[The bacteriological and immunological efficacy of biosporin in nonspecific ulcerative colitis].
Cherniakova, V I; Bereza, N M; Selezneva, S I; Chaplinskiĭ, V Ia; Kudriavtseva, V E; Mosalova, N M; Shevtsova, Z I; Tropko, L V; Boĭko, T I
1993-01-01
The results from examination of intestinal microflora and immune status in 75 patients with nonspecific ulcerative colitis with different degree of disease seriousness are presented. The deviations in the composition of normal microflora were primarily expressed in a decrease of the number of bifidobacteria. In 64.9% of patients the disease proceeded against the background of deficit of T-cellular immunity link. The sufficiently expressed bacteriological and immunological efficiency of complex therapy including preparation from spore-forming bacteria as a normalizer of microflora is shown.
Dziarski, Roman; Dowd, Scot E.; Gupta, Dipika
2016-01-01
Dysbiosis is a hallmark of inflammatory bowel disease (IBD), but it is unclear which specific intestinal bacteria predispose to and which protect from IBD and how they are regulated. Peptidoglycan recognition proteins (Pglyrps) are antibacterial, participate in maintaining intestinal microflora, and modulate inflammatory responses. Mice deficient in any one of the four Pglyrp genes are more sensitive to dextran sulfate sodium (DSS)-induced colitis, and stools from Pglyrp-deficient mice transferred to wild type (WT) germ-free mice predispose them to much more severe colitis than stools from WT mice. However, the identities of these Pglyrp-regulated bacteria that predispose Pglyrp-deficient mice to colitis or protect WT mice from colitis are not known. Here we identified significant changes in β-diversity of stool bacteria in Pglyrp-deficient mice compared with WT mice. The most consistent changes in microbiome in all Pglyrp-deficient mice were in Bacteroidales, from which we selected four species, two with increased abundance (Prevotella falsenii and Parabacteroides distasonis) and two with decreased abundance (Bacteroides eggerthii and Alistipes finegoldii). We then gavaged WT mice with stock type strains of these species to test the hypothesis that they predispose to or protect from DSS-induced colitis. P. falsenii, P. distasonis, and B. eggerthii all enhanced DSS-induced colitis in both WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora. By contrast, A. finegoldii (which is the most abundant species in WT mice) attenuated DSS-induced colitis both in WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora, similar to the colitis protective effect of the entire normal microflora. These results identify P. falsenii, P. distasonis, and B. eggerthii as colitis-promoting species and A. finegoldii as colitis-protective species. PMID:26727498
Analysis of changes in intestinal microflora of irradiated mice. [Gamma radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mal'tsev, V.N.; Pinegin, B.V.; Korshunov, V.M.
1977-01-01
In experiments on 3 groups of CBA mice exposed to doses of 900, 600 and 300 R ..gamma..-rays, it was demonstrated that the integral severity of post-radiation microflora in the intestine can be determined by means of information index h, which takes into consideration all changes occurring in different representatives of the intestinal microflora. Differential analysis of the mechanisms of radioinduced changes in microflora indicates that it is based on a decrease in lactobacilli and increase in enterococcus, proteus, colibacillus and yeast in the small intestine, with increase in colibacillus, clostridia, proteus and enterococcus in the large intestine.
Development of the normal gastrointestinal microflora of specific pathogen-free chickens.
Coloe, P J; Bagust, T J; Ireland, L
1984-02-01
The development of the normal intestinal microflora of the small intestine, caecum and large intestine of specific pathogen-free (SPF) chickens, was studied in the period from hatching to 84 days of age. No bacteria were detected in any of the sites at hatchery (day 1), but by day 3 significant levels of faecal streptococci and coliforms were isolated from all sites. The flora of the small intestine was limited to faecal streptococci and coliforms for the first 40 days and then lactobacilli became established and dominated the flora. A large variety of facultative and strictly anaerobic organisms colonized the caecum. Many of these species were transient and were only present for a limited period; after 40 days the flora stabilized to consist predominantly of faecal streptococci, Escherichia coli, Bacteroides spp. and Lactobacillus sp. The flora of the large intestine was composed of organisms also present in the small intestine or the caecum. These findings differ from previously published studies on conventionally reared chickens in that the number of species isolated and the population levels of organisms are much lower. This probably reflects the absence of continuous environmental challenge to the chickens because of the housing and feeding facilities in which the chickens were maintained.
Gastric acid reduction leads to an alteration in lower intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanno, Takayuki; Matsuki, Takahiro; Oka, Masashi
2009-04-17
To clarify the alterations in lower intestinal microflora induced by gastric acid reduction, the dynamics of 12 major genera or groups of bacteria comprising the microflora in feces and colonic contents were examined by quantitative real-time PCR in proton pump inhibitor-treated rats and in asymptomatic human subjects with hypochlorhydria. In both rat and human experiments, most genera or groups of intestinal microflora (facultative and obligate anaerobes) proliferated by gastric acid reduction, and marked and significant increases in the Lactobacilli group and Veillonella, oropharyngeal bacteria, were observed. In rats, potent gastric acid inhibition led to a marked and significant increase ofmore » intestinal bacteria, including the Bacteroidesfragilis group, while Bifidobacterium, a beneficial bacterial species, remained at a constant level. These results strongly indicate that the gastric acid barrier not only controls the colonization and growth of oropharyngeal bacteria, but also regulates the population and composition of lower intestinal microflora.« less
NASA Astrophysics Data System (ADS)
Viacheslav, Ilyin; Batov, Alexey; Usanova, Nonna
The aim of research: Investigation of influence of probiotic drugs based on autostrains of Enter-obacter faecium, selected from the crew in long term isolation experiment in confined habitat. It is known that during long-term presence in confined habitat the risk of infectious diseases increases. One of the main infectious risk occurs during first 20 days of isolation as a result of exchange of strains and stress-mediated disbacterioses. Therefore it is necessary to evaluate activities of probiotics to avoid this risk. Furthermore, in case of super long term autonomous flight there should be possibilities of application of autochthonous microflora strains as pro-biotics to strengthen colonial resistance of crews. Materials and methods: In the experiment there were used probiotic drugs based on autostrains of E. faecium, selected from the crew before the experiment. Probiotic drugs were consumed during 30 days since the beginning of the experiment with the break of consumption between 10th to 19th day. Results: Comparing the state of intestinal microflora of the crew on the baseline and 14th day of experiment re-vealed remarkable changes of microflora: the increasing of concentration of bifidobacteria and E. faecium (approximately 10 times), elimination of hemolytic streptococcus, yeasts, reduction of the rate of S.aureus, hemolytic gramnegative non-fermenting rods, lactobacilli and normal E.coli. On the 45th day of isolation, 15 days after finishing of auto-strains administration, there fere signs of restoration of disbacteriosis: the quantitative decreasing lactobacilli, bifidobacteria and normal E.coli, increasing of the rate of S.aureus, hemolytic gramnegative nonfermentive rods. Conclusion: Thus we managed to avoid risk of pathogenicity potential growth in first 2 decades of isolation. Application of probiotic, based on the autostrains of E. faecium leads to insignificant changes of concentration of lactobacteries, bifidobacteries, normal E. coli and to pronounced reduction of concentration of . hemolytic streptococcus, yeasts, S.aureus, hemolytic gramnegative nonfermentive rods. This results give an opportunity to use this drug to prevent the violations in intestine microflora in altered habitat conditions.
Tomnikov, A Iu; Shub, G M
1990-05-01
By its antagonistic function normal microflora provides the intestine with resistance to colonization with exogenic opportunistic and pathogenic microorganisms. The drug was effective in inducing a decrease in the intestine colonization resistance which in its turn leads to filling of free ecological niches with exogenic microflora. In this connection the suggestion that specification of a new chemical agent should include along with other criteria its effect on colonization resistance is valid. It was shown with the use of indicator microorganisms that when administered per os in doses of 40 and 80 mg/kg daily for 3 and 6 days, respectively, a new original compound 1929, a derivative of 5-alkyl-3H-furanones, with high antimicrobial activity induced no significant or more pronounced changes in the colonization resistance of the gastrointestinal tract of noninbred albino mice than furagin used as the reference drug.
Acne vulgaris, probiotics and the gut-brain-skin axis - back to the future?
Bowe, Whitney P; Logan, Alan C
2011-01-31
Over 70 years have passed since dermatologists John H. Stokes and Donald M. Pillsbury first proposed a gastrointestinal mechanism for the overlap between depression, anxiety and skin conditions such as acne. Stokes and Pillsbury hypothesized that emotional states might alter the normal intestinal microflora, increase intestinal permeability and contribute to systemic inflammation. Among the remedies advocated by Stokes and Pillsbury were Lactobacillus acidophilus cultures. Many aspects of this gut-brain-skin unifying theory have recently been validated. The ability of the gut microbiota and oral probiotics to influence systemic inflammation, oxidative stress, glycemic control, tissue lipid content and even mood itself, may have important implications in acne. The intestinal microflora may also provide a twist to the developing diet and acne research. Here we provide a historical perspective to the contemporary investigations and clinical implications of the gut-brain-skin connection in acne.
Acne vulgaris, probiotics and the gut-brain-skin axis - back to the future?
2011-01-01
Over 70 years have passed since dermatologists John H. Stokes and Donald M. Pillsbury first proposed a gastrointestinal mechanism for the overlap between depression, anxiety and skin conditions such as acne. Stokes and Pillsbury hypothesized that emotional states might alter the normal intestinal microflora, increase intestinal permeability and contribute to systemic inflammation. Among the remedies advocated by Stokes and Pillsbury were Lactobacillus acidophilus cultures. Many aspects of this gut-brain-skin unifying theory have recently been validated. The ability of the gut microbiota and oral probiotics to influence systemic inflammation, oxidative stress, glycemic control, tissue lipid content and even mood itself, may have important implications in acne. The intestinal microflora may also provide a twist to the developing diet and acne research. Here we provide a historical perspective to the contemporary investigations and clinical implications of the gut-brain-skin connection in acne. PMID:21281494
Iakushenko, M N; Tkhagapsoeva, Zh M; Bondarenko, V M
1997-01-01
The study was made on 93 newborn infants with perinatal pathology, among them infants with the perinatal lesion of the central nervous system (52), hemolytic disease of newborns (19) and conjugation jaundice (12). All newborn infants were examined for the presence of intestinal microflora in its dynamics and for the state microbiocenosis, evaluated by the rapid method based on the determination of the caseinolytic activity of fecal supernatants after the correction of normal flora with bifidumbacterin in 55 infants and with bifidumbacterin-forte in 38 infants. The comparative study of these two preparations revealed that the use of probiotics containing Bifidobacterium bifidum was mainly substitutional, promoting the colonization of the intestine by lactobacteria, which later determined the suppression opportunistic microflora. The effectiveness of bifidumbacterin-forte containing live B. bifidum, immobilized on sorbent, proved to be most pronounced.
Haloacetic acids are by-products of drinking water disinfection. Several compounds in this class are genotoxic and have been identified as rodent hepatocarcinogens. Enzymes produced by the normal intestinal bacteria can transform some promutagens and procarcinogens to their bio...
Metabolism of 6-nitrochrysene by intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, B.W.; Campbell, W.L.; Franklin, W.
1988-01-01
Since bacterial nitroreduction may play a critical role in the activation of nitropolycyclic aromatic hydrocarbons, we have used batch and semicontinuous culture systems to determine the ability of intestinal microflora to metabolize the carcinogen 6-nitrochrysene (6-NC). 6-NC was metabolized by the intestinal microflora present in the semicontinuous culture system to 6-aminochrysene (6-AC), N-formyl-6-aminochrysene (6-FAC), and 6-nitrosochrysene (6-NOC). These metabolites were isolated and identified by high-performance liquid chromatography, mass spectrometry, and UV-visible spectrophotometry and compared with authentic compounds. Almost all of the 6-NC was metabolized after 10 days. Nitroreduction of 6-NC to 6-AC was rapid; the 6-AC concentration reached a maximummore » at 48 h. The ratio of the formation of 6-AC to 6-FAC to 6-NOC at 48 h was 93.4:6.3:0.3. Interestingly, compared with results in the semicontinuous culture system, the only metabolite detected in the batch studies was 6-AC. The rate of nitroreduction differed among human, rat, and mouse intestinal microflora, with human intestinal microflora metabolizing 6-NC to the greatest extent. Since 6-AC has been shown to be carcinogenic in mice and since nitroso derivatives of other nitropolycyclic aromatic hydrocarbons are biologically active, our results suggest that the intestinal microflora has the enzymatic capacity to generate genotoxic compounds and may play an important role in the carcinogenicity of 6-NC.« less
Qing, Xiaodan; Zeng, Dong; Wang, Hesong; Ni, Xueqin; Liu, Lei; Lai, Jing; Khalique, Abdul; Pan, Kangcheng; Jing, Bo
2017-12-01
Increasing studies have focused on the beneficial effects of Lactobacillus johnsonii in certain diseases. Here, we studied the prevention ability of a probiotic strain, L. johnsonii BS15 on subclinical necrotic enteritis (SNE), and its underlying mechanism. 180 male Cobb 500 chicks were randomly allotted into three groups and administrated with BS15 (1 × 10 6 cfu/g) or Man Rogosa Sharpe liquid medium throughout a 28-day experimental period. With the exception of the normal group, SNE infection was treated for the remaining experimental period after the chicks were fed with normal diet 14 days. Results showed that BS15 notably suppressed the SNE-induced loss of average daily gain and liver functional abnormality. Additionally, BS15 facilitated lipid metabolism of SNE boilers when the contents of peroxisome proliferator activated receptor γ and adipose triglyceride lipase in adipose tissue and serum high-density lipoprotein cholesterol decreased. BS15 also attenuated the hepatic lipid accumulation of stricken chicks by suppressing the genes expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1c as well as stimulating the genes expression of peroxisome proliferator activated receptor α and carnitine palmitoyltransferase-1. Moreover, BS15 enhanced the development of SNE gut by improving the intestinal development and digestion as well as adjusting the gut microflora. Therefore, BS15 may provide a promising natural preventative strategy against SNE, which may be contributed to the amelioration of lipid metabolism and intestinal microflora.
Nitroreduction and formation of hemoglobin adducts in rats with a human intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheepers, P.T.J.; Straetemans, M.M.E.; Koopman, J.P.
1994-10-01
In the covalent binding of nitroarenes to macromolecules, nitroreduction is an important step. The intestinal microflora represents an enormous potential of bacterial nitroreductase activity. As a consequence, the in vivo nitroreduction of orally administerednitroarenes is primarily located in the intestine. In this study, we have investigated the nitroreduction of 2-nitrofluorene (2-NF) by a human microflora in female Wistar rats. Germ-free (FG) rats were equipped with a bacterial flora derived from human feces. Nontreated GF rats and GF animals equipped with a conventional rat flora were used as controls. The composition of the human and the conventional microflora isolated from themore » rats were consistent with the microflora of the administered feces. In the rats receiving only sunflower seed oil, no adducts were detected. The animals equipped with a human or rat microflora that received 2-aminofluorene (2-AF) formed 2-AF hemoglobin (Hb)-adducts at average levels mean {+-} 0.003 and 0.043 {+-} 0.010 {mu}mole/g Hb, respectively. In the FG rats, an adduct level of 0.57 {+-} 0.09 was determined after 2-AF administration and non adducts were detected after 2-NF administration. The results show that nitroreduction by an acquired human intestinal microflora and subsequent adduct formation can be studied in the rate in vivo. 21 refs., 3 tabs.« less
Kuz'mina, V V; Skvortsova, E G; Shalygin, M V; Kovalenko, K E
2015-12-01
Many fish enzymatic systems possess limited adaptations to low temperature; however, little data are available to judge whether enzymes of fish prey and intestinal microbiota can mitigate this deficiency. In this study, the activity of serine peptidases (casein-lytic, mainly trypsin and hemoglobin-lytic, mainly chymotrypsin) of intestinal mucosa, chyme and intestinal microflora in four species of planktivorous (blue bream) and benthivorous (roach, crucian carp, perch) was investigated across a wide temperature range (0-70 °C) to identify adaptations to low temperature. At 0 °C, the relative activity of peptidases of intestinal mucosa (<13%) and usually intestinal microflora (5-12.6%) is considerably less than that of chyme peptidases (up to 40% of maximal activity). The level of peptidase relative activity in crucian carp intestinal microflora was 45% of maximal activity. The shape of t°-function curves of chyme peptidase also differs in fish from different biotopes. Fish from the littoral group are characterized by a higher degree of adaptation of chyme casein-lytic peptidases to functioning at low temperatures as compared to fish from the pelagic group. The role of intestinal microbiota and prey peptidases in digestive system adaptations of planktivorous and benthivorous fish to low temperatures is discussed.
[Intestinal microecology of the adult population of Mongolia, Switzerland, and Russia].
Korshunov, V M; Potashnik, L V; Efimov, B A; Korshunova, O V; Smeianov, V V; Gyr, K; Frei, R; Ierendorzh, D
2001-01-01
The study of intestinal microflora was made in clinically healthy young adults living in rural areas of Mongolia, in Russia (Moscow) and in Switzerland, as well as in Swiss citizens of elderly age groups (55-68 and 87-94 years). Essential differences in the quantitative and qualitative characteristics of intestinal microflora both in the inhabitants of different countries as well as in people belonging to different age groups in the same country were established. The results of the study demonstrated the expediency of working out the criteria of the norm for intestinal microflora both for the population of different countries and for people living in the same country, but belonging to different age groups.
Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues
Rhee, Ki-Jong; Jasper, Paul J.; Sethupathi, Periannan; Shanmugam, Malathy; Lanning, Dennis; Knight, Katherine L.
2005-01-01
Gut-associated lymphoid tissues (GALTs) interact with intestinal microflora to drive GALT development and diversify the primary antibody repertoire; however, the molecular mechanisms that link these events remain elusive. Alicia rabbits provide an excellent model to investigate the relationship between GALT, intestinal microflora, and modulation of the antibody repertoire. Most B cells in neonatal Alicia rabbits express VHn allotype immunoglobulin (Ig)M. Within weeks, the number of VHn B cells decreases, whereas VHa allotype B cells increase in number and become predominant. We hypothesized that the repertoire shift from VHn to VHa B cells results from interactions between GALT and intestinal microflora. To test this hypothesis, we surgically removed organized GALT from newborn Alicia pups and ligated the appendix to sequester it from intestinal microflora. Flow cytometry and nucleotide sequence analyses revealed that the VHn to VHa repertoire shift did not occur, demonstrating the requirement for interactions between GALT and intestinal microflora in the selective expansion of VHa B cells. By comparing amino acid sequences of VHn and VHa Ig, we identified a putative VH ligand binding site for a bacterial or endogenous B cell superantigen. We propose that interaction of such a superantigen with VHa B cells results in their selective expansion. PMID:15623575
Gao, Meng-Xue; Tang, Xi-Yang; Zhang, Feng-Xiang; Yao, Zhi-Hong; Yao, Xin-Sheng; Dai, Yi
2018-04-01
Xian-Ling-Gu-Bao capsule (XLGB), a well-known traditional Chinese medicine prescription, has been used for the prevention and treatment of osteoporosis. The safety and efficacy of XLGB have been confirmed based on the principle of evidence-based medicine. XLGB is usually administered orally, after which its multiple components are brought into contact with intestinal microflora in the alimentary tract and biotransformed. However, investigations on the comprehensive metabolic profile of XLGB are absent. In this study, 12 representative compounds bearing different typical structures (including iridoid glycosides, prenylated flavonol glycosides, prenylated flavonoids, triterpenoid saponins, steroidal saponins, coumarins and monoterpene phenols) were selected and then investigated for their biotransformation in rat intestinal microflora. In addition, the metabolic profile of XLGB in rat intestinal microflora was investigated by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. As a result, a total of 87 biotransformation components were identified from incubated solutions of 12 representative compounds and XLGB, which underwent 16 metabolic reactions (including deglycosylation, glycosylation, dehydrogenation, hydrogenation, oxidation, epoxidation, hydroxylation, dehydration, hydration, hydrolysis, methylation, isomerization, cyclization, pyrolysis reaction, amino acid conjugation and nucleophilic addition reaction with NH 3 ). This demonstrated that the deglycosylation reaction by cleavage of the sugar moieties is the main metabolic pathway of a variety of glycosides, including prenylated flavonol glycosides, coumarin glycosides, iridoid glycosides and saponins. In addition, compared with the biotransformation of 12 representative compounds, a different biotransformed fate was observed in the XLGB incubated samples of rat intestinal microflora. It is worth noting that the amino acid conjugation was first discovered in the metabolism of prenylated flavonol glycosides in rat intestinal microflora. Copyright © 2017 John Wiley & Sons, Ltd.
On the enterohepatic cycle of triiodothyronine in rats; importance of the intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Herder, W.W.; Hazenberg, M.P.; Pennock-Schroeder, A.M.
1989-01-01
Until 70 h after a single iv injection of 10 uCi ({sup 125}I)triiodothyronine (T{sub 3}), normal rats excreted 15.8 {plus minus} 2.8% of the radioactivity with the feces and 17.5 {plus minus} 2.7% with the urine, while in intestine-decontaminated rats fecal and urinary excretion over this period amounted to 25.1 {plus minus} 7.2% and 23.6 {plus minus} 4.0% of administered radioactivity, respectively (mean {plus minus} SD, n=4). In fecal extracts of decontaminated rats 11.5 {plus minus} 6.8% of the excreted radioactivity consisted of T{sub 3} glucuronide (T{sub 3}G) and 10.9 {plus minus} 2.8% of T{sub 3} sulfate (T{sub 3}S), whereasmore » no conjugates were detected in feces from normal rats. Until 26 h after ig administration of 10 uCi ({sup 125}I)T{sub 3}, integrated radioactivity in blood of decontaminated rats was 1.5 times higher than that in normal rats. However, after ig administration of 10 uCi ({sup 125}I)T{sub 3}G or ({sup 125}I)T{sub 3}S, radioactivity in blood of decontaminated rats was 4.9- and 2.8-fold lower, respectively, than in normal rats. The radioactivity in the serum of control animals was composed of T{sub 3} and iodide in proportions independent of the tracer injected, while T{sub 3} conjugates represented <10 % of serum radioactivity. These results suggest an important role of the intestinal microflora in the enterohepatic circulation of T{sub 3} in rats.« less
Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues.
Rhee, Ki-Jong; Jasper, Paul J; Sethupathi, Periannan; Shanmugam, Malathy; Lanning, Dennis; Knight, Katherine L
2005-01-03
Gut-associated lymphoid tissues (GALTs) interact with intestinal microflora to drive GALT development and diversify the primary antibody repertoire; however, the molecular mechanisms that link these events remain elusive. Alicia rabbits provide an excellent model to investigate the relationship between GALT, intestinal microflora, and modulation of the antibody repertoire. Most B cells in neonatal Alicia rabbits express V(H)n allotype immunoglobulin (Ig)M. Within weeks, the number of V(H)n B cells decreases, whereas V(H)a allotype B cells increase in number and become predominant. We hypothesized that the repertoire shift from V(H)n to V(H)a B cells results from interactions between GALT and intestinal microflora. To test this hypothesis, we surgically removed organized GALT from newborn Alicia pups and ligated the appendix to sequester it from intestinal microflora. Flow cytometry and nucleotide sequence analyses revealed that the V(H)n to V(H)a repertoire shift did not occur, demonstrating the requirement for interactions between GALT and intestinal microflora in the selective expansion of V(H)a B cells. By comparing amino acid sequences of V(H)n and V(H)a Ig, we identified a putative V(H) ligand binding site for a bacterial or endogenous B cell superantigen. We propose that interaction of such a superantigen with V(H)a B cells results in their selective expansion.
Metabolism of 7-nitrogenz[a]anthracene by intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morehead, M.C.; Franklin, W.; Fu, P.P.
1994-12-31
Pure cultures of anaerobic intestinal bacteria and mixed fecal microflora from human, rat, mouse, and pig were screened for the ability to metabolize 7-nitrobenz[a]anthracene. Based on analysis by high-performance liquid chromatography (HPLC) and by ultraviolent (UV), mass, and nuclear magnetic resonance (NMR) spectral techniques, the compounds were identified as 7-aminobenz[a]anthracene and benz[a]anthracene 7,12-dione. Identification of 7-NH{sub 2}BA as a metabolite of 7-NO{sub 2}BA indicates that the anaerobic intestinal bacteria are capable of reducing 7-NO{sub 2}BA to potentially bioactive intermediates. The reductive capacities of the mixed intestinal microflora were generally greater than those of pure cultures. Thus, metabolism of 7-NO{sub 2}BAmore » in the intestinal tract may be underestimated if pure cultures are used as the sole method for evaluating the potential hazard.« less
Probiotics and prebiotics in inflammatory bowel disease: microflora 'on the scope'.
Damaskos, Dimitrios; Kolios, George
2008-04-01
The intestinal microflora is a large bacterial community that colonizes the gut, with a metabolic activity equal to an organ and various functions that affect the physiology and pathology of the host's mucosal immune system. Intestinal bacteria are useful in promotion of human health, but certain components of microflora, in genetically susceptible individuals, contribute to various pathological disorders, including inflammatory bowel disease. Clinical and experimental observations indicate an imbalance in protective and harmful microflora components in these disorders. Manipulation of gut flora to enhance its protective and beneficial role represents a promising field of new therapeutic strategies of inflammatory bowel disease. In this review, we discuss the implication of gut flora in the intestinal inflammation that justifies the role of probiotics and prebiotics in the prevention and treatment of inflammatory bowel disease and we address the evidence for therapeutic benefits from their use in experimental models of colitis and clinical trials.
Therapeutic approaches targeting intestinal microflora in inflammatory bowel disease
Andoh, Akira; Fujiyama, Yoshihide
2006-01-01
Inflammatory bowel diseases, ulcerative colitis, and Crohn’s disease, are chronic intestinal disorders of unknown etiology in which in genetically susceptible individuals, the mucosal immune system shows an aberrant response towards commensal bacteria. The gastrointestinal tract has developed ingenious mechanisms to coexist with its autologous microflora, but rapidly responds to invading pathogens and then returns to homeostasis with its commensal bacteria after the pathogenic infection is cleared. In case of disruption of this tightly-regulated homeostasis, chronic intestinal inflammation may be induced. Previous studies showed that some commensal bacteria are detrimental while others have either no influence or have a protective action. In addition, each host has a genetically determined response to detrimental and protective bacterial species. These suggest that therapeutic manipulation of imbalance of microflora can influence health and disease. This review focuses on new insights into the role of commensal bacteria in gut health and disease, and presents recent findings in innate and adaptive immune interactions. Therapeutic approaches to modulate balance of intestinal microflora and their potential mechanisms of action are also discussed. PMID:16874854
1980-10-16
in the number, composition, and location of intestinal microflora can result from antibiotics or purgative therapy. All of these changes, along with...skeletal muscle and other proteins of somatic tissues of normally nourished persons appear to provide an available pool of labile body ntirogen. The...superimposed secondary infection. In most acute infectious diseases that develop in a well- nourished person, the illness is relatively brief and the potential
Yamano, Toshihiko; Iino, Hisakazu; Takada, Mamiko; Blum, Stephanie; Rochat, Florence; Fukushima, Yoichi
2006-02-01
To exert beneficial effects for the host, for example, improving the intestinal microflora, a probiotic must reach the intestine as a viable strain. These properties must be demonstrated by in vitro as well as in vivo methods. However, only a few well-designed human clinical studies have shown these properties. Lactobacillus johnsonii La1 has been shown to give many beneficial effects for the host, but it is unclear whether a viable strain of L. johnsonii La1 has the effect of improving host intestinal microflora. In the present study, a randomised double-blind placebo-controlled cross-over trial was conducted to elucidate the effect of L. johnsonii La1 on human intestinal microflora. Twenty-two young healthy Japanese women were randomly divided into two groups, and either received fermented milk with L. johnsonii La1 or a fermented milk without L. johnsonii La1 (placebo) daily for 21 d. Consumption of the fermented milk: (a) increased total Bifidobacterium and Lactobacillus, and decreased lecithinase-positive Clostridium in the faeces; (b) increased the faecal lactic acid concentrations; (c) decreased the faecal pH; (d) increased the defecation frequency. These changes were stronger than those observed with the placebo. L. johnsonii La1 was identified in all subjects only after the consumption of the fermented milk. These results suggest that L. johnsonii La1 can contribute to improve intestinal microflora with probiotic properties.
Age-Related Variations in Intestinal Microflora of Free-Range and Caged Hens.
Cui, Yizhe; Wang, Qiuju; Liu, Shengjun; Sun, Rui; Zhou, Yaqiang; Li, Yue
2017-01-01
Free range feeding pattern puts the chicken in a mixture of growth materials and enteric bacteria excreted by nature, while it is typically unique condition materials and enteric bacteria in commercial caged hens production. Thus, the gastrointestinal microflora in two feeding patterns could be various. However, it remains poorly understood how feeding patterns affect development and composition of layer hens' intestinal microflora. In this study, the effect of feeding patterns on the bacteria community in layer hens' gut was investigated using free range and caged feeding form. Samples of whole small intestines and cecal digesta were collected from young hens (8-weeks) and mature laying hens (30-weeks). Based on analysis using polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing of bacterial 16S rDNA gene amplicons, the microflora of all intestinal contents were affected by both feeding patterns and age of hens. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria were the main components. Additionally, uncultured environmental samples were found too. There were large differences between young hens and adult laying hens, the latter had more Firmicutes and Bacteroidetes, and bacterial community is more abundant in 30-weeks laying hens of all six phyla than 8-weeks young hens of only two phyla. In addition, the differences were also observed between free range and caged hens. Free range hens had richer Actinobacteria, Bacteroidetes, and Proteobacteria. Most of strains found were detected more abundant in small intestines than in cecum. Also the selected Lactic acid bacteria from hens gut were applied in feed and they had beneficial effects on growth performance and jejunal villus growth of young broilers. This study suggested that feeding patterns have an importance effect on the microflora composition of hens, which may impact the host nutritional status and intestinal health.
Kuda, Takashi; Iwai, Akiko; Yano, Toshihiro
2004-10-01
Antihyperlipidemia or hypocholesterolaemic and antibacterial activities of red hot pepper and garlic are well known. To determine the effect of the dietary spices ingested to suppress blood lipids on the intestinal condition, we examined plasma lipid levels and cecal microflora in mice that were fed diets containing 19% (w/w) beef tallow and 2% red pepper Capsicum annuum var. conoides 'Takanotume' (RP) or garlic Allium sativum 'White' (GP) for 4-weeks. Plasma triacylglyceride level was suppressed by the spices. RP lowered cecal bacteroidaceae, a predominant bacterial group (from 9.4 to 9.0 log CFU/g), bifidobacteria (from 8.7 to 7.6 log CFU/g), and staphylococci. Although GP increased the cecal weight including their contents, significant differences were not shown in the cecal microflora. These results suggest that RP can affect the intestinal condition and host health through the disturbance of intestinal microflora. Copyright 2004 Elsevier Ltd.
Zampa, Andrea; Silvi, Stefania; Fabiani, Roberto; Morozzi, Guido; Orpianesi, Carla; Cresci, Alberto
2004-02-01
The main source of carbon in the human large intestine comes from carbohydrates like starches and oligosaccharides which remain unchanged by gastric digestion. These polysaccharides are metabolised in the colon by saccharolytic bacteria whose composition is dependent upon the substrate availability. Among the metabolites produced, the short-chain fatty acids (SCFA) are important for colon function and to prevent diseases. In particular, butyrate affects several cellular functions (proliferation, membrane synthesis, sodium absorption), and it has been shown to be protective against colorectal cancer. In addition, faecal bacteria are responsible for the conversion of primary bile acids (BA) to secondary BA, which are considered tumor promoters. In this study we investigated the in vitro effect of different substrates (CrystaLean starch, xylo-oligosaccharides, corn starch) supplied to human faecal micro-flora, on the SCFA production, on the bowel micro-flora composition and on the primary BA conversion rate. In addition, with corn starch as substrate, we considered the effect of enriching normal human faecal micro-flora with lactobacilli and bifidobacteria, on the above reported parameters.
Shen, Xuejiao; Yi, Dan; Ni, Xueqin; Zeng, Dong; Jing, Bo; Lei, Mingxia; Bian, Zhengrong; Zeng, Yan; Li, Tao; Xin, Jinge
2014-04-01
Examples of probiotics that can promote host health by improving its intestinal microbial balance and intestinal immunity belong to the genus Lactobacillus. Bursin (BS) is a peptide isolated from the bursa of Fabricius for use as an adjuvant for a variety of immunogens. To investigate the synergistic effects of Lactobacillus plantarum (LP) dietary supplementation and BS immunization on production performance, immune characteristics, antioxidant status, and intestinal microflora in broilers, we randomly allocated 200 1-day-old broilers of mixed sex into 4 treatments in a 2 × 2 factorial arrangement (LP-/BS-, LP-/BS+, LP+/BS-, LP+/BS+) for 42 days. BS immunization enhanced immune response by increasing serum total immunoglobulin G concentration and interleukin-6 concentration, promoted antioxidant capacity by increasing catalase activities in serum and liver and by decreasing serum malondialdehyde (MDA) content at 42 days of age (DOA), and enriched intestinal microflora diversity. LP supplementation enhanced immune response by increasing interleukin-2 concentration at 42 DOA; promoted antioxidant capacity by increasing liver catalase activities, increasing glutathione peroxidase activities in serum and liver at 21 DOA, and decreasing serum MDA content at 42 DOA; promoted intestinal microflora composition by decreasing total aerobes and Escherichia coli counts at 21 DOA, by increasing total anaerobes count at 21 DOA, and by increasing Lactobacillus spp. and Bifidobacterium spp. counts at both 21 and 42 DOA. The interactions between BS and LP had a significant effect on daily body mass gain and feed conversion ratio in the starter period (1-21 DOA); on interleukin-2 concentration and liver MDA content at 21 DOA; and on thymus index, peripheral lymphocyte proliferation, and E. coli counts at 42 DOA. Overall, these data suggest that the combination of LP dietary supplementation and BS immunization promoted the production performance, immune characteristics, antioxidant status, and intestinal microflora of broilers.
Jernberg, Cecilia; Sullivan, Asa; Edlund, Charlotta; Jansson, Janet K
2005-01-01
Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic.
Jernberg, Cecilia; Sullivan, Åsa; Edlund, Charlotta; Jansson, Janet K.
2005-01-01
Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic. PMID:15640226
Zhao, Chao; Yang, Chengfeng; Chen, Mingjun; Lv, Xucong; Liu, Bin; Yi, Lunzhao; Cornara, Laura; Wei, Ming-Chi; Yang, Yu-Chiao; Tundis, Rosa; Xiao, Jianbo
2018-02-01
In this study, the antidiabetic activity of Lessonia nigrescens ethanolic extract (LNE) is investigated in streptozotocin (SZT)-induced type 2 diabetic mice fed with a high-sucrose/high-fat diet. Ultra high performance liquid chromatography coupled with photo-DAD and electospray ionization-mass spectrometry (ESI-MS) is employed to analyze the major compounds in LNE. The components of the intestinal microflora in type 2 diabetic mice are analyzed by high-throughput next-generation 16S rRNA gene sequencing. Fasting blood glucose levels in diabetic mice are significantly decreased after LNE administration. The histology reveals that LNE could protect the cellular architecture of liver and kidney. LNE treatment significantly increases Bacteroidetes and decreases Firmicutes populations in intestinal microflora. Specifically, It could selectively enrich the amounts of beneficial bacteria, Barnesiella, as well as reduce the abundances of Clostridium and Alistipes. The increased gene and protein expression levels of phosphatidylinositol 3-kinase (PI3K) in the liver are observed in LNE treatment groups, while the expressions of c-Jun N-terminal kinase (JNK) are significantly downregulated. The above findings suggest that LNE could be considered as a functional food for reducing blood glucose and regulating intestinal microflora. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Medvedeva, O A; Kalutskiĭ, P V; Besedin, A V; Zhiliaeva, L V; Ostap, E V; Ivanov, A V; Medvedeva, S K
2012-01-01
Study the possible qualitative and quantitative changes of microbial community of the parietal mucin of the large intestine and the state of the wall of the large intestine in experimental animals underbackground and anomalous influence of geomagnetic field. CBA mice were put under the influence of anomalous magnetic field comparable to its intensity in Zheleznogorsk (3 Oe) for 1 and 2 weeks. Quantitative and qualitative study of mucous microflora of the large intestine of the mice was performed by bacteriological method. Identification of the microorganisms was performed by microbiological analyzer "Multiskan-Ascent" and commercial test-systems "Lachema-Czech Republic": ENTHEROtest-16, STAPHYtest-16, Streptotest-16, En-COCCUStest-16; for lactobacilli and bifidobacteria identification - API 50 CHL (bioMerieux). Bacteria content in 1 g of material was calculated by the number of microorganism colonies grown. A pattern of changes of mucous microflora of the intestine and the state of the wall of the large intestine of the experimental animals that had been put under the influence of anomalous magnetic field is shown. During evaluation of qualitative and quantitative diversity of microbial community of parietal mucin of the large intestine of the mice under the influence of magnetic field on the background and anomalous levels changes not only in quantity and frequency of detection of obligate, transitory flora but also cell elements of mucous membrane of the wall of the large intestine were established. The results of the study allow to make a conclusion about the presence of reactivity of the parietal microflora of the intestine of the mice to the influence of the anomalous magnetic field. This leads to changes in cell elements in the mucous membrane of the wall that manifest by infiltration of the connective tissue stroma by leucocytes and reconstruction of epithelium, that are features of dysbiosis.
Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate
Gallo, Antonella; Passaro, Giovanna; Gasbarrini, Antonio; Landolfi, Raffaele; Montalto, Massimo
2016-01-01
Alterations of intestinal microflora may significantly contribute to the pathogenesis of different inflammatory and autoimmune disorders. There is emerging interest on the role of selective modulation of microflora in inducing benefits in inflammatory intestinal disorders, by as probiotics, prebiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). To summarize recent evidences on microflora modulation in main intestinal inflammatory disorders, PubMed was searched using terms microbiota, intestinal flora, probiotics, prebiotics, fecal transplantation. More than three hundred articles published up to 2015 were selected and reviewed. Randomized placebo-controlled trials and meta-analysis were firstly included, mainly for probiotics. A meta-analysis was not performed because of the heterogeneity of these studies. Most of relevant data derived from studies on probiotics, reporting some efficacy in ulcerative colitis and in pouchitis, while disappointing results are available for Crohn’s disease. Probiotic supplementation may significantly reduce rates of rotavirus diarrhea. Efficacy of probiotics in NSAID enteropathy and irritable bowel syndrome is still controversial. Finally, FMT has been recently recognized as an efficacious treatment for recurrent Clostridium difficile infection. Modulation of intestinal flora represents a very interesting therapeutic target, although it still deserves some doubts and limitations. Future studies should be encouraged to provide new understanding about its therapeutical role. PMID:27621567
Zhang, Hao; Sun, Jing; Liu, Xianting; Hong, Chuan; Zhu, Yuanbo; Liu, Aiping; Li, Siqi; Guo, Huiyuan; Ren, Fazheng
2013-12-01
Lactobacillus paracasei subsp. paracasei LC01 (LC01) can tolerate intestinal stresses and has antioxidant activity. To evaluate the effect of the bacterium on human intestinal microflora, a randomized, double-blind, placebo-controlled human trial was carried out. Fifty-two healthy adult volunteers were randomized equally to two groups. One group consumed 12% (wt/vol) skimmed milk supplemented with 10(10) CFU of LC01 each day for the 4-week treatment period, and then consumed placebo in the next treatment period, separated by a 2-week washout. The other group followed the reverse order. Group-specific real-time PCR and biochemical analyses was used to determine the intestinal bacterial composition of fecal samples collected at the end of every period, and the concentration of short-chain fatty acids and ammonia. A significant inhibition in fecal Escherichia coli and increase in Lactobacillus, Bifidobacterium, and Roseburia intestinalis were observed after consumption of LC01. Acetic acid and butyric acid were significantly higher in the probiotic stage and fecal ammonia was significantly lower. The results indicated a modulation effect of LC01 on the intestinal microflora of young adults, suggesting a beneficial effect on bowel health. LC01 may have potential value as a probiotic.
Gut microbiota as potential therapeutic target for the treatment of cow's milk allergy.
Canani, Roberto Berni; Di Costanzo, Margherita
2013-03-01
Cow's milk allergy (CMA) continues to be a growing health concern for infants living in Western countries. The long-term prognosis for the majority of affected infants is good, with about 80% naturally acquiring tolerance by the age of four years. However, recent studies suggest that the natural history of CMA is changing, with an increasing persistence until later ages. The pathogenesis of CMA, as well as oral tolerance, is complex and not completely known, although numerous studies implicate gut-associated immunity and enteric microflora, and it has been suggested that an altered composition of intestinal microflora results in an unbalanced local and systemic immune response to food allergens. In addition, there are qualitative and quantitative differences in the composition of gut microbiota between patients affected by CMA and healthy infants. These findings prompt the concept that specific beneficial bacteria from the human intestinal microflora, designated probiotics, could restore intestinal homeostasis and prevent or alleviate allergy, at least in part by interacting with the intestinal immune cells. The aim of this paper is to review what is currently known about the use of probiotics as dietary supplements in CMA.
Probiotics as flourishing benefactors for the human body.
Broekaert, Ilse J; Walker, W Allan
2006-01-01
This article provides a comprehensive review of the beneficial effects of various strains of probiotics in preventing and treating certain diseases. Currently, changed lifestyles as well as the increased use of antibiotics are significant factors challenging the preservation of a healthy intestinal microflora. The concept of probiotics is to restore and uphold a microflora advantageous for the human body. Probiotics are found in a number of fermented dairy products, infant formula, and dietary supplements. In the presence of prebiotics, which are nondigestible food ingredients favorable for probiotic growth, their survival in the intestine is ameliorated.
Gastrointestinal tract and the elderly: functional foods, gut microflora and healthy ageing.
Saunier, K; Doré, J
2002-09-01
Advances in science and medicine as well as improved living standards have led to a steady increase in life expectancy. Yet ageing is associated with increased susceptibility to degenerative or infectious diseases, which may be exacerbated by a poor nutritional status. The intestinal microflora will mediate crucial events towards the protection or degradation of health. It is hence essential and timely that strategies of preventive nutrition aimed at maintaining or improving the quality of life of the ageing population be developed. "CROWNALIFE" is a newly funded EuropeanUnion project, so called because of its emphasis on the preservation of the period of independence of the elderly, recognised as the "crown of life". The project aims at assessing age-related alterations and exploring strategies to restore and maintain a balanced healthy intestinal environment. Current knowledge on the composition and function of the human intestinal microflora is still improving with the use of better methodologies and yet their evolution with ageing has not been investigated in detail. There have been a few reports that putatively protective lactic acid bacteria, in general, and bifidobacteria, in particular, seem less represented in the elderly faecal flora. We have also observed an increase in species diversity of the dominant faecal microflora with ageing. This certainly warrants confirmation and is being addressed by the investigation of age-related changes in the structure and function of the intestinal flora of the elderly in countries across Europe. Ensuing results will constitute a baseline for functional-food based strategies aimed at providing health benefits for the elderly.
Takasuna, K; Hagiwara, T; Hirohashi, M; Kato, M; Nomura, M; Nagai, E; Yokoi, T; Kamataki, T
1998-01-01
SN-38, a metabolite of irinotecan hydrochloride (CPT-11), is considered to play a key role in the development of diarrhea as well as in the antitumor activity of CPT-11. We have previously found that the inhibition of beta-glucuronidase, which hydrolyzes detoxified SN-38 (SN-38 glucuronide) to reform SN-38, in the lumen by eliminating the intestinal microflora with antibiotics, markedly ameliorates the intestinal toxicity of CPT-11 in rats. In this study we compared the disposition of CPT-11 and its metabolites in rats treated with and without antibiotics. Rats were given drinking water containing 1 mg/ml penicillin and 2 mg/ml streptomycin from 5 days before the administration of CPT-11 (60 mg/kg i.v.) and throughout the experiment. CPT-11, SN-38 glucuronide and SN-38 concentrations in the blood, intestinal tissues and intestinal luminal contents were determined by HPLC. Antibiotics had little or no effect on the pharmacokinetics of CPT-11, SN-38 glucuronide or SN-38 in the blood, or in the tissues or contents of the small intestine, which has less beta-glucuronidase activity in its luminal contents. In contrast, antibiotics markedly reduced the AUC1-24 h of SN-38 (by about 85%) in the large intestine tissue without changing that of CPT-11, and this was accompanied by a complete inhibition of the deconjugation of SN-38 glucuronide in the luminal contents. These results suggest that SN-38, which results from the hydrolysis of SN-38 glucuronide by beta-glucuronidase in the intestinal microflora, contributes considerably to the distribution of SN-38 in the large intestine tissue, and that inhibition of the beta-glucuronidase activity by antibiotics results in decreased accumulation of SN-38 in the large intestine.
Song, Shanshan; Zhang, Lingyu; Cao, Jian; Xiang, Gao; Cong, Peixu; Dong, Ping; Li, Zhaojie; Xue, Changhu; Xue, Yong; Wang, Yuming
2017-08-01
Sea cucumber saponins (SCSs) exhibit a wide spectrum of bioactivities, but their metabolic characteristics are not well elucidated. In this study, the metabolism of holothurin A (HA) and echinoside A (EA), 2 major saponins in sea cucumber, by gut microflora were investigated. First, we conducted an in vitro study, where in the SCSs were incubated with intestinal microflora and the metabolites were detected by high pressure liquid chromatography-high resolution mass spectrometry. We also conducted an in vivo study on rats, where in the intestinal contents, serum, urine, and feces were collected and evaluated after oral administration of SCSs. In the in vitro study, we identified 6 deglycosylated metabolites of HA and EA, assigned M1-M6. In the in vivo study, we found all the deglycosylated metabolites in the intestinal contents after oral administration, and both the metabolites and their prototype components could be absorbed. Four metabolites were identified in the serum, 6 in the urine, and 4 in the feces. The saponins with different structures showed different absorption characteristics in rats. According to our results, deglycosylation is the main intestinal microflora-mediated metabolic pathway for SCSs, and both the SCSs and deglycosylated metabolites can be absorbed by intestine. This study improves the understanding of the metabolism of HA and EA by gut flora, which will be useful for further analysis of the bioactivity mechanism of SCSs. © 2017 Institute of Food Technologists®.
Intestinal absorption of water-soluble vitamins in health and disease.
Said, Hamid M
2011-08-01
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. © The Authors Journal compilation © 2011 Biochemical Society
Intestinal absorption of water-soluble vitamins in health and disease
Said, Hamid M.
2014-01-01
Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. PMID:21749321
Ben, Xiao-ming; Zhou, Xiao-yu; Zhao, Wei-hua; Yu, Wen-liang; Pan, Wei; Zhang, Wei-li; Wu, Sheng-mei; Van Beusekom, Christien M; Schaafsma, Anne
2004-06-01
Oligosaccharides in human milk may protect infants by improving the intestinal micro-flora and fermentation. This study was to investigate effects of infant formula milk consisting of galacto-oligosaccharide (GOS) on intestinal microbial populations and the fermentation characteristics in term infants in comparison with that of human milk. The test formula (Frisolac H, Friesland, Netherland) was supplemented with GOS at a concentration of 0.24 g/dl. Human milk and another formula without oligosaccharides (Frisolac H, Friesland, Netherland) were used as positive and negative control respectively. Growth, stool characteristics, and side effects of the recruited infants were recorded after 3 and 6 months' follow-up, and the fecal species were collected for the analysis of intestinal micro-flora, short chain fatty acid (SCFA) and pH. At the end of 3- and 6-month feeding period, intestinal Bifidobacteria and Lactobacilli were significantly increased in infants fed with GOS supplemented formula and human milk when compared with infants fed with negative control formula; however, there was no statistically significant difference between GOS supplemented formula and human milk groups. Stool characteristics were influenced by the supplement and main fecal SCFA (acetic), and stool frequency were significantly increased in infants fed with GOS supplemented formula and human milk, while the fecal pH was significantly decreased as compared with that of negative control (P < 0.05). Supplementation had no influence on incidence of side effects (including crying, regurgitation and vomiting). Supplementing infant formula with GOS at a concentration of 0.24 g/dl stimulates the growth of Bifidobacteria and Lactobacilli in the intestine and stool characteristics are similar to in term infants fed with human milk.
[Ideas of I.I Mechnikov and contemporary microecology of human intestine].
Bondarenko, V M; Likhoded, V G
2008-01-01
Contemporary state of microecology of human gut was considered in light of ideas of I.I Mechnikov. It was shown that many ideas of our great countryman, which were expressed as far back as in the beginning of previous century, were confirmed in studies conducted in the last decades. It was calculated that total gene pool of microflora present in human organism which was named "microbiom", consists from 400,000 genes that is 12 times higher of human genome size. Such wide spectrum determines also huge functional activity of microorganisms, which participate in regulation of many physiological and immune reactions that provide protection of an organism from diseases, including infectious. Conception about fundamental role of facultative microflora in development of chronic inflammatory diseases of gastrointestinal tract was confirmed; the role of Gram-negative bacteria endotoxin in the development of atherosclerosis was established. Processes of interaction between products of intestinal microflora and pattern-recognizing Toll-like receptors (TLR), particularly TLR4, which recognizes endotoxins (lypopolysaccharides of Gram-negative microflora), were considered. It was shown that loss of TLR4 induced by mutation results in lowering of the risk of atherosclerosis.
Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan
2017-07-24
The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.
Moffitt, C.M.; Mobin, S.M.A.
2006-01-01
We describe the resident heterotrophic aerobic microflora of the salmonid posterior intestine before, during, and after the administration of rations with erythromycin in a hatchery raceway environment. We compare the profiles of medicated Chinook salmon Oncorhynchus tshawytscha with those of control fish that were not fed erythromycin. The combined counts of bacteria and yeasts per gram of fish intestine originating from four upstream raceways ranged from 3.0 ?? 102 to 9.6 ?? 105 colony-forming units (CFU) over the study period. Yeasts were commonly identified in the gut, and abundances ranged from 0% to more than 80% of the CFU. Erythromycin therapy decreased the total microbial population and altered the bacterial diversity in the gut during treatment. The intestinal microbial populations in fish medicated with erythromycin increased rapidly after treatment ceased, and by 25 d after treatment the CFU were similar in samples from both medicated and control fish populations. Of 325 isolates from fish selected for biochemical profiles, we identified a total of eight gram-positive and eight gram-negative genera. Bacillus spp. were common throughout sampling and were identified in samples of fish feed. Erythromycin-resistant, gram-positive bacteria were observed throughout the sampling in medicated and control fish. We identified seven gram-positive and two gram-negative genera in 74 selected isolates from control and erythromycin feeds. Our studies suggest that the aerobic microflora of the posterior intestine varies over time, and it is likely that few resistant genera of concern to human health are present.
Escherichia coli as other Enterobacteriaceae: food poisoning and health effects
USDA-ARS?s Scientific Manuscript database
Many Escherichia coli strains are harmless, and they are an important commensal in the intestinal microflora; however, pathogenic strains also exist. The pathogenic strains can be divided into diarrhea-inducing strains and strains that reside in the intestines but only cause disease in bodily sites...
Oatmeal porridge: impact on microflora-associated characteristics in healthy subjects.
Valeur, Jørgen; Puaschitz, Nathalie G; Midtvedt, Tore; Berstad, Arnold
2016-01-14
Oatmeal porridge has been consumed for centuries and has several health benefits. We aimed to investigate the effect of oatmeal porridge on gut microflora functions. A total of ten healthy subjects ingested 60 g oatmeal porridge daily for 1 week. The following microflora-associated characteristics were assessed before and after the intervention: intestinal gas production following lactulose ingestion, faecal excretion of SCFA and faecal levels of urease and β-galactosidase. In addition, rectal levels of PGE2 were measured. Microbial fermentation as evaluated by intestinal gas production and excretion of SCFA did not change significantly following the dietary intervention. However, faecal levels of β-galactosidase and urease decreased after eating oatmeal porridge (P=0·049 and 0·031, respectively). Host inflammatory state, as measured by rectal levels of PGE2, also decreased, but the change was not significant (P=0·168). The results suggest that oatmeal porridge has an effect on gut microbial functions and may possess potential prebiotic properties that deserve to be investigated further.
Matsumoto, Kotaro; Ichimura, Mayuko; Tsuneyama, Koichi; Moritoki, Yuki; Tsunashima, Hiromichi; Omagari, Katsuhisa; Hara, Masumi; Yasuda, Ichiro; Miyakawa, Hiroshi; Kikuchi, Kentaro
2017-01-01
Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine-choline-deficient mice. Three groups of 12-week-old male C57BL/6J mice were studied for 3 weeks; specifically, mice were fed a methionine-choline-deficient diet, a methionine-choline-deficient diet plus 5% fructo-oligosaccharides in water, or a normal control diet. Fecal bacteria, short-chain fatty acids, and immunoglobulin A (IgA) levels were investigated. Histological and immunohistochemical examinations were performed using mice livers for CD14 and Toll-like receptor-4 (TLR4) expression and intestinal tissue samples for IgA and zonula occludens-1 expression in epithelial tight junctions. The methionine-choline-deficient mice administered 5% fructo-oligosaccharides maintained a normal gastrointestinal microbiome, whereas methionine-choline-deficient mice without prebiotic supplementation displayed increases in Clostridium cluster XI and subcluster XIVa populations and a reduction in Lactobacillales spp. counts. Methionine-choline-deficient mice given 5% fructo-oligosaccharides exhibited significantly decreased hepatic steatosis (p = 0.003), decreased liver inflammation (p = 0.005), a decreased proportion of CD14-positive Kupffer cells (p = 0.01), decreased expression of TLR4 (p = 0.04), and increases in fecal short-chain fatty acid and IgA concentrations (p < 0.04) compared with the findings in methionine-choline-deficient mice that were not administered this prebiotic. This study illustrated that in the methionine-choline-deficient mouse model, dietary fructo-oligosaccharides can restore normal gastrointestinal microflora and normal intestinal epithelial barrier function, and decrease steatohepatitis. The findings support the role of prebiotics, such as fructo-oligosaccharides, in maintaining a normal gastrointestinal microbiome; they also support the need for further studies on preventing or treating nonalcoholic steatohepatitis using dietary fructo-oligosaccharides.
Intestinal microflora as potential modifiers of sensitizer activity in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheldon, P.W.; Clarke, C.; Dawson, K.B.
1984-08-01
Treatment of mice (some bearing Lewis lung tumors), with penicillin (PEN) at 500 mg/l drinking water for one week prior to treatment with misonidazole (MIS), resulted in: the elimination of their anaerobic cecal flora; a decrease in MIS-induced neurotoxicity; an increase in pharmacological exposure to MIS; a decrease in MIS chemopotentiation; a probable increase in MIS radiosensitization; an increase in MIS induced hypothermia. Assuming no chemical interaction between PEN and MIS, these observations indicate that the intestinal microflora can influence the activity of MIS in vivo. The observed reduction in the neurotoxic but not the radiosensitizing potential of MIS followingmore » PEN treatment indicates a therapeutic benefit.« less
The Effects of GH Transgenic Goats on the Microflora of the Intestine, Feces and Surrounding Soil.
Bao, Zekun; Gao, Xue; Zhang, Qiang; Lin, Jian; Hu, Weiwei; Yu, Huiqing; Chen, Jianquan; Yang, Qian; Yu, Qinghua
2015-01-01
The development of genetically engineered animals has brought with it increasing concerns about biosafety issues. We therefore evaluated the risks of growth hormone from transgenic goats, including the probability of horizontal gene transfer and the impact on the microbial community of the goats' gastrointestinal tracts, feces and the surrounding soil. The results showed that neither the GH nor the neoR gene could be detected in the samples. Moreover, there was no significant change in the microbial community of the gastrointestinal tracts, feces and soil, as tested with PCR-denaturing gradient gel electrophoresis and 16S rDNA sequencing. Finally, phylogenetic analysis showed that the intestinal content, feces and soil samples all contained the same dominant group of bacteria. These results demonstrated that expression of goat growth hormone in the mammary of GH transgenic goat does not influence the microflora of the intestine, feces and surrounding soil.
Tang, Xiang-Shan; Shao, Hua; Li, Tie-Jun; Tang, Zhi-Ru; Huang, Rui-Ling; Wang, Sheng-Ping; Kong, Xiang-Feng; Wu, Xin; Yin, Yu-Long
2012-10-01
This work is aimed at investigating the effects of recombinant bovine lactoferrampin-lactoferricin (LFA-LFC) instead of chlortetracycline on intestinal microflora in weaned piglets. The high cost of peptide production from either native digestion or chemical synthesis limits the clinical application of antimicrobial peptides. The expression of recombinant peptides in yeast may be an effective alternative. In the current study, recombinant LFA-LFC was produced via fed-batch fermentation in recombinant strain Pichia pastoris (KM71) XS10. Uniform design U6(6(4)) was used to optimize the fermentation conditions. The target peptide purified via cation-exchange and size-exclusion chromatography was added into the dietary of weaned piglets. After 21 days, the Lactobacilli, Bifidobacteria, and Enterobacteria in the chyme of the gut were quantified using real-time polymerase chain reaction. The results showed that approximately 82 mg of LFA-LFC was secreted into 1 L of medium under optimized conditions. Moreover, purified peptide showed strong antimicrobial activities against all the tested microorganisms. Compared with the control group, the LFA-LFC group increased the amount of Lactobacilli and Bifidobacteria (P<0.05) in the chyme of the stomach, duodenum, jejunum, ileum, colon, and caecum. These results show that dietary supplementation with LFA-LFC can affect intestinal microflora in weaned piglets.
Von Bültzingslöwen, I; Adlerberth, I; Wold, A E; Dahlén, G; Jontell, M
2003-10-01
Serious systemic infections may occur during cancer chemotherapy due to disturbances in the oropharyngeal and gastrointestinal microflora, impaired mucosal barrier functions and immunosuppression. Bacteria may spread from the gastrointestinal tract to the regional lymph nodes. The routes for bacterial spread from the oral cavity are less well known. In the present study we investigated changes in the oral and intestinal microfloras in rats given 50 mg/kg 5-fluorouracil (5-FU) i.v. for 6 days. Bacterial dissemination to the lymph nodes draining the oral cavity and the lymph nodes draining the gastrointestinal tract was examined. Effects of adding the probiotic strain Lactobacillus plantarum 299v in the drinking water to the rats were measured. 5-FU treatment caused an increase in the number of facultative and strictly anaerobic bacteria in biopsies from the oral cavity and an increase in the number of facultative anaerobes in the large intestine. The proportion of facultative gram-negative rods increased in both the oral cavity and intestine. Bacteria translocated to both the cervical and mesenteric lymph nodes in untreated animals and increased in numbers after 5-FU treatment due to an increase in the number of facultative gram-negative rods. Treatment with L. plantarum 299v improved food intake and body weight in 5-FU-treated rats. It also reduced the 5-FU-induced raise in the total numbers of facultative anaerobes in the intestine, but did not reduce translocation and did not prevent diarrhea. This study reinforces the oral cavity, along with the gastrointestinal tract, as a source for bacterial dissemination. The use of probiotic bacteria may reduce some side effects of 5-FU treatment.
Papoff, Paola; Ceccarelli, Giancarlo; d'Ettorre, Gabriella; Cerasaro, Carla; Caresta, Elena; Midulla, Fabio; Moretti, Corrado
2012-01-01
Bacterial translocation as a direct cause of sepsis is an attractive hypothesis that presupposes that in specific situations bacteria cross the intestinal barrier, enter the systemic circulation, and cause a systemic inflammatory response syndrome. Critically ill children are at increased risk for bacterial translocation, particularly in the early postnatal age. Predisposing factors include intestinal obstruction, obstructive jaundice, intra-abdominal hypertension, intestinal ischemia/reperfusion injury and secondary ileus, and immaturity of the intestinal barrier per se. Despite good evidence from experimental studies to support the theory of bacterial translocation as a cause of sepsis, there is little evidence in human studies to confirm that translocation is directly correlated to bloodstream infections in critically ill children. This paper provides an overview of the gut microflora and its significance, a focus on the mechanisms employed by bacteria to gain access to the systemic circulation, and how critical illness creates a hostile environment in the gut and alters the microflora favoring the growth of pathogens that promote bacterial translocation. It also covers treatment with pre- and pro biotics during critical illness to restore the balance of microbial communities in a beneficial way with positive effects on intestinal permeability and bacterial translocation. PMID:22934115
[Intestinal microbial ecology and its modulation under the influence of immunodepressants].
Amanov, N; Garib, F Iu; Umarov, Ia A
1989-06-01
Oral administration of immunodepressants such as imuran (purine analog) and batriden (gossypol derivative) for 3 months led to development of dysbacterioses in various sections of the rat gastrointestinal tract. The dysbacterioses differed in their levels and the pattern of the recovery process. As compared to batriden, imuran in a dose of 30 mg/kg body weight administered at the early observation periods (days 7, 14 and 30) induced more marked disorders in the intestine microecology. The imuran-induced dysbacteriosis was characterized by lower quantities of lactobacilli and bifidobacteria in the rat intestine. After the use of batriden the quantities of bifidobacteria, lactobacilli and bacteroides decreased. After the batriden use at the late observation periods (days 60 to 90) the ratio of anaerobes and lactobacilli to aerobes recovered at the background of increased quantities of Candida in all the intestine sections while the ratio of bacteroides recovered in the stomach. When immunity was suppressed by imuran the recovery period was characterized by normalization of the microflora composition in the distal sections and preservation of the contamination symptom in the proximal section which was evident from predominance of aerobes over anaerobes.
Luo, Xia; Pan, Zengfeng; Luo, Shuang; Liu, Qi; Huang, Shaowei; Yang, Guanghua; Nong, Feifei; Fu, Yajun; Deng, Xiangliang; Zhou, Lian
2018-05-14
Both probiotics and pathogens in the human gut express pathogen-associated molecular patterns (PAMPs) and die with the release of endotoxin and bacterial DNA, which can stimulate our immune system and cause immune reaction. However, it's interesting and fascinating to address why the normal intestinal flora will not generate immunological rejection like the pathogen does. By investigating the changes in cells and molecules relevant to immune tolerance in mice with ceftriaxone-induced dysbacteriosis, our study discovered that both the Evenness indexes and Shannon Wiener index of intestinal flora showed a decrease in dysbacteriosis mice. Moreover, the proportion of αβ + TCR + CD3 + CD4 - CD8 - cells, CD3 + γδTCR + cells and CD4 + CD25 + FoxP3 + cells in the Peyer's patches (PPs), mesenteric lymph nodes (MLNs) and spleen (SP) and the level of TGF-β1, IL-2, IL-4 and IL-10 in the serum also changed. Intestinal dysbacteriosis in an asthma murine model resulted in enhancement of immunologic response to the allergen ovalbumin (OVA), which was an agent that aggravates asthma symptoms. In summary, it is integral to maintain a certain amount or variety of intestinal microflora for regulatory T cells to act in averting hypersensitivity. Copyright © 2018. Published by Elsevier B.V.
Tazi, Asmaa; Disson, Olivier; Bellais, Samuel; Bouaboud, Abdelouhab; Dmytruk, Nicolas; Dramsi, Shaynoor; Mistou, Michel-Yves; Khun, Huot; Mechler, Charlotte; Tardieux, Isabelle; Trieu-Cuot, Patrick; Lecuit, Marc; Poyart, Claire
2010-10-25
Streptococcus agalactiae (group B streptococcus; GBS) is a normal constituent of the intestinal microflora and the major cause of human neonatal meningitis. A single clone, GBS ST-17, is strongly associated with a deadly form of the infection called late-onset disease (LOD), which is characterized by meningitis in infants after the first week of life. The pathophysiology of LOD remains poorly understood, but our epidemiological and histopathological results point to an oral route of infection. Here, we identify a novel ST-17-specific surface-anchored protein that we call hypervirulent GBS adhesin (HvgA), and demonstrate that its expression is required for GBS hypervirulence. GBS strains that express HvgA adhered more efficiently to intestinal epithelial cells, choroid plexus epithelial cells, and microvascular endothelial cells that constitute the blood-brain barrier (BBB), than did strains that do not express HvgA. Heterologous expression of HvgA in nonadhesive bacteria conferred the ability to adhere to intestinal barrier and BBB-constituting cells. In orally inoculated mice, HvgA was required for intestinal colonization and translocation across the intestinal barrier and the BBB, leading to meningitis. In conclusion, HvgA is a critical virulence trait of GBS in the neonatal context and stands as a promising target for the development of novel diagnostic and antibacterial strategies.
Fecal Microbiota Transplantation in Inflammatory Bowel Disease: A Primer for Internists.
Syal, Gaurav; Kashani, Amir; Shih, David Q
2018-03-29
Inflammatory bowel disease consists of disorders characterized by chronic idiopathic bowel inflammation. The concept of host-gut-microbiome interaction in the pathogenesis of various complex immune-mediated chronic diseases, including inflammatory bowel disease, has recently generated immense interest. Mounting evidence confirms alteration of intestinal microflora in patients with inflammatory bowel disease. Thus, restoration of normal gut microbiota has become a focus of basic and clinical research in recent years. Fecal microbiota transplantation is being explored as one such therapeutic strategy and has shown encouraging results in the management of patients with inflammatory bowel disease. Copyright © 2018 Elsevier Inc. All rights reserved.
[Effect of normal microflora of female reproductive tract in colonization resistance].
Cherkasov, S V
2006-01-01
The role of female reproductive tract microflora in the maintenance of biotope colonization resistance was described. The role of lactobacilli possessing antagonistic properties in the reproductive tract defense was assessed. Classification of bacterial mechanisms of colonization resistance including block of the adhesion, antagonistic action of normal microflora associated with the production of antibacterial substances and suppression of allochthonous bacteria persistence characteristics was presented. Colonization resistance was considered as a physiological phenomenon of microecological homeostasis being a result of symbiotic relations of a host organism and autochthonous microflora.
Metabolism of 1-, 3-, and 6-nitrobenzo(a)pyrene by intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, K.E.; Fu, P.P.; Cerniglia, C.E.
1988-01-01
The compounds 1-, 3-, and 6-nitrobenzo(a)pyrene (nitro-BaP) are environmental pollutants and have been shown to be potent bacterial mutagens. The anaerobic metabolism of these isomeric nitro-BaPs was investigated by the incubation of rat intestinal microflora with each isomer for 48 h. Aliquots were removed at several time intervals, extracted, fractionated by high-pressure liquid chromatography (HPLC), and the radioactivity determined. Metabolites were identified by comparison of their chromatographic, ultraviolet-visible absorption, and mass spectral properties with those of authentic standards. The order of the extent of nitroreduction for these isomers was 3-nitro-BaP greater than 6-nitro-BaP greater than 1-nitro-BaP. After 48 h ofmore » exposure, 84% of the added 3-nitro-BaP was present as 3-amino-BaP, 51% of the 6-nitro-BaP was metabolized to 6-amino-BaP, and 1-nitro-BaP was reduced to 1-amino-BaP (13%) and 1-nitro-BaP (4%). The order of the extent of microbial nitroreduction for these nitro-BaP isomers is different from the predictions based on electronic and steric hindrance effects. These results suggest that intestinal microflora nitroreductases exhibit a markedly high degree of substrate specificity toward nitro-BaPs that affects the extent of nitroreduction.« less
USDA-ARS?s Scientific Manuscript database
This study investigates the effectiveness of two types of prebiotics, stachyose and raffinose, which are present in staple food crops that are widely consumed in regions where dietary Fe deficiency is a health concern. The hypothesis is that these prebiotics will improve Fe status, intestinal functi...
Johansen, C H; Bjerrum, L; Finster, K; Pedersen, K
2006-04-01
The effect of a Campylobacter jejuni colonization on the development of the microflora of the cecum and the ileum of broiler chickens was studied using molecular methods. The infection did affect the development and complexity of the microbial communities of the ceca, but we found no permanent effect of a C. jejuni infection on the ileal microflora of the broilers. In addition, denaturant gradient gel electrophoresis (DGGE) profiles generated from cecal and ileal contents revealed several DGGE bands that were present in the control chickens, but not in the chickens colonized with C. jejuni. Some of these DGGE bands could be affiliated with Lactobacillus reuteri, Clostridium perfringens, and the genus Klebsiella.
A prospective randomised trial of probiotics in critically ill patients.
McNaught, Clare E; Woodcock, Nicholas P; Anderson, Alexander D G; MacFie, John
2005-04-01
Probiotics exert a beneficial effect on the host through modulation of gastrointestinal microflora. The aim of this study was to investigate the effect of the probiotic Lactobacillus plantarum 299v on gut barrier function and the systemic inflammatory response in critically ill patients. One hundred and three critically ill patients were randomised to receive an oral preparation containing L. plantarum 299v (ProViva) in addition to conventional therapy (treatment group, n = 52) or conventional therapy alone (control group, n = 51). Serial outcome measures included gastric colonisation, intestinal permeability (lactulose/rhamnose dual-sugar probe technique), endotoxin exposure (IgM EndoCAb), C-reactive protein and Interleukin 6 levels. L. plantarum had no identifiable effect on gastric colonisation, intestinal permeability, endotoxin exposure or serum CRP levels. There were no differences between the groups in terms of septic morbidity or mortality. On day 15 serum IL-6 levels were significantly lower in the treatment group compared to controls. The enteral administration of L. plantarum 299v to critically ill patients was associated with a late attenuation of the systemic inflammatory response. This was not accompanied by any significant changes in the intestinal microflora, intestinal permeability, endotoxin exposure, septic morbidity or mortality.
Chronic bile duct hyperplasia is a chronic graft dysfunction following liver transplantation.
Jiang, Jian-Wen; Ren, Zhi-Gang; Cui, Guang-Ying; Zhang, Zhao; Xie, Hai-Yang; Zhou, Lin
2012-03-14
To investigate pathological types and influential factors of chronic graft dysfunction (CGD) following liver transplantation (LT) in rats. The whole experiment was divided into three groups: (1) normal group (n = 12): normal BN rats without any drug or operation; (2) syngeneic transplant group (SGT of BN-BN, n = 12): both donors and recipients were BN rats; and (3) allogeneic transplant group (AGT of LEW-BN, n = 12): Donors were Lewis and recipients were BN rats. In the AGT group, all recipients were subcutaneously injected by Cyclosporin A after LT. Survival time was observed for 1 year. All the dying rats were sampled, biliary tract tissues were performed bacterial culture and liver tissues for histological study. Twenty-one day after LT, 8 rats were selected randomly in each group for sampling. Blood samples from caudal veins were collected for measurements of plasma endotoxin, cytokines and metabonomic analysis, and faeces were analyzed for intestinal microflora. During the surgery of LT, no complications of blood vessels or bile duct happened, and all rats in each group were still alive in the next 2 wk. The long term observation revealed that a total of 8 rats in the SGT and AGT groups died of hepatic graft diseases, 5 rats in which died of chronic bile duct hyperplasia. Compared to the SGT and normal groups, survival ratio of rats significantly decreased in the AGT group (P < 0.01). Moreover, liver necrosis, liver infection, and severe chronic bile duct hyperplasia were observed in the AGT group by H and E stain. On 21 d after LT, compared with the normal group (25.38 ± 7.09 ng/L) and SGT group (33.12 ± 10.26 ng/L), plasma endotoxin in the AGT group was remarkably increased (142.86 ± 30.85 ng/L) (both P < 0.01). Plasma tumor necrosis factor-α and interleukin-6 were also significantly elevated in the AGT group (593.6 ± 171.67 pg/mL, 323.8 ± 68.30 pg/mL) vs the normal (225.5 ± 72.07 pg/mL, 114.6 ± 36.67 pg/mL) and SGT groups (321.3 ± 88.47 pg/mL, 205.2 ± 53.06 pg/mL) (P < 0.01). Furthermore, Bacterial cultures of bile duct tissues revealed that the rats close to death from the SGT and AGT groups were strongly positive, while those from the normal group were negative. The analysis of intestinal microflora was performed. Compared to the normal group (7.98 ± 0.92, 8.90 ± 1.44) and SGT group (8.51 ± 0.46, 9.43 ± 0.69), the numbers of Enterococcus and Enterobacteria in the AGT group (8.76 ± 1.93, 10.18 ± 1.64) were significantly increased (both P < 0.01). Meanwhile, compared to the normal group (9.62 ± 1.60, 9.93 ± 1.10) and SGT group (8.95 ± 0.04, 9.02 ± 1.14), the numbers of Bifidobacterium and Lactobacillus in the AGT group (7.83 ± 0.72, 8.87 ± 0.13) were remarkably reduced (both P < 0.01). In addition, metabonomics analysis showed that metabolic profiles of plasma in rats in the AGT group were severe deviated from the normal and SGT groups. Chronic bile duct hyperplasia is a pathological type of CGD following LT in rats. The mechanism of this kind of CGD is associated with the alterations of inflammation, intestinal barrier function and microflora as well as plasma metabolic profiles.
[Influence of intestinal microflora on the amino acid composition of lamb feces].
Combe, E
1976-01-01
6 conventional and 5 germfree male lambs were fed ad libitum a UHT sterilized cow milk. Body weight and food intake were recorded. Whole feces were collected for 5 consecutive days. Growth rate reached 259 g/d for the germfree. Daily fecal excretion of dry matter and nitrogenous compounds are not found different in the two groups of animals. The influence of intestinal microflora appears on the biochemical composition of the feces. As compared to the conventional fecal proteins from germfree lambs are very high in threonine and serine and low in lysine. Moreover the difference of amino acid composition between these two groups come not only from the histidine alanine and arginine composition of bacteries; it also involves the high levels of threonine serine cystine and tyrosine of the endogenous digestive proteins.
The intestinal B-cell response in celiac disease
Mesin, Luka; Sollid, Ludvig M.; Niro, Roberto Di
2012-01-01
The function of intestinal immunity is to provide protection toward pathogens while preserving the composition of the microflora and tolerance to orally fed nutrients. This is achieved via a number of tightly regulated mechanisms including production of IgA antibodies by intestinal plasma cells. Celiac disease is a common gut disorder caused by a dysfunctional immune regulation as signified, among other features, by a massive intestinal IgA autoantibody response. Here we review the current knowledge of this B-cell response and how it is induced, and we discuss key questions to be addressed in future research. PMID:23060888
[NEWS IN ETIOLOGY AND PATHOGENESIS OF IRRITATED BOWEL SYNDROME].
Sheptulin, A A; Vize-Khripunova, M A
2016-01-01
The concept of irritated bowel syndrome as a complex of functional disorders that can not be explained by organic changes and are totally due to intestinal motility and visceral sensitivity needs revision. The development of this syndrome also depends on a number of pathogenetic and etiological factors, such as inflammation of intestinal mucosa, changes of its permeability, previous infection, altered microflora, gene polymorphism, and food hypersensitivity.
Jung, Eun Sung; Park, Hye Min; Hyun, Seung Min; Shon, Jong Cheol; Singh, Digar; Liu, Kwang-Hyeon; Whon, Tae Woong; Bae, Jin-Woo; Hwang, Jae Sung; Lee, Choong Hwan
2017-01-01
The attenuating effects of green tea supplements (GTS) against the ultraviolet (UV) radiation induced skin damages are distinguished. However, the concomitant effects of GTS on the large intestinal microbiomes and associated metabolomes are largely unclear. Herein, we performed an integrated microbiome-metabolome analysis to uncover the esoteric links between gut microbiome and exo/endogenous metabolome maneuvered in the large intestine of UVB-exposed mice subjected to dietary GTS. In UVB-exposed mice groups (UVB), class Bacilli and order Bifidobacteriales were observed as discriminant taxa with decreased lysophospholipid levels compared to the unexposed mice groups subjected to normal diet (NOR). Conversely, in GTS fed UVB-exposed mice (U+GTS), the gut-microbiome diversity was greatly enhanced with enrichment in the classes, Clostridia and Erysipelotrichia, as well as genera, Allobaculum and Lachnoclostridium. Additionally, the gut endogenous metabolomes changed with an increase in amino acids, fatty acids, lipids, and bile acids contents coupled with a decrease in nucleobases and carbohydrate levels. The altered metabolomes exhibited high correlations with GTS enriched intestinal microflora. Intriguingly, the various conjugates of green tea catechins viz., sulfated, glucuronided, and methylated ones including their exogenous derivatives were detected from large intestinal contents and liver samples. Hence, we conjecture that the metabolic conversions for the molecular components in GTS strongly influenced the gut micro-environment in UVB-exposed mice groups, ergo modulate their gut-microbiome as well as exo/endogenous metabolomes.
Tazi, Asmaa; Disson, Olivier; Bellais, Samuel; Bouaboud, Abdelouhab; Dmytruk, Nicolas; Dramsi, Shaynoor; Mistou, Michel-Yves; Khun, Huot; Mechler, Charlotte; Tardieux, Isabelle; Trieu-Cuot, Patrick
2010-01-01
Streptococcus agalactiae (group B streptococcus; GBS) is a normal constituent of the intestinal microflora and the major cause of human neonatal meningitis. A single clone, GBS ST-17, is strongly associated with a deadly form of the infection called late-onset disease (LOD), which is characterized by meningitis in infants after the first week of life. The pathophysiology of LOD remains poorly understood, but our epidemiological and histopathological results point to an oral route of infection. Here, we identify a novel ST-17–specific surface-anchored protein that we call hypervirulent GBS adhesin (HvgA), and demonstrate that its expression is required for GBS hypervirulence. GBS strains that express HvgA adhered more efficiently to intestinal epithelial cells, choroid plexus epithelial cells, and microvascular endothelial cells that constitute the blood–brain barrier (BBB), than did strains that do not express HvgA. Heterologous expression of HvgA in nonadhesive bacteria conferred the ability to adhere to intestinal barrier and BBB-constituting cells. In orally inoculated mice, HvgA was required for intestinal colonization and translocation across the intestinal barrier and the BBB, leading to meningitis. In conclusion, HvgA is a critical virulence trait of GBS in the neonatal context and stands as a promising target for the development of novel diagnostic and antibacterial strategies. PMID:20956545
The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease.
Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E; Matteoli, Gianluca
2015-01-01
One of the main tasks of the immune system is to discriminate and appropriately react to "danger" or "non-danger" signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.
Liu, Ming-Yue; Li, Meng; Wang, Xiu-Ling; Liu, Peng; Hao, Qing-Hong; Yu, Xiu-Mei
2013-12-11
Arctium lappa L. (A. lappa) is a popularly used vegetable as well as herbal medicine. Human intestinal microflora was reported to convert arctiin, the lignan compound with highest content in the dried fruits of Arctium lappa, to a series of metabolites. However, the specific bacterium responsible for the formation of 3'-desmethylarctigenin (3'-DMAG), the most predominant metabolite of arctiin by rat or human intestinal microflora, has not been isolated yet. In the present study, we isolated one single bacterium, which we named Blautia sp. AUH-JLD56, capable of solely biotransforming arctiin or arctigenin to (-)-3'-DMAG. The structure of the metabolite 3'-DMAG was elucidated by electrospray ionization mass spectrometry (ESI-MS) and (1)H and (13)C nuclear magnetic resonance spectroscopy. The biotransforming kinetics and maximum biotransforming capacity of strain AUH-JLD56 was investigated. In addition, the metabolite 3'-DMAG showed significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than that of the substrate arctigenin at the concentrations tested.
NASA Astrophysics Data System (ADS)
Natsir, Muhammad Halim; Hartutik, Sjofjan, Osfar; Widodo, Eko; Widyastuti, Eny Sri
2017-05-01
The objective of this experiment was to evaluate the use of acidifier and herb-acidifier combinations on intestinal microflora, intestinal histology and serum characteristics of broilers at 35 days of age when fed a diet supplemented with natural acidifier (lactic acid and citric acid), and herb-acidifier combinations (natural acidifier and herbs (garlic and Phyllanthus niruri L.) encapsulated and non-encapsulated. Here, 192 (Lohmann) broiler chicks were fed a negative control diet, positive control diet (tetracycline), 1.2% acidifier non-encapsulated (ANE), 1.2% acidifier encapsulated (AE), 1.2% herb-acidifier combination non-encapsulated (CNE), or 1.2% herb-acidifier combination encapsulated (CE). The variables measured were the total colony of lactic acid bacteria, Escherichia coli and Salmonella sp., intestinal histological characteristics (crypt depth, villi number, villi length, and viscosity) and serum (total protein, serum albumin, and serum globulin). Results showed that during the 35-d growth period, there were significant differences (P<0.01) in increases of the total number of colonies of lactic acid bacteria and a decrease in the total colony of Escherichia coli and Salmonella sp., along with increasing intestinal histological characteristics (crypt depth, villi number, villi length, and viscosity) and total proteins in the serum, as well as significant effects (P<0.05) on intestinal pH and serum albumin. It is concluded that the use acidifiers or herb-acidifier combinations in encapsulation performed better than without encapsulation. Therefore using 1.2% of encapsulated combinations of herb-acidifiers in broiler diet is recommended.
Biological pathways involved in the development of inflammatory bowel disease.
Zemljic, Mateja; Pejkovic, Bozena; Krajnc, Ivan; Lipovsek, Saska
2014-10-01
Apoptosis, autophagy and necrosis are three distinct functional types of the mammalian cell death network. All of them are characterized by a number of cell's morphological changes. The inappropriate induction of cell death is involved in the pathogenesis of a number of diseases.Pathogenesis of inflammatory bowel diseases (ulcerative colitis, Crohn's disease) includes an abnormal immunological response to disturbed intestinal microflora. One of the most important reason in pathogenesis of chronic inflammatory disease and subsequent multiple organ pathology is a barrier function of the gut, regulating cellular viability. Recent findings have begun to explain the mechanisms by which intestinal epithelial cells are able to survive in such an environment and how loss of normal regulatory processes may lead to inflammatory bowel disease (IBD).This review focuses on the regulation of biological pathways in development and homeostasis in IBD. Better understanding of the physiological functions of biological pathways and their influence on inflammation, immunity, and barrier function will simplify our expertice of homeostasis in the gastrointestinal tract and in upgrading diagnosis and treatment.
Vinderola, Gabriel; Perdigón, Gabriela; Duarte, Jairo; Farnworth, Edward; Matar, Chantal
2006-11-01
Nutritional status has a major impact on the immune system. Probiotic effects ascribed to fermented dairy products arise not only from whole microorganisms but also from metabolites (peptides, exopolysaccharides) produced during the fermentation. We recently demonstrated the immunomodulating capacity of kefir in a murine model. We now aimed at studying the immunomodulating capacity in vivo of the products derived from milk fermentation by kefir microflora (PMFKM) on the gut. BALB/c mice received the PMFKM for 2, 5 or 7 consecutive days. IgA+ and IgG+ cells were determined on histological slices of the small and large intestine. IL-4, IL-6, IL-10, IL-12, IFNgamma and TNFalpha were determined in the gut, intestinal fluid and blood serum. IL-6 was also determined in the supernatant of a primary culture of small intestine epithelial cells challenged with PMFKM. PMFKM up-regulated IL-6 secretion, necessary for B-cell terminal differentiation to IgA secreting cells in the gut lamina propria. There was an increase in the number of IgA+ cells in the small and large intestine. The increase in the number of IgA+ cells was accompanied by an increase in the number of IL-4+, IL-10+ and IL-6+ cells in the small intestine. Effects of PMFKM in the large intestine were less widely apparent than the ones observed at the small intestine lamina propria. All cytokines that increased in the small intestine lamina propria, also did so in blood serum, reflecting here the immunostimulation achieved in the gut mucosa. We observed that the PMFKM induced a mucosal response and it was able to up and down regulate it for protective immunity, maintaining the intestinal homeostasis, enhancing the IgA production at both the small and large intestine level. The opportunity exists then to manipulate the constituents of the lumen of the intestine through dietary means, thereby enhancing the health status of the host.
Response of goose intestinal microflora to the source and level of dietary fiber.
Zhou, Haizhu; Guo, Wei; Zhang, Tao; Xu, Bo; Zhang, Di; Teng, Zhanwei; Tao, Dapeng; Lou, Yujie; Gao, Yunhang
2018-06-01
Geese are capable of digesting and making use of a high-fiber diet, but the mechanism is not well understood and would be of great significance for the development and utilization of roughage resources. In this study, we investigated the effect of dietary fiber (source: corn stover and alfalfa, included at 5% or 8%) on microflora in goose intestines. We used 35-day-old Carlos geese in which we first studied the influence of fiber ingestion on diet digestibility and immune organ indices of geese and found that high dietary fiber (8% content) significantly increased feed intake, the digestibility of neutral and acid detergent fiber, and thymus, bursa, and spleen size. Subsequently, we investigated the effect of dietary fiber on the microbial flora in the various intestinal segments by high throughput sequencing. The bacterial diversity and relative abundance were significantly affected by the type and amount of dietary fiber fed, including that of cellulolytic bacteria such as Bacteroides, Ruminococcus, Clostridium, and Pseudomonas spp. Finally, we isolated and identified 8 strains with cellulolytic ability from goose intestine and then analyzed their activities in combination. The optimal combination for cellulase activity was Cerea bacillus and Pseudomonas aeruginosa. This study has laid a theoretical and practical foundation for knowledge of the efficient conversion and utilization of cellulose by geese.
Hooper, Lora V.; Xu, Jian; Falk, Per G.; Midtvedt, Tore; Gordon, Jeffrey I.
1999-01-01
Little is known about how members of the indigenous microflora interact with their mammalian hosts to establish mutually beneficial relationships. We have used a gnotobiotic mouse model to show that Bacteroides thetaiotaomicron, a component of the intestinal microflora of mice and humans, uses a repressor, FucR, as a molecular sensor of l-fucose availability. FucR coordinates expression of an operon encoding enzymes in the l-fucose metabolic pathway with expression of another locus that regulates production of fucosylated glycans in intestinal enterocytes. Genetic and biochemical studies indicate that FucR does this by using fucose as an inducer at one locus and as a corepressor at the other locus. Coordinating this commensal’s immediate nutritional requirements with production of a host-derived energy source is consistent with its need to enter and persist within a competitive ecosystem. PMID:10449780
Dead bacteria reverse antibiotic-induced host defense impairment in burns.
Chen, Lee-Wei; Chen, Pei-Hsuan; Fung, Chang-Phone; Hsu, Ching-Mei
2014-10-01
Burn patients can incur high rates of hospital-acquired infections. The mechanism of antibiotic exposure on inducing infection vulnerability has not been determined. This study aimed to examine the effects of antibiotic treatment on host defense mechanisms. First we treated C57/BL6 mice with combined antibiotic treatment after 30% to 35% total body surface area burn. Animals were sacrificed at 48 hours after sham or thermal injury treatment. Bacterial counts in intestinal lumen and mucosa were measured. Next, we treated animals with or without oral dead Escherichia coli or Staphylococcus aureus supplementation to stimulate Toll-like receptor in the intestinal mucosa. Toll-like receptor 4, antibacterial protein expression, nuclear factor (NF)-κB DNA-binding activity, and bacteria-killing activity in the intestinal mucosa; intestinal permeability; bacterial translocation to mesenteric lymph nodes; Klebsiella pneumoniae translocation; interleukin-6 in the blood; and phagocytic activity of alveolar macrophages, were assessed. Thermal injury increased microflora and NF-κB DNA-binding activity of the intestine. Systemic antibiotic treatment decreased gut microflora and increased bacterial translocation to mesenteric lymph nodes, intestinal permeability, and interleukin-6 levels in the blood. Antibiotic treatment also decreased bacteria-killing activity in intestinal mucosa and phagocytic activity of alveolar macrophages. Oral dead E coli and S aureus supplementation induced NF-κB DNA-binding activity, Toll-like receptor 4, and antibacterial protein expression of the intestinal mucosa. Taken together with the fact that dead bacteria reversed antibiotic-induced K pneumoniae translocation and intestinal and pulmonary defense impairment, we conclude that combined antibiotic treatment results in systemic host defense impairment in burns through the decrease in intestinal flora. We suggest that dead bacteria supplementation could induce nondefensin protein expression and reverse antibiotic-induced gut and lung defense impairment in burn patients. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
21 CFR 529.469 - Competitive exclusion culture.
Code of Federal Regulations, 2010 CFR
2010-04-01
... for use. For early establishment of intestinal microflora in chickens to reduce Salmonella... this chapter. (c) [Reserved] (d) Conditions of use. Chickens—(1) Amount. Apply 25 milliliters of... administer antibiotics to treated chickens. [63 FR 25164, May 7, 1998] ...
21 CFR 529.469 - Competitive exclusion culture.
Code of Federal Regulations, 2012 CFR
2012-04-01
... for use. For early establishment of intestinal microflora in chickens to reduce Salmonella... this chapter. (c) [Reserved] (d) Conditions of use. Chickens—(1) Amount. Apply 25 milliliters of... administer antibiotics to treated chickens. [63 FR 25164, May 7, 1998] ...
21 CFR 529.469 - Competitive exclusion culture.
Code of Federal Regulations, 2011 CFR
2011-04-01
... for use. For early establishment of intestinal microflora in chickens to reduce Salmonella... this chapter. (c) [Reserved] (d) Conditions of use. Chickens—(1) Amount. Apply 25 milliliters of... administer antibiotics to treated chickens. [63 FR 25164, May 7, 1998] ...
Nath, Bipul; Nath, Lila Kanta
2013-01-01
The purpose of this research is to evaluate Sterculia urens gum as a carrier for a colon-targeted drug delivery system. Microflora degradation studies of Sterculia gum was conducted in phosphate-buffered saline pH 7.4 containing rat caecal medium under an anaerobic environment. Solubility, swelling index, viscosity, and pH of the polymer solution were determined. Different formulation aspects considered were gum concentration (10-40%) and concentration of citric acid (10-30%) on the swelling index and in-vitro dissolution release. The results of the isothermal stress testing showed that there is no degradation of samples of model drug, azathioprine, the drug polymer mixture, and the core tablet excipients. Differential scanning calorimetry and Fourier transform infrared spectroscopy study proved the compatibility of the drug with Sterculia gum and other tablet excipients. Microflora degradation study revealed that Sterculia gum can be used as tablet excipient for drug release in the colonic region by utilizing the action of enterobacteria. The swelling force of the Sterculia gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the mixed film coating under colonic microflora-activated environment. Sterculia gum gives premature drug release in the upper gastrointestinal tract without enteric coating and may not reach the colonic region. Sterculia gum as a colon-targeting carrier is possible via double-layer coating with chitosan/Eudragit RLPO (ammonio-methacrylate copolymer) mixed blend as well as enteric polymers, which would provide acid as well as intestinal resistance but undergo enzymatic degradation once reaching the colon. The aim of the research is to evaluate wheather Sterculia urens, which is a polysaccharide, is suitable as a carrier for colonic delivery of drugs acting locally in the colon. Sterculia gum has been reported to have wide pharmaceutical applications such as tablet binder, disintegrant, gelling agent, and as a controlled release polymer. Sterculia gum falls under the category of a polysaccharide and is yet to be evaluated as a carrier for colonic delivery of drugs. First the susceptibility of the polysaccharide gum in rat caecal microflora was investigated because true polysaccharides are degraded by the action of normal colonic bacteria. Bacterial degradation of the gum in the colonic environment was confirmed by adding a small quantity of the gum in rat caecal content mixed with phosphate-buffered saline pH 7.4 under an anaerobic environment. Solubility, swelling index, viscosity, and pH of the polymer solution were determined. Different formulation aspects considered were gum concentration (10-40%), concentration of citric acid (10-30%) on swelling index, and in vitro dissolution behavior. Isothermal stress testing was done to determine that there was no degradation of the model drug, azathioprine, with Sterculia gum excipient mixtures under stressed conditions. Differential scanning calorimetry and Fourier transform infrared spectroscopy study proved the compatibility of the drug with Sterculia gum and other tablet excipients. Microflora degradation study revealed that Sterculia gum is digested by the colonic microflora and therefore can be used as a tablet excipient for drug release in the colonic region utilizing the microflora degradation mechanism. Sterculia gum gives premature drug release in the upper gastrointestinal tract without enteric coating and may not reach the colonic region. Sterculia gum as colon-targeting carrier is possible via double-layer coating with chitosan/Eudragit RLPO (ammonio-methacrylate copolymer) and Eudragit L100 polymers, which would provide acid as well as intestinal resistance but undergo enzymatic degradation once reaching the colon.
Bow, E J; Louie, T J
1987-01-01
The ecologic effect of empiric systemic antibiotic therapy on the endogenous microflora was evaluated in 83 febrile granulocytopenic patients with cancer who were randomly allocated to receive moxalactam plus ticarcillin (45 patients) or tobramycin plus ticarcillin (38 patients) for suspected infection. Serial surveillance cultures of the nasal passages, oropharynx and feces performed twice a week showed that patients who received the former regimen had higher elimination rates and significantly lower acquisition rates (p = 0.027) for aerobic gram-negative bacilli than did patients who received the latter regimen. However, therapy with moxalactam plus ticarcillin also resulted in significantly higher acquisition rates for yeasts (p = 0.004). This was associated with a significantly higher fungal superinfection rate among these patients than among those who received tobramycin plus ticarcillin (40% v. 16%) (p less than 0.05). Moxalactam plus ticarcillin therapy created a greater microbial ecologic vacuum by the elimination of intestinal anaerobes, which, in turn, permitted fungal colonization and an increased risk of superinfection. Our results support the recommendation that an antipseudomonal penicillin plus an aminoglycoside be selected as empiric therapy for suspected infection in febrile granulocytopenic patients with cancer. Such a regimen would spare the anaerobic intestinal microflora, thereby reducing the risk of fungal colonization and infection. PMID:3304600
Zhang, Ming; Qiao, Xuewei; Zhao, Liang; Jiang, Lu; Ren, Fazheng
2011-12-01
Probiotics and carcinogens both have a significant effect on the microfloral composition of the human intestine. The objective of this study was to investigate the impact of an important carcinogen, 4-Nitroquinoline-1-Oxide on colonic microflora and the efficacy of the probiotic Lactobacillus salivarius REN as an agent of counteracting these effects. Using denaturing gradient gel electrophoresis (DGGE) combined with redundancy analysis, we demonstrated that both 4-Nitroquinoline-1-Oxide and L. salivarius REN significantly altered the bacterial communities of rat colons. A total of 27 bacterial strains were identified as being affected by treatment with 4-Nitroquinoline-1-Oxide or L. salivarius REN using a t-value biplot combined with band sequencing. 4-Nitroquinoline-1-Oxide treatment increased the abundance of two potential pathogens (one Helicobacter strain and one Desulfovibrio strain), as well as reducing the abundance of two potentially beneficial strains (one Ruminococcaceae strain and one Rumen bacteria). The Helicobacter strain was initally detected in carcinogen-treated rat intestinal microflora, but L. salivarius REN treatment effectively suppressed the growth of the Helicobacter strain. These results suggested that L. salivarius REN may be a potential probiotic, efficiently acting against the initial infection with, and the growth of pathogenic bacteria.
Choi, Yohan; Hosseindoust, Abdolreza; Goel, Akshat; Lee, Suhyup; Jha, Pawan Kumar; Kwon, Ill Kyong; Chae, Byung-Jo
2017-01-01
In the present study, role of increasing levels of Ecklonia cava (seaweed) supplementation in diets was investigated on growth performance, coefficient of total tract apparent digestibility (CTTAD) of nutrients, serum immunoglobulins, cecal microflora and intestinal morphology of weanling pigs. A total of 200 weaned pigs (Landrace×Yorkshire×Duroc; initial body weight 7.08±0.15 kg) were randomly allotted to 4 treatments on the basis of body weight. There were 5 replicate pens in each treatment including 10 pigs of each. Treatments were divided by dietary Ecklonia cava supplementation levels (0%, 0.05%, 0.1%, or 0.15%) in growing-finishing diets. There were 2 diet formulation phases throughout the experiment. The pigs were offered the diets ad libitum for the entire period of experiment in meal form. The pigs fed with increasing dietary concentrations of Ecklonia cava had linear increase (p<0.05) in the overall average daily gain, however, there were no significant differences in gain to feed ratio, CTTAD of dry matter and crude protein at both phase I and phase II. Digestibility of gross energy was linearly improved (p<0.05) in phase II. At day 28, pigs fed Ecklonia cava had greater (linear, p<0.05) Lactobacillus spp., fewer Escherichia coli ( E. coli ) spp. (linear, p<0.05) and a tendency to have fewer cecal Clostridium spp. (p = 0.077). The total anaerobic bacteria were not affected with supplementation of Ecklonia cava in diets. Polynomial contrasts analysis revealed that villus height of the ileum exhibited a linear increase (p<0.05) in response with the increase in the level of dietary Ecklonia cava . However, villus height of duodenum and jejunum, crypt depth, villus height to crypt depth ratio of different segments of the intestine were not affected. The results suggest that Ecklonia cava had beneficial effects on the growth performance, cecal microflora, and intestinal morphology of weanling pigs.
Xu, Z R; Hu, C H; Xia, M S; Zhan, X A; Wang, M Q
2003-06-01
Two hundred forty male Avian Farms broiler chicks, 1 d of age, were randomly allocated to four treatments, each of which had five pens of 12 chicks per pen. The chicks were used to investigate the effects of fructooligosaccharide (FOS) on digestive enzyme activities and intestinal microflora and morphology. The chicks received the same basal diet based on corn-soybean meal, and FOS was added to the basal diet at 0, 2.0, 4.0, and 8.0 g/kg diet at the expense of corn. Addition of 4.0 g/kg FOS to the basal diet significantly increased average daily gain of broilers. The feed-to-gain ratios were significantly decreased for the birds fed diets with 2.0 and 4.0 g/kg FOS versus the control. Addition of 4.0 g/kg FOS enhanced the growth of Bifidobacterium and Lactobacillus, but inhibited Escherichia coli in the small intestinal and cecal digesta. Supplementation of 2.0 or 4.0 g/kg FOS to chicks significantly improved the activities of amylase compared to the control (12.80 or 14.75 vs. 8.42 Somogyi units). A significant increase in the activities of total protease was observed in 4.0 g/kg FOS-treated birds versus controls (83.91 vs. 65.97 units). Morphology data for the duodenum, jejunum, and ileum showed no significant differences for villus height, crypt depth, or microvillus height at the duodenum. By contrast, addition of 4.0 g/kg FOS significantly increased ileal villus height, jejunal and ileal microvillus height, and villus-height-to-crypt-depth ratios at the jejunum and ileum and decreased crypt depth at the jejunum and ileum. However, addition of 8.0 g/kg FOS had no significant effect on growth performance, digestive enzyme activities, intestinal microflora, or morphology.
Dietary influence of kefir on microbial activities in the mouse bowel.
Marquina, Domingo; Santos, A; Corpas, I; Muñoz, J; Zazo, J; Peinado, J M
2002-01-01
In this work the microflora present in kefir, a fermented milk product, was studied together with the effect of kefir administration on different groups of indigenous bacteria of mouse bowel. Kefir microflora was composed of lactic acid bacteria, acetic acid bacteria and yeasts. Yeast population was composed of Saccharomyces cerevisiae, S. unisporus, Candida kefir, Kluyveromyces marxianus and K. lactis. The streptococci levels in kefir treated mice increased by 10-fold and the levels of sulfite-reducing clostridia decreased by 100-fold. The number of lactic acid bacteria increased significantly. The administration of kefir significantly increased the lactic acid bacteria counts in the mucosa of the bowel. Ingestion of kefir specifically lowered microbial populations of Enterobacteriaceae and clostridia. This is the first long-term study about the effects of the kefir administration on the intestinal microflora of mice.
Wang, Canhong; Yang, Shuxian; Gao, Li; Wang, Lili; Cao, Li
2018-05-23
The compound 5-fluorouracil (5-FU) is the first choice chemotherapeutic agent for the treatment of colorectal cancer (CRC), but intestinal mucositis is a primary limiting factor in anticancer therapy. There is currently no broadly effective targeted treatment to cure this side effect. Carboxymethylated pachyman (CMP) is a polysaccharide that is modified from the structure of pachyman isolated from Poria cocos (Chinese name: Fu Ling). Meanwhile, recent studies have shown that CMP exhibits immune regulatory, anti-inflammatory and antioxidant activities. Therefore, the purpose of this study was to evaluate the intestinal protective effect of CMP in 5-FU-treated CT26 tumour-bearing mice and to further explore its underlying mechanism(s) of action. Initially, a CT26 colon carcinoma xenograft mice model was established. The colon length, colon tissue injury, intestinal flora, short-chain fatty acids (SCFAs) and indicators linked to inflammation, antioxidation and apoptosis were then measured. Our results showed that CMP in combination with 5-FU reversed intestinal shortening (p < 0.01) and alleviated 5-FU-induced colon injury (p < 0.001) via suppression of ROS production; increasing the levels of CAT, GSH-Px and GSH; decreasing expression of NF-κB, p-p38 and Bax; and elevating the levels of Nrf2 and Bcl-2. More importantly, CMP had a significant impact and counteracted the intestinal microflora disorders produced by 5-FU by increasing the proportion of Bacteroidetes, lactobacilli, and butyric acid-producing and acetic acid-producing bacteria and restoring the intestinal flora diversity. Overall, this work suggested that CMP could regulate the ecological balance of the intestinal flora and reduce colon injuries induced by 5-FU in CT26 tumour-bearing mice, and the mechanism involved may be associated with the regulation of the NF-κB, Nrf2-ARE and MAPK/P38 pathways.
Kuznetsova, T A; Makarenkova, I D; Koneva, E L; Aminina, N M; Yakush, E V
2015-01-01
The article represents the results of studying the effect of a new fermented product (FP) containing the probiotic strain Bifidobacterium bifidum 791 and Biogel from brown algae Laminariajaponica on the composition of intestinal microflora and parameters of innate immunity in mice with experimental dysbacteriosis, induced by administration of gentamicin in dose of 25 mg per kg body weight during 7 days. The experimental animals received for 6 weeks in addition to the diet FP, which was 2% of the average volume of feed intake. The FP influence was manifested by more rapid reduction of dyspepsia symptoms, restoration of body weight and balance the intestinal microbiocenosis (increasing of bifido- and lactobacteria, typical E. coli, reducing of the bacteria genus Proteus and Clostridium, elimination of S. aureus). As the results of FP administration we observed the statistically significant reduction of endogenous intoxication values and increasing of the phagocyte activity of neutrophils, related to effector cells of innate immunity, compared with animals not receiving FP. Identified effects of FP are due to both its probiotic properties through the presence of bifidobacteria and immunomodulating and enteral sorbtion activities of alginate component.
The systems biology of uric acid transporters: the role of remote sensing and signaling.
Nigam, Sanjay K; Bhatnagar, Vibha
2018-07-01
Uric acid homeostasis in the body is mediated by a number of SLC and ABC transporters in the kidney and intestine, including several multispecific 'drug' transporters (e.g., OAT1, OAT3, and ABCG2). Optimization of uric acid levels can be viewed as a 'systems biology' problem. Here, we consider uric acid transporters from a systems physiology perspective using the framework of the 'Remote Sensing and Signaling Hypothesis.' This hypothesis explains how SLC and ABC 'drug' and other transporters mediate interorgan and interorganismal communication (e.g., gut microbiome and host) via small molecules (e.g., metabolites, antioxidants signaling molecules) through transporters expressed in tissues lining body fluid compartments (e.g., blood, urine, cerebrospinal fluid). The list of uric acid transporters includes: SLC2A9, ABCG2, URAT1 (SLC22A12), OAT1 (SLC22A6), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT10 (SLC22A13), NPT1 (SLC17A1), NPT4 (SLC17A3), MRP2 (ABCC2), MRP4 (ABCC4). Normally, SLC2A9, - along with URAT1, OAT1 and OAT3, - appear to be the main transporters regulating renal urate handling, while ABCG2 appears to regulate intestinal transport. In chronic kidney disease (CKD), intestinal ABCG2 becomes much more important, suggesting remote organ communication between the injured kidney and the intestine. The remote sensing and signaling hypothesis provides a useful systems-level framework for understanding the complex interplay of uric acid transporters expressed in different tissues involved in optimizing uric acid levels under normal and diseased (e.g., CKD, gut microflora dysbiosis) conditions.
Zhu, J; Zhu, C; Ge, S; Zhang, M; Jiang, L; Cui, J; Ren, F
2014-07-01
The objective of this study was to investigate the impact of Lactobacillus salivarius Ren (LS) on modulating colonic micro flora structure and influencing host colonic health in a rat model with colorectal precancerous lesions. Male F344 rats were injected with 1, 2-dimethylhydrazine (DMH) and treated with LS of two doses (5 × 10(8) and 1 × 10(10) CFU kg(-1) body weight) for 15 weeks. The colonic microflora profiles, luminal metabolites, epithelial proliferation and precancerous lesions [aberrant crypt foci (ACF)] were determined. A distinct segregation of colonic microflora structures was observed in LS-treated group. The abundance of one Prevotella-related strain was increased, and the abundance of one Bacillus-related strain was decreased by LS treatment. These changes were accompanied by increased short-chain fatty acid levels and decreased azoreductase activity. LS treatment also reduced the number of ACF by c. 40% and suppressed epithelial proliferation. Lactobacillus salivarius Ren improved the colonic microflora structures and the luminal metabolisms in addition preventing the early colorectal carcinogenesis in DMH-induced rat model. Colonic microflora is an important factor in colorectal carcinogenesis. Modulating the structural shifts of microflora may provide a novel option for preventing colorectal carcinogenesis. This study suggested a potential probiotic-based approach to modulate the intestinal microflora in the prevention of colorectal carcinogenesis. © 2014 The Society for Applied Microbiology.
Analysis of the Small Intestinal Microbiome of Children With Autism
2013-05-01
appears to be some indication of the gut microflora differing between the autistic and control groups. On Figure 6, the whole microbiome of...Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. (2006). Metagenomic analysis of the human distal gut microbiome ...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-10-1-0477 Analysis of the Small Intestinal Microbiome in Children with Autism 5b. GRANT NUMBER
Immunology and probiotic impact of the newborn and young children intestinal microflora.
Bezirtzoglou, Eugenia; Stavropoulou, Elisabeth
2011-12-01
Human body has developed a holistic defence system, which mission is either to recognize and destroy the aggressive invaders or to evolve mechanisms permitting to minimize or restore the consequences of harmful actions. The host immune system keeps the capital role to preserve the microbial intestinal balance via the barrier effect. Specifically, pathogenic invaders such as, bacteria, parasites, viruses and other xenobiotic invaders are rejected out of the body via barriers formed by the skin, mucosa and intestinal flora. In case physical barriers are breached, the immune system with its many components comes into action in order to fence infection. The intestine itself is considered as an "active organ" due to its abundant bacterial flora and to its large metabolic activity. The variation among different species or even among different strains within a species reflects the complexity of the genetic polymorphism which regulates the immune system functions. Additionally factors such as, gender, particular habits, smoking, alcohol consumption, diet, religion, age, gender, precedent infections and vaccinations must be involved. Hormonal profile and stress seems to be associated to the integrity microbiota and inducing immune system alterations. Which bacterial species are needed for inducing a proper barrier effect is not known, but it is generally accepted that this barrier function can be strongly supported by providing benefic alimentary supplements called functional foods. In this vein it is stressed the fact that early intestinal colonization with organisms such as Lactobacilli and Bifidobacteria and possibly subsequent protection from many different types of diseases. Moreover, this benefic microflora dominated but Bifidobacteria and Lactobacilli support the concept of their ability to modify the gut microbiota by reducing the risk of cancer following their capacity to decrease β-glucoronidase and carcinogen levels. Because of their beneficial roles in the human gastrointestinal tract, LAB are referred to as "probiotics", and efforts are underway to employ them in modern nutrition habits with so-called functional foods. Members of Lactobacillus and Bifidobacterium genera are normal residents of the microbiota in the human gastrointestinal tract, in which they developed soon after birth. But, whether such probiotic strains derived from the human gut should be commercially employed in the so-called functional foods is a matter of debate between scientists and the industrial world. Within a few hours from birth the newborn develops its normal bacterial flora. Indeed human milk frequently contains low amounts of non-pathogenic bacteria like Streptococcus, Micrococcus, Lactobacillus, Staphylococcus, Corynebacterium and Bifidobacterium. In general, bacteria start to appear in feces within a few hours after birth. Colonization by Bifidobacterium occurs generally within 4 days of life. Claims have been made for positive effects of Bifidobacterium on infant growth and health. The effect of certain bacteria having a benefic action on the intestinal ecosystem is largely discussed during the last years by many authors. Bifidobacterium is reported to be a probiotic bacterium, exercising a beneficial effect on the intestinal flora. An antagonism has been reported between B. bifidum and C. perfringens in the intestine of newborns delivered by cesarean section. The aim of the probiotic approach is to repair the deficiencies in the gut flora and restore the protective effect. However, the possible ways in which the gut microbiota is being influenced by probiotics is yet unknown. Copyright © 2011 Elsevier Ltd. All rights reserved.
Petrukhina, N B; Zorina, O A; Shikh, E V; Kartysheva, E V
The aim of the study was to assess correlations of subgingival biofilm and intestinal microbiota in patients with chronic periodontal disease (CPD) and metabolic syndrome (MS). The study included 80 patients divided in 2 groups: 40 healthy individuals with no signs of periodontal disease and 40 patients with CPD and MS. Oral and intestinal microbial consortia compositions were revealed using deep sequencing libraries of 16S rDNA. The study showed than the qualitative composition of the intestinal microbiome in patients with CPD differ significantly from the microbiome of controls. Real-time PCR of subgingival microflora in CPD patients revealed high content of P. gingivalis, T. forsythia and T. denticola, while in intestinal microbiome dominated representatives of Enterobacteriaceae and Eubacteriaceae families with signs of intestinal dysbiosis mostly associated with the decrease of protective species.
Nath, Bipul; Nath, Lila Kanta
2013-11-01
The present study was aimed at designing a microflora triggered colon-targeted drug delivery system (MCDDS) based on swellable polysaccharide, Sterculia gum in combination with biodegradable polymers with a view to target azathioprine (AZA) in the colon for the treatment of IBD with reduced systemic toxicity. The microflora degradation study of gum was investigated in rat cecal medium. The polysaccharide tablet was coated to different film thicknesses with blends of chitosan/Eudragit RLPO and over coated with Eudragit L00 to provide acid and intestinal resistance. Swelling and drug release studies were carried out in simulated gastric fluid (SGF) (pH 1.2), simulated intestinal fluid (SIF) (pH 6.8) and simulated colonic fluid (SCF) (pH 7.4 under anaerobic environment), respectively. Drug release study in SCF revealed that swelling force of the gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudragit coating in microflora-activated environment. Chitosan in the mixed film coat was found to be degraded by enzymatic action of the microflora in the colon. Release kinetic data revealed that, the optimized MCDDS was fitted well into first order model and apparent lag time was found to be 6 h, followed by Higuchi spherical matrix release. The degradation of chitosan was the rate-limiting factor for drug release in the colon. In-vivo study in rabbit shows delayed T(max), prolonged absorption time, decreased C(max) and absorption rate constant (Ka) indicating reduced systemic toxicity of the drug as compared to other dosage forms.
Nutritional modulators of ulcerative colitis: Clinical efficacies and mechanistic view
Sung, Mi-Kyung; Park, Mi-Young
2013-01-01
Ulcerative colitis (UC) is an inflammation-associated disease of the colon and rectum. The onset and progress of the disease are directly influenced by the nature of the intestinal microflora, the intestinal barrier function, and the immunological responses of the host. The epithelial invasion of pathogenic bacteria due to excess contact and/or barrier dysfunction is related to inflammation mediated by intestinal immune responses. Although the etiology of UC is not clearly understood, recent studies have shown a rising incidence of UC worldwide, and this phenomenon is more prominent in Asian countries and in Asian immigrants in Western countries. The increased prevalence of UC also contributes to an increased risk of developing colorectal cancer. Environmental factors, including changes in dietary habits, have been suggested as major risk factors of UC. A systematic review showed a negative association between UC risk and vegetable intake, whereas total fat, omega-6 fatty acids and meat intake were positively associated with an increased risk of UC. Individual dietary factors and energy balance have been suggested as having important roles in inducing changes in the microbial population and intestinal barrier integrity and in regulating inflammatory immune responses, directly or indirectly. Excess energy intake is now known to increase pathogenic microbial populations. Likewise, the application of appropriate probiotics may reverse the pathogenic progression of the disease. In the meantime, dietary anti-inflammatory compounds, including omega-3 fatty acids and other phytochemicals, may directly suppress inflammatory responses in the course of UC development. In this review, the increased prevalence of UC and its management are interpreted from the standpoint of nutritional modulation to regulate the intestinal microflora population, intestinal epithelium permeability, and inflammatory responses. PMID:23467687
Nutritional modulators of ulcerative colitis: clinical efficacies and mechanistic view.
Sung, Mi-Kyung; Park, Mi-Young
2013-02-21
Ulcerative colitis (UC) is an inflammation-associated disease of the colon and rectum. The onset and progress of the disease are directly influenced by the nature of the intestinal microflora, the intestinal barrier function, and the immunological responses of the host. The epithelial invasion of pathogenic bacteria due to excess contact and/or barrier dysfunction is related to inflammation mediated by intestinal immune responses. Although the etiology of UC is not clearly understood, recent studies have shown a rising incidence of UC worldwide, and this phenomenon is more prominent in Asian countries and in Asian immigrants in Western countries. The increased prevalence of UC also contributes to an increased risk of developing colorectal cancer. Environmental factors, including changes in dietary habits, have been suggested as major risk factors of UC. A systematic review showed a negative association between UC risk and vegetable intake, whereas total fat, omega-6 fatty acids and meat intake were positively associated with an increased risk of UC. Individual dietary factors and energy balance have been suggested as having important roles in inducing changes in the microbial population and intestinal barrier integrity and in regulating inflammatory immune responses, directly or indirectly. Excess energy intake is now known to increase pathogenic microbial populations. Likewise, the application of appropriate probiotics may reverse the pathogenic progression of the disease. In the meantime, dietary anti-inflammatory compounds, including omega-3 fatty acids and other phytochemicals, may directly suppress inflammatory responses in the course of UC development. In this review, the increased prevalence of UC and its management are interpreted from the standpoint of nutritional modulation to regulate the intestinal microflora population, intestinal epithelium permeability, and inflammatory responses.
Adak, Atanu; Ghosh; Mondal, Keshab Chandra
2014-11-01
At high altitude (HA) hypobaric hypoxic environment manifested several pathophysiological consequences of which gastrointestinal (GI) disorder are very common phenomena. To explore the most possible clue behind this disorder intestinal flora, the major player of the GI functions, were subjected following simulated hypobaric hypoxic treatment in model animal. For this, male albino rats were exposed to 55 kPa (approximately 4872.9 m) air pressure consecutively for 30 days for 8 h/day and its small intestinal microflora, their secreted digestive enzymes and stress induced marker protein were investigated of the luminal epithelia. It was observed that population density of total aerobes significantly decreased, but the quantity of total anaerobes and Escherichia coli increased significantly after 30 days of hypoxic stress. The population density of strict anaerobes like Bifidobacterium sp., Bacteroides sp. and Lactobacillus sp. and obligate anaerobes like Clostridium perfringens and Peptostreptococcus sp. were expanded along with their positive growth direction index (GDI). In relation to the huge multiplication of anaerobes the amount of gas formation as well as content of IgA and IgG increased in duration dependent manner. The activity of some luminal enzymes from microbial origin like a-amylase, gluco-amylase, proteinase, alkaline phosphatase and beta-glucuronidase were also elevated in hypoxic condition. Besides, hypoxia induced in formation of malondialdehyde along with significant attenuation of catalase, glutathione peroxidase, superoxide dismutase activity and lowered GSH/GSSG pool in the intestinal epithelia. Histological study revealed disruption of intestinal epithelial barrier with higher infiltration of lymphocytes in lamina propia and atrophic structure. It can be concluded that hypoxia at HA modified GI microbial imprint and subsequently causes epithelial barrier dysfunction which may relate to the small intestinal dysfunction at HA.
Potential role of probiotics on colorectal cancer prevention
2012-01-01
Background Colorectal cancer represents the most common malignancy of the gastrointestinal tract. Owing to differences in dietary habits and lifestyle, this neoplasm is more common in industrialized countries than in developing ones. Evidence from a wide range of sources supports the assumption that the link between diet and colorectal cancer may be due to an imbalance of the intestinal microflora. Discussion Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a healthy benefit on the host, and they have been investigated for their protective anti-tumor effects. In vivo and molecular studies have displayed encouraging findings that support a role of probiotics in colorectal cancer prevention. Summary Several mechanisms could explain the preventive action of probiotics against colorectal cancer onset. They include: alteration of the intestinal microflora; inactivation of cancerogenic compounds; competition with putrefactive and pathogenic microbiota; improvement of the host’s immune response; anti-proliferative effects via regulation of apoptosis and cell differentiation; fermentation of undigested food; inhibition of tyrosine kinase signaling pathways. PMID:23173670
The role of intestinal microflora in the activation of benzidine and benzidine congener based dyes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerniglia, C.E.; Franklin, W.; Campbell, W.L.
1988-09-01
Benzidine-based dyes are widely used in the dye manufacturing, textile dyeing, color paper printing and leather industries. Some benzidine based dyes have been shown to be carcinogenic due to their biotransformation in the liver or in the gastrointestinal tract to benzidine, a long recognized human urinary bladder carcinogen. Occupational exposure to workers can be through skin absorption, inhalation and ingestion of the benzidine based dyes. Previous studies of benzidine based dye metabolism have shown that enzymatic reduction of the azo group, yielding benzidine is an essential step in the activation of these compounds to genotoxic species. Azo reduction activity ismore » present in both the liver and gastrointestinal tract and little is known whether the first step in the toxification process of benzidine based dyes occurs at either site. They are investigating the capacity of intestinal microflora to metabolize benzidine-based dyes and determine their overall importance in the activation of this class of industrially important chemicals.« less
Microflora of the penile skin-lined neovagina of transsexual women
2009-01-01
Background The microflora of the penile skin-lined neovagina in male-to-female transsexuals is a recently created microbial niche which thus far has been characterized only to a very limited extent. Yet the knowledge of this microflora can be considered as essential to the follow-up of transsexual women. The primary objective of this study was to map the neo-vaginal microflora in a group of 50 transsexual women for whom a neovagina was constructed by means of the inverted penile skin flap technique. Secondary objectives were to describe possible correlations of this microflora with multiple patients' characteristics, such as sexual orientation, the incidence of vaginal irritation and malodorous vaginal discharge. Results Based on Gram stain the majority of smears revealed a mixed microflora that had some similarity with bacterial vaginosis (BV) microflora and that contained various amounts of cocci, polymorphous Gram-negative and Gram-positive rods, often with fusiform and comma-shaped rods, and sometimes even with spirochetes. Candida cells were not seen in any of the smears. On average 8.6 species were cultured per woman. The species most often found were: Staphylococcus epidermidis, Streptococcus anginosus group spp., Enterococcus faecalis, Corynebacterium sp., Mobiluncus curtisii and Bacteroides ureolyticus. Lactobacilli were found in only one of 30 women There was no correlation between dilatation habits, having coitus, rinsing habits and malodorous vaginal discharge on the one hand and the presence of a particular species on the other. There was however a highly significant correlation between the presence of E. faecalis on the one hand and sexual orientation and coitus on the other (p = 0.003 and p = 0.027 respectively). Respectively 82%, 58% and 30% of the samples showed an amplicon after amplification with M. curtisii, Atopobium vaginae and Gardnerella vaginalis primer sets. Conclusion Our study is the first to describe the microflora of the penile skin-lined neovagina of transsexual women. It reveals a mixed microflora of aerobe and anaerobe species usually found either on the skin, in the intestinal microflora or in a BV microflora. PMID:19457233
Probiotics, prebiotics and child health: where are we going?
Salvini, F; Granieri, L; Gemmellaro, L; Giovannini, M
2004-01-01
Changes in gastrointestinal (GI) bacteria caused by diet, antibiotics or other factors could alter enteric and systemic immune functions; changing the gut microflora composition by diet supplementation with specific live microbiota (probiotics) may be beneficial. The 'natural' target of ingested probiotics is the intestine, its microflora and associated immune system. Most published data concern use of probiotics to prevent and treat GI infections. Evidence for possible beneficial effects on mucosal barrier dysfunctions, including food allergy, inflammatory bowel disease, and respiratory and urinary tract infections, is emerging. The role of prebiotics (non-digestible oligosaccharides that reduce the growth or virulence of pathogens and induce systemic effects) is being investigated. Preliminary studies indicate that prebiotics may be useful dietary adjuncts for managing GI infections. Prebiotic and probiotic use in infants is attempting to modify a complex microbial ecosystem. Better understanding of the long-term effects of these interventions on infant gut microflora is an important goal.
[Effect of fluoride on gut microflora of silkworm (Bombyx mori)].
Li, Guannan; Xia, Xuejuan; Sendegeya, Parfait; Zhao, Huanhuan; Long, Yaohang; Zhu, Yong
2015-07-04
We examined the effect of fluoride on gut microflora of silkworm. After DNA extraction and PCR amplification, clone libraries of 16S rRNA gene fragment were constructed. Amplified ribosomal DNA restriction analysis (ARDRA) was performed by digestion of the 16S rRNA gene, and each unique restriction fragment polymorphism pattern was designated as an operational taxonomic unit (OTU). A total of 14 OTUs were identified from intestinal samples of both T6 and 734. Phylogenetic trees of bacterial 16S rRNA nucleotide sequences were constructed and analyzed. Furthermore, the dominant bacteria were studied by the nested polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DDGE) technology. After fluorosis, the flora of Enterococcus and Bacillus reduced. However, the flora of Staphylococcus increased. Fluoride can destroy the balance of microflora in the gut of silkworm by changing the bacteria diversity and proportion, which has bigger effect to 734 than T6.
Soboleva, S V; Zlatnik, E Ia; Mineeva, L D; Kaplin, M M; Shamanova, G P
1989-01-01
A new biologically active supplement (BAS) for infant food was tested at an Infant's Home. BAS-IG contains lactoglobulin, an immune preparation against colibacillus and Proteus. During the primary examination of the infants in the Infant's Home intestinal dysbacteriosis was revealed in 100% of the infants, clinical signs of dysbacteriosis were detected in 88.4% of the infants. Two successive courses of feeding the infants with products enriched with the new supplement resulted in a significant improvement of the microflora composition in them and in normalizing their clinical condition. At the same time positive changes in a number of immunological factors were recorded. The authors have recommended using BAS-IG for correction of dysbacteriosis in children at Infant's Homes.
Rehman, H U
1999-08-01
Fish odour syndrome (trimethylaminuria) is a metabolic syndrome caused by abnormal excretion of trimethylamine in the breath, urine, sweat, saliva and vaginal secretions. Trimethylamine is derived from the intestinal bacterial degradation of foods rich in choline and carnitine and is normally oxidised by the liver to odorless trimethylamine N-oxide which is then excreted in the urine. Impaired oxidation of trimethylamine is thought to be the cause of the fish odour syndrome and is responsible for the smell of rotting fish. Certain foods rich in choline exacerbate the condition and the patients have a variety of psychological problems. Recognition of the condition is important as dietary adjustments reduce the excretion of trimethylamine and may reduce the odour. Occasionally, a short course of metronidazole, neomycin and lactulose may suppress production of trimethylamine by reducing the activity of gut microflora.
Intestinal contents of a late Pleistocene mastodont from midcontinental north America
NASA Astrophysics Data System (ADS)
Lepper, Bradley T.; Frolking, Tod A.; Fisher, Daniel C.; Goldstein, Gerald; Sanger, Jon E.; Wymer, Dee Anne; Ogden, J. Gordon; Hooge, Paul E.
1991-07-01
Salvage excavations of a nearly complete and remarkably well-preserved skeleton of an American mastodont ( Mammut americanum) in Licking County, Ohio, yielded a discrete, cylindrical mass of plant material found in association with articulated vertebrae and associated ribs. This material is interpreted as intestinal contents of the mastodont and paleobotanical analyses indicate that the mastodont diet included significant amounts of low, herbaceous vegetation. Enteric bacteria ( Enterobacter cloacae), isolated from a sample of this material, are believed to represent survivors or descendants of the intestinal microflora of the mastodont. This is the first report of the isolation of bacteria associated with late Pleistocene megafauna.
Ozawa, A; Nagao, T; Sawamura, S; Ikigai, H
1984-12-01
No significant difference was seen in the incidence of infections between subjects receiving complete, selective and no decontamination aimed at the intestinal microflora in studies evaluating the preventative potential against endogenous infections in the compromised host maintained under protective isolation. This finding is reported together with a report of Serratia marcescens septicemia in a patient with leukemia who was given antibiotics systemically and kept under protective isolation. The establishment of opportunistic infections in relation to these results is discussed in terms of the biological phenomena of the interaction between the intestinal flora and the host, and between the species comprising the intestinal flora.
Patented non-antibiotic agents as animal feed additives.
Thormar, Halldor
2012-08-01
For a long time it was a common practice to add subtherapeutic amounts of antibiotics, such as tetracycline, to the feeds of livestock to promote growth and improve productivity. When antibiotic resistance in foodborne human pathogens was reported, this practice was either banned or voluntarily abandoned in many countries. The task of controlling the intestinal microflora in food animals, in the absence of antibiotics, is two-fold. First, to modulate the composition and number of commensal bacteria in the gastrointestinal tract so that it is as favorable as possible to the health and productivity of the animal. Second, to reduce asymptomatic intestinal colonization by pathogenic bacteria in the animals to lower the possibility of foodborne transmission to humans. Unfortunately, the knowledge of what constitutes a healthy, balanced intestinal microflora is still incomplete. This makes the task of favorably changing its composition difficult. However, modulation by means of natural feed supplements has been successfully practised for a number of years, the most important being probiotics, prebiotics, bacteriocins, organic acids, enzymes, bioactive phytochemicals, antimicrobial peptides, lipids and bacteriophages. A number of patents and patent applications have been published recently describing new supplements of various types. Many new compounds can therefore be expected to enter the market in the near future.
USDA-ARS?s Scientific Manuscript database
Daidzein is an isoflavone found primarily in soybean and various soy-based products such as tofu. In the intestines, daidzein is reductively transformed to its constituent metabolites equol and O-desmethylangolensin. Although the ingestion of daidzein has been associated with marked physiological im...
Potential probiotic effects of lactic acid bacteria on ruminant performance
USDA-ARS?s Scientific Manuscript database
Probiotics are microbial feed supplements that benefit animals by improving the microbial community of the digestive tract. In humans, probiotics are species that can survive the stomach and influence the intestinal microflora. The mode of action of human probiotics is not as yet proven. However, th...
Complete genome sequence of multidrug-resistant plesiomonas shigelloides strain MS-17-188
USDA-ARS?s Scientific Manuscript database
Plesiomonas shigelloides is the predominant species isolated from intestinal microflora of catfish, catfish pond sediment, and water in the southeastern United States. P. shigelloides strain MS-17-188 was recovered from a diseased catfish in 2017 from the Aquatic Diagnostic Laboratory at the College...
Effects of antibiotics on the gut microbes
USDA-ARS?s Scientific Manuscript database
In addition to providing nutritional benefits, the indigenous gastrointestinal microflora of the horse provide protection from various pathogens. When the normal microflora are disturbed, there is increased potential for the pathogens to colonize the gastrointestinal tract and cause disease. Certain...
USDA-ARS?s Scientific Manuscript database
The consumption of pomegranate products leads to a significant accumulation of ellagitannins in the large intestines, where they interact with complex gut microflora. This study investigated the effect of pomegranate tannin constituents on the growth of various species of human gut bacteria. Our r...
Podsędek, Anna; Koziołkiewicz, Maria
2014-01-01
Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method) and antioxidant capacity (ABTS and FRAP assays) strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay) in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage. PMID:24575407
Huang, Hsin-Lun; Liu, Cheng-Tzu; Chou, Ming-Chih; Ko, Chien-Hui; Wang, Chin-Kun
2015-06-01
Intestinal microflora and inflammation are associated with the risk of inflammatory bowel diseases. Noni (Morinda citrifolia L.) has various bioactivities, but its effect on colon health remains unknown. This study focused on the effects of fermented noni fruit extracts on colon microflora and inflammation of colon epithelial cells. The anti-inflammatory activities of ethanol and ethyl acetate extracts on Caco-2 cells were evaluated including interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2). The growth of Lactobacillus and Bifidobacterium species was promoted by ethanol extract. Ethyl acetate extract decreased intracellular reactive oxygen species and significantly suppressed COX-2, IL-8, and prostaglandin E2 production and neutrophil chemotaxis by suppressing the translocation of the p65 subunit. Quercetin was the main contributor to the anti-inflammatory activity. The fermented noni fruit promoted probiotic growths and downregulated the intracellular oxidation and inflammation in Caco-2 cells. These results suggest that fermented noni fruit might protect against inflammatory diseases of the colon.
Wang, Jun; Sun, Chengtao; Liu, Chang; Yang, Yujiang; Lu, Wenfa
2016-04-01
The normal vaginal microflora provides protection against infections of the reproductive tract. Previous studies have focused on the isolation and screening of probiotic strains from the vagina of cows; however, the vaginal microflora of postpartum cows is poorly characterized. The present study was conducted to evaluate and characterize the vaginal microflora of healthy postpartum cows in relation to postpartum cows with endometritis by using PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE) and Real-time PCR. The study population comprised 5 healthy cows and 5 cows with endometritis. The results indicated that the vaginal bacterial microflora of healthy postpartum cows was dominated by Lactobacillus sakei subsp. and Weissella koreensis, while there were no dominant bacterial species in the vaginal microflora of postpartum cows with endometritis. Common microorganisms such as Bacteroides spp., Fusobacterium spp., Enterococcus spp., Prevotella spp., Clostridium perfringens strains, and Escherichia coli were detected in both groups of cows by Real-time PCR. The bacterial diversity in the vagina of cows with endometritis was significantly higher than that in healthy cows. The results indicated that the vaginal microflora of cows with endometritis was more diverse and lacked dominant bacterial species as compared to that of the healthy cows, suggesting that disruption of the normal vaginal microflora may contribute to the onset of endometritis. This microbial community analysis provided information that might be used to develop probiotics to treat endometritis in cows; however, further investigation is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Ziyao; Zhou, Xiaoxiao; Zhong, Zhijun; Wang, Chengdong; Zhang, Hemin; Li, Desheng; He, Tingmei; Li, Caiwu; Liu, Xuehan; Yuan, Hui; Ji, Hanli; Luo, Yongjiu; Gu, Wuyang; Fu, Hualin; Peng, Guangneng
2014-12-01
Bacillus group is a prevalent community of Giant Panda's intestinal flora, and plays a significant role in the field of biological control of pathogens. To understand the diversity of Bacillus group from the Giant Panda intestine and their functions in maintaining the balance of the intestinal microflora of Giant Panda, this study isolated a significant number of strains of Bacillus spp. from the feces of Giant Panda, compared the inhibitory effects of these strains on three common enteric pathogens, investigated the distributions of six universal antimicrobial genes (ituA, hag, tasA, sfp, spaS and mrsA) found within the Bacillus group by PCR, and analyzed the characterization of antimicrobial gene distributions in these strains using statistical methods. The results suggest that 34 strains of Bacillus spp. were isolated which has not previously been detected at such a scale, these Bacillus strains could be classified into five categories as well as an external strain by 16S rRNA; Most of Bacillus strains are able to inhibit enteric pathogens, and the antimicrobial abilities may be correlated to their categories of 16S rRNA; The detection rates of six common antimicrobial genes are between 20.58 %(7/34) and 79.41 %(27/34), and genes distribute in three clusters in these strains. We found that the antimicrobial abilities of Bacillus strains can be one of the mechanisms by which Giant Panda maintains its intestinal microflora balance, and may be correlated to their phylogeny.
Wang, Chao; Yu, Zhongyang; Shi, Xiaochen; Tang, Xudong; Wang, Yang; Wang, Xueyan; An, Yanan; Li, Shulin; Li, Yan; Wang, Xuefei; Luan, Wenjing; Chen, Zhaobin; Liu, Mingyuan; Yu, Lu
2018-01-01
Triclosan (TCS) is a broad-spectrum antimicrobial agent, whose well-known antibacterial mechanism is inhibiting lipid synthesis. Autophagy, an innate immune response, is an intracellular process that delivers the cargo including pathogens to lysosomes for degradation. In this study, we first demonstrated that TCS induced autophagy in a dose-dependent manner in non-phagocytic cells (HeLa) and in macrophages (Raw264.7) and in vivo . The western blot results also revealed that TCS induced autophagy via the AMPK/ULK1 and JNK/ERK/p38 pathways independent of mTOR. The immunofluorescence results indicated that TCS up-regulated the expression of the ubiquitin receptors NDP52 and p62 and strengthened the co-localization of these receptors with Salmonella enterica Typhimurium ( S . typhimurium) or Candida albicans ( C. albicans ) in infected MΦ cells. In addition, sub-lethal concentrations of TCS enhanced the clearing of the pathogens S . typhimurium or C. albicans in infected MΦ and in corresponding mouse infection models in vivo . Specifically, we found that a sub-inhibitory concentration of TCS induced autophagy, leading to an imbalance of the intestinal microflora in mice through the analysis of 16s rRNA Sequencing. Together, these results demonstrated that TCS induced autophagy, which enhanced the killing against pathogenic S . typhimurium or C. albicans within mammal cells but broke the balance of the intestinal microflora.
Bacterial diversity in the intestine of young farmed puffer fish Takifugu rubripes
NASA Astrophysics Data System (ADS)
Li, Yanyu; Zhang, Tao; Zhang, Congyao; Zhu, Ying; Ding, Jianfeng; Ma, Yuexin
2015-07-01
The aim of the study was to examine the bacterial community associated with the intestinal mucus of young farmed puffer fish Takifugu rubripes. Polymerase chain reaction and partial 16S rDNA sequencing was performed on DNA from bacteria cultivated on Zobell 2216E medium. All the isolates were classified into two phyla—Proteobacteria and Firmicutes. Proteobacteria were the dominant, culturable intestinal microbiota (68.3%). At the genus level, Vibrio, Enterobacter, Bacillus, Pseudomonas, Exiguobacterium, Staphylococcus, Acinetobacter, Pseudoalteromonas and Shewanella were isolated from the intestine, with representatives of the genera Vibrio, Enterobacter and Bacillus accounting for 70.7% of the total. This is the first report of Enterobacter, Bacillus, Exiguobacterium and Staphylococcus as part of the intestinal bacterial microflora in T. rubripes. The profile of the culturable bacterial community differed between samples collected from the same tank at 2-month intervals, as indicated by Bray-Curtis and Sorensen indices, and the impact on the intestinal physiology and health of puffer fish requires further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khoruts, A.; Dicksved, J.; Jansson, J.K.
CDAD is the major known cause of antibiotic-induced diarrhea and colitis, and the disease is thought to result from persistent disruption of commensal gut microbiota. Bacteriotherapy by way of fecal transplantation can be used to treat recurrent CDAD and is thought to re-establish the normal colonic microflora. However, limitations of conventional microbiologic techniques have until recently precluded testing of this idea. In this study we used T-RFLP and 16S rRNA gene sequencing approaches to characterize the bacterial composition of the colonic microflora in a patient suffering from recurrent CDAD, before and after treatment by fecal transplantation from a healthy donor.more » While the patient's residual colonic microbiota, prior to therapy, was deficient in members of the bacterial divisions-Firmicutes and Bacteriodetes, transplantation had a dramatic impact on the composition of the patient's gut microbiota. By 14 days post transplantation, the fecal bacterial composition of the recipient was highly similar to the donor and was dominated by Bacteroides spp. strains and an uncharacterized butyrate producing bacterium. The change in bacterial composition was accompanied by resolution of the patient's symptoms. The striking similarity of the recipient's and donor's intestinal microbiota following bacteriotherapy suggests that the donor's bacteria quickly occupied their requisite niches, resulting in restoration of both the structure and function of the microbial communities present.« less
Diversity of the human intestinal microbial flora.
Eckburg, Paul B; Bik, Elisabeth M; Bernstein, Charles N; Purdom, Elizabeth; Dethlefsen, Les; Sargent, Michael; Gill, Steven R; Nelson, Karen E; Relman, David A
2005-06-10
The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.
Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.
Czaja, Albert J
2016-11-14
The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.
Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis
Czaja, Albert J
2016-01-01
The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies. PMID:27895415
Probiotic as a Novel Treatment Strategy Against Liver Disease
Imani Fooladi, Abbas Ali; Mahmoodzadeh Hosseini, Hamideh; Nourani, Mohammad Reza; Khani, Soghra; Alavian, Seyed Moayed
2013-01-01
Context A symbiotic relationship between the liver and intestinal tract enables the healthy status of both organs. Microflora resident in intestinal lumen plays a significant role in hepatocytes function. Alterations to the type and amount of microorganisms that live in the intestinal tract can result in serious and harmful liver dysfunctions such as cirrhosis, nonalcoholic fatty liver disease, alcoholic liver disease, and hepatic encephalopathy. An increased number of pathogens, especially enterobacteriaceae, enterococci, and streptococci species causes the elevation of intestinal permeability and bacterial translocation. The presence of high levels of lipopolysaccharide (LPS) and bacterial substances in the blood result in a portal hypertension and ensuing hepatocytes damage. Several methods including the usage of antibiotics, prebiotics, and probiotics can be used to prevent the overgrowth of pathogens. Compared to prebiotic and antibiotic therapy, probiotics strains are a safer and less expensive therapy. Probiotics are "live microorganisms (according to the FAO/WHO) which when administered in adequate amounts confer a health benefit on the host”. Evidence Acquisitions Data from numerous preclinical and clinical trials allows for control of the flora bacteria quantity, decreases in compounds derived from bacteria, and lowers proinflammatory production such as TNF-α, IL-6 and IFN-γ via down-regulation of the nuclear factor kappa B (NF-κ B). Results On the other hand, probiotic can reduce the urease activity of bacterial microflora. Furthermore, probiotic decreases fecal pH value and reduces ammonia adsorption. In addition, the serum level of liver enzymes and other substances synthesized by the liver are modulated subsequent to probiotic consumption. Conclusions According to our knowledge, Probiotic therapy as a safe, inexpensive and a noninvasive strategy can reduce pathophysiological symptoms and improve different types of liver diseases without side effects. PMID:23610585
Henning, Susanne M; Yang, Jieping; Hsu, Mark; Lee, Ru-Po; Grojean, Emma M; Ly, Austin; Tseng, Chi-Hong; Heber, David; Li, Zhaoping
2017-09-30
Decaffeinated green tea (GT) and black tea (BT) polyphenols inhibit weight gain in mice fed an obesogenic diet. Since the intestinal microflora is an important contributor to obesity, it was the objective of this study to determine whether the intestinal microflora plays a role in the anti-obesogenic effect of GT and BT. C57BL/6J mice were fed a high-fat/high-sucrose diet (HF/HS, 32% energy from fat; 25% energy from sucrose) or the same diet supplemented with 0.25% GTP or BTP or a low-fat/high-sucrose (LF/HS, 10.6% energy from fat, 25% energy from sucrose) diet for 4 weeks. Bacterial composition was assessed by MiSeq sequencing of the 16S rRNA gene. GTP and BTP diets resulted in a decrease of cecum Firmicutes and increase in Bacteroidetes. The relative proportions of Blautia, Bryantella, Collinsella, Lactobacillus, Marvinbryantia, Turicibacter, Barnesiella, and Parabacteroides were significantly correlated with weight loss induced by tea extracts. BTP increased the relative proportion of Pseudobutyrivibrio and intestinal formation of short-chain fatty acids (SCFA) analyzed by gas chromatography. Cecum propionic acid content was significantly correlated with the relative proportion of Pseudobutyrivibrio. GTP and BTP induced a significant increase in hepatic 5'adenosylmonophosphate-activated protein kinase (AMPK) phosphorylation by 70 and 289%, respectively (P < 0.05) determined by Western blot. In summary, both BTP and GTP induced weight loss in association with alteration of the microbiota and increased hepatic AMPK phosphorylation. We hypothesize that BTP increased pAMPK through increased intestinal SCFA production, while GTPs increased hepatic AMPK through GTP present in the liver.
Wang, Yanping; Xu, Nv; Xi, Aodeng; Ahmed, Zaheer; Zhang, Bin; Bai, Xiaojia
2009-08-01
The objective of this study was to evaluate the effects of Lactobacillus plantarum MA2, an isolate from Chinese traditional Tibet kefir, on cholesterol-lowering and microflora of rat in vivo. Rats were fed on cholesterol-enriched experimental diet, supplemented with lyophilized L. plantarum MA2 powder, with a dose of 10(11) cells/day per mice. The results showed that L. plantarum MA2 feeding significantly lowered serum total cholesterol, low-density lipoprotein cholesterol, and triglycerides level, while there was no change in high-density lipoprotein cholesterol. In addition, liver total cholesterol and triglycerides was also decreased. However, fecal cholesterol and triglycerides was increased significantly (P < 0.05) in comparison with the control. Also, L. plantarum MA2 increased the population of lactic acid bacteria and bifidobacteria in the fecal, but it did not change the number of Escherichia coli as compared to control. Moreover, pH, moisture, and organic acids in the fecal were also measured. The present results indicate the probiotic potential of the L. plantarum MA2 strain in hypocholesterolemic effect and also increasing the probiotic count in the intestine.
Microbiota-Dependent Priming of Antiviral Intestinal Immunity in Drosophila.
Sansone, Christine L; Cohen, Jonathan; Yasunaga, Ari; Xu, Jie; Osborn, Greg; Subramanian, Harry; Gold, Beth; Buchon, Nicolas; Cherry, Sara
2015-11-11
Enteric pathogens must overcome intestinal defenses to establish infection. In Drosophila, the ERK signaling pathway inhibits enteric virus infection. The intestinal microflora also impacts immunity but its role in enteric viral infection is unknown. Here we show that two signals are required to activate antiviral ERK signaling in the intestinal epithelium. One signal depends on recognition of peptidoglycan from the microbiota, particularly from the commensal Acetobacter pomorum, which primes the NF-kB-dependent induction of a secreted factor, Pvf2. However, the microbiota is not sufficient to induce this pathway; a second virus-initiated signaling event involving release of transcriptional paused genes mediated by the kinase Cdk9 is also required for Pvf2 production. Pvf2 stimulates antiviral immunity by binding to the receptor tyrosine kinase PVR, which is necessary and sufficient for intestinal ERK responses. These findings demonstrate that sensing of specific commensals primes inflammatory signaling required for epithelial responses that restrict enteric viral infections. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Yanli; Yang, Xin; Xin, Hongliang; Chen, Si; Yang, Chengbo; Duan, Yulan; Yang, Xiaojun
2017-09-01
This experiment was conducted to investigate the effects of protected essential oils and organic acids mixture on poultry feeding. A total of 450 1-day-old Cobb 500 chicks were randomly allotted into three treatments with six replicates. Birds were offered a basal diet (C), basal diet with 0.15 g/kg enramycin premix (A) and basal diet with 0.30 g/kg protected essential oils and organic acids mixture product (P). The results showed that protected essential oils and organic acids mixture supplementation reduced average daily feed intake and ratio of feed to gain (F/G) at 22-42 days of age, and F/G during 1-42 days of age also declined (P < 0.05). Product supplementation improved spleen index, villus height and crypt depth of the jejunum at 42 days when compared with the control (P < 0.05). In addition, secretory immunoglobulin A level of ileal mucosa and trypsin and chymotrypsin activities of intestinal tract were higher in the P treatment. Bacterial sequence analysis of the intestinal tract revealed that protected essential oils and organic acids mixture supplementation changed gut microflora mainly in Lactobacillus. These data suggested that dietary mixture of organic acids and essential oils addition could be used in the poultry industry as an antibiotic growth promoter alternative. © 2017 Japanese Society of Animal Science.
Kang, H K; Park, S B; Kim, C H
2017-04-01
This study aimed to determine the effect of different dietary levels of a Chlorella by-product (CBP) on the growth performance, immune response, intestinal microflora and intestinal mucosal morphology of broilers. In total, 480 one-day-old broiler chickens were randomly allotted to four dietary treatments with four replicated pens consisting of 30 chicks. The basal diet was formulated to be adequate in energy and nutrients. Three additional diets were prepared by supplementing 25, 50 or 75 g/kg of CBP to the basal diet. The diets were fed to the broilers ad libitum for 35 days. Result indicated that increasing inclusion level of CBP improved BW gain (linear, p < 0.05). There was no effect of inclusion level of CBP in diets on total cholesterol, triglyceride, aspartate aminotransferase and alanine aminotransferase levels during the 35 days. Plasma IgG, IgM and IgA concentrations increased (linear, p < 0.05) with inclusion level of CBP in diets. Supplementation of CBP in the diets increased (linear, p < 0.05) the concentrations of Lactobacillus in the caecal content and decreased (linear, p < 0.05) the concentrations of Escherichia coli and Salmonella in the caecal content. Villus height increased (linear and quadratic, p < 0.05) with inclusion level of CBP in diets. Crypt depth increased (quadratic, p < 0.05) with inclusion level of CBP, and a decreased villus height: crypt depth ratio (quadratic, p < 0.05) was observed as inclusion level of CBP in diets increased. The results of the current experiment indicate that dietary supplementation of CBP improves growth performance of birds. Dietary CBP has improving Lactobacillus spp. concentrations in the gastrointestinal tract, plasma immunoglobulin concentrations and intestinal mucosal morphology. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
[The role of lactoferrin in the proper development of newborns].
Artym, Jolanta; Zimecki, Michał
2005-01-01
Colostrum and milk contain, in addition to nutritional constituents, also proteins crucial for the normal development of the offspring. Lactoferrin (LF) belongs to the family of iron-binding proteins and exhibits a wide spectrum of antimicrobial and immunotropic properties. LF is particularly resistant to proteolytic degradation in alimentary tract, in contrast to other milk proteins, e.g. casein. In any case, LF-derived peptides also possess potent antibacterial activities. LF is absorbed from the intestine by means of specific receptors located on brush border cells. Administered orally, LF stimulates both local and systemic immune response. LF plays a role in the absorption of nutrients. The protein can deliver such metal ions as iron, manganese, and zinc and facilitate the absorption of sugars. LF stimulates the proliferation of gut endothelial cells and the growth of gut-associated lymphatic follicles. This property suggests the possibility of applying LF in premature infants and patients with damaged intestinal mucus. LF controls the proper composition of the gut microflora. It suppresses the growth of pathogenic bacteria while promoting the multiplication of nonpathogenic Lactobacillus and Bifidobacterium. Newborns fed an artificial diet develop harmful microflora (Enterococcus, Enterobacter, Bacteroides, Escherichia). The non-pathogenic microflora ensures low pH, produces some vitamins, increases the activity of NK cells, T lymphocytes, and macrophages, promotes the production of protective immunoglobulins, and lowers the risk of allergies. In studies on mice, LF was found to be protective in bacteremia and endotoxemia. The protein stimulates the activity of reticulo-endothelial system cells and elicits myelopoiesis, thus increasing the killing and clearance of bacteria. In the model of experimental endotoxemia, LF inhibits the activity of pro-inflammatory cytokines, nitric oxide, and reactive forms of oxygen. LF can also promote the differentiation of T and B cells from their immature precursors and increases the activity of NK and LAK cells. It also protects against the toxicity of reactive oxygen radicals. This property may be particularly relevant when baby food, based on modified cow's milk, contains mineral iron, which may be a source of harmful free radicals. In summary, it is obvious that natural human milk has the best value for newborns. Supplementation of artificial baby food with LF seems essential to improve the protective and immunoenhancing property of this kind of diet. It is clear that cow's milk is not appropriate for human newborns. Cow's milk contains 50 times less LF, only traces of lysozyme, and lower concentrations of other whey proteins and immunologically relevant immunoglobulins. Therefore commercially available baby foods (United States, Japan) are supplemented with LF.
Nath, Bipul; Nath, Lila Kanta
2013-01-01
The purpose of this study is to explore the possible applicability of Sterculia urens gum as a novel carrier for colonic delivery system of a sparingly soluble drug, azathioprine. The study involves designing a microflora triggered colon-targeted drug delivery system (MCDDS) which consists of a central polysaccharide core and is coated to different film thicknesses with blends of chitosan/Eudragit RLPO, and is overcoated with Eudragit L00 to provide acid and intestinal resistance. The microflora degradation property of gum was investigated in rat caecal medium. Drug release study in simulated colonic fluid revealed that swelling force of the gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudargit coating in microflora-activated environment. Chitosan in the mixed film coat was found to be degraded by enzymatic action of the microflora in the colon. Release kinetic data revealed that the optimized MCDDS was fitted well into first-order model, and apparent lag time was found to be 6 hours, followed by Higuchi release kinetics. In vivo study in rabbits shows delayed T max, prolonged absorption time, decreased C max, and absorption rate constant (Ka), indicating a reduced systemic toxicity of the drug as compared to other dosage forms. PMID:26555985
MacFarlane, Amanda J; Behan, Nathalie A; Matias, Fernando M G; Green, Judy; Caldwell, Don; Brooks, Stephen P J
2013-02-28
Inflammatory bowel disease (IBD) is a risk factor for the development of colon cancer. Environmental factors including diet and the microflora influence disease outcome. Folate and homocysteine have been associated with IBD-mediated colon cancer but their roles remain unclear. We used a model of chemically induced ulcerative colitis (dextran sodium sulphate (DSS)) with or without the colon carcinogen azoxymethane (AOM) to determine the impact of dietary folic acid (FA) on colonic microflora and the development of colon tumours. Male mice (n 15 per group) were fed a FA-deficient (0 mg/kg), control (2 mg/kg) or FA-supplemented (8 mg/kg) diet for 12 weeks. Folate status was dependent on the diet (P< 0·001) and colitis-induced treatment (P= 0·04) such that mice with colitis had lower circulating folate. FA had a minimal effect on tumour initiation, growth and progression, although FA-containing diets tended to be associated with a higher tumour prevalence in DSS-treated mice (7-20 v. 0%, P= 0·08) and the development of more tumours in the distal colon of AOM-treated mice (13-83% increase, P= 0·09). Folate deficiency was associated with hyperhomocysteinaemia (P< 0·001) but homocysteine negatively correlated with tumour number (r - 0·58, P= 0·02) and load (r - 0·57, P= 0·02). FA had no effect on the intestinal microflora. The present data indicate that FA intake has no or little effect on IBD or IBD-mediated colon cancer in this model and that hyperhomocysteinaemia is a biomarker of dietary status and malabsorption rather than a cause of IBD-mediated colon cancer.
Viramontes Hörner, Daniela; Avery, Amanda; Stow, Ruth
2017-04-01
Alterations in the levels of intestinal microbiota, endotoxemia, and inflammation are novel areas of interest in the pathogenesis of hepatic encephalopathy (HE). Probiotics and symbiotics are a promising treatment option for HE due to possible beneficial effects in modulating gut microflora and might be better tolerated and more cost-effective than the traditional treatment with lactulose, rifaximin or L-ornithine-L-aspartate. A systematic search of the electronic databases PubMed, ISI Web of Science, EMBASE, and Cochrane Library was conducted for randomized controlled clinical trials in adult patients with cirrhosis, evaluating the effect of probiotics and symbiotics in changes on intestinal microflora, reduction of endotoxemia, inflammation, and ammonia, reversal of minimal hepatic encephalopathy (MHE), prevention of overt hepatic encephalopathy (OHE), and improvement of quality of life. Nineteen trials met the inclusion criteria. Probiotics and symbiotics increased beneficial microflora and decreased pathogenic bacteria and endotoxemia compared with placebo/no treatment, but no effect was observed on inflammation. Probiotics significantly reversed MHE [risk ratio, 1.53; 95% confidence interval (CI): 1.14, 2.05; P=0.005] and reduced OHE development (risk ratio, 0.62; 95% CI: 0.48, 0.80; P=0.0002) compared with placebo/no treatment. Symbiotics significantly decreased ammonia levels compared with placebo (15.24; 95% CI: -26.01, -4.47; P=0.006). Probiotics did not show any additional benefit on reversal of MHE and prevention of OHE development when compared with lactulose, rifaximin, and L-ornithine-L-aspartate. Only 5 trials considered tolerance with minimal side effects reported. Although further research is warranted, probiotics and symbiotics should be considered as an alternative therapy for the treatment and management of HE given the results reported in this systematic review.
An approach for in situ studies of deep-sea amphipods and their microbial gut flora
NASA Astrophysics Data System (ADS)
Jannasch, H. W.; Cuhel, R. L.; Wirsen, C. O.; Taylor, C. D.
1980-10-01
A technique has been developed and field-tested for the trapping, feeding, and timed incubation of amphipods on the deep-sea floor. Data obtained from experiments using radiolabeled foodstuffs indicate that shifts within the labeled fractions of the major biological polymers make it possible to distinguish between the metabolism of the amphipods and that of their intestinal microflora.
[Clinico-laboratory parallels during celiac disease in children].
Kamilova, A T; Aripov, A N
2000-11-01
Forty-five patients with celiac disease and 73 with the celiakia syndrome were observed. The clinical picture was identical and was characterized by disordered intestinal absorption. Depression of T and B lymphocytes was typical of both forms of the disease. High values of antigliadin IgA and IgG correlated with the severity of atrophic processes in the small intestinal mucosa. Intestinal microflora was characterized by a decrease in the main defense flora and growth of hemolytical and lactonegative enterobacteria and Proteus. Hypocholesterolemia was characteristic of congenital and acquired celiakia. Hemoglobin and albumin levels were in direct correlation while growth deficiency and increment of glycemia were in inverse correlation in patients with celiac disease. The celiakia syndrome was characterized by an inverse correlation between the number of defecations and content of full-value E. coli, body weight deficit, and glucose tolerance test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallett, A.K.; Rowland, I.R.; Walters, D.G.
1985-11-01
The urinary excretion of N-nitroso-L-(U- UC)proline by conventional microflora and germ free rats was used to assess the role of the gut bacteria and oral nitrate in the endogenous formation of N-nitroso compounds. The formation of nitrosoproline was qualitatively similar in conventional and germfree rats suggesting no involvement of the intestinal flora in this reaction. Furthermore, nitrosamino acid production was similar following the administration of nitrate and (U- UC)proline or (U- UC)proline alone, demonstrating no involvement of exogenous nitrate under the conditions of the experiment. Dietary contamination with nitrate/nitrite was negligible. The results are consistent with the suggestion that nitrate/nitritemore » reserves in the body are important in the formation of nitrosoproline in vivo.« less
Duchmann, R; Kaiser, I; Hermann, E; Mayet, W; Ewe, K; Meyer zum Büschenfelde, K H
1995-12-01
Hyporesponsiveness to a universe of bacterial and dietary antigens from the gut lumen is a hallmark of the intestinal immune system. Since hyperresponsiveness against these antigens might be associated with inflammation, we studied the immune response to the indigenous intestinal microflora in peripheral blood, inflamed and non-inflamed human intestine. Lamina propria monocuclear cells (LPMC) isolated from inflamed intestine but not peripheral blood mononuclear cells (PBMC) of IBD patients with active inflammatory disease strongly proliferated after co-culture with sonicates of bacteria from autologous intestine (BsA). Proliferation was inhibitable by anti-MHC class II MoAb, suggesting that it was driven by antigen. LPMC from adjacent non-inflamed intestinal areas of the same IBD patients and PBMC or LPMC isolated from non-inflamed intestine of controls and patients with IBD in remission, in contrast, did not proliferate. PBMC or LPMC which had been tolerant to bacteria from autologous intestine, however, strongly proliferated after co-culture with bacterial sonicates from heterologous intestine (BsH). This proliferation was associated with an expansion of CD8+ T cells, increased expression of activation markers on both CD4+ and CD8+ lymphocyte subsets, and production of IL-12, interferon-gamma (IFN-gamma), and IL-10 protein. These results show that tolerance selectively exists to intestinal flora from autologous but not heterologous intestine, and that tolerance is broken in intestinal inflammation. This may be an important mechanism for the perpetuation of chronic IBD.
Duchmann, R; Kaiser, I; Hermann, E; Mayet, W; Ewe, K; Meyer zum Büschenfelde, K H
1995-01-01
Hyporesponsiveness to a universe of bacterial and dietary antigens from the gut lumen is a hallmark of the intestinal immune system. Since hyperresponsiveness against these antigens might be associated with inflammation, we studied the immune response to the indigenous intestinal microflora in peripheral blood, inflamed and non-inflamed human intestine. Lamina propria monocuclear cells (LPMC) isolated from inflamed intestine but not peripheral blood mononuclear cells (PBMC) of IBD patients with active inflammatory disease strongly proliferated after co-culture with sonicates of bacteria from autologous intestine (BsA). Proliferation was inhibitable by anti-MHC class II MoAb, suggesting that it was driven by antigen. LPMC from adjacent non-inflamed intestinal areas of the same IBD patients and PBMC or LPMC isolated from non-inflamed intestine of controls and patients with IBD in remission, in contrast, did not proliferate. PBMC or LPMC which had been tolerant to bacteria from autologous intestine, however, strongly proliferated after co-culture with bacterial sonicates from heterologous intestine (BsH). This proliferation was associated with an expansion of CD8+ T cells, increased expression of activation markers on both CD4+ and CD8+ lymphocyte subsets, and production of IL-12, interferon-gamma (IFN-gamma), and IL-10 protein. These results show that tolerance selectively exists to intestinal flora from autologous but not heterologous intestine, and that tolerance is broken in intestinal inflammation. This may be an important mechanism for the perpetuation of chronic IBD. PMID:8536356
The relationship between intestinal parasites and some immune-mediated intestinal conditions
Mohammadi, Rasoul; Hosseini-Safa, Ahmad; Ehsani Ardakani, Mohammad Javad; Rostami-Nejad, Mohammad
2015-01-01
Over the last decades, the incidence of infestation by minor parasites has decreased in developed countries. Infectious agents can also suppress autoimmune and allergic disorders. Some investigations show that various protozoa and helminthes are connected with the main immune-mediated intestinal conditions including celiac disease (CD), inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS). Celiac disease is a digestive and autoimmune disorder that can damage the small intestine and characterized by a multitude gastrointestinal (GI) and extra GI symptoms. IBD (including ulcerative colitis and Crohn’s disease) is a group of inflammatory conditions of the small intestine and colon. The etiology of IBD is unknown, but it may be related to instability in the intestinal microflora that leading to an immoderate inflammatory response to commensal microbiota. Irritable bowel syndrome (IBS) is a common, long-term condition of the digestive system. Bloating, diarrhoea and/or constipation are nonspecific symptoms of IBS. Various studies have shown that some intestinal parasites can effect on immune system of infected hosts and in some cases, they are able to modify and change the host’s immune responses, particularly in autoimmune disorders like celiac disease and IBD. The main objective of this review is to investigate the relationship between intestinal parasites and different inflammatory bowel disorders. PMID:25926937
Li, Sufen; Li, Ang; Zhang, Liyang; Liu, Zhenhua; Luo, Xugang
2015-01-01
An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers. PMID:26599444
Depletion of Stercobilin in Fecal Matter from a Mouse Model of Autism Spectrum Disorders
Sekera, Emily R.; Rudolph, Heather L.; Carro, Stephen D.; Morales, Michael J.; Bett, Glenna C. L.; Rasmusson, Randall L.; Wood, Troy D.
2017-01-01
Introduction Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders lacking a clinical biomarker for diagnosis. Emerging evidence shows that intestinal microflora from ASD subjects can be distinguished from controls, suggesting metabolite differences due to the action of intestinal microbes may provide a means for identifying potential biomarkers for ASD. Objectives The aim of this study was to determine if quantitative differences in levels of stercobilin and stercobilinogen, metabolites produced by biological action of intestinal microflora, exist in the fecal matter between an ASD mouse model population and controls. Methods Pairs of fecal samples were collected from two mouse groups, an ASD model group with Timothy syndrome 2 (TS2-NEO) and a gender-matched control group. After centrifugation, supernatant was spiked with an 18O-labeled stercobilin isotopomer and subjected to solid phase extraction for processing. Extracted samples were spotted on a stainless steel plate and subjected to matrix-assisted laser desorption and ionization mass spectrometry using dihydroxybenzoic acid as the matrix (n = 5). Peak areas for bilins and 18O-stercobilin isotopomers were determined in each fecal sample. Results A 40–45% depletion in stercobilin in TS2-NEO fecal samples compared with controls was observed with p < 0.05; a less dramatic depletion was observed for stercobilinogen. Conclusions The results show that stercobilin depletion in feces is observed for an ASD mouse model vs. controls. This may help to explain recent observations of a less diverse microbiome in humans with ASD and may prove helpful in developing a clinical ASD biomarker. PMID:29147105
Light exposure influences the diurnal oscillation of gut microbiota in mice.
Wu, Guangyan; Tang, Wenli; He, Yan; Hu, Jingjuan; Gong, Shenhai; He, Zhanke; Wei, Guoquan; Lv, Liyi; Jiang, Yong; Zhou, Hongwei; Chen, Peng
2018-06-18
The gut microbiota exhibit diurnal compositional and functional oscillations that influence the host homeostasis. However, the upstream factors that affect the microbial oscillations remain elusive. Here, we focused on the potential impact of light exposure, the main factor that affects the host circadian oscillation, on the diurnal oscillations of intestinal microflora to explore the upstream factor that governs the fluctuations of the gut microbes. The gut microbiota of the mice that were underwent regular light/dark (LD) cycles exhibited a robust rhythm at both compositional and functional level, in all parts of the intestine. Comparably, constant darkness (Dark-Dark, DD) led to the loss of the rhythmic oscillations in almost all parts of the intestine. Additionally, the abundance of Clostridia in DD conditions was dramatically enhanced in the small intestine. Our data indicated light exposure is the upstream factor that governs the regular diurnal fluctuations of gut microbiota in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, B.W.; Cerniglia, C.E.; Federle, T.W.
The nitropolycyclic aromatic hydrocarbon 1-nitropyrene (1-NP) is an environmental pollutant, a potent bacterial and mammalian mutagen, and a carcinogen. The metabolism of 1-NP by the human intestinal microbiota was studied using a semicontinuous culture system that simulates the colonic lumen. (/sup 3/H)-1-Nitropyrene was metabolized by the intestinal microbiota to 1-aminopyrene (1-AP) and N-formyl-1-aminopyrene (FAP) as determined by high-performance liquid chromatography (HPLC) and mass spectrometry. Twenty-four hours after the addition of (/sup 3/H)-1-NP, the formylated compound and 1-AP accounted for 20 and 80% of the total metabolism respectively. This percentage increased to 66% for FAP after 24 h following 10 dmore » of chronic exposure to unlabeled 1-NP, suggesting metabolic adaptation to 1-NP by the microbiota. Both 1-AP and FAP have been shown to be nonmutagenic towards Salmonella typhimurium TA98, which indicates that the intestinal microflora may potentially detoxify 1-NP.« less
Autistic enterocolitis: fact or fiction?
Galiatsatos, Polymnia; Gologan, Adrian; Lamoureux, Esther
2009-02-01
Autism spectrum disorder refers to syndromes of varying severity, typified by impaired social interactions, communicative delays and restricted, repetitive behaviours and interests. The prevalence of autism spectrum disorders has been on the rise, while the etiology remains unclear and most likely multifactorial. There have been several reports of a link between autism and chronic gastrointestinal symptoms. Endoscopy trials have demonstrated a higher prevalence of nonspecific colitis, lymphoid hyperplasia and focally enhanced gastritis compared with controls. Postulated mechanisms include aberrant immune responses to some dietary proteins, abnormal intestinal permeability and unfavourable gut microflora. Two autism spectrum disorder patients with chronic intestinal symptoms and abnormal endoscopic findings are described, followed by a review of this controversial topic.
[Breast milk: its nutritional composition and functional properties].
Tackoen, M
2012-09-01
Human milk is a complex biological fluid with thousands of components. The milk composition in the mammalian species is specific and adapted to the needs of the offspring. It contains macronutrients (proteins, lipids and carbohydrates), micronutrients (minerals and vitamins) and numerous biologically active substrates. Human milk not only covers the nutritional needs of the newborn but protects the baby against infection, inflammation and oxidative stress. It has immunomodulation properties and confers trophical protection to the intestinal mucosa. The newborn infant is particularly immature: innate immunity, adaptive immunity and intestinal immaturity. Human milk will offer this exogenous protective and immunomodulating source. The development of the composition of the intestinal microflora of the neonate will be impacted by pre- and probiotic components of human milk. Current scientific knowledge of human milk properties highlights interdependency of the different components, ontogeny of the intestinal function, development of the mucosal intestinal immune system, colonization by the intestinal microbiota and protection against pathogens. Quality of these interactions influences the newborn's short and long-term health status. The promotion of breastfeeding with the support of the Baby Friendly Hospital Initiative (BFHI) program and labeling has been shown to have positive impact in public health.
Shi, Hongjie; Chang, Yaoguang; Gao, Yuan; Wang, Xiong; Chen, Xin; Wang, Yuming; Xue, Changhu; Tang, Qingjuan
2017-09-20
Cyclophosphamide (cy) is a widely used cancer drug. Many researchers have focused on the prevention and alleviation of its side effects, particularly damage to the intestinal mucosal barrier. In this study, we examined the effects of fucoidan, isolated from Acaudina molpadioides, on mice with intestinal mucosal damage induced by cyclophosphamide. Our results showed that fucoidan intervention could relieve injury such as decreasing inflammation and increasing the expression of tight junction proteins, and 50 kDa fucoidan significantly increased the abundance of short chain fatty acid (SCFA) producer Coprococcus, Rikenella, and Butyricicoccus (p < 0.05, p < 0.001, and p < 0.05, respectively) species within the intestinal mucosa compared with the cyclophosphamide group, as determined by 16S rDNA gene high-throughput sequencing. In addition, SCFAs, particularly propionate, butyrate, and total SCFAs, were increased in the feces, and SCFA receptors were upregulated in the small intestine. The protective effects of fucoidan on cyclophosphamide treatment may be associated with gut microflora, and 50 kDa fucoidan had superior effects. Therefore, fucoidan may have applications as an effective supplement to protect against intestinal mucosal barrier damage during chemotherapy.
Quantitative and Qualitative Study of Intestinal Flora in Neonates
Sharma, Nidhi; Chaudhry, Rama; Panigrahi, Pinaki
2012-01-01
Background: In the neonatal period the developing intestinal barrier function provides a sub-optimal mucosal defense against infection. Establishment of the normal commensal micro-flora plays a vital role in this process. Aims: To determine aerobic and anaerobic bacteria by quantitative and qualitative methods from faecal samples of neonates. Settings and Design: A prospective study was carried out in two groups in a tertiary care hospital, Group A-comprised preterm infant and in group B-full term infants. Materials and Methods: Sixty two preterm infants with the weight < 1500 gm and gestation age < 34 weeks and twenty nine full term infants with 4 weeks of age were included. Quantitation of bacterial load was done by ten-fold serial dilutions on respective media. Statistical Analysis: The data were analyzed by using EPIINFO-Ver 6.04. Results and Conclusions: The predominant aerobic bacterium was Klebsiella pneumoniae. In pre term infants aerobic bacteria were colonized with an average of 2.1 and anaerobic bacteria 0.1. Quantitation showed faecal bacterial colony count ranging from 104-1013 CFU/gms. Gram negative and gram positive bacteria increased gradually over an interval of 2 to 3 weeks. Mean log CFU of gram negative bacteria and gram positive bacteria were statistically insignificant from day 3 to day 14 (P > 0.05). On day 21 there was a significant change in colonization of both bacterial sp (P < 0.05). Potential pathogenic aerobic bacteria dominate the intestinal flora of premature babies nursed in neonatal unit. There is a need to investigate interventions to offset this imbalance in gut micro-ecology of premature babies. PMID:23326075
Proinflammatory Cytokines as Regulators of Vaginal Microbiota.
Kremleva, E A; Sgibnev, A V
2016-11-01
It was shown that IL-1β, IL-8, and IL-6 in concentrations similar to those in the vagina of healthy women stimulated the growth of normal microflora (Lactobacillus spp.) and suppressed the growth and biofilm production by S. aureus and E. coli. On the contrary, these cytokines in higher concentrations typical of vaginal dysbiosis suppressed normal microflora and stimulated the growth of opportunistic microorganisms. TGF-β1 in both doses produced a stimulating effects on study vaginal microsymbionts. It is hypothesized that pro-inflammatory cytokines serve as the molecules of interspecies communication coordinating the interactions of all components of the vaginal symbiotic system.
Dismicrobism in inflammatory bowel disease and colorectal cancer: Changes in response of colocytes
Tomasello, Giovanni; Tralongo, Pietro; Damiani, Provvidenza; Sinagra, Emanuele; Di Trapani, Benedetto; Zeenny, Marie Noelle; Hajj Hussein, Inaya; Jurjus, Abdo; Leone, Angelo
2014-01-01
Patients with inflammatory bowel disease (IBD) have an increased risk of 10%-15% developing colorectal cancer (CRC) that is a common disease of high economic costs in developed countries. The CRC has been increasing in recent years and its mortality rates are very high. Multiple biological and biochemical factors are responsible for the onset and progression of this pathology. Moreover, it appears absolutely necessary to investigate the environmental factors favoring the onset of CRC and the promotion of colonic health. The gut microflora, or microbiota, has an extensive diversity both quantitatively and qualitatively. In utero, the intestine of the mammalian fetus is sterile. At birth, the intestinal microbiota is acquired by ingesting maternal anal or vaginal organisms, ultimately developing into a stable community, with marked variations in microbial composition between individuals. The development of IBD is often associated with qualitative and quantitative disorders of the intestinal microbial flora (dysbiosis). The healthy human gut harbours about 10 different bacterial species distributed in colony forming units which colonize the gastrointestinal tract. The intestinal microbiota plays a fundamental role in health and in the progression of diseases such as IBD and CRC. In healthy subjects, the main control of intestinal bacterial colonization occurs through gastric acidity but other factors such as endoluminal temperature, competition between different bacterial strains, peristalsis and drugs can influence the intestinal microenvironment. The microbiota exerts diverse physiological functions to include: growth inhibition of pathogenic microorganisms, synthesis of compounds useful for the trophism of colonic mucosa, regulation of intestinal lymphoid tissue and synthesis of amino acids. Furthermore, mucus seems to play an important role in protecting the intestinal mucosa and maintaining its integrity. Changes in the microbiota composition are mainly influenced by diet and age, as well as genetic factors. Increasing evidence indicates that dysbiosis favors the production of genotoxins and metabolites associated with carcinogenesis and induces dysregulation of the immune response which promotes and sustains inflammation in IBD leading to carcinogenesis. A disequilibrium in gut microflora composition leads to the specific activation of gut associated lymphoid tissue. The associated chronic inflammatory process associated increases the risk of developing CRC. Ulcerative colitis and Crohn’s disease are the two major IBDs characterized by an early onset and extraintestinal manifestations, such as rheumatoid arthritis. The pathogenesis of both diseases is complex and not yet fully known. However, it is widely accepted that an inappropriate immune response to microbial flora can play a pivotal role in IBD pathogenesis. PMID:25561781
Dismicrobism in inflammatory bowel disease and colorectal cancer: changes in response of colocytes.
Tomasello, Giovanni; Tralongo, Pietro; Damiani, Provvidenza; Sinagra, Emanuele; Di Trapani, Benedetto; Zeenny, Marie Noelle; Hussein, Inaya Hajj; Jurjus, Abdo; Leone, Angelo
2014-12-28
Patients with inflammatory bowel disease (IBD) have an increased risk of 10%-15% developing colorectal cancer (CRC) that is a common disease of high economic costs in developed countries. The CRC has been increasing in recent years and its mortality rates are very high. Multiple biological and biochemical factors are responsible for the onset and progression of this pathology. Moreover, it appears absolutely necessary to investigate the environmental factors favoring the onset of CRC and the promotion of colonic health. The gut microflora, or microbiota, has an extensive diversity both quantitatively and qualitatively. In utero, the intestine of the mammalian fetus is sterile. At birth, the intestinal microbiota is acquired by ingesting maternal anal or vaginal organisms, ultimately developing into a stable community, with marked variations in microbial composition between individuals. The development of IBD is often associated with qualitative and quantitative disorders of the intestinal microbial flora (dysbiosis). The healthy human gut harbours about 10 different bacterial species distributed in colony forming units which colonize the gastrointestinal tract. The intestinal microbiota plays a fundamental role in health and in the progression of diseases such as IBD and CRC. In healthy subjects, the main control of intestinal bacterial colonization occurs through gastric acidity but other factors such as endoluminal temperature, competition between different bacterial strains, peristalsis and drugs can influence the intestinal microenvironment. The microbiota exerts diverse physiological functions to include: growth inhibition of pathogenic microorganisms, synthesis of compounds useful for the trophism of colonic mucosa, regulation of intestinal lymphoid tissue and synthesis of amino acids. Furthermore, mucus seems to play an important role in protecting the intestinal mucosa and maintaining its integrity. Changes in the microbiota composition are mainly influenced by diet and age, as well as genetic factors. Increasing evidence indicates that dysbiosis favors the production of genotoxins and metabolites associated with carcinogenesis and induces dysregulation of the immune response which promotes and sustains inflammation in IBD leading to carcinogenesis. A disequilibrium in gut microflora composition leads to the specific activation of gut associated lymphoid tissue. The associated chronic inflammatory process associated increases the risk of developing CRC. Ulcerative colitis and Crohn's disease are the two major IBDs characterized by an early onset and extraintestinal manifestations, such as rheumatoid arthritis. The pathogenesis of both diseases is complex and not yet fully known. However, it is widely accepted that an inappropriate immune response to microbial flora can play a pivotal role in IBD pathogenesis.
The role of dietary fibre in inflammatory bowel disease.
Pituch-Zdanowska, Aleksandra; Banaszkiewicz, Aleksandra; Albrecht, Piotr
2015-01-01
The aetiology of inflammatory bowel diseases (IBD), which are primarily Crohn's disease and ulcerative colitis, still remains unclear, while the incidence of IBD is constantly increasing, especially in the industrialised countries. Among genetic, environmental, and immunological factors, changes in the composition of the intestinal microflora and diet are indicated as very important in initiating and sustaining inflammation in patients with IBD. Above all nutrients dietary fibre is an especially important component of diet in the context of IBD. A potentially protective effect of high-fibre diet on intestinal disorders was described as early as in 1973. Several trials performed in animal models of IBD and human studies have reported that supplementation of some types of dietary fibre can prolong remission and reduce lesions of the intestinal mucosa during the course of the disease. This paper presents the current state of knowledge on the effects of dietary fibre in IBD.
Scarpellini, Emidio; Campanale, Mariachiara; Leone, Diana; Purchiaroni, Flaminia; Vitale, Giovanna; Lauritano, Ernesto Cristiano; Gasbarrini, Antonio
2010-10-01
Intestinal epithelium, mucosal immune system, and bacterial flora represent a morpho-functional system on dynamic balance responsible for the intestinal metabolic and trophic functions, and the regulation of mucosal and systemic host's immunity. Obesity is a pathological condition affecting a growing number of people especially in the Western countries resulting from the failure of the organism's energetic balance based on the perfect equality of income, waste, and storage. Recent evidences explain the mechanisms for the microbial regulation of the host's metabolism both in health and disease. In particular, animal studies have explained how quali-/quantitative changes in microflora composition are able to affect the absorption of the nutrients and the energy distribution. Antibiotics, prebiotics, probiotics, and symbiotics are the instruments utilized in the current clinical practice to modulate the intestinal bacterial flora in man both in health and pathologic conditions with promising preliminary results on prevention and therapy of obesity and related metabolic diseases.
Hou, Tao; Glahn, Raymond P.; Tako, Elad
2017-01-01
Calcium (Ca) is one of the most abundant inorganic elements in the human body and has many important physiological roles. Prebiotics and bioactive peptides are two important substances used to promote calcium uptake. However, the difference in mechanisms of the calcium uptake from these two supplements is not clear. By using the Gallus gallus model and the intra-amniotic administration procedure, the aim of this study was to investigate whether Ca status, intestinal functionality, and health-promoting bacterial populations were affected by prebiotics extracted from chickpea and lentil, and duck egg white peptides (DPs). Eleven groups (non-injected; 18 MΩ H2O; 4 mmol/L CaCl2; 50 mg/mL chickpea + 4 mmol/L CaCl2; 50 mg/mL lentil + 4 mmol/L CaCl2; 40 mg/mL DPs + 4 mmol/L CaCl2; 5 mg/mL Val-Ser-Glu-Glu (VSEE) + 4 mmol/L CaCl2; 50 mg/mL chickpea; 50 mg/mL lentil; 40 mg/mL DPs; 5 mg/mL VSEE) were utilized. Upon hatch, blood, cecum, small intestine, liver and bone were collected for assessment of serum bone alkaline phosphate level (BALP), the relative abundance of intestinal microflora, expression of Ca-related genes, brush border membrane (BBM) functional genes, and liver and bone mineral levels, respectively. The BALP level increased in the presence of lentil, DPs and VSEE (p < 0.05). The relative abundance of probiotics increased significantly (p < 0.05) by VSEE + Ca and chickpea. The expression of CalbindinD9k (Ca transporter) increased (p < 0.05) in Ca, chickpea + Ca and lentil + Ca groups. In addition, the brush border membrane functionality genes expressions increased (p < 0.05) by the chickpea or lentil extracts. Prebiotics and DPs beneficially affected the intestinal microflora and duodenal villus surface area. This research expands the understanding of the prebiotics’ properties of chickpea and lentil extracts, and peptides’ effects on calcium metabolism and gut health. PMID:28754012
Hou, Tao; Kolba, Nikolai; Glahn, Raymond P; Tako, Elad
2017-07-21
Calcium (Ca) is one of the most abundant inorganic elements in the human body and has many important physiological roles. Prebiotics and bioactive peptides are two important substances used to promote calcium uptake. However, the difference in mechanisms of the calcium uptake from these two supplements is not clear. By using the Gallus gallus model and the intra-amniotic administration procedure, the aim of this study was to investigate whether Ca status, intestinal functionality, and health-promoting bacterial populations were affected by prebiotics extracted from chickpea and lentil, and duck egg white peptides (DPs). Eleven groups (non-injected; 18 MΩ H₂O; 4 mmol/L CaCl₂; 50 mg/mL chickpea + 4 mmol/L CaCl₂; 50 mg/mL lentil + 4 mmol/L CaCl₂; 40 mg/mL DPs + 4 mmol/L CaCl₂; 5 mg/mL Val-Ser-Glu-Glu (VSEE) + 4 mmol/L CaCl₂; 50 mg/mL chickpea; 50 mg/mL lentil; 40 mg/mL DPs; 5 mg/mL VSEE) were utilized. Upon hatch, blood, cecum, small intestine, liver and bone were collected for assessment of serum bone alkaline phosphate level (BALP), the relative abundance of intestinal microflora, expression of Ca-related genes, brush border membrane (BBM) functional genes, and liver and bone mineral levels, respectively. The BALP level increased in the presence of lentil, DPs and VSEE ( p < 0.05). The relative abundance of probiotics increased significantly ( p < 0.05) by VSEE + Ca and chickpea. The expression of CalbindinD9k (Ca transporter) increased ( p < 0.05) in Ca, chickpea + Ca and lentil + Ca groups. In addition, the brush border membrane functionality genes expressions increased ( p < 0.05) by the chickpea or lentil extracts. Prebiotics and DPs beneficially affected the intestinal microflora and duodenal villus surface area. This research expands the understanding of the prebiotics' properties of chickpea and lentil extracts, and peptides' effects on calcium metabolism and gut health.
Singh, Sudhir P; Jadaun, Jyoti Singh; Narnoliya, Lokesh K; Pandey, Ashok
2017-10-01
The bacterial groups in the gut ecosystem play key role in the maintenance of host's metabolic and structural functionality. The gut microbiota enhances digestion processing, helps in digestion of complex substances, synthesizes beneficial bioactive compounds, enhances bioavailability of minerals, impedes growth of pathogenic microbes, and prevents various diseases. It is, therefore, desirable to have an adequate intake of prebiotic biomolecules, which promote favorable modulation of intestinal microflora. Prebiotics are non-digestible and chemically stable structures that significantly enhance growth and functionality of gut microflora. The non-digestible carbohydrate, mainly oligosaccharides, covers a major part of total available prebiotics as dietary additives. The review describes the types of prebiotic low molecular weight carbohydrates, i.e., oligosaccharides, their structure, biosynthesis, functionality, and applications, with a special focus given to fructooligosaccharides (FOSs). The review provides an update on enzymes executing hydrolytic and fructosyltransferase activities producing prebiotic FOS biomolecules, and future perspectives.
Yuan, Z H; Wang, J P; Zhang, K Y; Ding, X M; Bai, S P; Zeng, Q F; Xuan, Y; Su, Z W
2016-12-01
Vanadium (V) is a trace element which can induce dysfunction of gastro-intestine and egg quality deterioration of laying hens. This study was conducted to determine the effect of tea polyphenols (TP) on intestinal morphology, microflora, and short-chain fatty acid (SCFA) profile of laying hens fed vanadium containing diets. A total of 120 Lohman laying hens (67-week-old) were randomly divided into 4 groups with 6 replicates and 5 birds each for a 35-day feeding trial. The dietary treatments were as follows: (1) control (CON), fed a basal diet; (2) vanadium treatment (V10), CON +10 mg V/kg; (3) TP treatment 1 (TP1): V10 + 600 mg TP/kg; (4) TP treatment 2 (TP2): V10 + 1000 mg TP/kg. Fed 10 mg V/kg diets to laying hens did not affect the cecum flora diversity index (H), degree of homogeneity (EH), and richness (S), but hens fed TP2 diet decreased the H, EH, and S (P < 0.05). The cecum butyrate acid concentration was lower in V10 treatment and higher in TP2 treatment (P < 0.05). Addition of 10 mg/kg V resulted in an increased (P < 0.01) duodenal cell apoptosis rate, and 1000 mg/kg TP supplementation overcame (P < 0.01) this reduction effect induced by vanadium. The results indicated that supplementation of 10 mg/kg vanadium increased duodenal cell apoptosis and reduced cecum butyrate acid content. Addition of 1000 mg/kg TP increased the SCFA production to affect cecum flora ecology and protected the duodenal cell from excess apoptosis caused by vanadium.
Uspenskiĭ, Iu P; Zakharenko, S M; Fominykh, Iu A
2013-01-01
The problem of antibiotic-associated conditions is one of the most actual problems of clinical practice. The antibiotic-associated diarrhea is a multidisciplinary problem. Investigations of the small intestine microecological status and assessment of microflora at the patients receiving antibiotics testifies to dysbiosis existence. In article results of open-label investigation of a multispecies probiotic RioFlora Balance using for antibiotic-associated diarrhea prophylaxis in patients used antibacterial therapy are presented.
Expert panel report on a study of Splenda in male rats.
Brusick, David; Borzelleca, Joseph F; Gallo, Michael; Williams, Gary; Kille, John; Wallace Hayes, A; Xavier Pi-Sunyer, F; Williams, Christine; Burks, Wesley
2009-10-01
A recent study in rats investigated the retail sweetener product, Granulated SPLENDA No Calorie Sweetener (Splenda) (Abou-Donia et al., 2008. Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. J. Toxicol. Environ. Health A, 71, 1415-1429), which is composed of (by dry weight) maltodextrin ( approximately 99%) and sucralose ( approximately 1%). The investigators reported that Splenda increased body weight, decreased beneficial intestinal bacteria, and increased the expression of certain cytochrome P450 (CYP450) enzymes and the transporter protein, P-glycoprotein (P-gp), the latter of which was considered evidence that Splenda or sucralose might interfere with the absorption of nutrients and drugs. The investigators indicated that the reported changes were attributable to the sucralose present in the product tested. An Expert Panel conducted a rigorous evaluation of this study. In arriving at its conclusions, the Expert Panel considered the design and conduct of the study, its outcomes and the outcomes reported in other data available publicly. The Expert Panel found that the study was deficient in several critical areas and that its results cannot be interpreted as evidence that either Splenda, or sucralose, produced adverse effects in male rats, including effects on gastrointestinal microflora, body weight, CYP450 and P-gp activity, and nutrient and drug absorption. The study conclusions are not consistent with published literature and not supported by the data presented.
Mountzouris, Konstantinos C; Balaskas, Christos; Fava, Fransesca; Tuohy, Kieran M; Gibson, Glenn R; Fegeros, K
2006-08-01
It is evident that quantitative information on different microbial groups and their contribution in terms of activity in the gastrointestinal (GI) tract of humans and animals is required in order to formulate functional diets targeting improved gut function and host health. In this work, quantitative information on levels and spatial distributions of Bacteroides spp, Eubacterium spp, Clostridium spp, Escherichia coli, Bifidobacterium spp and Lactobacillus/Enterococcus spp. along the porcine large intestine was investigated using 16S rRNA targeted probes and fluorescent in situ hybridisation (FISH). Caecum, ascending colon (AC) and rectum luminal digesta from three groups of individually housed growing pigs fed either a corn-soybean basal diet (CON diet) or a prebiotic diet containing 10 g/kg oligofructose (FOS diet) or trans-galactooligosaccharides (TOS diet) at the expense of cornstarch were analysed. DAPI staining was used to enumerate total number of cells in the samples. Populations of total cells, Bacteroides, Eubacterium, Clostridium and Bifidobacterium declined significantly (P < 0.05) from caecum to rectum, and were not affected by dietary treatments. Populations of Lactobacillus/Enterococcus and E. coli did not differ throughout the large intestine. The relative percent (%) contribution of each bacterial group to the total cell count did not differ between caecum and rectum, with the exception of Eubacterium that was higher in the AC digesta. FISH analysis showed that the sum of all bacterial groups made up a small percentage of the total cells, which was 12.4%, 21.8% and 10.3% in caecum, AC and rectum, respectively. This supports the view that in swine, the diversity of GI microflora might be higher compared to other species. In terms of microflora metabolic activity, the substantially higher numerical trends seen in FOS and TOS treatments regarding total volatile fatty acid, acetate concentrations and glycolytic activities, it could be postulated that FOS and TOS promoted saccharolytic activities in the porcine colon.
Abou-Donia, Mohamed B; El-Masry, Eman M; Abdel-Rahman, Ali A; McLendon, Roger E; Schiffman, Susan S
2008-01-01
Splenda is comprised of the high-potency artificial sweetener sucralose (1.1%) and the fillers maltodextrin and glucose. Splenda was administered by oral gavage at 100, 300, 500, or 1000 mg/kg to male Sprague-Dawley rats for 12-wk, during which fecal samples were collected weekly for bacterial analysis and measurement of fecal pH. After 12-wk, half of the animals from each treatment group were sacrificed to determine the intestinal expression of the membrane efflux transporter P-glycoprotein (P-gp) and the cytochrome P-450 (CYP) metabolism system by Western blot. The remaining animals were allowed to recover for an additional 12-wk, and further assessments of fecal microflora, fecal pH, and expression of P-gp and CYP were determined. At the end of the 12-wk treatment period, the numbers of total anaerobes, bifidobacteria, lactobacilli, Bacteroides, clostridia, and total aerobic bacteria were significantly decreased; however, there was no significant treatment effect on enterobacteria. Splenda also increased fecal pH and enhanced the expression of P-gp by 2.43-fold, CYP3A4 by 2.51-fold, and CYP2D1 by 3.49-fold. Following the 12-wk recovery period, only the total anaerobes and bifidobacteria remained significantly depressed, whereas pH values, P-gp, and CYP3A4 and CYP2D1 remained elevated. These changes occurred at Splenda dosages that contained sucralose at 1.1-11 mg/kg (the US FDA Acceptable Daily Intake for sucralose is 5 mg/kg). Evidence indicates that a 12-wk administration of Splenda exerted numerous adverse effects, including (1) reduction in beneficial fecal microflora, (2) increased fecal pH, and (3) enhanced expression levels of P-gp, CYP3A4, and CYP2D1, which are known to limit the bioavailability of orally administered drugs.
Probiotic actions on diseases: implications for therapeutic treatments.
Chiu, Yi-Heng; Lin, Shiao-Lin; Tsai, Jaw-Ji; Lin, Meei-Yn
2014-04-01
The ecology of gut microflora, which colonizes all body surfaces, has long coevolved with its hosts in a complicated fashion. Health benefits conferred by gut microflora include defense against invading pathogens, improvement of nutritional bioavailability, and development of the regional and systemic immune systems. The past decade has witnessed growing interest in the fact that the gut microflora affects the host's energy homeostasis by means of various mechanisms, including supplying nourishment from indigestible compounds, producing small biomolecules responsible for lipid profiles, and participating in the absorption, distribution, metabolism and excretion of nutrition. Much in vitro and in vivo research has indicated that aberrant gut microflora plays an important role in the pathogenesis of a wide spectrum of diseases. This is accomplished by a shift in focus, from laying an emphasis on pharmacotherapy to placing more effort on gut microflora normalization. The objectives of this review include illustrating trends in the clinical application of probiotics on diseases, as well as discussing current methodology limitations on probiotic selection. Furthermore, it is expected to shed light on the nature of probiotics, with the aim of giving greater insight into the implications for clinical use of probiotics in the treatment of diseases.
Ren, Dayong; Gong, Shengjie; Shu, Jingyan; Zhu, Jianwei; Rong, Fengjun; Zhang, Zhenye; Wang, Di; Gao, Liangfeng; Qu, Tianming; Liu, Hongyan; Chen, Ping
2017-01-01
Objective . Staphylococcus aureus is an important pathogen that causes intestinal infection. We examined the immunomodulatory function of single and mixed Lactobacillus plantarum strains, as well as their impacts on the structure of the microbiome in mice infected with Staphylococcus aureus . The experiment was divided into three groups: protection, treatment, and control. Serum IFN- γ and IL-4 levels, as well as intestinal sIgA levels, were measured during and 1 week after infection with Staphylococcus aureus with and without Lactobacillus plantarum treatment. We used 16s rRNA tagged sequencing to analyze microbiome composition. IFN- γ /IL-4 ratio decreased significantly from infection to convalescence, especially in the mixed Lactobacillus plantarum group. In the mixed Lactobacillus plantarum group the secretion of sIgA in the intestine of mice (9.4-9.7 ug/mL) was significantly higher than in the single lactic acid bacteria group. The dominant phyla in mice are Firmicutes , Bacteroidetes , and Proteobacteria . Treatment with mixed lactic acid bacteria increased the anti-inflammatory factor and the secretion of sIgA in the intestine of mice infected with Staphylococcus aureus and inhibited inflammation.
Diaper area skin microflora of normal children and children with atopic dermatitis.
Keswick, B H; Seymour, J L; Milligan, M C
1987-01-01
In vitro studies established that neither cloth nor disposable diapers demonstrably contributed to the growth of Escherichia coli, Proteus vulgaris, Staphylococcus aureus, or Candida albicans when urine was present as a growth medium. In a clinical study of 166 children, the microbial skin flora of children with atopic dermatitis was compared with the flora of children with normal skin to determine the influence of diaper type. No biologically significant differences were detected between groups wearing disposable or cloth diapers in terms of frequency of isolation or log mean recovery of selected skin flora. Repeated isolation of S. aureus correlated with atopic dermatitis. The log mean recovery of S. aureus was higher in the atopic groups. The effects of each diaper type on skin microflora were equivalent in the normal and atopic populations. PMID:3546360
Sina, Christian; Lipinski, Simone; Gavrilova, Olga; Aden, Konrad; Rehman, Ateequr; Till, Andreas; Rittger, Andrea; Podschun, Rainer; Meyer-Hoffert, Ulf; Haesler, Robert; Midtling, Emilie; Pütsep, Katrin; McGuckin, Michael A; Schreiber, Stefan; Saftig, Paul; Rosenstiel, Philip
2013-04-01
Cathepsin K is a lysosomal cysteine protease that has pleiotropic roles in bone resorption, arthritis, atherosclerosis, blood pressure regulation, obesity and cancer. Recently, it was demonstrated that cathepsin K-deficient (Ctsk(-/-) ) mice are less susceptible to experimental autoimmune arthritis and encephalomyelitis, which implies a functional role for cathepsin K in chronic inflammatory responses. Here, the authors address the relevance of cathepsin K in the intestinal immune response during chronic intestinal inflammation. Chronic colitis was induced by administration of 2% dextran sodium sulphate (DSS) in distilled water. Mice were assessed for disease severity, histopathology and endoscopic appearance. Furthermore, DSS-exposed Ctsk(-/-) mice were treated by rectal administration of recombinant cathepsin K. Intestinal microflora was assessed by real-time PCR and 16srDNA molecular fingerprinting of ileal and colonic mucosal and faecal samples. Using Ctsk(-/-) mice, the authors demonstrate a protective role of cathepsin K against chronic DSS colitis. Dissecting the underlying mechanisms the authors found cathepsin K to be present in intestinal goblet cells and the mucin layer. Furthermore, a direct cathepsin K-mediated bactericidal activity against intestinal bacteria was demonstrated, which potentially explains the alteration of intestinal microbiota observed in Ctsk(-/-) mice. Rectal administration of recombinant cathepsin K in DSS-treated Ctsk(-/-) mice ameliorates the severity of intestinal inflammation. These data identify extracellular cathepsin K as an intestinal antibacterial factor with anti-inflammatory potential and suggest that topical administration of cathepsin K might provide a therapeutic option for patients with inflammatory bowel disease.
Runeman, Bo; Rybo, Göran; Forsgren-Brusk, Ulla; Larkö, Olle; Larsson, Peter; Faergemann, Jan
2004-01-01
The aim of this study was to confirm findings that vapour-impermeable panty liners might impair skin climate, and to assess their impact on the skin microflora. Temperature, surface pH and aerobic microflora were measured on vulvar skin of 102 women. The mean skin temperature was 1.1 degrees C higher when using a vapour-impermeable panty liner compared with not using one. Use of panty liners with vapour-permeable back sheets and acidic cores resulted in skin temperature, pH and microflora levels that were very close to those observed in persons not using liners. The temperature, pH and total number of microorganisms were significantly lower for users of vapour-permeable panty liners than for users of vapour-impermeable ones (p <0.05, p<0.001 and p<0.001, respectively). The microorganism densities were usually higher when using the vapour-impermeable panty liner, but mean differences were minor. The use of panty liners seems not to imply a microbial risk for normal, healthy women.
Autonomous microdevices for phototherapy
NASA Astrophysics Data System (ADS)
Zharov, Vladimir P.; Naumov, Sergey A.; Khlusov, Igor A.
2001-09-01
In photomedicine in some of cases radiation delivery to local zones through optical fibers can be changed for the direct placing of tiny optical sources like micro lasers or LED in required zones of ears, nostrils, larynx, nasopharynx cochlea or alimentary tract. Our study focuses on the creation of optoelectronic microdevices for local photo therapy. Now, they are taking pre-clinical trials in stomatology to treat inflammatory processes in the mouth cavity, in otolaryngology to treat otitis and for treatment of the gastro-intestinal tract. This paper is more emphasized on development optical microdevices for phototherapy of the gastro-intestinal tract. The influence of radiation from phototherapetic micromodules on composition of intestinal microflroa and the immunologic inspection of patients with dysbacteriosis of the intestine as a result of diseases of the gastrointestinal tract and after antibacterial therapy for other disturbances are studied. The obtained result are comparable with indices of the control group. At the same time, it should be noted that stimulation of growth of natural flora is recorded in the main group of patients which inhibits the activity of conditioned pathogenic microflora.
Tsuboi, Koichiro; Nishitani, Mayo; Takakura, Atsushi; Imai, Yasuyuki; Komatsu, Masaaki; Kawashima, Hiroto
2015-01-01
Genome-wide association studies of inflammatory bowel diseases identified susceptible loci containing an autophagy-related gene. However, the role of autophagy in the colon, a major affected area in inflammatory bowel diseases, is not clear. Here, we show that colonic epithelial cell-specific autophagy-related gene 7 (Atg7) conditional knock-out (cKO) mice showed exacerbation of experimental colitis with more abundant bacterial invasion into the colonic epithelium. Quantitative PCR analysis revealed that cKO mice had abnormal microflora with an increase of some genera. Consistently, expression of antimicrobial or antiparasitic peptides such as angiogenin-4, Relmβ, intelectin-1, and intelectin-2 as well as that of their inducer cytokines was significantly reduced in the cKO mice. Furthermore, secretion of colonic mucins that function as a mucosal barrier against bacterial invasion was also significantly diminished in cKO mice. Taken together, our results indicate that autophagy in colonic epithelial cells protects against colitis by the maintenance of normal gut microflora and secretion of mucus. PMID:26149685
Amanov, N A
1983-06-01
The influence of imuran (an analog of nitrogen ioprin) on the quantitative relationship between lactobacilli, bifidobacteria, bacteroids and aerobic autoflora in different sections of the gastrointestinal tract of white rats was studied under experimental conditions. On days 7-14-30 after the introduction of imuran into the gastrointestinal tract dysbacteriosis developed; it was characterized by a decrease in the number of lactobacilli and asporogenic anaerobic microflora and an increase in the number of aerobic microorganisms. By days 60-90 the content of aerobic microbes in all sections of the gastrointestinal tract was still elevated, while the rapid restoration of the number of bacteroids took place. Therefore, immunosuppression therapy with imuran may give rise to autoinfectious complications caused by different representatives of infective microflora.
Microflora of the pouch of the koala (Phascolarctos cinereus).
Osawa, R; Blanshard, W H; O'Callaghan, P G
1992-04-01
Microflora of the pouch epithelium of 17 female koalas (Phascolarctos cinereus) were examined in relation to their current reproductive status and recent reproductive history. No microbial growth was observed in pouch swabs from 13 of 17 (76%) koalas, including four females without young, seven with pouch young and two with back young (i.e. permanently emerged from the pouch). Growth of bacteria or yeasts was observed in pouch swabs from four koalas, each of which had experienced mortality of its pouch young during the current breeding season. Seven species of microorganisms were isolated, including Pseudomonas aeruginosa, Serratia marcescens and Enterococcus faecalis. Based on the absence of microflora in the majority of females examined, we propose that the pouch epithelium normally provides a hostile environment for microbial colonization.
Ajibola, Abdulwahid; Chamunorwa, Joseph P; Erlwanger, Kennedy H
2013-04-01
The high intake of refined sugars, mainly fructose has been implicated in the epidemiology of metabolic diseases in adults and children. With an aim to determine whether honey can substitute refined sugars without adverse effect, the long-term effects of natural honey and cane syrup have been compared on visceral morphology in growing rats fed from neonatal age. Honey increased the caecum and pancreas weights in male rats, which could enhance enzymatic activities of pancreas and digestive functions by intestinal microflora of caecum. Unlike honey, cane syrup caused fatty degenerations in the liver of both male and female rats. Honey enhanced intestinal villi growth, and did not cause pathology in the rodents' abdominal viscera, suggesting potential nutritional benefit as substitution for refined sugars in animal feed.
Baba, Yoshifumi; Iwatsuki, Masaaki; Yoshida, Naoya; Watanabe, Masayuki; Baba, Hideo
2017-06-01
Esophageal cancer ranks among the most aggressive malignant diseases. The limited improvements in treatment outcomes provided by conventional therapies have prompted us to seek innovative strategies for treating this cancer. More than 100 trillion microorganisms inhabit the human intestinal tract and play a crucial role in health and disease conditions, including cancer. The human intestinal microbiome is thought to influence tumor development and progression in the gastrointestinal tract by various mechanisms. For example, Fusobacterium nucleatum , which primarily inhabits the oral cavity and causes periodontal disease, might contribute to aggressive tumor behavior through activation of chemokines such as CCL20 in esophageal cancer tissue. Composition of the intestinal microbiota is influenced by diet, lifestyle, antibiotics, and pro- and prebiotics. Therefore, by better understanding how the bacterial microbiota contributes to esophageal carcinogenesis, we might develop novel cancer prevention and treatment strategies through targeting the gastrointestinal microflora. This review discusses the current knowledge, available data and information on the relationship of microbiota with esophagitis, Barrett's esophagus, esophageal adenocarcinoma and squamous cell carcinoma.
Rhamnogalacturonan-I Based Microcapsules for Targeted Drug Release
Kusic, Anja; De Gobba, Cristian; Larsen, Flemming H.; Sassene, Philip; Zhou, Qi; van de Weert, Marco; Mullertz, Anette; Jørgensen, Bodil; Ulvskov, Peter
2016-01-01
Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were loaded with a fluorescent dye (model drug). The capsules showed negligible and very little in vitro release when subjected to media simulating gastric and intestinal fluids, respectively. However, upon exposure to a cocktail of commercial RG-I cleaving enzymes, ~ 9 times higher release was observed, demonstrating that the capsules can be opened by enzymatic degradation. The combined results suggest a potential platform for targeted drug delivery in the terminal gastro-intestinal tract. PMID:27992455
Wan, Y C; Li, T; Han, Y-D; Zhang, H-Y; Lin, H; Zhang, B
2015-01-01
The causes and pathogenesis of Inflammatory Bowel Disease (IBD) are still not clearly understood. This study aims to prove the important role of rifaximin played in inflammatory reaction caused by abnormity of the intestinal mucosal immune system. Intestinal microflora can greatly promote and maintain the inflammatory reaction of IBD, therefore, antibiotics can be used to treat IBD. Rifaximin is a medicine usually used for local intestinal infection. Many clinical and basic studies have shown that both a single application of rifaximin and the joint application with other medicines could achieve a good efficacy. This paper studied the activation of Pregnane Xenobiotic Receptor (PXR) in treating IBD with rifaximin and analyzed its efficacy in IBD when PXR was involved in the transport of medicine and metabolism. The results prove that rifaximin can not only serve as an anti-microbial drug, but can activate PXR and actually weaken the reaction of IBD. Thus it is safe to say that rifaximin has great potential in treating IBD.
Position of the American Dietetic Association: health implications of dietary fiber.
Marlett, Judith A; McBurney, Michael I; Slavin, Joanne L
2002-07-01
Dietary fiber consists of the structural and storage polysaccharides and lignin in plants that are not digested in the human stomach and small intestine. A wealth of information supports the American Dietetic Association position that the public should consume adequate amounts of dietary fiber from a variety of plant foods. Recommended intakes, 20-35 g/day for healthy adults and age plus 5 g/day for children, are not being met, because intakes of good sources of dietary fiber, fruits, vegetables, whole and high-fiber grain products, and legumes are low. Consumption of dietary fibers that are viscous lowers blood cholesterol levels and helps to normalize blood glucose and insulin levels, making these kinds of fibers part of the dietary plans to treat cardiovascular disease and type 2 diabetes. Fibers that are incompletely or slowly fermented by microflora in the large intestine promote normal laxation and are integral components of diet plans to treat constipation and prevent the development of diverticulosis and diverticulitis. A diet adequate in fiber-containing foods is also usually rich in micronutrients and nonnutritive ingredients that have additional health benefits. It is unclear why several recently published clinical trials with dietary fiber intervention failed to show a reduction in colon polyps. Nonetheless, a fiber-rich diet is associated with a lower risk of colon cancer. A fiber-rich meal is processed more slowly, which promotes earlier satiety, and is frequently less calorically dense and lower in fat and added sugars. All of these characteristics are features of a dietary pattern to treat and prevent obesity. Appropriate kinds and amounts of dietary fiber for the critically ill and the very old have not been clearly delineated; both may need nonfood sources of fiber. Many factors confound observations of gastrointestinal function in the critically ill, and the kinds of fiber that would promote normal small and large intestinal function are usually not in a form suitable for the critically ill. Maintenance of body weight in the inactive older adult is accomplished in part by decreasing food intake. Even with a fiber-rich diet, a supplement may be needed to bring fiber intakes into a range adequate to prevent constipation. By increasing variety in the daily food pattern, the dietetics professional can help most healthy children and adults achieve adequate dietary fiber intakes.
Gastrointestinal microbiota in children with autism in Slovakia.
Tomova, Aleksandra; Husarova, Veronika; Lakatosova, Silvia; Bakos, Jan; Vlkova, Barbora; Babinska, Katarina; Ostatnikova, Daniela
2015-01-01
Development of Autism Spectrum Disorders (ASD), including autism, is based on a combination of genetic predisposition and environmental factors. Recent data propose the etiopathogenetic role of intestinal microflora in autism. The aim of this study was to elucidate changes in fecal microbiota in children with autism and determine its role in the development of often present gastrointestinal (GI) disorders and possibly other manifestations of autism in Slovakia. The fecal microflora of 10 children with autism, 9 siblings and 10 healthy children was investigated by real-time PCR. The fecal microbiota of autistic children showed a significant decrease of the Bacteroidetes/Firmicutes ratio and elevation of the amount of Lactobacillus spp. Our results also showed a trend in the incidence of elevated Desulfovibrio spp. in children with autism reaffirmed by a very strong association of the amount of Desulfovibrio spp. with the severity of autism in the Autism Diagnostic Interview (ADI) restricted/repetitive behavior subscale score. The participants in our study demonstrated strong positive correlation of autism severity with the severity of GI dysfunction. Probiotic diet supplementation normalized the Bacteroidetes/Firmicutes ratio, Desulfovibrio spp. and the amount of Bifidobacterium spp. in feces of autistic children. We did not find any correlation between plasma levels of oxytocin, testosterone, DHEA-S and fecal microbiota, which would suggest their combined influence on autism development. This pilot study suggests the role of gut microbiota in autism as a part of the "gut-brain" axis and it is a basis for further investigation of the combined effect of microbial, genetic, and hormonal changes for development and clinical manifestation of autism. Copyright © 2014 Elsevier Inc. All rights reserved.
Yang, Yongshou; Nirmagustina, Dwi Eva; Kumrungsee, Thanutchaporn; Okazaki, Yukako; Tomotake, Hiroyuki; Kato, Norihisa
2017-09-01
Consumption of reishi mushroom has been reported to prevent colon carcinogenesis in rodents, although the underlying mechanisms remain unclear. To investigate this effect, rats were fed a high-fat diet supplemented with 5% water extract from either the reishi mushroom (Ganoderma lingzhi) (WGL) or the auto-digested reishi G. lingzhi (AWGL) for three weeks. Both extracts markedly reduced fecal secondary bile acids, such as lithocholic acid and deoxycholic acid (colon carcinogens). These extracts reduced the numbers of Clostridium coccoides and Clostridium leptum (secondary bile acids-producing bacteria) in a per g of cecal digesta. Fecal mucins and cecal propionate were significantly elevated by both extracts, and fecal IgA was significantly elevated by WGL, but not by AWGL. These results suggest that the reishi extracts have an impact on colon luminal health by modulating secondary bile acids, microflora, mucins, and propionate that related to colon cancer.
Liu, Qian; Ni, Xueqin; Wang, Qiang; Peng, Zhirong; Niu, Lili; Wang, Hengsong; Zhou, Yi; Sun, Hao; Pan, Kangcheng; Jing, Bo; Zeng, Dong
2017-01-01
In this work, we searched for an effective probiotic that can help control intestinal infection, particularly enterotoxigenic Escherichia coli K88 (ETEC) invasion, in giant panda (Ailuropoda melanoleuca). As a potential probiotic strain, Lactobacillus plantarum BSGP201683 (L. plantarum G83) was isolated from the feces of giant panda and proven beneficial in vitro. This study was aimed to evaluate the protective effect of L. plantarum G83 in mice challenged with ETEC. The mice were orally administered with 0.2 mL of PBS containing L. plantarum G83 at 0 colony-forming units (cfu) mL−1 (control; negative control, ETEC group), 5.0 × 108 cfu mL−1 (LDLP), 5.0 × 109 cfu mL−1 (MDLP), and 5.0 × 1010 cfu mL−1 (HDLP) for 14 consecutive days. At day 15, the mice (LDLP, MDLP, HDLP, and ETEC groups) were challenged with ETEC and assessed at 0, 24, and 144 h. Animal health status; chemical and biological intestinal barriers; and body weight were measured. Results showed that L. plantarum G83 supplementation protected the mouse gut mainly by attenuating inflammation and improving the gut microflora. Most indices significantly changed at 24 h after challenge compared to those at 0 and 144 h. All treatment groups showed inhibited plasma diamine oxidase activity and D-lactate concentration. Tight-junction protein expression was down-regulated, and interleukin (IL)-1β, IL-6, IL-8, TLR4, and MyD88 levels were up-regulated in the jejunum in the LDLP and MDLP groups. The number of the Enterobacteriaceae family and the heat-labile enterotoxin (LT) gene decreased (P < 0.05) in the colons in the LDLP and MDLP groups. All data indicated that L. plantarum G83 could attenuate acute intestinal inflammation caused by ETEC infection, and the low and intermediate doses were superior to the high dose. These findings suggested that L. plantarum G83 may serve as a protective probiotic for intestinal disease and merits further investigation. PMID:29018435
Liu, Qian; Ni, Xueqin; Wang, Qiang; Peng, Zhirong; Niu, Lili; Wang, Hengsong; Zhou, Yi; Sun, Hao; Pan, Kangcheng; Jing, Bo; Zeng, Dong
2017-01-01
In this work, we searched for an effective probiotic that can help control intestinal infection, particularly enterotoxigenic Escherichia coli K88 (ETEC) invasion, in giant panda ( Ailuropoda melanoleuca ). As a potential probiotic strain, Lactobacillus plantarum BSGP201683 ( L. plantarum G83) was isolated from the feces of giant panda and proven beneficial in vitro . This study was aimed to evaluate the protective effect of L. plantarum G83 in mice challenged with ETEC. The mice were orally administered with 0.2 mL of PBS containing L. plantarum G83 at 0 colony-forming units (cfu) mL -1 (control; negative control, ETEC group), 5.0 × 10 8 cfu mL -1 (LDLP), 5.0 × 10 9 cfu mL -1 (MDLP), and 5.0 × 10 10 cfu mL -1 (HDLP) for 14 consecutive days. At day 15, the mice (LDLP, MDLP, HDLP, and ETEC groups) were challenged with ETEC and assessed at 0, 24, and 144 h. Animal health status; chemical and biological intestinal barriers; and body weight were measured. Results showed that L. plantarum G83 supplementation protected the mouse gut mainly by attenuating inflammation and improving the gut microflora. Most indices significantly changed at 24 h after challenge compared to those at 0 and 144 h. All treatment groups showed inhibited plasma diamine oxidase activity and D -lactate concentration. Tight-junction protein expression was down-regulated, and interleukin (IL)-1β, IL-6, IL-8, TLR4, and MyD88 levels were up-regulated in the jejunum in the LDLP and MDLP groups. The number of the Enterobacteriaceae family and the heat-labile enterotoxin (LT) gene decreased ( P < 0.05) in the colons in the LDLP and MDLP groups. All data indicated that L. plantarum G83 could attenuate acute intestinal inflammation caused by ETEC infection, and the low and intermediate doses were superior to the high dose. These findings suggested that L. plantarum G83 may serve as a protective probiotic for intestinal disease and merits further investigation.
Basmacioğlu-Malayoğlu, H; Ozdemir, P; Bağriyanik, H A
2016-04-01
This study aimed to evaluate the influence of an organic acid (OA) and essential oil (EO) blends, individually or in combination, on growth performance, carcass parameters, apparent digestibility, intestinal microflora and intestinal morphology of broilers. A total of 480 one-d-old male Ross 308 chicks were randomly assigned to 4 treatments consisting of 4 replicates each (n = 30 birds in each replicate). Dietary treatments consisted of a basal diet (control), and basal diet supplemented with 2 g/kg OA blend (OAB), 300 mg/kg EO blend (EOB), or with 2 g/kg OA and 300 mg/kg EO blend (OAB-EOB) for 42 d. The dietary supplementation with EO blend or in combination with OA blend increased body weight gain and improved feed efficiency as compared to control. Dietary treatments had no significant effects on feed consumption or relative organ weights of broilers. The OAB diet increased carcass yield compared to the control diet but the lowest carcass yield occurred with the OAB-EOB combination. Birds fed on EOB and OAB-EOB diets had lower ileum Escherichia coli counts than birds fed on the control diet. There was no significant effect of treatments on apparent digestibility at 16-21 d but the EOB and OAB-EOB diets increased apparent digestibility of dry matter and crude protein during the finisher period (d 37-42) compared to the control diet. Birds fed on the EOB and OAB-EOB diets had greater villus height in the ileum at 21 and 42 d of age and had lower crypt depth in the ileum at 42 d of age than birds given the control diet. In conclusion, beneficial effects of the use of EO blend individually or in combination with the OA blend were observed but the OA blend alone was ineffective. Furthermore, the use of the combination of OA and EO was more effective, in some respects, than their individual use.
Dietary selenium affects host selenoproteome expression by influencing the gut microbiota
Kasaikina, Marina V.; Kravtsova, Marina A.; Lee, Byung Cheon; Seravalli, Javier; Peterson, Daniel A.; Walter, Jens; Legge, Ryan; Benson, Andrew K.; Hatfield, Dolph L.; Gladyshev, Vadim N.
2011-01-01
Colonization of the gastrointestinal tract and composition of the microbiota may be influenced by components of the diet, including trace elements. To understand how selenium regulates the intestinal microflora, we used high-throughput sequencing to examine the composition of gut microbiota of mice maintained on selenium-deficient, selenium-sufficient, and selenium-enriched diets. The microbiota diversity increased as a result of selenium in the diet. Specific phylotypes showed differential effects of selenium, even within a genus, implying that selenium had unique effects across microbial taxa. Conventionalized germ-free mice subjected to selenium diets gave similar results and showed an increased diversity of the bacterial population in animals fed with higher levels of selenium. Germ-free mice fed selenium diets modified their selenoproteome expression similar to control mice but showed higher levels and activity of glutathione peroxidase 1 and methionine-R-sulfoxide reductase 1 in the liver, suggesting partial sequestration of selenium by the gut microorganisms, limiting its availability for the host. These changes in the selenium status were independent of the levels of other trace elements. The data show that dietary selenium affects both composition of the intestinal microflora and colonization of the gastrointestinal tract, which, in turn, influence the host selenium status and selenoproteome expression.—Kasaikina, M. V., Kravtsova, M. A., Lee, B. C., Seravalli, J., Peterson, D. A., Walter, J., Legge, R., Benson, A. K., Hatfield, D. L., Gladyshev, V. N. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. PMID:21493887
Historical Perspective on the Rise and Fall and Rise of Antibiotics and Human Weight Gain.
Podolsky, Scott H
2017-01-17
In recent medical and popular literature, audiences have been asked to consider whether antibiotics have contributed to the rising obesity epidemic. Prominent magazines have stated that weight may be adversely affected by antibiotics that destroy existing microbiomes and replace them with less helpful ones. However, there is a long history of efforts to investigate the relationship between antibiotics and human weight gain. In the early 1950s, amid initial findings that low doses of antibiotics served as growth promoters in animal livestock, investigators explored the role of antibiotics as magic bullets for human malnutrition. Nevertheless, early enthusiasm was tempered by controlled studies showing that antibiotics did not serve as useful, nonspecific growth promoters for humans. In subsequent decades, against the backdrop of rising concern over antibiotic resistance, investigators studying the role of antibiotics in acute malnutrition have had to navigate a more complicated public health calculus. In a related historical stream, scientists since the 1910s have explored the role of the intestinal microflora in human health. By the 2000s, as increasing resources and more sophisticated tools were devoted to understanding the microbiome (a term coined in 2001), attention would turn to the role of antibiotics and the intestinal microflora in the rising obesity epidemic. Despite scientific and commercial enthusiasm, easy answers (whether about antibiotics or probiotics) have again given way to an appreciation for the complexity of human growth. History encourages caution about our hopes for simplistic answers for presumed "fat drugs" and slimming probiotics alike.
Sochocka, Marta; Donskow-Łysoniewska, Katarzyna; Diniz, Breno Satler; Kurpas, Donata; Brzozowska, Ewa; Leszek, Jerzy
2018-06-23
One of the most important scientific discoveries of recent years was the disclosure that the intestinal microflora takes part in bidirectional communication between the gut and the brain. Scientists suggest that human gut microflora may even act as the "second brain" and be responsible for neurodegenerative disorders like Alzheimer's disease (AD). Although human-associated microbial communities are generally stable, they can be altered by common human actions and experiences. Enteric bacteria, commensal, and pathogenic microorganisms, may have a major impact on immune system, brain development, and behavior, as they are able to produce several neurotransmitters and neuromodulators like serotonin, kynurenine, catecholamine, etc., as well as amyloids. However, brain destructive mechanisms, that can lead to dementia and AD, start with the intestinal microbiome dysbiosis, development of local and systemic inflammation, and dysregulation of the gut-brain axis. Increased permeability of the gut epithelial barrier results in invasion of different bacteria, viruses, and their neuroactive products that support neuroinflammatory reactions in the brain. It seems that, inflammatory-infectious hypothesis of AD, with the great role of the gut microbiome, starts to gently push into the shadow the amyloid cascade hypothesis that has dominated for decades. It is strongly postulated that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. This is promising area for therapeutic intervention. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention, alter microbial partners and their products including amyloid protein, will probably become a new treatment for AD.
Chen, Hong; Chen, Daiwen; Qin, Wen; Liu, Yuntao; Che, Lianqiang; Huang, Zhiqing; Luo, Yuheng; Zhang, Qing; Lin, Derong; Liu, Yaowen; Han, Guoquan; DeSmet, Stefaan; Michiels, Joris
2017-02-01
The objective of this study was to determine the impact of wheat bran and its main polysaccharides on intestinal bacteria and gene expression of intestinal barrier function relevant proteins. Thirty freshly weaned male piglets were assigned randomly to five dietary treatment groups with six piglets per group. Accordingly, five synthetic diets including a basal control diet without fiber components (CON), wheat bran diet (10% wheat bran, WB), arabinoxylan diet (AX), cellulose diet (CEL) and combined diet of arabinoxylan and cellulose (CB) were studied. The piglets were fed ad libitum for 30 d. Lower Escherichia coli (E. coli) populations in WB group and higher probiotic (Lactobacillus and Bifidobacterium) populations in groups fed diets containing arabinoxylan (WB, AX and CB) were observed and compared with CON group. Compared with CON group, the gene expressions of cystic fibrosis transmembrane conductance regulator (CFTR), calcium-activated chloride channel regulator 1 (CLCA1) and voltage-gated chloride channel 2 (CIC2) were suppressed in the WB group. And wheat bran down-regulated gene expression of pro-inflammation (TNF-α, IL-1β, IL-6) and TLRs/MyD88/NF-κB pathway compared with CON group. In conclusion, wheat bran and its main polysaccharides could change intestinal microflora and down-regulate the gene expression of intestinal barrier function relevant proteins in the distal small intestinal mucosa.
Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy.
Li, Li; Somerset, Shawn
2014-10-01
Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Takenaka, Shinkuro; Yoshikawa, Takeshi; Kadowaki, Shusaku; Okunishi, Suguru; Maeda, Hiroto
2017-01-01
A marine raphidophyte Heterosigma akashiwo is a causative agent of harmful microalgal blooms, which often cause the massive mortality of aquacultured finfish. In the present study, the Pacific oyster Crassostrea gigas was reared with H. akashiwo, and effect of the microalga on filter-feeding behavior and microflora of the gastrointestinal tract was investigated. The intake of the raphidophyte cells inhibited the molluscan filter-feeding activities, suggesting the negative physiological effect of the microalgal cell contents. However, the bivalves ingested the H. akashiwo cells to the same extent as the diatom Chaetoceros calcitrans, a non-harmful indicator to estimate the filtration rate, showing a continuation of their non-selective ingestion of the phytoplankton. Microflora of the oyster soft tissue was dominated by bacteria affiliated with the family Rhodobacteraceae, some of which are associated with microalgae. In addition, the Bacteroidetes species, in which algicidal bacteria are included, were also found in the bivalve individuals exposed to H. akashiwo. These results suggested that the ingested phytoplankton affected the microbial flora in the gastrointestinal tracts, some constituents of which helped the mollusc assimilate the ingested red tide phytoplankton. This study will provide beneficial information to clarify mechanisms by which the oyster evades the ichthyotoxicity of harmful microalgae and the participation of the intestinal microorganisms in these processes.
Modulation of endogenous antioxidant system by wine polyphenols in human disease.
Rodrigo, Ramón; Miranda, Andrés; Vergara, Leonardo
2011-02-20
Numerous studies indicate that moderate red wine consumption is associated with a protective effect against all-cause mortality. Since oxidative stress constitutes a unifying mechanism of injury of many types of disease processes, it should be expected that polyphenolic antioxidants account for this beneficial effect. Nevertheless, beyond the well-known antioxidant properties of these compounds, they may exert several other protective mechanisms. Indeed, the overall protective effect of polyphenols is due to their large array of biological actions, such as free radical-scavenging, metal chelation, enzyme modulation, cell signalling pathways modulation and gene expression effects, among others. Wine possesses a variety of polyphenols, being resveratrol its most outstanding representative, due to its pleiotropic biological properties. The presence of ethanol in wine aids to polyphenol absorption, thereby contributing to their bioavailability. Before absorption, polyphenols must be hydrolyzed by intestinal enzymes or by colonic microflora. Then, they undergo intestinal and liver metabolism. There have been no reported polyphenol adverse effects derived from intakes currently associated with the normal diet. However, supplements for health-protection should be cautiously used as no level definition has been given to make sure the dose is safe. The role of oxidative stress and the beneficial effects of wine polyphenols against cardiovascular, cancer, diabetes, microbial, inflammatory, neurodegenerative and kidney diseases and ageing are reviewed. Future large scale randomized clinical trials should be conducted to fully establish the therapeutic use of each individual wine polyphenol against human disease. Copyright © 2010 Elsevier B.V. All rights reserved.
In vivo metabolism and genotoxic effects of nitrated polycyclic aromatic hydrocarbons.
Möller, L
1994-10-01
During incomplete combustion of organic matter, nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), are formed in a reaction that is catalyzed by a low pH. 2-Nitrofluorene (NF), a marker for nitro-PAHs, is metabolized in vivo by two different routes. After inhalation, potent mutagenic metabolites, hydroxylated nitrofluorenes (OH-NFs), are formed. The metabolites are distributed by systemic circulation. After oral administration, NF is reduced to the corresponding amine, a reaction mediated by the intestinal microflora. This metabolite is acetylated to 2-acetylaminofluorene (AAF), a potent carcinogen. Further ring-hydroxylation of AAF leads to detoxification and excretion. Induction of cytochrome P450s affects the metabolism, and more OH-NFs are formed. As a consequence, more mutagenic metabolites are found in the circulation. OH-NFs are excreted in the bile as, in terms of mutagenicity, totally harmless glucuronide conjugates. When these conjugates are excreted via the bile, intestinal beta-glucuronidase can liberate direct-acting mutagens in the intestine. Thus, inhalation of NF can lead to formation of potent mutagens in the intestine. NF is a direct-acting mutagen in bacterial assays and an initiator and promoter of the carcinogenic process, and gives rise to DNA adduct formation in laboratory animals.
Effects of probiotics on the growth performance and intestinal micro flora of broiler chickens.
Li, Yin-bo; Xu, Qian-qian; Yang, Cun-jin; Yang, Xin; Lv, Le; Yin, Chun-hua; Liu, Xiao-lu; Yan, Hai
2014-05-01
Antibiotics have been used in poultry industry for decades to promote growth and protect animals from diseases, followed by various side effects. In efforts of searching for a better alternative, probiotic is of extensive attention. We investigated the effects of Bacillus subtitles, Rhodopseudomonas palustris, Candida utilis and Lactobacillus acidophilus as 0.1% (W/W) feed additives on broiler growth performance and intestinal microflora. The results showed the probiotics treatments significantly improved growth of broilers. Broilers supplemented with B. subtilis and L. acidophilus weighed 18.4% and 10.1% more than birds in control group at 42 days of age. Furthermore the feed conversion ratios of the birds in the two groups were also improved, decreasing 9.1% and 12.9%, respectively. Further study indicated a significant increase of cecal Lactobacilli concentration in briolers supplemented with probiotics, expecially in L. acidophilus treatment group. Meanwhile, the count of cecal Actinomyces in birds treated with probiotics was significantly lower compared with the control group. In conclusion, probiotics such as B. subtitles and L. acidophilus are good alternatives to antibiotics in promoting growth resulting from a beneficial modulation of the intestinal micro flora, which leads to increased efficiency of intestinal digestion in the host animal.
[The intestinal microflora of persons subjected to a radiation lesion].
Sudenko, V I; Nagornaia, S S; Groma, L I
1992-01-01
The content of large intestine has been studied in persons exposed to radiation injury in consequence of the accident at the Chernobyl Atomic Power Plant. It is stated that bifidobacteria (10(7)-10(10) cells in 1 g of feces) prevailed (as in healthy people), Bifidobacterium indicum being a dominating species. Amount of lactic-acid bacteria in 1 g of defecations of examined patients was within the range of 10(6)-10(9) cells and in certain persons it reached 10(10) cells (primarily fecal Enterococci). A considerable amount of patients with acute radiation sickness of the 3d degree had in their intestine 10(9)/g of lactic-acid bacteria, Lactobacillus casei and L. plantarum prevailing there. The frequency of yeast isolation from defecations of patients constituted 83%, while the number of cells in 1 g of feces--from 10 to 10(4). Yeast of the Candida genus, mainly Candida parapsilosis, prevailed. The species composition of isolated microorganisms has no substantial differences from microcenosis of healthy people. The content of intestine of persons suffered from radiation is characterized only by greater amount of lactic-acid bacteria and enterococci as compared with healthy adults.
Kim, D H; Hong, S W; Kim, B T; Bae, E A; Park, H Y; Han, M J
2000-04-01
The relationship between the metabolites of glycyrrhizin (18beta-glycyrrhetinic acid-3-O-beta-D-glucuronopyranosyl-(1-->2)-beta-D-glucuronide, GL) and their biological activities was investigated. By human intestinal microflora, GL was metabolized to 18beta-glycyrrhetinic acid (GA) as a main product and to 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide (GAMG) as a minor product. The former reaction was catalyzed by Eubacterium L-8 and the latter was by Streptococcus LJ-22. Among GL and its metabolites, GA and GAMG had more potent in vitro anti-platelet aggregation activity than GL. GA also showed the most potent cytotoxicity against tumor cell lines and the potent inhibitory activity on rotavirus infection as well as growth of Helicobacter pylori. GAMG, the minor metabolite of GL, was the sweetest.
Heath, Ryan D; Mir, Fazia; Ibdah, Jamal A; Tahan, Veysel
2016-11-01
Many disease processes lead to chronic liver disease, however, progress has been made regarding common findings amongst these disease processes that may suggest a path forward for treatment. In particular, common alterations in the intestinal microflora of patients with different etiologies of liver disease may provide a clue as to the pathogenesis of these disorders as well a potential therapy. Data is still scant at this point, however, what is available suggests a promising opportunity for future studies to expand upon what has been demonstrated.
Bruzzese, Eugenia; Callegari, Maria Luisa; Raia, Valeria; Viscovo, Sara; Scotto, Riccardo; Ferrari, Susanna; Morelli, Lorenzo; Buccigrossi, Vittoria; Lo Vecchio, Andrea; Ruberto, Eliana; Guarino, Alfredo
2014-01-01
Background & Aims Intestinal inflammation is a hallmark of cystic fibrosis (CF). Administration of probiotics can reduce intestinal inflammation and the incidence of pulmonary exacerbations. We investigated the composition of intestinal microbiota in children with CF and analyzed its relationship with intestinal inflammation. We also investigated the microflora structure before and after Lactobacillus GG (LGG) administration in children with CF with and without antibiotic treatment. Methods The intestinal microbiota were analyzed by denaturing gradient gel electrophoresis (DGGE), real-time polymerase chain reaction (RT-PCR), and fluorescence in situ hybridization (FISH). Intestinal inflammation was assessed by measuring fecal calprotectin (CLP) and rectal nitric oxide (rNO) production in children with CF as compared with healthy controls. We then carried out a small double-blind randomized clinical trial with LGG. Results Twenty-two children with CF children were enrolled in the study (median age, 7 years; range, 2–9 years). Fecal CLP and rNO levels were higher in children with CF than in healthy controls (184±146 µg/g vs. 52±46 µg/g; 18±15 vs. 2.6±1.2 µmol/L NO2 −, respectively; P<0.01). Compared with healthy controls, children with CF had significantly different intestinal microbial core structures. The levels of Eubacterium rectale, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Faecalibacterium prausnitzii were reduced in children with CF. A similar but more extreme pattern was observed in children with CF who were taking antibiotics. LGG administration reduced fecal CLP and partially restored intestinal microbiota. There was a significant correlation between reduced microbial richness and intestinal inflammation. Conclusions CF causes qualitative and quantitative changes in intestinal microbiota, which may represent a novel therapeutic target in the treatment of CF. Administration of probiotics restored gut microbiota, supporting the efficacy of probiotics in reducing intestinal inflammation and pulmonary exacerbations. Trial Registration ClinicalTrials.gov NCT 01961661 PMID:24586292
Veillonella, Firmicutes: Microbes disguised as Gram negatives.
Vesth, Tammi; Ozen, Aslı; Andersen, Sandra C; Kaas, Rolf Sommer; Lukjancenko, Oksana; Bohlin, Jon; Nookaew, Intawat; Wassenaar, Trudy M; Ussery, David W
2013-12-20
The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared to 20 other Firmicutes genomes; a further 101 prokaryotic genomes were included, covering 26 phyla. Thus a total of 145 prokaryotic genomes were analyzed by various methods to investigate the apparent conflict of the Veillonella Gram stain and their taxonomic position within the Firmicutes. Comparison of the genome sequences confirms that the Negativicutes are distantly related to Clostridium spp., based on 16S rRNA, complete genomic DNA sequences, and a consensus tree based on conserved proteins. The genus Veillonella is relatively homogeneous: inter-genus pair-wise comparison identifies at least 1,350 shared proteins, although less than half of these are found in any given Clostridium genome. Only 27 proteins are found conserved in all analyzed prokaryote genomes. Veillonella has distinct metabolic properties, and significant similarities to genomes of Proteobacteria are not detected, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the (mainly) Gram positive phylum of the Firmicutes. Further studies are required to unveil the evolutionary history of the Veillonella and other Negativicutes.
Veillonella, Firmicutes: Microbes disguised as Gram negatives
Vesth, Tammi; Ozen, Aslı; Andersen, Sandra C.; Kaas, Rolf Sommer; Lukjancenko, Oksana; Bohlin, Jon; Nookaew, Intawat; Wassenaar, Trudy M.; Ussery, David W.
2013-01-01
The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared to 20 other Firmicutes genomes; a further 101 prokaryotic genomes were included, covering 26 phyla. Thus a total of 145 prokaryotic genomes were analyzed by various methods to investigate the apparent conflict of the Veillonella Gram stain and their taxonomic position within the Firmicutes. Comparison of the genome sequences confirms that the Negativicutes are distantly related to Clostridium spp., based on 16S rRNA, complete genomic DNA sequences, and a consensus tree based on conserved proteins. The genus Veillonella is relatively homogeneous: inter-genus pair-wise comparison identifies at least 1,350 shared proteins, although less than half of these are found in any given Clostridium genome. Only 27 proteins are found conserved in all analyzed prokaryote genomes. Veillonella has distinct metabolic properties, and significant similarities to genomes of Proteobacteria are not detected, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the (mainly) Gram positive phylum of the Firmicutes. Further studies are required to unveil the evolutionary history of the Veillonella and other Negativicutes. PMID:24976898
Amberbir, A; Medhin, G; Erku, W; Alem, A; Simms, R; Robinson, K; Fogarty, A; Britton, J; Venn, A; Davey, G
2011-10-01
Epidemiological studies have suggested that gastro-intestinal infections including Helicobacter pylori, intestinal microflora (commensal bacteria) and geohelminths may influence the risk of asthma and allergy but data from early life are lacking. We aimed to determine the independent effects of these infections on allergic disease symptoms and sensitization in an Ethiopian birth cohort. In 2008/09, 878 children (87% of the 1006 original singletons in a population-based birth cohort) were followed up at age 3 and interview data obtained on allergic symptoms and potential confounders. Allergen skin tests to Dermatophagoides pteronyssinus and cockroach were performed, levels of Der p 1 and Bla g 1 in the child's bedding measured and stool samples analysed for geohelminths and, in a random subsample, enterococci, lactobacilli, bifidobacteria and H. pylori antigen. The independent effects of each exposure on wheeze, eczema, hayfever and sensitization were determined using multiple logistic regression. Children were commonly infected with H. pylori (41%; 253/616), enterococci (38.1%; 207/544), lactobacilli (31.1%; 169/544) and bifidobacteria (18.9%; 103/544) whereas geohelminths were only found in 8.5% (75/866). H. pylori infection was associated with a borderline significant reduced risk of eczema (adjusted OR 0.49, 95% CI 0.24-1.01, P=0.05) and D. pteronyssinus sensitization (adjusted OR 0.42, 95% CI 0.17-1.08, P=0.07). Geohelminths and intestinal microflora were not significantly associated with any of the outcomes measured. Among young children in a developing country, we found evidence to support the hypothesis of a protective effect of H. pylori infection on the risk of allergic disease. Further investigation of the mechanism of this effect is therefore of potential therapeutic and preventive value. © 2011 Blackwell Publishing Ltd.
Kim, C H; Kim, G-B; Chang, M B; Bae, G S; Paik, I K; Kil, D Y
2012-11-01
The objective of this experiment was to investigate the effect of dietary supplementation of Lactobacillus-fermented Artemisia princeps (LFA) on growth performance, meat lipid peroxidation, and intestinal microflora in Hy-line Brown male chickens. A total of six hundred twenty-four 1-d-old Hy-Line Brown male chicks were randomly allotted to 3 dietary treatments with 4 replicated pens consisting of 52 chicks. The control diet was formulated to be adequate in energy and nutrients. Two additional diets were prepared by adding 2.5 or 5.0 g/kg of LFA to the control diet. The experimental diets were fed on an ad libitum basis to the birds during 7 wk. Body weight gain and feed intake were recorded at 2 and 7 wk. At the end of the experiment, 2 birds from each treatment were killed by cervical dislocation and the samples for ileal content, breast, and thigh meat were collected for the determination of meat lipid peroxidation and microbial population. Results indicated that increasing inclusion level of LFA in diets improved BW gain (linear and quadratic, P < 0.05) and tended to improve feed efficiency (linear and quadratic, P < 0.10) of birds during 0 to 7 wk. Feeding the diets containing increasing amounts of LFA to birds reduced (quadratic, P < 0.05) thiobarbituric acid-reactive substance (TBARS) values in breast and thigh meat during 15 d of storage. The concentrations of Lactobacillus spp. in the ileal content of birds increased (linear and quadratic, P < 0.05), but those of Salmonella spp. tended to be decreased (quadratic, P < 0.10) as inclusion level of LFA in diets increased. These results suggest that dietary LFA may be used as a functional ingredient to improve growth performance, meat lipid stability, and intestinal health of birds.
Leonard, S G; Sweeney, T; Bahar, B; Lynch, B P; O'Doherty, J V
2011-02-01
A 2x2 factorial experiment (ten sows per treatment) was conducted to investigate the effect of maternal dietary supplementation with a seaweed extract (SWE; 0 v. 10·0 g/d) and fish oil (FO; 0 v. 100 g/d) inclusion from day 109 of gestation until weaning (day 26) on pig performance post-weaning (PW) and intestinal morphology, selected microflora and immune status of pigs 9 d PW. The SWE contained laminarin (10 %), fucoidan (8 %) and ash (82 %) and the FO contained 40 % EPA and 25 % DHA. Pigs weaned from SWE-supplemented sows had higher daily gain (P=0·063) between days 0 and 21 PW and pigs weaned from FO-supplemented sows had higher daily gain (P<0·05) and gain to feed ratio (P<0·01) between days 7 and 14 PW. There was an interaction between maternal SWE and FO supplementation on caecal Escherichia coli numbers (P<0·05) and the villous height to crypt depth ratio in the ileum (P<0·01) and jejunum (P<0·05) in pigs 9 d PW. Pigs weaned from SWE-supplemented sows had lower caecal E. coli and a higher villous height to crypt depth ratio in the ileum and jejunum compared with non-SWE-supplemented sows (P<0·05). There was no effect of SWE on E. coli numbers and villous height to crypt depth ratio with FO inclusion. Maternal FO supplementation induced an increase in colonic mRNA abundance of IL-1α and IL-6 (P<0·05), while SWE supplementation induced an increase in ileal TNF-α (P<0·01) and colonic TFF3 mRNA expression (P<0·05). In conclusion, these results demonstrate that SWE and FO supplementation to the maternal diet influenced the gastrointestinal environment and performance of the weaned pig.
Contemporary perspective on plaque control.
Marsh, P D
2012-06-22
The aim of this review article is to provide a scientific platform that will enable the dental team to develop a rational approach to plaque control based on the latest knowledge of the role of the oral microflora in health and disease. The resident oral microflora is natural and forms spatially-organised, interactive, multi-species biofilms on mucosal and dental surfaces in the mouth. These resident oral microbial communities play a key function in the normal development of the physiology of the host and are important in preventing colonisation by exogenous and often undesirable microbes. A dynamic balance exists between the resident microflora and the host in health, and disease results from a breakdown of this delicate relationship. Patients should be taught effective plaque control techniques that maintain dental biofilms at levels compatible with oral health so as to retain the beneficial properties of the resident microflora while reducing the risk of dental disease from excessive plaque accumulation. Antimicrobial and antiplaque agents in oral care products can augment mechanical plaque control by several direct and indirect mechanisms that not only involve reducing or removing dental biofilms but also include inhibiting bacterial metabolism when the agents are still present at sub-lethal concentrations.
Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling.
Zhang, Qingzhan; Yoo, Dongwan
2016-12-02
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are emerged and reemerging viruses in pigs, and together with transmissible gastroenteritis virus (TGEV), pose significant economic concerns to the swine industry. These viruses infect epithelial cells of the small intestine and cause watery diarrhea, dehydration, and a high mortality in neonatal piglets. Type I interferons (IFN-α/β) are major antiviral cytokines forming host innate immunity, and in turn, these enteric coronaviruses have evolved to modulate the host innate immune signaling during infection. Accumulating evidence however suggests that IFN induction and signaling in the intestinal epithelial cells differ from other epithelial cells, largely due to distinct features of the gut epithelial mucosal surface and commensal microflora, and it appears that type III interferon (IFN-λ) plays a key role to maintain the antiviral state in the gut. This review describes the recent understanding on the immune evasion strategies of porcine enteric coronaviruses and the role of different types of IFNs for intestinal antiviral innate immunity. Copyright © 2016 Elsevier B.V. All rights reserved.
Gut: An underestimated target organ for Aluminum.
Vignal, C; Desreumaux, P; Body-Malapel, M
2016-06-01
Since World War II, several factors such as an impressive industrial growth, an enhanced environmental bioavailability and intensified food consumption have contributed to a significant amplification of human exposure to aluminum. Aluminum is particularly present in food, beverages, some drugs and airbone dust. In our food, aluminum is superimposed via additives and cooking utensils. Therefore, the tolerable intake of aluminum is exceeded for a significant part of the world population, especially in children who are more vulnerable to toxic effects of pollutants than adults. Faced with this oral aluminum influx, intestinal tract is an essential barrier, especially as 38% of ingested aluminum accumulates at the intestinal mucosa. Although still poorly documented to date, the impact of oral exposure to aluminum in conditions relevant to real human exposure appears to be deleterious for gut homeostasis. Aluminum ingestion affects the regulation of the permeability, the microflora and the immune function of intestine. Nowadays, several arguments are consistent with an involvement of aluminum as an environmental risk factor for inflammatory bowel diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Salzman, Nita H; de Jong, Hendrik; Paterson, Yvonne; Harmsen, Hermie J M; Welling, Gjalt W; Bos, Nicolaas A
2002-11-01
Total genomic DNA from samples of intact mouse small intestine, large intestine, caecum and faeces was used as template for PCR amplification of 16S rRNA gene sequences with conserved bacterial primers. Phylogenetic analysis of the amplification products revealed 40 unique 16S rDNA sequences. Of these sequences, 25% (10/40) corresponded to described intestinal organisms of the mouse, including Lactobacillus spp., Helicobacter spp., segmented filamentous bacteria and members of the altered Schaedler flora (ASF360, ASF361, ASF502 and ASF519); 75% (30/40) represented novel sequences. A large number (11/40) of the novel sequences revealed a new operational taxonomic unit (OTU) belonging to the Cytophaga-Flavobacter-Bacteroides phylum, which the authors named 'mouse intestinal bacteria'. 16S rRNA probes were developed for this new OTU. Upon analysis of the novel sequences, eight were found to cluster within the Eubacterium rectale-Clostridium coccoides group and three clustered within the Bacteroides group. One of the novel sequences was distantly related to Verrucomicrobium spinosum and one was distantly related to Bacillus mycoides. Oligonucleotide probes specific for the 16S rRNA of these novel clones were generated. Using a combination of four previously described and four newly designed probes, approximately 80% of bacteria recovered from the murine large intestine and 71% of bacteria recovered from the murine caecum could be identified by fluorescence in situ hybridization (FISH).
Pre-systemic metabolism of orally administered drugs and strategies to overcome it.
Pereira de Sousa, Irene; Bernkop-Schnürch, Andreas
2014-10-28
The oral bioavailability of numerous drugs is not only limited by poor solubility and/or poor membrane permeability as addressed by the biopharmaceutical classification system (BCS) but also by a pre-systemic metabolism taking place to a high extent in the intestine. Enzymes responsible for metabolic reactions in the intestine include cytochromes P450 (CYP450), transferases, peptidases and proteases. Furthermore, in the gut nucleases, lipases as well as glycosidases influence the metabolic pathway of drugs and nutrients. A crucial role is also played by the intestinal microflora able to metabolize a wide broad of pharmaceutical compounds. Strategies to provide a protective effect towards an intestinal pre-systemic metabolism are based on the co-administration of enzyme inhibitor being optimally immobilized on unabsorbable and undegradable polymeric excipients in order to keep them concentrated there where an inhibitory effect is needed. Furthermore, certain polymeric excipients such as polyacrylates exhibit per se enzyme inhibitory properties. In addition, by incorporating drugs in cyclodextrines, in self-emulsifying drug delivery systems (SEDDS) or liposomes a protective effect towards an intestinal enzymatic attack can be achieved. Being aware of the important role of this pre-systemic metabolism by integrating it in the BCS as third dimension and keeping strategies to overcome this enzymatic barrier in mind, the therapeutic efficacy of many orally given drugs can certainly be substantially improved. Copyright © 2014 Elsevier B.V. All rights reserved.
Kaji, Izumi; Karaki, Shin-ichiro; Kuwahara, Atsukazu
2014-01-01
The colonic lumen is continually exposed to many compounds, including beneficial and harmful compounds that are produced by colonic microflora. The intestinal epithelia form a barrier between the internal and luminal (external) environments. Chemical receptors that sense the luminal environment are thought to play important roles as sensors and as modulators of epithelial cell functions. The recent molecular identification of various membrane receptor proteins has revealed the sensory role of intestinal epithelial cells. Nutrient sensing by these receptors in the small intestine is implicated in nutrient absorption and metabolism. However, little is known about the physiological roles of chemosensors in the large intestine. Since 1980s, researchers have examined the effects of short-chain fatty acids (SCFA), the primary products of commensal bacteria, on gut motility, secretion, and incretin release, for example. In this decade, the SCFA receptor genes and their expression were identified in the mammalian colon. Furthermore, many other chemical receptors, including taste and olfactory receptors have been found in colonic epithelial cells. These findings indicate that the large intestinal epithelia express chemosensors that detect the luminal contents, particularly bacterial metabolites, and induce the host defense systems and the modulation of systemic metabolism via incretin release. In this review, we describe the local effects of chemical stimuli on the lumen associated with the expression pattern of sensory receptors. We propose that sensory receptors expressed in the colonic mucosa play important roles in luminal chemosensing to maintain homeostasis.
Keratins Are Altered in Intestinal Disease-Related Stress Responses.
Helenius, Terhi O; Antman, Cecilia A; Asghar, Muhammad Nadeem; Nyström, Joel H; Toivola, Diana M
2016-09-10
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.
Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, B.; Manning, B.; Federle, T.
1986-03-01
5-Fluorocytosine (FC) is used to treat systemic fungal infections in man. Its clinical effectiveness has been limited by hematologic toxicity which may be secondary to the formation of 5-fluorouracil (FU). It is unclear how FU is formed since human cells lack cytosine deaminase. The present study examined if intestinal microflora (IMF) could convert FC to FU in man. An in vitro semicontinuous culture system was inoculated with human feces and maintained with sterile nutrient suspension. The microbial community was assessed for cell count and anaerobes as well as formation of volatile fatty acids and CH/sub 4/. The system approximated thatmore » believed to occur in vivo. The study was initiated with addition of purified (6-/sup 14/C)-FC. Unlabelled FC was then added to the system daily for 2 weeks following which (6-/sup 14/C)-FC was again added. Following each addition of (6-/sup 14/C)-FC, samples were removed at 2,4,8,24,48,72, and 96 hr. Utilizing HPLC, FC and FU could be separated with quantitation of radioactivity in each peak. Following the initial dose, no detectable FU was observed during the first 8 hr, but after 24 hr increasing levels were detected (9.42 ..mu..g FU/ml after 4 days). Following chronic administration of FC, increased levles of FU were noted without an 8 hr lag time in the production of FU (31.86 ..mu..g FU/ml after 4 days). In summary, these studies demonstrate that IMF can convert FC to FU possibly accounting for toxicity observed following administration of FC.« less
Bacterial microflora of normal and telangiectatic livers in cattle.
Stotland, E I; Edwards, J F; Roussel, A J; Simpson, R B
2001-07-01
To identify potential bacterial pathogens in normal and telangiectatic livers of mature cattle at slaughter and to identify consumer risk associated with hepatic telangiectasia. 50 normal livers and 50 severely telangiectatic livers. Normal and telangiectatic livers were collected at slaughter for aerobic and anaerobic bacterial culture. Isolates were identified, and patterns of isolation were analyzed. Histologic examination of all livers was performed. Human pathogens isolated from normal and telangiectatic livers included Escherichia coli O157:H7 and group-D streptococci. Most livers in both groups contained bacteria in low numbers; however, more normal livers yielded negative culture results. More group-D streptococci were isolated from the right lobes of telangiectatic livers than from the left lobes, and more gram-negative anaerobic bacteria were isolated from left lobes of telangiectatic livers than from right lobes. All telangiectatic lesions were free of fibrosis, active necrotizing processes, and inflammation. The USDA regulation condemning telangiectatic livers is justified insofar as these livers contain more bacteria than normal livers do; however, normal livers contain similar species of microflora. Development of telangiectasia could not be linked to an infectious process. The finding of E coli O157:H7 in bovine livers suggests that information regarding bacterial content of other offal and muscle may identify sources of this and other potential foodborne pathogens and assist in establishing critical control points for the meat industry.
Kullisaar, Tiiu; Songisepp, Epp; Mikelsaar, Marika; Zilmer, Kersti; Vihalemm, Tiiu; Zilmer, Mihkel
2003-08-01
The increasing interest in a healthy diet is stimulating innovative development of novel scientific products in the food industry. The viable lactic acid bacteria in fermented milk products, such as yoghurt, have been associated with increased lactose tolerance, a well-balanced intestinal microflora, antimicrobial activity, stimulation of the immune system and antitumoural, anticholesterolaemic and antioxidative properties in human subjects. Recently, we have studied a human Lactobacillus spp. strain that possesses antioxidative activity. The aim of the present pilot study was to develop goats' milk fermented with the human antioxidative lactobacilli strain, Lactobacillus fermentum ME-3, and to test the effect of the fermented probiotic goats' milk on oxidative stress markers (including markers for atherosclerosis) in human blood and urine and on the gut microflora. Twenty-one healthy subjects were assigned to two treatment groups: goats' milk group and fermented goats' milk group (150 g/d) for a period of 21 d. Consumption of fermented goats' milk improved anti-atherogenicity in healthy subjects: it prolonged resistance of the lipoprotein fraction to oxidation, lowered levels of peroxidized lipoproteins, oxidized LDL, 8-isoprostanes and glutathione redox ratio, and enhanced total antioxidative activity. The consumption of fermented goats' milk also altered both the prevalence and proportion of lactic acid bacteria species in the gut microflora of the subjects. We conclude that the goats' milk fermented with our special antioxidative lactobacilli strain Lactobacillus fermentum ME-3 exhibits anti-atherogenic effects.
Kuligowski, Maciej; Jasińska-Kuligowska, Iwona; Nowak, Jacek
2013-01-01
In this study the effect of bean tempeh on the growth of Bacillus subtilis, Escherichia coli, Lactobacillus acidophilus and Lactobacillus paracasei bacteria was investigated. Antibacterial activity was observed only in relation to the bacteria Bacillus subtilis. The effect of tempeh products on human intestinal microflora was also assessed. Bean and soy tempeh were culinarily processed and next digested in conditions simulating the human digestive tract (one of the digestive tracts was equipped with a mechanism simulating absorption). Soy tempeh stimulated most the growth of bacteria of the genus Bifidobacterium, while bean tempeh that of Escherichia coli. Using simulation of absorption for the digestion of fried soy tempeh resulted in a higher rise in the bacteria count of the genus Lactobacillus, while after digestion of fried bean tempeh the highest increase was recorded for Bifidobacterium and E. coli.
Parekh, Parth J.; Nayi, Vipul R.; Johnson, David A.; Vinik, Aaron I.
2016-01-01
The obesity epidemic has drastically impacted the state of health care in the United States. Paralleling this epidemic is the incidence of diabetes mellitus, with a notable shift toward a much younger age of onset. While central to the pathogenesis of diabetes associated with obesity is the role of inflammation attributed to “adiposopathy.” Emerging data suggest that changes in sympathetic/parasympathetic balance regulated by the brain precede changes in the inflammatory cascade. It has now been established that the gut microflora contributes significantly to the activation and inhibition of autonomic control and impact the set of the neuroinflammatory inhibitory reflex mediated by the cholinergic nervous system. There has been a paradigm shift toward further investigating commensal bacteria in the pathogenesis of obesity and diabetes mellitus and its complications, as dysbiosis is thought to play a pivotal role in diabetic-associated disorders. This paper is intended to evaluate the role of intestinal dysbiosis in the pathogenesis of diabetes mellitus and examine the potential for restoration of balance via use of probiotics. PMID:27375553
Cyclodextrins in Food Technology and Human Nutrition: Benefits and Limitations.
Fenyvesi, É; Vikmon, M; Szente, L
2016-09-09
Cyclodextrins are tasteless, odorless, nondigestible, noncaloric, noncariogenic saccharides, which reduce the digestion of carbohydrates and lipids. They have low glycemic index and decrease the glycemic index of the food. They are either non- or only partly digestible by the enzymes of the human gastrointestinal (GI) tract and fermented by the gut microflora. Based on these properties, cyclodextrins are dietary fibers useful for controlling the body weight and blood lipid profile. They are prebiotics, improve the intestinal microflora by selective proliferation of bifidobacteria. These antiobesity and anti-diabetic effects make them bioactive food supplements and nutraceuticals. In this review, these features are evaluated for α-, β- and γ-cyclodextrins, which are the cyclodextrin variants approved by authorities for food applications. The mechanisms behind these effects are reviewed together with the applications as solubilizers, stabilizers of dietary lipids, such as unsaturated fatty acids, phytosterols, vitamins, flavonoids, carotenoids and other nutraceuticals. The recent applications of cyclodextrins for reducing unwanted components, such as trans-fats, allergens, mycotoxins, acrylamides, bitter compounds, as well as in smart active packaging of foods are also overviewed.
Schlievert, Patrick M.; Strandberg, Kristi L.; Brosnahan, Amanda J.; Peterson, Marnie L.; Pambuccian, Stefan E.; Nephew, Karla R.; Brunner, Kevin G.; Schultz-Darken, Nancy J.; Haase, Ashley T.
2008-01-01
Glycerol monolaurate (GML) is a fatty acid monoester that inhibits growth and exotoxin production of vaginal pathogens and cytokine production by vaginal epithelial cells. Because of these activities, and because of the importance of cytokine-mediated immune activation in human immunodeficiency virus type 1 (HIV-1) transmission to women, our laboratories are performing studies on the potential efficacy of GML as a topical microbicide to interfere with HIV-1 transmission in the simian immunodeficiency virus-rhesus macaque model. While GML is generally recognized as safe by the FDA for topical use, its safety for chronic use and effects on normal vaginal microflora in this animal model have not been evaluated. GML was therefore tested both in vitro for its effects on vaginal flora lactobacilli and in vivo as a 5% gel administered vaginally to monkeys. In vitro studies demonstrated that lactobacilli are not killed by GML; GML blocks the loss of their viability in stationary phase and does not interfere with lactic acid production. GML (5% gel) does not quantitatively alter monkey aerobic vaginal microflora compared to vehicle control gel. Lactobacilli and coagulase-negative staphylococci are the dominant vaginal aerobic microflora, with beta-hemolytic streptococci, Staphylococcus aureus, and yeasts sporadically present; gram-negative rods are not part of their vaginal flora. Colposcopy and biopsy studies indicate that GML does not alter normal mucosal integrity and does not induce inflammation; instead, GML reduces epithelial cell production of interleukin 8. The studies suggest that GML is safe for chronic use in monkeys when applied vaginally; it does not alter either mucosal microflora or integrity. PMID:18838587
Dietary roles of non-starch polysaccharides in human nutrition: a review.
Kumar, Vikas; Sinha, Amit K; Makkar, Harinder P S; de Boeck, Gudrun; Becker, Klaus
2012-01-01
Nonstarch polysaccharides (NSPs) occur naturally in many foods. The physiochemical and biological properties of these compounds correspond to dietary fiber. Nonstarch polysaccharides show various physiological effects in the small and large intestine and therefore have important health implications for humans. The remarkable properties of dietary NSPs are water dispersibility, viscosity effect, bulk, and fermentibility into short chain fatty acids (SCFAs). These features may lead to diminished risk of serious diet related diseases which are major problems in Western countries and are emerging in developing countries with greater affluence. These conditions include coronary heart disease, colo-rectal cancer, inflammatory bowel disease, breast cancer, tumor formation, mineral related abnormalities, and disordered laxation. Insoluble NSPs (cellulose and hemicellulose) are effective laxatives whereas soluble NSPs (especially mixed-link β-glucans) lower plasma cholesterol levels and help to normalize blood glucose and insulin levels, making these kinds of polysaccharides a part of dietary plans to treat cardiovascular diseases and Type 2 diabetes. Moreover, a major proportion of dietary NSPs escapes the small intestine nearly intact, and is fermented into SCFAs by commensal microflora present in the colon and cecum and promotes normal laxation. Short chain fatty acids have a number of health promoting effects and are particularly effective in promoting large bowel function. Certain NSPs through their fermented products may promote the growth of specific beneficial colonic bacteria which offer a prebiotic effect. Various modes of action of NSPs as therapeutic agent have been proposed in the present review. In addition, NSPs based films and coatings for packaging and wrapping are of commercial interest because they are compatible with several types of food products. However, much of the physiological and nutritional impact of NSPs and the mechanism involved is not fully understood and even the recommendation on the dose of different dietary NSPs intake among different age groups needs to be studied.
Encapsulation of Probiotics for use in Food Products
NASA Astrophysics Data System (ADS)
Manojlović, Verica; Nedović, Viktor A.; Kailasapathy, Kasipathy; Zuidam, Nicolaas Jan
The history of the role of probiotics for human health is one century old and several definitions have been derived hitherto. One of them, launched by Huis in't Veld and Havenaar (1991) defines probiotics as being “mono or mixed cultures of live microorganisms which, when applied to a man or an animal (e.g., as dried cells or as a fermented product), beneficially affect the host by improving the properties of the indigenous microflora”. Probiotics are living microorganisms which survive gastric, bile, and pancreatic secretions, attach to epithelial cells and colonize the human intestine (Del Piano et al. 2006). It is estimated that an adult human intestine contains more than 400 different bacterial species (Finegold et al. 1977) and approximately 1014 bacterial cells (which is approximately ten times the total number of eukaryotic cells in the human body). The bacterial cells can be classified into three categories, namely, beneficial, neutral or harmful, with respect to human health. Among the beneficial bacteria are Bifidobacterium and Lactobacilli. The proportion of bifidobacteria represents the third most common genus in the gastrointestinal tract, while Bacteroides predominates at 86% of the total flora in the adult gut, followed by Eubacterium. Infant-type bifidobacteria B. bifidum are replaced with adult-type bifidobacteria, B. longum and B. adolescentis. With weaning and aging, the intestinal flora profile changes. Bifidobacteria decrease, while certain kinds of harmful bacteria increase. Changes in the intestinal flora are affected not only by aging but also by extrinsic factors, for example, stress, diet, drugs, bacterial contamination and constipation. Therefore, daily consumption of probiotic products is recommended for good health and longevity. There are numerous claimed beneficial effects and therapeutic applications of probiotic bacteria in humans, such as maintenance of normal intestinal microflora, improvement of constipation, treatment of diarrhea, enhancement of the immune system, reduction of lactose-intolerance, reduction of serum cholesterol levels, anticarcinogenic activity, and improved nutritional value of foods (Kailasapathy and Chin 2000; Lourens-Hattingh and Viljoen 2001; Mattila-Sandholm et al. 2002). The mechanisms by which probiotics exert their effects are largely unknown, but may involve modifying gut pH, antagonizing pathogens through production of antimicrobial and antibacterial compounds, competing for pathogen binding, and receptor cites, as well as for available nutrients and growth factors, stimulating immunomodulatory cells, and producing lactase (Kopp-Hoolihan 2001).
Barrow, Paul Andrew; Berchieri, Angelo; Freitas Neto, Oliveiro Caetano de; Lovell, Margaret
2015-10-01
The basic mechanism whereby Salmonella serovars colonize the chicken intestine remains poorly understood. Previous studies have indicated that proton-translocating proteins utilizing oxygen as terminal electron acceptor do not appear to be of major importance in the gut of the newly hatched chicken and consequently they would be even less significant during intestinal colonization of more mature chickens where the complex gut microflora would trap most of the oxygen in the lumen. Consequently, alternative electron acceptors may be more significant or, in their absence, substrate-level phosphorylation may also be important to Salmonella serovars in this environment. To investigate this we constructed mutants of Salmonella enterica serovar Typhimurium defective in various aspects of oxidative or substrate-level phosphorylation to assess their role in colonization of the chicken intestine, assessed through faecal shedding, and virulence. Mutations affecting use of oxygen or alternative electron acceptors did not eliminate faecal shedding. By contrast mutations in either pta (phosphotransacetylase) or ackA (acetate kinase) abolished shedding. The pta but not the ackA mutation also abolished systemic virulence for chickens. An additional ldhA (lactate dehydrogenase) mutant also showed poor colonizing ability. We hypothesise that substrate-level phosphorylation may be more important than respiration using oxygen or alternative electron acceptors for colonization of the chicken caeca.
Wang, Hesong; Ni, Xueqin; Qing, Xiaodan; Liu, Lei; Xin, Jinge; Luo, Min; Khalique, Abdul; Dan, Yan; Pan, Kangcheng; Jing, Bo; Zeng, Dong
2018-01-01
The probiotic strain Lactobacillus johnsonii BS15 could exert beneficial effects on growth performance, lipid metabolism, and intestinal microflora in healthy broilers and those afflicted with subclinical necrotic enteritis (SNE). In particular, BS15 prevents SNE by enhancing intestinal immunity. To further understand the immune regulatory mechanism of BS15, we evaluated its effects on the overall immunity of broilers by determining blood parameters in healthy and SNE broilers. In this study, two experiments were conducted. Experiment 1 involved a 42-day experimental period and used 450 1-day-old male chicks. The chicks were randomly divided into three groups and fed with a basal diet with or without 1 × 105 or 106 colony-forming units (cfu) BS15/g as feed. Experiment 2 involved a 28-day experimental period and used 180 1-day-old male chicks. The chicks were randomly allotted into three groups and given with or without 1 × 106 cfu BS15/g BS15 as feed. SNE infection was treated in all broilers, except in those in the normal diet group. Antioxidant abilities, immunoglobulins, and cytokines in the serum were assessed. T-lymphocyte subsets in peripheral blood were also determined. The first experiment demonstrated that BS15 enhanced the antioxidant abilities; the serum levels of immunoglobulins, interleukin-2, and interferon-gamma; and CD3+CD4+ T-lymphocyte percentage in peripheral blood on day 21. However, limited significant changes were observed on day 42. The second experiment revealed that BS15 supplementation positively influenced the antioxidant abilities and increased the serum levels of immunoglobulins and cytokines that were affected by SNE. BS15 also positively affected T-lymphocyte subsets in peripheral blood during SNE infection. These findings suggest that BS15 supplementation may prevent SNE in broilers by improving blood parameters related to immunity and enhancing intestinal immunity. Furthermore, BS15 supplementation can improve blood parameters in healthy broilers, especially at the starter phase. PMID:29441047
Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang
2016-01-01
Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the balance of Th1/Th2 immunity and then attenuates allergic inflammatory responses significantly, as well as optimizes the structure of intestinal microbiota, which suggests potential for novel preventive and therapeutic intervention.
Wang, Hesong; Ni, Xueqin; Qing, Xiaodan; Liu, Lei; Xin, Jinge; Luo, Min; Khalique, Abdul; Dan, Yan; Pan, Kangcheng; Jing, Bo; Zeng, Dong
2018-01-01
The probiotic strain Lactobacillus johnsonii BS15 could exert beneficial effects on growth performance, lipid metabolism, and intestinal microflora in healthy broilers and those afflicted with subclinical necrotic enteritis (SNE). In particular, BS15 prevents SNE by enhancing intestinal immunity. To further understand the immune regulatory mechanism of BS15, we evaluated its effects on the overall immunity of broilers by determining blood parameters in healthy and SNE broilers. In this study, two experiments were conducted. Experiment 1 involved a 42-day experimental period and used 450 1-day-old male chicks. The chicks were randomly divided into three groups and fed with a basal diet with or without 1 × 10 5 or 10 6 colony-forming units (cfu) BS15/g as feed. Experiment 2 involved a 28-day experimental period and used 180 1-day-old male chicks. The chicks were randomly allotted into three groups and given with or without 1 × 10 6 cfu BS15/g BS15 as feed. SNE infection was treated in all broilers, except in those in the normal diet group. Antioxidant abilities, immunoglobulins, and cytokines in the serum were assessed. T-lymphocyte subsets in peripheral blood were also determined. The first experiment demonstrated that BS15 enhanced the antioxidant abilities; the serum levels of immunoglobulins, interleukin-2, and interferon-gamma; and CD3 + CD4 + T-lymphocyte percentage in peripheral blood on day 21. However, limited significant changes were observed on day 42. The second experiment revealed that BS15 supplementation positively influenced the antioxidant abilities and increased the serum levels of immunoglobulins and cytokines that were affected by SNE. BS15 also positively affected T-lymphocyte subsets in peripheral blood during SNE infection. These findings suggest that BS15 supplementation may prevent SNE in broilers by improving blood parameters related to immunity and enhancing intestinal immunity. Furthermore, BS15 supplementation can improve blood parameters in healthy broilers, especially at the starter phase.
Fysal, N; Jose, Santhosh; Kulshrestha, Reena; Arora, Dimple; Hafiz, Ka Abdul; Vasudevan, Sanjay
2013-07-01
The study was carried out to see the diversity of oral microflora and its antibiotic sensitivity test in children of age group 6 to 12 years was carried. Total 50 patients of age group 6 to 12 years were analyzed for their oral microflora and then checked for the antibiotic susceptibility test. The samples that were collected were incubated at 37°C for 48 hours. Once dispersed samples were taken and Gram staining was done, also they were spread on to a number of freshly prepared agar plates and incubated to allow cells to form microbial colony. The result showed microflora common in all types, Gram-positive facultative anaerobic rods and cocci. In normal children Gram-positive facultative anaerobic and fermenting cocci were predominant where as in children with caries growth of microbiota that were Gram-negative and positive, capnophilic, motile and anaerobic rods and cocci belonging to members of genera S. mutans and A. actinomycetemcomitans was seen. By the present study it has been concluded that the number of bacteria determined by microscopic counts was twice as high in caries patients as in healthy sites, and also recommended that amoxicillin, ampicillin and amikacin are the most effective antibacterial drugs for the treatment of dental caries.
Marchandin, Hélène; Damay, Audrey; Roudière, Laurent; Teyssier, Corinne; Zorgniotti, Isabelle; Dechaud, Hervé; Jean-Pierre, Hélène; Jumas-Bilak, Estelle
2010-03-01
Members of the phylum Synergistetes have been demonstrated in several environmental ecosystems and mammalian microflorae by culture-independent methods. In the past few years, the clinical relevance of some uncultivated phylotypes has been demonstrated in endodontic infections, and uncultured Synergistetes have been demonstrated in human mouth, gut and skin microbiota. However, Synergistetes are rarely cultured from human samples, and only 17 isolates are currently reported. Twelve members of Synergistetes isolated in the course of various infectious processes, including 3 Jonquetella anthropi, 2 Cloacibacillus evryensis, 2 Pyramidobacter piscolens and 5 unidentified strains, as well as 56 clones obtained by specific PCR from the normal vaginal microflora, were studied. 16S rRNA gene-based phylogeny showed that the clones were grouped into 3 clusters, corresponding to the genus Jonquetella, P. piscolens and one novel Synergistetes taxon. The presence and diversity of Synergistetes were reported for the first time in the vaginal microflora. Synergistetes were found in healthy patients, suggesting that they could play a functional role in human microflorae, but may also act as opportunistic pathogens. Studying the phylogenetic relationships between environmental and mammalian strains and clones revealed clearly delineated independent lineages according to the origin of the sequences. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Wu, Ying-Ying; Fung, Chang-Phone; Hsu, Ching-Mei
2017-01-01
Klebsiella pneumoniae (KP) is the most common pathogen of pyogenic liver abscess in East and Southeast Asia and diabetes mellitus (DM) is a major risk factor. The effect and mechanism of diabetes on KP liver abscess was examined in streptozotocin-induced diabetic mice and Akita mice (C57BL/6J-Ins2Akita). KP translocation to liver and plasma alaine transaminase levels were increased and liver clearance of KP was decreased in DM mice. Diabetic mice exhibited overgrowth of Enterococcus as well as E.coli and decreased lactobacilli/bifidas growth in intestine, increased intestinal iNOS protein and nitrite levels in portal vein, and increased IL-1β and TNF-α expression of Kupffer cells. Fructooligosaccharides (FOS) or dead L. salivarius (dLac) supplementation reversed diabetes-induced enteric dysbiosis, NO levels in portal vein, and KP translocation to liver. L-NAME treatment decreased intestinal iNOS protein expression as well as Kupffer cell activation and increased liver clearance of KP in DM mice. Dead E.coli (2×108 CFU/ml) feeding for one week induced iNOS and TLR4 expression of intestine in germ-free (GF) mice. Dead bacteria feeding induced IL-1β and TNF-α expression of Kupffer cells in GF mice but not in GF TLR4-/- mice. In conclusion, balance of intestinal microflora is important for preventing intestinal iNOS expression, Kupffer cell activation, and KP liver translocation in diabetes. Reversal of diabetes-induced enteric dysbiosis with FOS or dead L. salivarius decreases diabetes-induced intestinal iNOS expression and KP liver translocation. Diabetes induces Kupffer cell activation and KP liver translocation through enteric dysbiosis and nitric oxide production. PMID:28493939
Ingala, Melissa R.; Simmons, Nancy B.; Wultsch, Claudia; Krampis, Konstantinos; Speer, Kelly A.; Perkins, Susan L.
2018-01-01
The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated. PMID:29765359
Ingala, Melissa R; Simmons, Nancy B; Wultsch, Claudia; Krampis, Konstantinos; Speer, Kelly A; Perkins, Susan L
2018-01-01
The gut microbiome is a community of host-associated symbiotic microbes that fulfills multiple key roles in host metabolism, immune function, and tissue development. Given the ability of the microbiome to impact host fitness, there is increasing interest in studying the microbiome of wild animals to better understand these communities in the context of host ecology and evolution. Human microbiome research protocols are well established, but wildlife microbiome research is still a developing field. Currently, there is no standardized set of best practices guiding the collection of microbiome samples from wildlife. Gut microflora are typically sampled either by fecal collection, rectal swabbing, or by destructively sampling the intestinal contents of the host animal. Studies rarely include more than one sampling technique and no comparison of these methods currently exists for a wild mammal. Although some studies have hypothesized that the fecal microbiome is a nested subset of the intestinal microbiome, this hypothesis has not been formally tested. To address these issues, we examined guano (feces) and distal intestinal mucosa from 19 species of free-ranging bats from Lamanai, Belize, using 16S rRNA amplicon sequencing to compare microbial communities across sample types. We found that the diversity and composition of intestine and guano samples differed substantially. In addition, we conclude that signatures of host evolution are retained by studying gut microbiomes based on mucosal tissue samples, but not fecal samples. Conversely, fecal samples retained more signal of host diet than intestinal samples. These results suggest that fecal and intestinal sampling methods are not interchangeable, and that these two microbiotas record different information about the host from which they are isolated.
Wu, Ying-Ying; Hsu, Ching-Mei; Chen, Pei-Hsuan; Fung, Chang-Phone
2014-01-01
Prior antibiotic exposure is associated with increased mortality in Gram-negative bacteria-induced sepsis. However, how antibiotic-mediated changes of commensal bacteria promote the spread of enteric pathogenic bacteria in patients remains unclear. In this study, the effects of systemic antibiotic treatment with or without Toll-like receptor (TLR) stimulation on bacterium-killing activity, antibacterial protein expression in the intestinal mucosa, and bacterial translocation were examined in mice receiving antibiotics with or without oral supplementation of dead Escherichia coli or Staphylococcus aureus. We developed a systemic ampicillin, vancomycin, and metronidazole treatment protocol to simulate the clinical use of antibiotics. Antibiotic treatment decreased the total number of bacteria, including aerobic bacteria belonging to the family Enterobacteriaceae and the genus Enterococcus as well as organisms of the anaerobic genera Lactococcus and Bifidobacterium in the intestinal mucosa and lumen. Antibiotic treatment significantly decreased the bacterium-killing activity of the intestinal mucosa and the expression of non-defensin-family proteins, such as RegIIIβ, RegIIIγ, C-reactive protein-ductin, and RELMβ, but not the defensin-family proteins, and increased Klebsiella pneumoniae translocation. TLR stimulation after antibiotic treatment increased NF-κB DNA binding activity, nondefensin protein expression, and bacterium-killing activity in the intestinal mucosa and decreased K. pneumoniae translocation. Moreover, germfree mice showed a significant decrease in nondefensin proteins as well as intestinal defense against pathogen translocation. Since TLR stimulation induced NF-κB DNA binding activity, TLR4 expression, and mucosal bacterium-killing activity in germfree mice, we conclude that the commensal microflora is critical in maintaining intestinal nondefensin protein expression and the intestinal barrier. In turn, we suggest that TLR stimulation induces nondefensin protein expression and reverses antibiotic-induced gut defense impairment. PMID:24595141
Wu, Ying-Ying; Hsu, Ching-Mei; Chen, Pei-Hsuan; Fung, Chang-Phone; Chen, Lee-Wei
2014-05-01
Prior antibiotic exposure is associated with increased mortality in Gram-negative bacteria-induced sepsis. However, how antibiotic-mediated changes of commensal bacteria promote the spread of enteric pathogenic bacteria in patients remains unclear. In this study, the effects of systemic antibiotic treatment with or without Toll-like receptor (TLR) stimulation on bacterium-killing activity, antibacterial protein expression in the intestinal mucosa, and bacterial translocation were examined in mice receiving antibiotics with or without oral supplementation of dead Escherichia coli or Staphylococcus aureus. We developed a systemic ampicillin, vancomycin, and metronidazole treatment protocol to simulate the clinical use of antibiotics. Antibiotic treatment decreased the total number of bacteria, including aerobic bacteria belonging to the family Enterobacteriaceae and the genus Enterococcus as well as organisms of the anaerobic genera Lactococcus and Bifidobacterium in the intestinal mucosa and lumen. Antibiotic treatment significantly decreased the bacterium-killing activity of the intestinal mucosa and the expression of non-defensin-family proteins, such as RegIIIβ, RegIIIγ, C-reactive protein-ductin, and RELMβ, but not the defensin-family proteins, and increased Klebsiella pneumoniae translocation. TLR stimulation after antibiotic treatment increased NF-κB DNA binding activity, nondefensin protein expression, and bacterium-killing activity in the intestinal mucosa and decreased K. pneumoniae translocation. Moreover, germfree mice showed a significant decrease in nondefensin proteins as well as intestinal defense against pathogen translocation. Since TLR stimulation induced NF-κB DNA binding activity, TLR4 expression, and mucosal bacterium-killing activity in germfree mice, we conclude that the commensal microflora is critical in maintaining intestinal nondefensin protein expression and the intestinal barrier. In turn, we suggest that TLR stimulation induces nondefensin protein expression and reverses antibiotic-induced gut defense impairment.
Chin, Keigi; Onishi, Sachiko; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Yokoyama, Toshifumi; Hoshi, Nobuhiko; Kitagawa, Hiroshi
2006-10-01
To clarify the relationship between M cells and intestinal microflora, histoplanimetrical investigation into the bacterial colonization and the differentiation to M cells was carried out in rat Peyer's patch under physiological conditions. The follicle-associated epithelium (FAE), except for the narrow area of apical region, was closely covered with both neighboring intestinal villi and a thick mucous layer, the latter of which also filled the intervillous spaces as well as the space between the FAE and the neighboring intestinal villi. Indigenous bacteria adhered almost constantly to the narrow areas of apical regions of both intestinal villi and the FAE. Bacterial colonies were occasionally located on the basal to middle region of FAE, where M cells also appeared, forming large pockets. When bacterial colonies were located on the basal to middle region of FAE, bacteria with the same morphological characteristics also proliferated in the intervillous spaces neighboring the Peyer's patch. In cases with no bacterial colonies on the basal to middle region of FAE, however, M cells were rare in the FAE. Histoplanimetrical analysis showed the similar distribution pattern of bacterial colonies on the FAE and M cells in the FAE. M cells ultrastructurally engulfed indigenous bacteria, which were then transported to the pockets. These results suggest that indigenous bacterial colonization on the FAE stimulates the differentiation of M cells in the FAE under physiological conditions. The uptake of bacteria by M cells might contribute the regulation of the development of indigenous bacterial colonies in the small intestine.
Keratins Are Altered in Intestinal Disease-Related Stress Responses
Helenius, Terhi O.; Antman, Cecilia A.; Asghar, Muhammad Nadeem; Nyström, Joel H.; Toivola, Diana M.
2016-01-01
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448
Scarminio, Viviane; Fruet, Andrea C; Witaicenis, Aline; Rall, Vera L M; Di Stasi, Luiz C
2012-03-01
Dietary products are among the therapeutic approaches used to modify intestinal microflora and to promote protective effects during the intestinal inflammatory process. Because the banana plant is rich in resistant starch, which is used by colonic microbiota for the anaerobic production of the short-chain fatty acids that serve as a major fuel source for colonocytes: first, green dwarf banana flour produces protective effects on the intestinal inflammation acting as a prebiotic and, second, combination of this dietary supplementation with prednisolone presents synergistic effects. For this, we used the trinitrobenzenesulphonic acid (TNBS) model of rat colitis. Our results revealed that the protective effect produced by a combination of 10% green dwarf banana flour with prednisolone was more pronounced than those promoted by a single administration of prednisolone or a diet containing 10% or 20% banana flour. This beneficial effect was associated with an improvement in the colonic oxidative status because the banana flour diet prevented the glutathione depletion and inhibited myeloperoxidase activity and lipid peroxidation. In addition, the intestinal anti-inflammatory activity was associated with an inhibition of alkaline phosphatase activity, a reduction in macroscopic and microscopic scores, and an extension of the lesions. In conclusion, the dietary use of the green dwarf banana flour constitutes an important dietary supplement and complementary medicine product to prevention and treatment of human inflammatory bowel disease. Copyright © 2012 Elsevier Inc. All rights reserved.
Upadhaya, S D; Lee, B R; Kim, I H
2016-04-01
An experiment was conducted to study the effects of dietary supplementation of water-soluble ionised or chelated mineral mixture on growth performance, nutrient digestibility, blood characteristics, relative organ weight, meat quality and excreta microflora in broilers. A total of 408 Arbor Acres broilers (17 birds in 8 replicate pens) were randomly allocated into one of the following three treatments: (1) Control/basal diet (CON), (2) T1 (basal diet + 0.5% ionised mineral mixture solution, pH 3.0) and (3) T2 (basal diet + 0.5% chelated mineral mixture solution, pH 3.0). The body weight gain was greater and feed conversion ratio was lower in broilers supplemented with ionised or chelated mineral liquid complex compared to CON during the grower and overall phase of the experiment. No significant effect in the concentration of Ca and P in the blood was observed in birds supplemented with ionised or chelated mineral mixture solution. No adverse effects were observed in organ weight and meat quality with ionised or chelated mineral mixture supplementation. Regarding intestinal microbiota counts there was a reduction of Escherichia coli counts in the small intestine in ionised mineral supplemented birds. In the large intestine, E. coli as well as Salmonella populations were reduced in ionised mineral supplemented birds. In conclusion, ionised or chelated minerals have partial positive effects in improving growth performance and reducing pathogenic bacteria load in the gastro-intestinal tract.
Ohwada, Kouichi; Tabor, Paul S.; Colwell, Rita R.
1980-01-01
The bacterial flora of marine animals collected at depths of 570 to 2,446 m was examined for population size and generic composition, and the barotolerant characteristics of selected bacterial isolates were determined. Total numbers of culturable, aerobic, heterotrophic bacteria were found to be low in animals collected at the greatest ocean depths sampled in this study. Vibrio spp. were predominant in 10 of 15 samples examined, and Photobacterium spp. and yeasts were the major components of the remainder. Pseudomonas, Achromobacter, and Flavobacterium spp. comprised minor components of the gut flora of deep-sea fish. Forty-six pure cultures isolated from samples of seven animals were tested for growth or viability after incubation for 1 week under pressures ranging from 100 to 750 atm. Strains of bacteria isolated from samples of fish intestine were more barotolerant than those from the stomach (P<0.01). When incubated at a pressure of 600 atm, viability of bacterial cultures originally isolated from fish caught at a depth of 570 m was significantly decreased in comparison with viability of cultures from animals caught at depths of 1,393 and 2,446 m (P<0.01). From results of this study, it is concluded that the gut microflora of animals that dwell in the deeper regions of the ocean are adapted to an increased hydrostatic pressure environment, that is, the gut microflora is less inhibited by elevated hydrostatic pressure with increasing depth from which the host animal was collected. PMID:16345648
San Mauro Martín, Ismael; Garicano Vilar, Elena; León Fernández, Joana; Ciudad Cabañas, María José; Collado Yurrita, Luis
2016-07-19
Introducción: recientemente ha surgido el interés por el posible papel de la microbiota intestinal como agente potenciador del rápido aumento que se está observando en el aumento de la prevalencia de obesidad en todo el mundo.Objetivos: relacionar las modificaciones que puede ocasionar el consumo de antibióticos en la microflora intestinal con la obesidad.Métodos: se extrajeron, de las Encuestas Nacionales de Salud de España, entre los años 2001 y 2011, las cifras de ingesta de antibióticos y la prevalencia (%) de obesidad en el mismo rango de edad, género y año. La media total de encuestados fue de 29.904 participantes.Resultados: se encontraron correlaciones significativas (p=0,09) en la asociación de la prevalencia de obesidad y la ingesta de antibióticos. Además, se objetivó que en el sexo masculino esta influencia es el doble que en el femenino.Conclusiones: los descubrimientos recientes en el campo de la microbiota intestinal y su relación con el huésped abren nuevos caminos en la comprensión de ciertas enfermedades inflamatorias y metabólicas, como la obesidad.
Spoilage of chicken skin at 2 degrees C: electron microscopic study.
Thomas, C J; McMeekin, T A
1981-01-01
Microscopic techniques were used in conjunction with normal microbiological procedures to examine the development of the spoilage microflora on the skin of chicken carcasses held at 2 degrees C. Pigmented and nonpigmented psychrotrophic pseudomonads were the major spoilage bacteria isolated at all stages of storage examined. The spoilage microflora grow within a liquid film covering the skin surface, as well as in feather follicle shafts. Penetration and disruption of skin tissue were not observed even after onset of organoleptic spoilage. Bacteria were not attached to the skin by extracellular bridging substances. These data suggest a nonspecific histological-microbiological relationship between he spoilage association and the skin substrate. Images PMID:7195190
Ziarno, Małgorzata
2015-01-01
Background In the dairy industry, probiotic strains of Bifidobacterium are introduced into the composition of traditional starter cultures intended for the production of fermented foods, or sometimes are the sole microflora responsible for the fermentation process. In order to be able to reach the intestines alive and fulfil their beneficial role, probiotic strains must be able to withstand the acidity of the gastric juices and bile present in the duodenum. Objective The paper reports effects of selected fermented milk components on the viability of three strains of bifidobacteria in fermented milk during subsequent incubation under conditions representing model digestive juices. Design The viability of the bifidobacterial cells was examined after a 3-h incubation of fermented milk under simulated gastric juice conditions and then after 5-h incubation under simulated duodenum juice conditions. The Bifidobacterium strains tested differed in their sensitivity to the simulated conditions of the gastrointestinal juices. Results Bifidobacterial cell viability in simulated intestinal juices was dependent on the strain used in our experiments, and product components acted protectively towards bifidobacterial cells and its dose. Conclusions Bifidobacterial cells introduced into the human gastrointestinal tract as food ingredients have a good chance of survival during intestinal transit and to reach the large intestine thanks to the protective properties of the food components and depending on the strain and composition of the food. PMID:26546945
Ziarno, Małgorzata; Zaręba, Dorota
2015-01-01
In the dairy industry, probiotic strains of Bifidobacterium are introduced into the composition of traditional starter cultures intended for the production of fermented foods, or sometimes are the sole microflora responsible for the fermentation process. In order to be able to reach the intestines alive and fulfil their beneficial role, probiotic strains must be able to withstand the acidity of the gastric juices and bile present in the duodenum. The paper reports effects of selected fermented milk components on the viability of three strains of bifidobacteria in fermented milk during subsequent incubation under conditions representing model digestive juices. The viability of the bifidobacterial cells was examined after a 3-h incubation of fermented milk under simulated gastric juice conditions and then after 5-h incubation under simulated duodenum juice conditions. The Bifidobacterium strains tested differed in their sensitivity to the simulated conditions of the gastrointestinal juices. Bifidobacterial cell viability in simulated intestinal juices was dependent on the strain used in our experiments, and product components acted protectively towards bifidobacterial cells and its dose. Bifidobacterial cells introduced into the human gastrointestinal tract as food ingredients have a good chance of survival during intestinal transit and to reach the large intestine thanks to the protective properties of the food components and depending on the strain and composition of the food.
Sharafetdinov, Kh Kh; Plotnikova, O A; Alekseeva, R I; Sentsova, T B; Kaganov, B S
2012-01-01
In a number of studies it is shown that regular use of the probiotic products containing Lactobacillus plantarum Tensia DSM 21380 in complex dietary treatment, not only modulates intestinal microflora, but also has a positive influence on a functional condition of cardiovascular system including levelels of systolic and diastolic blood pressure. The aim of this research was to study the influence of dietotherapy with inclusion of the probiotic product containing Lactobacillus plantarum Tensia DSM 21380, on clinical and metabolic characteristics in patients with obesity and accompanying arterial hypertension (AH).
Quantitative assessment of vaginal microflora during use of tampons of various compositions.
Onderdonk, A B; Zamarchi, G R; Rodriguez, M L; Hirsch, M L; Muñoz, A; Kass, E H
1987-01-01
Although the effect of vaginal tampons on the microbial flora during menstruation has recently been studied by several investigators, quantitative effects attributable to particular tampon fibers have received less attention. The purposes of the present study were (i) to determine and then to compare the effects of polyacrylate rayon tampons and viscose rayon tampons on the normal vaginal flora, (ii) to compare quantitative bacterial counts obtained from these tampons with those obtained from concomitant vaginal swabs, and (iii) to determine whether either of these tampon types alters the vaginal microflora when compared with the microflora in the same women using all-cotton tampons or external catamenial pads. Tampon and swab samples were obtained at predetermined times from 18 women for an average of seven menstrual cycles. Samples consisting of swabs from women wearing menstrual pads were compared with swab and tampon samples taken at predetermined times during the menstrual cycle from women using cotton, polyacrylate rayon, or viscose rayon tampons. Samples were analyzed for total aerobic, facultative, and anaerobic bacterial counts. Statistical evaluation of the results indicated that, on the whole, total bacterial counts decreased during menstruation and that the numbers of bacteria in tampons tended to be lower than those in swab samples taken at the same time. The tampon type had little effect on the vaginal microflora. PMID:3435142
SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization.
Luqman, Arif; Nega, Mulugeta; Nguyen, Minh-Thu; Ebner, Patrick; Götz, Friedrich
2018-01-09
A subgroup of biogenic amines, the so-called trace amines (TAs), are produced by mammals and bacteria and can act as neuromodulators. In the genus Staphylococcus, certain species are capable of producing TAs through the activity of staphylococcal aromatic amino acid decarboxylase (SadA). SadA decarboxylates aromatic amino acids to produce TAs, as well as dihydroxy phenylalanine and 5-hydroxytryptophan to thus produce the neurotransmitters dopamine and serotonin. SadA-expressing staphylococci were prevalent in the gut of most probands, where they are part of the human intestinal microflora. Furthermore, sadA-expressing staphylococci showed increased adherence to HT-29 cells and 2- to 3-fold increased internalization. Internalization and adherence was also increased in a sadA mutant in the presence of tryptamine. The α2-adrenergic receptor is required for enhanced adherence and internalization. Thus, staphylococci in the gut might contribute to gut activity and intestinal colonization. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Brimelow, Rachel E; West, Nicholas P; Williams, Lauren T; Cripps, Allan W; Cox, Amanda J
2017-05-24
Obesity is a strong predictive factor in the development of chronic disease and has now superseded undernutrition as a major public health issue. Chronic inflammation is one mechanism thought to link excess body weight with disease. Increasingly, the gut and its extensive population of commensal microflora are recognized as playing an important role in the development of obesity-related chronic inflammation. Obesity and a high fat diet are associated with altered commensal microbial communities and increased intestinal permeability which contributes to systemic inflammation as a result of the translocation of lipopolysaccharide into the circulation and metabolic endotoxemia. Various milk proteins are showing promise in the prevention and treatment of obesity and chronic low-grade inflammation via reductions in visceral fat, neutralization of bacteria at the mucosa and reduced intestinal permeability. In this review, we focus on evidence supporting the potential antiobesogenic and anti-inflammatory effects of bovine whey-derived lactoferrin and immunoglobulins.
Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng
Kim, Dong-Hyun
2012-01-01
The major commercial ginsengs are Panax ginseng Meyer (Korean ginseng), P. quinquifolium L. (American ginseng), and P. notoginseng (Burk.) FH Chen (Notoginseng). P. ginseng is the most commonly used as an adaptogenic agent and has been shown to enhance physical performance, promote vitality, increase resistance to stress and aging, and have immunomodulatory activity. These ginsengs contain saponins, which can be classified as dammarane-type, ocotillol-type and oleanane-type oligoglycosides, and polysaccharides as main constituents. Dammarane ginsenosides are transformed into compounds such as the ginsenosides Rg3, Rg5, and Rk1 by steaming and heating and are metabolized into metabolites such as compound K, ginsenoside Rh1, protoand panaxatriol by intestinal microflora. These metabolites are nonpolar, pharmacologically active and easily absorbed from the gastrointestinal tract. However, the activities metabolizing these constituents into bioactive compounds differ significantly among individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. To overcome this difference, ginsengs fermented with enzymes or microbes have been developed. PMID:23717099
Effects of genetically modified T2A-1 rice on the GI health of rats after 90-day supplement
Yuan, Yanfang; Xu, Wentao; He, Xiaoyun; Liu, Haiyan; Cao, Sishuo; Qi, Xiaozhe; Huang, Kunlun; Luo, Yunbo
2013-01-01
Bacillus thuringiensis insecticidal toxin (Bt) rice will be commercialized as a main food source. Traditional safety assessments on genetically modified products pay little attention on gastrointestinal (GI) health. More data about GI health of Bt rice must be provided to dispel public' doubts about the potential effects on human health. We constructed an improved safety assessment animal model using a basic subchronic toxicity experiment, measuring a range of parameters including microflora composition, intestinal permeability, epithelial structure, fecal enzymes, bacterial activity, and intestinal immunity. Significant differences were found between rice-fed groups and AIN93G-fed control groups in several parameters, whereas no differences were observed between genetically modified and non-genetically modified groups. No adverse effects were found on GI health resulting from genetically modified T2A-1 rice. In conclusion, this study may offer a systematic safety assessment model for GM material with respect to the effects on GI health. PMID:23752350
B Lymphocyte intestinal homing in inflammatory bowel disease
2011-01-01
Background Inflammatory bowel disease (IBD) is thought to be due to an abnormal interaction between the host immune system and commensal microflora. Within the intestinal immune system, B cells produce physiologically natural antibodies but pathologically atypical anti-neutrophil antibodies (xANCAs) are frequently observed in patients with IBD. The objective is to investigate the localisation of immunoglobulin-producing cells (IPCs) in samples of inflamed intestinal tissue taken from patients with IBD, and their possible relationship with clinical features. Methods The IPCs in small intestinal, colonic and rectal biopsy specimens of patients with IBD were analysed by means of immunofluorescence using polyclonal rabbit anti-human Ig and goat anti-human IgM. The B cell phenotype of the IPC-positive samples was assessed using monoclonal antibodies specific for CD79, CD20, CD23, CD21, CD5, λ and κ chains. Statistical correlations were sought between the histological findings and clinical expression. Results The study involved 96 patients (64 with ulcerative colitis and 32 with Crohn's disease). Two different patterns of B lymphocyte infiltrates were found in the intestinal tissue: one was characterised by a strong to moderate stromal localisation of small IgM+/CD79+/CD20-/CD21-/CD23-/CD5± IPCs (42.7% of cases); in the other (57.3%) no such small IPCs were detected in stromal or epithelial tissues. IPCs were significantly less frequent in the patients with Crohn's disease than in those with ulcerative colitis (p = 0.004). Conclusion Our findings suggest that different immunopathogenetic pathways underlie chronic intestinal inflammation with different clinical expressions. The presence of small B lymphocytes resembling B-1 cells also seemed to be negatively associated with Crohn's disease. It can therefore be inferred that the gut contains an alternative population of B cells that have a regulatory function. PMID:22208453
Ling, Xiao; Xiang, Yuqiang; Chen, Feilong; Tang, Qingfa; Zhang, Wei; Tan, Xiaomei
2018-04-15
Intestinal condition plays an important role in drug absorption and metabolism, thus the effects of varied gastrointestinal diseases such as infectious diarrhea on the intestinal function are crucial for drug absorption. However, due to the lack of suitable models, the differences of absorption and metabolism of drugs between the diarrheal and normal intestines are rarely reported. Thus, in this study, Escherichia coli diarrhea model was induced in mini-pigs and single-pass intestinal perfusion and intestinal mucosal enzyme metabolism experiments were conducted. A simple and rapid ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to determine the concentrations of 9 major components in Gegen Qinlian decoction (GQD). Samples were pretreated by protein precipitation with methanol and naringin and prednisolone were used as internal standards. The validated method demonstrated adequate sensitivity, selectivity, and process efficiency for the bioanalysis of 9 compounds. Results of intestinal perfusion showed that puerarin, daidzein, daidzin and baicalin and berberine were absorbed faster in diarrheal jejunum than in normal intestines (p < 0.05). However, puerarin, daidzin and liquiritin were metabolized more slowly in diarrheal intestine after incubation compared with the normal group (p < 0.05). The concentrations of daidzein in both perfusion and metabolism and wogonin in metabolism were significantly increased (p < 0.05). In conclusion, absorption and metabolism of GQD were significantly different between the diarrheal and normal intestines, which suggest that bacterial diarrheal mini-pigs model can be used in the intestinal absorption study and is worthy to be applied in the other intestinal absorption study of anti- diarrheal drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Lihong; Shi, Yan; Cao, Hanwei; Liu, Liping; Washington, M. Kay; Chaturvedi, Rupesh; Israel, Dawn A.; Cao, Hailong; Wang, Bangmao; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent
2012-01-01
Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders. PMID:22173918
Oso, Abimbola Oladele; Awe, Abdul Wahab; Awosoga, Fiyinfunjesu Gedion; Bello, Foyeke A; Akinfenwa, Taiwo A; Ogunremi, Emmanuel Babatunde
2013-11-01
A 56-day feeding trial was conducted to investigate the effect of dietary supplementation of dried ginger meal (DGM) on the growth performance, nutrient digestibility, serum parameters, gut morphology, and microflora of growing helmeted guinea fowl (Numidia meleagris). One hundred sixty 28-day-old male keets were assigned to four dietary treatments. There were 40 birds per treatment replicated four times with 10 keets each. The experimental diets consisted of the basal diet (control), ginger-supplemented diets containing 20, 40, and 60 g/kg DGM, respectively. Guinea fowls fed diet supplemented with DGM had higher (P <0.05) final body weight, body weight gain and lower (P <0.05) feed intake. Optimum weight gain was obtained with supplementation level of 36.15-g DGM (R (2) = 0.923). Guinea fowls fed diet supplemented with 40 g/kg DGM recorded the highest (P <0.05) coefficient of total tract apparent digestibility of dry matter, ether extract and longest (P <0.05) duodenal and ileal villus heights. The crypt depth of the duodenum and ileum reduced (P <0.05) with increasing level of dietary supplementation of DGM. Dietary supplementation of DGM resulted in increased (P <0.05) total serum protein, serum albumin and low (P <0.05) serum cholesterol concentration. Ileum content of birds fed diet supplemented with 40 g/kg DGM recorded the highest (P <0.05) lactobacillus count. In conclusion, dietary inclusion of 40-g DGM per kilogram diet is hereby recommended for improved growth, apparent nutrient digestibility, gut morphology, serum chemistry, and stimulation of balanced intestinal microflora in growing guinea fowl.
Cummings, J H; Wiggins, H S; Jenkins, D J; Houston, H; Jivraj, T; Drasar, B S; Hill, M J
1978-01-01
Epidemiological observations and animal experiments suggest that large bowel cancer is related to serveral factors. Among them, high dietary intakes of animal fat, the presence in the colon of relatively high levels of bile acids, specific patterns of intestinal microflora, slow transit through the gut, and low stool weights. Under metabolic conditions we have observed the effect on these variables of dietes containing 62 or 152 g/day of fat mainly of animal origin in six healthy young men over 4-wk periods. No change attributable to the diet was observed in the subjects' bowel habit, fecal weight, mean transit time through the gut, or in the excretion of dry matter. Total fecal bile acid excretion was significantly higher on the high fat diet (320 +/- 120 mg/day) than on the low fat diet (139.7) +/- 63 mg/day) t test = 7.78 P less than 0.001 as also was the total fecal fatty acid excretion, 3.1+/-0.71 and 1.14+/-0.35 g/day, respectively t test = 11.4 P less than 0.001). The fecal microflora including the nuclear dehydrogenating clostridia were unaltered by the dietary changes as was fecal beta-glucuronidase activity. Dietary changes which increase animal fat intake clearly influence fecal bile acid excretion in a way that would favor the development of large bowel cancer if current theories prove to be true. Dietary fat however has no effect on overall colonic function so other components of the diet must be responsible for the observed associations of bowel cancer with slow transit and reduced fecal bulk. PMID:659584
The oral microflora in obesity and type-2 diabetes.
Shillitoe, Edward; Weinstock, Ruth; Kim, Taewan; Simon, Howard; Planer, Jessica; Noonan, Susan; Cooney, Robert
2012-01-01
Type 2 diabetes mellitus (T2DM) is prevalent in people with obesity. It has been proposed that these conditions are related to specific features of the microflora of the mouth and lower gastrointestinal (GI) tract. Hyperglycemia often resolves quickly after Roux-en-Y gastric bypass (RYGB) but the role of the GI microflora cannot be examined easily because of reduced intestinal mobility. We propose that the study of microorganisms present in the mouth of patients undergoing RYGB will contribute to our understanding of the role of bacteria in the pathogenesis of T2DM. To conduct a feasibility study to examine differences in oral microbes in obese patients with and without T2DM and to determine whether it is feasible to measure changes after gastric bypass surgery. Individuals with morbid obesity (n=29), of whom 13 had T2DM, were studied. Oral rinses, stool samples, and blood samples were obtained before RYGB, and oral rinses and blood samples were obtained at 2 and 12 weeks postsurgery. Prior to surgery, participants with T2DM had slightly higher total levels of oral bacteria than those without diabetes. Those with HbA1c > 6.5% had rather lower levels of Bifidobacteria in the mouth and stool. At 2 weeks post-RYGB, patients with T2DM were able to reduce or discontinue their hypoglycemic medications. Stool samples could not be obtained but oral rinses were readily available. The levels of oral Bifidobacteria had increased tenfold and levels of circulating endotoxin and tumor necrosis factor-alpha had decreased. The study of oral bacteria before and after RYGB is feasible and should be tested in larger patient populations to increase our understanding of the role of microorganisms in the pathogenesis of obesity and T2DM.
USDA-ARS?s Scientific Manuscript database
Proteus mirabilis, a peritrichously flagellated Gram-negative bacterium, is ubiquitous in the environment and is the normal microflora in the human gastrointestinal tract. However, this bacterium is an opportunistic pathogen for human, often causing urinary tract infection. Moreover, Proteus has b...
USDA-ARS?s Scientific Manuscript database
Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal ...
Small intestinal function and dietary status in dermatitis herpetiformis.
Gawkrodger, D J; McDonald, C; O'Mahony, S; Ferguson, A
1991-01-01
Small intestinal morphology and function were assessed in 82 patients with dermatitis herpetiformis, 51 of whom were taking a normal diet and 31 a gluten free diet. Methods used were histopathological evaluation of jejunal mucosal biopsy specimens, quantitation of intraepithelial lymphocytes, cellobiose/mannitol permeability test, tissue disaccharidase values, serum antigliadin antibodies, and formal assessment of dietary gluten content by a dietician. There was no correlation between dietary gluten intake and the degree of enteropathy in the 51 patients taking a normal diet, whereas biopsy specimens were normal in 24 of the 31 patients on a gluten free diet, all previously having been abnormal. Eighteen patients on gluten containing diets had normal jejunal histology and in seven of these all tests of small intestinal morphology and function were entirely normal. Intestinal permeability was abnormal and serum antigliadin antibodies were present in most patients with enteropathy. Studies of acid secretion in seven patients showed that hypochlorhydria or achlorhydria did not lead to abnormal permeability in the absence of enteropathy. This study shows that a combination of objective tests of small intestinal architecture and function will detect abnormalities in most dermatitis herpetiformis patients, including some with histologically normal jejunal biopsy specimens. Nevertheless there is a small group in whom all conventional intestinal investigations are entirely normal. PMID:2026337
Management of colonic diverticular disease with poorly absorbed antibiotics and other therapies
Sopeña, Federico; Lanas, Angel
2011-01-01
Colonic diverticular disease is common in Western countries and its prevalence increases with age. The large majority of patients (80–85%) will remain entirely asymptomatic throughout their life. In symptomatic cases, most patients will have diverticulosis without inflammation while the remainder will have diverticulitis with or without complications. About 1–2% will require hospitalization and 0.5% will require surgery. Factors predicting the development of symptoms remain to be identified. However, it is generally recognized that diverticular disease is probably related to complex interactions between colon structure, intestinal motility, diet, and genetic features. Epidemiologic studies have demonstrated an association between diverticulosis and diets that are low in fiber and high in refined carbohydrates. Although the causes of symptom development are still unclear, it is thought that previous episodes of intestinal inflammation may play a role. Changes in intestinal microflora could be one of the putative mechanisms responsible for low-grade inflammation. In patients with uncomplicated diverticulosis, a diet abundant in fruit and vegetables is recommended. The current therapeutic approaches in preventing recurrence of symptoms are based on nonabsorbable antibiotics, mesalazine, and/or probiotics. Cyclic rifaximin administration seems to be an adequate approach to relieving symptoms and preventing acute diverticulitis in patients with symptomatic diverticulosis. PMID:22043229
[Bacterial translocation: gap in the shield].
Rosero, Olivér; Kovács, Tibor; Onody, Péter; Harsányi, László; Szijártó, Attila
2014-02-23
The gastrointestinal tract is not only regarded as a system where nutrient absorption takes place, but also as a vital barrier against intraluminal pathogens entering the circulation and the maintenance of immune homeostasis. Bacterial translocation is defined as the penetration of viable bacteria or bacterial compounds from the gastrointestinal tract to extraintestinal sites. This disorder has been described in several clinical conditions. The main promoting factors for bacterial translocation have been proposed to be changes in the intestinal microflora, mucosal barrier failure and defects in host immunity. The presence of bacterial translocation has been associated with higher complications and mortality rates; therefore it should be taken into account in the therapeutic strategies of patients with predisposing factors.
Rhizosphere chemical dialogues: plant-microbe interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badri, D.V.; van der Lelie, D.; Weir, T. L.
2009-12-01
Every organism on earth relies on associations with its neighbors to sustain life. For example, plants form associations with neighboring plants, microflora, and microfauna, while humans maintain symbiotic associations with intestinal microbial flora, which is indispensable for nutrient assimilation and development of the innate immune system. Most of these associations are facilitated by chemical cues exchanged between the host and the symbionts. In the rhizosphere, which includes plant roots and the surrounding area of soil influenced by the roots, plants exude chemicals to effectively communicate with their neighboring soil organisms. Here we review the current literature pertaining to the chemicalmore » communication that exists between plants and microorganisms and the biological processes they sustain.« less
Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang
2016-01-01
Background Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). Objective We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. Methods The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Results Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Conclusion Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the balance of Th1/Th2 immunity and then attenuates allergic inflammatory responses significantly, as well as optimizes the structure of intestinal microbiota, which suggests potential for novel preventive and therapeutic intervention. PMID:26872019
La Bella, A; Gimondo, P; Camboni, M
1993-01-01
Duplex-Doppler sonography could be employed in the quantitative investigation of intestinal motility. Preliminary data indicate reproductivity of the method in normal subjects and possible clinical applications in some pathological conditions affecting intestinal transit. Particularly, the possibility to discriminate between segments at different peristaltic activity seems to be very useful in intestinal obstruction. Further studies are necessary to validate this method.
Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice
Smith, Carli J.; Emge, Jacob R.; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M.; Sousa, Andrew J.; Reardon, Colin; Sherman, Philip M.; Barrett, Kim E.
2014-01-01
The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1−/− mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. PMID:25190473
Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice.
Smith, Carli J; Emge, Jacob R; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M; Sousa, Andrew J; Reardon, Colin; Sherman, Philip M; Barrett, Kim E; Gareau, Mélanie G
2014-10-15
The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1(-/-) mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. Copyright © 2014 the American Physiological Society.
Nenadić, Dane B; Pavlović, Miloš D; Motrenko, Tatjana
2015-08-01
The Nugent's score is still the gold standard in the great majority of studies dealing with the assessment of vaginal flora and the diagnosis of bacterial vaginosis (BV). The aim of this study was to show that the analysis of Gram-stained vaginal samples under microscope at the magnification of x200 (a novel microscopic method--NMM), as a fast and simple tool, easily applicable in everyday practice, better reflects complexity of vaginal microflora than the Nugent's methodology (x1000). Gram-stained vaginal smears from 394 asymptomatic pregnant women (24-28 week of pregnancy) were classified according to the Nugent's microscopic criteria (immersion, magnification x1000). The smears were then reexamined under immersion but at magnification x200. All samples were classified into 6 groups according to semiquanititative assessment of numbers (cellularity) and the ratio of rod (length < 1.5 microm) and small bacterial (< 1.5 microm) forms: hypercellular (normal full--NF), moderately cellular (normal mid-NM), hypocellular (normal empty--NE), bacterial vaginosis full (BVF), bacterial vaginosis mid (BVM), and bacterial vaginosis empty (BVE). Also yeasts, coccae, bifido and lepto bacterial forms as well polymorphonuclear (PMN) leukocytes were identified. According to the Nugent's scoring, BV was found in 78, intermediate findings in 63, and yeasts in 48 patients. By our criteria BV was confirmed in 88 patients (37 BVF, 24 BVM, and 27 BVN). Generally, both tools proved to be highly concordant for the diagnosis of BV (Lin's concordance correlation coefficient = 0.9852). In 40% of the women mixed flora was found: yeasts in 126 (32%), coccae in 145 (37%), bifido forms in 32 (8%) and lepto forms in 20 (5%). Almost a half of BV patients had also yeasts (39/88). Elevated PMN numbers were found in 102 (33%) patients with normal and in 36 (41%) women with BV. The newly described methodology is simpler to apply and much better reflects diversity of vaginal microflora. In this way it may be more valuable to molecular biologists and their attempts based on quantitative polymerase chain reaction (PCR) to define formulas for molecular diagnosis of bacterial vaginosis.
Atopic dermatitis and the intestinal microbiota in humans and dogs.
Craig, J Mark
2016-05-01
The prevalence of human and canine allergic diseases is commonly perceived to be increasing. Suggested predisposing factors in people and dogs include increased allergen load, increased exposure to pollutants, reduced family size, reduced microbial load and less exposure to infection at a young age, increasingly urbanised environment, and changes in dietary habits. Genetic make-up may provide a template for phenotypic predisposition which is strongly influenced by our diet and environment leading to constant regulation of gene expression. One way in which diet can alter gene expression is via its effects on the gut flora or microbiota, the collection of microbes residing in the gastrointestinal tract. The resident microbiota is important in maintaining structural and functional integrity of the gut and in immune system regulation. It is an important driver of host immunity, helps protect against invading enteropathogens, and provides nutritional benefits to the host. Disruption of the microbiota (dysbiosis) may lead to severe health problems, both in the gastrointestinal tract and extra-intestinal organ systems. The precise mechanisms by which the intestinal microbiota exerts its effects are only beginning to be unravelled but research is demonstrating close links between gut microflora and many factors involved in the pathogenesis of atopic dermatitis (AD). AD and indeed any other 'skin disease', may be seen as a possible manifestation of a more systemic problem involving gut dysbiosis and increased intestinal permeability, which may occur even in the absence of gastrointestinal signs. Manipulation of the canine intestinal microbiota as a method for modifying atopy, may be attempted in many ways including avoidance of certain foods, supplementation with probiotics and prebiotics, optimising nutrient intake, minimising stress, antimicrobial therapy, correction and prevention of low stomach acid, and faecal microbiota transplantation (FMT).
Deng, Bo; Wu, Jie; Li, Xiaohui; Men, Xiaoming; Xu, Ziwei
2017-11-01
In the present study, we sought to determine the effects of Bacillus subtilis (BAS) and Bacillus licheniformis (BAL) in rats after lipopolysaccharide (LPS)-induced acute intestinal inflammation. We also determined whether the B. subtilis metabolic product (BASM) is as effective as the live-cell probiotic. 60 male SD rats were randomly assigned to five groups and administered a diet containing 0.05% B. licheniformis (BAL group), 0.05% B. subtilis (BAS group), 0.5% B. subtilis metabolic product (BASM group), or a basic diet (PC group and NC group) for 40 days. On day 40, BAL, BAS, BASM, and NC groups were injected with 4 mg/kg body weight LPS. 4 h later, all rats were anesthetized and sacrificed. The results showed that the administration of B. licheniformis and B. subtilis improved intestinal function as evidenced by histology, increased enzyme activity, and mucosal thickness. They also increased the number of intraepithelial lymphocytes and decreased mucosal myeloperoxidase activity and plasma TNF-α. In addition, the cecal content of B. subtilis-treated rats had significantly increased microbial diversity, decreased numbers of Firmicutes, and increased numbers of Bacteroidetes as compared to rats fed basic diets. Similar to BAS group, the cecal content of B. licheniformis-treated rats decreased the number of Firmicutes. Administration of B. subtilis metabolic product had similar effects on intestinal function, inflammation response, and microbial diversity as B. subtilis but these effects were attenuated. In conclusion, administration of probiotic strains B. licheniformis or B. subtilis improved intestinal function, ameliorated the inflammation response, and modulated microflora after LPS-induced acute inflammation in rats. Non-living cells also exerted probiotic properties but live cells tended to function better.
Liu, Wen-Chao; Kim, In-Ho
2017-03-01
This experiment was conducted to evaluate dietary xylanase supplementation in broilers wheat-based diets on performance and functional digestive parameters including ileal digesta viscosity, apparent ileal digestibility, intestinal morphology and microflora, digestive enzyme activities, and excreta odor content. A total of 600 1-day-old Ross 308 male broilers with an initial average BW of 45 ± 0.6 g were randomly allotted into 4 treatments with 10 replicate pens per treatment and 15 broilers in each pen for 35 d. The 4 dietary treatments were wheat-based diets and supplemented with 0, 1,875, 3,750, and 5,625 XU/kg xylanase. Xylanase supplementation improved (linear, P < 0.05) the body weight gain and decreased (linear, P < 0.05) the feed conversion ratio during d 1 to 18 and for the duration of the experiment. Dietary supplementation of xylanase led to a decrease (linear, P < 0.01) in ileal digesta viscosity. The apparent ileal digestibility of dry matter (DM), crude protein (CP), gross energy, and most amino acids (with the exception of Ile, Phe, Asp, Glu, and Pro) were increased (linear, P < 0.05) by xylanase supplementation. Increasing the dietary xylanase levels improved (linear, P < 0.05) the villus height and the ratio of villus height to crypt depth of the duodenum, jejunum, and ileum. In addition, inclusion of xylanase increased (linear, P < 0.05) the Lactobacillus numbers in the ileum and cecum, while decreased the ileal E. coli counts (linear, P < 0.01) and cecal E. coli populations (linear, P < 0.01; quadratic, P < 0.05). There were no significant differences (P > 0.05) in trypsin, amylase, and protease activities of small intestine among dietary treatments. Furthermore, xylanase supplementation reduced excreta NH3 (linear, P < 0.05; quadratic, P < 0.05) and total mercaptan (R.SH) (linear, P < 0.01) concentration. Taken together, dietary xylanase supplementation in broilers wheat-based diets had beneficial effects on growth performance, apparent ileal digestibility of nutrients, intestinal morphology, and microflora balance. Furthermore, the xylanase could reduce the ileal digesta viscosity and excreta odor contents. © 2016 Poultry Science Association Inc.
Lei, Xinjian; Piao, Xiangshu; Ru, Yingjun; Zhang, Hongyu; Péron, Alexandre; Zhang, Huifang
2015-01-01
The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group (p<0.01). In addition, the population of Lactobacillus was increased in DFM 30 and DFM 60 groups as compared with control and AGP groups (p<0.01). It can be concluded that Bacillus amyloliquefaciens-based DFM could be an alternative to the use of AGPs in broilers diets based on plant protein. PMID:25557820
Toklu, H Z; Kabasakal, L; Imeryuz, N; Kan, B; Celikel, C; Cetinel, S; Orun, O; Yuksel, M; Dulger, G A
2013-08-01
The intestinal microflora is an important cofactor in the pathogenesis of intestinal inflammation; and the epithelial cell barrier function is critical in providing protection against the stimulation of mucosal immune system by the microflora. In the present study, therapeutic role of the antibacterial drugs rifampicin and ciprofloxacine were investigated in comparison to spironolactone, an enzyme inducer, in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis of the rats. Drugs were administered for 14 days following induction of colitis. All drug treatments ameliorated the clinical hallmarks of colitis as determined by body weight loss and assessment of diarrhea, colon length, and histology. Oxidative damage and neutrophil infiltration as well as nuclear factor κB (NF-κB) and tumor necrosis factor α (TNF-α) expressions that were increased during colitis, were decreased significantly. Rifampicin and ciprofloxacin were probably effective due to their antibacterial and immunomodulating properties. The multidrug resistence gene (MDR1) and its product p-glycoprotein (P-gp) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). In the present study, findings of the P-gp expression were inconclusive but regarding previous studies, it can be suggested that the beneficial effects of rifampicin and spironolactone may be partly due to their action as a P-gp ligand. Spironolactone has been reported to supress the transcription of proinflamatory cytokines that are considered to be of importance in immunoinflammatory diseases. It is also a powerful pregnane X receptor (PXR) inducer; thus, inhibition of the expression of NF-κB and TNF-α, and amelioration of inflammation by spironolactone suggest that this may have been through the activation of PXR. However, our findings regarding PXR expression were inconclusive. Activation of PXR by spironolactone probably also contributed to the induction of P-gp, resulting in extrusion of noxious substances from the tissue.
Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum.
Kaushik, Jai K; Kumar, Ashutosh; Duary, Raj K; Mohanty, Ashok K; Grover, Sunita; Batish, Virender K
2009-12-01
Probiotic microorganisms favorably alter the intestinal microflora balance, promote intestinal integrity and mobility, inhibit the growth of harmful bacteria and increase resistance to infection. Probiotics are increasingly used in nutraceuticals, functional foods or in microbial interference treatment. However, the effectiveness of probiotic organism is considered to be population-specific due to variation in gut microflora, food habits and specific host-microbial interactions. Most of the probiotic strains available in the market are of western or European origin, and a strong need for exploring new indigenous probiotic organisms is felt. An indigenous isolate Lp9 identified as Lactobacillus plantarum by molecular-typing methods was studied extensively for its functional and probiotic attributes, viz., acid and bile salt tolerance, cell surface hydrophobicity, autoaggregation and Caco-2 cell-binding as well as antibacterial and antioxidative activities. Lp9 isolate could survive 2 h incubation at pH 1.5-2.0 and toxicity of 1.5-2.0% oxgall bile. Lp9 could deconjugate major bile salts like glycocholate and deoxytaurocholate, indicating its potential to cause hypocholesterolemia. The isolate exhibited cell-surface hydrophobicity of approximately 37% and autoaggregation of approximately 31%. Presence of putative probiotic marker genes like mucus-binding protein (mub), fibronectin-binding protein (fbp) and bile salt hydrolase (bsh) were confirmed by PCR. Presence of these genes suggested the possibility of specific interaction and colonization potential of Lp9 isolate in the gut, which was also suggested by a good adhesion ratio of 7.4+/-1.3% with Caco-2 cell line. The isolate demonstrated higher free radical scavenging activity than standard probiotics L. johnsonii LA1 and L. acidophilus LA7. Lp9 also exhibited antibacterial activity against E. coli, L. monocytogenes, S. typhi, S. aureus and B. cereus. The indigenous Lactobacillus plantarum Lp9 exhibited high resistance against low pH and bile and possessed antibacterial, antioxidative and cholesterol lowering properties with a potential for exploitation in the development of indigenous functional food or nutraceuticals.
Shakeri, M; Zulkifli, I; Soleimani, A F; O'Reilly, E L; Eckersall, P D; Anna, A A; Kumari, S; Abdullah, F F J
2014-11-01
A study was conducted to determine whether supplementing AminoGut (a commercial dietary supplement containing a mixture of l-glutamine and l-glutamic acid) to broiler chickens stocked at 2 different densities affected performance, physiological stress responses, foot pad dermatitis incidence, and intestinal morphology and microflora. A randomized design in a factorial arrangement with 4 diets [basal diet, basal diet + 0.5% AminoGut from d 1 to 21, basal diet + 0.5% AminoGut from d 1 to 42, and basal diet + virginiamycin (0.02%) for d 1 to 42] and 2 stocking densities [0.100 m(2)/bird (23 birds/pen; LD) or 0.067 m(2)/bird (35 birds/pen; HD)]. Results showed that villi length and crypt depth were not changed by different dietary treatments. However, birds in the HD group had smaller villi (P = 0.03) compared with those of the LD group. Regardless of diet, HD consistently increased the serum concentrations of ceruloplasmin, α-1 acid glycoprotein, ovotransferin, and corticosterone (P = 0.0007), and elevated heterophil to lymphocyte ratio (0.0005). Neither AminoGut supplementation nor stocking density affected cecal microflora counts. In conclusion, under the conditions of this study, dietary supplementation of AminoGut, irrespective of stocking density, had no beneficial effect on growth performance, intestinal morphology, and physiological adaptive responses of broiler chickens raised under hot and humid tropical conditions. However, AminoGut supplementation from d 1 to 42 was beneficial in reducing mortality rate. Also, the increased serum concentrations of a wide range of acute phase proteins together with elevated corticosterone and heterophil to lymphocyte ratio suggested that high stocking density induced an acute phase response either indirectly as a result of increased incidence of inflammatory diseases such as foot pad dermatitis or possibly as a direct physiological response to the stress of high stocking density. ©2014 Poultry Science Association Inc.
Sugawara, Gen; Nagino, Masato; Nishio, Hideki; Ebata, Tomoki; Takagi, Kenji; Asahara, Takashi; Nomoto, Koji; Nimura, Yuji
2006-01-01
Summary Background Data: Use of synbiotics has been reported to benefit human health, but clinical value in surgical patients remains unclear. Objective: To investigate the effect of perioperative oral administration of synbiotics upon intestinal barrier function, immune responses, systemic inflammatory responses, microflora, and surgical outcome in patients undergoing high-risk hepatobiliary resection. Methods: Patients with biliary cancer involving the hepatic hilus (n = 101) were randomized before hepatectomy, into a group receiving postoperative enteral feeding with synbiotics (group A); or another receiving preoperative plus postoperative synbiotics (group B). Lactulose-mannitol (L/M) ratio, serum diamine oxidase (DAO) activity, natural killer (NK) cell activity, interleukin-6 (IL-6), fecal microflora, and fecal organic acid concentrations were determined before and after hepatectomy. Postoperative infectious complications were recorded. Results: Of 101 patients, 81 completed the trial. Preoperative and postoperative changes in L/M ratio and DAO activity were similar between groups. Preoperatively in group B, NK activity, and lymphocyte counts increased, while IL-6 decreased significantly (P < 0.05). Postoperative serum IL-6, white blood cell counts, and C-reactive protein in group B were significantly lower than in group A (P < 0.05). During the preoperative period, numbers of Bifidobacterium colonies cultured from and total organic acid concentrations measured in feces increased significantly in group B (P < 0.05). Postoperative concentrations of total organic acids and acetic acid in feces were significantly higher in group B than in group A (P < 0.05). Incidence of postoperative infectious complications was 30.0% (12 of 40) in group A and 12.1% (5 of 41) in group B (P < 0.05). Conclusions: Preoperative oral administration of synbiotics can enhance immune responses, attenuate systemic postoperative inflammatory responses, and improve intestinal microbial environment. These beneficial effects likely reduce postoperative infectious complications after hepatobiliary resection for biliary tract cancer. PMID:17060763
Nowak, Piotr; Kasprowicz-Potocka, Małgorzata; Zaworska, Anita; Nowak, Włodzimierz; Stefańska, Barbara; Sip, Anna; Grajek, Włodzimierz; Juzwa, Wojciech; Taciak, Marcin; Barszcz, Marcin; Tuśnio, Anna; Grajek, Katarzyna; Foksowicz-Flaczyk, Joanna; Frankiewicz, Andrzej
2017-12-01
The aim of this study was to compare the effect of probiotic bacteria, prebiotics, phytobiotics and their combinations on performance and microbial activity in the digestive tract of growing pigs. The experiment was conducted over 28 d on 48 male pigs of about 12 kg body weight (BW), which were allocated to following treatments.: (1) Control Group (Con) without additive, (2) Group I, addition of a prebiotic (inulin), (3) Group Ph, a phytobiotic (herbal water extracts), (4) Group P, a probiotic composed of four strains of lactic acid bacteria, (5) Group PhP, phytobiotic and probiotic bacteria and (6) Group PhPI, a phytobiotic, probiotic bacteria and a prebiotic. Animal performance was recorded and at d 28 six pigs from each group were euthanised to collect digesta samples. In all groups except for Group I, diarrhoea incidents were observed. Groups Ph and P had significantly higher daily gains and final BW, and Group Ph utilised feed better than other groups. The pH of ileal digesta was significantly lower in Group PhPI. In the caecal digesta of Groups I, P and PhP, the pH level was lower than in the other groups but dry matter contents was significantly higher in Groups Con and I. The short-chain fatty acids and particular acid content differed significantly only in the colonic digesta. The yeast and mould numbers in caecal digesta was highest in Group Con. No treatment effects were observed for the number of lactic acid bacteria, coli group bacteria or Clostridium. However, the observed significantly higher number of total bacteria suggests that a multi-component eubiotic treatment changes the bacterial composition and distribution more effectively. Our findings indicated that all used additives changed the intestinal microflora, but the multi-component eubiotics were not beneficial as feed additives offered separately. Moreover, supplementation of phytobiotics and probiotic bacteria also improved the animal performance significantly.
[New knowledge of the pathogenesis of Crohn's disease].
Ambrůzová, B; Rédová, M; Michálek, J; Sachlová, M; Slabý, O
2012-04-01
Crohns disease is a complex chronic inflammatory disease of the gastrointestinal tract with multifactorial pathogenesis. Over the recent years, there has been rather a sharp increase in the incidence of Crohn's disease and, even though this disease had been known for some time, the cause remains unknown. Studies exploring genetic basis of Crohn's disease have provided new knowledge of the pathogenesis of this disease, suggesting that this may be associated with a failure of mechanisms behind symbiosis of gut microflora and intestinal mucosal immune system. Crohn's disease seems to be caused by inadequate immune response to intestinal flora in genetically predisposed individuals. Crohn's disease has been linked to a number of genes. Many of them are related to the modulation of non-specific immune response, defects of which are considered to be key in Crohn's disease pathogenesis. The aim of this review paper is to summarize the new knowledge on the pathogenesis of Crohn's disease at the level of polymorphisms of the NOD2, ATG16L1 genes and the IL23-Th17-lymfocytes signalling pathway genes and to consider further research directions in this disease.
Fang, Xin; Wang, Xin; Yang, Shaoguo; Meng, Fanjing; Wang, Xiaolei; Wei, Hua; Chen, Tingtao
2016-01-01
More and more evidences indicate that diseases of the central nervous system have been seriously affected by fecal microbes. However, little work is done to explore interaction between amyotrophic lateral sclerosis (ALS) and fecal microbes. In the present study, high-throughput sequencing method was used to compare the intestinal microbial diversity of healthy people and ALS patients. The principal coordinate analysis, Venn and unweighted pair-group method using arithmetic averages (UPGMA) showed an obvious microbial changes between healthy people (group H) and ALS patients (group A), and the average ratios of Bacteroides , Faecalibacterium , Anaerostipes , Prevotella , Escherichia , and Lachnospira at genus level between ALS patients and healthy people were 0.78, 2.18, 3.41, 0.35, 0.79, and 13.07. Furthermore, the decreased Firmicutes/Bacteroidetes ratio at phylum level using LEfSE (LDA > 4.0), together with the significant increased genus Dorea (harmful microorganisms) and significant reduced genus Oscillibacter , Anaerostipes , Lachnospiraceae (beneficial microorganisms) in ALS patients, indicated that the imbalance in intestinal microflora constitution had a strong association with the pathogenesis of ALS.
Yang, Yange; Shi, Zhaopeng; Gao, Ming-Qing; Zhang, Yong
2016-01-01
This study was performed to investigate the effects of genetically modified (GM) milk containing human beta-defensin-3 (HBD3) on mice by a 90-day feeding study. The examined parameters included the digestibility of GM milk, general physical examination, gastric emptying function, intestinal permeability, intestinal microflora composition of mice, and the possibility of horizontal gene transfer (HGT). The emphasis was placed on the effects on gastrointestinal (GI) tract due to the fact that GI tract was the first site contacting with food and played crucial roles in metabolic reactions, nutrition absorption and immunity regulation in the host. However, the traditional methods for analyzing the potential toxicological risk of GM product pay little attention on GI health. In this study, the results showed GM milk was easy to be digested in simulated gastric fluid, and it did not have adverse effects on general and GI health compared to conventional milk. And there is little possibility of HGT. This study may enrich the safety assessment of GM product on GI health. PMID:27438026
Gastrointestinal microflora, food components and colon cancer prevention
Davis, Cindy D.; Milner, John A.
2009-01-01
Evidence is emerging that the intestinal microbiota is intrinsically linked with overall health, including cancer risk. Moreover, its composition is not fixed, but can be influenced by several dietary components. Dietary modifiers, including the consumption of live bacteria (probiotics), nondigestible or limited digestible food constituents such as oligosaccharides (prebiotics) and polyphenols, or both (synbiotics), are recognized modifiers of the numbers and types of microbes and have been reported to reduce colon cancer risk experimentally. Microorganisms also have the ability to generate bioactive compounds from food components. Examples include equol from isoflavones, enterodiol and enterolactone from lignans, and urolithins from ellagic acid, which have also been demonstrated to retard experimentally induced cancers. The gastrointestinal microbiota can also influence both sides of the energy balance equation; namely, as a factor influencing energy utilization from the diet and as a factor that influences host genes that regulate energy expenditure and storage. Because of the link between obesity and cancer incidence and mortality, this complex relationship deserves greater attention. Thus, a complex interrelationship exists between the intestinal microbiota and colon cancer risk which can be modified by dietary components and eating behaviors. PMID:19716282
López-Nicolás, Rubén; González-Bermúdez, Carlos A; Ros-Berruezo, Gaspar; Frontela-Saseta, Carmen
2014-08-15
The selective antimicrobial effect of fruit juices enriched with pine bark extract (PBE) (0.5 g/L) has been studied before and after in vitro gastrointestinal digestion. PBE (a concentrate of water-soluble bioflavonoids, mainly including phenolic compounds) has been proven to have high stability to the digestion process. Pure phenolic compounds such as gallic acid had a high antimicrobial effect on Staphylococcus aureus and Escherichia coli, maintaining the lactic acid bacteria population (≈100%). Otherwise, E. coli O157:H7 only growth 50% when PBE was added to the culture media, while a slight increase on the growth of lactobacilli and bifidobacteria was observed after exposition to the bark extract. Fresh fruit juices enriched with PBE showed the highest inhibitory effect on pathogenic intestinal bacterial growth, mainly E. coli and Enterococcus faecalis. The in vitro digestion process reduced the antibacterial effect of juices against most pathogenic bacteria in approximately 10%. However, the beneficial effect of fruit juices enriched with PBE (0.5 g/L) on gut microbiota is still considerable after digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pătruică, S; Mot, D
2012-12-01
Maintaining bee colonies in a healthy state throughout the year is one of the main concerns of apiculture researchers. The phenomenon of disappearance of bee colonies is determined by several factors, one of which is bee disease. Due to the organizational structure of the bee colony, disease transmission is rapid, especially through infected food or via the nurse worker bees that feed the brood bees of the colony concerned. The practice of stimulating the bee colonies in spring using sugar syrup feeds with added prebiotic products (lactic acid or acetic acid) and probiotics (Lactobacillus acidophilus LA-14 and Bifidobacterium lactis BI-04) by using an Enterobiotic product (Lactobacillus casei), marketed as Enterolactis Plus, for three weeks, resulted in a significant reduction of the total number of bacteria in the digestive tracts of the bees, compared with the control group. By contrast, intestinal colonization with beneficial bacteria contained in probiotics products administered to the bees was observed. This resulted in an improved health status and bio productive index of the bee colonies studied.
Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang
2016-08-01
Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.
Taniguchi, Kan; Matsuura, Kimio; Matsuoka, Takanori; Nakatani, Hajime; Nakano, Takumi; Furuya, Yasuo; Sugimoto, Takeki; Kobayashi, Michiya; Araki, Keijiro
2005-06-01
Hirschsprung's disease is a congenital aganglionic neural disorder of the segmental distal intestine characterized by unsettled pathogenesis. The relationship between Hirschsprung's disease and pacemaker cells (PMC), which almost corresponds to that of the interstitial cells of Cajal (ICC), was morphologically observed at the level of the intermuscular layer corresponding to Auerbach's plexus using ls/ls mice. These mice are an ideal model because of their large intestinal aganglionosis and gene abnormalities, which are similar to the human form of the disease. Immunostaining using anti-c-kit receptor antibody (ACK2), a marker of PMC, applied to whole-mount muscle-layer specimens, revealed the presence of c-kit immunopositive multipolar cells with many cytoplasmic processes in normal mice. For ls/ls mice, however, there were significantly fewer processes. The average number of processes per positive cell of 2.5 for the aganglionic large intestine was fewer than 3.5 for the large and small intestine of normal mice, indicating the inability to form connections between nerves and PMC in the aganglionic intestine. For normal mice with an Auerbach's plexus, the process attachment of ICC to the Auerbach's plexus was observed by scanning electron microscopy. However, for ls/ls mice no attachment to the intermuscular nerve without Auerbach's plexus was found, although transmission electron microscopy showed no difference in the cell structure and organelles of the c-kit immunopositive cells between the normal and ls/ls mice. These findings suggest that in the aganglionic intestine of Hirschsprung's disease, aplasia of enteric ganglia induces secondary disturbances during the normal development of intestinal PMC.
Effects of Mesalamine Treatment on Gut Barrier Integrity Following Burn Injury
Cannon, Abigail R.; Akhtar, Suhail; Hammer, Adam M.; Morris, Niya L.; Javorski, Mike J.; Li, Xiaoling; Kennedy, Richard H.; Gamelli, Richard L.; Choudhry, Mashkoor A.
2016-01-01
Gut barrier disruption is often implicated in pathogenesis associated with burn and other traumatic injuries. In this study, we examined whether therapeutic intervention with mesalamine (5-ASA), a common anti-inflammatory treatment for patients with inflammatory bowel disease, reduces intestinal inflammation and maintains normal barrier integrity after burn injury. Male C57BL/6 mice were administered an ~20% total body surface area dorsal scald burn and resuscitated with either 1mL normal saline or 100mg/kg of 5-ASA dissolved in saline. We examined intestinal transit and permeability along with levels of small intestine epithelial cell pro-inflammatory cytokines and tight junction protein expression one day after burn injury in the presence or absence of 5-ASA. A significant decrease in intestinal transit was observed one day after burn injury, which accompanied a significant increase in gut permeability. We found a substantial increase in the levels of IL-6 (by ~1.5 fold) and IL-18 (by ~2.5 fold) in small intestine epithelial cells one day after injury. Furthermore, burn injury decreases expression of the tight junction proteins claudin-4, claudin-8, and occludin. Treatment with 5-ASA after burn injury prevented the burn induced increase in permeability, partially restored normal intestinal transit, normalized levels of the pro-inflammatory cytokines IL-6 and IL-18, and restored tight junction protein expression of claudin-4 and occludin to that of sham levels. Together these findings suggest that 5-ASA can potentially be used as treatment to decrease intestinal inflammation and normalize intestinal function after burn injury. PMID:27388883
Effects of Mesalamine Treatment on Gut Barrier Integrity After Burn Injury.
Cannon, Abigail R; Akhtar, Suhail; Hammer, Adam M; Morris, Niya L; Javorski, Michael J; Li, Xiaoling; Kennedy, Richard H; Gamelli, Richard L; Choudhry, Mashkoor A
2016-01-01
Gut barrier disruption is often implicated in pathogenesis associated with burn and other traumatic injuries. In this study, the authors examined whether therapeutic intervention with mesalamine (5-aminosalicylic acid [5-ASA]), a common anti-inflammatory treatment for patients with inflammatory bowel disease, reduces intestinal inflammation and maintains normal barrier integrity after burn injury. Male C57BL/6 mice were administered an approximately 20% TBSA dorsal scald burn and resuscitated with either 1 ml normal saline or 100 mg/kg of 5-ASA dissolved in saline. The authors examined intestinal transit and permeability along with the levels of small intestine epithelial cell proinflammatory cytokines and tight junction protein expression 1 day after burn injury in the presence or absence of 5-ASA. A significant decrease in intestinal transit was observed 1 day after burn injury, which accompanied a significant increase in gut permeability. The authors found a substantial increase in the levels of interleukin (IL)-6 (by ~1.5-fold) and IL-18 (by ~2.5-fold) in the small intestine epithelial cells 1 day after injury. Furthermore, burn injury decreases the expression of the tight junction proteins claudin-4, claudin-8, and occludin. Treatment with 5-ASA after burn injury prevented the burn-induced increase in permeability, partially restored normal intestinal transit, normalized the levels of the proinflammatory cytokines IL-6 and IL-18, and restored tight junction protein expression of claudin-4 and occludin compared with that of sham levels. Together these findings suggest that 5-ASA can potentially be used as treatment to decrease intestinal inflammation and normalize intestinal function after burn injury.
Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs?
Chen, Feng; Wen, Qi; Jiang, Jun; Li, Hai-Long; Tan, Yin-Feng; Li, Yong-Hui; Zeng, Nian-Kai
2016-02-17
A wealth of information is emerging about the impact of gut microbiota on human health and diseases such as cardiovascular diseases, obesity and diabetes. As we learn more, we find out the gut microbiota has the potential as new territory for drug targeting. Some novel therapeutic approaches could be developed through reshaping the commensal microbial structure using combinations of different agents. The gut microbiota also affects drug metabolism, directly and indirectly, particularly towards the orally administered drugs. Herbal products have become the basis of traditional medicines such as traditional Chinese medicine and also been being considered valuable materials in modern drug discovery. Of note, low oral bioavailability but high bioactivity is a conundrum not yet solved for some herbs. Since most of herbal products are orally administered, the herbs' constituents are inevitably exposed to the intestinal microbiota and the interplays between herbal constituents and gut microbiota are expected. Emerging explorations of herb-microbiota interactions have an opportunity to revolutionize the way we view herbal therapeutics. The present review aims to provide information regarding the health promotion and/or disease prevention by the interplay between traditional herbs with low bioavailability and gut microbiota through gut microbiota via two different types of mechanisms: (1) influencing the composition of gut microbiota by herbs and (2) metabolic reactions of herbal constituents by gut microbiota. The major data bases (PubMed and Web of Science) were searched using "gut microbiota", "intestinal microbiota", "gut flora", "intestinal flora", "gut microflora", "intestinal microflora", "herb", "Chinese medicine", "traditional medicine", or "herbal medicine" as keywords to find out studies regarding herb-microbiota interactions. The Chinese Pharmacopoeia (2010 edition, Volume I) was also used to collect the data of commonly used medicinal herbs and their quality control approaches. Among the 474 monographs of herbs usually used in the Chinese Pharmacopoeia, the quality control approach of 284 monographs is recommended to use high-performance liquid chromatography approach. Notably, the major marker compounds (>60%) for quality control are polyphenols, polysaccharides and saponins, with significant oral bioavailability conundrum. Results from preclinical and clinical studies on herb-microbiota interactions showed that traditional herbs could exert heath promotion and disease prevention roles via influencing the gut microbiota structure. On the other hand, herb constituents such as ginsenoside C-K, hesperidin, baicalin, daidzin and glycyrrhizin could exert their therapeutic effects through gut microbiota-mediated bioconversion. Herb-microbiota interaction studies provide novel mechanistic understanding of the traditional herbs that exhibit poor oral bioavailability. "Microbiota availability" could be taken consideration into describing biological measurements in the therapeutic assessment of herbal medicine. Our review should be of value in stimulating discussions among the scientific community on this relevant theme and prompting more efforts to complement herb-microbiota interactions studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhang, Wei; Peng, Yun-ru; Ding, Yong-fang
2015-11-01
In our previous studies, caudatin-2,6-dideoxy-3-O-methy-β-d- cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) technique combined with Metabolynx(TM) software was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC-Q-TOF-MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.
Wedemeyer, Gary
1967-01-01
The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA. Recently, certain organisms have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA. Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes, it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected.
Varankovich, Natallia V.; Nickerson, Michael T.; Korber, Darren R.
2015-01-01
Probiotic bacteria offer a number of potential health benefits when administered in sufficient amounts that in part include reducing the number of harmful organisms in the intestine, producing antimicrobial substances and stimulating the body’s immune response. However, precisely elucidating the probiotic effect of a specific bacterium has been challenging due to the complexity of the gut’s microbial ecosystem and a lack of definitive means for its characterization. This review provides an overview of widely used and recently described probiotics, their impact on the human’s gut microflora as a preventative treatment of disease, human/animal models being used to help show efficacy, and discusses the potential use of probiotics in gastrointestinal diseases associated with antibiotic administration. PMID:26236287
Hatew, Bayissa; Delessa, Tenagne; Zakin, Vered; Gollop, Natan
2011-10-01
Chicken intestine harbors a vast number of bacterial strains. In the present study, antimicrobial substance produced by lactic acid bacteria (LAB) isolated from the gastrointestinal tract of healthy chicken was detected, characterized, and purified. Based on 16S rRNA sequencing, the bacteria were identified as Lactobacillus plantarum vN. The antimicrobial substance produced by this bacterium was designated vN-1 and exhibited a broad-spectrum of activity against many important pathogenic and spoilage microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Micrococcus luteus, Salmonella Typhimurium, and Erwinia amylovova. vN-1 was determined to be thermostable, insensitive to pH values ranging from 2.0 to 8.0, resistant to various organic solvents and to enzymatic inactivation. The inhibition kinetics displayed a bactericidal mode of action. This study revealed an antimicrobial substance with low molecular mass of less than 1 kDa as determined by ultrafiltration and having features not previously reported for LAB isolated from chicken intestines. The detection of this antimicrobial substance addresses an important aspect of biotechnological control agents of spoilage caused by Pseudomonas spp. and promises the possibility for preservation of refrigerated poultry meat. Practical Application: The newly characterized antimicrobial substance and designated as vN-1 may have the potential to be used in food preservation. © 2011 Institute of Food Technologists®
Jang, Sun-Hee; Park, Jisang; Kim, Sae-Hae; Choi, Kyung-Min; Ko, Eun-Sil; Cha, Jeong-Dan; Lee, Young-Ran; Jang, Hyonseok; Jang, Yong-Suk
2017-03-01
Red ginseng is a well-known alternative medicine with anti-inflammatory activity. It exerts pharmacological effects through the transformation of saponin into metabolites by intestinal microbiota. Given that intestinal microflora vary among individuals, the pharmacological effects of red ginseng likely vary among individuals. In order to produce homogeneously effective red ginseng, we prepared probiotic-fermented red ginseng and evaluated its activity using a dextran sulfate sodium (DSS)-induced colitis model in mice. Initial analysis of intestinal damage indicated that the administration of probiotic-fermented red ginseng significantly decreased the severity of colitis, compared with the control and the activity was higher than that induced by oral administration of ginseng powder or probiotics only. Subsequent analysis of the levels of serum IL-6 and TNF-α, inflammatory biomarkers that are increased at the initiation stage of colitis, were significantly decreased in probiotic-fermented red ginseng-treated groups in comparison to the control group. The levels of inflammatory cytokines and mRNAs for inflammatory factors in colorectal tissues were also significantly decreased in probiotic-fermented red ginseng-treated groups. Collectively, oral administration of probiotic-fermented red ginseng reduced the severity of colitis in a mouse model, suggesting that it can be used as a uniformly effective red ginseng product. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Potential of Using Maize Cobs in Pig Diets — A Review
Kanengoni, A. T.; Chimonyo, M.; Ndimba, B. K.; Dzama, K.
2015-01-01
The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin) which is resistant to pigs’ digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM) increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs. PMID:26580433
Amano, Hizuru; Uchida, Hiroo; Kawashima, Hiroshi; Tanaka, Yujiro; Kishimoto, Hiroshi
2014-08-01
Midgut volvulus is a highly life-threatening condition that carries a high risk of short gut syndrome. We report a case of catastrophic neonatal midgut volvulus in which second-look laparotomy revealed apparently non-viable remnant small intestine but with a moderate blood supply. Full-thickness small intestine necrosis was distributed in a patchy fashion, with non-viable and necrotic areas distributed so widely that no portion of the intestine could be resected. A section of full-thickness necrotic intestine preserved at surgery was able to regenerate, and normal function was restored over a period of 1 month. This case indicated that intestinal resumption may be dependent on blood flow. Even when intestinal viability is questionable, preservation enables the chance of regeneration if moderate blood flow is present.
Colitis susceptibility in p47(phox-/-) mice is mediated by the microbiome.
Falcone, E Liana; Abusleme, Loreto; Swamydas, Muthulekha; Lionakis, Michail S; Ding, Li; Hsu, Amy P; Zelazny, Adrian M; Moutsopoulos, Niki M; Kuhns, Douglas B; Deming, Clay; Quiñones, Mariam; Segre, Julia A; Bryant, Clare E; Holland, Steven M
2016-04-05
Chronic granulomatous disease (CGD) is caused by defects in nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) complex subunits (gp91(phox) (a.k.a. Nox2), p47(phox), p67(phox), p22(phox), p40(phox)) leading to reduced phagocyte-derived reactive oxygen species production. Almost half of patients with CGD develop inflammatory bowel disease, and the involvement of the intestinal microbiome in relation to this predisposing immunodeficiency has not been explored. Although CGD mice do not spontaneously develop colitis, we demonstrate that p47(phox-/-) mice have increased susceptibility to dextran sodium sulfate colitis in association with a distinct colonic transcript and microbiome signature. Neither restoring NOX2 reactive oxygen species production nor normalizing the microbiome using cohoused adult p47(phox-/-) with B6Tac (wild type) mice reversed this phenotype. However, breeding p47(phox+/-) mice and standardizing the microflora between littermate p47(phox-/-) and B6Tac mice from birth significantly reduced dextran sodium sulfate colitis susceptibility in p47(phox-/-) mice. We found similarly decreased colitis susceptibility in littermate p47(phox-/-) and B6Tac mice treated with Citrobacter rodentium. Our findings suggest that the microbiome signature established at birth may play a bigger role than phagocyte-derived reactive oxygen species in mediating colitis susceptibility in CGD mice. These data further support bacteria-related disease in CGD colitis.
Risk Assessment of Growth Hormones and Antimicrobial Residues in Meat
Jeong, Sang-Hee; Kang, Daejin; Lim, Myung-Woon; Kang, Chang Soo
2010-01-01
Growth promoters including hormonal substances and antibiotics are used legally and illegally in food producing animals for the growth promotion of livestock animals. Hormonal substances still under debate in terms of their human health impacts are estradiol-17β, progesterone, testosterone, zeranol, trenbolone, and melengestrol acetate (MGA) . Many of the risk assessment results of natural steroid hormones have presented negligible impacts when they are used under good veterinary practices. For synthetic hormonelike substances, ADIs and MRLs have been established for food safety along with the approval of animal treatment. Small amounts of antibiotics added to feedstuff present growth promotion effects via the prevention of infectious diseases at doses lower than therapeutic dose. The induction of antimicrobial resistant bacteria and the disruption of normal human intestinal flora are major concerns in terms of human health impact. Regulatory guidance such as ADIs and MRLs fully reflect the impact on human gastrointestinal microflora. However, before deciding on any risk management options, risk assessments of antimicrobial resistance require large-scale evidence regarding the relationship between antimicrobial use in food-producing animals and the occurrence of antimicrobial resistance in human pathogens. In this article, the risk profiles of hormonal and antibacterial growth promoters are provided based on recent toxicity and human exposure information, and recommendations for risk management to prevent human health impacts by the use of growth promoters are also presented. PMID:24278538
Probiotics in the Prevention and Treatment of Postmenopausal Vaginal Infections: Review Article
Park, Yoo Jin
2017-01-01
Bacterial vaginosis (BV) and complicated vulvovaginal candidiasis (VVC) are frequently occurring vaginal infections in postmenopausal women, caused by an imbalance in vaginal microflora. Postmenopausal women suffer from decreased ovarian hormones estrogen and progesterone. A normal, healthy vaginal microflora mainly comprises Lactobacillus species (spp.), which act beneficially as a bacterial barrier in the vagina, interfering with uropathogens. During premenopausal period, estrogen promotes vaginal colonization by lactobacilli that metabolizing glycogen and producing lactic acid, and maintains intravaginal health by lowering the intravaginal pH level. A lower vaginal pH inhibits uropathogen growth, preventing vaginal infections. Decreased estrogen secretion in postmenopausal women depletes lactobacilli and increases intravaginal pH, resulting in increased vaginal colonization by harmful microorganisms (e.g., Enterobacter, Escherichia coli, Candida, and Gardnerella). Probiotics positively effects on vaginal microflora composition by promoting the proliferation of beneficial microorganisms, alters the intravaginal microbiota composition, prevents vaginal infections in postmenopausal. Probiotics also reduce the symptoms of vaginal infections (e.g., vaginal discharge, odor, etc.), and are thus helpful for the treatment and prevention of BV and VVC. In this review article, we provide information on the intravaginal mechanism of postmenopausal vaginal infections, and describes the effectiveness of probiotics in the treatment and prevention of BV and VVC. PMID:29354612
Probiotics in the Prevention and Treatment of Postmenopausal Vaginal Infections: Review Article.
Kim, Jun-Mo; Park, Yoo Jin
2017-12-01
Bacterial vaginosis (BV) and complicated vulvovaginal candidiasis (VVC) are frequently occurring vaginal infections in postmenopausal women, caused by an imbalance in vaginal microflora. Postmenopausal women suffer from decreased ovarian hormones estrogen and progesterone. A normal, healthy vaginal microflora mainly comprises Lactobacillus species (spp.), which act beneficially as a bacterial barrier in the vagina, interfering with uropathogens. During premenopausal period, estrogen promotes vaginal colonization by lactobacilli that metabolizing glycogen and producing lactic acid, and maintains intravaginal health by lowering the intravaginal pH level. A lower vaginal pH inhibits uropathogen growth, preventing vaginal infections. Decreased estrogen secretion in postmenopausal women depletes lactobacilli and increases intravaginal pH, resulting in increased vaginal colonization by harmful microorganisms (e.g., Enterobacter , Escherichia coli , Candida , and Gardnerella ). Probiotics positively effects on vaginal microflora composition by promoting the proliferation of beneficial microorganisms, alters the intravaginal microbiota composition, prevents vaginal infections in postmenopausal. Probiotics also reduce the symptoms of vaginal infections (e.g., vaginal discharge, odor, etc.), and are thus helpful for the treatment and prevention of BV and VVC. In this review article, we provide information on the intravaginal mechanism of postmenopausal vaginal infections, and describes the effectiveness of probiotics in the treatment and prevention of BV and VVC.
Abbe, N J; Head, D; Reed, J V; Murrell, E A; Baxter, P M
1986-02-01
Synopsis The presence of apparently normal corneocytes as well as parakeratotic material in dandruff scales suggests that atypical keratinization in the scalp epidermis has not been of long duration. Abundance of hair fat on the scalp after puberty, colonization by fat-splitting micro-organisms (notably yeasts of the genus Pityrosporum) and transitory upsurges of epidermal mitosis in response to fatty acids produced by lipolysis of sebum triglycerides within the hair follicles, especially those in the anagen phase, seem likely to be implicated in the generation of dandruff scaling. Antidandruff efficacy apparently calls not only for antifungal potency demonstrable in vitro but also for the ability, when incorporated in a suitable formulation, to reach the microflora within the hair follicles and to inhibit the metabolic activity of these microorganisms even in the presence of sebum. The in vivo demonstration of an alleged 'anti-hyperproliferative'effect of an antidandruff compound has been described but probably has only coincidental relationship to its normal function in the control of dandruff, which seems more likely to depend on its antimicrobial properties. The available evidence thus tends to favour the view that the scalp microflora have a predominant role in the generation of dandruff. Pellicules: origine microbienne ou non microbienne?
Xiao, Bing-bing; Liu, Zhao-hui; Liao, Qin-ping
2009-01-01
To investigate the microecological status of vaginal microflora in the women with different vaginal symptoms. From March 2006 to October 2007, 6982 cases with varying degree vaginal symptoms including pruritus, increaseed leucorrhea, the leucorrhea having unusual smell, in the gynecology outpatient department were studied. The vagina secretions were examined in terms of the pH value, the hydrogen peroxide test, and Gram dyeing inspection of vaginal bacteria and microecology appraisal for colony's density, the multiplicity, the superiority fungus, and the inflammatory response. Among 6982 patients, normal vaginal microecology was identified in 750 (10.74%, 750/6982); abnormal microecology was found in 6232 (89.26%, 6232/6982); bacterial vaginosis (BV) was detected in 729 (10.44%, 729/6982); vulvovaginal candidiasis (VVC) was in 1527 (21.87%, 1527/6982). Ninety five patients (1.36%, 95/6982) were with both BV and VVC. Abnormal bacteria colonies were found in 1229 (17.60%, 1229/6982), and others were found in 2652 (37.98%, 2652/6982). The vaginal microecology in the women with different vaginal symptoms can be either normal or abnormal. Microecology clinical evaluation system can assess the vaginal microecosystem.
The oral microflora in obesity and type-2 diabetes
Shillitoe, Edward; Weinstock, Ruth; Kim, Taewan; Simon, Howard; Planer, Jessica; Noonan, Susan; Cooney, Robert
2012-01-01
Background Type 2 diabetes mellitus (T2DM) is prevalent in people with obesity. It has been proposed that these conditions are related to specific features of the microflora of the mouth and lower gastrointestinal (GI) tract. Hyperglycemia often resolves quickly after Roux-en-Y gastric bypass (RYGB) but the role of the GI microflora cannot be examined easily because of reduced intestinal mobility. We propose that the study of microorganisms present in the mouth of patients undergoing RYGB will contribute to our understanding of the role of bacteria in the pathogenesis of T2DM. Objective To conduct a feasibility study to examine differences in oral microbes in obese patients with and without T2DM and to determine whether it is feasible to measure changes after gastric bypass surgery. Methods Individuals with morbid obesity (n=29), of whom 13 had T2DM, were studied. Oral rinses, stool samples, and blood samples were obtained before RYGB, and oral rinses and blood samples were obtained at 2 and 12 weeks postsurgery. Results Prior to surgery, participants with T2DM had slightly higher total levels of oral bacteria than those without diabetes. Those with HbA1c > 6.5% had rather lower levels of Bifidobacteria in the mouth and stool. At 2 weeks post-RYGB, patients with T2DM were able to reduce or discontinue their hypoglycemic medications. Stool samples could not be obtained but oral rinses were readily available. The levels of oral Bifidobacteria had increased tenfold and levels of circulating endotoxin and tumor necrosis factor-alpha had decreased. Conclusions The study of oral bacteria before and after RYGB is feasible and should be tested in larger patient populations to increase our understanding of the role of microorganisms in the pathogenesis of obesity and T2DM. PMID:23119124
c-Rel is Essential for the Development of Innate and T cell-Induced Colitis1
Wang, Yanyan; Rickman, Barry H.; Poutahidis, Theofilos; Schlieper, Katherine; Jackson, Erin A.; Erdman, Susan E.; Fox, James G.; Horwitz, Bruce H.
2008-01-01
Inflammatory bowel disease is a chronic inflammatory response of the gastrointestinal tract mediated in part by an aberrant response to intestinal microflora. Expression of IL-23 subunits p40 and p19 within cells of the innate immune system plays a central role in the development of lower bowel inflammation in response inflammatory challenge. The NF-κB subunit c-Rel can regulate expression of IL-12/23 subunits suggesting that it could have a critical role in mediating the development of chronic inflammation within the lower bowel. Here we have analyzed the role of c-Rel within the innate immune system in the development of lower bowel inflammation, in two well-studied models of murine colitis. We have found that the absence of c-Rel significantly impaired the ability of H. hepaticus to induce colitis upon infection of RAG-2-deficient mice, and ameliorated the ability of CD4+CD45RBhigh T cells to induce disease upon adoptive transfer into RAG-deficient mice. The absence of c-Rel interfered with the expression of IL-12/23 subunits both in cultured primary macrophages and within the colon. Thus, c-Rel plays a critical role in regulating the innate inflammatory response to microflora within the lower bowel, likely through its ability to modulate expression of IL-12/23 family members. PMID:18523276
Fiber and Prebiotics: Mechanisms and Health Benefits
Slavin, Joanne
2013-01-01
The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber by the accepted total dietary fiber (TDF) method, but on their physiological effects. Inulin, fructo-oligosaccharides, and other oligosaccharides are included as fiber in food labels in the US. Additionally, oligosaccharides are the best known “prebiotics”, “a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-bring and health.” To date, all known and suspected prebiotics are carbohydrate compounds, primarily oligosaccharides, known to resist digestion in the human small intestine and reach the colon where they are fermented by the gut microflora. Studies have provided evidence that inulin and oligofructose (OF), lactulose, and resistant starch (RS) meet all aspects of the definition, including the stimulation of Bifidobacterium, a beneficial bacterial genus. Other isolated carbohydrates and carbohydrate-containing foods, including galactooligosaccharides (GOS), transgalactooligosaccharides (TOS), polydextrose, wheat dextrin, acacia gum, psyllium, banana, whole grain wheat, and whole grain corn also have prebiotic effects. PMID:23609775
Fiber and prebiotics: mechanisms and health benefits.
Slavin, Joanne
2013-04-22
The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber by the accepted total dietary fiber (TDF) method, but on their physiological effects. Inulin, fructo-oligosaccharides, and other oligosaccharides are included as fiber in food labels in the US. Additionally, oligosaccharides are the best known "prebiotics", "a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-bring and health." To date, all known and suspected prebiotics are carbohydrate compounds, primarily oligosaccharides, known to resist digestion in the human small intestine and reach the colon where they are fermented by the gut microflora. Studies have provided evidence that inulin and oligofructose (OF), lactulose, and resistant starch (RS) meet all aspects of the definition, including the stimulation of Bifidobacterium, a beneficial bacterial genus. Other isolated carbohydrates and carbohydrate-containing foods, including galactooligosaccharides (GOS), transgalactooligosaccharides (TOS), polydextrose, wheat dextrin, acacia gum, psyllium, banana, whole grain wheat, and whole grain corn also have prebiotic effects.
Walujkar, Sandeep A; Kumbhare, Shreyas V; Marathe, Nachiket P; Patangia, Dhrati V; Lawate, Parimal S; Bharadwaj, Renu S; Shouche, Yogesh S
2018-05-23
Dysbiosis of intestinal microflora has been postulated in ulcerative colitis (UC), which is characterized by imbalance of mucosal tissue associated bacterial communities. However, the specific changes in mucosal microflora during different stages of UC are still unknown. The aim of the current study was to investigate the changes in mucosal tissue associated microbiota during acute exacerbations and remission stages of UC. The mucosal microbiota associated with colon biopsy of 12 patients suffering from UC (exacerbated stage) and the follow-up samples from the same patients (remission stage) as well as non-IBD subjects was studied using 16S rRNA gene-based sequencing and quantitative PCR. The total bacterial count in patients suffering from exacerbated phase of UC was observed to be two fold lower compared to that of the non-IBD subjects (p = 0.0049, Wilcox on matched-pairs signed rank tests). Bacterial genera including Stenotrophomonas, Parabacteroides, Elizabethkingia, Pseudomonas, Micrococcus, Ochrobactrum and Achromobacter were significantly higher in abundance during exacerbated phase of UC as compared to remission phase. The alterations in bacterial diversity with an increase in the abnormal microbial communities signify the extent of dysbiosis in mucosal microbiota in patients suffering from UC. Our study helps in identifying the specific genera dominating the microbiota during the disease and thus lays a basis for further investigation of the possible role of these bacteria in pathogenesis of UC.
[Bacterial toxic shock as a complication of calculous pyelonephritis].
Lopatkin, N A; Rumiantsev, V B; Ianenko, E K
1994-01-01
The causes of bacteriotoxic shock were examined in 33 patients (11 lethal outcomes). It has arisen as a complication of treatment given to 7830 patients for urolithiasis. Aggravation of chronic pyelonephritis, occlusion of the urinary tracts, urogenital mucosal and parenchymal injuries, low resistance to infection contribute to microbacteria and their toxins entering blood with resultant bacteriotoxic shock. Transcutaneous operative interventions, therapeutic and diagnostic procedures also produce high risk of blood infection with gram-negative microflora, especially in violation of asepsis and antisepsis rules. As shown by microflora tests, the dominating bacteria consisted of opportunistic agents which had acquired the resistance to antibacterial drugs. In view of rapid progression of bacteriotoxic shock therapeutic efforts should be concentrated on fast normalization of hemodynamics, recovery of urine passage, introduction of sorption detoxication, prevention of DIC syndrome. The schemes of combined antibiotic treatment adjusted to the kind of infectious agent are suggested.
Clostridium difficile infection: molecular pathogenesis and novel therapeutics
Rineh, Ardeshir; Kelso, Michael J; Vatansever, Fatma; Tegos, George P; Hamblin, Michael R
2015-01-01
The Gram-positive anaerobic bacterium Clostridium difficile produces toxins A and B, which can cause a spectrum of diseases from pseudomembranous colitis to C. difficile-associated diarrhea. A limited number of C. difficile strains also produce a binary toxin that exhibits ADP ribosyltransferase activity. Here, the structure and the mechanism of action of these toxins as well as their role in disease are reviewed. Nosocomial C. difficile infection is often contracted in hospital when patients treated with antibiotics suffer a disturbance in normal gut microflora. C. difficile spores can persist on dry, inanimate surface for months. Metronidazole and oral vancomycin are clinically used for treatment of C. difficile infection but clinical failure and concern about promotion of resistance are motivating the search for novel non-antibiotic therapeutics. Methods for controlling both toxins and spores, replacing gut microflora by probiotics or fecal transplant, and killing bacteria in the anaerobic gut by photodynamic therapy are discussed. PMID:24410618
Moncla, Bernard J; Chappell, Catherine A; Debo, Brian M; Meyn, Leslie A
2016-01-01
In this study, we characterized the glycome of cervical-vaginal fluid, collected with a Catamenial cup. We quantified: glycosidase levels; sialic acid and high mannose specific lectin binding; mucins, MUC1, MUC4, MUC5AC, MUC7; and albumin in the samples collected. These data were analyzed in the context of hormonal status (day of menstrual cycle, hormonal contraception use) and role, if any, of the type of the vaginal microflora present. When the Nugent score was used to stratify the subjects by microflora as normal, intermediate, or bacterial vaginosis, several important differences were observed. The activities of four of six glycosidases in the samples from women with bacterial vaginosis were significantly increased when compared to normal or intermediate women: sialidase, P = <0.001; α-galactosidase, P = 0.006; β-galactosidase, P = 0.005; α-glucosidase, P = 0.056. Sialic acid binding sites as measured by two lectins, Maackia amurensis and Sambucus nigra binding, were significantly lower in women with BV compared to women with normal and intermediate scores (P = <0.0001 and 0.008 respectively). High mannose binding sites, a measure of innate immunity were also significantly lower in women with BV (P = <0.001). Additionally, we observed significant increases in MUC1, MUC4, MUC5AC, and MUC7 concentrations in women with BV (P = <0.001, 0.001, <0.001, 0.02 respectively). Among normal women we found that the membrane bound mucin MUC4 and the secreted MUC5AC were decreased in postmenopausal women (P = 0.02 and 0.07 respectively), while MUC7 (secreted) was decreased in women using levonorgestrel-containing IUDs (P = 0.02). The number of sialic acid binding sites was lower in the postmenopausal group (P = 0.04), but the number of high mannose binding sites, measured with Griffithsin, was not significantly different among the 6 hormonal groups. The glycosidase levels in the cervical-vaginal mucus were rather low in the groups, with exception of α-glucosidase activity that was much lower in the postmenopausal group (P<0.001). These studies present compelling evidence that the vaginal ecosystem responds to the presence of different vaginal microorganisms. These effects were so influential that it required us to remove subjects with BV for data interpretation of the impact of hormones. We also suggest that certain changes occurring in vaginal/cervical proteins are due to bacteria or their products. Therefore, the quantitation of vaginal mucins and lectin binding offers a new method to monitor bacteria-host interactions in the female reproductive tract. The data suggest that some of the changes in these components are the result of host processing, such as the increases in mucin content, while the microflora is responsible for the increases in glycosidases and the decreases in lectin binding. The methods should be considered a valid marker for insult to the female genital tract.
NASA Astrophysics Data System (ADS)
Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong
2015-11-01
Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.
Three-Dimensional Coculture Of Human Small-Intestine Cells
NASA Technical Reports Server (NTRS)
Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy
1994-01-01
Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).
Intestinal "bioavailability" of solutes and water: we know how but not why.
Charney, A. N.
1996-01-01
Only minimal quantities of ingested and normally secreted solutes and water are excreted in the stool. This near 100% bioavailability means that the diet and kidneys are relatively more important determinants of solute, water and acid-base balance than the intestine. Intestinal bioavailability is based on excess transport capacity under normal conditions and the ability to adapt to altered or abnormal conditions. Indeed, the regulatory system of the intestine is as complex, segmented and multi factorial as in the kidney. Alterations in the rate and intestinal site of absorption reflect this regulation, and the diagnosis and treatment of various clinical abnormalities depend on the integrity of intestinal absorptive processes. However, the basis for this regulation an bioavailability are uncertain. Perhaps they had survival value for mammals, a phylogenic class that faced the twin threats of intestinal pathogens and shortages of solutes and water. PMID:9273987
Hoque, Tafazzal; Bhogal, Meetu; Boghal, Meetu; Webb, Rodney A
2007-12-01
The non-invasive parasitic cestode Hymenolepis diminuta induces hypertrophy, hyperplasia and other changes in cell activity in the intestine of rats which are indicated in the expression of mRNA. We have investigated various house-keeping genes (GAPDH, beta-actin, 18S and HPRT) and other internal controls (total RNA/unit biomass, total RNA/unit length of intestine) to validate gene expression in the rat intestine after cestode infection and drug-induced neuromodulation. Variation in GAPDH, beta-actin, 18S and HPRT expression was observed in rat jejunal tissue according to treatment. Total RNA/unit length of intestine was found to be the most suitable internal control for normalizing target gene mRNA expression in both infected and/or drug-induced rat intestine. This normalization method may be applied to studies of gene expression levels in intestinal tissue where hypertrophy, hyperplasia, rapid growth and cell differentiation generally occur.
Penet, Sophie; Vendeuvre, Colombe; Bertoncini, Fabrice; Marchal, Rémy; Monot, Frédéric
2006-12-01
In contaminated soils, efficiency of natural attenuation or engineered bioremediation largely depends on biodegradation capacities of the local microflorae. In the present study, the biodegradation capacities of various microflorae towards diesel oil were determined in laboratory conditions. Microflorae were collected from 9 contaminated and 10 uncontaminated soil samples and were compared to urban wastewater activated sludge. The recalcitrance of hydrocarbons in tests was characterised using both gas chromatography (GC) and comprehensive two-dimensional gas chromatography (GCxGC). The microflorae from contaminated soils were found to exhibit higher degradation capacities than those from uncontaminated soil and activated sludge. In cultures inoculated by contaminated-soil microflorae, 80% of diesel oil on an average was consumed over 4-week incubation compared to only 64% in uncontaminated soil and 60% in activated sludge cultures. As shown by GC, n-alkanes of diesel oil were totally utilised by each microflora but differentiated degradation extents were observed for cyclic and branched hydrocarbons. The enhanced degradation capacities of impacted-soil microflorae resulted probably from an adaptation to the hydrocarbon contaminants but a similar adaptation was noted in uncontaminated soils when conifer trees might have released natural hydrocarbons. GCxGC showed that a contaminated-soil microflora removed all aromatics and all branched alkanes containing less than C(15). The most recalcitrant compounds were the branched and cyclic alkanes with 15-23 atoms of carbon.
Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.
2012-01-01
SUMMARY The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein within the intestinal epithelium. Following Apc loss, FAK expression increased in a c-Myc-dependent manner. Codeletion of Apc and Fak strongly reduced proliferation normally induced following Apc loss, and this was associated with reduced levels of phospho-Akt and suppression of intestinal tumorigenesis in Apc heterozygous mice. Thus, FAK is required downstream of Wnt Signaling, for Akt/mTOR activation, intestinal regeneration, and tumorigenesis. Importantly, this work suggests that FAK inhibitors may suppress tumorigenesis in patients at high risk of developing colorectal cancer. PMID:20708588
Zhang, Zhi-jian; Liu, Meng; Zhu, Jun
2013-05-01
There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.
A Metabolomic Perspective on Coeliac Disease
Calabrò, Antonio
2014-01-01
Metabolomics is an “omic” science that is now emerging with the purpose of elaborating a comprehensive analysis of the metabolome, which is the complete set of metabolites (i.e., small molecules intermediates) in an organism, tissue, cell, or biofluid. In the past decade, metabolomics has already proved to be useful for the characterization of several pathological conditions and offers promises as a clinical tool. A metabolomics investigation of coeliac disease (CD) revealed that a metabolic fingerprint for CD can be defined, which accounts for three different but complementary components: malabsorption, energy metabolism, and alterations in gut microflora and/or intestinal permeability. In this review, we will discuss the major advancements in metabolomics of CD, in particular with respect to the role of gut microbiome and energy metabolism. PMID:24665364
The expanding universe of inflammatory bowel disease genetics.
Achkar, Jean-Paul; Duerr, Richard
2008-07-01
Genetic factors play an important role in the pathogenesis of inflammatory bowel disease. In this review, we will provide an update on the rapid advances in the discovery of inflammatory bowel disease, primarily Crohn's disease, associated genes. Seven recently published Crohn's disease genome-wide association studies have confirmed prior findings related to the nucleotide-binding oligomerization domain 2 (NOD2) gene and the IBD5 locus. In addition, 10 novel loci have been identified and well replicated. Several promising associations between Crohn's disease and gene variants have been identified and replicated, the two most widely replicated being variants in the IL23R and ATG16L1 genes. These findings highlight and further support the importance of the immune system and its interactions with the intestinal microflora in the pathogenesis of inflammatory bowel disease.
Li, Jingjie; Zhang, Wen; Wang, Chuan; Yu, Qian; Dai, Ruirui; Pei, Xiaofang
2012-12-01
The endogenous β-galactosidase expressed in intestinal microbes is demonstrated to help humans in lactose usage, and treatment associated with the promotion of beneficial microorganism in the gut is correlated with lactose tolerance. From this point, a kind of recombinant live β-galactosidase delivery system using food-grade protein expression techniques and selected probiotics as vehicle was promoted by us for the purpose of application in lactose intolerance subjects. Previously, a recombinant Lactococcus lactis MG1363 strain expressing food-grade β-galactosidase, the L. lactis MG1363/FGZW, was successfully constructed and evaluated in vitro. This study was conducted to in vivo evaluate its efficacy on alleviating lactose intolerance symptoms in post-weaning Balb/c mice, which were orally administered with 1 × 10⁶ CFU or 1 × 10⁸ CFU of L. lactis MG1363/FGZW daily for 4 weeks before lactose challenge. In comparison with naïve mice, the mice administered with L. lactis MG1363/FGZW showed significant alleviation of diarrhea symptoms in less total feces weight within 6 h post-challenge and suppressed intestinal motility after lactose challenge, although there was no significant increase of β-galactosidase activity in small intestine. The alleviation also correlated with higher species abundance, more Bifidobacterium colonization, and stronger colonization resistance in mice intestinal microflora. Therefore, this recombinant L. lactis strain effectively alleviated diarrhea symptom induced by lactose uptake in lactose intolerance model mice with the probable mechanism of promotion of lactic acid bacteria to differentiate and predominantly colonize in gut microbial community, thus making it a promising probiotic for lactose intolerance subjects.
Probiotics: immunomodulatory properties in allergy and eczema.
Drago, L; Toscano, M; Pigatto, P D
2013-10-01
In the last decades the prevalence of allergic diseases and eczema raised significantly, and today they are the most common chronic pathologies affecting children. It has been shown that a functional intestinal mucosa provides a defensive barrier to the host against potential dangerous antigens, regulating the tolerance to them. Some inflammatory diseases of the gut weaken the barrier causing an increase in the mucosa permeability and in antigenic transition. As a consequence, there is an aberrant immune response and the release of pro-inflammatory cytokines further compromises the barrier functionality. It has been demonstrated that a correlation between allergy and eczema onset and the intestinal microflora composition exists, and in particular, it has been showed that some microorganisms are able to influence the immune response. For these reasons it has been hypothesized that probiotics may have a beneficial role in preventing and treating allergies and eczema. However, the benefits of this treatment depend on many factors, such as the bacterial strain, the duration of administration, the pathology, the patient characteristics (age, diet, allergy predisposition). The aim of this work was to review the present knowledge about the use of probiotics in allergic diseases and eczema, highlighting their role in the aforementioned pathologies.
Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.
Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L
2013-01-01
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.
Rifaximin-Mediated Changes to the Epithelial Cell Proteome: 2-D Gel Analysis
Schrodt, Caroline; McHugh, Erin E.; Gawinowicz, Mary Ann; DuPont, Herbert L.; Brown, Eric L.
2013-01-01
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens. PMID:23922656
Watier, Alain; Rigaud, Jérôme; Labat, Jean-Jacques
2010-11-01
To define functional gastrointestinal pain, irritable bowel syndrome (IBS), levator ani syndrome, proctalgia fugax, the pathophysiology of these syndromes and the treatments that can be proposed. Review of articles published on the theme based on a Medline (PubMed) search and consensus conferences selected according to their scientific relevance. IBS is very common. Patients report abdominal pain and/or discomfort, bloating, and abnormal bowel habit (diarrhoea, constipation or both), in the absence of any structural or biochemical abnormalities. IBS has a complex, multifactorial pathophysiology, involving biological and psychosocial interactions resulting in dysregulation of the brain-gut axis associated with disorders of intestinal motility, hyperalgesia, immune disorders and disorders of the intestinal bacterial microflora and autonomic and hormonal dysfunction. Many treatments have been proposed, ranging from diet to pharmacology and psychotherapy. Patients with various types of chronic pelvic and perineal pain, especially those seen in urology departments, very often report associated IBS. This syndrome is also part of a global and integrated concept of pelviperineal dysfunction, avoiding a rigorous distinction between the posterior segment and the midline and anterior segments of the perineum. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Hong, Yi-Fan; Lee, Yoon-Doo; Park, Jae-Yeon; Kim, Seongjae; Lee, Youn-Woo; Jeon, Boram; Jagdish, Deepa; Kim, Hangeun; Chung, Dae Kyun
2016-07-28
Lactic acid bacteria (LAB) have beneficial effects on intestinal health and skin diseases. Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is known to induce the production of several cytokines such as TNF-α, IL-1β, and IL-8 and affect the intestinal microflora, anti-aging, sepsis, and cholesterol level. In this study, Weissella cibaria was isolated from Indian dairy products, and we examined its immune-enhancing effects. Live and heatkilled W. cibaria did not induce the secretion of immune-related cytokines, whereas LTA isolated from W. cibaria (cLTA) significantly increased the secretion of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. cLTA increased the phosphorylation of nuclear factor kappalight-chain-enhancer of activated B cells, p38 mitogen-activated protein kinases, and c-Jun N-terminal kinases in THP-1 cells. The secretion of TNF-α and IL-6 was also increased in the cLTA-treated mouse splenocytes. These results suggest that cLTA, but not W. cibaria whole cells, has immune-boosting potential and can be used to treat immunosuppression diseases.
Iacono, Anna; Raso, Giuseppina Mattace; Canani, Roberto Berni; Calignano, Antonio; Meli, Rosaria
2011-08-01
Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide, both in adults and in children. NAFLD is characterized by aberrant lipid storage in hepatocytes (hepatic steatosis) and inflammatory progression to nonalcoholic steatohepatitis. Evidences so far suggest that intrahepatic lipid accumulation does not always derive from obesity. Gut microbiota has been considered as a regulator of energy homeostasis and ectopic fat deposition, suggesting its implications in metabolic diseases. Probiotics are live microbial that alter the enteric microflora and have beneficial effects on human health. Although the molecular mechanisms of probiotics have not been completely elucidated yet, many of their effects have proved to be beneficial in NAFLD, including the modulation of the intestinal microbiota, an antibacterial substance production, an improved epithelial barrier function and a reduced intestinal inflammation. Given the close anatomical and functional correlation between the bowel and the liver, and the immunoregulatory effects elicited by probiotics, the aim of this review is to summarize today's knowledge about probiotics in NAFLD, focusing in particular on their molecular and biochemical mechanisms, as well as highlighting their efficacy as an emerging therapeutic strategy to treat this condition. Copyright © 2011 Elsevier Inc. All rights reserved.
Gao, Yang; He, Jie; He, Zhuliu; Li, Zhiwei; Zhao, Bo; Mu, Yi; Lee, Jeong-Yeol; Chu, Zhangjie
2017-03-01
A 60-day feeding trial was conducted to determine the effect of dietary fulvic acid supplements on intestinal digestive activity (enzymatic analysis), antioxidant activity, immune enzyme activity and microflora composition of juvenile loach (initial weight of 6.2 ± 0.1 g) reared in experimental aquaria. Five test diets containing 0, 0.5, 1.0, 1.5, and 2% fulvic acid were randomly assigned to three aquaria, respectively. Elevated growth performance including final weight, weight gain (WG), specific growth rate (SGR) and feed conversion ratio (FCR) was observed in loaches that were fed fulvic acid. Maximal weight gain rates and specific growth rates occurred at the 1.5% additive level. The optimal dietary fulvic requirement for maximal growth of juvenile loach is 16.4 g per kg of the diet based on the quadratic regression analysis of specific growth rate against dietary fulvic acid levels. Furthermore, intestinal protease activity, antioxidant activity, lysozyme activity (LZM), complement 3 (C3) content, immunoglobulin M (IgM) content, acid phosphatase activity (ACP) and alkaline phosphatase activity (AKP) were significantly elevated with concomitant increasing levels of dietary fulvic acid. Following a deep sequencing analysis, a total of 42,058 valid reads and 609 OTUs (operational taxonomic units) obtained from the control group and the group displaying the most optimal growth rate were analyzed. Fulvic acid supplementation resulted in an abundance of Firmicute and Actinobacteria sequences, with a concomitant reduction in the abundance of Proteobacteria. Results indicated that fulvic acid supplementation resulted in a reduction in the relative abundance of Serratia, Acinetobacter, Aeromonas and Edwardsiella, and a relative increase in the abundance of Lactobacillus in the intestine. In conclusion, these results suggest that fulvic acid improves growth performance and intestinal health condition of loach, indicates that fulvic acid could be used as an immunoenhancer in loach culture. Copyright © 2017. Published by Elsevier Ltd.
Meyer, R A; Meyer, M H; Gray, R W; Bruns, M E
1987-02-01
X-linked hypophosphatemic (Hyp) mice are a model for human sex-linked vitamin D-resistant rickets. We have reported intestinal malabsorption of calcium in young Hyp mice, and in this report we have explored the mechanism for it. To test for resistance of the intestine to 1,25(OH)2 vitamin D3, this hormone was continually infused via osmotic minipumps into 4-week-old normal and Hyp mice at 0, 17, 50 or 150 ng/kg/day. After 3 days, 45Ca and inorganic 32P were administered by gavage, and the mice were sacrificed on the fifth day. The Hyp mice showed responses to the hormone equivalent to the normal mice in terms of increased intestinal absorption of both 45Ca and 32P, increased plasma isotope levels, increased femoral isotope content, and increased duodenal and renal 9 kD vitamin D-dependent calcium-binding protein (calbindin-D9K; CaBP). Plasma 1,25(OH)2D was measured in these mice. There were significant correlations of plasma 1,25(OH)2D to the intestinal absorption of 45Ca and 32P and to duodenal and renal CaBP. Plasma 1,25(OH)2D was also measured in stock normal and Hyp mice and was found to be lower in 4-week-old Hyp mice than in 4-week-old normal mice (113 +/- 10 pM (n = 18) vs. 67 +/- 10 (n = 20), normal vs. Hyp, p less than .01), but unchanged at 13 weeks of age (77 +/- 13 (n = 13) vs. 70 +/- 15 (n = 15), NS). This observed difference in plasma 1,25(OH)2D between normal and Hyp mice at 4 weeks of age was sufficient to explain the observed normal-to-Hyp differences in intestinal absorption of 45Ca and duodenal and renal CaBP. It also explained 72 +/- 18% of the observed difference in 32P absorption. We conclude that Hyp mouse intestine is not resistant to 1,25(OH)2D and that the lower plasma 1,25(OH)2D of 4-week-old Hyp mice causes intestinal malabsorption of calcium and phosphate.
Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul
2017-02-01
This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.
[Microbial "friend-foe" identification in human intestine microsymbiocenosis].
Bukharin, O V; Petrunova, N B
2011-01-01
Development of methodical approach of evaluation of microbial "friend-foe" identification in human intestine microsymbiocenosis. 9 bifidobacteria cultures (dominants) and 18 opportunistic microorganism strains (associants) isolated from patients during examination for intestine dysbiosis and identified by conventional methods were used. Evaluation of microbial "friend-foe" identification in microsymbiocenosis was performed by author developed technique that is based on determination of growth factors (GF), anti-lysozyme activity (ALA) and formation of biofilms (BFF) of associants co-incubated with exometabolites of dominants. GF, ALA, BFF were studied photometrically (Bukharin O.V., 1999, 2009; O'Toole G.A., 2000). The data were statistically analyzed by Fisher-Student criteria. The detected opposite (increase/reduction) phenomenon of the "dominant-associant" pair allowed realization of the "friend-foe" identification in microsymbiocenosis. Associants (E. coli and Enterococcus faecium) were "friend" species, in which bifidobacteria exometabolites did not change growth properties and stimulated ALA (by 17,5--32%) and BFF (by 25 - 39%). Associants (Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Candida albicans) were "foe" microsymbiont species, in which bifidoflora exometabolites decreased GF (by 20,7--68%), ALA (by 22,7--54%) and BFF (by 22,5 --39%). Indigenous microflora during microsymbiocenosis formation can participate in "friend-foe" identification, the basis of which is determined by microsymbiont exometabolites. The data obtained open a perspective of understanding mechanisms of intramicrobial interactions and can be used for both diagnostics and optimal selection of "candidates" during creation of new probiotics and synbiotics.
Aryl Hydrocarbon Receptor Promotes RORγt+ ILCs and Controls Intestinal Immunity and Inflammation
Qiu, Ju; Zhou, Liang
2013-01-01
Unlike adaptive immune cells that require antigen recognition and functional maturation during infection, innate lymphoid cells (ILCs) usually respond to pathogens promptly and serve as the first line of defense in infectious diseases. RAR-related orphan receptors (RORγt)+ ILCs are one of the innate cell populations that have recently been intensively studied. During the fetal stage of development, RORγt+ ILCs (e.g., lymphoid tissue inducer-LTi cells) are required for lymphoid organogenesis. In adult mice, RORγt+ ILCs are abundantly present in the gut to exert immune defensive functions. Under certain circumstances, however, RORγt+ ILCs can be pathogenic and contribute to intestinal inflammation. Aryl hydrocarbon receptor (Ahr), a ligand-dependent transcriptional factor, is widely expressed by various immune and non-immune cells. In the gut, the ligand for Ahr can be derived/generated from diet, microflora, and/or host cells. Ahr has been shown to regulate different cell populations in the immune system including RORγt+ ILCs, T helper (Th)17/22 cells, γδT cells, regulatory T cells (Tregs), Tr1 cells, and antigen presenting cells (APCs). In this review, we will focus on the development and function of RORγt+ ILCs, and discuss the role of Ahr in intestinal immunity and inflammation in mice and in humans. Better understanding the function of Ahr in the gut is important for developing new therapeutic means to target Ahr in future treatment of infectious and autoimmune diseases. PMID:23975386
Genetics Home Reference: hereditary folate malabsorption
... PCFT is important for normal functioning of intestinal epithelial cells, which are cells that line the walls of the intestine. ... intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med. 2009 Jan 28;11: ...
Liaison between micro-organisms and oral cancer
Srinivasprasad, Vijayan; Dineshshankar, Janardhanam; Sathiyajeeva, J.; Karthikeyan, M.; Sunitha, J.; Ragunathan, Ramachandran
2015-01-01
Oral cancer which is a subtype of head and neck, cancer is any neoplastic tissue growth in the oral cavity. It comprises an abnormal mass of cells that foists genetic mutation and impedes the normal cell cycle, resulting in its unrestrained growth. Various studies on the plausible link between oral microbial flora and cancer notwithstanding, our understanding of their link remains obscure and inadequate. The multitude of mechanisms by which the microflora initiate or spur Carcinogenesis are still under study and scrutiny. As is widely known, the oral cavity is an abode to a wide assortment of microbes, each present in contrasting amounts. It is observed that increased growth of the microflora is concomitant with known clinical risk factors for oral cancer. Manifold bacterial species have been found to interfere directly with eukaryotic cellular signaling, adopting a style typical of tumor promoters. Bacteria are also known to impede apoptosis thereby potentially promoting carcinogenesis. The viral role in carcinogenesis (by annulling of p53 tumor suppressor gene and other cellular proteins with subsequent alteration in host genome function) is well documented. Furthermore, the changes occurring in the commensal microflora in accompaniment with cancer development could possibly be used as a diagnostic indicator for early cancer detection. The intention of this review is to obtain a better understanding of the “role” that micro-organisms play in oral cancer etiology. PMID:26538877
Hormone therapy alters the composition of the vaginal microflora in ovariectomized rats.
Bezirtzoglou, E; Voidarou, Ch; Papadaki, A; Tsiotsias, A; Kotsovolou, O; Konstandi, M
2008-05-01
The aim of the present study was to evaluate the alterations that may take place in the bacterial genital tract flora in the absence of ovarian hormones. The role of hormone replacement therapy was also assessed. For this purpose, various bacteria were identified from the vaginal flora of ovariectomized and sham operated female rats, following the Bergey's manual criteria. The data of this study showed that substantial differences exist in the vaginal bacterial microflora between ovariectomized and normal cyclic rats. Ovariectomy was associated with a lower total bacterial load that may be due mainly to the absence of Lactobacillus. Anaerobic bacteria were also absent. Streptococcus and Enterococcus were also not favored in an environment lacking the ovarian hormones. In contrast, C. perfringens, Bacteroides, S. epidermidis, and S. aureus were detected in high numbers in ovariectomized rats. In terms of the impact of hormone replacement therapy on vaginal flora, only estradiol (EE2) restored Lactobacillus levels in ovariectomized rats, whereas all hormonal schemes used brought Streptococcus, Clostridium lec (-), and C. perfringens, the spore and vegetative forms, close to those detected in normal cyclic female rats. In conclusion, ovarian hormones appeared to be regulatory factors that favor the presence of a broad variety of bacteria, which are members of the normal genital tract flora. On the other hand, ovariectomy modifies the vaginal microbial profile, and hormone replacement therapy based mainly on schemes containing EE2 could alleviate this disturbance.
Beneficial effects of naloxone in a patient with intestinal pseudoobstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schang, J.C.; Devroede, G.
1985-06-01
A 15-day course of Naloxone treatment was given to a patient with intestinal pseudoobstruction who had previously undergone subtotal colectomy with terminal ileostomy for invalidating constipation. The effects of the drug were assessed according to symptoms, by recording the myoelectric activity of the stomach, and by measuring gastric emptying of a radiolabeled solid-liquid meal and the intestinal transit time of radiopaque markers. All tests were performed 1) at baseline; 2) after 2 wk with Naloxone 1.6 mg subcutaneous per day; and 3) after 8 days of placebo. Results showed that before treatment gastric emptying of solids was delayed, emptying ofmore » liquids was normal, myoelectric activity of the stomach was normal, small intestinal transit time of radiopaque markers was considerably increased while ileal output was markedly decreased. After Naloxone, gastric emptying of solids was markedly accelerated, emptying of liquids remained normal, gastric electrical spiking activity increased, small intestinal transit time strikingly decreased, and ileal output increased. After placebo, a tendency to return to pretreatment values was observed. This observation suggests that Naloxone may be helpful in the treatment of some patients with intestinal pseudoobstruction.« less
Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens.
Slawinska, Anna; Plowiec, Arkadiusz; Siwek, Maria; Jaroszewski, Marcin; Bednarczyk, Marek
2016-01-01
In ovo delivery of prebiotics and synbiotics in chickens allows for the development of intestinal microflora prior to hatching, which boosts their robustness. The goal of this study was to determine the transcriptomic profile of the spleen (S), cecal tonsils (CT), and large intestine (LI) of adult chickens injected with prebiotics and synbiotics in ovo. On day 12 of embryo development, incubating eggs were injected with prebiotics: inulin alone (P1) or in combination with Lactococcus lactis subsp. lactis IBB2955 (S1), galactooligosaccharides (GOS) alone (P2) or in combination with Lactococcus lactis subsp. cremoris IBB477 (S2); control group (C) was mock injected with physiological saline. Gene expression analysis was conducted using an Affymetrix Chicken Gene 1.1 ST Array Strip. Most of the differentially expressed genes (DEG) were detected in the cecal tonsils of P2 (378 DEG), and were assigned to gene ontology categories: lymphocyte proliferation, activation and differentiation, and cytokine production. Ingenuity pathway analysis of the DEG (CT of P2) indicated the inhibition of humoral and cellular immune responses, e.g., role of NFAT in regulation of immune responses, phagocytosis, production of nitric oxide, NF-κB, IL-8, and CXCR4 signaling. The DEG with the highest up-regulation from S1 and P2 were involved in gene expression (PAPOLA, RPL27A, RPLP1, and RPS29) from P1 and P2 in transport (BEST4, SLC9A3, and SLC13A2), metabolism (OGT, ALPP, CA4, and CA7), signaling (FGG, G3BP2, UBB, G3BP2, CACNA1G, and ATP6V0A4), and immune responses (MSMB, LGALS3, CABIN1, CXCR5, PAX5, and TNFRSF14). Two DEG influencing the complement system (SERPING1 and MIR1674) were down-regulated in P2 and S1. In conclusion, GOS injected in ovo provided the most potent stimulation of the host transcriptome. This is likely due to its strong bifidogenic effect, which triggers proliferation of indigenous embryonic microflora in ovo, and indirectly influences gene expression regulation in host tissues, especially cecal tonsils.
Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens
Slawinska, Anna; Plowiec, Arkadiusz; Siwek, Maria; Jaroszewski, Marcin; Bednarczyk, Marek
2016-01-01
In ovo delivery of prebiotics and synbiotics in chickens allows for the development of intestinal microflora prior to hatching, which boosts their robustness. The goal of this study was to determine the transcriptomic profile of the spleen (S), cecal tonsils (CT), and large intestine (LI) of adult chickens injected with prebiotics and synbiotics in ovo. On day 12 of embryo development, incubating eggs were injected with prebiotics: inulin alone (P1) or in combination with Lactococcus lactis subsp. lactis IBB2955 (S1), galactooligosaccharides (GOS) alone (P2) or in combination with Lactococcus lactis subsp. cremoris IBB477 (S2); control group (C) was mock injected with physiological saline. Gene expression analysis was conducted using an Affymetrix Chicken Gene 1.1 ST Array Strip. Most of the differentially expressed genes (DEG) were detected in the cecal tonsils of P2 (378 DEG), and were assigned to gene ontology categories: lymphocyte proliferation, activation and differentiation, and cytokine production. Ingenuity pathway analysis of the DEG (CT of P2) indicated the inhibition of humoral and cellular immune responses, e.g., role of NFAT in regulation of immune responses, phagocytosis, production of nitric oxide, NF-κB, IL-8, and CXCR4 signaling. The DEG with the highest up-regulation from S1 and P2 were involved in gene expression (PAPOLA, RPL27A, RPLP1, and RPS29) from P1 and P2 in transport (BEST4, SLC9A3, and SLC13A2), metabolism (OGT, ALPP, CA4, and CA7), signaling (FGG, G3BP2, UBB, G3BP2, CACNA1G, and ATP6V0A4), and immune responses (MSMB, LGALS3, CABIN1, CXCR5, PAX5, and TNFRSF14). Two DEG influencing the complement system (SERPING1 and MIR1674) were down-regulated in P2 and S1. In conclusion, GOS injected in ovo provided the most potent stimulation of the host transcriptome. This is likely due to its strong bifidogenic effect, which triggers proliferation of indigenous embryonic microflora in ovo, and indirectly influences gene expression regulation in host tissues, especially cecal tonsils. PMID:28002487
Functional and Probiotic Attributes of an Indigenous Isolate of Lactobacillus plantarum
Kaushik, Jai K.; Kumar, Ashutosh; Duary, Raj K.; Mohanty, Ashok K.; Grover, Sunita; Batish, Virender K.
2009-01-01
Background Probiotic microorganisms favorably alter the intestinal microflora balance, promote intestinal integrity and mobility, inhibit the growth of harmful bacteria and increase resistance to infection. Probiotics are increasingly used in nutraceuticals, functional foods or in microbial interference treatment. However, the effectiveness of probiotic organism is considered to be population-specific due to variation in gut microflora, food habits and specific host-microbial interactions. Most of the probiotic strains available in the market are of western or European origin, and a strong need for exploring new indigenous probiotic organisms is felt. Methods and Findings An indigenous isolate Lp9 identified as Lactobacillus plantarum by molecular-typing methods was studied extensively for its functional and probiotic attributes, viz., acid and bile salt tolerance, cell surface hydrophobicity, autoaggregation and Caco-2 cell-binding as well as antibacterial and antioxidative activities. Lp9 isolate could survive 2 h incubation at pH 1.5–2.0 and toxicity of 1.5–2.0% oxgall bile. Lp9 could deconjugate major bile salts like glycocholate and deoxytaurocholate, indicating its potential to cause hypocholesterolemia. The isolate exhibited cell-surface hydrophobicity of ∼37% and autoaggregation of ∼31%. Presence of putative probiotic marker genes like mucus-binding protein (mub), fibronectin-binding protein (fbp) and bile salt hydrolase (bsh) were confirmed by PCR. Presence of these genes suggested the possibility of specific interaction and colonization potential of Lp9 isolate in the gut, which was also suggested by a good adhesion ratio of 7.4±1.3% with Caco-2 cell line. The isolate demonstrated higher free radical scavenging activity than standard probiotics L. johnsonii LA1 and L. acidophilus LA7. Lp9 also exhibited antibacterial activity against E. coli, L. monocytogenes, S. typhi, S. aureus and B. cereus. Conclusion The indigenous Lactobacillus plantarum Lp9 exhibited high resistance against low pH and bile and possessed antibacterial, antioxidative and cholesterol lowering properties with a potential for exploitation in the development of indigenous functional food or nutraceuticals. PMID:19956615
Cengiz, Özcan; Köksal, Bekir H; Tatlı, Onur; Sevim, Ömer; Ahsan, Umair; Üner, Aykut G; Ulutaş, Pınar A; Beyaz, Devrim; Büyükyörük, Sadık; Yakan, Akın; Önol, Ahmet G
2015-10-01
A study was carried out to evaluate the effect of dietary probiotic supplementation and stocking density on the performance, relative carcass yield, gut microflora, and stress markers of broilers. One-day-old Ross 308 male broiler chickens (n = 480) were allocated to 4 experimental groups for 42 d. Each treatment had 8 replicates of 15 chicks each. Two groups were subjected to a high stocking density (HSD) of 20 birds/m² and the other 2 groups were kept at low stocking density (LSD) of 10 birds/m². A basal diet supplemented with probiotic 1 and 0.5 g/kg of diet (in starter and finisher diets, respectively) was fed to 2 treatments, one with HSD and the other with LSD, thereby making a 2 × 2 factorial arrangement. There was no interaction between stocking density (LSD and HSD) and dietary probiotic (supplemented and unsupplemented) for all the variables. Feed intake and weight gain were significantly low and feed conversion ratio was poor in broilers at HSD. Dietary probiotic significantly enhanced the feed intake and weight gain in starter phase only. Dietary probiotic supplementation had no effect (P > 0.05) on total aerobs, Salmonella sp., and Lactobacilli populations in the intestines of broilers. However, HSD reduced the Lactobacilli population only (P < 0.05). Relative breast yields were significantly higher in broilers reared at LSD than HSD. Thigh meat yield was higher in broilers in HSD group compared to LSD. Dietary probiotic did not affect the relative carcass yield and weight of lymphoid organs. Serum malondialdehyde, corticosterone, nitric oxide, and plasma heterophil:lymphocyte ratio were not affected either by stocking density or dietary probiotic supplementation. In conclusion, HSD negatively affected the performance and intestinal Lactobacilli population of broilers only, whereas probiotic supplementation enhanced the performance of broilers during the starter phase only. Total aerobes, Salmonella, Lactobacilli carcass yield, and stress indicators of broilers were not affected by the dietary supplementation of probiotic under the conditions of the present study. © 2015 Poultry Science Association Inc.
Qiao, Jiayun; Li, Haihua; Wang, Zhixiang; Wang, Wenjie
2015-04-01
This study was conducted with a lipopolysaccharide (LPS)-challenged piglet model to determine the effects of diets containing Lactobacillus acidophilus on the performance, intestinal barrier function, rectal microflora and serum immune function. A total of 150 piglets (initial body weight (BW) 7.53 ± 0.21 kg) were allotted to one of the following diets, including a basal diet, a basal diet supplemented with 250 mg/kg Flavomycin, or basal diet plus 0.05, 0.1 or 0.2 % L. acidophilus. On day 28 of the trial, the pigs were given an intraperitoneal injection of LPS (200 μg/kg body weight) followed by blood collection 3 h later. Diets with either antibiotics, 0.1 or 0.2 % Lactobacillus increased (P < 0.05) the final BW and decreased (P < 0.05) feed gain ratio (F/G) compared with the control group. Pigs fed diets containing antibiotic or Lactobacillus had greater average daily gain (ADG) (P < 0.05) than pigs fed the control diet. The rectal content Lactobacillus counts for pigs fed diet containing Lactobacillus were significant higher (P < 0.01) than those fed antibiotic or control diet. Feeding the Lactobacillus diets decreased the Escherichia coli counts of rectal content (P < 0.01). Pigs fed diets containing 0.1 or 0.2 % Lactobacillus decreased serum DAO activity (P < 0.05) compared with pigs fed the control diet. Serum IL-10 concentration was enhanced in pigs fed the diet with Lactobacillus compared to pigs fed the control diet and antibiotic diet. Feeding a diet with Lactobacillus reduced (P < 0.05) IFN-γ concentration compared to the control diet. Inclusion of Lactobacillus in diets fed to pigs reduced TNF-α concentration compared with pigs fed no Lactobacillus (P < 0.05). These results indicate that feeding with L. acidophilus improved growth performance and protected against LPS-induced inflammatory status.
Markazi, Ashley D; Perez, Victor; Sifri, Mamduh; Shanmugasundaram, Revathi; Selvaraj, Ramesh K
2017-07-01
Three separate experiments were conducted to study the effects of whole yeast cell product supplementation in pullets and layer hens. Body weight gain, fecal and intestinal coccidial oocyst counts, cecal microflora species, cytokine mRNA amounts, and CD4+ and CD8+ T-cell populations in the cecal tonsils were analyzed following an experimental coccidial infection. In Experiment I, day-old Leghorn layer chicks were fed 3 experimental diets with 0, 0.1, or 0.2% whole yeast cell product (CitriStim®, ADM, Decatur, IL). At 21 d of age, birds were challenged with 1 × 105 live coccidial oocysts. Supplementation with whole yeast cell product decreased the fecal coccidial oocyst count at 7 (P = 0.05) and 8 (P < 0.01) d post-challenge. In Experiment II, 27-week old Leghorn layer hens were fed 3 experimental diets with 0, 0.05 or 0.1% whole yeast cell product and challenged with 1 × 105 live coccidial oocysts on d 25 of whole yeast cell product feeding. Supplementation with whole yeast cell product decreased the coccidial oocyst count in the intestinal content (P < 0.01) at 5, 13, and 38 d post-coccidial challenge. Supplementation with whole yeast cell product increased relative proportion of Lactobacillus (P < 0.01) in the cecal tonsils 13 d post-coccidial challenge. Supplementation with whole yeast cell product decreased CD8+ T cell percentages (P < 0.05) in the cecal tonsils at 5 d post-coccidial challenge. In Experiment III, 32-week-old Leghorn layer hens were fed 3 experimental diets with 0, 0.1, or 0.2% whole yeast cell product and challenged with 1 × 105 live coccidial oocysts on d 66 of whole yeast cell product feeding. At 5 d post-coccidial challenge, whole yeast cell product supplementation down-regulated (P = 0.01) IL-10 mRNA amount. It could be concluded that supplementing whole yeast cell product can help minimize coccidial infection in both growing pullets and layer chickens. © 2017 Poultry Science Association Inc.
Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia
Stairs, Doug B.; Kong, Jianping; Lynch, John P.
2018-01-01
Intestinal metaplasia is a biologically interesting and clinically relevant condition in which one differentiated type of epithelium is replaced by another that is morphologically similar to normal intestinal epithelium. Two classic examples of this are gastric intestinal metaplasia and Barrett’s esophagus. In both, a chronic inflammatory microenvironment, provoked either by Helicobacter pylori infection of the stomach or acid and bile reflux into the esophagus, precedes the metaplasia. The Caudal-related homeodomain transcription factors Cdx1 and Cdx2 are critical regulators of the normal intetinal epithelial cell phenotype. Ectopic expression of Cdx1 and Cdx2 occurs in both gastric intestinal metaplasia as well as in Barrett’s esophagus. This expression precedes the onset of the metaplasia and implies a causal role for these factors in this process. We will review the observations regarding the role of chronic inflammation and the Cdx transcription factors in the pathogenesis of gastric intestinal metaplasia and Barrett’s esophagus. PMID:21075347
Marietta, Eric V.; Gomez, Andres M.; Yeoman, Carl; Tilahun, Ashenafi Y.; Clark, Chad R.; Luckey, David H.; Murray, Joseph A.; White, Bryan A.; Kudva, Yogish C.; Rajagopalan, Govindarajan
2013-01-01
Human and animal studies strongly suggest that dietary gluten could play a causal role in the etiopathogenesis of type 1 diabetes (T1D). However, the mechanisms have not been elucidated. Recent reports indicate that the intestinal microbiome has a major influence on the incidence of T1D. Since diet is known to shape the composition of the intestinal microbiome, we investigated using non-obese diabetic (NOD) mice whether changes in the intestinal microbiome could be attributed to the pro- and anti-diabetogenic effects of gluten-containing and gluten-free diets, respectively. NOD mice were raised on gluten-containing chows (GCC) or gluten-free chows (GFC). The incidence of diabetes was determined by monitoring blood glucose levels biweekly using a glucometer. Intestinal microbiome composition was analyzed by sequencing 16S rRNA amplicons derived from fecal samples. First of all, GCC-fed NOD mice had the expected high incidence of hyperglycemia whereas NOD mice fed with a GFC had significantly reduced incidence of hyperglycemia. Secondly, when the fecal microbiomes were compared, Bifidobacterium, Tannerella, and Barnesiella species were increased (p = 0.03, 0.02, and 0.02, respectively) in the microbiome of GCC mice, where as Akkermansia species was increased (p = 0.02) in the intestinal microbiomes of NOD mice fed GFC. Thirdly, both of the gluten-free chows that were evaluated, either egg white based (EW-GFC) or casein based (C-GFC), significantly reduced the incidence of hyperglycemia. Interestingly, the gut microbiome from EW-GFC mice was similar to C-GFC mice. Finally, adding back gluten to the gluten-free diet reversed its anti-diabetogenic effect, reduced Akkermansia species and increased Bifidobacterium, Tannerella, and Barnesiella suggesting that the presence of gluten is directly responsible for the pro-diabetogenic effects of diets and it determines the gut microflora. Our novel study thus suggests that dietary gluten could modulate the incidence of T1D by changing the gut microbiome. PMID:24236037
Marietta, Eric V; Gomez, Andres M; Yeoman, Carl; Tilahun, Ashenafi Y; Clark, Chad R; Luckey, David H; Murray, Joseph A; White, Bryan A; Kudva, Yogish C; Rajagopalan, Govindarajan
2013-01-01
Human and animal studies strongly suggest that dietary gluten could play a causal role in the etiopathogenesis of type 1 diabetes (T1D). However, the mechanisms have not been elucidated. Recent reports indicate that the intestinal microbiome has a major influence on the incidence of T1D. Since diet is known to shape the composition of the intestinal microbiome, we investigated using non-obese diabetic (NOD) mice whether changes in the intestinal microbiome could be attributed to the pro- and anti-diabetogenic effects of gluten-containing and gluten-free diets, respectively. NOD mice were raised on gluten-containing chows (GCC) or gluten-free chows (GFC). The incidence of diabetes was determined by monitoring blood glucose levels biweekly using a glucometer. Intestinal microbiome composition was analyzed by sequencing 16S rRNA amplicons derived from fecal samples. First of all, GCC-fed NOD mice had the expected high incidence of hyperglycemia whereas NOD mice fed with a GFC had significantly reduced incidence of hyperglycemia. Secondly, when the fecal microbiomes were compared, Bifidobacterium, Tannerella, and Barnesiella species were increased (p = 0.03, 0.02, and 0.02, respectively) in the microbiome of GCC mice, where as Akkermansia species was increased (p = 0.02) in the intestinal microbiomes of NOD mice fed GFC. Thirdly, both of the gluten-free chows that were evaluated, either egg white based (EW-GFC) or casein based (C-GFC), significantly reduced the incidence of hyperglycemia. Interestingly, the gut microbiome from EW-GFC mice was similar to C-GFC mice. Finally, adding back gluten to the gluten-free diet reversed its anti-diabetogenic effect, reduced Akkermansia species and increased Bifidobacterium, Tannerella, and Barnesiella suggesting that the presence of gluten is directly responsible for the pro-diabetogenic effects of diets and it determines the gut microflora. Our novel study thus suggests that dietary gluten could modulate the incidence of T1D by changing the gut microbiome.
The Intestinal Microbiome and Health
Tuddenham, Susan; Sears, Cynthia L.
2015-01-01
Purpose of Review A diverse array of microbes colonizes the human intestine. In this review we seek to outline the current state of knowledge on what characterizes a “healthy” or “normal” intestinal microbiome, what factors modify the intestinal microbiome in the healthy state and how the intestinal microbiome affects normal host physiology Recent Findings What constitutes a “normal” or “healthy” intestinal microbiome is an area of active research, but key characteristics may include diversity, richness and a microbial community’s resilience and ability to resist change. A number of factors, including age, the host immune system, host genetics, diet and antibiotic use appear to modify the intestinal microbiome in the normal state. New research shows that the microbiome likely plays a critical role in the healthy human immune system and metabolism. Summary It is clear that there is a complicated bi-directional relationship between the intestinal microbiota and host which is vital to health. An enhanced understanding of this relationship will be critical not only to maximize and maintain human health but also to shape our understanding of disease and to foster new therapeutic approaches. PMID:26237547
Chukwuma, Chika Ifeanyi; Islam, Md Shahidul
2015-03-01
The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.
pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence.
Sofi, M Hanief; Gudi, Radhika; Karumuthil-Melethil, Subha; Perez, Nicolas; Johnson, Benjamin M; Vasu, Chenthamarakshan
2014-02-01
Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA-targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice.
Microbiological toxicity of tilmicosin on human colonic microflora in chemostats.
Hao, Haihong; Yao, Junping; Wu, Qinghua; Wei, Yajing; Dai, Menghong; Iqbal, Zahid; Wang, Xu; Wang, Yulian; Huang, Lingli; Chen, Dongmei; Tao, Yanfei; Liu, Zhenli; Yuan, Zonghui
2015-10-01
To evaluate the microbiological safety of tilmicosin on human intestinal microflora, four chemostat models of healthy human colonic ecosystems were exposed to tilmicosin (0, 0.436, 4.36, and 43.6 μg/mL) for 7 days. Prior to and during drug exposure, three microbiological endpoints were monitored daily including short-chain fatty acids, bacterial counts and macrolide susceptibility. Colonization resistance of each community was determined by 3 successive daily challenges of Salmonella typhimurium. Genes associated with virulence and macrolide resistance in Enterococcus faecalis were determined by PCR. Transcriptional expression of the virulence gene (gelE) in E. faecalis was determined by real-time RT-PCR. Our results showed that different concentrations of tilmicosin did not disrupt the colonization resistance in each chemostat. During exposure to 4.36 and 43.6 μg/mL tilmicosin, the Bacteroides fragilis population was significantly decreased while the proportion of resistant Enterococci increased. After long-term exposure to the highest concentration (43.6 μg/mL) of tilmicosin, the gelE gene was significantly up-regulated in the high-level macrolide resistant strains that also contained the ermB resistance gene. This study was the first of its kind to evaluate the microbiological toxicity of tilmicosin using a chemostat model. These findings also provide new insight into the co-occurrence of macrolide resistance and virulence in E. faecalis under tilmicosin selective pressure. Copyright © 2015 Elsevier Inc. All rights reserved.
Analysis of gene expression in the midgut of Bombyx mori during the larval molting stage.
Yang, Bing; Huang, Wuren; Zhang, Jie; Xu, Qiuyun; Zhu, Shoulin; Zhang, Qiaoli; Beerntsen, Brenda T; Song, Hongsheng; Ling, Erjun
2016-11-03
Insects can be models for understanding human intestinal infection and pathology. Molting, a special period during which the old insect cuticle is shed and a new one is produced, is crucial for insect development. Holometabolous insects may experience several larva-to-larva moltings to become larger, a pupal molt and adult eclosion to become adults. During the larval molts, they stop feeding and become quiescent. Although the molting larvae become quiescent, it is not known if changes in microbiome, physiology, development and immunity of midguts occur. Transcriptome analysis indicated that functions such as metabolism, digestion, and transport may become reduced due to the downregulated expression of many associated genes. During the molting stage, midguts harbor less microflora and DNA synthesis decreases. Both ecdysone and juvenile hormone in the larval midgut likely degrade after entering the larva-to-larva molting stage. However, at 12 h after ecdysis, the feeding larvae of 5th instars that were injected with 20-hydroxyecdysone entered a molting-like stage, during which changes in midgut morphology, DNA synthesis, gene expression, and microflora exhibited the same patterns as observed in the actual molting state. This study is important for understanding insect midgut physiology, development and immunity during a special development stage when no food is ingested. Although the molting larva becomes immobile and quiescent, we demonstrate that numerous changes occur in midgut morphology, physiology, metabolism and microbiome during this period.
Elli, M; Colombo, O; Tagliabue, A
2010-10-01
Obesity represents a crucial social problem in developed countries as a cause of multiple metabolic abnormalities. The exact etiology of this multifactorial disease is still unknown. The impact of dietary habits and lifestyle is currently under investigation but the role of other predisposing factors, such as genetic determinants and familial history, needs still to be elucidated. Significant alterations in the composition of the intestinal microbiota have been recently identified in obese mice, suggesting an involvement of gut microbes in obesity. In humans, obese subjects are supposed to have a more efficient flora in energy extraction from food, due to the detection of quantitative differences in the major bacterial groups in obese subjects compared to lean ones. Despite these observations, the homologies in gut microbiota between obese adults and their lean relatives have never been investigated in details. Few reports about the detection of common microbial profiles between members of the same family have been published in the past but only one recent scientific article, investigating the presence of a common core microbiota between obese and lean twins, correlates genetic background and gut microflora as significant variables in obesity. The hypothesis suggested herein is that the identification of a familial-specific core microbiota could be precious in order to identify key-bacterial groups to be used as biomarkers for the evaluation of predisposition to obesity. Copyright 2010 Elsevier Ltd. All rights reserved.
pH of Drinking Water Influences the Composition of Gut Microbiome and Type 1 Diabetes Incidence
Sofi, M. Hanief; Gudi, Radhika; Karumuthil-Melethil, Subha; Perez, Nicolas; Johnson, Benjamin M.; Vasu, Chenthamarakshan
2014-01-01
Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA–targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice. PMID:24194504
Tutton, P J; Barkla, D H
1988-01-01
Glucocorticoid and mineralocorticoid receptors are present in normal epithelial cells of both the small and large intestine and there have also been contentious reports of androgen, oestrogen and progesterone receptors in the epithelium of the normal large intestine. The majority of reports suggest that stimulation of the intestinal glucocorticoid receptors results in increased proliferation of epithelial cells in the small bowel, as does stimulation of androgen receptors and possibly mineralocorticoid receptors. The proliferative response of the normal intestine to oestrogens is difficult to evaluate and that to progestigens appears not to have been reported. Epidemiological studies reveal a higher incidence of bowel cancer in premenopausal women than in men of the same age and yet there is a lower incidence of these tumors in women of higher parity. These findings have been atributted to a variety of non-epithelial gender characteristic such as differences in bile metabolism, colonic bacterial and fecal transit times. In experimental animals, androgens have also been shown to influence carcinogenesis and this could well be attributed to changes in food intake etc. However, many studies have now revealed steroid hormone receptors on colorectal tumor cells and thus a direct effect of the steroid hormones on the epithelium during and after malignant transformation must now be considered.
Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.
Kabiri, Zahra; Greicius, Gediminas; Madan, Babita; Biechele, Steffen; Zhong, Zhendong; Zaribafzadeh, Hamed; Edison; Aliyev, Jamal; Wu, Yonghui; Bunte, Ralph; Williams, Bart O; Rossant, Janet; Virshup, David M
2014-06-01
Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.
The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine.
Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P
2008-01-01
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.
The relevance of intestinal dysbiosis in liver transplant candidates.
Grąt, M; Hołówko, W; Wronka, K M; Grąt, K; Lewandowski, Z; Kosińska, I; Krasnodębski, M; Wasilewicz, M; Gałęcka, M; Szachta, P; Zborowska, H; Patkowski, W; Krawczyk, M
2015-04-01
The gut microbial ecosystem plays an important role in the pathogenesis of liver diseases. However, the association of microbial community structure with the severity of liver dysfunction is not completely understood. Fecal microflora was assessed in 40 patients with liver cirrhosis listed for primary liver transplantation (LT). Independent associations between fecal microbial counts and serum bilirubin, serum creatinine, international normalized ratio (INR), and the Model for End-stage Liver Disease (MELD) score were established in multiple linear regression models. Bifidobacterium (standardized regression coefficient [sβ] = -0.549; P < 0.001), Enterococcus (sβ = 0.369; P = 0.004), and yeast (sβ = 0.315; P = 0.018) numbers were independently associated with serum bilirubin, while Escherichia coli counts (sβ = 0.318; P = 0.046) correlated with INR, and Bifidobacterium counts (sβ = 0.410; P = 0.009) with serum creatinine. Only Bifidobacterium (sβ = -0.468; P = 0.003) and Enterococcus (sβ = 0.331; P = 0.029) counts were independent predictors of the MELD score. Bifidobacterium/Enterococcus ratio, proposed as a measure of pre-LT gut dysbiosis, was significantly related to the MELD score following the adjustment for the absolute Bifidobacterium (sβ = -0.333; P = 0.029) and Enterococcus (sβ = -0.966; P = 0.003) numbers. This pre-transplant dysbiosis ratio (PTDR) was significantly correlated with Enterococcus (R = -0.897; P < 0.001) but not with Bifidobacterium (R = 0.098; P = 0.546) counts. Among the other components of gut microflora, only hydrogen peroxide (H2 O2 )-producing Lactobacillus strains significantly influenced Enterococcus counts (sβ = 0.349; P = 0.028) and PTDR (sβ = -0.318; P = 0.046). While the abundance of both Bifidobacterium and Enterococcus is related to liver dysfunction, the size of the Enterococcus population seems to be the most important determinant of pre-LT gut dysbiosis in cirrhotic patients. The H2 O2 -producing Lactobacillus strains potentially ameliorate this dysbiotic state. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Videocapsule endoscopy as a useful tool to diagnose primary intestinal lymphangiectasia].
Vignes, S; Bellanger, J
2007-03-01
Primary intestinal lymphangiectasia (Waldmann's disease) lead to a protein-losing enteropathy due to lymph leak into intestinal tract. A 28-year-old woman presented a bilateral lower limb lymphedema. Laboratory examination showing lymphopenia, hypoalbuminemia, hypogammaglobulinemia suggested the diagnosis of primary intestinal lymphangiectasia. Gastroscopy was normal and second duodenum biopsies were negative. Videocapsule endoscopy gave evidence of intestinal lymphangiectasia of the small bowel. Videocapsule endoscopy may be proposed to confirm intestinal lymphangiectasia and to precise their localization when gastroscopy is not conclusive.
Matsuo, M
2000-02-01
To popularize defatted soy ontjom (DSB-ontjom, soy product fermented with Neurospora intermedia) as a new food, I examined the plasma cholesterol-reducing effects of DSB-ontjom and DSB in rats fed cholesterol-free diets and compared the efficiencies of these effects. DSB-ontjom greatly reduced the plasma cholesterol level and increased fecal steroid excretion as compared to DSB. DSB-ontjom was rich in pepsin-resistant protein having a high bile acid binding capacity and was abundant in isoflavone-aglycones, especially daizein. The dietary fiber (DF) of DSB-ontjom stimulated the production of short-chain fatty acids (SCFAs) by intestinal microflora. The effect of DSB-ontjom on plasma cholesterol reduction was attributed to the collaborative effects of pepsin-resistant-protein, isoflavone-aglycones and SCFA-producing DF in DSB-ontjom.
Chernin, V V; Chernivets, V M; Bondarenko, V M; Bazlov, S N
2011-01-01
To propose pharmacotherapy of disbacteriosis of gastroduodenal mucous microflora in gastroduodenal inflammation, erosion and ulcer. The study enrolled 30 healthy volunteers, 130 ulcer patients and 36 patients with chronic gastritis (27% of the latter had chronic duodenitis). In addition to general clinical examination, fibrogastroduodenoscopy, we made histological and microbiological examinations of biopsy specimens of the mucosa from different parts of the stomach and duodenum, determined sensitivity of the microflora to antibacterial drugs. We found that recurrent ulcer, chronic gastritis and duodenitis are accompanied with overgrowth of pathogenic microflora in gastric and duodenal mucosa. We developed an effective method of the treatment of gastroduodenal mucosa microflora disbacteriosis in gastroduodenal inflammation, erosion and ulcer including antibacterial, antifungal drugs and probiotics.
Lactobacilli Activate Human Dendritic Cells that Skew T Cells Toward T Helper 1 Polarization
2005-01-06
Species Modulate the Phenotype and Function of MDCs. Previous studies have shown that Lactobacillus plantarum and Lactobacillus rhamnosus can induce...cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded...several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and
Vinderola, Gabriel; Perdigón, Gabriela; Duarte, Jairo; Farnworth, Edward; Matar, Chantal
2006-12-01
The probiotic effects ascribed to lactic acid bacteria (LAB) and their fermented dairy products arise not only from whole microorganisms and cell wall components but also from peptides and extracellular polysaccharides (exopolysaccharides) produced during the fermentation of milk. There is a lack of knowledge concerning the immune mechanisms induced by exopolysaccharides produced by lactic acid bacteria, which would allow a better understanding of the functional effects described to them. The aim of this study was to investigate the in vivo immunomodulating capacity of the exopolysaccharide produced by Lactobacillus kefiranofaciens by analyzing the profile of cytokines and immunoglobulins induced at the intestinal mucosa level, in the intestinal fluid and blood serum. BALB/c mice received the exopolysaccharide produced by L. kefiranofaciens for 2, 5 or 7 consecutive days. At the end of each period of administration, control and treated mice were sacrificed and the numbers of IgA+ and IgG+ cells were determined on histological slices of the small and large intestine by immunofluorescence. Cytokines (IL-4, IL-6, IL-10, IL-12, IFNgamma and TNFalpha) were also determined in the gut lamina propria as well as in the intestinal fluid and blood serum. There was an increase of IgA+ cells in the small and large intestine lamina propria, without change in the number of IgG+ cells in the small intestine. This study reports the effects of the oral administration of the exopolysaccharide produced by L. kefiranofaciens in the number of IgA+ cells in the small and large intestine, comparing simultaneously the production of cytokines by cells of the lamina propria and in the intestinal fluid and blood serum. The increase in the number of IgA+ cells was not simultaneously accompanied by an enhance of the number of IL-4+ cells in the small intestine. This finding would be in accordance with the fact that, in general, polysaccharide antigens elicit a T-independent immune response. For IL-10+, IL-6+ and IL-12+ cells, the values found were slightly increased compared to control values, while IFNgamma+ and TNFalpha+ cells did not change compared to control values. The effects observed on immunoglobulins and in all the cytokines assayed in the large intestine after kefiran administration were of greater magnitude than the ones observed in the small intestine lamina propria, which may be due to the saccharolytic action of the colonic microflora. In the intestinal fluid, only IL-4 and IL-12 increased compared to control values. In blood serum, all the cytokines assayed followed a pattern of production quite similar to the one found for them in the small intestine lamina propria. We observed that the exopolysaccharide induced a gut mucosal response and it was able to up and down regulate it for protective immunity, maintaining intestinal homeostasis, enhancing the IgA production at both the small and large intestine level and influencing the systemic immunity through the cytokines released to the circulating blood.
Abdominal exploration - slideshow
... ency/presentations/100049.htm Abdominal exploration - series—Normal ... intestine (jejunum and ileum), the large intestine (colon), the liver, the spleen, the gallbladder, the pancreas, the uterus, ...
CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium.
Silberg, D G; Furth, E E; Taylor, J K; Schuck, T; Chiou, T; Traber, P G
1997-08-01
CDX1 is an intestine-specific transcription factor expressed early in intestinal development that may be involved in regulation of proliferation and differentiation of intestinal epithelial cells. We examined the pattern of CDX1 protein expression in metaplastic and neoplastic tissue to provide insight into its possible role in abnormal differentiation. Tissue samples were stained by immunohistochemistry using an affinity-purified, polyclonal antibody against a peptide epitope of CDX1. Specific nuclear staining was found in epithelial cells of the small intestine and colon. Esophagus and stomach did not express CDX1 protein; however, adjacent areas of intestinal metaplastic tissue intensely stained for CDX1. Adenocarcinomas of the stomach and esophagus had both positive and negative nuclear staining for CDX1. Colonic epithelial cells in adenomatous polyps and adenocarcinomas had a decreased intensity of staining compared with normal colonic crypts in the same specimen. CDX1 may be important in the transition from normal gastric and esophageal epithelium to intestinal-type metaplasia. The variability in expression of CDX1 in gastric and esophageal adenocarcinomas suggests more than one pathway in the development of these carcinomas. The decrease of CDX1 in colonic adenocarcinomas may indicate a role for CDX1 in growth regulation and in the maintenance of the differentiated phenotype.
Quinlan, Jonathan M; Yu, Wei-Yuan; Hornsey, Mark A; Tosh, David; Slack, Jonathan M W
2006-05-25
Study of the normal development of the intestinal epithelium has been hampered by a lack of suitable model systems, in particular ones that enable the introduction of exogenous genes. Production of such a system would advance our understanding of normal epithelial development and help to shed light on the pathogenesis of intestinal neoplasia. The criteria for a reliable culture system include the ability to perform real time observations and manipulations in vitro, the preparation of wholemounts for immunostaining and the potential for introducing genes. The new culture system involves growing mouse embryo intestinal explants on fibronectin-coated coverslips in basal Eagle's medium+20% fetal bovine serum. Initially the cultures maintain expression of the intestinal transcription factor Cdx2 together with columnar epithelial (cytokeratin 8) and mesenchymal (smooth muscle actin) markers. Over a few days of culture, differentiation markers appear characteristic of absorptive epithelium (sucrase-isomaltase), goblet cells (Periodic Acid Schiff positive), enteroendocrine cells (chromogranin A) and Paneth cells (lysozyme). Three different approaches were tested to express genes in the developing cultures: transfection, electroporation and adenoviral infection. All could introduce genes into the mesenchyme, but only to a small extent into the epithelium. However the efficiency of adenovirus infection can be greatly improved by a limited enzyme digestion, which makes accessible the lateral faces of cells bearing the Coxsackie and Adenovirus Receptor. This enables reliable delivery of genes into epithelial cells. We describe a new in vitro culture system for the small intestine of the mouse embryo that recapitulates its normal development. The system both provides a model for studying normal development of the intestinal epithelium and also allows for the manipulation of gene expression. The explants can be cultured for up to two weeks, they form the full repertoire of intestinal epithelial cell types (enterocytes, goblet cells, Paneth cells and enteroendocrine cells) and the method for gene introduction into the epithelium is efficient and reliable.
Knight, Brian L; Patel, Dilip D; Humphreys, Sandy M; Wiggins, David; Gibbons, Geoffrey F
2003-11-01
Dietary supplementation with the peroxisome proliferator-activated receptor alpha (PPAR alpha) ligand WY 14,643 gave rise to a 4- to 5-fold increase in the expression of mRNA for the ATP binding cassette transporter A1 (ABCA1) in the intestine of normal mice. There was no effect in the intestine of PPAR alpha-null mice. Consumption of a high-cholesterol diet also increased intestinal ABCA1 expression. The effects of WY 14,643 and the high-cholesterol diet were not additive. WY 14,643 feeding reduced intestinal absorption of cholesterol in the normal mice, irrespective of the dietary cholesterol concentration, and this resulted in lower diet-derived cholesterol and cholesteryl ester concentrations in plasma and liver. At each concentration of dietary cholesterol, there was a similar significant inverse correlation between intestinal ABCA1 mRNA content and the amount of cholesterol absorbed. The fibrate-induced changes in the intestines of the normal mice were accompanied by an increased concentration of the mRNA encoding the sterol-regulatory element binding protein-1c gene (SREBP-1c), a known target gene for the oxysterol receptor liver X receptor alpha (LXR alpha). There was a correlation between intestinal ABCA1 mRNA and SREBP-1c mRNA contents, but not between SREBP-1c mRNA content and cholesterol absorption. These results suggest that PPAR alpha influences cholesterol absorption through modulating ABCA1 activity in the intestine by a mechanism involving LXR alpha.
Cerebral Low-Molecular Metabolites Influenced by Intestinal Microbiota: A Pilot Study
Matsumoto, Mitsuharu; Kibe, Ryoko; Ooga, Takushi; Aiba, Yuji; Sawaki, Emiko; Koga, Yasuhiro; Benno, Yoshimi
2013-01-01
Recent studies suggest that intestinal microbiota influences gut-brain communication. In this study, we aimed to clarify the influence of intestinal microbiota on cerebral metabolism. We analyzed the cerebral metabolome of germ-free (GF) mice and Ex-GF mice, which were inoculated with suspension of feces obtained from specific pathogen-free mice, using capillary electrophoresis with time-of-flight mass spectrometry (CE-TOFMS). CE-TOFMS identified 196 metabolites from the cerebral metabolome in both GF and Ex-GF mice. The concentrations of 38 metabolites differed significantly (p < 0.05) between GF and Ex-GF mice. Approximately 10 of these metabolites are known to be involved in brain function, whilst the functions of the remainder are unclear. Furthermore, we observed a novel association between cerebral glycolytic metabolism and intestinal microbiota. Our work shows that cerebral metabolites are influenced by normal intestinal microbiota through the microbiota-gut-brain axis, and indicates that normal intestinal microbiota closely connected with brain health and disease, development, attenuation, learning, memory, and behavior. PMID:23630473
The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1
Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P
2008-01-01
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635
Yoon, Jung Ho; Ingale, Santosh Laxman; Kim, Jin Soo; Kim, Kwang Hyun; Lohakare, Jayant; Park, Yoon Kyung; Park, Jun Cheol; Kwon, Ill Kyong; Chae, Byung Jo
2013-02-01
The increase in drug-resistant bacteria and the ban on antibiotic growth promoters worldwide make the search for novel means of preventing bacterial infection and promoting growth performance imperative. In this sense, antimicrobial peptides are thought to be ideal candidates owing to their antimicrobial properties, broad spectrum of activity and low propensity for development of bacterial resistance. The aim of the present study was to investigate the effect of dietary supplementation with antimicrobial peptide-P5 (AMP-P5) on weanling pig nutrition. A total of 240 weanling pigs were allotted to four treatments on the basis of initial body weight. There were four replicates in each treatment, with 15 pigs per replicate. Dietary treatments were negative control (NC, basal diet without antimicrobial), positive control (PC, basal diet + 1.5 g kg(-1) apramycin), basal diet with 40 mg kg(-1) AMP-P5 (P5-40) and basal diet with 60 mg kg(-1) AMP-P5 (P5-60). Pigs fed the PC or P5-60 diet showed improved (P < 0.05) overall growth performance, apparent total tract digestibility of dry matter, crude protein and gross energy and reduced (P < 0.05) faecal and intestinal coliforms compared with pigs fed the NC diet. The results obtained in this study indicate that dietary supplementation with 60 mg kg(-1) AMP-P5 has the potential to improve the growth performance and apparent total tract digestibility of nutrients and reduce coliforms in weanling pigs. Copyright © 2012 Society of Chemical Industry.
Jang, Sun-Hee; Park, Jisang; Kim, Sae-Hae; Choi, Kyung-Min; Ko, Eun-Sil; Cha, Jeong-Dan; Lee, Young-Ran; Jang, Hyonseok; Jang, Yong-Suk
2017-12-01
Red ginseng (heat-processed Panax ginseng) is a well-known alternative medicine with pharmacological antidiabetic activity. It exerts pharmacological effects through the transformation of saponin into metabolites by the intestinal microbiota. Given that intestinal conditions and intestinal microflora vary among individuals, the pharmacological effects of orally administered red ginseng likely may vary among individuals. To overcome this variation and produce homogeneously effective red ginseng, we evaluated the antidiabetic effects of probiotic-fermented red ginseng in a mouse model. The antidiabetic efficacy of orally administered probiotic-fermented red ginseng was assessed in ICR mice after induction of diabetes using streptozotocin (170 mg/kg body weight). Samples were given orally for 8 weeks, and indicators involved in diabetic disorders such as body weight change, water intake, blood glucose, glucose tolerance and various biochemical parameters were determined. Oral administration of probiotic-fermented red ginseng significantly decreased the level of blood glucose of about 62.5% in the fasting state and induced a significant increase in glucose tolerance of about 10.2% compared to the control diabetic mice. Additionally, various indicators of diabetes and biochemical data (e.g., blood glycosylated haemoglobin level, serum concentrations of insulin, and α-amylase activity) showed a significant improvement in the diabetic conditions of the mice treated with probiotic-fermented red ginseng in comparison with those of control diabetic mice. Our results demonstrate the antidiabetic effects of probiotic-fermented red ginseng in the streptozotocin-induced mouse diabetes model and suggest that probiotic-fermented red ginseng may be a uniformly effective red ginseng product.
Development of fecal microbial enzyme mix for mutagenicity assay of natural products.
Yeo, Hee Kyung; Hyun, Yang-Jin; Jang, Se-Eun; Han, Myung Joo; Lee, Yong Sup; Kim, Dong-Hyun
2012-06-01
Orally administered herbal glycosides are metabolized to their hydrophobic compounds by intestinal microflora in the intestine of animals and human, not liver enzymes, and absorbed from the intestine to the blood. Of these metabolites, some, such as quercetin and kaempherol, are mutagenic. The fecal bacterial enzyme fraction (fecalase) of human or animals has been used for measuring the mutagenicity of dietary glycosides. However, the fecalase activity between individuals is significantly different and its preparation is laborious and odious. Therefore, we developed a fecal microbial enzyme mix (FM) usable in the Ames test to remediate the fluctuated reaction system activating natural glycosides to mutagens. We selected, cultured, and mixed 4 bacteria highly producing glycosidase activities based on a cell-free extract of feces (fecalase) from 100 healthy Korean volunteers. When the mutagenicities of rutin and methanol extract of the flos of Sophora japonica L. (SFME), of which the major constituent is rutin, towards Salmonella typhimurium strains TA 98, 100, 102, 1,535, and 1,537 were tested using FM and/or S9 mix, these agents were potently mutagenic. These mutagenicities using FM were not significantly different compared with those using Korean fecalase. SFME and rutin were potently mutagenic in the test when these were treated with fecalase or FM in the presence of S9 mix, followed by those treated with S9 mix alone and those with fecalase or FM. Freeze-dried FM was more stable in storage than fecalase. Based on these findings, FM could be usable instead of human fecalase in the Ames test.
Ramiah, Suriya Kumari; Zulkifli, Idrus; Rahim, Nordiana Asyikin Abdul; Ebrahimi, Mahdi; Meng, Goh Yong
2014-01-01
The competency of garlic and pennywort to improve broiler chicken growth and influence intestinal microbial communities and fatty acid composition of breast meat were studied. Two hundred forty, “day-old” chicks were randomly allocated to 4 treatment groups consisting of 6 replications of 10 chicks in each pen. The groups were assigned to receive treatment diets as follows: i) basal diet (control), ii) basal diet plus 0.5% garlic powder (GP), iii) basal diet plus 0.5% pennywort powder (PW) and iv) 0.002% virginiamycin (VM). Birds were killed at day 42 and intestinal samples were collected to assess for Lactobacillus and Escherichia coli. The pectoralis profundus from chicken breast samples was obtained from 10 birds from each treatment group on day 42 and frozen at −20°C for further analyses. Fatty acid profile of breast muscles was determined using gas liquid chromatography. Feed intake and weight gain of broilers fed with GP, PW, and VM were significantly higher (p<0.05) compared to control. Feeding chicks GP, PW, and VM significantly reduced Escherichia coli count (p<0.05) while Lactobacillus spp count were significantly higher (p<0.05) in the gut when compared to control group on day 42. Supplemented diet containing pennywort increased the C18:3n-3 fatty acid composition of chickens’ breast muscle. Garlic and pennywort may be useful in modulating broiler guts as they control the enteropathogens that help to utilize feed efficiently. This subsequently enhances the growth performances of broiler chickens. PMID:25049964
Qiu, Ju; Zhou, Liang
2013-11-01
Unlike adaptive immune cells that require antigen recognition and functional maturation during infection, innate lymphoid cells (ILCs) usually respond to pathogens promptly and serve as the first line of defense in infectious diseases. RAR-related orphan receptor (RORγt)⁺ group 3 ILCs are one of the innate cell populations that have recently been intensively studied. During the fetal stage of development, RORγt⁺ group 3 ILCs (e.g., lymphoid tissue inducer cells) are required for lymphoid organogenesis. In adult mice, RORγt⁺ group 3 ILCs are abundantly present in the gut to exert immune defensive functions. Under certain circumstances, however, RORγt⁺ group 3 ILCs can be pathogenic and contribute to intestinal inflammation. Aryl hydrocarbon receptor (Ahr), a ligand-dependent transcriptional factor, is widely expressed by various immune and non-immune cells. In the gut, the ligand for Ahr can be derived/generated from diet, microflora, and/or host cells. Ahr has been shown to regulate different cell populations in the immune system including RORγt⁺ group 3 ILCs, T helper (Th)17/22 cells, γδT cells, regulatory T cells (Tregs), Tr1 cells, and antigen presenting cells. In this review, we will focus on the development and function of RORγt⁺ group 3 ILCs, and discuss the role of Ahr in intestinal immunity and inflammation in mice and in humans. A better understanding of the function of Ahr in the gut is important for developing new therapeutic means to target Ahr in future treatment of infectious and autoimmune diseases.
Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang; Wang, Weimin
2016-01-01
MicroRNAs (miRNAs) exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs) of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus) under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group). Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish.
Vibrio cholerae Colonization of Soft-Shelled Turtles
Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin
2017-01-01
ABSTRACT Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae-contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N-acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological investigations, no experimental studies have demonstrated the colonization by V. cholerae on soft-shelled turtles. The present studies will benefit our understanding of the interaction between V. cholerae and the soft-shelled turtle. We demonstrated the colonization by V. cholerae on the soft-shelled turtle's body surface and in the intestine and revealed the different roles of major V. cholerae factors for colonization on the body surface and in the intestine. Our work provides experimental evidence for the role of soft-shelled turtles in cholera transmission. In addition, this study also shows the possibility for the soft-shelled turtle to serve as a new animal model for studying the interaction between V. cholerae and aquatic hosts. PMID:28600312
Vibrio cholerae Colonization of Soft-Shelled Turtles.
Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao
2017-07-15
Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological investigations, no experimental studies have demonstrated the colonization by V. cholerae on soft-shelled turtles. The present studies will benefit our understanding of the interaction between V. cholerae and the soft-shelled turtle. We demonstrated the colonization by V. cholerae on the soft-shelled turtle's body surface and in the intestine and revealed the different roles of major V. cholerae factors for colonization on the body surface and in the intestine. Our work provides experimental evidence for the role of soft-shelled turtles in cholera transmission. In addition, this study also shows the possibility for the soft-shelled turtle to serve as a new animal model for studying the interaction between V. cholerae and aquatic hosts. Copyright © 2017 American Society for Microbiology.
Fajardo, Paula; Pastrana, Lorenzo; Méndez, Jesús; Rodríguez, Isabel; Fuciños, Clara; Guerra, Nelson P.
2012-01-01
The aim of this study was to evaluate the potential of two probiotic preparations, containing live lactic acid bacteria (Lactococcus lactis CECT 539 and Lactobacillus casei CECT 4043) and their products of fermentation (organic acids and bacteriocins), as a replacement for antibiotics in stimulating health and growth of broiler chickens. The effects of the supplementation of both preparations (with proven probiotic effect in weaned piglets) and an antibiotic (avilamycin) on body weight gain (BWG), feed intake (FI), feed consumption efficiency (FCE), relative intestinal weight, and intestinal microbiota counts were studied in 1-day posthatch chickens. The experiments were conducted with medium-growth Sasso X44 chickens housed in cages and with nutritional stressed Ross 308 broiler distributed in pens. Consumption of the different diets did not affect significantly the final coliform counts in Sasso X44 chickens. However, counts of lactic acid bacteria and mesophilic microorganisms were higher in the animals receiving the two probiotic preparations (P < 0.05). In the second experiment, although no differences in BWG were observed between treatments, Ross 308 broilers receiving the probiotic Lactobacillus preparation exhibited the lowest FCE values and were considered the most efficient at converting feed into live weight. PMID:22666137
Aitbaev, K A; Murkamilov, I T; Fomin, V V
The paper gives an update on the role of the gut microbiome (GM) in the development of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver cirrhosis (LC), and its complications, such as hepatic encephalopathy (HE) and hepatocellular carcinoma (HCC), and discusses the possibilities of its correction with prebiotics, probiotics, synbiotics, antibiotics, and fecal microbiota transplantation (FMT). The pathophysiology of the liver diseases in question demonstrates some common features that are characterized by pathogenic changes in the composition of the gastrointestinal tract microflora, by intestinal barrier impairments, by development of endotoxemia, by increased liver expression of proinflammatory factors, and by development of liver inflammation. In progressive liver disease, the above changes are more pronounced, which contributes to the development of LC, HE, and HCC. GM modulation using prebiotics, probiotics, synbiotics, antibiotics, and FMT diminishes dysbacteriosis, strengthens the intestinal mucosal barrier, reduces endotoxemia and liver damage, and positively affects the clinical manifestations of HE. Further investigations are needed, especially in humans, firstly, to assess a relationship of GM to the development of liver diseases in more detail and, secondly, to obtain evidence indicating the therapeutic efficacy of GM-modulating agents in large-scale, well-designed, randomized, controlled, multicenter studies.
Moorthy, Arun S; Eberl, Hermann J
2014-04-01
Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
[Dietary fiber: concept, classification and current indications].
García Peris, P; Camblor Alvarez, M
1999-05-01
Fiber is a concept that refers to or encompasses several carbohydrates and lignine that resist hydrolysis by human digestive enzymes and that are fermented by the microflora of the colon. From a practical point of view, fibers can be divided into soluble and insoluble. There is general acceptance of the concepts soluble fiber, fermentable, viscous and insoluble fiber, and non-viscous and barely fermentable fiber. The physiological effects and therefore the clinical applications of both fibers are different. In general, the insoluble fiber is barely fermentable and has a marked laxative and intestinal regulatory effect. Soluble fiber is fermented to a high degree, showing a powerful trophic effect at the colon level. Soluble fiber is also attributed a positive role in the carbohydrate and lipid metabolism due to the effects that this has at the intestinal and the systemic level on the glucose and the cholesterol metabolism. The goal of this article is to review the current concept of fiber based on the existing bibliography (it is thought that perhaps the current classification should be changed and that fiber should be talked about depending on its degree of polymerization), its physiologic effects and the possible indications that this may have from a clinical point of view, be this at the level of oral or enteral nutrition.
Tims, Sebastian; van Wamel, Willem; Endtz, Hubert P.; Kayser, Manfred
2009-01-01
Human fingertip microflora is transferred to touched objects and may provide forensically relevant information on individual hosts, such as on geographic origins, if endogenous microbial skin species/strains would be retrievable from physical fingerprints and would carry geographically restricted DNA diversity. We tested the suitability of physical fingerprints for revealing human host information, with geographic inference as example, via microbial DNA fingerprinting. We showed that the transient exogenous fingertip microflora is frequently different from the resident endogenous bacteria of the same individuals. In only 54% of the experiments, the DNA analysis of the transient fingertip microflora allowed the detection of defined, but often not the major, elements of the resident microflora. Although we found microbial persistency in certain individuals, time-wise variation of transient and resident microflora within individuals was also observed when resampling fingerprints after 3 weeks. While microbial species differed considerably in their frequency spectrum between fingerprint samples from volunteers in Europe and southern Asia, there was no clear geographic distinction between Staphylococcus strains in a cluster analysis, although bacterial genotypes did not overlap between both continental regions. Our results, though limited in quantity, clearly demonstrate that the dynamic fingerprint microflora challenges human host inferences for forensic purposes including geographic ones. Overall, our results suggest that human fingerprint microflora is too dynamic to allow for forensic marker developments for retrieving human information. Electronic supplementary material The online version of this article (doi:10.1007/s00414-009-0352-9) contains supplementary material, which is available to authorized users. PMID:19551400
USDA-ARS?s Scientific Manuscript database
Commensal E. coli inhabit the large intestines of humans and animals and are important in maintaining normal intestinal homeostasis. There are also many groups of disease-causing E. coli, including diarrheagenic and extra-intestinal pathogenic E. coli (ExPEC). There are approximately O188 somatic O...
Ivanova, E I; Popkova, S M; Dzhioev, Iu P; Rakova, E B; Nemchenko, U M; Rychkova, L V
2014-11-01
In intestinal ecosystem, interchange of genetic material between different types of bacteria and other representatives of family Enterobacteriaceae results in development of types of normal colibacillus with genetic characteristics of pathogenicity. This occurrence can be considered as a theoretical substantiation for labeling such strains as pathobionts. The polymerase chain reaction was implemented to analyze 96 strains of different types of Escherichia coli (with normal and weak zymogenic activity and hemolytic activity) isolated from children with functional disorders of gastrointestinal tract. The purpose was to detect presence of gens coding capacity of toxin production (six1, stx2). In intestinal biotope of children, circulation of strains of Escherichia coli producing shiga toxin having no relation to pathogenic group being representatives of normal indigenous microbiota. The presence of gens stx1 and stx2 in various biochemical types of Escherichia coli permits establishing fact of forming of reservoir of potential pathogenicity in non-pathogenic forms of Escherichia coli. The presence of gen (verotoxin 1) in genome of various types of Escherichia coli isolated from one single biotope testifies possible horizontal transmission of factors of pathogenicity in intestinal biotope.
Pathophysiology of avian intestinal ion transport.
Nighot, Meghali; Nighot, Prashant
2018-06-01
The gut has great importance for the commercial success of poultry production. Numerous ion transporters, exchangers, and channels are present on both the apical and the basolateral membrane of intestinal epithelial cells, and their differential expression along the crypt-villus axis within the various intestinal segments ensures efficient intestinal absorption and effective barrier function. Recent studies have shown that intensive production systems, microbial exposure, and nutritional management significantly affect intestinal physiology and intestinal ion transport. Dysregulation of normal intestinal ion transport is manifested as diarrhoea, malabsorption, and intestinal inflammation resulting into poor production efficiency. This review discusses the basic mechanisms involved in avian intestinal ion transport and the impact of development during growth, nutritional and environmental alterations, and intestinal microbial infections on it. The effect of intestinal microbial infections on avian intestinal ion transport depends on factors such as host immunity, pathogen virulence, and the mucosal organisation of the particular intestinal segment.
George, S E; Nelson, G M; Kohan, M J; Warren, S H; Eischen, B T; Brooks, L R
2001-06-22
When oil is spilled into aquatic systems, chemical dispersants frequently are applied to enhance emulsification and biological availability. In this study, a mammalian model system was used to determine the effect of Bonnie Light Nigerian crude oil, weathered for 2 d with continuous spraying and recirculation, and a widely used dispersant, Corexit (Cx) 9527, on intestinal microbial metabolism and associated populations. To determine the subchronic dose, concentrated or diluted (1:2, 1:5, 1:10, 1:20) Cx9527 or oil was administered by gavage to Fischer 344 rats and the effect on body weight was determined. Next, rats were treated for 5 wk with oil, dispersant, or dispersant + oil. Body and tissue weights, urine mutagenicity, and the impact on the intestinal microflora and three microbial intestinal enzymes linked to bioactivation were determined in the small and large intestines and cecum. Two tested dispersants, Cx9527 and Cx9500, were toxic in vitro (1:1,000 dilution), and oil was not mutagenic in strains TA98 and TA100(+/-S9). None of the treated rats produced urine mutagens detected by TA98 or TA100. Undiluted dispersant was lethal to rats, and weight changes were observed depending on the dilution, whereas oil generally was not toxic. In the 5-wk study, body and tissue weights were unaffected at the doses administered. Small-intestinal levels of azoreductase (AR), beta-glucuronidase (BG), and nitroreductase (NR) were considerably lower than cecal and large-intestinal activities at the same time point. A temporal increase in AR activity was observed in control animals in the 3 tissues examined, and large-intestinal BG activity was elevated in 3-wk controls. No significant changes in cecal BG activity were observed. Oil- or dispersant-treated rats had mixed results with reduced activity at 3 wk and elevated activity at 5 wk compared to controls. However, when the dispersant was combined with oil at 3 wk, a reduction in activity was observed that was similar to that of dispersant alone. One-week nitroreductase activity in the small intestine and cecum was unaffected in the three treatment groups, but elevated activity was observed in the large intestines of animals treated with oil or dispersant. The effect of the combination dose was not significantly different from the control value. Due to experimental error, no 3- or 5-wk NR data were available. By 5 wk of treatment, enterobacteria and enterococci were eliminated from ceca of oil-treated rats. When oil was administered in combination with dispersant, an apparent protective effect was observed on the enterococci and lactose-fermenting and nonfermenting enterobacteria. A more detailed analysis at the species level revealed qualitative differences dependent on the treatment. This study suggests that prolonged exposure of mammals to oil, dispersant, or in combination impacts intestinal metabolism, which ultimately could lead to altered detoxification of oil constituents and coexposed toxicants.
NASA Technical Reports Server (NTRS)
Iilyin, V. K.; Kornyushenkova, I. N.; Lizko, N. N.
1996-01-01
An analysis of the astronauts' microflora, the changes that occur during spaceflight and the control of microflora using drugs, is reported. A decrease in the quantity of lactibacilli in the mouth and throat cavities was observed during flight. The data showed that the susceptibility of the microflora to antibiotics increased during flight.
Antibody response to Giardia muris trophozoites in mouse intestine.
Heyworth, M F
1986-05-01
The protozoan parasite Giardia muris colonizes the mouse small intestinal lumen. This parasite is cleared immunologically from the intestine of normal mice. In contrast, T-lymphocyte-deficient (nude) mice have an impaired immunological response to G. muris and become chronically infected. In the present study, trophozoites were harvested from the intestinal lumen of immunocompetent BALB/c mice and nude mice and examined for surface-bound mouse immunoglobulins by immunofluorescence microscopy. Immunoglobulin A (IgA) and IgG, but not IgM, were detected on trophozoites obtained from BALB/c mice, from day 10 of the infection onwards. Trophozoites from nude mice showed very little evidence of surface-bound mouse immunoglobulin at any time during the 5-week period immediately following infection of these animals with G. muris cysts. Intestinal G. muris infection was cleared by the BALB/c mice but not by the nude animals. The data suggest that parasite-specific IgA and IgG bind to G. muris trophozoites in the intestinal lumen of immunocompetent BALB/c mice. Intestinal antibodies that bind to trophozoite surfaces are likely to play an important part in the clearance of G. muris infection by immunocompetent mice. The inability of nude mice to clear this infection at a normal rate is likely to be due to impairment of Giardia-specific intestinal antibody production.
Costantini, Todd W; Peterson, Carrie Y; Kroll, Lauren; Loomis, William H; Putnam, James G; Wolf, Paul; Eliceiri, Brian P; Baird, Andrew; Bansal, Vishal; Coimbra, Raul
2009-12-01
Intestinal barrier breakdown after severe burn can lead to intestinal inflammation, which may act as the source of the systemic inflammatory response. In vitro intestinal cell studies have shown that mitogen-activated protein kinase (MAPK) signaling is an important modulator of intestinal inflammation. We have previously observed that pentoxifylline (PTX) attenuates burn-induced intestinal permeability and tight junction breakdown. We hypothesized that PTX would limit intestinal barrier breakdown and attenuate inflammatory signaling via the MAPK pathway. Male balb/c mice underwent 30% total body surface area full-thickness steam burn. Immediately after burn, animals received an intraperitoneal injection of PTX (12.5 mg/kg) in normal saline or normal saline alone. In vivo intestinal permeability to 4 kDa fluorescein isothiocyanate-dextran was measured. Intestinal extracts were obtained to measure interleukin-6 by enzyme-linked immunosorbent assay, and phosphorylated p38 MAPK, p38 MAPK, phosphorylated extracellular signal-related kinase (1/2) (ERK (1/2)), and ERK (1/2) by immunoblotting. Acute lung injury was assessed by histology at 24 hours after burn. Administration of PTX immediately after injury attenuated burn-induced intestinal permeability. PTX also decreased the burn-induced phosphorylation of p38 MAPK and decreased phosphorylation of ERK (1/2) at 2 hours and 24 hours after injury. Animals given PTX had decreased intestinal interleukin-6 levels. A single dose of PTX also decreased histologic lung injury at 24 hours after burn. PTX attenuates burn-induced intestinal permeability and subsequent intestinal inflammation. Use of PTX after burn was also associated with decreased acute lung injury. Because of its compelling anti-inflammatory effects, PTX may be an ideal candidate for use as an immunomodulatory adjunct to resuscitation fluid.
Congenital cytomegalovirus related intestinal malrotation: a case report.
Colomba, Claudia; Giuffrè, Mario; La Placa, Simona; Cascio, Antonio; Trizzino, Marcello; De Grazia, Simona; Corsello, Giovanni
2016-12-07
Cytomegalovirus is the most common cause of congenital infection in the developed countries. Gastrointestinal involvement has been extensively described in both adult and paediatric immunocompromised patients but it is infrequent in congenital or perinatal CMV infection. We report on a case of coexistent congenital Cytomegalovirus infection with intestinal malrotation and positive intestinal Cytomegalovirus biopsy. At birth the neonate showed clinical and radiological evidence of intestinal obstruction. Meconium passed only after evacuative nursing procedures; stooling pattern was irregular; gastric residuals were bile-stained. Laparatomy revealed a complete intestinal malrotation and contextually gastrointestinal biopsy samples of the appendix confirmed the diagnosis of CMV gastrointestinal disease. Intravenous ganciclovir was initiated for 2 weeks, followed by oral valgancyclovir for 6 month. CMV-induced proinflammatory process may be responsible of the interruption of the normal development of the gut or could in turn lead to a disruption in the normal development of the gut potentiating the mechanism causing malrotation. We suggest the hypothesis that an inflammatory process induced by CMV congenital infection may be responsible, in the early gestation, of the intestinal end-organ disease, as the intestinal malrotation. CMV infection should always be excluded in full-term infants presenting with colonic stricture or malrotation.
Korğalı, Elif Ünver; Yavuz, Amine; Şimşek, Cemile Ece Çağlar; Güney, Cengiz; Kurtulgan, Hande Küçük; Başer, Burak; Atalar, Mehmet Haydar; Özer, Hatice; Eğilmez, Hatice Reyhan
2018-04-01
Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is characterized by bladder distension without urinary tract obstruction, decreased or absent intestinal peristalsis and microcolon. Although the definitive cause remains unknown, changes in the ACTG2 gene are thought to be responsible for the intestinal and bladder hypoperistalsis. This female newborn with MMIHS had a c.532C>A /p.Arg178Ser heterozygous de novo mutation detected in the ACTG2 gene. Normal immature ganglion cells, normal calretinin punctate positivity, maintence of smooth muscle actin immunoreactivity, and decreased numbers of interstitial cells of Cajal(ICCs) were detected. This previously unreported c.532C>A /p.Arg178Ser heterozygous de novo mutation in the ACTG2 gene may lead to a severe form of MMIHS.
Effect of Jiangzhi tablet on gastrointestinal propulsive function in mice
NASA Astrophysics Data System (ADS)
Wang, Xiangrong; Geng, Xiuli; Zhao, Jingsheng; Fan, Lili; Zhang, Zhengchen
2018-04-01
This paper aims to study the effect of lipid-lowering tablets on gastric emptying and small intestinal propulsion in mice. Mice were randomly divided into control group, Digestant Pill group, Jiangzhi tablet group, middle dose and small dose, the mice gastric emptying phenolsulfonphthalein, gastric residual rate of phenol red indicator to evaluate the gastric emptying rate, residual rate of detection in mouse stomach; small intestine propulsion and selection of carbon ink as the experimental index. Effects were observed to promote the function of normal mice gastric emptying and intestine. The gastric emptying and small intestinal motor function of normal mice were all promoted by each administration group, and the effect was most obvious in small dose group. The effect of reducing blood lipid on gastrointestinal motility of mice ware obviously enhanced.
Probiotics and prebiotics in ulcerative colitis.
Derikx, Lauranne A A P; Dieleman, Levinus A; Hoentjen, Frank
2016-02-01
The intestinal microbiota is one of the key players in the etiology of ulcerative colitis. Manipulation of this microflora with probiotics and prebiotics is an attractive strategy in the management of ulcerative colitis. Several intervention studies for both the induction and maintenance of remission in ulcerative colitis patients have been performed. Most of these studies evaluated VSL#3 or E. Coli Nissle 1917 and in general there is evidence for efficacy of these agents for induction and maintenance of remission. However, studies are frequently underpowered, lack a control group, and are very heterogeneous investigating different probiotic strains in different study populations. The absence of well-powered robust randomized placebo-controlled trials impedes the widespread use of probiotics and prebiotics in ulcerative colitis. However, given the promising results that are currently available, probiotics and prebiotics may find their way to the treatment algorithm for ulcerative colitis in the near future. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Role of Functional Foods, Nutraceuticals, and Food Supplements in Intestinal Health
Cencic, Avrelija; Chingwaru, Walter
2010-01-01
New eating habits, actual trends in production and consumption have a health, environmental and social impact. The European Union is fighting diseases characteristic of a modern age, such as obesity, osteoporosis, cancer, diabetes, allergies and dental problems. Developed countries are also faced with problems relating to aging populations, high energy foods, and unbalanced diets. The potential of nutraceuticals/functional foods/food supplements in mitigating health problems, especially in the gastrointestinal (GI) tract, is discussed. Certain members of gut microflora (e.g., probiotic/protective strains) play a role in the host health due to its involvement in nutritional, immunologic and physiological functions. The potential mechanisms by which nutraceuticals/functional foods/food supplements may alter a host’s health are also highlighted in this paper. The establishment of novel functional cell models of the GI and analytical tools that allow tests in controlled experiments are highly desired for gut research. PMID:22254045
[Diagnosis and treatment of suppurative processes caused by non-clostridial anaerobic microflora].
Ofanesian, S S
1989-06-01
One hundred and fifty patients suffering from various purulent diseases (60 persons) and postoperative purulent complications (90 persons) caused by nonclostridial anaerobes were examined. Nonclostridial anaerobic bacteria were isolated most frequently in acute mastitis, paraproctitis, and postinfectious abscesses among patients of the first group and after appendectomy and resection of the large intestine among those of the second group. The character of the wound discharge, the location of the focus of infection, the tendency of the purulent process to form a great number of cavities and fistules, bacterioscopy of the native material, etc. help in establishing the diagnosis (before the results of bacteriological tests are obtained). Purulent processes caused by a combination of anaerobic cocci and aerobic flora take a particularly unfavourable course. Antibiotic therapy should consists of high doses of one or two antibiotics combined with metronidazole and nystatin.
Peluso, Ilaria; Romanelli, Luca; Palmery, Maura
2014-05-01
The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.
Antibiotics and probiotics in treatment of inflammatory bowel disease
Gionchetti, Paolo; Rizzello, Fernando; Lammers, Karen M; Morselli, Claudia; Sollazzi, Lucia; Davies, Samuel; Tambasco, Rosy; Calabrese, Carlo; Campieri, Massimo
2006-01-01
Many experimental and clinical observations suggest that intestinal microflora plays a potential role in the pathogenesis of inflammatory bowel disease (IBD). Manipulation of the luminal content using antibiotics or probiotics represents a potentially effective therapeutic option. The available studies do not support the use of antibiotics in ulcerative colitis (UC). Antibiotics are effective in treating septic complications of Crohn’s disease (CD) but their use as a primary therapy is more controversial, although this approach is frequently and successfully adopted in clinical practice. There is evidence that probiotic therapy may be effective in the prevention and treatment of mild to moderate UC. In contrast, a lack of successful study data at present precludes the widespread use of probiotics in the treatment of CD. Both antibiotics and probiotics appear to play a beneficial role in the treatment and prevention of pouchitis and further trials are warranted to fully quantify their clinical efficacy. PMID:16733845
Niñonuevo, Milady R; Perkins, Patrick D; Francis, Jimi; Lamotte, Latasha M; LoCascio, Riccardo G; Freeman, Samara L; Mills, David A; German, J Bruce; Grimm, Rudolf; Lebrilla, Carlito B
2008-01-23
Human milk is a complex biological fluid that provides not only primary nourishment for infants but also protection against pathogens and influences their metabolic, immunologic, and even cognitive development. The presence of oligosaccharides in remarkable abundance in human milk has been associated to provide diverse biological functions including directing the development of an infant's intestinal microflora and immune system. Recent advances in analytical tools offer invaluable insights in understanding the specific functions and health benefits these biomolecules impart to infants. Oligosaccharides in human milk samples obtained from five different individual donors over the course of a 3 month lactation period were isolated and analyzed using HPLC-Chip/TOF-MS technology. The levels and compositions of oligosaccharides in human milk were investigated from five individual donors. Comparison of HPLC-Chip/TOF-MS oligosaccharides profiles revealed heterogeneity among multiple individuals with no significant variations at different stages of lactation within individual donors.
The pathogenesis of Hirschsprung's disease-associated enterocolitis.
Austin, Kelly Miller
2012-11-01
Hirschsprung's disease-associated enterocolitis (HAEC) remains the most life-threatening complication in Hirschsprung disease (HD) patients. The pathogenesis of HAEC has not been determined and many hypotheses regarding the etiology of HAEC have been proposed. These include a possible causal relationship between the abnormal enteric nervous system development in HD and the development of enterocolitis. Based on the complex genetic causes of HD that have been discovered and the resultant heterogeneous group of patients that exists, the causes of HAEC are likely multiple. New insights regarding the relationship of the role of the enteric nervous system and its interaction between intestinal barrier function, innate host immunity, and commensal microflora have been discovered, which may shed light on this perplexing problem. This review presents current known risk factors of HAEC and the proposed theories and supporting evidence for the potential etiologies of HAEC. Copyright © 2012. Published by Elsevier Inc.
Food additive carrageenan: Part II: A critical review of carrageenan in vivo safety studies.
Weiner, Myra L
2014-03-01
Carrageenan (CGN) is a seaweed-derived high molecular weight (Mw) hydrocolloid, primarily used as a stabilizer and thickener in food. The safety of CGN regarding its use in food is reviewed. Based on experimental studies in animals, ingested CGN is excreted quantitatively in the feces. Studies have shown that CGN is not significantly degraded by low gastric pH or microflora in the gastrointestinal (GI) tract. Due to its Mw, structure and its stability when bound to protein, CGN is not significantly absorbed or metabolized. CGN also does not significantly affect the absorption of nutrients. Subchronic and chronic feeding studies in rodents indicate that CGN at doses up to 5% in the diet does not induce any toxicological effects other than soft stools or diarrhea, which are a common effect for non-digestible high molecular weight compounds. Review of several studies from numerous species indicates that food grade CGN does not produce intestinal ulceration at doses up to 5% in the diet. Effects of CGN on the immune system following parenteral administration are well known, but not relevant to food additive uses. The majority of the studies evaluating the immunotoxicity potential were conducted with CGN administered in drinking water or by oral gavage where CGN exists in a random, open structured molecular conformation, particularly the lambda form; hence, it has more exposure to the intestinal mucosa than when bound to protein in food. Based on the many animal subchronic and chronic toxicity studies, CGN has not been found to affect the immune system, as judged by lack of effects on organ histopathology, clinical chemistry, hematology, normal health, and the lack of target organ toxicities. In these studies, animals consumed CGN at orders of magnitude above levels of CGN in the human diet: ≥1000 mg/kg/d in animals compared to 18-40 mg/kg/d estimated in the human diet. Dietary CGN has been shown to lack carcinogenic, tumor promoter, genotoxic, developmental, and reproductive effects in animal studies. CGN in infant formula has been shown to be safe in infant baboons and in an epidemiology study on human infants at current use levels.
Pereira-Caro, Gema; Oliver, Christine M; Weerakkody, Rangika; Singh, Tanoj; Conlon, Michael; Borges, Gina; Sanguansri, Luz; Lockett, Trevor; Roberts, Susan A; Crozier, Alan; Augustin, Mary Ann
2015-07-01
Orange juice (OJ) flavanones are bioactive polyphenols that are absorbed principally in the large intestine. Ingestion of probiotics has been associated with favorable changes in the colonic microflora. The present study examined the acute and chronic effects of orally administered Bifidobacterium longum R0175 on the colonic microflora and bioavailability of OJ flavanones in healthy volunteers. In an acute study volunteers drank OJ with and without the microencapsulated probiotic, whereas the chronic effects were examined when OJ was consumed after daily supplementation with the probiotic over 4 weeks. Bioavailability, assessed by 0-24h urinary excretion, was similar when OJ was consumed with and without acute probiotic intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main urinary flavanone metabolites. The overall urinary excretion of these metabolites after OJ ingestion and acute probiotic intake corresponded to 22% of intake, whereas excretion of key colon-derived phenolic and aromatic acids was equivalent to 21% of the ingested OJ (poly)phenols. Acute OJ consumption after chronic probiotic intake over 4 weeks resulted in the excretion of 27% of flavanone intake, and excretion of selected phenolic acids also increased significantly to 43% of (poly)phenol intake, corresponding to an overall bioavailability of 70%. Neither the probiotic bacterial profiles of stools nor the stool moisture, weight, pH, or levels of short-chain fatty acids and phenols differed significantly between treatments. These findings highlight the positive effect of chronic, but not acute, intake of microencapsulated B. longum R0175 on the bioavailability of OJ flavanones. Copyright © 2015 Elsevier Inc. All rights reserved.
Food-producing animals and their health in relation to human health
Téllez, Guillermo; Lauková, Andrea; Latorre, Juan D.; Hernandez-Velasco, Xochitl; Hargis, Billy M.; Callaway, Todd
2015-01-01
The fields of immunology, microbiology, and nutrition converge in an astonishing way. Dietary ingredients have a profound effect on the composition of the gut microflora, which in turn regulates the physiology of metazoans. As such, nutritional components of the diet are of critical importance not only for meeting the nutrient requirements of the host, but also for the microbiome. During their coevolution, bacterial microbiota has established multiple mechanisms to influence the eukaryotic host, generally in a beneficial fashion. The microbiome encrypts a variety of metabolic functions that complements the physiology of their hosts. Over a century ago Eli Metchnikoff proposed the revolutionary idea to consume viable bacteria to promote health by modulating the intestinal microflora. The idea is more applicable now than ever, since bacterial antimicrobial resistance has become a serious worldwide problem both in medical and agricultural fields. The impending ban of antibiotics in animal feed due to the current concern over the spread of antibiotic resistance genes makes a compelling case for the development of alternative prophylactics. Nutritional approaches to counteract the debilitating effects of stress and infection may provide producers with useful alternatives to antibiotics. Improving the disease resistance of animals grown without antibiotics will benefit the animals’ health, welfare, and production efficiency, and is also a key strategy in the effort to improve the microbiological safe status of animal-derived food products (e.g. by poultry, rabbits, ruminants, or pigs). This review presents some of the alternatives currently used in food-producing animals to influence their health in relation to human health. PMID:25651994
Whary, Mark T.; Muthupalani, Sureshkumar; Ge, Zhongming; Feng, Yan; Lofgren, Jennifer; Shi, Hai Ning; Taylor, Nancy S.; Correa, Pelayo; Versalovic, James; Wang, Timothy C.; Fox, James G.
2014-01-01
Higher prevalence of helminth infections in H. pylori infected children was suggested to potentially lower the life-time risk for gastric adenocarcinoma. In rodent models, helminth co-infection does not reduce Helicobacter-induced inflammation but delays progression of pre-malignant gastric lesions. Because gastric cancer in INS-GAS mice is promoted by intestinal microflora, the impact of Heligmosomoides polygyrus co-infection on H. pylori-associated gastric lesions and microflora were evaluated. Male INS-GAS mice co-infected with H. pylori and H. polygyrus for 5 months were assessed for gastrointestinal lesions, inflammation-related mRNA expression, FoxP3+ cells, epithelial proliferation, and gastric colonization with H. pylori and Altered Schaedler Flora. Despite similar gastric inflammation and high levels of proinflammatory mRNA, helminth co-infection increased FoxP3+ cells in the corpus and reduced H. pylori-associated gastric atrophy (p<0.04), dysplasia (p<0.02) and prevented H. pylori-induced changes in the gastric flora (p<0.05). This is the first evidence of helminth infection reducing H. pylori-induced gastric lesions while inhibiting changes in gastric flora, consistent with prior observations that gastric colonization with enteric microbiota accelerated gastric lesions in INS-GAS mice. Identifying how helminths reduce gastric premalignant lesions and impact bacterial colonization of the H. pylori infected stomach could lead to new treatment strategies to inhibit progression from chronic gastritis to cancer in humans. PMID:24513446
Flavanol monomer-induced changes to the human faecal microflora.
Tzounis, Xenofon; Vulevic, Jelena; Kuhnle, Gunter G C; George, Trevor; Leonczak, Jadwiga; Gibson, Glenn R; Kwik-Uribe, Catherine; Spencer, Jeremy P E
2008-04-01
We have investigated the bacterial-dependent metabolism of ( - )-epicatechin and (+)-catechin using a pH-controlled, stirred, batch-culture fermentation system reflective of the distal region of the human large intestine. Incubation of ( - )-epicatechin or (+)-catechin (150 mg/l or 1000 mg/l) with faecal bacteria, led to the generation of 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone, 5-phenyl-gamma-valerolactone and phenylpropionic acid. However, the formation of these metabolites from (+)-catechin required its initial conversion to (+)-epicatechin. The metabolism of both flavanols occurred in the presence of favourable carbon sources, notably sucrose and the prebiotic fructo-oligosaccharides, indicating that bacterial utilisation of flavanols also occurs when preferential energy sources are available. (+)-Catechin incubation affected the growth of select microflora, resulting in a statistically significant increase in the growth of the Clostridium coccoides-Eubacterium rectale group, Bifidobacterium spp. and Escherichia coli, as well as a significant inhibitory effect on the growth of the C. histolyticum group. In contrast, the effect of ( - )-epicatechin was less profound, only significantly increasing the growth of the C. coccoides-Eubacterium rectale group. These potential prebiotic effects for both (+)-catechin and ( - )-epicatechin were most notable at the lower concentration of 150 mg/l. As both ( - )-epicatechin and (+)-catechin were converted to the same metabolites, the more dramatic change in the growth of distinct microfloral populations produced by (+)-catechin incubation may be linked to the bacterial conversion of (+)-catechin to (+)-epicatechin. Together these data suggest that the consumption of flavanol-rich foods may support gut health through their ability to exert prebiotic actions.
Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul
2016-12-01
The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50 = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50 = 2.68 ± 0.75 %) or without (GU 50 = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.
New Ways of Thinking about (and Teaching about) Intestinal Epithelial Function
ERIC Educational Resources Information Center
Barrett, Kim E.
2008-01-01
This article summarizes a presentation made at the Teaching Refresher Course of the American Physiological Society, which was held at the Experimental Biology meeting in 2007. The intestinal epithelium has important ion transport and barrier functions that contribute pivotally to normal physiological functioning of the intestine and other body…
Liu, Tianhao; Yang, Zhongshan; Zhang, Xiaomei; Han, Niping; Yuan, Jiali; Cheng, Yu
2017-12-01
This study aims to explore the effect of FMT on regulations of dysbacteriosis of pulmonary and intestinal flora in rats with 16S rDNA sequencing technology. A total of 27 SPF rats (3-4 weeks old) were randomly divided into three groups: normal control group (K), model control group (MX), and fecal microbiota transplantation group (FMT); each group contained nine rats. The OTU values of the pulmonary and intestinal flora of the MX group decreased significantly compared with the normal control group. After FMT, the OTU value of pulmonary flora increased, while the value of OTU in intestinal flora declined. At the phylum level, FMT down-regulated Proteobacteria , Firmicutes , and Bacteroidetes in the pulmonary flora. At the genus level, FMT down-regulated Pseudomonas , Sphingobium , Lactobacillus , Rhizobium , and Acinetobacter , thus maintaining the balance of the pulmonary flora. Moreover, FMT could change the structure and diversity of the pulmonary and intestinal flora by positively regulating the pulmonary flora and negatively regulating intestinal flora. This study may provide a scientific basis for FMT treatment of respiratory diseases.
Fujita, Daichi; Saito, Yoshimasa; Nakanishi, Takeo; Tamai, Ikumi
2016-01-01
Gastrointestinal toxicity, such as late-onset diarrhea, is a significant concern in irinotecan hydrochloride (CPT-11)-containing regimens. Prophylaxis of late-onset diarrhea has been reported with use of Japanese traditional (Kampo) medicine containing baicalin and with the antibiotic cefixime, and this has been explained in terms of inhibition of bacterial deconjugation of SN-38-glucuronide since unconjugated SN-38 (active metabolite of CPT-11) is responsible for the gastrointestinal toxicity. It is also prerequisite for SN-38 to be accumulated in intestinal tissues to exert toxicity. Based on the fact that liver-specific organic anion transporting polypeptide (OATP)1B1, a member of the same family as OATP2B1, is known to be involved in hepatic transport of SN-38, we hypothesized that intestinal transporter OATP2B1 contributes to the accumulation of SN-38 in gastrointestinal tissues, and its inhibition would help prevent associated toxicity. We found that uptake of SN-38 by OATP2B1-expressing Xenopus oocytes was significantly higher than that by control oocytes. OATP2B1-mediated uptake of SN-38 was saturable, pH dependent, and decreased in the presence of baicalin, cefixime, or fruit juices such as apple juice. In vivo gastrointestinal toxicity of SN-38 in mice caused by oral administration for consecutive 5 days was prevented by coingestion of apple juice. Thus, OATP2B1 contributes to the uptake of SN-38 by intestinal tissues, triggering gastrointestinal toxicity. So, in addition to the reported inhibition of bacterial β-glucuronidase by cefixime or baicalin, inhibition of OATP2B1 may also contribute to prevention of gastrointestinal toxicity. Apple juice may be helpful for prophylaxis of late-onset diarrhea observed in CPT-11 therapy without disturbance of the intestinal microflora. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation.
Schrumpf, Elisabeth; Kummen, Martin; Valestrand, Laura; Greiner, Thomas U; Holm, Kristian; Arulampalam, Velmurugesan; Reims, Henrik M; Baines, John; Bäckhed, Fredrik; Karlsen, Tom H; Blumberg, Richard S; Hov, Johannes R; Melum, Espen
2017-02-01
A strong association between human inflammatory biliary diseases and gut inflammation has led to the hypothesis that gut microbes and lymphocytes activated in the intestine play a role in biliary inflammation. The NOD.c3c4 mouse model develops spontaneous biliary inflammation in extra- and intrahepatic bile ducts. We aimed to clarify the role of the gut microbiota in the biliary disease of NOD.c3c4 mice. We sampled cecal content and mucosa from conventionally raised (CONV-R) NOD.c3c4 and NOD control mice, extracted DNA and performed 16S rRNA sequencing. NOD.c3c4 mice were rederived into a germ free (GF) facility and compared with CONV-R NOD.c3c4 mice. NOD.c3c4 mice were also co-housed with NOD mice and received antibiotics from weaning. The gut microbial profiles of mice with and without biliary disease were different both before and after rederivation (unweighted UniFrac-distance). GF NOD.c3c4 mice had less distended extra-hepatic bile ducts than CONV-R NOD.c3c4 mice, while antibiotic treated mice showed reduction of biliary infarcts. GF animals also showed a reduction in liver weight compared with CONV-R NOD.c3c4 mice, and this was also observed in antibiotic treated NOD.c3c4 mice. Co-housing of NOD and NOD.c3c4 mice indicated that the biliary phenotype was neither transmissible nor treatable by co-housing with healthy mice. NOD.c3c4 and NOD control mice show marked differences in the gut microbiota. GF NOD.c3c4 mice develop a milder biliary affection compared with conventionally raised NOD.c3c4 mice. Our findings suggest that the intestinal microbiota contributes to disease in this murine model of biliary inflammation. Mice with liver disease have a gut microflora (microbiota) that differs substantially from normal mice. In a normal environment, these mice spontaneously develop disease in their bile ducts. However, when these mice, are raised in an environment devoid of bacteria, the disease in the bile ducts diminishes. Overall this clearly indicates that the bacteria in the gut (the gut microbiota) influences the liver disease in these mice. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Sun, Hengchang; Lin, Zhipeng; Zhao, Lu; Chen, Tingjin; Shang, Mei; Jiang, Hongye; Tang, Zeli; Zhou, Xinyi; Shi, Mengchen; Zhou, Lina; Ren, Pengli; Qu, Honglin; Lin, Jinsi; Li, Xuerong; Xu, Jin; Huang, Yan; Yu, Xinbing
2018-03-07
Clonorchiasis caused by Clonorchis sinensis has become increasingly prevalent in recent years. Effective prevention strategies are urgently needed to control this food-borne infectious disease. Previous studies indicated that paramyosin of C. sinensis (CsPmy) is a potential vaccine candidate. We constructed a recombinant plasmid of PEB03-CotC-CsPmy, transformed it into Bacillus subtilis WB600 strain (B.s-CotC-CsPmy), and confirmed CsPmy expression on the spore surface by SDS-PAGE, Western blotting and immunofluorescence assay. The immune response and protective efficacy of the recombinant spore were investigated in BALB/c mice after intragastrical or intraperitoneal immunization. Additionally, biochemical enzyme activities in sera, the intestinal histopathology and gut microflora of spore-treated mice were investigated. CsPmy was successfully expressed on the spore surface and the fusion protein on the spore surface with thermostability. Specific IgG in sera and intestinal mucus were increased after intraperitoneal and intragastrical immunization. The sIgA level in intestinal mucus, feces and bile of B.s-CotC-CsPmy orally treated mice were also significantly raised. Furthermore, numerous IgA-secreting cells were detected in intestinal mucosa of intragastrically immunized mice. No inflammatory injury was observed in the intestinal tissues and there was no significant difference in levels of enzyme-indicated liver function among the groups. Additionally, the diversity and abundance of gut microbiota were not changed after oral immunization. Intragastric and intraperitoneal immunization of B.s-CotC-CsPmy spores in mice resulted in egg reduction rates of 48.3 and 51.2% after challenge infection, respectively. Liver fibrosis degree in B.s-CotC-CsPmy spores treated groups was also significantly reduced. CsPmy expressed on the spore surface maintained its immunogenicity. Both intragastrical and intraperitoneal immunization with B.s-CotC-CsPmy spores induced systemic and local mucosal immune response in mice. Although both intragastric and intraperitoneal immunization elicited a similar protective effect, intragastric immunization induced stronger mucosal immune response without side effects to the liver, intestine and gut microbiota, compared with intraperitoneal immunization. Oral immunization with B. subtilis spore expressing CsPmy on the surface was a promising, safe and needle-free vaccination strategy against clonorchiasis.
Takasuna, K; Hagiwara, T; Watanabe, K; Onose, S; Yoshida, S; Kumazawa, E; Nagai, E; Kamataki, T
2006-10-01
An antitumor camptothecin derivative CPT-11 has proven a broad spectrum of solid tumor malignancy, but its severe diarrhea has often limited its more widespread use. We have demonstrated from a rat model that intestinal beta-glucuronidase may play a key role in the development of CPT-11-induced delayed diarrhea by the deconjugation of the luminal SN-38 glucuronide, and the elimination of the intestinal microflora by antibiotics or dosing of TJ-14, a Kampo medicine that contains beta-glucuronidase inhibitor baicalin, exerted a protective effect. In the present study, we assessed the efficacy of several potential treatments in our rat model to clarify which is the most promising treatment for CPT-11-induced delayed diarrhea. Oral dosing (twice daily from days -1 to 4) of streptomycin 20 mg/kg and penicillin 10 mg/kg (Str/Pen), neomycin 20 mg/kg and bacitracin 10 mg/kg (Neo/Bac), both of which inhibited almost completely the fecal beta-glucuronidase activity, or TJ-14 1,000 mg/kg improved the decrease in body weight and the delayed diarrhea symptoms induced by CPT-11 (60 mg/kg i.v. from days 1 to 4) to a similar extent. The efficacy was less but significant in activated charcoal (1,000 mg/kg p.o. twice daily from days -1 to 4). In a separate experiment using rats bearing breast cancer (Walker 256-TC), TJ-14, Neo/Bac, and charcoal at the same dose regimen improved CPT-11-induced intestinal toxicity without reducing CPT-11's antitumor activity. In contrast, oral dosing (twice a day) of cyclosporin A (50 mg/kg), a P-glycoprotein and cMOAT/MRP2 inhibitor or valproic acid (200 mg/kg), a UDP-glucuronosyltranferase inhibitor, exacerbated the intestinal toxicity without modifying CPT-11's antitumor activity. The result clearly demonstrated the ability of Neo/Bac, Str/Pen, and TJ-14, less but significant ability of activated charcoal, to ameliorate CPT-11-induced delayed-onset diarrhea, suggesting the treatments decreasing the exposure of the intestines to the luminal SN-38 are valuable for improvement of CPT-11-induced intestinal toxicity. In contrast, the treatments affecting the biliary excretion of CPT-11 and its metabolites might have undesirable results.
Michalsen, Andreas; Riegert, Markus; Lüdtke, Rainer; Bäcker, Marcus; Langhorst, Jost; Schwickert, Myriam; Dobos, Gustav J
2005-12-22
Alterations in the intestinal bacterial flora are believed to be contributing factors to many chronic inflammatory and degenerative diseases including rheumatic diseases. While microbiological fecal culture analysis is now increasingly used, little is known about the relationship of changes in intestinal flora, dietary patterns and clinical outcome in specific diseases. To clarify the role of microbiological culture analysis we aimed to evaluate whether in patients with rheumatoid arthritis (RA) or fibromyalgia (FM) a Mediterranean diet or an 8-day fasting period are associated with changes in fecal flora and whether changes in fecal flora are associated with clinical outcome. During a two-months-period 51 consecutive patients from an Integrative Medicine hospital department with an established diagnosis of RA (n = 16) or FM (n = 35) were included in the study. According to predefined clinical criteria and the subjects' choice the patients received a mostly vegetarian Mediterranean diet (n = 21; mean age 50.9 +/-13.3 y) or participated in an intermittent modified 8-day fasting therapy (n = 30; mean age 53.7 +/- 9.4 y). Quantitative aerob and anaerob bacterial flora, stool pH and concentrations of secretory immunoglobulin A (sIgA) were analysed from stool samples at the beginning, at the end of the 2-week hospital stay and at a 3-months follow-up. Clinical outcome was assessed with the DAS 28 for RA patients and with a disease severity rating scale in FM patients. We found no significant changes in the fecal bacterial counts following the two dietary interventions within and between groups, nor were significant differences found in the analysis of sIgA and stool ph. Clinical improvement at the end of the hospital stay tended to be greater in fasting vs. non-fasting patients with RA (p = 0.09). Clinical outcome was not related to alterations in the intestinal flora. Neither Mediterranean diet nor fasting treatments affect the microbiologically assessed intestinal flora and sIgA levels in patients with RA and FM. The impact of dietary interventions on the human intestinal flora and the role of the fecal flora in rheumatic diseases have to be clarified with newer molecular analysis techniques. The potential benefit of fasting treatment in RA and FM should be further tested in randomised trials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, W.H.; Emborg, C.
1978-10-01
Soil microflora were exposed to long-term (18 months) gamma irradiation in an open-air facility at three different doses, 15, 150, and 1500 krads/18 months. The radiation resistance increased at all doses when compared with the radiation resistance of the microflora from soil shielded from the irradiation with a lead wall.
Biodegradation of hydrocarbon cuts used for diesel oil formulation.
Penet, Sophie; Marchal, Rémy; Sghir, Abdelghani; Monot, Frédéric
2004-11-01
The biodegradability of various types of diesel oil (DO), such as straight-run DO, light-cycle DO, hydrocracking DO, Fischer-Tropsch DO and commercial DO, was investigated in biodegradation tests performed in closed-batch systems using two microflorae. The first microflora was an activated sludge from an urban wastewater treatment plant as commonly used in biodegradability tests of commercial products and the second was a microflora from a hydrocarbon-polluted soil with possible specific capacities for hydrocarbon degradation. Kinetics of CO(2) production and extent of DO biodegradation were obtained by chromatographic procedures. Under optimised conditions, the polluted-soil microflora was found to extensively degrade all the DO types tested, the degradation efficiencies being higher than 88%. For all the DOs tested, the biodegradation capacities of the soil microflora were significantly higher than those of the activated sludge. Using both microflora, the extent of biodegradation was highly dependent upon the type of DO used, especially its hydrocarbon composition. Linear alkanes were completely degraded in each test, whereas identifiable branched alkanes such as farnesane, pristane or phytane were degraded to variable extents. Among the aromatics, substituted mono-aromatics were also variably biodegraded.
Suppression of Listeria monocytogenes by the Native Micro-Flora in Teewurst Sausage.
Austin-Watson, Clytrice; Grant, Ar'Quette; Brice, Michline
2013-10-21
Modern consumers are interested in the use of non-chemical methods to control pathogens when heat sterilization is not an option. Such is the case with teewurst sausage, a raw spreadable sausage and a popular German commodity. Although Listeria was not found in teewurst, the optimal microbial growing conditions of teewurst coupled with the ubiquity of L. monocytogenes in nature, makes the possibility of contamination of products very possible. This pilot study was conducted to examine teewurst's native micro-flora's ability to suppress the outgrowth of L. monocytogenes at 10 °C using standard plate counts and PCR-DGGE. Traditional plating methods showed L. monocytogenes growth significantly decreased when in competition with the teewurst's native micro-flora ( p < 0.05). The native micro-flora of the teewurst suppressed the overall growth of L. monocytogenes by an average of two logs, under these conditions. Denaturing Gradient Gel Electrophoresis (DGGE) amplicons with unique banding patterns were extracted from DGGE gel for identification. Brochothrix thermosphacta and Lactobacillus curvatus were identified as a part of the teewurst's native micro-flora. Although the native micro-flora did not decrease L. monocytogenes to below limits of detection, it was enough of a decrease to warrant further investigation.
Ren, Ping; Silberg, Debra G.; Sirica, Alphonse E.
2000-01-01
CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478–486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats. PMID:10666391
Ren, P; Silberg, D G; Sirica, A E
2000-02-01
CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478-486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats.
Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.
2013-01-01
Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID:23502354
Hara, Kaori; Kinoshita, Mari; Kin, Takane; Arimitsu, Takeshi; Matsuzaki, Yohei; Ikeda, Kazushige; Tomita, Hiroshi; Fujino, Akihiro; Kuroda, Tatsuo
2015-01-01
Intestinal volvulus without malrotation is a rare disease that causes volvulus of the small intestine despite normal intestinal rotation and fixation. We encountered a neonate with this disease who developed early jaundice and was suspected to have a fetal onset. This patient was characterized by early jaundice complicating intestinal volvulus without malrotation and is considered to have exhibited reduced fetal movement and early jaundice as a result of volvulus, necrosis, and hemorrhage of the small intestine in the fetal period. If abdominal distention accompanied by early jaundice is noted in a neonate, intestinal volvulus without malrotation and associated intraabdominal hemorrhage should be suspected and promptly treated.
Camargo, A; Ferreira, S H
1971-06-01
BPF and BAL inhibited kininase activity of homogenates of rat intestine. However, BFP potentiated and BAL inhibited the contractions induced by bradykinin on rat isolated duodenum (low calcium solution) and terminal ileum (normal calcium solution). Neither BPF nor BAL affects the relaxation induced by bradykinin of rat duodenum bathed in normal Tyrode. These results suggest that two different types of pharmacological receptor are involved in the action of bradykinin on rat intestine, and that other factors besides the inhibition of agonist destruction participate in the mechanism of potentiation of kinin action by BPF.
Camargo, A.; Ferreira, S. H.
1971-01-01
BPF and BAL inhibited kininase activity of homogenates of rat intestine. However, BFP potentiated and BAL inhibited the contractions induced by bradykinin on rat isolated duodenum (low calcium solution) and terminal ileum (normal calcium solution). Neither BPF nor BAL affects the relaxation induced by bradykinin of rat duodenum bathed in normal Tyrode. These results suggest that two different types of pharmacological receptor are involved in the action of bradykinin on rat intestine, and that other factors besides the inhibition of agonist destruction participate in the mechanism of potentiation of kinin action by BPF. PMID:5091164
Increased vaginal pH in Ugandan women: what does it indicate?
Donders, G G G; Gonzaga, A; Marconi, C; Donders, F; Michiels, T; Eggermont, N; Bellen, G; Lule, J; Byamughisa, J
2016-08-01
Abnormal vaginal flora (AVF), indicative of bacterial vaginosis (BV) and/or aerobic vaginitis (AV), amongst other abnormalities, is a risk factor for multiple complications in pregnant as well as non-pregnant women. Screening for such conditions could help prevent these complications. Can self-testing for increased vaginal pH reliably detect BV and other high-risk microflora types, and is this more accurate than performing Gram stain-based Nugent score when screening for high-risk microflora? A total of 344 women presenting at different outpatient clinics in Mulago Hospital and Mbuikwe Outpatient clinics in Kampala, Uganda, were asked to test themselves by introducing a gloved finger into the vagina and smearing it on a microscopy slide, on which a pH strip was attached. Self-assessed categories of normal (pH 3.6-4.4), intermediate (4.5-4.7) or high pH (>4.7) were compared with demographic and with centralised microscopic data, both in air-dried rehydrated wet mounts (Femicare), as well as in Gram-stained specimens (Nugent). AVF was present in 38 %, BV in 25 % and AV in 11 % of patients. High pH and AVF is correlated with human immunodeficiency virus (HIV), infertility, frequent sex, but not vaginal douching. Screening for raised pH detects 90 % of AVF cases, but would require testing over half of the population. As AV and non-infectious conditions are frequent in women with AVF and high pH, Nugent score alone is an insufficient technique to screen women for a high-risk vaginal microflora, especially in infertile and HIV-infected women.
Operative control of human microflora in confined habitat
NASA Astrophysics Data System (ADS)
Viacheslav, Ilyin; Solovieva, Zoya; Panina, Jana
The problem of operative control and transmission of information on microbial state of humans in artificial environment is much actual especially in conditions of long-term space missions and in perspective mission to Mars. There was revealed that in long-term missions there is a periodical accumulation of pathogenicity potential in the system "human-microbes" which lead to possible development of opportunistic infections of crew members in spaceflight. To investigate covering tissues microflora of volunteers participated in 14 and 105 days isolation in confined habitat the new non-culture method was elaborated, based on computer treatment of native swab, equally distributed on total surface of microscopy glass and Gram stained. It allows to obtain information on 3 basic indices -morphology, tinctorial and quantitative, thus it could detect increasing of total microbial amount, growth of staphylococci which is important for early diagnostics of microbial disbalance on covering tissues of volunteers. The analysis is performed with the aid of authomatized system of digital microscopy dedicated to recognition of microbial images on the preparate and for further transmission of these digital images via telecommunication network, thus making possibility of remote consultancies. The data of 14-day experiment reveals increasing of potential pathogens on 7th day of isolation with further decrease on 14th day, changes of microflora in 105-day isolation has the tendency of periodical accumulation. In general, the results were compatible with ones obtained by classical bacteriological studies. The results are significant under the microbial quantity of 104 CFU/swab and higher, which is important for analyzing of microbial groups if they grow in quantities, increasing normal values.
Okada, Mitsugi; Awane, Saori; Suzuki, Junji; Hino, Takamune; Takemoto, Toshinobu; Kurihara, Hidemi; Miura, Kazuo
2002-08-01
The microflora, immunological profiles of host defence functions, and human leukocyte antigen (HLA) findings are reported for a mother, son and daughter who were diagnosed as having 'periodontitis as a manifestation of systemic diseases, associated with hematological disorders'. Examinations were made of the bacterial flora from the periodontal pocket, neutrophil chemotaxis, neutrophil phagocytosis, and the genotypes (DQB1) and serotypes (DR locus) of HLA class II antigens. Phenotypic analyses of the peripheral lymphocytes were also conducted. The subgingival microflora from the mother was dominated by Gram-negative rods, especially Porphyromonas endodontalis, Prevotella intermedia/Prevotella nigrescens and Fusobacterium nucleatum. Subgingival microflora samples from the son and daughter were dominated by Gram-positive cocci and Gram-positive rods. Through the use of polymerase chain reaction, Campylobacter rectus and Capnocytophaga gingivalis were detected in all subjects, whereas Porphyromonas gingivalis, P. intermedia, and Treponema denticola were not detected in any subjects. All three subjects showed a remarkable level of depressed neutrophil chemotaxis to N-formyl-methionyl-leucyl-phenylalanine, although their phagocyte function levels were normal, in comparison to healthy control subjects. Each subject had the same genotype, HLA-DQB1*0601, while the mother had HLA-DR2 and HLA-DR8, and the son and daughter had HLA-DR2 only. In summary, the members of this family showed a similar predisposition to periodontitis with regard to certain host defence functions. It is suggested that the depressed neutrophil chemotaxis that was identified here could be a significant risk factor for periodontitis in this family.
Nousia-Arvanitakis, Sanda; Fotoulaki, Maria; Tendzidou, Kyriaki; Vassilaki, Constantina; Agguridaki, Christina; Karamouzis, Michael
2006-09-01
The aim of this study was to evaluate the concept that pancreatic dysfunction in patients having gluten sensitivity (celiac disease [CD]) or cow's milk protein enteropathy (CMPE) may result from the lack of pancreatic enzyme stimulation in the absence or decrease of cholecystokinin (CCK) secretion caused by villous atrophy. The following parameters were measured: plasma CCK in response to a fatty meal and human pancreatic fecal elastase in 24 patients with CD while on gluten-free diet and after gluten provocation and in 12 patients with CMPE at diagnosis and after a 6-month period of cow's milk-free diet. Intestinal mucosa morphology was examined by small bowel biopsy. Sixty-three controls having no organic gastrointestinal problems were investigated once at the time of diagnostic evaluation. Fasting CCK, obtained at a time when patients with CD or CMPE had normal intestinal mucosa, was significantly different from postprandial and comparable to that of the control group. Fasting CCK obtained from patients with villous atrophy was also statistically different, but not significantly, from the postprandial. Fasting and postprandial plasma CCK and fecal pancreatic elastase values from patients having normal intestinal mucosa were significantly higher than those obtained from patients with villous atrophy. Significant correlation of intestinal mucosa morphology and CCK with fecal elastase concentration was documented. Exocrine pancreatic dysfunction in individuals having villous atrophy may be the consequence of decreased CCK secretion. Cholecystokinin and pancreatic secretion is restored to normal, with intestinal mucosa regeneration.
NORMAL FLORA OF THE NOSE, THROAT, AND LOWER INTESTINE OF DOGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clapper, W.E.; Meade, G.H.
1963-03-01
An attempt was made to isolate and identify the complete normal flora of the rectum, nose, and throat of beagles. From the rectal specimens, 20 species of bacteria and 10 species of fungi were isolated and identified, The organisms were similar to those found in the human intestine. Escherichia coli, Streptococcus mitis, enterococci, S. lactis, Bacillus species, and coliforms other than E. coli were most frequently encountered. (auth)
Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota
Chen, T; Isomäki, P; Rimpiläinen, M; Toivanen, P
1999-01-01
The normal microbiota plays an important role in the health of the host, but little is known of how the human immune system recognizes and responds to Gram-positive indigenous bacteria. We have investigated cytokine responses of peripheral blood mononuclear cells (PBMC) to Gram-positive cell walls (CW) derived from four common intestinal indigenous bacteria, Eubacterium aerofaciens (Eu.a.), Eubacterium limosum(Eu.l.), Lactobacillus casei(L.c.), and Lactobacillus fermentum (L.f.). Our results indicate that Gram-positive CW of the normal intestinal microbiota can induce cytokine responses of the human PBMC. The profile, level and kinetics of these responses are similar to those induced by lipopolysaccharide (LPS) or CW derived from a pathogen, Streptococcus pyogenes (S.p.). Bacterial CW are capable of inducing production of a proinflammatory cytokine, tumour necrosis factor-alpha (TNF-α), and an anti-inflammatory cytokine, IL-10, but not that of IL-4 or interferon-gamma (IFN-γ). Monocytes are the main cell population in PBMC to produce TNF-α and IL-10. Induction of cytokine secretion is serum-dependent; both CD14-dependent and -independent pathways are involved. These findings suggest that the human cytokine responses induced by Gram-positive CW of the normal intestinal microbiota are similar to those induced by LPS or Gram-positive CW of the pathogens. PMID:10540188
NASA Technical Reports Server (NTRS)
Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.
1975-01-01
Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.
Gominak, S C
2016-09-01
Vitamin D blood levels of 60-80ng/ml promote normal sleep. The present study was undertaken to explore why this beneficial effect waned after 2years as arthritic pain increased. Pantothenic acid becomes coenzyme A, a cofactor necessary for cortisol and acetylcholine production. 1950s experiments suggested a connection between pantothenic acid deficiency, autoimmune arthritis and insomnia. The B vitamins have been shown to have an intestinal bacterial source and a food source, suggesting that the normal intestinal microbiome may have always been the primary source of B vitamins. Review of the scientific literature shows that pantothenic acid does not have a natural food source, it is supplied by the normal intestinal bacteria. In order to test the hypothesis that vitamin D replacement slowly induced a secondary pantothenic acid deficiency, B100 (100mg of all B vitamins except 100mcg of B12 and biotin and 400mcg of folate) was added to vitamin D supplementation. Vitamin D and B100 were recommended to over 1000 neurology patients. Sleep characteristics, pain levels, neurologic symptoms, and bowel complaints were recorded by the author at routine appointments. Three months of vitamin D plus B100 resulted in improved sleep, reduced pain and unexpected resolution of bowel symptoms. These results suggest that the combination of vitamin D plus B100 creates an intestinal environment that favors the return of the four specific species, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria that make up the normal human microbiome. 1) Seasonal fluctuations in vitamin D levels have normally produced changes in the intestinal microbiome that promoted weight gain in winter. Years of vitamin D deficiency, however, results in a permanently altered intestinal environment that no longer favors the "healthy foursome". 2) Humans have always had a commensal relationship with their intestinal microbiome. We supplied them vitamin D, they supplied us B vitamins. 3) The four species that make up the normal microbiome are also commensal, each excretes at least one B vitamin that the other three need but cannot make. 4) Improved sleep and more cellular repairs eventually depletes body stores of pantothenic acid, causing reduced cortisol production, increased arthritic pain and widespread "pro-inflammatory" effects on the immune system. 5) Pantothenic acid deficiency also decreases available acetylcholine, the neurotransmitter used by the parasympathetic nervous system. Unopposed, increased sympathetic tone then produces hypertension, tachycardia, atrial arrhythmias and a "hyper-adrenergic" state known to predispose to heart disease and stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Wei; Qian, Shi-Hui; Qian, Da-Wei; Li, Song-Lin
2016-01-01
Platycodin D (PD), a bioactive triterpenoid saponin isolated from Platycodi Radix (PR), possesses a vast range of biological activities. Although the pharmacological activities and pharmacokinetics of PD have been well demonstrated, information regarding the intestinal metabolisms of PD is very limited. In this study, human and rat fecal microflora were prepared and anaerobically incubated with PD at 37[Formula: see text]C for 48[Formula: see text]h, respectively. A highly sensitive and specific ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was developed for the analysis of PD and related metabolites in the reaction samples. A Liquid-liquid extraction method was used for sample pretreatment and the chromatographic separation was performed on a 1.7 [Formula: see text]m particle size Syncronis C[Formula: see text] column using gradient elution system. Finally, a total of seven metabolites were detected and tentatively identified, such as the demethylation metabolite (M1), deoxidation metabolites (M3, M7) and hydrolysis at the C-28 oligosaccharide metabolites (M5, M6), which were first discovered in this experiment. The results indicate that hydrolysis, demethylation, dehydroxylation, and acetylation were the major metabolic pathways of PDin vitro. Additionally, four bacterial strains from human feces including Enterococcus sp.41, Bacillus sp.46, Escherichia sp.49 A and Escherichia sp.64 were detected and further identified with 16S rRNA gene sequencing due to their relatively strong metabolic capacity toward PD. The present study provides important information about the metabolism of PD, which will help elucidate the impact of intestinal bacteria on this active component.
Jazi, V; Boldaji, F; Dastar, B; Hashemi, S R; Ashayerizadeh, A
2017-08-01
1. This experiment was conducted to evaluate the effects of replacing dietary cottonseed meal (CSM) or fermented cottonseed meal (FCSM) for soya bean meal (SBM) on growth performance, carcass characteristics, gastrointestinal microbial populations, and intestinal morphology of broiler chickens. 2. CSM was fermented with Bacillus subtilis, Aspergillus niger and A. oryzae for 7 d. A total of 300 one-d-old male Ross 308 broiler chickens were used in a 42-d experiment in which the birds were randomly allotted to one of 5 dietary treatments (containing 0%, 10% and 20% CSM or FCSM) in a completely randomised design. Birds were reared on litter floor and had free access to feed and water during the experiment. 3. Results indicated that the fermentation process significantly reduced crude fibre and free gossypol, while it increased crude protein content and lactic acid bacteria (LAB) count in CSM. 4. The use of FCSM instead of CSM significantly improved growth performance of broilers. The abdominal fat yield in treatments containing FCSM was significantly lower than in the other treatments. The increase in the population of LAB in the crop and decrease in the population of coliforms in the ileum of birds fed on diets containing FCSM were more significant than in other birds. Villi in the duodenum and jejunum of the birds fed on diets containing FCSM were significantly higher than for the other experimental groups. 5. The positive effects of diets containing FCSM on growth performance and intestinal health of broiler chickens showed that this processed source of protein can serve as an appropriate alternative for SBM in diets for broiler chickens.
Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan
2015-05-27
Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikuta, Togo, E-mail: togo@cancer-c.pref.saitama.jp; Kurosumi, Masafumi, E-mail: mkurosumi@cancer-c.pref.saitama.jp; Yatsuoka, Toshimasa, E-mail: yatsuoka-gi@umin.ac.jp
Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc{sup Min/+}mice, AhR expressionmore » was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.« less
Liu, Li; Deng, Yuan-Xiong; Liang, Yan; Pang, Xiao-Yan; Liu, Xiao-Dong; Liu, Yao-Wu; Yang, Jian-Song; Xie, Lin; Wang, Guang-Ji
2010-01-01
The purpose of the study was to investigate the pharmacokinetics of baicalin, a major bioactive component of Scutellariae radix, in diabetic conditions. The 4-week diabetic rats were induced by intraperitoneal administration of streptozotocin. Plasma concentrations of baicalin were measured following oral (200 mg/kg) or intravenous (12 mg/kg) administration. Everted intestinal transport, intestinal mucosal metabolism of baicalin and intestinal beta-glucuronidase activity were also investigated. It was found that the diabetic condition significantly increased the exposure of baicalin following oral doses (AUC 100.77 +/- 4.16 microg x h/mL in diabetic rats vs. 48.48 +/- 7.94 microg x h/mL in normal rats). In contrast, the diabetic condition significantly decreased the exposure of baicalin following intravenous doses (AUC 11.20 +/- 2.28 microg x h/mL in diabetic rats vs. 18.02 +/- 3.45 microg x h/mL in normal rats). We also found lower apparent permeability coefficients of baicalin in the ileum of diabetic rats (8.43 x 10 (-6) +/- 2.40 x 10 (-6) cm/s in diabetic rats vs. 5.21 x 10 (-5) +/- 1.55 x 10 (-5) cm/s in normal rats). Further studies showed that the diabetic condition enhanced the hydrolysis of baicalin to baicalein in intestinal mucosal, accompanied by an increase of beta-glucuronidase activity. All these results suggested that the higher oral exposure of baicalin in diabetic rats did not result from the decreased hepatic metabolism or increased intestinal absorption of baicalin. The enhancement of intestinal beta-glucuronidase activity may partly account for the higher exposure of baicalin in diabetic rats after oral administration. Copyright Georg Thieme Verlag KG Stuttgart . New York.
Hoefer, Dirk; Hammer, Timo R.
2011-01-01
The progressive public use of antimicrobial clothes has raised issues concerning skin health. A placebo-controlled side-to-side study was run with antimicrobial clothes versus fabrics of similar structure but minus the antimicrobial activity, to evaluate possible adverse effects on the healthy skin microflora. Sixty volunteers were enrolled. Each participant received a set of form-fitting T-shirts constructed in 2 halves: an antibacterial half, displaying activities of 3–5 log-step reductions due to silver-finishes or silver-loaded fibres and a nonantibacterial control side. The microflora of the scapular skin was analyzed weekly for opportunistic and pathogenic microorganisms over six weeks. The antibacterial halves did not disturb the microflora in number or composition, whereas a silver-containing deodorant displayed a short-term disturbance. Furthermore, parameters of skin morphology and function (TEWL, pH, moisture) did not show any significant shifts. In summary, antimicrobial clothes did not show adverse effects on the ecological balance of the healthy skin microflora. PMID:22363849
Goñi, M G; Moreira, M R; Viacava, G E; Roura, S I
2013-01-30
Many studies have focused on seed decontamination but no one has been capable of eliminating all pathogenic bacteria. Two objectives were followed. First, to assess the in vitro antimicrobial activity of chitosan against: (a) Escherichia coli O157:H7, (b) native microflora of lettuce and (c) native microflora of lettuce seeds. Second, to evaluate the efficiency of chitosan on reducing microflora on lettuce seeds. The overall goal was to find a combination of contact time and chitosan concentration that reduces the microflora of lettuce seeds, without affecting germination. After treatment lettuce seeds presented no detectable microbial counts (<10(2)CFU/50 seeds) for all populations. Moreover, chitosan eliminated E. coli. Regardless of the reduction in the microbial load, a 90% reduction on germination makes imbibition with chitosan, uneconomical. Subsequent treatments identified the optimal treatment as 10 min contact with a 10 g/L chitosan solution, which maintained the highest germination percentage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Intestinal tract is an important organ for lowering serum uric acid in rats
Gao, Zhiyi; Li, Yue; Gao, Tao; Duan, Jinlian; Yang, Rong; Dong, Xianxiang; Zhang, Lumei
2017-01-01
The kidney was recognized as a dominant organ for uric acid excretion. The main aim of the study demonstrated intestinal tract was an even more important organ for serum uric acid (SUA) lowering. Sprague-Dawley rats were treated normally or with antibiotics, uric acid, adenine, or inosine of the same molar dose orally or intraperitoneally for 5 days. Rat’s intestinal tract was equally divided into 20 segments except the cecum. Uric acid in serum and intestinal segment juice was assayed. Total RNA in the initial intestinal tract and at the end ileum was extracted and sequenced. Protein expression of xanthine dehydrogenase (XDH) and urate oxidase (UOX) was tested by Western blot analysis. The effect of oral UOX in lowering SUA was investigated in model rats treated with adenine and an inhibitor of uric oxidase for 5 days. SUA in the normal rats was 20.93±6.98 μg/ml, and total uric acid in the intestinal juice was 308.27±16.37 μg, which is two times more than the total SUA. The uric acid was very low in stomach juice, and attained maximum in the juice of the first segment (duodenum) and then declined all the way till the intestinal end. The level of uric acid in the initial intestinal tissue was very high, where XDH and most of the proteins associated with bicarbonate secretion were up-regulated. In addition, SUA was decreased by oral UOX in model rats. The results suggested that intestinal juice was an important pool for uric acid, and intestinal tract was an important organ for SUA lowering. The uric acid distribution was associated with uric acid synthesis and secretion in the upper intestinal tract, and reclamation in the lower. PMID:29267361
Intrinsic capacities of soil microflorae for gasoline degradation.
Solano-Serena, F; Marchal, R; Blanchet, D; Vandecasteele, J P
1998-01-01
A methodology to determine the intrinsic capacities of a microflora to degrade gasoline was developed, in particular for assessing the potential of autochtonous populations of polluted and non polluted soils for natural attenuation and engineered bioremediation. A model mixture (GM23) constituted of the 23 most representative hydrocarbons of a commercial gasoline was used. The capacities of the microflorae (kinetics and extent of biodegradation) were assessed by chromatographic analysis of hydrocarbon consumption and of CO2 production. The degradation of the components of GM23 was assayed in separate incubations of each component and in the complete mixture. For the microflora of an unpolluted spruce forest soil, all hydrocarbons of GM23 except cyclohexane, 2,2,4- and 2,3,4-trimethylpentane isomers were degraded to below detection limit in 28 days. This microflora was reinforced with two mixed microbial communities selected from gasoline-polluted sites and shown to degrade cyclohexane and 2,2,4-trimethylpentane. With the reinforced microflora, complete degradation of GM23 was observed. The degradation patterns of individual components of GM23 were similar when the compounds were present individually or in the GM23 mixture, as long as the concentrations of 2-ethyltoluene and trimethylbenzene isomers were kept sufficiently low (< or = 35 mg.l-1) to remain below their inhibitory level.
Barouei, Javad; Moussavi, Mahta; Hodgson, Deborah M.
2012-01-01
Objective To examine whether maternal probiotic intervention influences the alterations in the brain-immune-gut axis induced by neonatal maternal separation (MS) and/or restraint stress in adulthood (AS) in Wistar rats. Design Dams had free access to drinking water supplemented with Bifidobacterium animalis subsp lactis BB-12® (3×109 CFU/mL) and Propionibacterium jensenii 702 (8.0×108 CFU/mL) from 10 days before conception until postnatal day (PND) 22 (weaning day), or to control ad lib water. Offspring were subjected to MS from PND 2 to 14 or left undisturbed. From PND 83 to 85, animals underwent 30 min/day AS, or were left undisturbed as controls. On PND 24 and 86, blood samples were collected for corticosterone, ACTH and IgA measurement. Colonic contents were analysed for the composition of microflora and luminal IgA levels. Results Exposure to MS significantly increased ACTH levels and neonatal fecal counts of aerobic and anaerobic bacteria, E. coli, enterococci and clostridia, but reduced plasma IgA levels compared with non-MS animals. Animals exposed to AS exhibited significantly increased ACTH and corticosterone levels, decreased aerobic bacteria and bifidobacteria, and increased Bacteroides and E. coli counts compared to non-AS animals. MS coupled with AS induced significantly decreased anaerobes and clostridia compared with the non-stress adult controls. Maternal probiotic intervention significantly increased neonatal corticosterone levels which persisted until at least week 12 in females only, and also resulted in elevated adult ACTH levels and altered neonatal microflora comparable to that of MS. However, it improved plasma IgA responses, increased enterococci and clostridia in MS adults, increased luminal IgA levels, and restored anaerobes, bifidobacteria and E. coli to normal in adults. Conclusion Maternal probiotic intervention induced activation of neonatal stress pathways and an imbalance in gut microflora. Importantly however, it improved the immune environment of stressed animals and protected, in part, against stress-induced disturbances in adult gut microflora. PMID:23071537
Rahman, Khalidur; Desai, Chirayu; Iyer, Smita S; Thorn, Natalie E; Kumar, Pradeep; Liu, Yunshan; Smith, Tekla; Neish, Andrew S; Li, Hongliang; Tan, Shiyun; Wu, Pengbo; Liu, Xiaoxiong; Yu, Yuanjie; Farris, Alton B; Nusrat, Asma; Parkos, Charles A; Anania, Frank A
2016-10-01
There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH. Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy. F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation. Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Toll-like receptors and intestinal defence: molecular basis and therapeutic implications.
Cario, Elke
2003-07-07
Toll-like receptors (TLRs) play a principle role in distinct pathogen recognition and in the initiation of innate immune responses of the intestinal mucosa. Activated innate immunity interconnects downstream with adaptive immunity in complex feedback regulatory loops. Intestinal disease might result from inappropriate activation of the mucosal immune system driven by TLRs in response to normal luminal flora.
Hui, Changye; Guo, Yan; Zhang, Wen; Gao, Chaoxian; Yang, Xueqin; Chen, Yuting; Li, Limei; Huang, Xianqing
2018-04-09
Human exposure to lead mainly occurs by ingestion of contaminated food, water and soil. Blocking lead uptake in the gastrointestinal tract is a novel prevention strategy. Whole-cell biosorbent for lead was constructed with PbrR genetically engineered on the cell surface of Escherichia coli (E. coli), a predominant strain among intestinal microflora, using lipoprotein (Lpp)-OmpA as the anchoring protein. In vitro, the PbrR displayed cells had an enhanced ability for immobilizing toxic lead(II) ions from the external media at both acidic and neutral pH, and exhibited a higher specific adsorption for lead compared to other physiological two valence metal ions. In vivo, the persistence of recombinant E. coli in the murine intestinal tract and the integrity of surface displayed PbrR were confirmed. In addition, oral administration of surface-engineered E. coli was safe in mice, in which the concentrations of physiological metal ions in blood were not affected. More importantly, lead associated with PbrR-displayed E. coli was demonstrated to be less bioavailable in the experimental mouse model with exposure to oral lead. This is reflected by significantly lower blood and femur lead concentrations in PbrR-displayed E. coli groups compared to the control. These results open up the possibility for the removal of toxic metal ions in vivo using engineered microorganisms as adsorbents.
Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears.
Schwab, Clarissa; Cristescu, Bogdan; Boyce, Mark S; Stenhouse, Gordon B; Gänzle, Michael
2009-12-01
Gut physiology, host phylogeny, and diet determine the composition of the intestinal microbiota. Grizzly bears (Ursus arctos horribilis) belong to the Order Carnivora, yet feed on an omnivorous diet. The role of intestinal microflora in grizzly bear digestion has not been investigated. Microbiota and microbial activity were analysed from the feces of wild and captive grizzly bears. Bacterial composition was determined using culture-dependent and culture-independent methods. The feces of wild and captive grizzly bears contained log 9.1 +/- 0.5 and log 9.2 +/- 0.3 gene copies x g(-1), respectively. Facultative anaerobes Enterobacteriaceae and enterococci were dominant in wild bear feces. Among the strict anaerobes, the Bacteroides-Prevotella-Porphyromonas group was most prominent. Enterobacteriaceae were predominant in the feces of captive grizzly bears, at log 8.9 +/- 0.5 gene copies x g(-1). Strict anaerobes of the Bacteroides-Prevotella-Porphyromonas group and the Clostridium coccoides cluster were present at log 6.7 +/- 0.9 and log 6.8 +/- 0.8 gene copies x g(-1), respectively. The presence of lactate and short-chain fatty acids (SCFAs) verified microbial activity. Total SCFA content and composition was affected by diet. SCFA composition in the feces of captive grizzly bears resembled the SCFA composition of prey-consuming wild animals. A consistent data set was obtained that associated fecal microbiota and metabolites with the distinctive gut physiology and diet of grizzly bears.
Grimoud, Julien; Durand, Henri; Courtin, Céline; Monsan, Pierre; Ouarné, Françoise; Theodorou, Vassilia; Roques, Christine
2010-10-01
Probiotics and prebiotics have been demonstrated to positively modulate the intestinal microflora and could promote host health. Although some studies have been performed on combinations of probiotics and prebiotics, constituting synbiotics, results on the synergistic effects tend to be discordant in the published works. The first aim of our study was to screen some lactic acid bacteria on the basis of probiotic characteristics (resistance to intestinal conditions, inhibition of pathogenic strains). Bifidobacterium was the most resistant genus whereas Lactobacillus farciminis was strongly inhibited. The inhibitory effect on pathogen growth was strain dependent but lactobacilli were the most effective, especially L. farciminis. The second aim of the work was to select glucooligosaccharides for their ability to support the growth of the probiotics tested. We demonstrated the selective fermentability of oligodextran and oligoalternan by probiotic bacteria, especially the bifidobacteria, for shorter degrees of polymerisation and absence of metabolism by pathogenic bacteria. Thus, the observed characteristics confer potential prebiotic properties on these glucooligosaccharides, to be further confirmed in vivo, and suggest some possible applications in synbiotic combinations with the selected probiotics. Furthermore, the distinctive patterns of the different genera suggest a combination of lactobacilli and bifidobacteria with complementary probiotic effects in addition to the prebiotic ones. These associations should be further evaluated for their synbiotic effects through in vitro and in vivo models. Copyright © 2010 Elsevier Ltd. All rights reserved.
Probiotics in management of hepatic encephalopathy.
Sharma, Barjesh Chander; Singh, Jatinderpal
2016-12-01
Gut microflora leads to production of ammonia and endotoxins which play important role in the pathogenesis of hepatic encephalopathy (HE). There is relationship between HE and absorption of nitrogenous substances from the intestines. Probiotics play a role in treatment of HE by causing alterations in gut flora by decreasing the counts of pathogen bacteria, intestinal mucosal acidification, decrease in production and absorption of ammonia, alterations in permeability of gut, decreased endotoxin levels and changes in production of short chain fatty acids. Role of gut microbiota using prebiotics, probiotics and synbiotics have been evaluated in the management of minimal hepatic encephalopathy (MHE), overt HE and prevention of HE. Many studies have shown efficacy of probiotics in reduction of blood ammonia levels, treatment of MHE and prevention of HE. However these trials have problems like inclusion of small number of patients, short treatment durations, variability in HE/MHE related outcomes utilized and high bias risk, errors of systematic and random types. Systematic reviews also have shown different results with one systematic review showing clinical benefits whereas another concluded that probiotics do not have any role in treatment of MHE or HE. Also practical questions on optimal dose, ideal combination of organisms, and duration of treatment and persistence of benefits on long term follow-up are still to be clarified. At present, there are no recommendations for use of probiotics in patients with HE.
Selby, P. J.; Lopes, N.; Mundy, J.; Crofts, M.; Millar, J. L.; McElwain, T. J.
1987-01-01
A small pre-treatment 'priming' dose of cyclophosphamide will reduce gut damage due to high dose i.v. melphalan in mice and sheep but efforts to demonstrate this effect in man have been hampered by difficulty in the measurement of gut damage. We have evaluated the 51CR EDTA absorption test, a new method for measuring intestinal permeability, as a means of assessing damage due to high dose melphalan. The test was reliable, with a narrow normal range, easy to use and well tolerated. It detected an increase in intestinal permeability after high dose melphalan with a maximum occurring between 9 and 15 days after treatment and subsequently returning to normal. It was shown in 19 patients that a pre-treatment dose of cyclophosphamide was capable of significantly reducing the abnormalities in intestinal permeability which resulted from high dose melphalan. PMID:3111515
Lambda light chain revision in the human intestinal IgA response.
Su, Wen; Gordon, John N; Barone, Francesca; Boursier, Laurent; Turnbull, Wayne; Mendis, Surangi; Dunn-Walters, Deborah K; Spencer, Jo
2008-07-15
Revision of Ab L chains by secondary rearrangement in mature B cells has the potential to change the specific target of the immune response. In this study, we show for the first time that L chain revision is normal and widespread in the largest Ab producing population in man: intestinal IgA plasma cells (PC). Biases in the productive and non-productive repertoire of lambda L chains, identification of the circular products of rearrangement that have the characteristic biases of revision, and identification of RAG genes and protein all reflect revision during normal intestinal IgA PC development. We saw no evidence of IgH revision, probably due to inappropriately orientated recombination signal sequences, and little evidence of kappa-chain revision, probably due to locus inactivation by the kappa-deleting element. We propose that the lambda L chain locus is available and a principal modifier and diversifier of Ab specificity in intestinal IgA PCs.
Ataka, Koji; Ito, Masafumi; Shibata, Takashi
2005-12-01
Wood creosote, the principal ingredient in Seirogan, has a long history as a known gastrointestinal microbicidal agent. When administered orally, the intraluminal concentration of wood creosote is not sufficiently high to achieve this microbicidal effect. Through further animal tests, we have shown that antimotility and antisecretory actions are the principal antidiarrheal effects of wood creosote. Wood creosote inhibits intestinal secretion induced by enterotoxins by blocking the Cl(-) channel on the intestinal epithelium. Wood creosote also decreases intestinal motility accelerated by mechanical, chemical, or electrical stimulus by the inhibition of the Ca(2+) influx into the smooth muscle cells. In this overview, the antimotility and antisecretory effects of wood creosote are compared with those of loperamide. Wood creosote was observed to inhibit stimulated colonic motility, but not normal jejunal motility. Loperamide inhibits normal jejunal motility, but not stimulated colonic motility. Both wood creosote and loperamide inhibit intestinal secretion accelerated by acetylcholine. Wood creosote was found to have greater antisecretory effects in the colon than loperamide. Based upon these findings, we conclude that the antidiarrheal effects of wood creosote are due to both antisecretory activity in the intestine and antimotility in the colon, but not due to the microbicidal activity as previously thought. Wood creosote was found to have no effects on normal intestinal activity. These conclusions are supported by the results of a recent clinical study comparing wood creosote and loperamide, which concluded that wood creosote was more efficacious in relieving abdominal pain and comparable to loperamide in relieving diarrhea.
Indaram, Anant VK; Nandi, Santa; Weissman, Sam; Lam, Sing; Bailey, Beverly; Blumstein, Meyer; Greenberg, Ronald; Bank, Simmy
2000-01-01
AIM: To determine levels of cytokines in colonic mucosa of asymptomatic first degree relatives of Crohn’s disease patients. METHODS: Cytokines (Interleukin (IL) 1-Beta, IL-2, IL-6 and IL-8) were measured using ELISA in biopsy samples of normal looking colonic mucosa of first degree relatives of Crohn’s disease patients (n = 9) and fro m normal controls (n = 10) with no family history of Crohn’s disease. RESULTS: Asymptomatic first degree relatives of patients with Crohn’s disease had significantly higher levels of basal intestinal mucosal cytokines (IL-2, IL-6 and IL-8) than normal controls. Whether these increase d cytokine levels serve as phenotypic markers for a genetic predisposition to de veloping Crohn’s disease later on, or whether they indicate early (pre-cli nical) damage has yet to be further defined. CONCLUSION: Asymptomatic first degree relatives of Crohn’s disease patients have higher levels of cytokines in their normal-looking intestinal mucosa compared to normal controls. This supports the hypothesis that increased cytokines may be a cause or an early event in the inflammatory cascade of Crohn’s disease and are not merely a result of the inflammatory process. PMID:11819521
Yuan, Huaibo; Shi, Fangfang; Meng, Lina; Wang, Wenjuan
2018-02-01
This study investigated the intestinal microbial community distribution of Type 2 diabetic mice and discussed the effects of the sea buckthorn protein on the regulation of gut microbes. Date was collected for 12 cases of normal mice (NC group), 12 cases of Type 2 diabetic mice (DC group), and 12 cases of highly concentrated sea buckthorn seed protein dosed mice (SSPH group). This study analysed fecal samples, measured faecal pH value, and cultivated and determined intestinal bacteria count. This investigation also included the extraction of faecal samples for genomic DNA, PCR amplification of bacterial V3 16S rDNA products by denaturing gradient gel electrophoresis, DGGE map analysis of intestinal flora, determination of intestinal bacteria richness, Shannon-Wiener index and evenness index, and image similarity cluster analysis with UPGMA clustering. This study analysed and elucidated differences between the normal mice group, diabetic mice group, and sea buckthorn protein supplemented group, and the structures of respective intestinal flora. The mice supplemented with sea buckthorn protein exhibited an obvious drop in body weight and blood glucose levels. The Bifidobacterium, Lactobacillus, Bacteroides, and Clostridium coccoides populations recovered. The amplification of the 16S rDNA gene V3 region revealed that the species of intestinal microbes in the treatment group were adjusted to a certain extent. Analysis by ARDRA confirmed that sea buckthorn protein could increase type 2 diabetes in mice intestinal microorganism diversity (H) and simpson (E). Copyright © 2017 Elsevier B.V. All rights reserved.
Intestinal Stem Cell Dynamics: A Story of Mice and Humans.
Hodder, Michael C; Flanagan, Dustin J; Sansom, Owen J
2018-06-01
Stem cell dynamics define the probability of accumulating mutations within the intestinal epithelium. In this issue of Cell Stem Cell, Nicholson et al. (2018) report that human intestinal stem cell dynamics differ significantly from those of mice and establish that oncogenic mutations are more likely to expand; therefore, "normal" epithelium may carry multiple mutations. Copyright © 2018 Elsevier Inc. All rights reserved.
The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases
Kim, Min-Hyun; Kim, Hyeyoung
2017-01-01
Glutamine, the most abundant free amino acid in the human body, is a major substrate utilized by intestinal cells. The roles of glutamine in intestinal physiology and management of multiple intestinal diseases have been reported. In gut physiology, glutamine promotes enterocyte proliferation, regulates tight junction proteins, suppresses pro-inflammatory signaling pathways, and protects cells against apoptosis and cellular stresses during normal and pathologic conditions. As glutamine stores are depleted during severe metabolic stress including trauma, sepsis, and inflammatory bowel diseases, glutamine supplementation has been examined in patients to improve their clinical outcomes. In this review, we discuss the physiological roles of glutamine for intestinal health and its underlying mechanisms. In addition, we discuss the current evidence for the efficacy of glutamine supplementation in intestinal diseases. PMID:28498331
Diversity and Succession of the Intestinal Bacterial Community of the Maturing Broiler Chicken
Lu, Jiangrang; Idris, Umelaalim; Harmon, Barry; Hofacre, Charles; Maurer, John J.; Lee, Margie D.
2003-01-01
The diversity of bacterial floras in the ilea and ceca of chickens that were fed a vegetarian corn-soy broiler diet devoid of feed additives was examined by analysis of 1,230 partial 16S rRNA gene sequences. Nearly 70% of sequences from the ileum were related to those of Lactobacillus, with the majority of the rest being related to Clostridiaceae (11%), Streptococcus (6.5%), and Enterococcus (6.5%). In contrast, Clostridiaceae-related sequences (65%) were the most abundant group detected in the cecum, with the other most abundant sequences being related to Fusobacterium (14%), Lactobacillus (8%), and Bacteroides (5%). Statistical analysis comparing the compositions of the different 16S rRNA libraries revealed that population succession occurred during some sampling periods. The significant differences among cecal libraries at 3 and 7 days of age, at 14 to 28 days of age, and at 49 days of age indicated that successions occurred from a transient community to one of increasing complexity as the birds aged. Similarly, the ileum had a stable bacterial community structure for birds at 7 to 21 days of age and between 21 to 28 days of age, but there was a very unique community structure at 3 and 49 days of age. It was also revealed that the composition of the ileal and cecal libraries did not significantly differ when the birds were 3 days old, and in fact during the first 14 days of age, the cecal microflora was a subset of the ileal microflora. After this time, the ileum and cecum had significantly different library compositions, suggesting that each region developed its own unique bacterial community as the bird matured. PMID:14602645
Okazaki, Yukako; Katayama, Tetsuyuki
2014-12-01
Dietary phytic acid (PA; myo-inositol [MI] hexaphosphate) is known to inhibit colon carcinogenesis in rodents. Dietary fiber, which is a negative risk factor of colon cancer, improves characteristics of the colonic environment, such as the content of organic acids and microflora. We hypothesized that dietary PA would improve the colonic luminal environment in rats fed a high-fat diet. To test this hypothesis, rats were fed diets containing 30% beef tallow with 2.04% sodium PA, 0.4% MI, or 1.02% sodium PA + 0.2% MI for 3 weeks. Compared with the control diet, the sodium PA diet up-regulated cecal organic acids, including acetate, propionate, and n-butyrate; this effect was especially prominent for cecal butyrate. The sodium PA + MI diet also significantly increased cecal butyrate, although this effect was less pronounced when compared with the sodium PA diet. The cecal ratio of Lactobacillales, cecal and fecal mucins (an index of intestinal barrier function), and fecal β-glucosidase activity were higher in rats fed the sodium PA diet than in those fed the control diet. The sodium PA, MI, and sodium PA + MI diets decreased levels of serum tumor necrosis factor α, which is a proinflammatory cytokine. Another proinflammatory cytokine, serum interleukin-6, was also down-regulated by the sodium PA and sodium PA + MI diets. These data showed that PA may improve the composition of cecal organic acids, microflora, and mucins, and it may decrease the levels of serum proinflammatory cytokines in rats fed a high-fat, mineral-sufficient diet. Copyright © 2014 Elsevier Inc. All rights reserved.
Rebolé, A; Ortiz, L T; Rodríguez, M L; Alzueta, C; Treviño, J; Velasco, S
2010-02-01
A study was undertaken to examine the effects of inulin, alone or in combination with enzyme complex (primarily xylanase and beta-glucanase), on growth performance, ileal and cecal microflora, cecal short-chain fatty acids, and d-lactic acid and jejunal histomorphology of broiler chickens fed a wheat- and barley-based diet from 7 to 35 d of age. A total of 240 seven-day-old male Cobb broilers were allocated to 1 of 6 treatments, with 8 replicate pens per treatment and 5 birds per pen. The experiment consisted of a 3x2 factorial arrangement of the treatments with 3 concentrations of inulin (0, 10, or 20 g/kg of diet) and 2 concentrations of enzyme complex (0 or 100 mg/kg of diet). At the end of the experiment, 8 birds per treatment (one from each pen) were randomly chosen and slaughtered. Birds fed inulin-containing diets exhibited significantly (P=0.043) improved final BW gain. Dietary inulin had a positive and significant (P<0.002 to 0.009) effect on bifidobacteria and lactobacilli counts in both ileal and cecal contents and, to an extent, also altered the fermentation patterns in the ceca, increasing the concentration of n-butyric and d-lactic acids and the n-butyric acid:acetic acid ratio. Inulin inclusion had no effect on villus height and crypt depth or microvillus length, width, and density in the jejunum. Enzyme supplementation of the control diet and inulin-containing diets had no effect on many of the variables studied and only resulted in a decrease in crypt depth and an increase in villus height:crypt depth ratio in the jejunum.
Effect of Lactobacillus plantarum LP-Onlly on gut flora and colitis in interleukin-10 knockout mice.
Xia, Yang; Chen, Hong-Qi; Zhang, Min; Jiang, Yan-Qun; Hang, Xiao-Min; Qin, Huan-Long
2011-02-01
Probiotics are used in the therapy of inflammatory bowel disease. This study aimed to determine the effects of probiotic Lactobacillus plantarum LP-Onlly (LP) on gut flora and colitis in interleukin-10 knockout (IL-10(-/-) ) mice, a model of spontaneous colitis. IL-10(-/-) and wild-type mice were used at 8 weeks of age and LP by gavage was administered at a dose of 10(9) cells/day per mice for 4 weeks. Mice were maintained for another one week without LP treatment. The colonic tissues were collected for histological and ultrastructural analysis at death after 4 weeks treatment of LP, and the feces were collected at 1-week intervals throughout the experiment for the analysis of gut flora and LP using selective culture-based techniques. Compared with control mice, IL-10(-/-) mice developed a severe intestinal inflammation and tissue damage, and had an abnormal composition of gut microflora. LP administration attenuated colitis with the decreased inflammatory scoring and histological injury in the colon of IL-10(-/-) mice. In addition, LP administration increased the numbers of beneficial total bifidobacteria and lactobacilli, and decreased the numbers of potential pathogenic enterococci and Clostridium perfringens, although the decrease of coliforms was not significant after LP treatment in IL-10(-/-) mice. Oral administration of LP was effective in the treatment of colitis, with the direct modification of gut microflora in IL-10(-/-) mice. This probiotic strain could be used as a potential adjuvant in the therapy of inflammatory bowel disease, although further studies are required in human. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.
Mallery, Susan R.; Budendorf, Deric E.; Larsen, Matthew P.; Pei, Ping; Tong, Meng; Holpuch, Andrew S.; Larsen, Peter E.; Stoner, Gary D.; Fields, Henry W.; Chan, Kenneth K.; Ling, Yonghua; Liu, Zhongfa
2011-01-01
Our oral cancer chemoprevention trial data implied that patient-specific differences in local retention and metabolism of freeze-dried black raspberries' (BRB) components affected therapeutic responsiveness. Subsequent studies have confirmed that anthocyanins are key contributors to BRB's chemopreventive effects. Consequently, functional assays, immunoblotting and immunohistochemical analyses to evaluate levels and distribution of BRB anthocyanin-relevant metabolic enzymes in human oral tissues were performed. LC-MS/MS analyses of time course saliva samples collected following BRB rinses were conducted to assess local pharmacokinetics and compare the capacities of three different BRB rinse formulations to provide sustained intraoral levels of anthocyanins. Protein profiles demonstrated the presence of key metabolic enzymes in all 15 oral mucosal tissues evaluated while immunohistochemistry confirmed these enzymes were distributed within surface oral epithelia and terminal salivary ducts. β-glucosidase assays confirmed that whole and microflora-reduced saliva can deglycosylate BRB anthocyanins, enabling generation of the bioactive aglycone, cyanidin. LC-MS/MS analyses demonstrated retention of parent anthocyanins and their functional, stable metabolite, protocatechuic acid, in saliva for up to 4 hours after rinsing. Furthermore, post-rinse saliva samples contained glucuronidated anthocyanin conjugates, consistent with intracellular uptake and Phase II conversion of BRB anthocyanins into forms amenable to local recycling. Our data demonstrate that comparable to the small intestine, the requisite hydrolytic, Phase II and efflux transporting enzymes necessary for local enteric recycling are present and functional in human oral mucosa. Notably, inter-patient differences in anthocyanin bioactivation and capacities for enteric recycling would impact treatment as retention of bioactivated chemopreventives at the target site would sustain therapeutic effectiveness. PMID:21558412
Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan
2015-01-01
Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis. PMID:26013555
Neurodevelopmental and Cognitive Outcomes in Children With Intestinal Failure.
Chesley, Patrick M; Sanchez, Sabrina E; Melzer, Lilah; Oron, Assaf P; Horslen, Simon P; Bennett, F Curt; Javid, Patrick J
2016-07-01
Recent advances in medical and surgical management have led to improved long-term survival in children with intestinal failure. Yet, limited data exist on their neurodevelopmental and cognitive outcomes. The aim of the present study was to measure neurodevelopmental outcomes in children with intestinal failure. Children enrolled in a regional intestinal failure program underwent prospective neurodevelopmental and psychometric evaluation using a validated scoring tool. Cognitive impairment was defined as a mental developmental index <70. Neurodevelopmental impairment was defined as cerebral palsy, visual or hearing impairment, or cognitive impairment. Univariate analyses were performed using the Wilcoxon rank-sum test. Data are presented as median (range). Fifteen children with a remnant bowel length of 18 (5-85) cm were studied at age 17 (12-67) months. Thirteen patients remained dependent on parenteral nutrition. Twelve (80%) subjects scored within the normal range on cognitive testing. Each child with cognitive impairment was noted to have additional risk factors independent of intestinal failure including cardiac arrest and extreme prematurity. On univariate analysis, cognitive impairment was associated with longer inpatient hospital stays, increased number of surgical procedures, and prematurity (P < 0.02). In total, 4 (27%) children demonstrated findings consistent with neurodevelopmental impairment. A majority of children with intestinal failure demonstrated normal neurodevelopmental and cognitive outcomes on psychometric testing. These data suggest that children with intestinal failure without significant comorbidity may be at low risk for long-term neurodevelopmental impairment.
Choi, J Y; Kim, J S; Ingale, S L; Kim, K H; Shinde, P L; Kwon, I K; Chae, B J
2011-06-01
In this study, the effect of a potential multimicrobe probiotic subjected to high-temperature drying was investigated. Potential multimicrobe probiotics produced by solid substrate fermentation were dried at low (LT, 40°C for 72 h) or high (HT, 70°C for 36 h) temperature. In Exp. 1, 288 weaned pigs (BW, 6.43 ± 0.68 kg) were allotted to 4 treatments on the basis of BW (4 pens per treatment with 18 pigs in each pen). Dietary treatments were negative control (NC; basal diet without any antimicrobial), positive control (PC; basal diet + 0.1% chlortetracycline), basal diet with 0.3% probiotic LT, and basal diet with 0.3% probiotic HT. Diets were fed in 2 phases, phase I (d 0 to 14) and phase II (d 15 to 28); and growth performance, apparent total tract digestibility (ATTD, d 28), and fecal microflora (d 14 and 28) were evaluated. Over the 28-d trial, pigs fed PC and probiotic diets had greater ADG (P < 0.001), ADFI (P < 0.05), and G:F (P < 0.01) than pigs fed NC diet. The ATTD of DM and GE was greater (P < 0.05) in pigs fed probiotic diets when compared with pigs fed the NC diet. At d 28, fewer Clostridia (P < 0.01) were identified in the feces of pigs fed PC and probiotic diets than pigs fed the NC diet. However, the performance, ATTD of DM and GE, and fecal Clostridia population were similar among pigs fed probiotic LT and HT diets. In Exp. 2, 288 weaned pigs (initial BW, 5.84 ± 0.18 kg) were allotted to 4 treatments in a 2 × 2 factorial arrangement on the basis of BW. The effects of 2 levels of probiotic HT (0.30 or 0.60%), each with or without antibiotic (chlortetracycline, 0 or 0.1%), on performance, ATTD, intestinal morphology, and fecal and intestinal microflora were investigated. Feeding of 0.60% probiotic HT diet improved (P < 0.05) overall ADG, ATTD of DM and GE, and Lactobacillus population in the feces and intestine, and reduced the population of Clostridium and coliforms in feces (d 14) and ileum. Inclusion of antibiotic improved (P < 0.05) the overall ADG, ADFI, and ATTD of DM at d 14 and reduced fecal Clostridium population at d 28. Increased (P < 0.05) villus height at jejunum and ileum, and villus height:crypt depth at the ileum was noticed in pigs fed 0.60% probiotic HT and antibiotic diets. In conclusion, high drying temperature had no effect on the efficacy of potential multimicrobe probiotic product. However, the probiotic product dried at high temperature was more effective at 0.60% inclusion, whereas inclusion of an antibiotic improved pig performance but did not show any interaction with probiotics.
Haemophilus parainfluenzae urethritis among homosexual men.
Hsu, Meng-Shiuan; Wu, Mei-Yu; Lin, Tsui-Hsien; Liao, Chun-Hsing
2015-08-01
Haemophilus parainfluenzae is a common inhabitant of the human upper respiratory tract of the normal oral microflora. We report three men who had been having unprotected sex with men (MSM) and subsequently acquired H. parainfluenzae urethritis, which was confirmed by 16S rRNA gene sequencing analysis. Two men were treated with ceftriaxone and doxycycline, and the third man was treated with clarithromycin. All three patients responded to treatment. This case series highlights the potential role of H. parainfluenzae as a sexually transmitted genitourinary pathogen. Copyright © 2012. Published by Elsevier B.V.
Evolution of bacterial communities in the Gironde Estuary (France) according to a salinity gradient
NASA Astrophysics Data System (ADS)
Prieur, D.; Troussellier, M.; Romana, A.; Chamroux, S.; Mevel, G.; Baleux, B.
1987-01-01
Three surveys were performed in the Gironde Estuary (France) in August 1981, March 1982 and July 1982. For each campaign, seventy samples were taken by helicopter, in order to follow the tide along the estuary. Of the parameters that were studied, salinity appeared to be the most important and which controls the bacterial communities along the estuary. This paper deals with the evolution of bacterial communities along a salinity gradient. The information obtained from various bacteriological parameters (total bacterial counts, viable counts on salted and unsalted media, functional evenness) were convergent. The bacterial community is dominated by an halotolerant microflora. In the estuary, a continental microflora is followed by a marine microflora. The succession zone between these two microflora is located between 5 and 10‰ areas of salinity.
NASA Astrophysics Data System (ADS)
Wu, Qiuli; Zhao, Yunli; Fang, Jianpeng; Wang, Dayong
2014-05-01
Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals.Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00699b
Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.
Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M
1990-06-01
It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and intestinal-type metaplastic changes of epithelial cells lining the main and interlobular ducts of the pancreas.
Russo, Michael A.; Högenauer, Christoph; Coates, Stephen W.; Santa Ana, Carol A.; Porter, Jack L.; Rosenblatt, Randall L.; Emmett, Michael; Fordtran, John S.
2003-01-01
Due to genetic defects in apical membrane chloride channels, the cystic fibrosis (CF) intestine does not secrete chloride normally. Depressed chloride secretion leaves CF intestinal absorptive processes unopposed, which results in net fluid hyperabsorption, dehydration of intestinal contents, and a propensity to inspissated intestinal obstruction. This theory is based primarily on in vitro studies of jejunal mucosa. To determine if CF patients actually hyperabsorb fluid in vivo, we measured electrolyte and water absorption during steady-state perfusion of the jejunum. As expected, chloride secretion was abnormally low in CF, but surprisingly, there was no net hyperabsorption of sodium or water during perfusion of a balanced electrolyte solution. This suggested that fluid absorption processes are reduced in CF jejunum, and further studies revealed that this was due to a marked depression of passive chloride absorption. Although Na+-glucose cotransport was normal in the CF jejunum, absence of passive chloride absorption completely blocked glucose-stimulated net sodium absorption and reduced glucose-stimulated water absorption 66%. This chloride absorptive abnormality acts in physiological opposition to the classic chloride secretory defect in the CF intestine. By increasing the fluidity of intraluminal contents, absence of passive chloride absorption may reduce the incidence and severity of intestinal disease in patients with CF. PMID:12840066
Leknes, I L
2015-10-01
The structure and histochemical properties of the intestine in bronze corydoras (Corydoras aeneus), a stomach-containing teleost, are described, with emphasis on goblet cells and mucin types. The proximal intestine displayed a normal structure for teleosts, whereas the distal intestine was wide, translucent, thin-walled, richly vascularized and constantly filled with air, suggesting an important respiratory role. Goblet cells were common throughout the entire intestine and displayed a variable, but mainly faint metachromatic colour after toluidine blue. They were moderately coloured by alcian blue at both pH 2.5 and 0.2 and displayed no colour after periodic acid followed by Schiff's solution (PAS), but a distinct purple-brown colour after high iron diamine followed by alcian blue (pH 2.5). Together, these results suggest that the mucin in the intestine goblet cells consists mainly of sulphated proteoglycans. Further, the results from the present lectin and neuraminidase tests suggest that these mucins contain much N-acetylglucoseamines and some N-acetylgalactosamines and sialic acid, but seem to lack glucose and mannose. They also contain some galactose-N-acetylgalactosamines sequences, normally hidden by sialic acid. The distinct brush border and mucus layer on the epithelial cells in the respiratory intestine may indicate some digestive roles, such as absorption of water, ions and simple carbohydrates. As sulphated proteoglycans are tough and attract much water, this mucus may play important roles in the protection against mechanical and chemical damages and in the defence against micro-organisms throughout the entire intestine, but in the respiratory intestine it may impede significantly the oxygen uptake. However, as this part of the intestine usually contains no digesta, but is completely filled with air, frequently renewed by dry air from the atmosphere, and the main function of the mucus may be to protect the respiratory epithelium against a destroying and dangerous desiccation. © 2014 Blackwell Verlag GmbH.
Terc, Joshua; Hansen, Ashleigh; Alston, Laurie; Hirota, Simon A
2014-05-13
The intestinal epithelial barrier plays a key role in the maintenance of homeostasis within the gastrointestinal tract. Barrier dysfunction leading to increased epithelial permeability is associated with a number of gastrointestinal disorders including the inflammatory bowel diseases (IBD) - Crohn's disease and ulcerative colitis. It is thought that the increased permeability in patients with IBD may be driven by alterations in the epithelial wound healing response. To this end considerable study has been undertaken to identify signaling pathways that may accelerate intestinal epithelial wound healing and normalize the barrier dysfunction observed in IBD. In the current study we examined the role of the pregnane X receptor (PXR) in modulating the intestinal epithelial wound healing response. Mutations and reduced mucosal expression of the PXR are associated with IBD, and others have reported that PXR agonists can dampen intestinal inflammation. Furthermore, stimulation of the PXR has been associated with increased cell migration and proliferation, two of the key processes involved in wound healing. We hypothesized that PXR agonists would enhance intestinal epithelial repair. Stimulation of Caco-2 intestinal epithelial cells with rifaximin, rifampicin and SR12813, all potent agonists of the PXR, significantly increased wound closure. This effect was driven by p38 MAP kinase-dependent cell migration, and occurred in the absence of cell proliferation. Treating mice with a rodent specific PXR agonist, pregnenolone 16α-carbonitrile (PCN), attenuated the intestinal barrier dysfunction observed in the dextran sulphate sodium (DSS) model of experimental colitis, an effect that occurred independent of the known anti-inflammatory effects of PCN. Taken together our data indicate that the activation of the PXR can enhance intestinal epithelial repair and suggest that targeting the PXR may help to normalize intestinal barrier dysfunction observed in patients with IBD. Furthermore, our data provide additional insight into the potential mechanisms through which rifaximin elicits its clinical efficacy in the treatment of IBD. Copyright © 2014 Elsevier B.V. All rights reserved.
Experimental high-frequency ultrasound can detect graft rejection after small bowel transplantation.
Yang, R; Liu, Q; Wu, E X; Pescovitz, M D; Collins, M H; Kopecky, K K; Grosfeld, J L
1994-02-01
Early diagnosis of graft rejection after small bowel transplantation (SBT) can allow prompt institution of vigorous immunosuppressive therapy, with resultant reversal of the rejection process. The current method for graft monitoring is random mucosal biopsy from a stomal site or through an endoscope. However, because early rejection often has a patchy distribution, it could be missed by random biopsy. We hypothesized that the pathological process of rejection would alter acoustic impedance of the tissue and thus change the ultrasonic patterns of the graft intestinal wall. If this hypothesis is correct, then high-frequency endoscopic ultrasound (US) could be used to monitor the entire transplanted bowel and guide the biopsy, with improved yields. This hypothesis was tested in a rat orthotopic SBT model. Sixty-two intestinal specimens (9 isografts, 12 allografts treated with cyclosporine A [CsA], 22 untreated allografts, and 19 intestines from normal rats) were collected for in vitro transluminal US imaging (30 MHz) and histopathologic study. The echo pattern of normal rat intestinal wall consisted of five echo layers that correlated spatially with the histological layers: the innermost hyperechoic layer 1, plus hypoechoic layer 2, corresponded to the mucosa; hyperechoic layer 3, the submucosa; anechoic layer 4, the muscularis propria; and hyperechoic layer 5, the serosa. The isografts and CsA-treated allografts were identical histologically and ultrasonically to normal intestine. However, the echo patterns of the untreated allografts had progressive loss of architectural stratification, with worsening rejection. The change began with patchy indistinctness and disruption of hyperechoic layers 1, 3 and 5, and progressed to total obliteration of the layers, with the intestinal wall becoming a nonstratified hypoechoic structure.(ABSTRACT TRUNCATED AT 250 WORDS)
Michalsen, Andreas; Riegert, Markus; Lüdtke, Rainer; Bäcker, Marcus; Langhorst, Jost; Schwickert, Myriam; Dobos, Gustav J
2005-01-01
Background Alterations in the intestinal bacterial flora are believed to be contributing factors to many chronic inflammatory and degenerative diseases including rheumatic diseases. While microbiological fecal culture analysis is now increasingly used, little is known about the relationship of changes in intestinal flora, dietary patterns and clinical outcome in specific diseases. To clarify the role of microbiological culture analysis we aimed to evaluate whether in patients with rheumatoid arthritis (RA) or fibromyalgia (FM) a Mediterranean diet or an 8-day fasting period are associated with changes in fecal flora and whether changes in fecal flora are associated with clinical outcome. Methods During a two-months-period 51 consecutive patients from an Integrative Medicine hospital department with an established diagnosis of RA (n = 16) or FM (n = 35) were included in the study. According to predefined clinical criteria and the subjects' choice the patients received a mostly vegetarian Mediterranean diet (n = 21; mean age 50.9 +/-13.3 y) or participated in an intermittent modified 8-day fasting therapy (n = 30; mean age 53.7 +/- 9.4 y). Quantitative aerob and anaerob bacterial flora, stool pH and concentrations of secretory immunoglobulin A (sIgA) were analysed from stool samples at the beginning, at the end of the 2-week hospital stay and at a 3-months follow-up. Clinical outcome was assessed with the DAS 28 for RA patients and with a disease severity rating scale in FM patients. Results We found no significant changes in the fecal bacterial counts following the two dietary interventions within and between groups, nor were significant differences found in the analysis of sIgA and stool ph. Clinical improvement at the end of the hospital stay tended to be greater in fasting vs. non-fasting patients with RA (p = 0.09). Clinical outcome was not related to alterations in the intestinal flora. Conclusion Neither Mediterranean diet nor fasting treatments affect the microbiologically assessed intestinal flora and sIgA levels in patients with RA and FM. The impact of dietary interventions on the human intestinal flora and the role of the fecal flora in rheumatic diseases have to be clarified with newer molecular analysis techniques. The potential benefit of fasting treatment in RA and FM should be further tested in randomised trials. PMID:16372904
Beelen, D W; Elmaagacli, A; Müller, K D; Hirche, H; Schaefer, U W
1999-05-15
In a single-center open-label prospective study, a total of 134 marrow transplant recipients with hematologic malignancies were randomly assigned to a bacterial decontamination medication using metronidazole and ciprofloxacin (n = 68) or ciprofloxacin alone (n = 66) during 5 weeks posttransplant. The development of grades II to IV acute graft-versus-host disease (GVHD) was defined as the primary study endpoint. According to the intention-to-treat, 17 patients (25%) randomized to the combined decontamination medication and 33 patients (50%) randomized to ciprofloxacin alone developed grades II to IV GVHD (P <.002). The higher frequency of grades II to IV acute GVHD in patients randomized to ciprofloxacin alone resulted from a more than twofold increased number of patients developing liver or intestinal involvement with acute GVHD compared with patients randomized to the combined decontamination medication (P <.003). The influence of the study medication on grades II to IV acute GVHD was significant only in recipients of transplants from genotypically HLA-identical sibling donors (n = 80), whereas in recipients of transplants from donors other than HLA-identical siblings (n = 54), grades II to IV acute GVHD frequencies between the study arms were not significantly different. The combined decontamination was associated with a significant reduction of culture growth of intestinal anaerobic bacteria during 5 weeks posttransplant (P <. 00001). In addition, the number of cultures with growth of anaerobic bacteria (P <.005) as well as the median concentrations of anaerobic bacteria in the posttransplant period (P <.0001) were higher in patients contracting grades II to IV acute GVHD. Neither chronic GVHD nor overall survival was significantly different between the two study arms. In patients with HLA-identical sibling donors who were treated in early disease stages, the 5-year survival estimate was slightly, but not significant, higher after the combined decontamination medication (60% +/- 11%) compared with ciprofloxacin alone (46% +/- 9%). In conclusion, the present study provides evidence that antimicrobial chemotherapy targeted to intestinal anaerobic bacteria in marrow transplant recipients significantly reduces the severity of acute GVHD and supports the theory that the intestinal anaerobic bacterial microflora plays a role in the pathogenesis of acute GVHD after human marrow transplantation.
Latorre, J. D.; Hernandez-Velasco, X.; Vicente, J. L.; Wolfenden, R.; Hargis, B. M.; Tellez, G.
2017-01-01
Abstract Distillers dried grains with solubles (DDGS) have increasingly been used in poultry diets as a consequence of rising grain costs. Some, but not all, sources of DDGS have a variable compositional value, and a high inclusion of this by-product could be considered a risk factor for presentation of enteric diseases. Presently, 2 experiments were conducted using a starter corn-soybean diet (zero to 7 d) and a corn-DDGS-soybean grower diet (8 to 28 d) with or without inclusion of a Bacillus-direct-fed microbial (DFM). In both experiments, day-of-hatch chicks were randomly assigned to 2 different groups: control group without DFM or Bacillus-DFM group, containing 106 spores/g of feed. In each experiment, 8 pens of 20 chicks (n = 160/group) were used. Performance parameters of BW, BW gain (BWG), feed intake (FI), and feed conversion (FCR) were evaluated in each growth phase. Additionally, in experiment 2, intestinal samples were collected to determine duodenal and ileal morphology (n = 8/group), as well as the microbiota population of total lactic acid bacteria (TLAB), total Gram-negative bacteria (TGNB), and total anaerobic bacteria (TAB) on d 28 (n = 16/group). Furthermore, both tibias were evaluated for bone strength and bone composition (n = 16/group). In both experiments BW, BWG, and FCR were improved by the DFM when compared to the control group (P < 0.05). In experiment 2, chickens supplemented with the DFM had less TGNB in the foregut intestinal segment and higher TLAB counts in both foregut and hindgut sections (P < 0.05). In addition significant increases in tibia breaking strength and bone mineralization were observed in the DFM group when compared with the control. In the case of intestinal morphology, DFM dietary inclusion increased villus height (VH), villus width, villus area, muscular thickness, and the VH to crypt depth ratio (VH:CD) in both duodenum and ileum sections. Results of the present study suggest that consumption of a selected Bacillus-DFM producing a variable set of enzymes could contribute to enhanced performance, intestinal microbial balance, and bone quality in broiler chickens consuming a grower diet that contains corn-DDGS. PMID:28419329
Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery.
Petricevic, Ljubomir; Domig, Konrad J; Nierscher, Franz Josef; Sandhofer, Michael J; Fidesser, Maria; Krondorfer, Iris; Husslein, Peter; Kneifel, Wolfgang; Kiss, Herbert
2014-05-30
The presence of an abnormal vaginal microflora in early pregnancy is a risk factor for preterm delivery. There is no investigation on vaginal flora dominated by lactic acid bacteria and possible association with preterm delivery. We assessed the dominant vaginal Lactobacillus species in healthy pregnant women in early pregnancy in relation to pregnancy outcome. We observed 111 low risk pregnant women with a normal vaginal microflora 11 + 0 to 14 + 0 weeks of pregnancy without subjective complaints. Vaginal smears were taken for the identification of lactobacilli using denaturing gradient gel electrophoresis (DGGE). Pregnancy outcome was recorded as term or preterm delivery (limit 36 + 6 weeks of gestation). The diversity of Lactobacillus species in term vs. preterm was the main outcome measure. L. iners alone was detected in 11 from 13 (85%) women who delivered preterm. By contrast, L. iners alone was detected in only 16 from 98 (16%) women who delivered at term (p < 0.001). Fifty six percent women that delivered at term and 8% women that delivered preterm had two or more vaginal Lactobacillus spp. at the same time. This study suggests that dominating L. iners alone detected in vaginal smears of healthy women in early pregnancy might be associated with preterm delivery.
Szám, L; Nikodemusz, I; Csatai, L; Vedres, I; Dákay, M
1980-02-01
Both the microflora and some physical parameters of the air in three underground railway (metro) stations were analysed. The air samples taken in the first two stations contained considerably more microbes, namely three times as many, than the sample from station No. 3. In the samples from the first two stations both the pathogenic and anthropogenic germs occured more frequently than in the samples from the third station. The normal flora consisted of gram-positive cocci/Streptococci, Micrococci, Sarcina. Roughly 10 per cent of the microbes proved to be spore-formers. Selective investigations led to the detection of Staph. aureus, Enterococci, Haemophilus influenzae, Escherichiae, Klebsiella and Proteus bacteria. The reason why the stations of line 2 were found to be contaminated to a greater degree is probably because of the higher passenger traffic, the smaller space, as well as the stronger airflow due to the artificial ventilation and the piston effect of the trains. The effect of the artificial environmental conditions on the staff of the metro company still needs further investigation. The effect on the passengers is considered to be less pronounced.
NASA Astrophysics Data System (ADS)
Borodina, E. V.; Tirranen, L. S.
The effect of high temperatures (35 and 45 °C) on microflora of the root zone of radish plants grown in phytotron was evaluated by the response of microorganisms from 9 indicator groups. Phytotron air temperature elevated to 35 °C for 20 hours caused no significant changes in qualitative and quantitative composition of the root microflora in experimental plants. By the end of the experiment, the species diversity of microflora had changed. The amount of phytopathogenic microorganisms decreased which can be interpreted as more stable co-existence of microflora with plants. The numbers of microbes from other indicator groups was in dynamic equilibrium. The plants' condition did not deteriorate either. Exposure to the temperature of 45 °C for 7 hours have been found to change the numbers and species diversity in the radish root zone microflora. The microorganisms were observed to increase their total numbers at the expense of certain indicator groups. Bacteria increased spore forms at the stage of spores. Colon bacillus bacteria of increased their numbers by the end of experiment by an order. By the end of experiment the roots of experiment plants had microscopic fungi from Mucor, Aspergillus, Trichoderma, Cladosporium genera. The observed changes in the microbial complex seem to be associated with the changes of root emissions and general deterioration of the plants' condition. It is suggested that the response of the microorganisms can be indicative of the condition of plants under investigation.
Miyake, Masateru; Kondo, Satoshi; Koga, Toshihisa; Yoda, Noriaki; Nakazato, Satoru; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime
2018-01-01
The purpose of this study was to evaluate the intestinal metabolism and absorption in a mini-Ussing chamber equipped with animal intestinal tissues, based on the transport index (TI). TI value was defined as the sum of drug amounts transported to the basal-side component (X corr ) and drug amounts accumulated in the tissue (T corr ), which are normalized by AUC of a drug in the apical compartment, as an index for drug absorption. Midazolam was used as a test compound for the evaluation of intestinal metabolism and absorption. The metabolite formulation of midazolam was observed in both rats and dogs. Ketoconazole inhibited the intestinal metabolism of midazolam in rats and improved its intestinal absorption to a statistically significant extent. Therefore, the mini-Ussing chamber, equipped with animal intestinal tissues, showed potential to use the evaluation of the intestinal metabolism and absorption, including the assessment of species differences. Copyright © 2017. Published by Elsevier B.V.
Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon
Baker, Ann-Marie; Cereser, Biancastella; Melton, Samuel; Fletcher, Alexander G.; Rodriguez-Justo, Manuel; Tadrous, Paul J.; Humphries, Adam; Elia, George; McDonald, Stuart A.C.; Wright, Nicholas A.; Simons, Benjamin D.; Jansen, Marnix; Graham, Trevor A.
2014-01-01
Summary Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+). Furthermore, we show that, in adenomatous crypts (APC−/−), there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics. PMID:25127143
In-vitro activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota.
Weintraub, Andrej; Rashid, Mamun-Ur; Nord, Carl Erik
2016-12-01
Solithromycin is a novel fluoroketolide with high activity against bacteria associated with community-acquired respiratory tract infections as well as gonorrhea. However, data on the activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota are scarce. In this study, 1024 Gram-positive and Gram-negative anaerobic isolates from the normal intestinal microbiota were analyzed for in-vitro susceptibility against solithromycin and compared to azithromycin, amoxicillin/clavulanic acid, ceftriaxone, metronidazole and levofloxacin by determining the minimum inhibitory concentration (MIC). Solithromycin was active against Bifidobacteria (MIC 50 , 0.008 mg/L) and Lactobacilli (MIC 50 , 0.008 mg/L). The MIC 50 for Clostridia, Bacteroides, Prevotella and Veillonella were 0.5, 0.5, 0.125 and 0.016 mg/L, respectively. Gram-positive anaerobes were more susceptible to solithromycin as compared to the other antimicrobials tested. The activity of solithromycin against Gram-negative anaerobes was equal or higher as compared to other tested agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Host-microbiota interactions within the fish intestinal ecosystem.
Pérez, T; Balcázar, J L; Ruiz-Zarzuela, I; Halaihel, N; Vendrell, D; de Blas, I; Múzquiz, J L
2010-07-01
Teleost fish are in direct contact with the aquatic environment, and are therefore in continual contact with a complex and dynamic microbiota, some of which may have implications for health. Mucosal surfaces represent the main sites in which environmental antigens and intestinal microbiota interact with the host. Thus, the gut-associated lymphoid tissues (GALT) must develop mechanisms to discriminate between pathogenic and commensal microorganisms. Colonization of intestinal mucosal surfaces with a normal microbiota has a positive effect on immune regulatory functions of the gut, and disturbance in these immune regulatory functions by an imbalanced microbiota may contribute to the development of diseases. Significant attention has therefore been recently focused on the role of probiotics in the induction or restoration of a disturbed microbiota to its normal beneficial composition. Given this, this article explores the fascinating relationship between the fish immune system and the bacteria that are present in its intestinal microbiota, focusing on the bacterial effect on the development of certain immune responses.
Santangelo, W C; O'Dorisio, T M; Kim, J G; Severino, G; Krejs, G J
1985-09-01
The effect of a synthetic somatostatin analog was studied in a patient with severe secretory diarrhea due to pancreatic cholera syndrome. Basal intestinal perfusion studies indicated an absence of water and sodium absorption, and active chloride secretion in the small bowel. Intravenous administration of the somatostatin analog (1 microgram/kg.h) changed zero net water movement to absorption (122 mL/30 cm of the jejunum per hour). Chloride secretion changed to absorption (5.0 to 7.9 meq/30 cm.h), and plasma vasoactive intestinal polypeptide concentration was reduced from 330 to 45 pmol/L (normal, less than 51). When the analog was given subcutaneously, 100 micrograms twice daily, stool weight decreased, and plasma vasoactive intestinal polypeptide concentration fell toward the normal range (67 pmol/L). Plasma concentration of pancreatic polypeptide was initially elevated and dropped during intravenous infusion of somatostatin analog but returned to baseline on maintenance therapy with the analog delivered subcutaneously. The patient has not had further diarrhea during 9 months of therapy.
Congenital candidiasis as a subject of research in medicine and human ecology.
Skoczylas, Michał M; Walat, Anna; Kordek, Agnieszka; Loniewska, Beata; Rudnicki, Jacek; Maleszka, Romuald; Torbé, Andrzej
2014-01-01
Congenital candidiasis is a severe complication of candidal vulvovaginitis. It occurs in two forms,congenital mucocutaneous candidiasis and congenital systemic candidiasis. Also newborns are in age group the most vulnerable to invasive candidiasis. Congenital candidiasis should be considered as an interdisciplinary problem including maternal and fetal condition (including antibiotic therapy during pregnancy), birth age and rare genetic predispositions as severe combined immunodeficiency or neutrophil-specific granule deficiency. Environmental factors are no less important to investigate in diagnosing, treatment and prevention. External factors (e.g., food) and microenvironment of human organism (microflora of the mouth, intestine and genitalia) are important for solving clinical problems connected to congenital candidiasis. Physician knowledge about microorganisms in a specific compartments of the microenvironment of human organism and in the course of defined disorders of homeostasis makes it easier to predict the course of the disease and allows the development of procedures that can be extremely helpful in individualized diagnostic and therapeutic process.
Kim, Min Soo; Yeom, Dong Woo; Kim, Sung Rae; Yoon, Ho Yub; Kim, Chang Hyun; Son, Ho Yong; Kim, Jin Han; Lee, Sangkil; Choi, Young Wook
2017-01-01
A double layer-coated colon-specific drug delivery system (DL-CDDS) was developed, which consisted of chitosan (CTN) based polymeric subcoating of the core tablet containing citric acid for microclimate acidification, followed by an enteric coating. The polymeric composition ratio of Eudragit E100 and ethyl cellulose and amount of subcoating were optimized using a two-level factorial design method. Drug-release characteristics in terms of dissolution efficiency and controlled-release duration were evaluated in various dissolution media, such as simulated colonic fluid in the presence or absence of CTNase. Microflora activation and a stepwise mechanism for drug release were postulated. Consequently, the optimized DL-CDDS showed drug release in a controlled manner by inhibiting drug release in the stomach and intestine, but releasing the drug gradually in the colon (approximately 40% at 10 hours and 92% at 24 hours in CTNase-supplemented simulated colonic fluid), indicating its feasibility as a novel platform for CDD. PMID:28053506
Safety Assessment of Two New Lactobacillus Strains as Probiotic for Human Using a Rat Model
Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Liang, Juan Boo; Kalavathy, Ramasamy; Sieo, Chin Chin; Ho, Yin Wan
2016-01-01
Two previously isolated Lactobacillus strains (L. fermentum HM3 from human milk and L. buchneri FD2 from fermented dates), intended as probiotic for human, were assessed for their safety using acute and subacute oral toxicity tests in rats. In addition, their effects on cecal microflora and harmful bacterial enzymes (β-glucuronidase and β-glucosidase) of the tested animals were also determined. The results showed that L. buchneri FD2, L. fermentum HM3, or a mixture of them were safe up to a level of 1010 CFU/kg BW/day in a 14-day or 28-day treatment period. Both strains were well tolerated and there were no observed adverse effects on growth, feed consumption, cellular blood components and vital organs of the treated animals. The Lactobacillus strains were also able to reduce harmful intestinal bacterial enzymes, and decrease pathogenic bacterial populations while increasing beneficial bacterial populations. These results suggest that the two Lactobacillus strains are safe and could be potential probiotic for human. PMID:27467068
Safety Assessment of Two New Lactobacillus Strains as Probiotic for Human Using a Rat Model.
Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Liang, Juan Boo; Kalavathy, Ramasamy; Sieo, Chin Chin; Ho, Yin Wan
2016-01-01
Two previously isolated Lactobacillus strains (L. fermentum HM3 from human milk and L. buchneri FD2 from fermented dates), intended as probiotic for human, were assessed for their safety using acute and subacute oral toxicity tests in rats. In addition, their effects on cecal microflora and harmful bacterial enzymes (β-glucuronidase and β-glucosidase) of the tested animals were also determined. The results showed that L. buchneri FD2, L. fermentum HM3, or a mixture of them were safe up to a level of 1010 CFU/kg BW/day in a 14-day or 28-day treatment period. Both strains were well tolerated and there were no observed adverse effects on growth, feed consumption, cellular blood components and vital organs of the treated animals. The Lactobacillus strains were also able to reduce harmful intestinal bacterial enzymes, and decrease pathogenic bacterial populations while increasing beneficial bacterial populations. These results suggest that the two Lactobacillus strains are safe and could be potential probiotic for human.
Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.
Rafii, F; Franklin, W; Cerniglia, C E
1990-01-01
A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly. Images PMID:2202258
Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.
Rafii, F; Franklin, W; Cerniglia, C E
1990-07-01
A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly.
Tahara, Atsuko; Tahara, Nobuhiro; Yamagishi, Sho-Ichi; Honda, Akihiro; Igata, Sachiyo; Nitta, Yoshikazu; Bekki, Munehisa; Nakamura, Tomohisa; Sugiyama, Yoichi; Sun, Jiahui; Takeuchi, Masayoshi; Shimizu, Makiko; Yamazaki, Hiroshi; Fukami, Kei; Fukumoto, Yoshihiro
2017-12-01
Trimethylamine (TMA), an intestinal microflora-dependent metabolite formed from phosphatidylcholine- and L-carnitine-rich food, such as red meat, is further converted to trimethylamine-N-oxide (TMAO), which could play a role in cardiometabolic disease. Red meat-derived products are one of the major environmental sources of advanced glycation end products (AGEs) that may also contribute to the pathogenesis of cardiometabolic disorders through the interaction with receptor for AGEs (RAGE). However, the relationship among AGEs, soluble form of RAGE (sRAGE) and TMAO in humans remains unclear. Non-diabetic subjects underwent a physical examination, determination of blood chemistry and anthropometric variables, including AGEs, sRAGE, TMA and TMAO. Multiple regression analyses revealed that HbA1c, uric acid and AGEs were independently associated with log TMA, whereas log AGEs to sRAGE ratio and statin non-use were independently correlated with log TMAO. Our present findings indicated that AGEs to sRAGE ratio was correlated with log TMAO, a marker of cardiometabolic disorders.
Kietz, Christa; Pollari, Vilma; Meinander, Annika
2018-06-22
As several diseases have been linked to dysbiosis of the human intestinal microflora, manipulation of the microbiota has emerged as an exciting new strategy for potentially treating and preventing diseases. However, the human microbiota consists of a plethora of different species, and distinguishing the impact of a specific bacterial species on human health is challenging. In tackling this challenge, the fruit fly Drosophila melanogaster, with its far simpler microbial composition, has emerged as a powerful model for unraveling host-microbe interactions. To study the interplay between the resident commensal microbiome and the host, flies can be made germ-free, or axenic. To elucidate the impact of specific bacteria, axenic flies can then be re-introduced to specific microbial species. In this unit, we provide a step-by-step protocol on how to rear Drosophila melanogaster under axenic conditions and confirm the axenity of flies. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.
2013-01-01
Background Bacterial vaginosis (BV) is a common vaginal infection occurring in women of reproductive age. It is widely accepted that the microbial switch from normal microflora to BV is characterized by a decrease in vaginal colonization by Lactobacillus species together with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay (PNA FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. Results Therefore, we evaluated and validated two specific PNA probes by using 36 representative Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically related or pathogenic bacterial strains commonly found in vaginal samples. The probes were also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency and applicability of our PNA FISH. Conclusions This quick method accurately detects Lactobacillus spp. and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two bacterial groups, most frequently encountered in the vagina. PMID:23586331
Obstetric and gynecological diseases and complications resulting from vaginal dysbacteriosis.
Kovachev, Stefan Miladinov
2014-08-01
Accurate knowledge of the composition and ecology of vaginal microbial environment of a healthy woman is necessary for the understanding of normal flora and how to reduce the risk for diseases. Vagina and its microflora form a balanced ecosystem in which dominated bacteria are vaginal lactobacilli. There are dynamic changes in this ecosystem having structure and composition depending on many factors. The term dysbacteriosis defines any movement outside the normal range for the given biotope of obligate and/or facultative microflora. Such a change in the quantity and quality of the respective microbial balance is fraught with danger and requires correction and recovery. The purpose of this overview is to examine obstetric and gynecological diseases that can cause vaginal impaired microbial balance. Vaginal dysbacteriosis is a cause, predecessor, and often also consequence of vaginal infections. In essence, any vaginal infection can be seen as dysbacteriosis, developed to the most severe extent. Here, there is a dominant microorganism other than lactic acid bacteria in the vagina (clinically manifested or not, respectively), depletion of defense mechanisms of the vagina associated with the shift of lactobacilli from their dominant role in the vaginal balance, decrease in their number and species diversity, and a resulting change in the healthy status of the vagina. Vaginal dysbacteriosis can be found in pathogenetic mechanism, whereby many obstetric and gynecological diseases develop. Most of these diseases lead directly to increased maternal and infant morbidity and mortality, so it is important to understand the reasons for them and the arrangements for their prevention.
Goldberg, M J; Smith, J W; Nichols, R L
1977-01-01
Qualitative and quantitative fecal microflora was studied in a double blind fashion in 28 subjects. Fourteen were Seventh-Day Adventists, who were strict vegetarians, while the remaining 14 subjects were individuals consuming a general western diet. No statistically significant differences were identified in the fecal microflora of the two groups. The bacteriologic analysis included total aerobes and total anaerobes as well as each of the major fecal aerobes and anaerobes. This study seems to indicate that the dietary intake of animal fat and protein does not significantly alter the fecal microflora, a possibility which has previously been suggested as being part of the explanation for the higher incidence of colonic carcinoma in those who consume meat compared with vegetarians. It does not, however, invalidate the concept that dietary animal fat does increase bile acid degradation within the gastrointestinal tract, a factor which has been related to colon cancer. Future studies should be directed at identifying the factors that may be present in the gastrointestinal tracts of vegetarians which modify the ability of their colonic microflora to degrade bile acids, an essential step in the production of intraluminal carcinogens or co-carcinogens. PMID:327955
Goldberg, M J; Smith, J W; Nichols, R L
1977-07-01
Qualitative and quantitative fecal microflora was studied in a double blind fashion in 28 subjects. Fourteen were Seventh-Day Adventists, who were strict vegetarians, while the remaining 14 subjects were individuals consuming a general western diet. No statistically significant differences were identified in the fecal microflora of the two groups. The bacteriologic analysis included total aerobes and total anaerobes as well as each of the major fecal aerobes and anaerobes. This study seems to indicate that the dietary intake of animal fat and protein does not significantly alter the fecal microflora, a possibility which has previously been suggested as being part of the explanation for the higher incidence of colonic carcinoma in those who consume meat compared with vegetarians. It does not, however, invalidate the concept that dietary animal fat does increase bile acid degradation within the gastrointestinal tract, a factor which has been related to colon cancer. Future studies should be directed at identifying the factors that may be present in the gastrointestinal tracts of vegetarians which modify the ability of their colonic microflora to degrade bile acids, an essential step in the production of intraluminal carcinogens or co-carcinogens.
Yokoyama, Hiroshi; Waki, Miyoko; Moriya, Naoko; Yasuda, Tomoko; Tanaka, Yasuo; Haga, Kiyonori
2007-02-01
We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85 degrees C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75 degrees C (392 and 248 ml H2 per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60 degrees C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75 degrees C was not detected, at least for 24 days. At both 60 and 75 degrees C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75 degrees C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.
Runeman, Bo; Rybo, Göran; Forsgren-Brusk, Ulla; Larkö, Olle; Larsson, Peter; Faergemann, Jan
2005-01-01
The aim of the present study was to investigate if tight-fitting underwear (string panties) equipped with string panty liners affected the vulvar skin microenvironment differently to regular panties with standard panty liners. Thirty-two healthy women participated in a crossover study where temperature, humidity, surface pH and aerobic microflora were measured on vulvar skin. Vulvar skin temperature was 35.2 +/- 0.19 (mean +/- SEM) and 35.3 +/- 0.17 degrees C, respectively, for the two underwear systems. Mean humidity and mean skin surface pH at vulvar skin did not differ between the two systems. Barely noticeable differences were found for the aerobic microflora both at labium majus and at perineum. The mean total number of microorganisms in the two different panty liners was the same, 6.0 +/- 0.15 and 6.0 +/- 0.16, respectively (log CFU per panty liner). The differences in panty and panty liner design studied seem to have negligible impact on the vulvar skin microclimate, skin surface pH and aerobic microflora. No support was found for the assumption that a string panty system would result in higher contamination of vulvar skin by anorectal microflora.
Gjymishka, Altin; Salido, Eduardo C.; Allison, Milton J.; Freel, Robert W.
2011-01-01
Oxalobacter colonization of rat intestine was previously shown to promote enteric oxalate secretion and elimination, leading to significant reductions in urinary oxalate excretion (Hatch et al. Kidney Int 69: 691–698, 2006). The main goal of the present study, using a mouse model of primary hyperoxaluria type 1 (PH1), was to test the hypothesis that colonization of the mouse gut by Oxalobacter formigenes could enhance enteric oxalate secretion and effectively reduce the hyperoxaluria associated with this genetic disease. Wild-type (WT) mice and mice deficient in liver alanine-glyoxylate aminotransferase (Agxt) exhibiting hyperoxalemia and hyperoxaluria were used in these studies. We compared the unidirectional and net fluxes of oxalate across isolated, short-circuited large intestine of artificially colonized and noncolonized mice. In addition, plasma and urinary oxalate was determined. Our results demonstrate that the cecum and distal colon contribute significantly to enteric oxalate excretion in Oxalobacter-colonized Agxt and WT mice. In colonized Agxt mice, urinary oxalate excretion was reduced 50% (to within the normal range observed for WT mice). Moreover, plasma oxalate concentrations in Agxt mice were also normalized (reduced 50%). Colonization of WT mice was also associated with marked (up to 95%) reductions in urinary oxalate excretion. We conclude that segment-specific effects of Oxalobacter on intestinal oxalate transport in the PH1 mouse model are associated with a normalization of plasma oxalate and urinary oxalate excretion in otherwise hyperoxalemic and hyperoxaluric animals. PMID:21163900
Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota.
Malo, M S; Alam, S Nasrin; Mostafa, G; Zeller, S J; Johnson, P V; Mohammad, N; Chen, K T; Moss, A K; Ramasamy, S; Faruqui, A; Hodin, S; Malo, P S; Ebrahimi, F; Biswas, B; Narisawa, S; Millán, J L; Warren, H S; Kaplan, J B; Kitts, C L; Hohmann, E L; Hodin, R A
2010-11-01
The intestinal microbiota plays a critical role in maintaining human health; however, the mechanisms governing the normal homeostatic number and composition of these microbes are largely unknown. Previously it was shown that intestinal alkaline phosphatase (IAP), a small intestinal brush border enzyme, functions as a gut mucosal defence factor limiting the translocation of gut bacteria to mesenteric lymph nodes. In this study the role of IAP in the preservation of the normal homeostasis of the gut microbiota was investigated. Bacterial culture was performed in aerobic and anaerobic conditions to quantify the number of bacteria in the stools of wild-type (WT) and IAP knockout (IAP-KO) C57BL/6 mice. Terminal restriction fragment length polymorphism, phylogenetic analyses and quantitative real-time PCR of subphylum-specific bacterial 16S rRNA genes were used to determine the compositional profiles of microbiotas. Oral supplementation of calf IAP (cIAP) was used to determine its effects on the recovery of commensal gut microbiota after antibiotic treatment and also on the colonisation of pathogenic bacteria. IAP-KO mice had dramatically fewer and also different types of aerobic and anaerobic microbes in their stools compared with WT mice. Oral supplementation of IAP favoured the growth of commensal bacteria, enhanced restoration of gut microbiota lost due to antibiotic treatment and inhibited the growth of a pathogenic bacterium (Salmonella typhimurium). IAP is involved in the maintenance of normal gut microbial homeostasis and may have therapeutic potential against dysbiosis and pathogenic infections.
Sulakvelidze, Alexander
2013-10-01
Bacteriophages (also called 'phages') are viruses that kill bacteria. They are arguably the oldest (3 billion years old, by some estimates) and most ubiquitous (total number estimated to be 10(30) -10(32) ) known organisms on Earth. Phages play a key role in maintaining microbial balance in every ecosystem where bacteria exist, and they are part of the normal microflora of all fresh, unprocessed foods. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention focused on using them to improve food safety. That approach, called 'phage biocontrol', typically includes three main types of applications: (i) using phages to treat domesticated livestock in order to reduce their intestinal colonization with, and shedding of, specific bacterial pathogens; (ii) treatments for decontaminating inanimate surfaces in food-processing facilities and other food establishments, so that foods processed on those surfaces are not cross-contaminated with the targeted pathogens; and (iii) post-harvest treatments involving direct applications of phages onto the harvested foods. This mini-review primarily focuses on the last type of intervention, which has been gaining the most momentum recently. Indeed, the results of recent studies dealing with improving food safety, and several recent regulatory approvals of various commercial phage preparations developed for post-harvest food safety applications, strongly support the idea that lytic phages may provide a safe, environmentally-friendly, and effective approach for significantly reducing contamination of various foods with foodborne bacterial pathogens. However, some important technical and nontechnical problems may need to be addressed before phage biocontrol protocols can become an integral part of routine food safety intervention strategies implemented by food industries in the USA. © 2013 Society of Chemical Industry.
Hoar, Bryanne M; Whiteside, Douglas P; Ward, Linda; Douglas Inglis, G; Morck, Douglas W
2007-03-01
The enteric flora of captive whooping cranes (Grus americana) and sandhill cranes (Grus canadensis) has not been well described, despite its potential importance in the understanding of both the normal condition of the intestinal physiology of these animals and the altered colonization within disease states in these birds. Nineteen whooping cranes and 23 sandhill cranes housed currently at the Calgary Zoo or its affiliated Devonian Wildlife Conservation Centre (DWCC) in Calgary, Alberta were sampled from October 2004-February 2005 by collecting aerobic and anaerobic cloacal swabs from each bird. There were seven major groupings of bacteria isolated from both species of crane. Gram-positive cocci, coliforms, and gram-negative bacilli were the most prevalent types of bacteria isolated for both crane species, with Escherichia coli, Enterococcus faecalis, and Streptococcus Group D, not Enterococcus the bacterial species isolated most commonly. There was a significant difference in the average number of isolates per individual between the two crane species but no differences between age or gender categories within crane species. Campylobacter sp. were isolated from five whooping cranes. The potential zoonotic pathogen Campylobacter jejuni was isolated from one whooping crane and C. upsaliensis was isolated from a second. Three other isolates were unspeciated members of the Campylobacter genus and likely belong to a species undescribed previously. The evaluation of the enteric cloacal flora of whooping cranes and sandhill cranes illustrates that differences exist between these two closely related crane species, and highlights the potential implications these differences may have for current practices involving captive wildlife. Zoo Biol 0:1-13, 2007. (c) 2007 Wiley-Liss, Inc.
Devindra, Shekappa; Sreenivasa Rao, Jarapala; Krishnaswamy, Padmanabhan; Bhaskar, Varanasi
2011-08-15
Red gram (Cajanus cajan L.) is an important crop for human and animal nutrition. However, raffinose family oligosaccharides present in red gram seed hinder its consumption as it is not digested by normal human carbohydrases and is further fermented by intestinal microflora, which induces flatulence. In order to make the grain legume more amenable for human consumption, we have tried to shed some light on the effect of germination followed by heat treatment methods such as autoclaving, cooking and pressure cooking on the raffinose family of sugars. These techniques, however, are primary prerequisites before consumption of the gram. The percent removal of raffinose, stachyose and verbascose after germinating red gram seeds for 8 h followed by autoclaving was 65.6%, 58.9% and 65.3% respectively; and after cooking was 61.6%, 69.2% and 72.5%. Germinating for 16 h followed by autoclaving led to a mean decrease of 53.3% for raffinose, 60.3% for stachyose and 62.3% for verbascose. Germination of red gram seeds for 16 h followed by cooking led to a mean decrease of 71.7% for raffinose, 76.2% for stachyose and 74.0% for verbascose, respectively. The results for the percent removal of raffinose, stachyose and verbascose after germination of red gram seeds for 16 h followed by pressure cooking was 68.3%, 73.3% and 68.2% respectively. This study demonstrates that local methods of processing reduce raffinose family oligosaccharides in red gram. The technique of germinating the seeds for 16 h followed by autoclaving, cooking and pressure cooking for the reduction of raffinose family oligosaccharides is a promising solution to overcome flatulence and increase the overall acceptance of red gram among general populace. Copyright © 2011 Society of Chemical Industry.
Cottier, Fabien; Tan, Alrina Shin Min; Yurieva, Marina; Liao, Webber; Lum, Josephine; Poidinger, Michael; Zolezzi, Francesca; Pavelka, Norman
2017-01-01
Candida albicans is a resident fungus of the human intestinal microflora. Commonly isolated at low abundance in healthy people, C. albicans outcompetes local microbiota during candidiasis episodes. Under normal conditions, members of the human gastrointestinal (GI) microbiota were shown to keep C. albicans colonization under control. By releasing weak organic acids (WOAs), bacteria are able to moderate yeast growth. This mechanism displays a synergistic effect in vitro with the absence of glucose in medium of culture, which underlines the complex interactions that C. albicans faces in its natural environment. Inactivation of the transcriptional regulator MIG1 in C. albicans results in a lack of sensitivity to this synergistic outcome. To decipher C. albicans transcriptional responses to glucose, WOAs, and the role of MIG1, we performed RNA sequencing (RNA-seq) on four biological replicates exposed to combinations of these three parameters. We were able to characterize the (i) glucose response, (ii) response to acetic and butyric acid, (iii) MIG1 regulation of C. albicans, and (iv) genes responsible for WOA resistance. We identified a group of six genes linked to WOA sensitivity in a glucose-MIG1-dependent manner and inactivated one of these genes, the putative glucose transporter HGT16, in a SC5314 wild-type background. As expected, the mutant displayed a partial complementation to WOA resistance in the absence of glucose. This result points toward a mechanism of WOA sensitivity in C. albicans involving membrane transporters, which could be exploited to control yeast colonization in human body niches. PMID:28877970
Posttransplant complications in adult recipients of intestine grafts without bowel decontamination.
Clouse, Jared W; Kubal, Chandrashekhar A; Fridell, Jonathan A; Mangus, Richard S
2018-05-01
Selective digestive decontamination is commonly used to decrease lumenal bacterial flora. Preoperative bowel decontamination may be associated with a lower wound infection rate but has not been shown to decrease risk of intra-abdominal abscess or lower leak rate for enteric anastomoses. Alternatively, the decontamination disrupts the normal flora of the gastrointestinal tract and may affect normal physiology, including immunologic function. This study reports complication rates of an intestine transplant program that has never used bowel decontamination. All adult patients who underwent intestine transplant from 2003 to 2015 at a single center were reviewed. Posttransplant complications included intra-abdominal abscess, enteric fistula, and leak from the enteric anastomosis. Viral, fungal, and bacterial infections in the first year after transplant are reported. There were 184 adult patients who underwent deceased donor intestine transplant during the study period. Among these patients, 30% developed an infected postoperative fluid collection, 4 developed an enteric fistula (2%), and 16 had an enteric or anastomotic leak (8%). The rate of any bacterial infection was 91% in the first year, with a wound infection rate of 25%. Fungal infection occurred in 47% of patients. Rejection rates were 55% at 1 y for isolated intestine patients and 17% for multivisceral (liver inclusive) patients. Among this population of intestine transplant patients in which no bowel decontamination was used, rates of surgical complications, infections, and rejection were similar to those reported by other centers. Bowel decontamination provides no identifiable benefit in intestine transplantation. Copyright © 2018 Elsevier Inc. All rights reserved.
Cağlikülekçi, Mehmet; Ozçay, Necdet; Oruğ, Taner; Aydoğ, Gülden; Renda, Nurten; Atalay, Fuat
2002-03-01
Several clinical and experimental studies have shown that obstructive jaundice delays wound healing. Growth hormone may prevent delayed wound healing, since it has effects on the release of mediators in jaundice, as well as increasing the protein synthesis. Forty male Wistar rats were allocated to four groups: Group I (n=10): intestinal anastomosis to normal small bowel, Group II (n=10): intestinal anastomosis to normal small bowel followed by growth hormone therapy (2mg/kg/day, subcutaneously), Group III (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel, Group IV (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel followed by growth hormone therapy at the same dosage The animals were observed for seven days then killed. Intraabdominal adhesions, anastomotic complications and anastomotic bursting pressures were recorded and tissue samples from the anastomotic site were obtained to measure hydroxyproline levels and for histopathologic examination. Growth hormone had a beneficial effect on the healing of intestinal anastomosis in both jaundiced and non-jaundiced rats. This was demonstrated by clinical and mechanical parameters such as a significant increase in anastomotic bursting pressure, hydroxyproline content and histopathological scores. Growth hormone reverses the adverse effects of obstructive jaundice on small bowel anastomotic healing. It can be hypothesized that this effect is due to augmentation of insulin-like growth factors, protection of hepatocytes, enhancement of intestinal epithelization, and reversal of the resultant malnutritional state caused by growth hormone in obstructive jaundice.
Ai, Jing; Du, Jie; Wang, Ning; Du, Zhi-Min; Yang, Bao-Feng
2004-01-01
AIM: To investigate the inhibitory effects of sodium orthovanadate on small-intestinal glucose and maltose absorption in rats and its mechanism. METHODS: Normal Wistar rats were lavaged with sodium orthovanadate (16 mg/kg, 4 mg/kg and 1 mg/kg) for 6 d. Blood glucose values were measured after fasting and 0.5, 1, 1.5 and 2 h after glucose and maltose feeding with oxidation-enzyme method. α-glucosidase was abstracted from the upper small intestine, and its activity was examined. mRNA expression of α-glucosidase and glucose-transporter 2 (GLUT2) in epithelial cells of the small intestine was observed by in situ hybridization. RESULTS: Sodium orthovanadate could delay the increase of plasma glucose concentration after glucose and maltose loading, area under curve (AUC) in these groups was lower than that in control group. Sodium orthovanadate at dosages of 10 μmol/L, 100 μmol/L and 1000 μmol/L could suppress the activity of α-glucosidase in the small intestine of normal rats, with an inhibition rate of 68.18%, 87.22% and 91.91%, respectively. Sodium orthovanadate reduced mRNA expression of α-glucosidase and GLUT2 in epithelial cells of small intestine. CONCLUSION: Sodium orthovanadate can reduce and delay the absorption of glucose and maltose. The mechanism may be that it can inhibit the activity and mRNA expression of α-glucosidase, as well as mRNA expression of GLUT2 in small intestine. PMID:15534916
Yang, Junting; Zhang, Shunwen; Wu, Jiangdong; Zhang, Jie; Dong, Jiangtao; Guo, Peng; Tang, Suyu; Zhang, Wanjiang; Wu, Fang
2018-06-12
Sepsis is a life-threatening organ dysfunction caused the dysregulation of host inflammatory response and immunosuppression to infection Early recognition and intervention are hence of paramount importance. In this respect the "sepsis bundle" was proposed in 2004 to be instituted in cases of suspected sepsis. We hypothesised that a combination treatment of the sepsis bundle with cyclophosphamide would improve the function of the intestinal mucosa and enhance survival in rats with induced sepsis. Sprague-Dawley rats were divided into 5 different groups: sham, cecal ligation and puncture (CLP), cyclophosphamide (CTX), imipenem+normal saline (NS) and imipenem+NS+CTX. Cecal ligation and puncture were used for inducing the polymicrobial sepsis. Western-blot was used to measure the occludin protein, and ELISA for examining the plasma level of cytokines IL-6, IL-10 and TNF-α. TUNEL assay for testing the intestinal mucosal apoptosis, and hematoxylin-eosin staining for observing the intestinal mucosal changes. The permeability of intestinal mucosa was determined by the plasma level of FD-70. The results showed that the combination treatment of the sepsis bundle with cyclophosphamide attenuated cytokine levels, inhibited epithelial cell apoptosis and improved the function of the intestinal barrier. The survival rate of the group treated with the combined therapy was significantly higher than that of the other groups. The combination treatment of sepsis bundle with cyclophosphamide improves the function of the intestinal barrier and enhances survival in septic rats.
Adisakwattana, Sirichai; Yibchok-Anun, Sirintorn; Charoenlertkul, Piyawan; Wongsasiripat, Natthakarn
2011-01-01
The inhibitory activity on intestinal α-glucosidase by cyanidin-3-rutinoside was examined in vitro and in vivo. The IC50 values of cyanidin-3-rutinoside against intestinal maltase, and sucrase were 2,323 ± 14.8 and 250.2 ± 8.1 µM, respectively. The kinetic analysis revealed that intestinal sucrase was inhibited by cyanidin-3-rutinoside in a mixed-type manner. The synergistic inhibition also found in combination of cyanidin-3-rutinoside with acarbose against intestinal maltase and sucrase. The oral administration of cyanidin-3-rutinoside (100 and 300 mg/kg) plus maltose or sucrose to normal rats, postprandial plasma glucose was markedly suppressed at 30–90 min after loading. Furthermore, the normal rats treated with acarbose and cyanidin-3-rutinoside (30 mg/kg) showed greater reduction of postprandial plasma glucose than the group treated with acarbose alone. These results suggest that cyanidin-3-rutinoside retards absorption of carbohydrates by inhibition of α-glucosidase which may be useful as a potential inhibitor for prevention and treatment of diabetes mellitus. PMID:21765605
Chukwuma, Chika Ifeanyi; Islam, Md Shahidul
2017-04-01
Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.
Environmental microbiology as related to planetary quarantine
NASA Technical Reports Server (NTRS)
Iflug, I. J.
1971-01-01
The results of studies to determine the effect of soil particle size on the survival time at 125 C of the microflora associated with these particles are discussed. The data suggest that longer survival times exist for the microflora associated with larger particles. The studies indicate that microorganisms associated with soil are difficult to kill and that organisms associated with large particles are harder to kill than those associated with small particles. Sterlization requirements increase as the level of contamination increases. Soil particles and their accompanying microflora are the most critical contaminants.
The evaluation of interstitial Cajal cells distribution in non-tumoral colon disorders.
Becheanu, G; Manuc, M; Dumbravă, Mona; Herlea, V; Hortopan, Monica; Costache, Mariana
2008-01-01
Interstitial cells of Cajal (ICC) are pacemakers that generate electric waves recorded from the gut and are important for intestinal motility. The aim of the study was to evaluate the distribution of interstitial cells of Cajal in colon specimens from patients with idiopathic chronic pseudo-obstruction and other non-tumoral colon disorders as compared with samples from normal colon. The distribution pattern of ICC in the normal and pathological human colon was evaluated by immunohistochemistry using antibodies for CD117, CD34, and S-100. In two cases with intestinal chronic idiopathic pseudo-obstruction we found a diffuse or focal reducing number of Cajal cells, the loss of immunoreactivity for CD117 being correlated with loss of immunoreactivity for CD34 marker. Our study revealed that the number of interstitial cells of Cajal also decrease in colonic diverticular disease and Crohn disease (p<0.05), whereas the number of enteric neurones appears to be normal. These findings might explain some of the large bowel motor abnormalities known to occur in these disorders. Interstitial Cajal cells may play an important role in pathogenesis and staining for CD117 on transmural intestinal surgical biopsies could allow a more extensive diagnosis in evaluation of chronic intestinal pseudo-obstruction.
Rentea, Rebecca M; Lam, Vy; Biesterveld, Ben; Fredrich, Katherine M; Callison, Jennifer; Fish, Brian L; Baker, John E; Komorowski, Richard; Gourlay, David M; Otterson, Mary F
2016-10-01
Exogenous replacement of depleted enterocyte intestinal alkaline phosphatase (IAP) decreases intestinal injury in models of colitis. We determined whether radiation-induced intestinal injury could be mitigated by oral IAP supplementation and the impact on tissue-nonspecific AP. WAG/RjjCmcr rats (n = 5 per group) received lower hemibody irradiation (13 Gy) followed by daily gavage with phosphate-buffered saline or IAP (40 U/kg/d) for 4 days. Real-time polymerase chain reaction, AP activity, and microbiota analysis were performed on intestine. Lipopolysaccharide and cytokine analysis was performed on serum. Data were expressed as a mean ± SEM with P greater than .05 considered significant. Intestine of irradiated animals demonstrates lower hemibody irradiation and is associated with upregulation of tissue-nonspecific AP, downregulation of IAP, decreased AP activity, and altered composition of the intestinal microbiome. Supplemental IAP after radiation may be beneficial in mitigating intestinal radiation syndrome as evidenced by improved histologic injury, decreased acute intestinal inflammation, and normalization of intestinal microbiome. Copyright © 2016 Elsevier Inc. All rights reserved.
Enteral obeticholic acid promotes intestinal growth in total parenteral nutrition fed neonatal pigs
USDA-ARS?s Scientific Manuscript database
Intestinal atrophy is an adverse outcome associated with prolonged total parenteral nutrition (PN) partly due to disruption of normal enterohepatic circulation of bile acids. Previously we showed that enteral treatment with chenodeoxycholic acid (CDCA), a dual agonist for the nuclear receptor, farne...
An intestinal Trojan horse for gene delivery
NASA Astrophysics Data System (ADS)
Peng, Haisheng; Wang, Chao; Xu, Xiaoyang; Yu, Chenxu; Wang, Qun
2015-02-01
The intestinal epithelium forms an essential element of the mucosal barrier and plays a critical role in the pathophysiological response to different enteric disorders and diseases. As a major enteric dysfunction of the intestinal tract, inflammatory bowel disease is a genetic disease which results from the inappropriate and exaggerated mucosal immune response to the normal constituents in the mucosal microbiota environment. An intestine targeted drug delivery system has unique advantages in the treatment of inflammatory bowel disease. As a new concept in drug delivery, the Trojan horse system with the synergy of nanotechnology and host cells can achieve better therapeutic efficacy in specific diseases. Here, we demonstrated the feasibility of encapsulating DNA-functionalized gold nanoparticles into primary isolated intestinal stem cells to form an intestinal Trojan horse for gene regulation therapy of inflammatory bowel disease. This proof-of-concept intestinal Trojan horse will have a wide variety of applications in the diagnosis and therapy of enteric disorders and diseases.
Madara, J L; Patapoff, T W; Gillece-Castro, B; Colgan, S P; Parkos, C A; Delp, C; Mrsny, R J
1993-01-01
Neutrophil transmigration across intestinal epithelia is thought to contribute to epithelial dysfunction and characterizes many inflammatory intestinal diseases. Neutrophils activated by factors, normally present in the lumen, release a neutrophil-derived secretagogue activity to which intestinal epithelia respond with an electrogenic chloride secretion, the transport event which underlies secretory diarrhea. Using sequential ultrafiltration, column chromatographic, and mass and Raman spectroscopic techniques, neutrophil-derived secretagogue was identified as 5'-AMP. Additional studies suggested that neutrophil-derived 5'-AMP is subsequently converted to adenosine at the epithelial cell surface by ecto-5'-nucleotidase and that adenosine subsequently activates intestinal secretion through adenosine receptors on the apical membrane of target intestinal epithelial cells. These findings suggest that this ATP metabolite may serve as a neutrophil-derived paracrine mediator that contributes to secretory diarrhea in states of intestinal inflammation. PMID:8486793
An intestinal Trojan horse for gene delivery.
Peng, Haisheng; Wang, Chao; Xu, Xiaoyang; Yu, Chenxu; Wang, Qun
2015-03-14
The intestinal epithelium forms an essential element of the mucosal barrier and plays a critical role in the pathophysiological response to different enteric disorders and diseases. As a major enteric dysfunction of the intestinal tract, inflammatory bowel disease is a genetic disease which results from the inappropriate and exaggerated mucosal immune response to the normal constituents in the mucosal microbiota environment. An intestine targeted drug delivery system has unique advantages in the treatment of inflammatory bowel disease. As a new concept in drug delivery, the Trojan horse system with the synergy of nanotechnology and host cells can achieve better therapeutic efficacy in specific diseases. Here, we demonstrated the feasibility of encapsulating DNA-functionalized gold nanoparticles into primary isolated intestinal stem cells to form an intestinal Trojan horse for gene regulation therapy of inflammatory bowel disease. This proof-of-concept intestinal Trojan horse will have a wide variety of applications in the diagnosis and therapy of enteric disorders and diseases.
Gu, Yu-Chun; Chen, De-Zhen
1997-01-01
AIM: To study the immunoreactivity of the Chinese medicine Shenrouyangzhentang to vasoactive intestinal polypeptide (VIP) and its therapeutic mechanism. METHODS: The immunoreactivity of the Chinese medicine Shenrouyangzhentang to VIP was detected in the plasma of 20 normal people and 20 patients with Piyinxu (Spleen Yin deficiency) using the radioimmunoassay (RIA) method. RESULTS: The maximum binding rate B0/T was 53.29%, the non-specific binding rate N0/T was 1.170%, and the VIP standard curve was Y = 0.81983 + 0.44319X - 0.28927X2, R2 = 0.990. The VIP content in Shenrouyangzhentang was 106.6 ng/L ± 20 ng/L), while it was 90.16 ng/L ± 15 ng/L in normal human plasma and 63.25 ng/L ± 11 ng/L in the plasma of Pixinxu patients. The difference between normal plasma and Pixinxu patient plasma was statistically significant (P < 0.05). CONCLUSION: The Chinese medicine Shenrouyangzhentang demonstrated VIP immunoreactivity similar to that of normal plasma. The (vasoactive intestinal polypeptide) VIP content in Pixinxu patient plasma was lower than that in healthy subjects (P < 0.05). PMID:27041949
Problems of microbial ecology in man space mission
NASA Astrophysics Data System (ADS)
Lizko, N. N.
The state of microflora should be considered as one of the important links in chain of the specific functional disorders involving the spaceflight factors effects. At the same time, there occurs an astablishment of nonspecific disbiotic response of the human microflora in the space flights of various duration characterized by a decrease up to a reduction of the "defence" group of microorganisms; by an appearence of unusual microorganisms in various biotypes, by accummulatoin of the potential of pathogenic species of automicroflora with their succeeding colonization and longterm persistence. In experimental animal models to simulate dysbacteriosis and with the use of SPF-rats and primates flow aboard Cosmos biosatellites, the significance of indigenous microflora for preserving microecological homeostasis. Theoretically based and experimentally proven need for increasing the colonization resistence is cofirmed dy the practical use of the measures to stabilize microflora of the cosmonauts during space flights.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahaney, W.C.; Boyer, M.G.
1986-08-01
Microflora (bacteria and fungi) distributions in several paleosols from Mount Kenya, East Africa, provide important information about contamination of buried soil horizons dated by radiocarbon. High counts of bacteria and fungi in buried soils provide evidence for contamination by plant root effects or ground water movement. Profiles with decreasing counts versus depth appear to produce internally consistent and accurate radiocarbon dates. Profiles with disjunct or bimodal distributions of microflora at various depths produce internally inconsistent chronological sequences of radiocarbon-dated buried surfaces. Preliminary results suggest that numbers up to 5 x 10/sup 2/ g/sup -1/ for bacteria in buried A horizonsmore » do not appear to affect the validity of /sup 14/C dates. Beyond this threshold value, contamination appears to produce younger dates, the difference between true age and /sup 14/C age increasing with the amount of microflora contamination.« less
Ricciardi, Annamaria; Blaiotta, Giuseppe; Di Cerbo, Alessandro; Succi, Mariantonietta; Aponte, Maria
2014-06-02
The survival of the autochthonous microflora, of samples collected during Pecorino di Carmasciano cheese manufacturing, was evaluated along the passage through a model mimicking the gastro-intestinal tract. The aim was the selection of lactic acid bacteria potentially able to arrive alive and metabolically active to the colon. The dynamics of lactic microbiota, throughout simulated digestion of cheese samples, were evaluated by means of an approach PCR-DGGE-based. Dominant species after cheese digestion could be related to the Lactobacillus plantarum and Lactobacillus casei groups. Sixty-three strains, which survived to simulated gastro-intestinal transit, were further evaluated for technological features and tolerance to human digestion in several experimental conditions, according to routinely used protocols. Bacterial survival appeared to be, more than strain-specific, strongly affected by experimental conditions, i.e. some strains showed an acceptable survival when resuspended in skim milk but not in ewe milk and vice versa. Nevertheless according to data, one gram of fresh Pecorino di Carmasciano cheese may convey to human colon about the same amount of viable LAB of a probiotic drink. Although it cannot be assumed that lactobacilli introduced with Pecorino have beneficial effects on the host, the healthy impact of autochthonous lactic acid bacteria of naturally fermented food has a broad consensus in the current literature. Copyright © 2014 Elsevier B.V. All rights reserved.
Intestinal flora of FAP patients containing APC-like sequences.
Hainova, K; Adamcikova, Z; Ciernikova, S; Stevurkova, V; Tyciakova, S; Zajac, V
2014-01-01
Colorectal cancer mortality is one of the most common cause of cancer-related mortality. A multiple risk factors are associated with colorectal cancer, including hereditary, enviromental and inflammatory syndromes affecting the gastrointestinal tract. Familial adenomatous polyposis (FAP) is characterized by the emergence of hundreds to thousands of colorectal adenomatous polyps and FAP syndrome is caused by mutations within the adenomatous polyposis coli (APC) tumor suppressor gene. We analyzed 21 rectal bacterial subclones isolated from FAP patient 41-1 with confirmed 5bp ACAAA deletion within codons 1060-1063 for the presence of APC-like sequences in longest exon 15. The studied section was defined by primers 15Efor-15Erev, what correlates with mutation cluster region (MCR) in which the 75% of all APC germline mutations were detected. More than 90% homology was showed by sequencing and subsequent software comparison. The expression of APC-like sequences was demostrated by Western blot analysis using monoclonal and polyclonal antibodies against APC protein. To study missing link between the DNA analysis (PCR, DNA sequencing) and protein expresion experiments (Western blotting) we analyzed bacterial transcripts containing the 15Efor-15Erev sequence of APC gene by reverse transcription-PCR, what indicated that an APC gene derived fragment may be produced. We observed 97-100 % homology after computer comparison of cDNA PCR products. Our results suggest that presence of APC-like sequences in intestinal/rectal bacteria is enrichment of bacterial genetic information in which horizontal gene transfer between humans and microflora play an important role.