimental evidence that symmetries in geometrical coordinates of the thyroid tissue remain invariant with respect to developmental, physiological or pathophysiological transformations occuring in the gland architecture. This topological arrangement is dependent upon physical connections established between cells, cell adhesion molecules and extracellular matrix, leading to the view that the thyroid parenchyma behaves like a deformable "putty", moulded onto an elastic stromal/vascular scaffold (SVS) dictating the final morphology of the gland. In particular, we have raised the idea that the geometry of the SVS per se provides pivotal epigenetic information to address the genetically-programmed, thyrocyte and endothelial/vascular proliferation and differentiation towards a functionally mature gland, making organ form a pre-requirementfor organ function. A number of experimental approaches are explored to obtain a reliable replica of a human thyroid SVS, and an informatic simulation is designed based on fractal growth of the thyroid intraparenchymal arterial tree. Various tissue-compatible and degradable synthetic or biomimetic polymers are discussed to act as a template of the thyroid SVS, onto which to co-seed autologous human thyrocyte (TPC) and endothelial/vascular (EVPC) progenitor cells. Harvest and expansion of both TPC and EVPC in primary culture are considered, with specific attention to the selection of normal thyrocytes growing at a satisfactory rate to colonize the synthetic matrix. In addition, both in vitro and in vivo techniques to authenticate TPC and EVPC lineage differentiation are reviewed, including immunocytochemistry, reverse trascriptase-polymerase chain reaction, flow cytomery and proteomics. Finally, analysis of viability of the thyroid construct following implantation in animal hosts is proposed, with the intent to obtain a bioartificial thyroid gland morphologically and functionally adequate for transplantation. We believe that the biotechnological scenario proposed herein may provide a template to construct other, more complex and clinically-relevant bioartificial endocrine organs ex situ, such as human pancreatic islets and the liver, and perhaps a new approach to brain bioengineering.

  17. A system dynamic simulation model for managing the human error in power tools industries

    NASA Astrophysics Data System (ADS)

    Jamil, Jastini Mohd; Shaharanee, Izwan Nizal Mohd

    2017-10-01

    In the era of modern and competitive life of today, every organization will face the situations in which the work does not proceed as planned when there is problems occur in which it had to be delay. However, human error is often cited as the culprit. The error that made by the employees would cause them have to spend additional time to identify and check for the error which in turn could affect the normal operations of the company as well as the company's reputation. Employee is a key element of the organization in running all of the activities of organization. Hence, work performance of the employees is a crucial factor in organizational success. The purpose of this study is to identify the factors that cause the increasing errors make by employees in the organization by using system dynamics approach. The broadly defined targets in this study are employees in the Regional Material Field team from purchasing department in power tools industries. Questionnaires were distributed to the respondents to obtain their perceptions on the root cause of errors make by employees in the company. The system dynamics model was developed to simulate the factor of the increasing errors make by employees and its impact. The findings of this study showed that the increasing of error make by employees was generally caused by the factors of workload, work capacity, job stress, motivation and performance of employees. However, this problem could be solve by increased the number of employees in the organization.

  18. A novel generalized normal distribution for human longevity and other negatively skewed data.

    PubMed

    Robertson, Henry T; Allison, David B

    2012-01-01

    Negatively skewed data arise occasionally in statistical practice; perhaps the most familiar example is the distribution of human longevity. Although other generalizations of the normal distribution exist, we demonstrate a new alternative that apparently fits human longevity data better. We propose an alternative approach of a normal distribution whose scale parameter is conditioned on attained age. This approach is consistent with previous findings that longevity conditioned on survival to the modal age behaves like a normal distribution. We derive such a distribution and demonstrate its accuracy in modeling human longevity data from life tables. The new distribution is characterized by 1. An intuitively straightforward genesis; 2. Closed forms for the pdf, cdf, mode, quantile, and hazard functions; and 3. Accessibility to non-statisticians, based on its close relationship to the normal distribution.

  19. A Novel Generalized Normal Distribution for Human Longevity and other Negatively Skewed Data

    PubMed Central

    Robertson, Henry T.; Allison, David B.

    2012-01-01

    Negatively skewed data arise occasionally in statistical practice; perhaps the most familiar example is the distribution of human longevity. Although other generalizations of the normal distribution exist, we demonstrate a new alternative that apparently fits human longevity data better. We propose an alternative approach of a normal distribution whose scale parameter is conditioned on attained age. This approach is consistent with previous findings that longevity conditioned on survival to the modal age behaves like a normal distribution. We derive such a distribution and demonstrate its accuracy in modeling human longevity data from life tables. The new distribution is characterized by 1. An intuitively straightforward genesis; 2. Closed forms for the pdf, cdf, mode, quantile, and hazard functions; and 3. Accessibility to non-statisticians, based on its close relationship to the normal distribution. PMID:22623974

  20. ProNormz--an integrated approach for human proteins and protein kinases normalization.

    PubMed

    Subramani, Suresh; Raja, Kalpana; Natarajan, Jeyakumar

    2014-02-01

    The task of recognizing and normalizing protein name mentions in biomedical literature is a challenging task and important for text mining applications such as protein-protein interactions, pathway reconstruction and many more. In this paper, we present ProNormz, an integrated approach for human proteins (HPs) tagging and normalization. In Homo sapiens, a greater number of biological processes are regulated by a large human gene family called protein kinases by post translational phosphorylation. Recognition and normalization of human protein kinases (HPKs) is considered to be important for the extraction of the underlying information on its regulatory mechanism from biomedical literature. ProNormz distinguishes HPKs from other HPs besides tagging and normalization. To our knowledge, ProNormz is the first normalization system available to distinguish HPKs from other HPs in addition to gene normalization task. ProNormz incorporates a specialized synonyms dictionary for human proteins and protein kinases, a set of 15 string matching rules and a disambiguation module to achieve the normalization. Experimental results on benchmark BioCreative II training and test datasets show that our integrated approach achieve a fairly good performance and outperforms more sophisticated semantic similarity and disambiguation systems presented in BioCreative II GN task. As a freely available web tool, ProNormz is useful to developers as extensible gene normalization implementation, to researchers as a standard for comparing their innovative techniques, and to biologists for normalization and categorization of HPs and HPKs mentions in biomedical literature. URL: http://www.biominingbu.org/pronormz. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Higher Leptin but Not Human Milk Macronutrient Concentration Distinguishes Normal-Weight from Obese Mothers at 1-Month Postpartum

    PubMed Central

    Frasquet-Darrieux, Marine; Gaud, Marie-Agnès; Christin, Patricia; Boquien, Clair-Yves; Millet, Christine; Herviou, Manon; Darmaun, Dominique; Robins, Richard J.; Ingrand, Pierre; Hankard, Régis

    2016-01-01

    Introduction Exclusively breastfed infants born to obese mothers have previously been shown to gain less weight by 1-month postpartum than infants of normal-weight mothers. Our hypothesis is that human milk composition and volume may differ between obese and normal-weight mothers. Objective To compare human milk leptin, macronutrient concentration, and volume in obese and normal-weight mothers. Mother and infant characteristics were studied as secondary aims. Materials and Methods This cross-sectional observational study compared 50 obese mothers matched for age, parity, ethnic origin, and educational level with 50 normal-weight mothers. Leptin, macronutrient human milk concentration, and milk volume were determined at 1 month in exclusively breastfed infants. Mother characteristics and infant growth were recorded. Results Human milk leptin concentration was higher in obese mothers than normal-weight mothers (4.8±2.7 vs. 2.5±1.5 ng.mL-1, p<0.001). No difference was observed between obese and normal-weight mothers in protein, lipid, carbohydrate content, and volume, nor in infant weight gain. Conclusion Leptin concentration was higher in the milk of obese mothers than that of normal-weight mothers, but macronutrient concentration was not. It remains to be established whether the higher leptin content impacts on infant growth beyond the 1-month of the study period. PMID:28005966

  2. Brain shape in human microcephalics and Homo floresiensis.

    PubMed

    Falk, Dean; Hildebolt, Charles; Smith, Kirk; Morwood, M J; Sutikna, Thomas; Jatmiko; Saptomo, E Wayhu; Imhof, Herwig; Seidler, Horst; Prior, Fred

    2007-02-13

    Because the cranial capacity of LB1 (Homo floresiensis) is only 417 cm(3), some workers propose that it represents a microcephalic Homo sapiens rather than a new species. This hypothesis is difficult to assess, however, without a clear understanding of how brain shape of microcephalics compares with that of normal humans. We compare three-dimensional computed tomographic reconstructions of the internal braincases (virtual endocasts that reproduce details of external brain morphology, including cranial capacities and shape) from a sample of 9 microcephalic humans and 10 normal humans. Discriminant and canonical analyses are used to identify two variables that classify normal and microcephalic humans with 100% success. The classification functions classify the virtual endocast from LB1 with normal humans rather than microcephalics. On the other hand, our classification functions classify a pathological H. sapiens specimen that, like LB1, represents an approximately 3-foot-tall adult female and an adult Basuto microcephalic woman that is alleged to have an endocast similar to LB1's with the microcephalic humans. Although microcephaly is genetically and clinically variable, virtual endocasts from our highly heterogeneous sample share similarities in protruding and proportionately large cerebella and relatively narrow, flattened orbital surfaces compared with normal humans. These findings have relevance for hypotheses regarding the genetic substrates of hominin brain evolution and may have medical diagnostic value. Despite LB1's having brain shape features that sort it with normal humans rather than microcephalics, other shape features and its small brain size are consistent with its assignment to a separate species.

  3. [Primary culture of human normal epithelial cells].

    PubMed

    Tang, Yu; Xu, Wenji; Guo, Wanbei; Xie, Ming; Fang, Huilong; Chen, Chen; Zhou, Jun

    2017-11-28

    The traditional primary culture methods of human normal epithelial cells have disadvantages of low activity of cultured cells, the low cultivated rate and complicated operation. To solve these problems, researchers made many studies on culture process of human normal primary epithelial cell. In this paper, we mainly introduce some methods used in separation and purification of human normal epithelial cells, such as tissue separation method, enzyme digestion separation method, mechanical brushing method, red blood cell lysis method, percoll layered medium density gradient separation method. We also review some methods used in the culture and subculture, including serum-free medium combined with low mass fraction serum culture method, mouse tail collagen coating method, and glass culture bottle combined with plastic culture dish culture method. The biological characteristics of human normal epithelial cells, the methods of immunocytochemical staining, trypan blue exclusion are described. Moreover, the factors affecting the aseptic operation, the conditions of the extracellular environment, the conditions of the extracellular environment during culture, the number of differential adhesion, and the selection and dosage of additives are summarized.

  4. Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes.

    PubMed

    Auvergne, Romane M; Sim, Fraser J; Wang, Su; Chandler-Militello, Devin; Burch, Jaclyn; Al Fanek, Yazan; Davis, Danielle; Benraiss, Abdellatif; Walter, Kevin; Achanta, Pragathi; Johnson, Mahlon; Quinones-Hinojosa, Alfredo; Natesan, Sridaran; Ford, Heide L; Goldman, Steven A

    2013-06-27

    Glial progenitor cells (GPCs) are a potential source of malignant gliomas. We used A2B5-based sorting to extract tumorigenic GPCs from human gliomas spanning World Health Organization grades II-IV. Messenger RNA profiling identified a cohort of genes that distinguished A2B5+ glioma tumor progenitor cells (TPCs) from A2B5+ GPCs isolated from normal white matter. A core set of genes and pathways was substantially dysregulated in A2B5+ TPCs, which included the transcription factor SIX1 and its principal cofactors, EYA1 and DACH2. Small hairpin RNAi silencing of SIX1 inhibited the expansion of glioma TPCs in vitro and in vivo, suggesting a critical and unrecognized role of the SIX1-EYA1-DACH2 system in glioma genesis or progression. By comparing the expression patterns of glioma TPCs with those of normal GPCs, we have identified a discrete set of pathways by which glial tumorigenesis may be better understood and more specifically targeted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Flow dynamics analyses of pathophysiological liver lobules using porous media theory

    NASA Astrophysics Data System (ADS)

    Hu, Jinrong; Lü, Shouqin; Feng, Shiliang; Long, Mian

    2017-08-01

    Blood flow inside the liver plays a key role in hepatic functions, and abnormal hemodynamics are highly correlated with liver diseases. To date, the flow field in an elementary building block of the organ, the liver lobule, is difficult to determine experimentally in humans due to its complicated structure, with radially branched microvasculature and the technical difficulties that derive from its geometric constraints. Here we established a set of 3D computational models for a liver lobule using porous media theory and analyzed its flow dynamics in normal, fibrotic, and cirrhotic lobules. Our simulations indicated that those approximations of ordinary flow in portal tracts (PTs) and the central vein, and of porous media flow in the sinusoidal network, were reasonable only for normal or fibrotic lobules. Models modified with high resistance in PTs and collateral vessels inside sinusoids were able to describe the flow features in cirrhotic lobules. Pressures, average velocities, and volume flow rates were profiled and the predictions compared well with experimental data. This study furthered our understanding of the flow dynamics features of liver lobules and the differences among normal, fibrotic, and cirrhotic lobules.

  6. Urine trouble: a social history of bedwetting and its regulation.

    PubMed

    Hurl, Chris

    2011-01-01

    Bedwetting has confounded the presumed boundaries of the human body, existing in a fluid space, between the normal and pathological, its treatment has demanded the application of a wide array of different technologies, each based on a distinct conception of the relationship between the body and personality, human organs and personal conduct. In tracing the social history of bedwetting and its regulation, this article examines the ontological assumptions underpinning the treatment of bedwetting and how they have changed over the past two centuries. Through the analysis of medical journals, newspaper articles and magazine advertisements, different topologies are identified which redefine the boundaries of the human body and its capacities. From 16th-century naturalism, in which the human body is subordinated to a cosmic totality, to the circumscribed space of 19th-century paediatrics and the expansive circuits of behavioural psychology and modern psychoanalysis, the body has become multiplied, differently enacted through the application of diverse technologies. It was be shown how coordinating the messy and divergent conceptions of the human body has posed an endemic problem for the human sciences, and how the enduring tension between object enactment and subject constitution is an expression of modern "baroque" subjectivity.

  7. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective

    PubMed Central

    Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein

    2018-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells. PMID:29670635

  8. Flies without centrioles.

    PubMed

    Basto, Renata; Lau, Joyce; Vinogradova, Tatiana; Gardiol, Alejandra; Woods, C Geoffrey; Khodjakov, Alexey; Raff, Jordan W

    2006-06-30

    Centrioles and centrosomes have an important role in animal cell organization, but it is uncertain to what extent they are essential for animal development. The Drosophila protein DSas-4 is related to the human microcephaly protein CenpJ and the C. elegans centriolar protein Sas-4. We show that DSas-4 is essential for centriole replication in flies. DSas-4 mutants start to lose centrioles during embryonic development, and, by third-instar larval stages, no centrioles or centrosomes are detectable. Mitotic spindle assembly is slow in mutant cells, and approximately 30% of the asymmetric divisions of larval neuroblasts are abnormal. Nevertheless, mutant flies develop with near normal timing into morphologically normal adults. These flies, however, have no cilia or flagella and die shortly after birth because their sensory neurons lack cilia. Thus, centrioles are essential for the formation of centrosomes, cilia, and flagella, but, remarkably, they are not essential for most aspects of Drosophila development.

  9. An extra-uterine system to physiologically support the extreme premature lamb

    PubMed Central

    Partridge, Emily A.; Davey, Marcus G.; Hornick, Matthew A.; McGovern, Patrick E.; Mejaddam, Ali Y.; Vrecenak, Jesse D.; Mesas-Burgos, Carmen; Olive, Aliza; Caskey, Robert C.; Weiland, Theodore R.; Han, Jiancheng; Schupper, Alexander J.; Connelly, James T.; Dysart, Kevin C.; Rychik, Jack; Hedrick, Holly L.; Peranteau, William H.; Flake, Alan W.

    2017-01-01

    In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed ‘amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination. PMID:28440792

  10. Functional capacity and cryopreservation of fetal rat pancreas in streptozotocin-diabetes. [Effectiveness of transplantation of fetal pancreas for control of diabetes in adult rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.; Clark, W.; Molnar, I.G.

    1976-01-01

    The fetal rat pancreas has a marked capacity for growth and maturation in glucose responsivity after transplantation under the kidney capsules of adult rats. The optimal conditions for function of the organ are a 3-week period of growth in a normal rat before transfer to a diabetic animal. Under these conditions diabetes is completely reversed by one fetal pancreas, and glucose disappearance rate and plasma insulin response to glucose are normal. Shunting of the venous drainage into the liver from fetal pancreases placed beneath the kidney capsule results in a marked improvement in diabetes control, and this technique may provemore » useful in experimental or human applications. Cryopreservation of the fetal pancreas has been successfully accomplished and will serve as a useful adjuvant to this method of reversing experimental diabetes.« less

  11. An extra-uterine system to physiologically support the extreme premature lamb

    NASA Astrophysics Data System (ADS)

    Partridge, Emily A.; Davey, Marcus G.; Hornick, Matthew A.; McGovern, Patrick E.; Mejaddam, Ali Y.; Vrecenak, Jesse D.; Mesas-Burgos, Carmen; Olive, Aliza; Caskey, Robert C.; Weiland, Theodore R.; Han, Jiancheng; Schupper, Alexander J.; Connelly, James T.; Dysart, Kevin C.; Rychik, Jack; Hedrick, Holly L.; Peranteau, William H.; Flake, Alan W.

    2017-04-01

    In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed `amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination.

  12. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Ott, C. M.; Mister, S. J.; Morrow, B. J.; Burns-Keliher, L.; Pierson, D. L.

    2000-01-01

    The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight infectious disease. In this study, we investigated the effect of altered gravitational vectors on Salmonella virulence in mice. Salmonella enterica serovar Typhimurium grown under modeled microgravity (MMG) were more virulent and were recovered in higher numbers from the murine spleen and liver following oral infection compared to organisms grown under normal gravity. Furthermore, MMG-grown salmonellae were more resistant to acid stress and macrophage killing and exhibited significant differences in protein synthesis than did normal-gravity-grown cells. Our results indicate that the environment created by simulated microgravity represents a novel environmental regulatory factor of Salmonella virulence.

  13. Brain metastasis detection by resonant Raman optical biopsy method

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2014-03-01

    Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.

  14. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen

    PubMed Central

    Sullivan, Kelly G.; Levin, Michael

    2016-01-01

    Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, we report results from a loss- and gain-of-function survey, using pharmacologic modulators of several neurotransmitter pathways to examine possible roles in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic, and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations including craniofacial defects, hyperpigmentation, muscle mispatterning, and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. PMID:27060969

  15. Sleep and Development in Genetically Tractable Model Organisms.

    PubMed

    Kayser, Matthew S; Biron, David

    2016-05-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. Copyright © 2016 by the Genetics Society of America.

  16. Increased expression of the interleukin 1 receptor on blood neutrophils of humans with the sepsis syndrome.

    PubMed Central

    Fasano, M B; Cousart, S; Neal, S; McCall, C E

    1991-01-01

    Because of the potential importance of interleukin 1 (IL-1) in modulating inflammation and the observations that human blood neutrophils (PMN) express IL-1 receptors (IL-1R) and synthesize IL-1 alpha and IL-1 beta, we studied the IL-1R on blood PMN from a group of patients with the sepsis syndrome. We report a marked enhancement in the sites per cell of IL-1R expressed on sepsis-PMN of 25 consecutively studied patients compared to 20 controls (patient mean = 9,329 +/- 2,212 SE; control mean = 716 +/- 42 SE, respectively). There was no demonstrable difference in the Kd of IL-1R on sepsis-PMN (approximately 1 nM) as determined by saturation curves of 125I-IL-1 alpha binding and the IL-1R on sepsis-PMN had an apparent Mr approximately 68,000, a value like that of normal PMN. Cytofluorographic analysis indicated that the sepsis-PMN phenotype is a single homogeneous population with respect to IL-1R expression. In contrast, expression of the membrane complement receptor CR3 is not increased on sepsis-PMN. Similar increases in expression of IL-1R were not observed in various other inflammatory processes, including acute disseminated inflammation and organ failure not caused by infection, acute infection without organ failure, and immunopathologies such as active systemic lupus erythematosus and rheumatoid arthritis. Enhanced expression of IL-1R was not related simply to the state of myeloid stimulation. Increased expression of IL-1R on normal PMN was induced in vitro by incubating cells with recombinant human granulocyte-macrophage/colony-stimulating factor for 18 h and this response was inhibited by cycloheximide, suggesting the possibility that de novo synthesis of IL-1R might occur in PMN during the sepsis syndrome. Images PMID:1834697

  17. Implications of telomeres and telomerase in endometrial pathology

    PubMed Central

    Hapangama, D.K.; Kamal, A.; Saretzki, G.

    2017-01-01

    Abstract BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative. PMID:27979878

  18. Quantification of collagen fiber organization in biological tissues at cellular and molecular scales using second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Ambekar Ramachandra Rao, Raghu

    Collagen is the most abundant structural protein found in the human body, and is responsible for providing structure and function to tissues. Collagen molecules organize naturally into structures called fibers on the scale of the wavelength of light and lack inversion symmetry, thus allowing for the process of second harmonic generation (SHG) when exposed to intense incident light. We have developed two quantitative techniques: Fourier transform-second-harmonic generation (FT-SHG) imaging and generalized chi2 second-harmonic generation (chi2-SHG) imaging. In order to show that FT-SHG imaging can be used as a valuable diagnostic tool for real-world biological problems, we first investigate collagenase-induced injury in horse tendons. Clear differences in collagen fiber organization between normal and injured tendon are quantified. In particular, we observe that the regularly oriented organization of collagen fibers in normal tendons is disrupted in injured tendons leading to a more random organization. We also observe that FT-SHG microscopy is more sensitive in assessing tendon injury compared to the conventional polarized light microscopy. The second study includes quantifying collagen fibers in cortical bone using FT-SHG imaging and comparing it with scanning electron microscopy (SEM). Further, as an example study, we show how FT-SHG imaging could be used to quantify changes in bone structure as a function of age. Some initial work and future directions for extending FT-SHG to 3D are also discussed. The second technique, chi2-SHG imaging, takes advantage of the coherent nature of SHG and utilizes polarization to extract the second-order susceptibility (d elements) which provides information on molecular organization, i.e., it provides access to sub-diffractional changes "optically". We use chi2-SHG in combination with FT-SHG imaging to investigate a couple of biological problems. First, we quantify differences in collagen fiber organization between cornea and sclera of the eye in order to investigate their properties of transparency and opacity, respectively. We find from chi2-SHG imaging that there is no statistical difference in the values of d elements between cornea and sclera, indicating that the underlying collagen structure generating SHG from the two is similar at the level of detection of SHG microscopy. However, the difference lies in the spatial organization of these collagen fibers as observed from FT-SHG imaging. We find that cornea contains lamellae with patches of ordered and uniform diameter collagen fibers with axial order, which could be the reason for its transparent behavior. Conversely, there are no lamellae in sclera (i.e., no axial order), and fibers are thicker, denser, have inconsistent diameters, and possess relatively inhomogeneous orientations, leading to its opaque nature. We also utilized the two techniques to assess differences in stromal collagen fibers for several human breast tissue conditions: normal, hyperplasia, dysplasia, and malignant. Using FT-SHG imaging, we note differences between malignant and other pathological conditions through the metric A.I. ratio. Using generalized chi2-SHG imaging, we observe structural changes in collagen at the molecular scale, and a particular d element showed a more sensitive differentiation between breast tissue conditions, except between hyperplasia and normal/dysplasia. We also find that the trigonal symmetry (3m) is a more appropriate model to describe collagen fibers in malignant tissues as opposed to the conventionally used hexagonal symmetry (C6). Furthermore, the percentage of abnormal collagen fibers could potentially be used as a metric for differentiating breast tissue conditions. We also introduce a technique for extending chi2-SHG to fibers with curvature which is useful for generating chi2-image maps (in terms of d elements) instead of the conventional SHG intensity images. The spatial variations in d elements will provide additional information. For example, in breast cancer tissues, it may help in observing how fibers change from normal to malignant spatially, especially around region of cancerous cells. Finally, we discuss some of the interesting immediate and later future work of quantitative SHG imaging we aim to carry out in our lab. (Abstract shortened by UMI.)

  19. The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study.

    PubMed

    Zhang, Qiongyue; Miao, Qing; Ye, Hongying; Zhang, Zhaoyun; Zuo, Chuantao; Hua, Fengchun; Guan, Yihui; Li, Yiming

    2014-09-01

    Brown adipose tissue (BAT) is important for energy expenditure through thermogenesis, although its regulatory factors are not well known in humans. There is evidence suggesting that thyroid hormones affect BAT functions in some mammals, but the effects of thyroid hormones on BAT activity in humans are still unclear. The aim of this study was to investigate the effects of thyroid hormones on glucose metabolism of BAT and other organs in humans. Nine Graves' disease-caused hyperthyroid patients who were newly diagnosed and untreated were studied. Putative brown adipose tissue activity was determined by the integrated ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron-emission tomography and computed tomography (PET-CT). All hyperthyroid patients were treated with methimazole and had been monitored until their symptoms disappeared and thyroid hormone levels returned to normal. At the end, a second PET-CT scan was performed. The average follow-up period was 77 days. Meanwhile, compared with a group of seventy-five brown adipose tissue-negative controls, thyroid hormones of seventy-five BAT-positive healthy subjects were measured. Active brown adipose tissue was not present in any of the hyperthyroid patients. However, one patient with normalized thyroid function showed active BAT after therapy. The free T3 levels and free T4 levels were significantly lower in the 75 BAT-positive subjects than in the BAT-negative subjects. All hyperthyroid patients showed symmetrically increased uptake of fluorodeoxyglucose in skeletal muscles before treatment, whereas, the standardized uptake value was substantially decreased after treatment. Abnormally high circulating thyroid hormone levels may not increase brown adipose tissue activity, which may be limited by the increased obligatory thermogenesis of muscle in adult humans. Copyright © 2014 John Wiley & Sons, Ltd.

  20. The morphological classification of normal and abnormal red blood cell using Self Organizing Map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.

  1. Deletion of Mecom in mouse results in early-onset spinal deformity and osteopenia.

    PubMed

    Juneja, Subhash C; Vonica, Alin; Zeiss, Caroline; Lezon-Geyda, Kimberly; Yatsula, Bogdan; Sell, David R; Monnier, Vincent M; Lin, Sharon; Ardito, Thomas; Eyre, David; Reynolds, David; Yao, Zhenqiang; Awad, Hani A; Yu, Hongbo; Wilson, Michael; Honnons, Sylvie; Boyce, Brendan F; Xing, Lianping; Zhang, Yi; Perkins, Archibald S

    2014-03-01

    Recent studies have indicated a role for a MECOM allele in susceptibility to osteoporotic fractures in humans. We have generated a mutation in Mecom in mouse (termed ME(m1)) via lacZ knock-in into the upstream transcription start site for the gene, resulting in disruption of Mds1 and Mds1-Evi1 transcripts, but not of Evi1 transcripts. We demonstrate that ME(m1/m1) mice have severe kyphoscoliosis that is reminiscent of human congenital or primary kyphoscoliosis. ME(m1/m1) mice appear normal at birth, but by 2weeks, they exhibit a slight lumbar lordosis and narrowed intervertebral space. This progresses to severe lordosis with disc collapse and synostosis, together with kyphoscoliosis. Bone formation and strength testing show that ME(m1/m1) mice have normal bone formation and composition but are osteopenic. While endochondral bone development is normal, it is markedly dysplastic in its organization. Electron micrographs of the 1week postnatal intervertebral discs reveals marked disarray of collagen fibers, consistent with an inherent weakness in the non-osseous connective tissue associated with the spine. These findings indicate that lack of ME leads to a complex defect in both osseous and non-osseous musculoskeletal tissues, including a marked vertebral osteopenia, degeneration of the IVD, and disarray of connective tissues, which is likely due to an inherent inability to establish and/or maintain components of these tissues. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasuri, Francesco; Capizzi, Elisa; Bellavista, Elena

    Despite the central role of proteasomes in relevant physiological pathways and pathological processes, this topic is unexpectedly largely unexplored in human liver. Here we present data on the presence of proteasome and immunoproteasome in human livers from normal adults, fetuses and patients affected by major hepatic diseases such as cirrhosis and chronic active hepatitis. Immunohistochemistry for constitutive ({alpha}4 and {beta}1) and inducible (LMP2 and LMP7) proteasome subunits, and for the PA28{alpha}{beta} regulator, was performed in liver samples from 38 normal subjects, 6 fetuses, 2 pediatric cases, and 19 pathological cases (10 chronic active hepatitis and 9 cirrhosis). The immunohistochemical datamore » have been validated and quantified by Western blotting analysis. The most striking result we found was the concomitant presence in hepatocyte cytoplasm of all healthy subjects, including the pediatric cases, of constitutive proteasome and immunoproteasome subunits, as well as PA28{alpha}{beta}. At variance, immunoproteasome was not present in hepatocytes from fetuses, while a strong cytoplasmic and nuclear positivity for LMP2 and LMP7 was found in pathological samples, directly correlated to the histopathological grade of inflammation. At variance from other organs such as the brain, immunoproteasome is present in livers from normal adult and pediatric cases, in apparent absence of pathological processes, suggesting the presence of a peculiar regulation of the proteasome/immunoproteasome system, likely related to the physiological stimuli derived from the gut microbiota after birth. Other inflammatory stimuli contribute in inducing high levels of immunoproteasome in pathological conditions, where its role deserve further attention.« less

  3. Quinazoline derivative from indigenous isolate, Nocardiopsis alba inhibits human telomerase enzyme.

    PubMed

    Kiran, K G; Thandeeswaran, M; Ayub Nawaz, K A; Easwaran, M; Jayagopi, K K; Ebrahimi, L; Palaniswamy, M; Mahendran, R; Angayarkanni, J

    2016-12-01

    Aim of this study was isolation and screening of various secondary metabolites produced by indigenous isolates of soil Actinomycetes for human telomerase inhibitory activity. Extracellular extract from culture suspension of various soil Actinomycetes species were tested for telomerase inhibitory activity. The organism which produced telomerase inhibitor was identified by 16S rRNA gene sequencing. The active fraction was purified by HPLC and analysed by GC-MS to identify the compound. In GC-MS analysis, the active principle was identified as 3-[4'-(2″-chlorophenyl)-2'-thiazolyl]-2,4-dioxo-1,2,3,4-tetrahydro quinazoline. The G-quadruplex stabilizing ability of the compound was checked by molecular docking and simulation experiments with G-quadruplex model (PDB ID-1L1H). The selective binding ability of the compound with G-quadruplex over Dickerson-Drew dodecamer DNA structures showed that the compound possess high selectivity towards G-quadruplex. Quinazoline derivative isolated from an indigenous strain of Nocardiopsis alba inhibited telomerase. Molecular docking and simulation studies predicted that this compound is a strong stabilizer of G-quadruplex conformation. It also showed a preferable binding to G-quadruplex DNA over normal DNA duplex. This particular compound can be suggested as a suitable compound for developing a future anticancer drug. The selectivity towards G-quadruplex over normal DNA duplex gives a clue that it is likely to show lower cytotoxicity in normal cells. © 2016 The Society for Applied Microbiology.

  4. Cytoplasmic E2f4 forms organizing centres for initiation of centriole amplification during multiciliogenesis

    PubMed Central

    Mori, Munemasa; Hazan, Renin; Danielian, Paul S.; Mahoney, John E.; Li, Huijun; Lu, Jining; Miller, Emily S.; Zhu, Xueliang; Lees, Jacqueline A.; Cardoso, Wellington V.

    2017-01-01

    Abnormal development of multiciliated cells is a hallmark of a variety of human conditions associated with chronic airway diseases, hydrocephalus and infertility. Multiciliogenesis requires both activation of a specialized transcriptional program and assembly of cytoplasmic structures for large-scale centriole amplification that generates basal bodies. It remains unclear, however, what mechanism initiates formation of these multiprotein complexes in epithelial progenitors. Here we show that this is triggered by nucleocytoplasmic translocation of the transcription factor E2f4. After inducing a transcriptional program of centriole biogenesis, E2f4 forms apical cytoplasmic organizing centres for assembly and nucleation of deuterosomes. Using genetically altered mice and E2F4 mutant proteins we demonstrate that centriole amplification is crucially dependent on these organizing centres and that, without cytoplasmic E2f4, deuterosomes are not assembled, halting multiciliogenesis. Thus, E2f4 integrates nuclear and previously unsuspected cytoplasmic events of centriole amplification, providing new perspectives for the understanding of normal ciliogenesis, ciliopathies and cancer. PMID:28675157

  5. Anaerobic co-digestion of high-strength organic wastes pretreated by thermal hydrolysis.

    PubMed

    Choi, Gyucheol; Kim, Jaai; Lee, Seungyong; Lee, Changsoo

    2018-06-01

    Thermal hydrolysis (TH) pretreatment was investigated for the anaerobic digestion (AD) of a mixture of high-strength organic wastes (i.e., dewatered human feces, dewatered sewage sludge, and food wastewater) at laboratory scale to simulate a full-scale plant and evaluate its feasibility. The reactors maintained efficient and stable performance at a hydraulic retention time of 20 days, which may be not sufficient for the mesophilic AD of high-suspended-solid wastes, despite the temporal variations in organic load. The addition of FeCl 3 was effective in controlling H 2 S and resulted in significant changes in the microbial community structure, particularly the methanogens. The temporary interruption in feeding or temperature control led to immediate performance deterioration, but it recovered rapidly when normal operations were resumed. The overall results suggest that the AD process coupled with TH pretreatment can provide an efficient, robust, and resilient system to manage high-suspended-solid wastes, supporting the feasibility of its full-scale implementation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. An atlas-based organ dose estimator for tomosynthesis and radiography

    NASA Astrophysics Data System (ADS)

    Hoye, Jocelyn; Zhang, Yakun; Agasthya, Greeshma; Sturgeon, Greg; Kapadia, Anuj; Segars, W. Paul; Samei, Ehsan

    2017-03-01

    The purpose of this study was to provide patient-specific organ dose estimation based on an atlas of human models for twenty tomosynthesis and radiography protocols. The study utilized a library of 54 adult computational phantoms (age: 18-78 years, weight 52-117 kg) and a validated Monte-Carlo simulation (PENELOPE) of a tomosynthesis and radiography system to estimate organ dose. Positioning of patient anatomy was based on radiographic positioning handbooks. The field of view for each exam was calculated to include relevant organs per protocol. Through simulations, the energy deposited in each organ was binned to estimate normalized organ doses into a reference database. The database can be used as the basis to devise a dose calculator to predict patient-specific organ dose values based on kVp, mAs, exposure in air, and patient habitus for a given protocol. As an example of the utility of this tool, dose to an organ was studied as a function of average patient thickness in the field of view for a given exam and as a function of Body Mass Index (BMI). For tomosynthesis, organ doses can also be studied as a function of x-ray tube position. This work developed comprehensive information for organ dose dependencies across tomosynthesis and radiography. There was a general exponential decrease dependency with increasing patient size that is highly protocol dependent. There was a wide range of variability in organ dose across the patient population, which needs to be incorporated in the metrology of organ dose.

  7. Groundwater contamination in Japan

    NASA Astrophysics Data System (ADS)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  8. Comparison between the weightlessness syndrome and aging

    NASA Technical Reports Server (NTRS)

    Miquel, J.

    1982-01-01

    The similarity of detrimental effects of normal aging and of exposure to space weightlessness is discussed. The effects include: the reduction in cardiac output, increase in blood pressure, decrease in respiratory vital capacity, decrease in lean body weight and muscle mass, collagen and fat infiltration of muscle, bone demineralization, and a decrease in urinary excretion of total 17-hydroxicorticosteroids. It is also noted that dispite the accelerated aging of organisms, if animals or human subjects were to spend their entire lives in weightlessness, their lifespans might be significantly increased because of a reduction in metabolic rate. Experimental results are cited.

  9. Genetic Analysis of Digestive Physiology Using Fluorescent Phospholipid Reporters

    NASA Astrophysics Data System (ADS)

    Farber, Steven A.; Pack, Michael; Ho, Shiu-Ying; Johnson, Iain D.; Wagner, Daniel S.; Dosch, Roland; Mullins, Mary C.; Hendrickson, H. Stewart; Hendrickson, Elizabeth K.; Halpern, Marnie E.

    2001-05-01

    Zebrafish are a valuable model for mammalian lipid metabolism; larvae process lipids similarly through the intestine and hepatobiliary system and respond to drugs that block cholesterol synthesis in humans. After ingestion of fluorescently quenched phospholipids, endogenous lipase activity and rapid transport of cleavage products results in intense gall bladder fluorescence. Genetic screening identifies zebrafish mutants, such as fat free, that show normal digestive organ morphology but severely reduced phospholipid and cholesterol processing. Thus, fluorescent lipids provide a sensitive readout of lipid metabolism and are a powerful tool for identifying genes that mediate vertebrate digestive physiology.

  10. Humanized medium (h7H) allows long-term primary follicular thyroid cultures from human normal thyroid, benign neoplasm, and cancer.

    PubMed

    Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V

    2013-06-01

    Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.

  11. Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo

    PubMed Central

    Kumar, Rajiv; Iacobucci, Gary J.; Kuznicki, Michelle L.; Kosterman, Andrew; Bergey, Earl J.; Prasad, Paras N.; Gunawardena, Shermali

    2012-01-01

    The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications. PMID:22238611

  12. Risk assessment of manganese: A comparison of oral and inhalation derivations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, K.A.; Velazquez, S.F.

    1991-03-11

    An oral and inhalation human exposure-response risk assessment was calculated for manganese (Mn) using USEPA methodologies for both oral reference dose (RfD) and inhalation reference concentration (RfC) determination. When ingested, Mn is among the least toxic of the essential trace elements. The RfD for Mn is based on ingestion data from normal human diets, balance studies and neurotoxicity resulting from drinking contaminated well water. From these data, a NOAEL of 0.14 mg/kb/day was estimated. Since the NOAEL was thought to account for human sensitivity and Mn is an essential element required for normal human growth, an uncertainty factor (UF) ofmore » 1 was used resulting in a RfD of 1E-1 mg/kg/day. Although neurotoxic effects are rarely observed from oral exposures, they are more commonly associated with exposure to Mn by inhalation. Toxicity from inhaled Mn results in an increased prevalence of respiratory symptoms, reproductive dysfunction and psychomotor disturbances that can ultimately be expressed in a frank effect of manganism characterized by Parkinson disease-like symptoms. Using data from occupational exposure to in organic Mn, a dose duration adjusted LOAEL of 0.34 mg/m{sup 3} is identified. Application of an UF of 300 results in an RfC of 4E-4 mg/m{sup 3}. The RfD and RfC analyses demonstrate a dichotomous data set of toxicological effects dependent upon the route of exposure to Mn. Furthermore, these analyses demonstrate the unique issues of characterizing toxicological risk assessment for essential trace elements.« less

  13. Human Lung Small Airway-on-a-Chip Protocol.

    PubMed

    Benam, Kambez H; Mazur, Marc; Choe, Youngjae; Ferrante, Thomas C; Novak, Richard; Ingber, Donald E

    2017-01-01

    Organs-on-chips are microfluidic cell culture devices created using microchip manufacturing techniques that contain hollow microchannels lined by living cells, which recreate specialized tissue-tissue interfaces, physical microenvironments, and vascular perfusion necessary to recapitulate organ-level physiology in vitro. Here we describe a protocol for fabrication, culture, and operation of a human lung "small airway-on-a-chip," which contains a differentiated, mucociliary bronchiolar epithelium exposed to air and an underlying microvascular endothelium that experiences fluid flow. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin rigid porous membrane; this requires less than 1 day to complete. Next, primary human airway bronchiolar epithelial cells isolated from healthy normal donors or patients with respiratory disease are cultured on the porous membrane within one microchannel while lung microvascular endothelial cells are cultured on the opposite side of the same membrane in the second channel to create a mucociliated epithelium-endothelium interface; this process take about 4-6 weeks to complete. Finally, culture medium containing neutrophils isolated from fresh whole human blood are flowed through the microvascular channel of the device to enable real-time analysis of capture and recruitment of circulating leukocytes by endothelium under physiological shear; this step requires less than 1 day to complete. The small airway-on-a-chip represents a new microfluidic tool to model complex and dynamic inflammatory responses of healthy and diseased lungs in vitro.

  14. Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress.

    PubMed

    Kulkarni, Ritwij; Antala, Swati; Wang, Alice; Amaral, Fábio E; Rampersaud, Ryan; Larussa, Samuel J; Planet, Paul J; Ratner, Adam J

    2012-11-01

    The strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such as Staphylococcus aureus are members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive components of CS might affect these organisms and potentiate their virulence. Using Staphylococcus aureus as a model organism, we observed that the presence of CS increased both biofilm formation and host cell adherence. Analysis of putative molecular pathways revealed that CS exposure decreased expression of the quorum-sensing agr system, which is involved in biofilm dispersal, and increased transcription of biofilm inducers such as sarA and rbf. CS contains bioactive compounds, including free radicals and reactive oxygen species, and we observed transcriptional induction of bacterial oxidoreductases, including superoxide dismutase, following exposure. Moreover, pretreatment of CS with an antioxidant abrogated CS-mediated enhancement of biofilms. Exposure of bacteria to hydrogen peroxide alone increased biofilm formation. These observations are consistent with the hypothesis that CS induces staphylococcal biofilm formation in an oxidant-dependent manner. CS treatment induced transcription of fnbA (encoding fibronectin binding protein A), leading to increased binding of CS-treated staphylococci to immobilized fibronectin and increased adherence to human cells. These observations indicate that the bioactive effects of CS may extend to the resident microbiota of the nasopharynx, with implications for the pathogenesis of respiratory infection in CS-exposed humans.

  15. Regulation of Long Bone Growth in Vertebrates; It Is Time to Catch Up

    PubMed Central

    Joyner, Alexandra L.

    2015-01-01

    The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for “catch-up growth” to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects. PMID:26485225

  16. Distinctive Glycerophospholipid Profiles of Human Seminoma and Adjacent Normal Tissues by Desorption Electrospray Ionization Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Masterson, Timothy A.; Dill, Allison L.; Eberlin, Livia S.; Mattarozzi, Monica; Cheng, Liang; Beck, Stephen D. W.; Bianchi, Federica; Cooks, R. Graham

    2011-08-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) has been successfully used to discriminate between normal and cancerous human tissue from different anatomical sites. On the basis of this, DESI-MS imaging was used to characterize human seminoma and adjacent normal tissue. Seminoma and adjacent normal paired human tissue sections (40 tissues) from 15 patients undergoing radical orchiectomy were flash frozen in liquid nitrogen and sectioned to 15 μm thickness and thaw mounted to glass slides. The entire sample was two-dimensionally analyzed by the charged solvent spray to form a molecular image of the biological tissue. DESI-MS images were compared with formalin-fixed, hematoxylin and eosin (H&E) stained slides of the same material. Increased signal intensity was detected for two seminolipids [seminolipid (16:0/16:0) and seminolipid (30:0)] in the normal tubule testis tissue; these compounds were undetectable in seminoma tissue, as well as from the surrounding fat, muscle, and blood vessels. A glycerophosphoinositol [PI(18:0/20:4)] was also found at increased intensity in the normal testes tubule tissue when compared with seminoma tissue. Ascorbic acid (i.e., vitamin C) was found at increased amounts in seminoma tissue when compared with normal tissue. DESI-MS analysis was successfully used to visualize the location of several types of molecules across human seminoma and normal tissues. Discrimination between seminoma and adjacent normal testes tubules was achieved on the basis of the spatial distributions and varying intensities of particular lipid species as well as ascorbic acid. The increased presence of ascorbic acid within seminoma compared with normal seminiferous tubules was previously unknown.

  17. Effect of levofloxacin, erythromycin or rifampicin pretreatment on growth of Legionella pneumophila in human monocytes.

    PubMed

    Smith, R P; Baltch, A L; Franke, M; Hioe, W; Ritz, W; Michelsen, P

    1997-11-01

    Opsonophagocytic killing of some bacteria (Staphylococcus aureus, Pseudomonas aeruginosa) by phagocytes is enhanced by previous brief exposure of the organism to antibiotics. We studied the regrowth of Legionella pneumophila previously pretreated with levofloxacin, erythromycin and/or rifampicin in human monocytes. The MIC for the L. pneumophila isolate of levofloxacin, erythromycin and rifampicin was 0.03, 0.5 and 0.001 mg/L, respectively. Growth of L. pneumophila from buffered charcoal yeast extract (BCYE) agar for 24 h was subcultured into BYE broth containing from 0 to 4x MIC of levofloxacin, erythromycin or rifampicin. After incubation at 35 degrees C in 5% CO2 for 18 h, the organisms were washed and opsonized with 20% heat inactivated pooled normal human serum. Thereafter, L. pneumophila was exposed to human monocytes (5:1 ratio) previously adhered to wells in tissue culture plates containing RPMI and 10% fetal calf serum. After 0, 24, 48 and 72 h of incubation, quantitative cultures of lysed human monocytes were done on BCYE agar. Our results indicate effective inhibition on L. pneumophila at 0 h regardless of the antibiotic (levofloxacin, rifampicin or erythromycin) or their concentrations (1x, 2x or 4x MIC). At 24, 48 and 72 h, recovery and regrowth of L. pneumophila were both antibiotic- and concentration-dependent. In comparison with controls (no antibiotic pretreatment), peak regrowth of L. pneumophila pretreated with either 1x MIC of levofloxacin or erythromycin was delayed (48 versus 24 h) and reduced (30% of control peak regrowth). Regrowth of L. pneumophila pretreated with 1x MIC of rifampicin continued beyond 72 h. Pretreatment with levofloxacin at 4x MIC caused the greatest degree of growth inhibition (2 log10). In contrast, at 72 h, regrowth of organisms pretreated with 4x MIC of erythromycin or rifampicin was less than peak control (P < 0.01) but greater than that seen with levofloxacin (P < 0.01). The rate and degree of regrowth of L. pneumophila pretreated with combinations of levofloxacin or erythromycin with rifampicin, or levofloxacin with erythromycin (all at 1x MIC) was similar to that seen with single drugs. Thus, significant delay and reduction of regrowth in this phagocytic system occurred with levofloxacin only. Prolonged exposure of the organism at 4x MIC levofloxacin concentrations was effective in suppressing regrowth of pretreated L. pneumophila in human monocytes.

  18. Radiobiological Optimization of Combination Radiopharmaceutical Therapy Applied to Myeloablative Treatment of Non-Hodgkin’s Lymphoma

    PubMed Central

    Hobbs, Robert F; Wahl, Richard L; Frey, Eric C; Kasamon, Yvette; Song, Hong; Huang, Peng; Jones, Richard J; Sgouros, George

    2014-01-01

    Combination treatment is a hallmark of cancer therapy. Although the rationale for combination radiopharmaceutical therapy was described in the mid ‘90s, such treatment strategies have only been implemented clinically recently, and without a rigorous methodology for treatment optimization. Radiobiological and quantitative imaging-based dosimetry tools are now available that enable rational implementation of combined targeted radiopharmaceutical therapy. Optimal implementation should simultaneously account for radiobiological normal organ tolerance while optimizing the ratio of two different radiopharmaceuticals required to maximize tumor control. We have developed such a methodology and applied it to hypothetical myeloablative treatment of non-hodgkin’s lymphoma (NHL) patients using 131I-tositumomab and 90Y-ibritumomab tiuxetan. Methods The range of potential administered activities (AA) is limited by the normal organ maximum tolerated biologic effective doses (MTBEDs) arising from the combined radiopharmaceuticals. Dose limiting normal organs are expected to be the lungs for 131I-tositumomab and the liver for 90Y-ibritumomab tiuxetan in myeloablative NHL treatment regimens. By plotting the limiting normal organ constraints as a function of the AAs and calculating tumor biological effective dose (BED) along the normal organ MTBED limits, the optimal combination of activities is obtained. The model was tested using previously acquired patient normal organ and tumor kinetic data and MTBED values taken from the literature. Results The average AA values based solely on normal organ constraints was (19.0 ± 8.2) GBq with a range of 3.9 – 36.9 GBq for 131I-tositumomab, and (2.77 ± 1.64) GBq with a range of 0.42 – 7.54 GBq for 90Y-ibritumomab tiuxetan. Tumor BED optimization results were calculated and plotted as a function of AA for 5 different cases, established using patient normal organ kinetics for the two radiopharmaceuticals. Results included AA ranges which would deliver 95 % of the maximum tumor BED, which allows for informed inclusion of clinical considerations, such as a maximum allowable 131I administration. Conclusions A rational approach for combination radiopharmaceutical treatment has been developed within the framework of a proven 3-dimensional personalized dosimetry software, 3D-RD, and applied to the myeloablative treatment of NHL. We anticipate combined radioisotope therapy will ultimately supplant single radioisotope therapy, much as combination chemotherapy has substantially replaced single agent chemotherapy. PMID:23918734

  19. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival

    PubMed Central

    2009-01-01

    Introduction The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Methods Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. Results In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Conclusions Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer. PMID:19903352

  20. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines

    PubMed Central

    2010-01-01

    Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822

  1. Mapping monkeypox transmission risk through time and space in the Congo Basin

    USGS Publications Warehouse

    Nakazawa, Yoshinori J.; Lash, R. Ryan; Carroll, Darin S.; Damon, Inger K.; Karem, Kevin L.; Reynolds, Mary G.; Osorio, Jorge E.; Rocke, Tonie E.; Malekani, Jean; Muyembe, Jean-Jacques; Formenty, Pierre; Peterson, A. Townsend

    2013-01-01

    Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.

  2. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups

    NASA Astrophysics Data System (ADS)

    Capitán, José A.; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  3. Demography-based adaptive network model reproduces the spatial organization of human linguistic groups.

    PubMed

    Capitán, José A; Manrubia, Susanna

    2015-12-01

    The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.

  4. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers.

    PubMed

    Bronte, Vincenzo; Kasic, Tihana; Gri, Giorgia; Gallana, Keti; Borsellino, Giovanna; Marigo, Ilaria; Battistini, Luca; Iafrate, Massimo; Prayer-Galetti, Tommaso; Pagano, Francesco; Viola, Antonella

    2005-04-18

    Immunotherapy may provide valid alternative therapy for patients with hormone-refractory metastatic prostate cancer. However, if the tumor environment exerts a suppressive action on antigen-specific tumor-infiltrating lymphocytes (TIL), immunotherapy will achieve little, if any, success. In this study, we analyzed the modulation of TIL responses by the tumor environment using collagen gel matrix-supported organ cultures of human prostate carcinomas. Our results indicate that human prostatic adenocarcinomas are infiltrated by terminally differentiated cytotoxic T lymphocytes that are, however, in an unresponsive status. We demonstrate the presence of high levels of nitrotyrosines in prostatic TIL, suggesting a local production of peroxynitrites. By inhibiting the activity of arginase and nitric oxide synthase, key enzymes of L-arginine metabolism that are highly expressed in malignant but not in normal prostates, reduced tyrosine nitration and restoration of TIL responsiveness to tumor were achieved. The metabolic control exerted by the tumor on TIL function was confirmed in a transgenic mouse prostate model, which exhibits similarities with human prostate cancer. These results identify a novel and dominant mechanism by which cancers induce immunosuppression in situ and suggest novel strategies for tumor immunotherapy.

  5. Mapping monkeypox transmission risk through time and space in the Congo Basin.

    PubMed

    Nakazawa, Yoshinori; Lash, R Ryan; Carroll, Darin S; Damon, Inger K; Karem, Kevin L; Reynolds, Mary G; Osorio, Jorge E; Rocke, Tonie E; Malekani, Jean M; Muyembe, Jean-Jacques; Formenty, Pierre; Peterson, A Townsend

    2013-01-01

    Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.

  6. Mapping Monkeypox Transmission Risk through Time and Space in the Congo Basin

    PubMed Central

    Nakazawa, Yoshinori; Lash, R. Ryan; Carroll, Darin S.; Damon, Inger K.; Karem, Kevin L.; Reynolds, Mary G.; Osorio, Jorge E.; Rocke, Tonie E.; Malekani, Jean M.; Muyembe, Jean-Jacques; Formenty, Pierre; Peterson, A. Townsend

    2013-01-01

    Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox. PMID:24040344

  7. Photoacoustic imaging: a potential new tool for arthritis

    NASA Astrophysics Data System (ADS)

    Wang, Xueding

    2012-12-01

    The potential application of photoacoustic imaging (PAI) technology to diagnostic imaging and therapeutic monitoring of inflammatory arthritis has been explored. The feasibility of our bench-top joint imaging systems in delineating soft articular tissue structures in a noninvasive manner was validated first on rat models and then on human peripheral joints. Based on the study on commonly used arthritis rat models, the capability of PAI to differentiate arthritic joints from the normal was also examined. With sufficient imaging depth, PAI can realize tomographic imaging of a human peripheral joint or a small-animal joint as a whole organ noninvasively. By presenting additional optical contrast and tissue functional information such as blood volume and blood oxygen saturation, PAI may provide an opportunity for early diagnosis of inflammatory joint disorders, e.g. rheumatoid arthritis, and for monitoring of therapeutic outcomes with improved sensitivity and accuracy.

  8. An aura of confusion: 'seeing auras-vital energy or human physiology?' Part 1 of a three part series.

    PubMed

    Duerden, Tim

    2004-02-01

    The first of three papers that considers claims made for the perception or detection of vital energy. Many systems of Complementary and Alternative Medicine (CAM) assume the existence of a vital force that mediates therapeutic efficacy, for example chi or qi in Traditional Chinese medicine. Vital energy directly perceived or imaged that surrounds living organisms is frequently termed the aura. This paper aims to show how phenomena that arise as a consequence of the normal functioning of the human visual system can be inappropriately offered as support of claims for the direct perception of vital energy or the aura. Specifically, contrast and complementary colour phenomena, entoptic phenomena and the deformation phosphene, the 'flying corpuscle effect', the blind spot and the 'reverse telescope effect' are explained and discussed.

  9. Experimental confirmations of bioeffective effect of magnetic storms.

    NASA Astrophysics Data System (ADS)

    Dmitrieva, I. D.; Khabarova, O. V.; Obridko, V. N.; Ragulskaja, M. V.; Reznikov, A. E.

    The results of experiments for the determination of the influence of geomagnetic field disturbances on a human organism are considered. We used the method of electropuncture diagnostics by R. Voll for this end. The method is based on measurements, of conductivity in acupuncture points and is convenient because it allows us to estimate deviations from the norm in the functioning of various organs in the same units. The local A-index is used as an indicator of geomagnetic field disturbance. The daily measurements of the group (27 persons) have shown the presence of a synchronous mass response of inspected people on magnetic storms. At first it is exhibited as a sharp (within 3-4 hours) increase of conductivity of all the acupuncture points from normal values, which corresponds to a maximum of adaptational capabilities of an organism; and then a long duration (about 4 day) decrease of conductivity that describes the depression of all organs and systems of an organism. The reaction of adaptation on three magnetic storms of identical intensity going with an interval per week was registered for half of the inspected people. It was found that the duration of the depression phase and the imbalance of an organism, intrinsic to this phase, depends extremely on the wholeness of the organism (that is on the power of ties between organs and coordination of their activity), but not on the type of disease.

  10. The effect of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel and normal cell lines.

    PubMed

    Alileche, Abdelkrim; Hampikian, Greg

    2017-08-09

    Nullomer peptides are the smallest sequences absent from databases of natural proteins. We first began compiling a list of absent 5-amino acid strings in 2006 (1). We report here the effects of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel, derived from human cancers of 9 organs (kidney, ovary, skin melanoma, lung, brain, lung, colon, prostate and the hematopoietic system), and four normal cell lines (endothelial HUVEC, skin fibroblasts BJ, colon epithelial FHC and normal prostate RWPE-1). NCI-60 cancer cell panel and four normal cell lines were cultured in vitro in RPMI1640 supplemented with 10% Hyclone fetal bovine serum and exposed for 48 h to 5 μM, 25 μM and 50 μM of peptides 9R, 9S1R and 124R. Viability was assessed by CCK-8 assay. For peptide ATP depletion effects, one cell line representing each organ in the NCI-60 panel, and four normal cell lines were exposed to 50 μM of peptides 9R, 9S1R and 124R for 3 h. The ATP content was assessed in whole cells, and their supernatants. Peptides 9S1R and 9R are respectively lethal to 95 and 81.6% of the 60 cancer cell lines tested. Control peptide 124R has no effect on the growth of these cells. Especially interesting the fact that peptides 9R and 9S1R are capable of killing drug-resistant and hormone-resistant cell lines, and even cancer stem cells. Peptides 9R and 9S1R have a broader activity spectrum than many cancer drugs in current use, can completely deplete cellular ATP within 3 h, and are less toxic to 3 of the 4 normal cell lines tested than they are to several cancers. Nullomer peptides 9R and 9S1R have a large broad lethal effect on cancer cell lines derived from nine organs represented in the NCI-60 panel. This broad activity crosses many of the categorical divisions used in the general classification of cancers: solid vs liquid cancers, drug sensitive vs drug resistant, hormone sensitive vs hormone resistant, cytokine sensitive vs cytokine non sensitive, slow growing vs rapid growing, differentiated vs dedifferentiated cancers. Furthermore peptides 9R and 9S1R are lethal to cancer stem cells and breast canrcinosarcoma.

  11. Nanotechnology & human stem cells: Applications in cardiogenesis and neurogenesis

    NASA Astrophysics Data System (ADS)

    Tomov, Martin L.

    Human stem cell research holds an unprecedented promise to revolutionize the way we approach medicine and healthcare in general, moving us from a position of mostly addressing the symptoms to a state where treatments can focus on removing the underlying causes of a condition. Stem cell research can shed light into normal developmental pathways, as we are beginning to replicate them in a petri dish and can also be used to model diseases and abnormal conditions. Direct applications can range from finding cures for single or multigene diseases to demonstrating that we can replace these genes with a normal copy. We can even begin to model lifelong conditions such as aging by iPSC technology by relying on fetal, young, adult, and centenarian populations to provide insights into the process. We have also begun to understand the microenvironment in which specific cell populations reside. Being able to replicate the chemical, physical mechanical, and spatial needs of those cells, research groups are successfully generating full organs using cadaver scaffolds of heart and kidney, and there is promising research to reach the same success with other organs, such as the liver, and pancreas. Advances in those areas open an enormous potential to study organs, organoids, organ valves, tubes or other functional elements such as beating cardiomyocytes in vitro. There is also the need to evaluate the whole genome of induced and differentiated cells, with its myriad of interacting pathways. Bioinformatics can help our understanding of embryogenesis, organ differentiation and function. It can also help optimize our stem cell and bio-scaffold tools to advance closer to functional organs and tissues. Such a combination approach will also include pluripotency evaluation and multi-lineage differentiation, as well as platforms that may assist in cell therapies: 3D structures, micro-ribbons, directed patterning to name a few. There is now a clearer path forward with stem cell research than was ever before possible. My research has made fundamental contributions to the stem cell field by detailed analysis of uniformly generated 3D stem cell intermediates that are embryoid bodies. I have also contributed to the derivation of the first fully characterized ethnically diverse induced pluripotent stem cells from minority populations (ED-iPSCs), and advances in generating functional beating cardiomyocytes in vitro to aid cardiomyoplasty therapies. My work has also explored scaffolds for directing neural cell assembly or encouraging self-assembly for applications in CNS neurodegeneration, addiction, and spinal cord injury. These contributions to the field are outlined in my Specific Aims below and detailed in the chapters of my thesis.

  12. A Modified Protocol for the Isolation of Primary Human Hepatocytes with Improved Viability and Function from Normal and Diseased Human Liver.

    PubMed

    Bartlett, David C; Newsome, Philip N

    2017-01-01

    Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.

  13. Impact of single-walled carbon nanotubes on the embryo: a brief review

    PubMed Central

    Al Moustafa, Ala-Eddin; Mfoumou, Etienne; Roman, Dacian E; Nerguizian, Vahe; Alazzam, Anas; Stiharu, Ion; Yasmeen, Amber

    2016-01-01

    Carbon nanotubes (CNTs) are considered one of the most interesting materials in the 21st century due to their unique physiochemical characteristics and applicability to various industrial products and medical applications. However, in the last few years, questions have been raised regarding the potential toxicity of CNTs to humans and the environment; it is believed that the physiochemical characteristics of these materials are key determinants of CNT interaction with living cells and hence determine their toxicity in humans and other organisms as well as their embryos. Thus, several recent studies, including ours, pointed out that CNTs have cytotoxic effects on human and animal cells, which occur via the alteration of key regulator genes of cell proliferation, apoptosis, survival, cell–cell adhesion, and angiogenesis. Meanwhile, few investigations revealed that CNTs could also be harmful to the normal development of the embryo. In this review, we will discuss the toxic role of single-walled CNTs in the embryo, which was recently explored by several groups including ours. PMID:26855573

  14. Psychology in the human sciences in France, 1920-1940: Ignace Meyerson's historical psychology.

    PubMed

    Parot, F

    2000-05-01

    Between World War I and World War II, psychology adopted a direction open to human sciences; I. Meyerson was the main organizer of this choice. Leading the Societe de Psychologie and the Journal de Psychologie Normale et Pathologique, he tried to construct an individual and collective psychology that reflected not only the scientific preoccupations of his masters and friends but also their political choices: They had been the founders of the Human Rights League at the end of the 19th century. Behind Durkheim and Seignobos, with Mauss, Levy-Bruhl, and Blondel, Meyerson answered the new historians' call for a unified science of "mentalities," a historical psychology of collective representations. Meyerson offered to sociologists, anthropologists, linguists, and historians several forums to debate in which psychology was the unifying science. But at the end of the World War II, his psychology was marginalized, and a postivistic and behavioristic way was preferred. Meyerson's historical psychology disappeared from academic psychology, but historians have preserved its legacy.

  15. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay

    PubMed Central

    Yilmaz, Özlem

    2009-01-01

    The microbiota of the human oral mucosa consists of a myriad of bacterial species that normally exist in commensal harmony with the host. Porphyromonas gingivalis, an aetiological agent in severe forms of periodontitis (a chronic inflammatory disease), is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. This Gram-negative anaerobe can also exist within the host epithelium without the existence of overt disease. Gingival epithelial cells, the outer lining of the gingival mucosa, which function as an important part of the innate immune system, are among the first host cells colonized by P. gingivalis. This review describes recent studies implicating the co-existence and intracellular adaptation of the organism in these target host cells. Specifically, recent findings on the putative mechanisms of persistence, intercellular dissemination and opportunism are highlighted. These new findings may also represent an original and valuable model for mechanistic characterization of other successful host-adapted, self-limiting, persistent intracellular bacteria in human epithelial tissues. PMID:18832296

  16. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay.

    PubMed

    Yilmaz, Ozlem

    2008-10-01

    The microbiota of the human oral mucosa consists of a myriad of bacterial species that normally exist in commensal harmony with the host. Porphyromonas gingivalis, an aetiological agent in severe forms of periodontitis (a chronic inflammatory disease), is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. This Gram-negative anaerobe can also exist within the host epithelium without the existence of overt disease. Gingival epithelial cells, the outer lining of the gingival mucosa, which function as an important part of the innate immune system, are among the first host cells colonized by P. gingivalis. This review describes recent studies implicating the co-existence and intracellular adaptation of the organism in these target host cells. Specifically, recent findings on the putative mechanisms of persistence, intercellular dissemination and opportunism are highlighted. These new findings may also represent an original and valuable model for mechanistic characterization of other successful host-adapted, self-limiting, persistent intracellular bacteria in human epithelial tissues.

  17. S100A8/A9 Stimulates Keratinocyte Proliferation in the Development of Squamous Cell Carcinoma of the Skin via the Receptor for Advanced Glycation-End Products

    PubMed Central

    Iotzova-Weiss, Guergana; Dziunycz, Piotr J.; Freiberger, Sandra N.; Läuchli, Severin; Hafner, Jürg; Vogl, Thomas; French, Lars E.; Hofbauer, Günther F. L.

    2015-01-01

    Squamous cell carcinoma (SCC) is the most common neoplasm in organ transplant recipients (OTR) on long-term immunosuppression and occurs 60- to 100-fold more frequently than in the general population. Here, we present the receptor for advanced glycation end products (RAGE) and S100A8/A9 as important factors driving normal and tumor keratinocyte proliferation. RAGE and S100A8/A9 were transcriptionally upregulated in SCC compared to normal epidermis, as well as in OTR compared to immunocompetent patients (IC) with SCC. The proliferation of normal and SCC keratinocytes was induced by exposure to exogenous S100A8/A9 which in turn was abolished by blocking of RAGE. The migratory activities of normal and SCC keratinocytes were also increased upon exposure to S100A8/A9. We demonstrated that exogenous S100A8/A9 induces phosphorylation of p38 and SAPK/JNK followed by activation of ERK1/2. We hypothesize that RAGE and S100A8/A9 contribute to the development of human SCC by modulating keratinocyte growth and migration. These processes do not seem to be impaired by profound drug-mediated immunosuppression in OTR. PMID:25811984

  18. Sulfation of 6-Gingerol by the Human Cytosolic Sulfotransferases: A Systematic Analysis.

    PubMed

    Luo, Lijun; Mei, Xue; Xi, Yuecheng; Zhou, Chunyang; Hui, Ying; Kurogi, Katsuhisa; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2016-02-01

    Previous studies have demonstrated the presence of the sulfated form of 6-gingerol, a major pharmacologically active component of ginger, in plasma samples of normal human subjects who were administered 6-gingerol. The current study was designed to systematically identify the major human cytosolic sulfotransferase enzyme(s) capable of mediating the sulfation of 6-gingerol. Of the 13 known human cytosolic sulfotransferases examined, six (SULT1A1, SULT1A2, SULT1A3, SULT1B1, SULT1C4, SULT1E1) displayed significant sulfating activity toward 6-gingerol. Kinetic parameters of SULT1A1, SULT1A3, SULT1C4, and SULT1E1 that showed stronger 6-gingerol-sulfating activity were determined. Of the four human organ samples tested, small intestine and liver cytosols displayed considerably higher 6-gingerol-sulfating activity than those of the lung and kidney. Moreover, sulfation of 6-gingerol was shown to occur in HepG2 human hepatoma cells and Caco-2 human colon adenocarcinoma cells under the metabolic setting. Collectively, these results provided useful information relevant to the metabolism of 6-gingerol through sulfation both in vitro and in vivo. Georg Thieme Verlag KG Stuttgart · New York.

  19. Three-dimensional imaging of the developing mouse female reproductive organs with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Burton, Jason C.; Wang, Shang; Behringer, Richard R.; Larina, Irina V.

    2016-03-01

    Infertility is a known major health concern and is estimated to impact ~15% of couples in the U.S. The majority of failed pregnancies occur before or during implantation of the fertilized embryo into the uterus. Understanding the mechanisms regulating development by studying mouse reproductive organs could significantly contribute to an improved understanding of normal development of reproductive organs and developmental causes of infertility in humans. Towards this goal, we report a three-dimensional (3D) imaging study of the developing mouse reproductive organs (ovary, oviduct, and uterus) using optical coherence tomography (OCT). In our study, OCT was used for 3D imaging of reproductive organs without exogenous contrast agents and provides micro-scale spatial resolution. Experiments were conducted in vitro on mouse reproductive organs ranging from the embryonic day 14.5 to adult stages. Structural features of the ovary, oviduct, and uterus are presented. Additionally, a comparison with traditional histological analysis is illustrated. These results provide a basis for a wide range of infertility studies in mouse models. Through integration with traditional genetic and molecular biology approaches, this imaging method can improve understanding of ovary, oviduct, and uterus development and function, serving to further contribute to our understanding of fertility and infertility.

  20. Influence of cardiac nerve status on cardiovascular regulation and cardioprotection

    PubMed Central

    Kingma, John G; Simard, Denys; Rouleau, Jacques R

    2017-01-01

    Neural elements of the intrinsic cardiac nervous system transduce sensory inputs from the heart, blood vessels and other organs to ensure adequate cardiac function on a beat-to-beat basis. This inter-organ crosstalk is critical for normal function of the heart and other organs; derangements within the nervous system hierarchy contribute to pathogenesis of organ dysfunction. The role of intact cardiac nerves in development of, as well as protection against, ischemic injury is of current interest since it may involve recruitment of intrinsic cardiac ganglia. For instance, ischemic conditioning, a novel protection strategy against organ injury, and in particular remote conditioning, is likely mediated by activation of neural pathways or by endogenous cytoprotective blood-borne substances that stimulate different signalling pathways. This discovery reinforces the concept that inter-organ communication, and maintenance thereof, is key. As such, greater understanding of mechanisms and elucidation of treatment strategies is imperative to improve clinical outcomes particularly in patients with comorbidities. For instance, autonomic imbalance between sympathetic and parasympathetic nervous system regulation can initiate cardiovascular autonomic neuropathy that compromises cardiac stability and function. Neuromodulation therapies that directly target the intrinsic cardiac nervous system or other elements of the nervous system hierarchy are currently being investigated for treatment of different maladies in animal and human studies. PMID:28706586

  1. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  2. The determinants of alternative RNA splicing in human cells.

    PubMed

    Ramanouskaya, Tatsiana V; Grinev, Vasily V

    2017-12-01

    Alternative splicing represents an important level of the regulation of gene function in eukaryotic organisms. It plays a critical role in virtually every biological process within an organism, including regulation of cell division and cell death, differentiation of tissues in the embryo and the adult organism, as well as in cellular response to diverse environmental factors. In turn, studies of the last decade have shown that alternative splicing itself is controlled by different mechanisms. Unfortunately, there is no clear understanding of how these diverse mechanisms, or determinants, regulate and constrain the set of alternative RNA species produced from any particular gene in every cell of the human body. Here, we provide a consolidated overview of alternative splicing determinants including RNA-protein interactions, epigenetic regulation via chromatin remodeling, coupling of transcription-to-alternative splicing, effect of secondary structures in pre-RNA, and function of the RNA quality control systems. We also extensively and critically discuss some mechanistic insights on coordinated inclusion/exclusion of exons during the formation of mature RNA molecules. We conclude that the final structure of RNA is pre-determined by a complex interplay between cis- and trans-acting factors. Altogether, currently available empirical data significantly expand our understanding of the functioning of the alternative splicing machinery of cells in normal and pathological conditions. On the other hand, there are still many blind spots that require further deep investigations.

  3. A Soil Service Index: a method for quantifying the value, vulnerability, and status of soil resources

    NASA Astrophysics Data System (ADS)

    Harden, J. W.; Loisel, J.; Hugelius, G.; Sulman, B. N.; Bond-Lamberty, B. P.; Abramoff, R. Z.; Malhotra, A.; Gill, A. L.

    2017-12-01

    Soils support ecological and human systems by providing a physical and biogeochemical basis for plant growth, ecological functions, water quality, and water storage, and by providing services and functions needed for economic development, human well-being, and conservation of natural resources. Quantitative evaluation of soil services, however, is inconsistent and poorly communicated, in part because we lack a scientific, unified basis for evaluating soils and their potential for serving our needs. We introduce an index of soil service (SSI) in which multiple services are numerically or quantitatively assessed, normalized to a unit-less scale for purposes of intercomparability, and evaluated for a given site or region. Services include organic matter and/or organic carbon storage; plant productivity; CO2 or GHG exchange with the atmosphere; water storage capacity; and nutrient storage and/or availability. The status of SSI can be evaluated by individual services or by a composite index that combines multiple services. The status can be monitored over time; and key services that are more highly valued for a given soil can be weighted accordingly in comparison to other services. As a first step, existing data for each service are captured from a literature and data review in order to establish the full range of values. A site value establishes the ranking relative to the full range. Key services are weighted according to local values. A final index is the sum of the normalized, weighted products. Metrics can be updated and adapted as new data or services are discovered or recognized. Metrics can be used to compare among sites, regions, or time periods.

  4. Microgravity

    NASA Image and Video Library

    2001-05-15

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  5. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  6. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.

    PubMed

    Lee, Mui Li; Fung, Shin Yee; Chung, Ivy; Pailoor, Jayalakshmi; Cheah, Swee Hung; Tan, Nget Hong

    2014-01-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors.

  7. A Novel Function for the nm23-Hl Gene: Overexpression in Human Breast Carcinoma Cells Leads to the Formation of Basement Membrane and Growth Arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howlett, Anthony R; Petersen, Ole W; Steeg, Patricia S

    1994-01-01

    We have developed a culture system using reconstituted basement membrane components in which normal human mammary epithelial cells exhibit several aspects of the development and differentiation process, including formation of acinar-like structures, production and basal deposition of basement membrane components, and production and apical secretion of sialomucins. Cell lines and cultures from human breast carcinomas failed to recapitulate this process. The data indicate the importance of cellular interactions with the basement membrane in the regulation of normal breast differentiation and, potentially, its loss in neoplasia. Our purpose was to use this assay to investigate the role of the putative metastasismore » suppressor gene nm23-H1 in mammary development and differentiation. The metastatic human breast carcinoma cell line MDA-MB-435, clones transfected with a control pCMVBamneo vector, and clones transfected with pCMVBamneo vector containing nm23-H1 complementary DNA (the latter of which exhibited a substantial reduction in spontaneous metastatic potential in vivo) were cultured within a reconstituted basement membrane. Clones were examined for formation of acinus-like spheres, deposition of basement membrane components, production of sialomucin, polarization, and growth arrest. In contrast to the parental cell line and control transfectants, MDA-MB-435 breast carcinoma cells overexpressing Nm23-H1 protein regained several aspects of the normal phenotype within reconstituted basement membrane. Nm23-H1 protein-positive cells formed organized acinus-like spheres, deposited the basement membrane components type IV collagen and, to some extent, laminin to the outside of the spheres, expressed sialomucin, and growth arrested. Growth arrest of Nm23-H1 protein-positive cells was preceded by and correlated with formation of a basement membrane, suggesting a causal relationship. The data indicate a previously unidentified cause-and-effect relationship between nm23-H1 gene expression and morphological-biosynthetic-growth aspects of breast differentiation in this model system. While the basement membrane microenvironment is capable of directing the differentiation of normal human breast cells, neoplastic transformation abrogates this relationship, suggesting that intrinsic cellular events are also critical to this process. The data identify nm23-H1 gene expression as one of these events, suggesting an important role in the modulation of cellular responsiveness to the microenvironment. The data also identify previously unknown growth inhibitory effects of nm23-H1 gene overexpression.« less

  8. Understanding vaginal microbiome complexity from an ecological perspective

    PubMed Central

    Hickey, Roxana J.; Zhou, Xia; Pierson, Jacob D.; Ravel, Jacques; Forney, Larry J.

    2012-01-01

    The various microbiota normally associated with the human body have an important influence on human development, physiology, immunity, and nutrition. This is certainly true for the vagina wherein communities of mutualistic bacteria constitute the first line of defense for the host by excluding invasive, nonindigenous organisms that may cause disease. In recent years much has been learned about the bacterial species composition of these communities and how they differ between individuals of different ages and ethnicities. A deeper understanding of their origins and the interrelationships of constituent species is needed to understand how and why they change over time or in response to changes in the host environment. Moreover, there are few unifying theories to explain the ecological dynamics of vaginal ecosystems as they respond to disturbances caused by menses and human activities such as intercourse, douching, and other habits and practices. This fundamental knowledge is needed to diagnose and assess risk to disease. Here we summarize what is known about the species composition, structure, and function of bacterial communities in the human vagina and the applicability of ecological models of community structure and function to understanding the dynamics of this and other ecosystems that comprise the human microbiome. PMID:22683415

  9. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    PubMed

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in prosthetic ankle-foot complex compared to normal one. The predicted plantar pressures and von Misses stress distributions for a normal foot were consistent with other FE models given in the literature. The present study is aimed to open new approaches for the development of ankle prosthesis.

  10. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China.

    PubMed

    Mao, Yingming; Sang, Shuxun; Liu, Shiqi; Jia, Jinlong

    2014-05-01

    The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Increased extracellular matrix density decreases MCF10A breast cell acinus formation in 3D culture conditions.

    PubMed

    Lance, Amanda; Yang, Chih-Chao; Swamydas, Muthulekha; Dean, Delphine; Deitch, Sandy; Burg, Karen J L; Dréau, Didier

    2016-01-01

    The extracellular matrix (ECM) contributes to the generation and dynamic of normal breast tissue, in particular to the generation of polarized acinar and ductal structures. In vitro 3D culture conditions, including variations in the composition of the ECM, have been shown to directly influence the formation and organization of acinus-like and duct-like structures. Furthermore, the density of the ECM appears to also play a role in the normal mammary tissue and tumour formation. Here we show that the density of the ECM directly influences the number, organization and function of breast acini. Briefly, non-malignant human breast MCF10A cells were incubated in increasing densities of a Matrigel®-collagen I matrix. Elastic moduli near and distant to the acinus structures were measured by atomic force microscopy, and the number of acinus structures was determined. Immunochemistry was used to investigate the expression levels of E-cadherin, laminin, matrix metalloproteinase-14 and ß-casein in MCF10A cells. The modulus of the ECM was significantly increased near the acinus structures and the number of acinus structures decreased with the increase in Matrigel-collagen I density. As evaluated by the expression of laminin, the organization of the acinus structures present was altered as the density of the ECM increased. Increases in both E-cadherin and MMP14 expression by MCF10A cells as ECM density increased were also observed. In contrast, MCF10A cells expressed lower ß-casein levels as the ECM density increased. Taken together, these observations highlight the key role of ECM density in modulating the number, organization and function of breast acini. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models.

    PubMed

    Tian, Xiaoyu; Li, Xiang; Segars, W Paul; Paulson, Erik K; Frush, Donald P; Samei, Ehsan

    2014-02-01

    To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. The institutional review board approved this HIPAA-compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0-16 years; weight range, 2-80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDI(vol)). The relationships between CTDI(vol)-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. For organs within the image coverage, CTDI(vol)-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R(2) > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%-32%) mainly because of the effect of overranging. It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDI(vol). These CTDI(vol)-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles across patient populations within a practice. © RSNA, 2013.

  13. Prevention of EBV lymphoma development by oncolytic myxoma virus in a murine xenograft model of post-transplant lymphoproliferative disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Manbok, E-mail: manbok66@dankook.ac.kr; Rahman, Masmudur M.; Cogle, Christopher R.

    Epstein–Barr virus (EBV) has been associated with a variety of epithelial and hematologic malignancies, including B-, T- and NK cell-lymphomas, Hodgkin's disease (HD), post-transplant lymphoproliferative diseases (LPDs), nasopharyngeal and gastric carcinomas, smooth muscle tumors, and HIV-associated lymphomas. Currently, treatment options for EBV-associated malignancies are limited. We have previously shown that myxoma virus specifically targets various human solid tumors and leukemia cells in a variety of animal models, while sparing normal human or murine tissues. Since transplant recipients of bone marrow or solid organs often develop EBV-associated post-transplant LPDs and lymphoma, myxoma virus may be of utility to prevent EBV-associated malignanciesmore » in immunocompromised transplant patients where treatment options are frequently limited. In this report, we demonstrate the safety and efficacy of myxoma virus purging as a prophylactic strategy for preventing post-transplant EBV-transformed human lymphomas, using a highly immunosuppressed mouse xenotransplantation model. This provides support for developing myxoma virus as a potential oncolytic therapy for preventing EBV-associated LPDs following transplantation of bone marrow or solid organ allografts. - Highlights: • Myxoma virus effectively infects and purges EBV lymphoma cells in vivo. • Oncolytic myxoma virus effectively eradicates oncogenic EBV tumorigenesis. • Ex vivo pre-treatment of myxoma virus can be effective as a preventive treatment modality for post-transplant lymphoproliferative diseases.« less

  14. Acute and sub acute toxicity and efficacy studies of Hippophae rhamnoides based herbal antioxidant supplement.

    PubMed

    Ali, Rashid; Ali, Raisuddin; Jaimini, Abhinav; Nishad, Dhruv Kumar; Mittal, Gaurav; Chaurasia, Om Prakash; Kumar, Raj; Bhatnagar, Aseem; Singh, Shashi Bala

    2012-01-01

    Present study was carried out to evaluate acute and subacute toxicity and efficacy of Seabuckthorn (Hippophae rhamnoides) based herbal antioxidant supplement (HAOS). In vivo toxicity studies were performed in male balb 'C' mice by oral administration. Acute toxicity study was done at doses ranging from 2000 to 10 000 mg/ kg while in subacute studies, HAOS was given at doses of 2000, 4000, and 8000 mg/kg body weight. Animals were observed for any toxic sign and symptoms periodically. At completion of study animals were sacrificed; their hematological, biochemical parameters were analyzed and histopathology of vital organs was done. In vivo efficacy studies in human volunteers were done and the levels of vitamin A and Vitamin C in blood samples were analyzed in comparison to a similar commercially available formulation. No mortality and any clinical signs of toxicity were found in HAOS administered group of animals. There were no significant alterations in hematological and biochemical parameters. Histopathological analysis of vital organs showed normal architecture in all the HAOS administered groups. Human studies showed an increase of 32% and 172% in Vitamin A and Vitamin C levels respectively in term of bioavailability. The data obtained indicate no toxicity of this antioxidant supplement up to the highest dose studied. Efficacy in terms of increased bioavailability of vitamin A and C in human volunteers indicates the clinical usefulness of the supplement.

  15. A conserved serine residue regulates the stability of Drosophila Salvador and human WW domain-containing adaptor 45 through proteasomal degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di, E-mail: DiWu@mail.nankai.edu.cn; Wu, Shian

    2013-04-19

    Highlights: •Ser-17 is key for the stability of Drosophila Sav. •Ala mutation of Ser-17 promotes the proteasomal degradation of Sav. •Ser-17 residue is not the main target of Hpo-induced Sav stabilization. •Hpo-dependent and -independent mechanisms regulate Sav stability. •This mechanism is conserved in the homologue of Sav, human WW45. -- Abstract: The Hippo (Hpo) pathway is a conserved tumor suppressor pathway that controls organ size through the coordinated regulation of apoptosis and proliferation. Drosophila Salvador (Sav), which limits organ size, is a core component of the Hpo pathway. In this study, Ser-17 was shown to be important for the stabilitymore » of Sav. Alanine mutation of Ser-17 promoted the proteasomal degradation of Sav. Destabilization and stabilization of the Sav protein mediated by alanine mutation of Ser-17 and by Hpo, respectively, were independent of each other. This implies that the stability of Sav is controlled by two mechanisms, one that is Ser-17-dependent and Hpo-independent, and another that is Ser-17-independent and Hpo-dependent. These dual mechanisms also regulated the human counterpart of Drosophila Sav, WW domain-containing adaptor 45 (WW45). The conservation of this regulation adds to its significance in normal physiology and tumorigenesis.« less

  16. Organs on chip approach: a tool to evaluate cancer -immune cells interactions.

    PubMed

    Biselli, Elena; Agliari, Elena; Barra, Adriano; Bertani, Francesca Romana; Gerardino, Annamaria; De Ninno, Adele; Mencattini, Arianna; Di Giuseppe, Davide; Mattei, Fabrizio; Schiavoni, Giovanna; Lucarini, Valeria; Vacchelli, Erika; Kroemer, Guido; Di Natale, Corrado; Martinelli, Eugenio; Businaro, Luca

    2017-10-06

    In this paper we discuss the applicability of numerical descriptors and statistical physics concepts to characterize complex biological systems observed at microscopic level through organ on chip approach. To this end, we employ data collected on a microfluidic platform in which leukocytes can move through suitably built channels toward their target. Leukocyte behavior is recorded by standard time lapse imaging. In particular, we analyze three groups of human peripheral blood mononuclear cells (PBMC): heterozygous mutants (in which only one copy of the FPR1 gene is normal), homozygous mutants (in which both alleles encoding FPR1 are loss-of-function variants) and cells from 'wild type' donors (with normal expression of FPR1). We characterize the migration of these cells providing a quantitative confirmation of the essential role of FPR1 in cancer chemotherapy response. Indeed wild type PBMC perform biased random walks toward chemotherapy-treated cancer cells establishing persistent interactions with them. Conversely, heterozygous mutants present a weaker bias in their motion and homozygous mutants perform rather uncorrelated random walks, both failing to engage with their targets. We next focus on wild type cells and study the interactions of leukocytes with cancerous cells developing a novel heuristic procedure, inspired by Lyapunov stability in dynamical systems.

  17. [Barriers to the normalization of telemedicine in a healthcare system model based on purchasing of healthcare services using providers' contracts].

    PubMed

    Roig, Francesc; Saigí, Francesc

    2011-01-01

    Despite the clear political will to promote telemedicine and the large number of initiatives, the incorporation of this modality in clinical practice remains limited. The objective of this study was to identify the barriers perceived by key professionals who actively participate in the design and implementation of telemedicine in a healthcare system model based on purchasing of healthcare services using providers' contracts. We performed a qualitative study based on data from semi-structured interviews with 17 key informants belonging to distinct Catalan health organizations. The barriers identified were grouped in four areas: technological, organizational, human and economic. The main barriers identified were changes in the healthcare model caused by telemedicine, problems with strategic alignment, resistance to change in the (re)definition of roles, responsibilities and new skills, and lack of a business model that incorporates telemedicine in the services portfolio to ensure its sustainability. In addition to suitable management of change and of the necessary strategic alignment, the definitive normalization of telemedicine in a mixed healthcare model based on purchasing of healthcare services using providers' contracts requires a clear and stable business model that incorporates this modality in the services portfolio and allows healthcare organizations to obtain reimbursement from the payer. 2010 SESPAS. Published by Elsevier Espana. All rights reserved.

  18. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  19. Ionizing radiation induces heritable disruption of epithelial cell interactions

    NASA Technical Reports Server (NTRS)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  20. Potential Protein Toxicity of Synthetic Pigments: Binding of Poncean S to Human Serum Albumin☆

    PubMed Central

    Gao, Hong-Wen; Xu, Qing; Chen, Ling; Wang, Shi-Long; Wang, Yuan; Wu, Ling-Ling; Yuan, Yuan

    2008-01-01

    Using various methods, e.g., spectrophotometry, circular dichroism, and isothermal titration calorimetry, the interaction of poncean S (PS) with human serum albumin (HSA) was characterized at pH 1.81, 3.56, and 7.40 using the spectral correction technique, and Langmuir and Temkin isothermal models. The consistency among results concerning, e.g., binding number, binding energy, and type of binding, showed that ion pair electrostatic attraction fixed the position of PS in HSA and subsequently induced a combination of multiple noncovalent bonds such as H-bonds, hydrophobic interactions, and van der Waals forces. Ion pair attraction and H-bonds produced a stable PS-HSA complex and led to a marked change in the secondary structure of HSA in acidic media. The PS-HSA binding pattern and the process of change in HSA conformation were also investigated. The potentially toxic effect of PS on the transport function of HSA in a normal physiological environment was analyzed. This work provides a useful experimental strategy for studying the interaction of organic substances with biomacromolecules, helping us to understand the activity or mechanism of toxicity of an organic compound. PMID:17905844

  1. MicroRNA-7: A miRNA with expanding roles in development and disease.

    PubMed

    Horsham, Jessica L; Ganda, Clarissa; Kalinowski, Felicity C; Brown, Rikki A M; Epis, Michael R; Leedman, Peter J

    2015-12-01

    MicroRNAs (miRNAs) are a family of short, non-coding RNA molecules (∼22nt) involved in post-transcriptional control of gene expression. They act via base-pairing with mRNA transcripts that harbour target sequences, resulting in accelerated mRNA decay and/or translational attenuation. Given miRNAs mediate the expression of molecules involved in many aspects of normal cell development and functioning, it is not surprising that aberrant miRNA expression is closely associated with many human diseases. Their pivotal role in driving a range of normal cellular physiology as well as pathological processes has established miRNAs as potential therapeutics, as well as potential diagnostic and prognostic tools in human health. MicroRNA-7 (miR-7) is a highly conserved miRNA which displays restricted spatiotemporal expression during development and in maturity. In humans and mice, mature miR-7 is generated from three different genes, illustrating unexpected redundancy and also the importance of this miRNA in regulating key cellular processes. In this review we examine the expanding role of miR-7 in the context of health, with emphasis on organ differentiation and development, as well as in various mammalian diseases, particularly of the brain, heart, endocrine pancreas and skin, as well as in cancer. The more we learn about miR-7, the more we realise the complexity of its regulation and potential functional application both from a biomarker and therapeutic perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Experimental endometriosis: the nude mouse as a xenographic host.

    PubMed

    Bruner-Tran, Kaylon L; Webster-Clair, Deborah; Osteen, Kevin G

    2002-03-01

    Endometriosis is a complex disease that can develop as a consequence of retrograde menstruation, occurring in association with the cyclic loss of endometrial tissue in primates and humans. In addition, progression of disease parallels a woman's exposure to ovarian steroids, rarely occurring prior to menarche and generally resolving following menopause. Because of the cost of developing primate models to study endometriosis, numerous small animal models have been established to approach various elements related to the pathophysiology of this disease. Our laboratory has developed an experimental endometriosis model using nude mice as a xenographic host for human tissues. Our goal is to approach the basic cellular mechanisms of estrogen and progesterone action that link these hormones to the development or prevention of endometriosis. In our initial studies, we have sought to understand steroid-associated regulation of matrix metalloproteinases (MMPs) with regard to the development of experimental endometriosis. Using both short-term organ cultures and nude mice as xenographic hosts of human tissue, we have demonstrated a critical role of progesterone and progesterone-associated cytokines in preventing the initial establishment of experimental disease. Women with endometriosis appear to lack normal endometrial responsiveness to progesterone, resulting in altered expression of several MMPs and an enhanced ability of these tissues to establish ectopic lesions in nude mice. Developing a better understanding of the impairments in the normal endometrial physiology of women with endometriosis should aid in the development of better treatment or diagnostic strategies.

  3. Microgravity

    NASA Image and Video Library

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. Generation and characterization of anti-MUC4 monoclonal antibodies reactive with normal and cancer cells in humans.

    PubMed

    Moniaux, Nicolas; Varshney, Grish Chandra; Chauhan, Subhash Chand; Copin, Marie Christine; Jain, Maneesh; Wittel, Uwe A; Andrianifahanana, Mahefatiana; Aubert, Jean-Pierre; Batra, Surinder Kumar

    2004-02-01

    We have previously cloned the full-length cDNA (approximately 28 Kb) and established the complete genomic organization (25 exons/introns over 100 kb) of the human MUC4 mucin. This large molecule is predicted to protrude over 2 microm above the cell surface, in which MUC4alpha is an extracellular mucin-type glycoprotein subunit and MUC4beta is the transmembrane subunit. Over two thirds of the encoded protein sequence consists of 16-amino-acid tandem repeats (TR), which are flanked by unique sequences. In this study we generated and characterized monoclonal antibodies (MAbs) directed against the TR region of MUC4. Mice were immunized with a KLH-conjugated MUC4 TR peptide, STGDTTPLPVTDTSSV. Several clones were purified by three rounds of limited dilutions and stable clones presenting a sustained antibody production were selected for subsequent characterization. Antibodies were tested for their reactivity and specificity to recognize the MUC4 peptide and further screened by enzyme-linked immunosorbent assay (ELISA) and Western blotting analyses. One of the MAbs (8G7) was strongly reactive against the MUC4 peptide and with native MUC4 from human tissues or pancreatic cancer cells in Western blotting, immunohistochemistry, and confocal analysis. Anti-MUC4 MAb may represent a powerful tool for the study of MUC4 function under normal and pathological conditions and for diagnosis of solid tumors including those in the breast, pancreas, lungs, and ovaries.

  5. Animal left-right asymmetry.

    PubMed

    Blum, Martin; Ott, Tim

    2018-04-02

    Symmetry is appealing, be it in architecture, art or facial expression, where symmetry is a key feature to finding someone attractive or not. Yet, asymmetries are widespread in nature, not as an erroneous deviation from the norm but as a way to adapt to the prevailing environmental conditions at a time. Asymmetries in many cases are actively selected for: they might well have increased the evolutionary fitness of a species. Even many single-celled organisms are built asymmetrically, such as the pear-shaped ciliate Paramecium, which may depend on its asymmetry to navigate towards the oxygen-richer surface of turbid waters, at least based on modeling. Everybody knows the lobster with its asymmetric pair of claws, the large crusher usually on the left and the smaller cutter on the right. Snail shells coil asymmetrically, as do the organs they house. Organ asymmetries are found throughout the animal kingdom, referring to asymmetric positioning, asymmetric morphology or both, with the vertebrate heart being an example for the latter. Functional asymmetries, such as that of the human brain with its localization of the language center in one hemisphere, add to the complexity of organ asymmetries and presumably played a decisive role for sociocultural evolution. The evolutionary origin of organ asymmetries may have been a longer than body length gut, which allows efficient retrieval of nutrients, and the need to stow a long gut in the body cavity in an orderly manner that ensures optimal functioning. Vertebrate organ asymmetries (situs solitus) are quite sophisticated: in humans, the apex of the asymmetrically built heart points to the left; the lung in turn, due to space restrictions, has fewer lobes on the left than on the right side (two versus three in humans), stomach and spleen are found on the left, the liver on the right, and small and large intestine coil in a chiral manner (Figure 1A). In very rare cases (1:10,000), the organ situs is inverted (situs inversus), while heterotaxia refers to another rare situation (about 1:1,000), in which subsets of organs show normal or aberrant positioning or morphology (Figure 1B). Individuals with situs solitus or situs inversus are healthy, whereas heterotaxia presents severe congenital malformations. Many human syndromes are known in which patients suffer from laterality defects, such as Katagener syndrome, in which the organ situs is inverted in one half of patients and males are sterile. Snail shells and vertebrate organs are examples of biased asymmetries with on average only one inversion in every 10,000 cases. Other asymmetries such as the coiling of the tails of piglets occur randomly with a 50:50 distribution. This primer exclusively deals with organ asymmetries in the animal kingdom, specifically with the mechanisms that ensure the development of biased asymmetries during embryogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Adaptive self-organization in the embryo: its importance to adult anatomy and to tissue engineering.

    PubMed

    Davies, Jamie A

    2018-04-01

    The anatomy of healthy humans shows much minor variation, and twin-studies reveal at least some of this variation cannot be explained genetically. A plausible explanation is that fine-scale anatomy is not specified directly in a genetic programme, but emerges from self-organizing behaviours of cells that, for example, place a new capillary where it happens to be needed to prevent local hypoxia. Self-organizing behaviour can be identified by manipulating growing tissues (e.g. putting them under a spatial constraint) and observing an adaptive change that conserves the character of the normal tissue while altering its precise anatomy. Self-organization can be practically useful in tissue engineering but it is limited; generally, it is good for producing realistic small-scale anatomy but large-scale features will be missing. This is because self-organizing organoids miss critical symmetry-breaking influences present in the embryo: simulating these artificially, for example, with local signal sources, makes anatomy realistic even at large scales. A growing understanding of the mechanisms of self-organization is now allowing synthetic biologists to take their first tentative steps towards constructing artificial multicellular systems that spontaneously organize themselves into patterns, which may soon be extended into three-dimensional shapes. © 2017 The Authors Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  7. Proteomic identification of potential biomarkers for cervical squamous cell carcinoma and human papillomavirus infection.

    PubMed

    Qing, Song; Tulake, Wuniqiemu; Ru, Mingfang; Li, Xiaohong; Yuemaier, Reziwanguli; Lidifu, Dilare; Rouzibilali, Aierken; Hasimu, Axiangu; Yang, Yun; Rouziahong, Reziya; Upur, Halmurat; Abudula, Abulizi

    2017-04-01

    It is known that high-risk human papillomavirus infection is the main etiological factor in cervical carcinogenesis. However, human papillomavirus screening is not sufficient for early diagnosis. In this study, we aimed to identify potential biomarkers common to cervical carcinoma and human papillomavirus infection by proteomics for human papillomavirus-based early diagnosis and prognosis. To this end, we collected 76 cases of fresh cervical tissues and 116 cases of paraffin-embedded tissue slices, diagnosed as cervical squamous cell carcinoma, cervical intraepithelial neoplasia II-III, or normal cervix from ethnic Uighur and Han women. Human papillomavirus infection by eight oncogenic human papillomavirus types was detected in tissue DNA samples using a quantitative polymerase chain reaction. The protein profile of cervical specimens from human papillomavirus 16-positive squamous cell carcinoma and human papillomavirus-negative normal controls was analyzed by proteomics and bioinformatics. The expression of candidate proteins was further determined by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. We identified 67 proteins that were differentially expressed in human papillomavirus 16-positive squamous cell carcinoma compared to normal cervix. The quantitative reverse transcriptase-polymerase chain reaction analysis verified the upregulation of ASAH1, PCBP2, DDX5, MCM5, TAGLN2, hnRNPA1, ENO1, TYPH, CYC, and MCM4 in squamous cell carcinoma compared to normal cervix ( p < 0.05). In addition, the transcription of PCBP2, MCM5, hnRNPA1, TYPH, and CYC was also significantly increased in cervical intraepithelial neoplasia II-III compared to normal cervix. Immunohistochemistry staining further confirmed the overexpression of PCBP2, hnRNPA1, ASAH1, and DDX5 in squamous cell carcinoma and cervical intraepithelial neoplasia II-III compared to normal controls ( p < 0.05). Our data suggest that the expression of ASAH1, PCBP2, DDX5, and hnRNPA1, and possibly MCM4, MCM5, CYC, ENO1, and TYPH, is upregulated during cervical carcinogenesis and potentially associated with human papillomavirus infection. Further validation studies of the profile will contribute to establishing auxiliary diagnostic markers for human papillomavirus-based cancer prognosis.

  8. Esterification of all-trans-retinol in normal human epithelial cell strains and carcinoma lines from oral cavity, skin and breast: reduced expression of lecithin:retinol acyltransferase in carcinoma lines.

    PubMed

    Guo, X; Ruiz, A; Rando, R R; Bok, D; Gudas, L J

    2000-11-01

    When exogenous [(3)H]retinol (vitamin A) was added to culture medium, normal human epithelial cells from the oral cavity, skin, lung and breast took up and esterified essentially all of the [(3)H]retinol within a few hours. As shown by [(3)H]retinol pulse-chase experiments, normal epithelial cells then slowly hydrolyzed the [(3)H]retinyl esters to [(3)H]retinol, some of which was then oxidized to [(3)H]retinoic acid (RA) over a period of several days. In contrast, cultured normal human fibroblasts and human umbilical vein endothelial cells (HUVEC) did not esterify significant amounts of [(3)H]retinol; this lack of [(3)H]retinol esterification was correlated with a lack of expression of lecithin:retinol acyltransferase (LRAT) transcripts in normal fibroblast and HUVEC strains. These results indicate that normal, differentiated cell types differ in their ability to esterify retinol. Human carcinoma cells (neoplastically transformed epithelial cells) of the oral cavity, skin and breast did not esterify much [(3)H]retinol and showed greatly reduced LRAT expression. Transcripts of the neutral, bile salt-independent retinyl ester hydrolase and the bile salt-dependent retinyl ester hydrolase were undetectable in all of the normal cell types, including the epithelial cells. These experiments suggest that retinoid-deficiency in the tumor cells could develop because of the lack of retinyl esters, a storage form of retinol.

  9. Vancomycin-Resistant Gram-Positive Cocci Isolated from the Saliva of Wild Songbirds

    PubMed Central

    Ishihara, Shingo; Bitner, Jessica J.; Farley, Greg H.

    2014-01-01

    We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a birdbanding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens. PMID:23224296

  10. Vancomycin-resistant gram-positive cocci isolated from the saliva of wild songbirds.

    PubMed

    Ishihara, Shingo; Bitner, Jessica J; Farley, Greg H; Gillock, Eric T

    2013-04-01

    We analyzed highly vancomycin-resistant Gram-positive bacteria isolated from the saliva of migratory songbirds captured, sampled, and released from a bird-banding station in western Kansas. Individual bacterial isolates were identified by partial 16S rRNA sequencing. Most of the bacteria in this study were shown to be Staphylococcus succinus with the majority being isolated from the American Robin. Some of these bacteria were shown to carry vanA, vanB, and vanC vancomycin-resistance genes and have the ability to form biofilms. One of the van gene-carrying isolates is also coagulase positive, which is normally considered a virulence factor. Other organisms isolated included Staphylococcus saprophyticus as well as Enterococcus gallinarum. Given the wide range of the American Robin and ease of horizontal gene transfer between Gram-positive cocci, we postulate that these organisms could serve as a reservoir of vancomycin-resistance genes capable of transferring to human pathogens.

  11. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor.

    PubMed

    Choi, Minwoo; Park, Yong Ju; Sharma, Bhupendra K; Bae, Sa-Rang; Kim, Soo Young; Ahn, Jong-Hyun

    2018-04-01

    Atomically thin molybdenum disulfide (MoS 2 ) has been extensively investigated in semiconductor electronics but has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an active drive element is hampered by the large contact resistance at the metal/MoS 2 interface, which hinders the transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified switching device architecture is proposed for efficiently exploiting the high- k dielectric Al 2 O 3 layer, which, when integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its potential as a wearable display attached to a human wrist is demonstrated.

  12. Logical Interactions in AN Expanded Space

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    Understanding the emergent behavior in many complex systems in the physical world and society requires a detailed study of dynamical phenomena occurring and mutually coupled at different scales. The brain processes underlying the social conduct of each, and the emergent social behavior of interacting individuals on a larger scale, represent striking examples of the multiscale complexity. Studies of the human brain, a paradigm of a complex functional system, are enabled by a wealth of brain imaging data that provide clues of how we comprehend space, time, languages, numbers, and differentiate normal from diseased individuals, for example. The social brain, a neural basis for social cognition, represents a dynamically organized part of the brain which is involved in the inference of thoughts, feelings, and intentions going on in the brains of others. Research in this currently unexplored area opens a new perspective on the genesis of the societal organization at different levels and the associated social values...

  13. DNA Protection Protein, a Novel Mechanism of Radiation Tolerance: Lessons from Tardigrades

    PubMed Central

    Hashimoto, Takuma; Kunieda, Takekazu

    2017-01-01

    Genomic DNA stores all genetic information and is indispensable for maintenance of normal cellular activity and propagation. Radiation causes severe DNA lesions, including double-strand breaks, and leads to genome instability and even lethality. Regardless of the toxicity of radiation, some organisms exhibit extraordinary tolerance against radiation. These organisms are supposed to possess special mechanisms to mitigate radiation-induced DNA damages. Extensive study using radiotolerant bacteria suggested that effective protection of proteins and enhanced DNA repair system play important roles in tolerability against high-dose radiation. Recent studies using an extremotolerant animal, the tardigrade, provides new evidence that a tardigrade-unique DNA-associating protein, termed Dsup, suppresses the occurrence of DNA breaks by radiation in human-cultured cells. In this review, we provide a brief summary of the current knowledge on extremely radiotolerant animals, and present novel insights from the tardigrade research, which expand our understanding on molecular mechanism of exceptional radio-tolerability. PMID:28617314

  14. Neurotrophin signaling and visceral hypersensitivity.

    PubMed

    Qiao, Li-Ya

    2014-06-01

    Neurotrophin family are traditionally recognized for their nerve growth promoting function and are recently identified as crucial factors in regulating neuronal activity in the central and peripheral nervous systems. The family members including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are reported to have distinct roles in the development and maintenance of sensory phenotypes in normal states and in the modulation of sensory activity in disease. This paper highlights receptor tyrosine kinase (Trk) -mediated signal transduction by which neurotrophins regulate neuronal activity in the visceral sensory reflex pathways with emphasis on the distinct roles of NGF and BDNF signaling in physiologic and pathophysiological processes. Viscero-visceral cross-organ sensitization exists widely in human diseases. The role of neurotrophins in mediating neural cross talk and interaction in primary afferent neurons in the dorsal root ganglia (DRG) and neurotrophin signal transduction in the context of cross-organ sensitization are also discussed.

  15. Lateralization as a symmetry breaking process in birdsong

    NASA Astrophysics Data System (ADS)

    Trevisan, M. A.; Cooper, B.; Goller, F.; Mindlin, G. B.

    2007-03-01

    The singing by songbirds is a most convincing example in the animal kingdom of functional lateralization of the brain, a feature usually associated with human language. Lateralization is expressed as one or both of the bird’s sound sources being active during the vocalization. Normal songs require high coordination between the vocal organ and respiratory activity, which is bilaterally symmetric. Moreover, the physical and neural substrate used to produce the song lack obvious asymmetries. In this work we show that complex spatiotemporal patterns of motor activity controlling airflow through the sound sources can be explained in terms of spontaneous symmetry breaking bifurcations. This analysis also provides a framework from which to study the effects of imperfections in the system’ s symmetries. A physical model of the avian vocal organ is used to generate synthetic sounds, which allows us to predict acoustical signatures of the song and compare the predictions of the model with experimental data.

  16. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor

    PubMed Central

    Park, Yong Ju

    2018-01-01

    Atomically thin molybdenum disulfide (MoS2) has been extensively investigated in semiconductor electronics but has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an active drive element is hampered by the large contact resistance at the metal/MoS2 interface, which hinders the transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified switching device architecture is proposed for efficiently exploiting the high-k dielectric Al2O3 layer, which, when integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its potential as a wearable display attached to a human wrist is demonstrated. PMID:29713686

  17. Regulation and disregulation of mammalian nucleotide excision repair: A pathway to nongermline breast carcinogenesis

    DOE PAGES

    Latimer, Jean J.; Majekwana, Vongai J.; Pabon-Padin, Yashira R.; ...

    2014-12-19

    Nucleotide excision repair (NER) is important as a modulator of disease, especially in constitutive deficiencies, such as the cancer predisposition syndrome Xeroderma pigmentosum. We have found profound variation of NER capacity among normal individuals, between cell-types and during carcinogenesis. NER is a repair system for many types of DNA damage, and therefore many types of genotoxic carcinogenic exposures, including ultraviolet light, products of organic combustion, metals, oxidative stress, etc. Since NER is intimately related to cellular metabolism, requiring components of both the DNA replicative and transcription machinery, it has a narrow range of functional viability. Thus, genes in the NERmore » pathway are expressed at the low levels manifested by, for example, nuclear transcription factors. Since NER activity and gene expression vary by cell-type, it is inherently epigenetically regulated. Furthermore, this epigenetic regulation is disregulated during sporadic breast carcinogenesis. Loss of NER is one basis of genomic instability, a required element in cellular transformation, and one that potentially modulates response to therapy. In this article, we demonstrate differences in NER capacity in eight adult mouse tissues, and place this result into the context of our previous work on mouse extraembryonic tissues, normal human tissues and sporadic early stage human breast cancer.« less

  18. Measurement of the human esophageal cancer in an early stage with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Maeda, Yasuhiro; Ishigaki, Mika; Taketani, Akinori; Andriana, Bibin B.; Ishihara, Ryu; Sato, Hidetoshi

    2014-02-01

    The esophageal cancer has a tendency to transfer to another part of the body and the surgical operation itself sometimes gives high risk in vital function because many delicate organs exist near the esophagus. So the esophageal cancer is a disease with a high mortality. So, in order to lead a higher survival rate five years after the cancer's treatment, the investigation of the diagnosis methods or techniques of the cancer in an early stage and support the therapy are required. In this study, we performed the ex vivo experiments to obtain the Raman spectra from normal and early-stage tumor (stage-0) human esophageal sample by using Raman spectroscopy. The Raman spectra are collected by the homemade Raman spectrometer with the wavelength of 785 nm and Raman probe with 600-um-diameter. The principal component analysis (PCA) is performed after collection of spectra to recognize which materials changed in normal part and cancerous pert. After that, the linear discriminant analysis (LDA) is performed to predict the tissue type. The result of PCA indicates that the tumor tissue is associated with a decrease in tryptophan concentration. Furthermore, we can predict the tissue type with 80% accuracy by LDA which model is made by tryptophan bands.

  19. The meridian system and mechanism of acupuncture: a comparative review. Part 3: Mechanisms of acupuncture therapies.

    PubMed

    Chang, Shyang

    2013-06-01

    The human body is a hierarchical organism containing many levels of mutually interacting oscillatory systems. From the viewpoint of traditional Chinese medicine, health is a state of harmony emergent from the interactions of these systems and disease is a state of discord. Hence, human diseases are considered as disturbed functions rather than changed structures. Indeed, the change from normal to abnormal structure may be beneficent rather than maleficent. For example, when one kidney becomes twice the normal size following the destruction of the other kidney, it is good and not bad for us because we might be dead otherwise. Therefore, in Part 3 of this three-part series, emphasis is mainly laid on the acupuncture mechanisms of treating disturbed physiological functions rather than disordered structures. At first, the basic tenets of conventional neuroscience and cardiology are reevaluated so that clear understanding of how nervous and cardiovascular systems work together can be obtained. Then, the general principles of diagnosis and treatment in traditional Chinese medicine from the integrative perspective of complex dynamic systems are proposed. Finally, mechanisms of acupuncture therapies for treating 14 different categories of disorders will be elucidated via the magneto-electric inductive effects of the meridian system. Copyright © 2013. Published by Elsevier B.V.

  20. Detection of Protein Complexes Based on Penalized Matrix Decomposition in a Sparse Protein⁻Protein Interaction Network.

    PubMed

    Cao, Buwen; Deng, Shuguang; Qin, Hua; Ding, Pingjian; Chen, Shaopeng; Li, Guanghui

    2018-06-15

    High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein⁻protein interaction (PPI) networks. In this study, based on penalized matrix decomposition ( PMD ), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMD pc ) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMD pc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).

  1. 3D Miniaturization of Human Organs for Drug Discovery.

    PubMed

    Park, Joseph; Wetzel, Isaac; Dréau, Didier; Cho, Hansang

    2018-01-01

    "Engineered human organs" hold promises for predicting the effectiveness and accuracy of drug responses while reducing cost, time, and failure rates in clinical trials. Multiorgan human models utilize many aspects of currently available technologies including self-organized spherical 3D human organoids, microfabricated 3D human organ chips, and 3D bioprinted human organ constructs to mimic key structural and functional properties of human organs. They enable precise control of multicellular activities, extracellular matrix (ECM) compositions, spatial distributions of cells, architectural organizations of ECM, and environmental cues. Thus, engineered human organs can provide the microstructures and biological functions of target organs and advantageously substitute multiscaled drug-testing platforms including the current in vitro molecular assays, cell platforms, and in vivo models. This review provides an overview of advanced innovative designs based on the three main technologies used for organ construction leading to single and multiorgan systems useable for drug development. Current technological challenges and future perspectives are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. VENEREAL SPIROCHETOSIS IN AMERICAN RABBITS

    PubMed Central

    Noguchi, Hideyo

    1922-01-01

    Of 50 rabbits, otherwise regarded as normal, three adult females and two adult males (10 per cent) have been found to have in their genitoperineal region certain papulosquamous, often ulcerating, lesions. A recently purchased group of twenty rabbits contained six females (30 per cent) with similar lesions. This condition runs a chronic course and is characterized by the presence of a spiral organism closely resembling Treponema pallidum. The rabbit spirochete has the same morphological features as Treponema pallidum; it is possibly a trifle thicker and longer than the average pallidum. Long specimens measuring 30 µ are frequently encountered, and they show a tendency to form loosely entangled knots. A stellate arrangement of several organisms in a mass is frequently observed. In the lesion of one rabbit there were two types of spirochete, one of the variety just described, the other a somewhat coarser organism, closely resembling Treponema calligyrum found in a human condyloma, but a trifle thinner and longer. This organism is perhaps merely a variant type of the rabbit spirochete. The histological reactions are similar to, but considerably less cellular, than those occurring in typical primary syphilitic lesions. There is a marked hyperkeratosis and interpapillary infiltration not observed in scrotal chancre. The disease is transmissible to normal rabbits, in which the usual papular lesions can be readily reproduced in the genitoperineal region. In the first passages the incubation period varied from 20 to 88 days; subsequently one of the strains produced a lesion in 20 days on the second, and in 5 days on the third passage. No typical orchitis or keratitis was produced in the rabbits of the present series, although in one of the original rabbits (No. 4) scaly, papular lesions have developed on the nose, lips, eyelid, and paws. Monkeys (Macacus rhesus) failed to show any lesions within a period of 4 months after inoculation. In one instance transmission was accomplished through the mating of an infected female with a normal male. The Wassermann reaction was uniformly negative in the five rabbits with spontaneous lesions and in eighteen rabbits experimentally infected. Salvarsan had the same therapeutic effect on the lesions produced by the rabbit spirochete as on the experimental pallidum lesion of the rabbit. The organism belongs to the genus Treponema, and may be designated Treponema cuniculi. PMID:19868615

  3. Translational Applications of Tissue Engineering in Cardiovascular Medicine.

    PubMed

    Dogan, Arin; Elcin, A Eser; Elcin, Y Murat

    2017-03-26

    Cardiovascular diseases are the leading cause of global deaths. The current paradigm in medicine seeks novel approaches for the treatment of progressive or end-stage diseases. The organ transplantation option is limited in availability, and unfortunately, a significant number of patients are lost while waiting for donor organs. Animal studies have shown that upon myocardial infarction, it is possible to stop adverse remodeling in its tracks and reverse with tissue engineering methods. Regaining the myocardium function and avoiding further deterioration towards heart failure can benefit millions of people with a significantly lesser burden on healthcare systems worldwide. The advent of induced pluripotent stem cells brings the unique advantage of testing candidate drug molecules on organ-on-chip systems, which mimics human heart in vitro. Biomimetic three-dimensional constructs that contain disease-specific or normal cardiomyocytes derived from human induced pluripotent stem cells are a useful tool for screening drug molecules and studying dosage, mode of action and cardio-toxicity. Tissue engineering approach aims to develop the treatments for heart valve deficiency, ischemic heart disease and a wide range of vascular diseases. Translational research seeks to improve the patient's quality of life, progressing towards developing cures, rather than treatments. To this end, researchers are working on tissue engineered heart valves, blood vessels, cardiac patches, and injectable biomaterials, hence developing new ways for engineering bio-artificial organs or tissue parts that the body will adopt as its own. In this review, we summarize translational methods for cardiovascular tissue engineering and present useful tables on pre-clinical and clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. "Light and color like biological stimuli for the well being in space long duration missions"

    NASA Astrophysics Data System (ADS)

    Schlacht, S.; Masali, M.; Ferrino, F.

    Foreword In a microgravitational space environment the human biorhythm its sensory perception and all its psycho-physiological system comes completely upset by the absence of gravity and of external terrestrial references beyond the effects of constraint in a limited space This type of environment is defined like confined extreme In order to create a human centered design in sight of missions of long duration we will have to consider above all these factors in order to try to increase the wellbeing the comfort and the productivity of the astronauts In this context we have elaborated a design concept that forecasts to resume the variety and the variability of the terrestrial stimuli through factors like the light and the color so as to recreate the input of the normal circadian cycle subsubsection Light and color and psycho-physiological wellbeing In microgravity the inputs send from the organs that regulate the space orientation as the vestibular organ may go in conflict with the visual perception and create vary malarius The organism answers to these events making silent the information from these organs and giving the control to the information from the visual system For this reason it is necessary to use an immediate visual arrangement created according to instinctive answers to natural signals to which we are accustomed in the earthly life like the sky up and earth down The colors can guide the user to the orientation in the several functions through biological inputs active on the earth what is

  5. Diet-induced loss of cyclic ovarian function at normal body weight in a rodent model for bulimia nervosa.

    PubMed

    Leigh, A J; Stock, M J; Lacey, J H; Wilson, C A

    1998-03-01

    A bulimic rat model was used to test whether type and frequency of food intake mimicking that in human bulimia nervosa could disrupt oestrous cyclicity, induce an effect on glycoprotein (LH) structure, or affect both processes and if so, to determine whether any such effects were acute, or persisted after return to normal eating patterns. Voluntary hyperphagia was induced by offering female rats a varied and palatable choice of human food items--the 'cafeteria diet'. There were four groups: control (normal chow), obese (continuous cafeteria diet), post-obese (cafeteria diet, then fasted to reduce weight to that of controls) and binge (cafeteria alternated with normal diet every few days). Animals were maintained on these diets for 60 days (phase I). They were then given a GnRH challenge on day 2 of dioestrus of the cycle. Twenty-four hours later, half of the animals in each group were killed for assessment of effects on their reproductive organs. The remaining animals were returned to normal diets and kept for a further 40 days, when the GnRH challenge was repeated and the animals were killed 24 h later (phase II). All animals on the cafeteria diet in phase I exhibited significant disruption of oestrous cyclicity irrespective of body weight. LH released in response to the first GnRH challenge showed a prolonged half-life, and/or increased rate of secretion in the obese and post-obese groups but in the binge group the secretory/clearance properties resembled those of control animals. After the second GnRH challenge at the end of phase II, however, the LH of the binge group appeared to have different secretory or clearance characteristics, whereas that of the previously obese animals had returned to normal. These data show ovarian cyclicity was disrupted by hyperphagia and irregular eating, even at normal body weight. Relating ovarian function to pituitary output in terms of LH, the effects of the continuous cafeteria diet did not appear to persist in the animals that returned to normal diets, but in the binge group the effect, presumably of the diet manipulation, was manifested after return to a normal eating pattern. This finding suggests that irregular eating habits may exert a direct (and acute) effect on the ovary, but that effects on the pituitary (and LH glycoforms) take longer to be expressed, explaining many features of bulimia nervosa.

  6. Impact of human activities on the ecology of nontuberculous mycobacteria.

    PubMed

    Falkinham, Joseph O

    2010-06-01

    Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens of humans and animals. They are found in a wide variety of habitats to which humans are exposed, including drinking water distribution systems and household water and plumbing. In that regard, they are distinct from their obligate pathogenic relatives, the members of the Mycobacterium tuberculosis complex. Owing to the presence of NTM in the human environment, human activities have had direct impacts on their ecology and thereby their epidemiology. NTM are oligotrophic, able to grow at low organic matter concentrations and over a wide range of temperatures, and even at low oxygen concentrations. Thus, NTM are normal inhabitants of natural waters and drinking waters. Discovery of the presence of NTM-polluted soils is not surprising in light of the ability of NTM to degrade a variety of hydrocarbon pollutants. A major human activity selecting for the growth and predominance of mycobacteria in habitats is disinfection. In comparison to other bacteria, NTM are disinfectant, heavy metal and antibiotic resistant. Therefore, the use of any antimicrobial agent selects for mycobacteria. Use of disinfectant in drinking water treatment selects for mycobacteria that can grow and come to proliferate in drinking water distribution systems in the absence of disinfectant-sensitive competing microorganisms. NTM selection may also occur as a consequence of antibiotics in drinking water sources.

  7. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells.

    PubMed

    Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A; Itoh, Munenari; Christiano, Angela M

    2015-01-01

    The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.

  8. Expression and Function of Thyroid Hormone Transporters in the Microvillous Plasma Membrane of Human Term Placental Syncytiotrophoblast

    PubMed Central

    Loubière, L. S.; Vasilopoulou, E.; Glazier, J. D.; Taylor, P. M.; Franklyn, J. A.; Kilby, M. D.

    2012-01-01

    The transplacental passage of thyroid hormones (THs) from mother to fetus in humans has been deduced from observational clinical studies and is important for normal fetoplacental development. To investigate the transporters that regulate TH uptake by syncytiotrophoblast (the primary barrier to maternal-fetal exchange, which lies in direct contact with maternal blood), we isolated the microvillous plasma membrane (MVM) of human term syncytiotrophoblasts. We have demonstrated that MVM vesicles express plasma membrane TH transporter proteins, including system-L (L-type amino acid transporter 1 and CD98), monocarboxylate transporters (MCTs) 8 and 10, organic anion-transporting polypeptides 1A2 and 4A1. We provide the first definitive evidence that the human syncytiotrophoblast MVM is capable of rapid, saturable T4 and T3 uptake at similar rates and in a Na+-independent manner. These two major forms of THs could not significantly inhibit each others' uptake, suggesting that each is mediated by largely different transporters. No single transporter was noted to play a dominant role in either T4 or T3 uptake. Using combinations of transporter inhibitors that had an additive effect on TH uptake, we provide evidence that 67% of saturable T4 uptake is facilitated by system-L and MCT10 with a minor role played by organic anion-transporting polypeptides, whereas 87% of saturable T3 uptake is mediated by MCT8 and MCT10. Our data demonstrate that syncytiotrophoblast may control the quantity and forms of THs taken up by the human placenta. Thus, syncytiotrophoblast could be critical in regulating transplacental TH supply from the mother to the fetus. PMID:23087173

  9. Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine.

    PubMed

    Aurich, Maike K; Thiele, Ines

    2016-01-01

    Modern high-throughput techniques offer immense opportunities to investigate whole-systems behavior, such as those underlying human diseases. However, the complexity of the data presents challenges in interpretation, and new avenues are needed to address the complexity of both diseases and data. Constraint-based modeling is one formalism applied in systems biology. It relies on a genome-scale reconstruction that captures extensive biochemical knowledge regarding an organism. The human genome-scale metabolic reconstruction is increasingly used to understand normal cellular and disease states because metabolism is an important factor in many human diseases. The application of human genome-scale reconstruction ranges from mere querying of the model as a knowledge base to studies that take advantage of the model's topology and, most notably, to functional predictions based on cell- and condition-specific metabolic models built based on omics data.An increasing number and diversity of biomedical questions are being addressed using constraint-based modeling and metabolic models. One of the most successful biomedical applications to date is cancer metabolism, but constraint-based modeling also holds great potential for inborn errors of metabolism or obesity. In addition, it offers great prospects for individualized approaches to diagnostics and the design of disease prevention and intervention strategies. Metabolic models support this endeavor by providing easy access to complex high-throughput datasets. Personalized metabolic models have been introduced. Finally, constraint-based modeling can be used to model whole-body metabolism, which will enable the elucidation of metabolic interactions between organs and disturbances of these interactions as either causes or consequence of metabolic diseases. This chapter introduces constraint-based modeling and describes some of its contributions to systems biomedicine.

  10. Scoliosis convexity and organ anatomy are related.

    PubMed

    Schlösser, Tom P C; Semple, Tom; Carr, Siobhán B; Padley, Simon; Loebinger, Michael R; Hogg, Claire; Castelein, René M

    2017-06-01

    Primary ciliary dyskinesia (PCD) is a respiratory syndrome in which 'random' organ orientation can occur; with approximately 46% of patients developing situs inversus totalis at organogenesis. The aim of this study was to explore the relationship between organ anatomy and curve convexity by studying the prevalence and convexity of idiopathic scoliosis in PCD patients with and without situs inversus. Chest radiographs of PCD patients were systematically screened for existence of significant lateral spinal deviation using the Cobb angle. Positive values represented right-sided convexity. Curve convexity and Cobb angles were compared between PCD patients with situs inversus and normal anatomy. A total of 198 PCD patients were screened. The prevalence of scoliosis (Cobb >10°) and significant spinal asymmetry (Cobb 5-10°) was 8 and 23%, respectively. Curve convexity and Cobb angle were significantly different within both groups between situs inversus patients and patients with normal anatomy (P ≤ 0.009). Moreover, curve convexity correlated significantly with organ orientation (P < 0.001; ϕ = 0.882): In 16 PCD patients with scoliosis (8 situs inversus and 8 normal anatomy), except for one case, matching of curve convexity and orientation of organ anatomy was observed: convexity of the curve was opposite to organ orientation. This study supports our hypothesis on the correlation between organ anatomy and curve convexity in scoliosis: the convexity of the thoracic curve is predominantly to the right in PCD patients that were 'randomized' to normal organ anatomy and to the left in patients with situs inversus totalis.

  11. The expression of Egfl7 in human normal tissues and epithelial tumors.

    PubMed

    Fan, Chun; Yang, Lian-Yue; Wu, Fan; Tao, Yi-Ming; Liu, Lin-Sen; Zhang, Jin-Fan; He, Ya-Ning; Tang, Li-Li; Chen, Guo-Dong; Guo, Lei

    2013-04-23

    To investigate the expression of Egfl7 in normal adult human tissues and human epithelial tumors.
 RT-PCR and Western blot were employed to detect Egfl7 expression in normal adult human tissues and 10 human epithelial tumors including hepatocellular carcinoma (HCC), lung cancer, breast cancer, prostate cancer, colorectal cancer, gastric cancer, esophageal cancer, malignant glioma, ovarian cancer and renal cancer. Immunohistochemistry and cytoimmunofluorescence were subsequently used to determine the localization of Egfl7 in human epithelial tumor tissues and cell lines. ELISA was also carried out to examine the serum Egfl7 levels in cancer patients. In addition, correlations between Egfl7 expression and clinicopathological features as well as prognosis of HCC and breast cancer were also analyzed on the basis of immunohistochemistry results.
 Egfl7 was differentially expressed in 19 adult human normal tissues and was overexpressed in all 10 human epithelial tumor tissues. The serum Egfl7 level was also significantly elevated in cancer patients. The increased Egfl7 expression in HCC correlated with vein invasion, absence of capsule formation, multiple tumor nodes and poor prognosis. Similarly, upregulation of Egfl7 in breast cancer correlated strongly with TNM stage, lymphatic metastasis, estrogen receptor positivity, Her2 positivity and poor prognosis. 
 Egfl7 is significantly upregulated in human epithelial tumor tissues, suggesting Egfl7 to be a potential biomarker for human epithelial tumors, especially HCC and breast cancer.

  12. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content

    PubMed Central

    Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.

    2012-01-01

    Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953

  13. Photodetection of early cancer by laser-induced fluorescence of a tumor-selective dye: apparatus design and realization

    NASA Astrophysics Data System (ADS)

    Wagnieres, Georges A.; Depeursinge, Christian D.; Monnier, Philippe; Savary, Jean-Francois; Cornaz, Piet F.; Chatelain, Andre; van den Bergh, Hubert

    1990-07-01

    An apparatus is designed and realized to detect "early" cancer at the surface of the hollow organs in the human body by endoscopic means. The tumor is localized by the laser induced fluorescence of a dye (HPD) which concentrates selectively in the neoplastic tissue after intravenous injection. Fluorescence contrast between the tumor and its normal surroundings is enhanced by subtracting the background autofluorescence which occurs in both types of tissue. This is done by means of 2-color digital images manipulation in real-time. Preliminary clinical tests of the apparatus demonstrated the detection of carcinoma in situ in the esophagus.

  14. Microtubule organization during human parthenogenesis.

    PubMed

    Terada, Yukihiro; Hasegawa, Hisataka; Ugajin, Tomohisa; Murakami, Takashi; Yaegashi, Nobuo; Okamura, Kunihiro

    2009-04-01

    In human fertilization, the sperm centrosome plays a crucial role as a microtubule organizing center (MTOC). We studied microtubule organization during human parthenogenesis, which occurs when a human egg undergoes cleavage without a sperm centrosome. Multiple cytoplasmic asters were organized in the human oocyte after parthenogenetic activation, indicating that multiple MTOC are present in the human oocyte cytoplasm and function like a human sperm centrosome during parthenogenesis.

  15. A history of normal plates, tables and stages in vertebrate embryology

    PubMed Central

    HOPWOOD, NICK

    2006-01-01

    Developmental biology is today unimaginable without the normal stages that define standard divisions of development. This history of normal stages, and the related normal plates and normal tables, shows how these standards have shaped and been shaped by disciplinary change in vertebrate embryology. The article highlights the Normal Plates of the Development of the Vertebrates edited by the German anatomist Franz Keibel (16 volumes, 1897–1938). These were a major response to problems in the relations between ontogeny and phylogeny that amounted in practical terms to a crisis in staging embryos, not just between, but (for some) also within species. Keibel’s design adapted a plate by Wilhelm His and tables by Albert Oppel in order to go beyond the already controversial comparative plates of the Darwinist propagandist Ernst Haeckel. The project responded to local pressures, including intense concern with individual variation, but recruited internationally and mapped an embryological empire. Though theoretically inconclusive, the plates became standard laboratory tools and forged a network within which the Institut International d’Embryologie (today the International Society of Developmental Biologists) was founded in 1911. After World War I, experimentalists, led by Ross Harrison and Viktor Hamburger, and human embryologists, especially George Streeter at the Carnegie Department of Embryology, transformed Keibel’s complex, bulky tomes to suit their own contrasting demands. In developmental biology after World War II, normal stages—reduced to a few journal pages—helped domesticate model organisms. Staging systems had emerged from discussions that questioned the very possibility of assigning an embryo to a stage. The historical issues resonate today as developmental biologists work to improve and extend stage series, to make results from different laboratories easier to compare and to take individual variation into account. PMID:17183461

  16. A history of normal plates, tables and stages in vertebrate embryology.

    PubMed

    Hopwood, Nick

    2007-01-01

    Developmental biology is today unimaginable without the normal stages that define standard divisions of development. This history of normal stages, and the related normal plates and normal tables, shows how these standards have shaped and been shaped by disciplinary change in vertebrate embryology. The article highlights the Normal Plates of the Development of the Vertebrates edited by the German anatomist Franz Keibel (16 volumes, 1897-1938). These were a major response to problems in the relations between ontogeny and phylogeny that amounted in practical terms to a crisis in staging embryos, not just between, but (for some) also within species. Keibel's design adapted a plate by Wilhelm His and tables by Albert Oppel in order to go beyond the already controversial comparative plates of the Darwinist propagandist Ernst Haeckel. The project responded to local pressures, including intense concern with individual variation, but recruited internationally and mapped an embryological empire. Though theoretically inconclusive, the plates became standard laboratory tools and forged a network within which the Institut International d'Embryologie (today the International Society of Developmental Biologists) was founded in 1911. After World War I, experimentalists, led by Ross Harrison and Viktor Hamburger, and human embryologists, especially George Streeter at the Carnegie Department of Embryology, transformed Keibel's complex, bulky tomes to suit their own contrasting demands. In developmental biology after World War II, normal stages-reduced to a few journal pages-helped domesticate model organisms. Staging systems had emerged from discussions that questioned the very possibility of assigning an embryo to a stage. The historical issues resonate today as developmental biologists work to improve and extend stage series, to make results from different laboratories easier to compare and to take individual variation into account.

  17. Excitation-emission matrices measurements of human cutaneous lesions: tool for fluorescence origin

    NASA Astrophysics Data System (ADS)

    Zhelyazkova, A.; Borisova, E.; Angelova, L.; Pavlova, E.; Keremedchiev, M.

    2013-11-01

    The light induced fluorescence (LIF) technique has the potential of providing real-time diagnosis of malignant and premalignant skin tissue; however, human skin is a multilayered and inhomogeneous organ with different optical properties that complicate the analysis of cutaneous fluorescence spectra. In spite of the difficulties related to the detection and analysis of fluorescent data from skin lesions, this technique is among the most widely applied techniques in laboratorial and pre-clinical investigations for early skin neoplasia diagnosis. The important point is to evaluate all sources of intrinsic fluorescence and find any significant alterations distinguishing the normal skin from a cancerous state of the tissue; this would make the autofluorescence signal obtained useful for the development of a non-invasive diagnostic tool for the dermatological practice. Our investigations presented here were based on ex vivo point-by-point measurements of excitation-emission matrices (EEM) from excised tumor lesions and the surrounding skin taken during the daily clinical practice of Queen Jiovanna- ISUL University Hospital, Sofia, the local Ethical Committee's approval having already been obtained. The fluorescence emission was measured between 300 nm and 800 nm using excitation in the 280-440 nm spectral range. In the process of excitation-emission matrices (EEM) measurements we could establish the origin of the autofluorescence and the compounds related by assigning the excitation and emission maxima obtained during the experiments. The EEM were compared for normal human skin, basal cell carcinoma, squamous cell carcinoma, benign nevi and malignant melanoma lesions to obtain information for the most common skin malignancies and their precursors. The main spectral features and the applicability of the technique of autofluorescent spectroscopy of human skin in general as an initial diagnostic tool are discussed as well.

  18. N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2'-deoxycytidine as a potential boron delivery agent with respect to glioblastoma.

    PubMed

    Uram, Łukasz; Nizioł, Joanna; Maj, Piotr; Sobich, Justyna; Rode, Wojciech; Ruman, Tomasz

    2017-11-01

    Glioblastoma multiforme (GBM) is a central nervous system tumor of grade IV, according to the WHO classification, extremely resistant to all currently used forms of therapy, including resection, radiotherapy, chemotherapy or combined therapy. Therefore, more effective treatment strategies of this tumor are needed, with boron neutron capture therapy (BNCT) being a potential solution, provided a proper cancer cells-targeted 10B delivery agent is found. In search of such an agent, toxicity and capacity to target DNA of a boronated derivative of 2'-deoxycytidine, N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2'-deoxycytidine (1), was tested against human tumor vs. normal cells. The present in vitro results revealed 1 to show low toxicity for human U-118 MG glioma cells (in the mM range) and even by 3-4 - fold lower against normal human fibroblasts. In accord, induction of apoptosis dependent on caspase-3 and caspase-7 was detected at high (>20mM) concentration of 1. Although demonstrated to be susceptible to phosphorylation by human deoxycytidine kinase and to undergo incorporation in cellular DNA, the boron analogue did not disturb cell proliferation when applied at non-toxic concentrations and showed low toxicity to a model metazoan organism, Caenorhabditis elegans. Thus, N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2'-deoxycytidine appears a promising candidate for a 10B delivery agent to be used in BNCT, with C. elegans indicated as a good model for in vivo studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts.

    PubMed

    Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey

    2018-01-13

    Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF-β1). TGF-β1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF-β1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF-β1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF-β1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF-β1 signaling pathways including TGF-β1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF-β1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF-β1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.

  20. Rabbit collagenase. Immunological identity of the enzymes released from cells and tissues in normal and pathological conditions.

    PubMed Central

    Werb, Z; Reynolds, J J

    1975-01-01

    1. The immunological cross-reactivity between rabbit collagenases from a variety of normal and pathological sources was examined. The specific antibody raised against collagenase secreted from normal rabbit synovial fibroblasts gave reactions of complete identity with collagenases secreted from fibroblasts derived from rabbit skin, and from synovium from experimentally arthritic rabbits. 2. The rabbit fibroblast collagenase was immunologically identical with collagenases obtained from the organ culture medium of normal rabbit skin, synovium, ear fibrocartilage and subchondral bone. 3. Collagenases from the culture media of normal rabbit synovium and from hyperplastic synovium of rabbits made experimentally arthritic were identical. 4. The collagenase secreted from rabbit fibroblasts gave a reaction completely identical with that of a collagenase extracted directly from a rabbit carcinoma. 5. IgG (immunoglobulin G) from a specific antiserum to rabbit fibroblast collagenase was a potent inhibitor of the collagenases obtained from the culture media of the various rabbit cells and tissues. 6. Collagenases from human synovium and from mouse macrophages and bone were neither precipitated nor inhibited by antibodies to rabbit collagenase. 7. No immunoreactive material was found in lysates of rabbit polymorphonuclear leucocyte granules with the specific antisera to rabbit fibroblast collagenase. No evidence for inactive forms of rabbit collagenase in lysates of the rabbit synovial fibroblasts could be found, either by double immunodiffusion against the specific collagenase, or by displacement of active enzyme from inhibition by the IgG. Images PLATE 1 PMID:56176

Top